30.01.2013 Views

The Use of Zooplankton as Bioindicators for the - Southwest Florida ...

The Use of Zooplankton as Bioindicators for the - Southwest Florida ...

The Use of Zooplankton as Bioindicators for the - Southwest Florida ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> use <strong>of</strong> zooplankton <strong>as</strong> bioindicators<br />

<strong>for</strong> <strong>the</strong> management <strong>of</strong> freshwater inflow<br />

in <strong>Southwest</strong> <strong>Florida</strong><br />

SG Tolley 1 , DC Fugate 1 , ML Parsons 1 , BA Denkert 1 ,<br />

M Andresen 1 , JM Neurohr 1 , L Markley 1 ,<br />

K Radabaugh 2 , SE Burghart 2 and EB Peebles 2<br />

1 <strong>Florida</strong> Gulf Co<strong>as</strong>t University, Co<strong>as</strong>tal Watershed Institute<br />

2 University <strong>of</strong> South <strong>Florida</strong>, College <strong>of</strong> Marine Science


<strong>Zooplankton</strong> <strong>as</strong> <strong>Bioindicators</strong><br />

● Time scale <strong>of</strong> disturbance (freshwater inflow) vs.<br />

time scale <strong>of</strong> response (generation times <strong>of</strong> weeks to months)<br />

● Biodiversity: 208 zooplankton species<br />

● Target organisms are important trophic links to many commercially<br />

and recreationally important species<br />

● Single sampling gear <strong>for</strong> entire 47-km stretch <strong>of</strong> study area,<br />

regardless <strong>of</strong> depth and bottom type


Sanibel Is<br />

-3.6 rkm<br />

Cape<br />

Coral<br />

2.5 rkm<br />

-5.9 rkm<br />

5.2 rkm<br />

10.6 rkm<br />

7.6 rkm<br />

20.0 rkm<br />

16.2 rkm<br />

26.9 rkm<br />

24.2 rkm<br />

Fort<br />

Myers<br />

37.1 rkm<br />

41.0 rkm<br />

Caloosahatchee River 30.2 rkm<br />

34.4 rkm<br />

and Estuary Franklin Lock<br />

& Dam<br />

Survey Design<br />

nighttime monthly sampling<br />

incoming tide<br />

14 stations (~3.6 rkm apart)<br />

47 km reach <strong>of</strong> river and estuary<br />

21 months <strong>of</strong> data collected<br />

(May 2008-Apr 2010)


SeaBird 19-CTD<br />

& OBS<br />

LISST: particle size distribution<br />

& settling velocity<br />

LISST-100, Sequoia Scientific<br />

surface sediment samplers<br />

centric:pennate ratio<br />

PAM fluorometer: benthic<br />

photosyn<strong>the</strong>tic efficiency<br />

Optical O 2, pH, conductivity, temperature,<br />

depth, water-column chlorophyll a<br />

CDOM, red backscatter (turbidity),<br />

phycoerythrin (cyanobacteria)<br />

TSS


<strong>Zooplankton</strong> composition<br />

Ichthyoplankton (including larval fishes)<br />

● 500 μm mesh<br />

● 5-min oblique tow<br />

● lowest taxa practical<br />

● developmental stage


Figure by EB Peebles<br />

<strong>Zooplankton</strong> vs. hyperbenthos<br />

NET SEAWARD FLOW<br />

NUTRIENTS


Highly variable freshwater inflow<br />

Se<strong>as</strong>onal variation in precipitation<br />

(138 cm annually: 70% from Jun-Sep)<br />

Tropical wea<strong>the</strong>r systems<br />

Managed inflow (lock, dam & spillway)<br />

Pulsed rele<strong>as</strong>es<br />

John C<strong>as</strong>sani<br />

WP Franklin Lock and Dam (S-79)


Depth (m)<br />

May 2008 (Dry)<br />

Generally well mixed<br />

Moderate stratification upstream<br />

Power plant signature at 30 km<br />

-5 0 5 10 15 20 25 30 35 40<br />

Km upstream<br />

Depth (m)<br />

* Triangles denote station locations<br />

Water column nearly fresh above rkm 2<br />

Saltwater intrusion resembles salt wedge<br />

-5 0 5 10 15 20 25 30 35 40<br />

Km upstream<br />

°C<br />

August 2008 (Wet)<br />

°C


Low salinity zone (2 psu)<br />

Isolated from system<br />

during dry months<br />

Location (rkm)<br />

Regions <strong>of</strong> low DO<br />

Summer months<br />

Periods <strong>of</strong> high inflow


Acartia tonsa<br />

Acartia tonsa<br />

Dry<br />

Acartia tonsa<br />

Wet<br />

22000<br />

21000<br />

20000<br />

19000<br />

18000<br />

17000<br />

16000<br />

15000<br />

14000<br />

13000<br />

12000<br />

11000<br />

10000<br />

9000<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Sagitta spp.<br />

May 2008 (Dry)<br />

Sagitta spp.<br />

Dry<br />

Sagitta spp.<br />

Wet<br />

September 2008 (Wet)<br />

28000<br />

26000<br />

24000<br />

22000<br />

20000<br />

18000<br />

16000<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

420<br />

400<br />

380<br />

360<br />

340<br />

320<br />

300<br />

280<br />

260<br />

240<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Gobiidae preflexion<br />

Gobiidae<br />

preflexion larvae<br />

Dry<br />

Gobiidae<br />

preflexion larvae<br />

Wet<br />

340<br />

320<br />

300<br />

280<br />

260<br />

240<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

105<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Organism density (no. 1000 m -3 )


Americamysis spp. Edotia triloba<br />

Americamysis spp.<br />

Dry<br />

Americamysis spp.<br />

Wet<br />

12000<br />

11500<br />

11000<br />

10500<br />

10000<br />

9500<br />

9000<br />

8500<br />

8000<br />

7500<br />

7000<br />

6500<br />

6000<br />

5500<br />

5000<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

2500<br />

2400<br />

2300<br />

2200<br />

2100<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

May 2008 (Dry)<br />

Edotia triloba<br />

Dry<br />

Edotia triloba<br />

Wet<br />

September 2008 (Wet)<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

3600<br />

3400<br />

3200<br />

3000<br />

2800<br />

2600<br />

2400<br />

2200<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Anchoa mitchilli<br />

juveniles<br />

Anchoa mitchilli<br />

juveniles<br />

Dry<br />

Anchoa mitchilli<br />

juveniles<br />

Wet<br />

3600<br />

3400<br />

3200<br />

3000<br />

2800<br />

2600<br />

2400<br />

2200<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Organism density (no. 1000 m -3 )


Center <strong>of</strong> abundance (rkm)<br />

Center <strong>of</strong> abundance (rkm)<br />

Center <strong>of</strong> abundance (rkm)<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

Inflow (m<br />

45<br />

40<br />

35<br />

0 1000 2000 3000 4000 5000 6000<br />

Freshwater inflow (cfs)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

0 1000 2000 3000 4000 5000 6000<br />

Freshwater inflow (cfs)<br />

3s-1 45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

r<br />

0 1000 2000 3000 4000 5000 6000<br />

Freshwater inflow ) 21-d (cfs) lag<br />

2 Microgobius spp. (post)<br />

55-d inflow<br />

= 70%<br />

p = 0.0002<br />

45<br />

r<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

0 1000 2000 3000 4000 5000 6000<br />

Freshwater inflow (cfs)<br />

2 r<br />

= 83% Anchoa spp. (pre)<br />

p


Total abundance (x 10 9 )<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0<br />

marine/co<strong>as</strong>tal copepod<br />

Responses <strong>of</strong> marine and<br />

freshwater species to inflow<br />

Total abundance (x 10 8 )<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0<br />

Predicting total organism<br />

abundance (estuary-wide)<br />

b<strong>as</strong>ed on inflow<br />

freshwater copepod


Center <strong>of</strong> abundance (rkm)<br />

>1,000 individuals/tow<br />

Freshwater inflow (cfs)<br />

Gelatinous predators<br />

- prey on larval fishes<br />

- compete with larval fishes <strong>for</strong> food<br />

~7,000 individuals/tow<br />

Clytia sp.<br />

(50-d lag)


