30.01.2013 Views

Black Shales Studies in Kentucky, Final Report. - National Energy ...

Black Shales Studies in Kentucky, Final Report. - National Energy ...

Black Shales Studies in Kentucky, Final Report. - National Energy ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FINAL REPORT<br />

BLACK SHALE STUDIES<br />

UNIV€RSI7Y OF KENTUCKY<br />

R€SFAUCH GmU?<br />

IN<br />

KENTUCKY<br />

D€.ARTM€NT OF GEOLOGY<br />

KENTUCKY GEOLOGICAL SURV€Y<br />

E(40-1) 5202


BL4CK SHALE STUDIES IN KENTUCKY<br />

FINAL REPORT<br />

UN IVERS ITY OF KENTUCKY<br />

RESEARCH GROUP<br />

DEPARTMENT OF GEOLOGY<br />

KENTUCKY GEOLOGICAL SURVEY<br />

AUGUST, 1980


TABLE OF CONTENTS<br />

EXECUTIVE SUMMARY...........................~..........i<br />

SECTION I: STRATIGRAPHIC STUDIES<br />

Executive Summary .............................. ~ ~ ~ 1<br />

Appendix I~A. ..................................... 1 ~ 7<br />

Appendix I~B...........................* .......... 1 ~ 8<br />

Appendix I ~ ............................. C<br />

...e.oo.oI~9<br />

Appendix I~D................. ....... . . . . . ~ . ~ ~ . D .<br />

SECTION 11: GEOCHEMICAL STUDIES<br />

Local Chemical Variability..... ................... I I ~ l<br />

Areal and Stratigraphic Geochemistry ............. ~ 11~16<br />

Kerogen Discrim<strong>in</strong>ation ............................ 11~27<br />

Xdray Fluorescence Spectrometry .............. 0 000011~52<br />

Statistical Analysis......... ..................... 11~67


ACKNOWLEDGEMENTS<br />

The pr<strong>in</strong>cipal <strong>in</strong>vestigators express their appreciation<br />

to Patricia Bryant, M. B. Smith, and R. K. Vance for<br />

their contributions to the preparation of this report.


EXECUTIVE SUMMARY<br />

This contract for <strong>Black</strong>7Shale Study <strong>in</strong> <strong>Kentucky</strong> was<br />

awarded to the University of <strong>Kentucky</strong> Research Foundation as<br />

agent for the University of <strong>Kentucky</strong> Geological Group <strong>in</strong><br />

October,1977. The Group has carried on four separate<br />

projects under the contract and was <strong>in</strong>ternally organized as<br />

follows:<br />

U.K. RESEARCH FOUNDATION 7 Contract<strong>in</strong>g Agent<br />

U.K. GEOLOGICAL GROUP 7 W. H. Dennen, Coord<strong>in</strong>ator<br />

KENTUCKY GEOLOGICAL SURVEY<br />

Core Archive Project 7 W. W. Hagan1D.C. HaneY,<br />

Pr<strong>in</strong>cipal Investigator<br />

Stratigraphic Characterization 7 E. N. Wilson,<br />

Pr<strong>in</strong>cipal Investigator<br />

DEPARTMENT OF GEOLOGY<br />

Geochemical Characterization 7 W. H. <strong>Black</strong>burn<br />

and W. H. Dennen, Pr<strong>in</strong>cipal Investigators<br />

Stratigraphic Interpretation 7 F. R. Ettensohn,<br />

Pr<strong>in</strong>cipal Investigator<br />

Initial plann<strong>in</strong>g for the research program was based on a<br />

USDOE.;.METC estimate of a fivetyear contract period.<br />

However, this phase of the larger METC program was<br />

discont<strong>in</strong>ued after a little less than three years of<br />

operation (31 May 80) with consequent curtailment or<br />

elim<strong>in</strong>ation of a number of aspects of the planned research.<br />

Dur<strong>in</strong>g its somewhat abbreviated history, the various<br />

projects have generated the follow<strong>in</strong>g deliverables:<br />

Resource Inventory Deliverables<br />

A computer data base consist<strong>in</strong>g of all pert<strong>in</strong>ent geologic<br />

and geophysical data for about 4500 representative wells<br />

which penetrated the Devonian shale sequence <strong>in</strong> eastern<br />

<strong>Kentucky</strong> was planned. Actual deliveries to the EGSP data<br />

bank <strong>in</strong>cluded 1384 modifications of sets <strong>in</strong> the base, 1245<br />

new data sets, and the <strong>in</strong>corporation of approximately 800<br />

wells from the Columbia Gas System.<br />

i


Data maps show<strong>in</strong>g the location of about 2500 key wells<br />

representative of the Devonian shale sequence <strong>in</strong> eastern<br />

<strong>Kentucky</strong>.<br />

Data maps, show<strong>in</strong>g gas and oil production or shows <strong>in</strong><br />

stratigraphic units immediately above, below or laterally<br />

equivalent to the Devonian Shale sequence.<br />

Two detailed <strong>in</strong>terlock<strong>in</strong>g stratigraphic cross sections of<br />

the Devonian shale sequence and associated lithologies<br />

located immediately above, below and laterally equivalent to<br />

the shale <strong>in</strong>terval were completed. Two others were f<strong>in</strong>ished<br />

except for texts, but not readied for publication.<br />

Radioactive isopach maps show<strong>in</strong>g the thickness of<br />

<strong>in</strong>tensely radioactive shales with<strong>in</strong> certa<strong>in</strong> stratigraphic<br />

<strong>in</strong>terval.<br />

Structureccontour on the base of specified blacksshale<br />

units.<br />

Detailed paleontologic and paleoecologic study of<br />

Devonian blackshale lithofacies.<br />

Isopach map of the total Devonian shale <strong>in</strong>terval <strong>in</strong><br />

eastern <strong>Kentucky</strong>.<br />

Isopach maps showiog thickness of specific major<br />

lithologic units with<strong>in</strong> the shale sequence.<br />

Petrographic characterzation of the black7shales <strong>in</strong><br />

eastern <strong>Kentucky</strong> base on available core samples.<br />

A detailed study of the surficial blackyshale<br />

stratigraphy <strong>in</strong> the outcrop belts of eastern <strong>Kentucky</strong>.<br />

A detailed depositional model for the Middle Devonian c<br />

Mississippian blackyshale sequence of eastern <strong>Kentucky</strong>.<br />

A summary report relat<strong>in</strong>g the occurrence of oil and gas<br />

to the regional stratigraphic framework and depositional<br />

model. The report w i l l <strong>in</strong>dicate the attributes of those<br />

.areas with<strong>in</strong> eastern <strong>Kentucky</strong> which have the greatest<br />

potential for commercial development of shale gas reserves.<br />

ii<br />

Shale Characterization Deliverables<br />

Map show<strong>in</strong>g uranium variation <strong>in</strong> the black shale of<br />

eastern <strong>Kentucky</strong>.<br />

Manuscript on XRF techniques.


<strong>Report</strong> on relationship between redioactivity and gas-:<br />

productivity.<br />

iii<br />

Results of <strong>in</strong>vestigation of chemical variance of kerogen.<br />

<strong>Report</strong> on the statistical validity and manipulation of<br />

available geochemical data as it applies to its usefulness<br />

as a stratigraphic correlation tool.<br />

Geochemical logs of the 12 measured stratigraphic<br />

sections.<br />

--<br />

Data Bank Deliverables<br />

Geologic Base Maps, 7 sheets.<br />

Data Base Status Overlays, 3 sheets.<br />

Data Base Quality Overlays, 3 sheets.<br />

Drill hole locations plotted on 7 1/2 m<strong>in</strong>ute topographic<br />

quadrangles.<br />

Data sets prepared for keypunch<strong>in</strong>g (source documents<br />

anotated, formats encoded, or WHCS data sets<br />

corrected/augmented).<br />

Student Participation<br />

Eighteen students have served as research assistants on<br />

black shale projects and eight have completed or nearly<br />

completed theses.<br />

Markowitz, G., 1979. A Geochemical Study of the Upper<br />

DevonianTLower Mississippian <strong>Black</strong> <strong>Shales</strong> <strong>in</strong> Eastern<br />

<strong>Kentucky</strong>.<br />

Huang, S., 1978. The Influence of the Dispersion Method on<br />

Peak Intensity of Kaol<strong>in</strong>ite, Montmorillonite and Illite<br />

Clay Standards.<br />

Miller, M. L., 1978. A Petrogaphic Study of the Upper<br />

DevonianTLower Mississippian <strong>Black</strong> <strong>Shales</strong> <strong>in</strong> Eastern<br />

<strong>Kentucky</strong>.<br />

Swager, D. R., 1978. Stratigraphy of the Upper Devonian<br />

Lower Mississippian Shale Sequence <strong>in</strong> the Eastern<br />

<strong>Kentucky</strong> Outcrop Belts.<br />

Dillman, S. C., <strong>in</strong> progress. Subsurface Geology of the<br />

Upper DevonianyLower Mississippian <strong>Black</strong> Shale Sequence


<strong>in</strong> Eastern <strong>Kentucky</strong>.<br />

Barron, L. S., <strong>in</strong> progress. Paleoecology of the Devonian<br />

Mississippian <strong>Black</strong> Shale Sequence of Eastern <strong>Kentucky</strong>.<br />

Nunez del Arco, E., <strong>in</strong> progress. Local Geochemical<br />

Variation <strong>in</strong> the Devonian <strong>Black</strong> <strong>Shales</strong> of Eastern<br />

<strong>Kentucky</strong>.<br />

Johnson, D., <strong>in</strong> progress. Abundance of Environmentally<br />

Hazardous Elements <strong>in</strong> <strong>Kentucky</strong> <strong>Black</strong> Shale.<br />

In addition to faculty and research assistants, at least<br />

twenty students have been employed <strong>in</strong> temporary positions<br />

for field, laboratory or draft<strong>in</strong>g support over the life of<br />

the contract.<br />

Publications<br />

A number of publications and presentations have been made<br />

based on studies conducted under the contract. They are:<br />

Barron L. S. and Ettensohn F. R., 1980. A Bibliography of<br />

the Paleontology and Paleoecology of the Devonian.;<br />

Mississippian <strong>Black</strong>tShale Sequence <strong>in</strong> North America. (<strong>in</strong><br />

Pr<strong>in</strong>t 1.<br />

Barron, L. S. and Ettensohn, F. R. 1980. Paleontology and<br />

Paleoecology of a Prom<strong>in</strong>ent GreentShale Horizon <strong>in</strong> the<br />

Upper Devonian <strong>Black</strong> Shale of EasttCentral <strong>Kentucky</strong>: Geol.<br />

SOC. America, Abs. with programs, V. 12(5), p. 218.<br />

<strong>Black</strong>burn, W. H. and Markowitz, G., 1980. Geochemistry of<br />

the Devonian Gas <strong>Shales</strong> <strong>in</strong> <strong>Kentucky</strong>, U.S.A. International<br />

Geological Congress, Paris, France.<br />

Dennen, W. H., <strong>Black</strong>burn, W. H. and Davis, P. A., 1978.<br />

Abundance and Distribution of some chemical elements <strong>in</strong> the<br />

Chattanooga, Ohio and New Albany <strong>Shales</strong> <strong>in</strong> <strong>Kentucky</strong>.<br />

Proceed<strong>in</strong>gs of the First Eastern Gas <strong>Shales</strong> Symposium.<br />

U.S. Dept. of <strong>Energy</strong> MERC/STt77/5, 49767.<br />

Ettensohn, F. R., Fulton, L. P., and Kepferle, R. C., 1977.<br />

Use of the sc<strong>in</strong>tillometerand gammatray logs for COrrelatiOn<br />

from the subsurface to the surface <strong>in</strong> black shale <strong>in</strong> Schott<br />

and others, Proceed<strong>in</strong>gs, First Eastern Gas <strong>Shales</strong><br />

Symposium, D.O.E., Morgantown, W. VA.; MERC/SP77/5, p.<br />

6787690.<br />

Ettensohn, F. R., Fulton, L. P., and Kepferle, R. C., 1977.<br />

Correlation from the subsurface to the surface <strong>in</strong> black<br />

iv


shale us<strong>in</strong>g a sc<strong>in</strong>tillometer and gammatray logs; Geol. Soc.<br />

America Abs. with Programs, V. 9(7).' p. 970.<br />

Ettensohn, F. R., Fulton, L. P., and Kepferle, R. C. 1979.<br />

Use of sc<strong>in</strong>tillometer and gammatray logs for correlation and<br />

stratigraphy <strong>in</strong> homogeneous black shales; Geol. SOC.<br />

America Bullet<strong>in</strong>. V. 90, p. 8287849.<br />

Ettensohn, F. R., and Dever, G. R., Jr., eds. 1979.<br />

Carboniferous geology from the Appalachian Bas<strong>in</strong> to the<br />

Ill<strong>in</strong>ois Bas<strong>in</strong> through eastern Ohio and <strong>Kentucky</strong>; Guidebook<br />

for field Trip No. 4, IX International Congress of<br />

Carboniferous Stratigraphy and Geology, Lex<strong>in</strong>gton, <strong>Kentucky</strong>,<br />

293 p. (<strong>in</strong>cludes 11 articles authored or coauthored by<br />

Ettensohn).<br />

Ettensohn, F. R., 1979. Depositional framework of the Lower<br />

Mississippian Subaqueous delta sediments <strong>in</strong> northeastern<br />

<strong>Kentucky</strong>, <strong>in</strong> Ettensohn, F. R. and Dever, F. R., Jr. (eds),<br />

Carboniferous geology from the Appalachian Bas<strong>in</strong> to the<br />

Ill<strong>in</strong>ois Bas<strong>in</strong> through eastern Ohio and <strong>Kentucky</strong>:<br />

International Congress of Carboniferous Stratigraphy and<br />

Geology, gth, Guidebook for Field Trip No. 4, p. 1337136.<br />

Ettensohn, F. R., 1979, Radioactive stratigraphy at the<br />

DevonianMississippian Boundary, <strong>in</strong> Ettensohn, F. R. and<br />

Dever F. R. Jr. (eds) Carboniferous geology from the<br />

Appalachian Bas<strong>in</strong> to the Ill<strong>in</strong>ois Bas<strong>in</strong> through eastern Ohio<br />

and <strong>Kentucky</strong>: International Congress of Carboniferous<br />

Stratigraphy and Geology, gth, Guidebook for Field Trip No.<br />

4, p. 1667170.<br />

Kepferle, Roy C., Wilson, Edward N., and Ettensohn, Frank<br />

R., 1978, Prelim<strong>in</strong>ary Stratigraphic Cross Section Show<strong>in</strong>g<br />

Radioactive Zones <strong>in</strong> the Devonian <strong>Black</strong> <strong>Shales</strong> <strong>in</strong> the<br />

Southern Part of the Appalachian Bas<strong>in</strong>: U. S. Geological<br />

Survey Oil and Gas Investigations Chart OC785.<br />

Miller, M. L., and Ettensohn, F. R., 1978. A Prelim<strong>in</strong>ary<br />

Microscopic exam<strong>in</strong>ation of Devonian and Lower Mississippian<br />

<strong>Black</strong> <strong>Shales</strong> <strong>in</strong> east central <strong>Kentucky</strong>: Geol. SOC. America<br />

Abs. with Programs, V. 10 (41, p. 176.<br />

Potter, Paul E., Wilson, Edward N., and Zafar, Jaffrey S.,<br />

1980 (<strong>in</strong> press) Structure and thickness of the Devonian?<br />

Mississippian shales sequence <strong>in</strong> and near the Middlesboro<br />

Syncl<strong>in</strong>e <strong>in</strong> parts of <strong>Kentucky</strong>, Tennessee, and Virg<strong>in</strong>ia.<br />

<strong>Kentucky</strong> Geological Survey (<strong>in</strong> cooperation with METC).<br />

Wison, Edward N.and Zafar, Jaffrey S., 7978, Wirel<strong>in</strong>e Logs<br />

and Sample <strong>Studies</strong> <strong>in</strong> Stratigraphy and Gas occurrence of the<br />

Devonian <strong>Shales</strong> along the Southern Tie Section <strong>in</strong> Eastern<br />

<strong>Kentucky</strong> and Vic<strong>in</strong>ity: <strong>in</strong> Proceed<strong>in</strong>gs First Eastern Gas<br />

<strong>Shales</strong> Symposium, Oct. 17719, 1977, Morgantown, West<br />

Virg<strong>in</strong>ia, U.S. Dept. of <strong>Energy</strong>, Morgantown <strong>Energy</strong> Research<br />

V


Center, MERC/SP777/5, March 1978, pp. 1457165.<br />

vi<br />

Wilson, Edward Norman, and Zafar, Jaffrey S., 1978, Computer<br />

process<strong>in</strong>g for the Eastern Gas <strong>Shales</strong> Project <strong>in</strong> and near<br />

Letcher County <strong>in</strong> southeastern <strong>Kentucky</strong>: (Abstract) - idem p.<br />

415.<br />

Wilson, Edward N., Zafar, Jaffrey S., and Ettensohn, Frank<br />

R., 1979 (<strong>in</strong> press), Stratigraphy and Structure of the<br />

DevonianyMississippian Shale Sequence and itssubstrates<br />

along(the Rome Trough Section <strong>in</strong> Tennessee, <strong>Kentucky</strong>, and<br />

West Virg<strong>in</strong>ia: U.S. Department of <strong>Energy</strong>, Morgantown <strong>Energy</strong><br />

Technology Center, Morgantown, W. VA., EGSP Ser. No. 500,<br />

Chart with text.<br />

Wilson, Zafar, and Ettensohn, 1980 (<strong>in</strong> Press), Stratigraphy<br />

(and Stucture) of the DevonianyMississippian Shale Sequence<br />

along the Eastern Longitud<strong>in</strong>al Sections A: Axis of the<br />

Middlesboro Syncl<strong>in</strong>e, B: Axis Northwest of the P<strong>in</strong>e<br />

Mounta<strong>in</strong> Fault <strong>in</strong> Tennessee, <strong>Kentucky</strong>, Virg<strong>in</strong>ia and West<br />

Virg<strong>in</strong>ia: US DOE, METC, Mogantown, W. Va., EGSP Ser. No.<br />

502, Charts with text.<br />

Zafar, Jaffrey S. and Wilson, Edward Norman, 1978, The<br />

effects of P<strong>in</strong>e Mounta<strong>in</strong> Overthrust and other regional<br />

faults on the stratigraphy and gas occurrence of Devonian<br />

<strong>Shales</strong> south and east of Big Sandy field <strong>in</strong> <strong>Kentucky</strong> and<br />

Virg<strong>in</strong>ia : <strong>in</strong> Prepr<strong>in</strong>ts for Second Eastern Gas <strong>Shales</strong><br />

Symposium Vol. I, U.S. Department of <strong>Energy</strong>, Morgantown<br />

<strong>Energy</strong> Technology Center, METC/SP778/6 Vol. I pp. 404-414. \<br />

Zafar, Jaffrey S., and Wilson, Edward Norman, 1979, Nature<br />

and position of the DevonianyMississippian Boundary <strong>in</strong><br />

Eastern <strong>Kentucky</strong> and Contiguous Areas: (Abstract) Abstract<br />

of Papers, N<strong>in</strong>th International Congress of Carboniferous<br />

Stratigraphy and Geology, University of Ill<strong>in</strong>ois, Urbana,<br />

Ill<strong>in</strong>ois, pp. 2417242. (Entire paper submitted to Compte<br />

Rendu.)


SECTION I<br />

STRATIGRAPHIC STUD IES<br />

F, R, ETTENSOHN<br />

PR I NC I PAL I NVEST I GATOR


SECTION I<br />

BLACK-SHALE STRATIGRAPHY GROUP<br />

EXECUTIVE SUMMARY<br />

Listed below are the goals or contract objectives and a<br />

general summary of the results made while pursu<strong>in</strong>g these<br />

objectives. These are the results not only of the pr<strong>in</strong>cipal<br />

<strong>in</strong>vestigator, but also of the four graduate research<br />

assistants who have worked on the project S<strong>in</strong>ce its<br />

<strong>in</strong>ception. Only a brief summary of the results is presented<br />

here. More detailed accounts of the results can be found <strong>in</strong><br />

past annual reports, students theses (housed at U.K. Geology<br />

Library; copies were also <strong>in</strong>cluded <strong>in</strong> annual reports to<br />

M.E.T.C.) or <strong>in</strong> papers, maps, and sections already<br />

published, <strong>in</strong> press, or <strong>in</strong> preparation.<br />

Petrogaphic <strong>Studies</strong><br />

Objective: Characterize available black-shale cores<br />

petrographically.<br />

Study: When this study was undertaken <strong>in</strong> 1976, three<br />

cores (Mart<strong>in</strong> County, Perry County, and P<strong>in</strong>e Mounta<strong>in</strong>) were<br />

available. The cores were described <strong>in</strong> detail<br />

megascopically, sampled, and exam<strong>in</strong>ed <strong>in</strong> th<strong>in</strong> section. The<br />

study was completed <strong>in</strong> 1978 by Mike Miller.<br />

Results:<br />

1. