30.01.2013 Views

Flow Cytometry of Circulating Blood Microparticles Flow ... - MetroFlow

Flow Cytometry of Circulating Blood Microparticles Flow ... - MetroFlow

Flow Cytometry of Circulating Blood Microparticles Flow ... - MetroFlow

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Flow</strong> <strong>Cytometry</strong> <strong>of</strong> <strong>Circulating</strong> <strong>Blood</strong><br />

<strong>Microparticles</strong><br />

Arun S. Shet<br />

Laboratory <strong>of</strong> <strong>Blood</strong> and Vascular Biology<br />

Rockefeller University<br />

New York


Outline<br />

• What are microparticles and why are they<br />

important?<br />

• Pathophysiology <strong>of</strong> microparticles<br />

• <strong>Flow</strong> cytometric study <strong>of</strong> microparticles<br />

– Isolation from blood<br />

– <strong>Flow</strong> cytometry definition<br />

– Characterization <strong>of</strong> membrane antigens<br />

– Enumeration<br />

– Analysis strategies<br />

• Current flow cytometry approaches


<strong>Microparticles</strong> (MPs)<br />

<strong>Microparticles</strong> (MPs)<br />

• MPs are small, membrane derived vesicles released by<br />

activated or apoptotic cells.<br />

• They have excess phosphatidylserine (PS) on their<br />

outer leaflets exposed to plasma (label with the<br />

phopholipid probe annexin V)<br />

• MPs express surface antigens characteristic <strong>of</strong> their<br />

cell-<strong>of</strong>-origin allowing flow cytometric detection


<strong>Microparticles</strong>: pathophysiology<br />

Zwaal et al, <strong>Blood</strong> 1997


<strong>Microparticles</strong><br />

• Small (0.05 - 1.0 µm) and heterogeneous<br />

• Surface phosphatidylserine (+)<br />

• Membrane antigen (+)<br />

• Exosomes<br />

– Small (0.03-0.1 µm)<br />

– Exocytosis <strong>of</strong> multivesicular bodies<br />

– Enriched in tetraspanins (CD9, 63, 81 & 82) and MHC<br />

class II molecules<br />

– Play a role in antigen presentation


MPs - are they relevant?<br />

MPs - are they relevant?<br />

Although the mechanism <strong>of</strong> production, circulating<br />

time, fate and physiological function <strong>of</strong> MPs are areas<br />

<strong>of</strong> active investigation, their relevance is yet to be<br />

completely understood….


MPs contribute to physiological hemostasis….<br />

MPs contribute to physiological hemostasis….<br />

Humans with Scott syndrome have a defect in externalization <strong>of</strong> PS and<br />

membrane vesiculation that results in insufficient platelet MP formation<br />

and manifests clinically as a moderate to severe bleeding disorder.


MPs contribute to thrombosis….<br />

?CT = deletion <strong>of</strong> the cytoplasmic tail <strong>of</strong> p-selectin<br />

Andre et al PNAS 2000


MPs may be therapeutic….<br />

MPs may be therapeutic….<br />

Hrachavinova et al,<br />

Nature medicine 2003


Elevated blood microparticles in disease states<br />

Elevated blood microparticles in disease states<br />

• Heparin induced<br />

thrombosis<br />

• Thrombotic<br />

thrombocytopenic purpura<br />

• Hemolytic anemia<br />

• Paroxysmal nocturnal<br />

hemoglobinuria<br />

• Cancer - Leukemia<br />

• Lung & gastric cancer<br />

• Sepsis<br />

• Trauma<br />

• Diabetes mellitus<br />

• Renal failure<br />

• Coronary artery disease<br />

All <strong>of</strong> these conditions are associated with thrombosis


MPs - are they relevant?<br />

MPs - are they relevant?<br />

The mechanism <strong>of</strong> production, circulating time, fate and<br />

physiological function <strong>of</strong> MPs are areas worthy <strong>of</strong><br />

active investigation and require better understanding.


R1<br />

<strong>Flow</strong> cytometry: Methods - Gating<br />

<strong>Flow</strong> cytometry: Methods - Gating<br />

R1<br />

R2<br />

R2<br />

R1<br />

R1<br />

R2


<strong>Flow</strong> cytometry: Methods- annexin<br />

<strong>Flow</strong> cytometry: Methods- annexin<br />

Annexin V Cy 5<br />

Calcium buffer EDTA buffer<br />

Side scatter<br />

Side scatter<br />

Bead gate<br />

1.0μm beads<br />

MP gate<br />

Foward scatter


Side scatter<br />

Annexin V Cy 5<br />

Plasma contains annexin V labeling events<br />

R1<br />

R2<br />

R1<br />

Forward scatter<br />

R2<br />

Side scatter<br />

R1<br />

R2


Some annexin V labeling events in plasma are not removable<br />

by ultracentrifugation<br />

Side scatter<br />

Annexin V Cy 5<br />

R1 R1 R1<br />

Forward scatter<br />

Side scatter


• Removable by ultracentrifugation<br />

• Small in size (≤1.0μm)<br />

• Bind with annexin V<br />

(surface PS +)<br />

Microparticle definition<br />

Microparticle definition<br />

Annexin V Cy5<br />

Side scatter<br />

Side scatter<br />

Bead gate<br />

1.0μm beads<br />

MP gate<br />

Foward scatter<br />

PS (+) MPs<br />

PS (-) MPs<br />

plus noise


Sickle cell anemia<br />

Sickle cell anemia<br />

• Sickle cell anemia is the commonest inherited<br />

hematological disorder in the United States affecting<br />

~80,000 people<br />

• Point mutation in the ß-chain <strong>of</strong> the hemoglobin<br />

molecule<br />

• Results in hemoglobin that has decreased solubility and<br />

is prone to polymerization<br />

• Coagulation system is activated in patients with sickle<br />

cell disease


MPs in sickle cell anemia<br />

MPs in sickle cell anemia<br />

• Sickle blood contains MPs derived from<br />

– RBC : Allan et al, Nature 1982<br />

– Platelet : Wun et al, BJH 1998<br />

– ? Endothelial cells<br />

– ? Monocytes


Sickle crisis and steady state<br />

Sickle crisis and steady state<br />

• Crisis period<br />

– Pain having no cause other than SCD<br />

– Requiring morphine and/or NSAIDS and hospitalization<br />

– Samples obtained at time <strong>of</strong> onset <strong>of</strong> crisis or during hospital<br />

course<br />

• Steady state period<br />

– Any time exclusive <strong>of</strong> the 4 weeks prior to or after a crisis period<br />

– Samples obtained during routine clinic visit<br />

• Acute crisis (n=21) and steady state (n=16).<br />

• Normal subjects (n=13).


Sample collection and processing<br />

Sample collection and processing<br />

• Using a 21 G needle, after discarding 1 st 3 mL into a vacutainer<br />

tube containing buffered sodium citrate (1 part : 9 parts).<br />

• Processed immediately after collection.<br />

• Platelet free plasma (PFP) was prepared by a 2- step centrifugation<br />

procedure.<br />

• Stored at -80°C or analyzed immediately.<br />

• MPs extracted from PFP by ultracentrifugation<br />

• Labeled with annexin V Cy5 in Ca++ buffer in the dark for 30 min<br />

at 22 °C


• MP gate<br />

• Annexin V (+) quadrant<br />

Data analysis<br />

Bead gate<br />

MP gate<br />

• Quadrant settings determined by a sample <strong>of</strong> MPs labeled with<br />

annexin V in calcium buffer containing EDTA.<br />

• To enumerate MPs, we added a known # <strong>of</strong> 7 µm size beads<br />

which were adequately separated from the MP gate based on<br />

their size.<br />

• Annexin V (+) event count was multiplied by the following<br />

formula to obtain the total annexin (+) MP number in 1 mL <strong>of</strong><br />

platelet free plasma.<br />

MP = (+) event count X<br />

Beads added /Beads counted X plasma<br />

volume (mL)


Total Plasma <strong>Microparticles</strong> Are Elevated in Sickle<br />

Patients During Steady State and Crisis<br />

MP (x thousands / ml PFP)<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Normal St. state Crisis<br />

Shet et al, <strong>Blood</strong> 2003


Endothelial TF Expression in SCA<br />

Endothelial TF Expression in SCA<br />

Endothelial marker<br />

P1H12<br />

Tissue factor antigen<br />

<strong>Circulating</strong> endothelial<br />

cells in sickle cell<br />

anemia are activated<br />

and express tissue<br />

factor<br />

Solovey et al, NEJM 1997<br />

Solovey et al, JCI 1998


MP Origin and TF Expression<br />

MP origin and TF expression were identified by triplelabel<br />

flow cytometry using:<br />

– Annexin V<br />

– Cell specific monoclonals<br />

• Endothelial cells : VE cadherin<br />

• Monocytes: CD14<br />

• Platelets : aIIbß3<br />

• Red blood cells : Glycophorin A<br />

– TF monoclonal antibody


Cell specificity <strong>of</strong> anti-CD14 and<br />

anti-VE cadherin antibodies<br />

CD 14 + VE cad on monocytes<br />

Mononuclear cells Endothelial cells<br />

Fluorescence intensity (phycoerythrin)


Annexin Cy 5<br />

Endothelial cell (HUVEC) microparticles<br />

Phycoerythrin fluorescence


Fluorescein<br />

Phycoerythrin<br />

Endothelial cell (HUVEC) microparticles<br />

IgG-FITC<br />

CD146-FITC CD106-FITC<br />

IgG-PE VE cadherin-PE CD31-PE


R1<br />

Platelet-derived <strong>Microparticles</strong><br />

Washed unstimulated<br />

platelets obtained from<br />

a normal donor<br />

R2<br />

Annexin V CY 5<br />

R1 = microparticle gate<br />

R2 = platelet gate<br />

aIIbß3 FITC<br />

R1 microparticle gate<br />

R2 platelet gate


R1<br />

Platelet-derived <strong>Microparticles</strong><br />

Washed platelets treated with<br />

calcium ionophore (A23187)<br />

R2<br />

Annexin V CY 5<br />

aIIbß3 FITC<br />

R1 microparticle gate<br />

R2 platelet gate


Monocyte-Derived <strong>Microparticles</strong><br />

Mononuclear cells isolated from peripheral<br />

blood by a ficol gradient were enriched<br />

using CD 14 positive selection in a macs<br />

column. CD14 (+) cells were stimulated<br />

with calcium ionophore, centrifuged at<br />

2000 x g and the supernatant harvested for<br />

microparticle analysis.<br />

IgG 1 PE<br />

Annexin V CY 5<br />

CD 14 PE


Annexin V-Cy5<br />

FACS analysis <strong>of</strong> blood microparticles<br />

FACS analysis <strong>of</strong> blood microparticles<br />

1 2<br />

3 4<br />

Fluorescein-labeled monoclonal Antibody<br />

1-Isotype control<br />

2-glycophorin<br />

3-aIIbß3<br />

4-Tissue factor


MPs are derived from endothelial cells and monocytes<br />

in addition to RBCs and platelets<br />

MP (x thousands / ml PFP)<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

RBC Platelet Monocyte<br />

Normal St. state Crisis<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Endothelial<br />

Shet et al, <strong>Blood</strong> 2003


VE cadherin PE<br />

Example <strong>of</strong> Analysis <strong>of</strong> PS (+) MPs for Cell <strong>of</strong><br />

Origin and TF<br />

VE cadherin + TF<br />

Control IgG Sickle patient Normal control<br />

Tissue Factor FITC


Phycoerythrin labeled antibodies<br />

Medium control<br />

Fluorescein labeled antibodies


• MP gate<br />

• Annexin V (+) quadrant<br />

Data analysis<br />

• Quadrant settings determined by a sample <strong>of</strong> MPs<br />

labeled with equal concentration <strong>of</strong> isotype-matched<br />

IgG-PE and IgG-FITC<br />

• RUQ event number- RUQ background<br />

• Buffer with antibodies (‘medium’/electronic noise)<br />

• MP = (+) event count X Beads added/Beads counted X<br />

plasma volume (mL)


Monocytes and endothelial derived TF (+) MPs are<br />

significantly elevated during sickle crisis<br />

MP (x thousands) / ml PFP)<br />

140 Monocyte-derived TF<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Endothelial-derived TF<br />

Total TF<br />

Normal St. state Crisis<br />

Shet et al, <strong>Blood</strong> 2003


Procoagulant activity <strong>of</strong> microparticles<br />

Procoagulant activity <strong>of</strong> microparticles<br />

PT,seconds<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

With TF Antibody<br />

With control Antibody<br />

Normal MPs Sickle MPs


Procoagulant activity <strong>of</strong> microparticles<br />

Aras et al, <strong>Blood</strong> 2004


Annexin V<br />

MP origin and TF expression in human endotoxemia<br />

Side scatter<br />

CD 14<br />

Tissue Factor<br />

Aras et al, <strong>Blood</strong> 2004


Electron micrographs <strong>of</strong> MP pellet<br />

Endothelial MPs in vitro <strong>Blood</strong> MPs (sickle)<br />

Bar = 100nm


Tissue factor<br />

VE cadherin<br />

EM <strong>of</strong> <strong>Blood</strong> MPs using immunogold labeling<br />

CD 14<br />

Bars = 100nm<br />

Control


Conclusions<br />

• Sickle blood contains microparticles from<br />

endothelial cells and monocytes.<br />

• A portion <strong>of</strong> endothelial and monocyte-derived<br />

microparticles express tissue factor.<br />

• Microparticle-associated tissue factor is<br />

functionally active.<br />

• Plasma coagulation markers correlate with<br />

total MP and total TF (+) MP number.<br />

Shet et al, <strong>Blood</strong> 2003


TF exposed<br />

PS exposed<br />

TF exposed<br />

No PS exposed<br />

Intravascular tissue factor<br />

Intravascular tissue factor<br />

Cell associated TF<br />

Microparticle associated TF<br />

TF exposed<br />

Soluble TF<br />

No transmembrane domain


Vessel lumen<br />

Intravascular tissue factor<br />

Vessel wall<br />

<strong>Blood</strong> Coagulation<br />

<strong>Blood</strong> Coagulation<br />

X Xa<br />

VIIa<br />

Activated<br />

endothelial cell<br />

Subendothelial tissue factor<br />

II<br />

IIa


<strong>Microparticles</strong> and blood coagulation<br />

<strong>Microparticles</strong> and blood coagulation<br />

VIIa<br />

Tissue factor<br />

X Xa<br />

VIIa<br />

Endothelial cell<br />

II<br />

IIa<br />

Fibrin clot


Standardization summary<br />

• Preanalytical step<br />

– Sample collection and preparation<br />

• Analytical step<br />

– Buffers<br />

– Reagents<br />

– Labeling procedure<br />

• Instrument<br />

– BD FACS calibur<br />

• Data analysis<br />

– Cellquestpro or Flojo<br />

• Confirmation <strong>of</strong> flow cytometry findings using independent<br />

methods


TF positive MPs in mice with high plasma sP-selectin<br />

Andre et al; PNAS 2000


Journal <strong>of</strong> vascular Surgery


<strong>Flow</strong> cytometric analysis <strong>of</strong> blood microparticles -<br />

published protocols<br />

http://www.sscvenice.it/ssc.pdf<br />

Shet et al & Jy et al, JTH 2004


Acknowledgements<br />

Univ <strong>of</strong> Minnesota<br />

Robert Hebbel<br />

Nigel Key<br />

James White & Marcie Krumwiede<br />

Hennepin County Medical Center<br />

Douglas Rausch & Louann Koopmeiners<br />

Rockefeller University<br />

Barry Coller<br />

SCDAA & LHI<br />

Clinical Scholars program (Rockefeller University)


Helix pomatia lectin and annexin V, two molecular probes for insect<br />

microparticles: possible involvement in hemolymph coagulation<br />

Ulrich Theopold* and Otto Schmidt<br />

Author Keywords: Coagulation; Lipophorin; Phosphatidylserine;<br />

<strong>Microparticles</strong>; Hemomucin

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!