S-79<br />

Location <strong>of</strong> 90 th percentile (rkm)<br />

41<br />

37<br />

33<br />

29<br />

25<br />

21<br />

17<br />

Location <strong>of</strong> 90 th abundance percentile (no. m -3 )<br />

Anchoa mitchilli juveniles<br />

Americamysis almyra<br />

0 3000 6000 9000 12000 15000<br />

Freshwater inflow (cfs) 3-d lag<br />

Impingement and habitat compression


Management Implications<br />

1. Dissolved oxygen<br />

Issue<br />

Positioning <strong>of</strong> hyperbenthic prey in regions <strong>of</strong> low DO could result in<br />

substantial loss <strong>of</strong> important food resources <strong>for</strong> fishes and invertebrates<br />

Mitigation<br />

● Rele<strong>as</strong>es <strong>of</strong> 1,000−1,200 cfs at S-79 during dry months would<br />

result in relocation <strong>of</strong> <strong>the</strong>se prey species downstream and away<br />

from region prone to low DO


Management Implications<br />

2. Impingement<br />

Issue<br />

Juvenile bay anchovy and Americamysis almyra appear to be blocked<br />

by lock and dam from moving far<strong>the</strong>r upstream during dry months.<br />

Impingement prevents organisms from expanding <strong>the</strong>ir range upstream,<br />

concentrating <strong>the</strong>m in confined portion <strong>of</strong> estuary.<br />

Mitigation<br />

● Rele<strong>as</strong>es on <strong>the</strong> order <strong>of</strong> 1,000 cfs should be sufficient to<br />

rele<strong>as</strong>e <strong>the</strong>se organisms from impingement caused by S-79


Management Implications<br />

3. Habitat Compression<br />

Issue<br />

Many species (e.g., fishes, mysids, commercial shrimps, isopods) move<br />

upstream into narrow portion <strong>of</strong> river in response to reduced inflow:<br />

potential <strong>for</strong> loss <strong>of</strong> habitat volume due to funnel shape <strong>of</strong> tidal rivers.<br />

Habitat compression: incre<strong>as</strong>es competition and predator-prey<br />

encounters in same habitat.<br />

Mitigation<br />

● Rele<strong>as</strong>es <strong>of</strong> 800−1,000 cfs would relocate a number <strong>of</strong> <strong>the</strong>se<br />

species downstream <strong>of</strong> <strong>the</strong> restricted portion <strong>of</strong> River.


Management Implications<br />

4. Maximizing Prey Abundance<br />

Issue<br />

System-wide abundances <strong>of</strong> a number <strong>of</strong> taxa were reduced at higher<br />

levels <strong>of</strong> inflow.<br />

Mitigation<br />

● For many <strong>of</strong> <strong>the</strong>se taxa, greatest abundances would be<br />

maintained at inflows


Management Implications<br />

5. Gelatinous Predator Blooms<br />

Issue<br />

Gelatinous predators impact fish populations by feeding on developing<br />

eggs and larvae, or by competing with larvae <strong>for</strong> prey. <strong>The</strong> hydromedusa<br />

Clytia sp. and <strong>the</strong> ctenophore Mnemiopsis leidyi were concentrated in<br />

upper, restricted portion <strong>of</strong> river during periods <strong>of</strong> reduced inflow.<br />

Mitigation<br />

● Rele<strong>as</strong>es <strong>of</strong> 1,000 cfs or less should result in substantial<br />

movement downstream, relocating <strong>the</strong>se gelatinous predators<br />

away from are<strong>as</strong> in upper river where potential zooplankton prey<br />

(including larval fishes) are concentrated.


South <strong>Florida</strong> Water Management District<br />

Peter Doering<br />

University <strong>of</strong> South <strong>Florida</strong><br />

Ralph Kitzmiller<br />

ACKNOWLEDGMENTS<br />

<strong>Florida</strong> Gulf Co<strong>as</strong>t University<br />

Graduate Students<br />

Holly Abeels Greg Ellis<br />

James Evans Rachel Harris<br />

Brian Hoye Jennifer Nelson<br />

Marijke Noens Bob W<strong>as</strong>no<br />

Undergraduate Interns<br />

Travis Brindise Rheannon Ketover<br />

Sarah Larsen<br />

Co<strong>as</strong>tal Watershed Institute<br />

Lesli Haynes<br />

Christal Niemeyer<br />

Lacey Smith<br />

Project funding: SFWMD grants 4500020141 and 4500035194<br />

Congressional Grant P116Z080279, U.S, Department <strong>of</strong> Education

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!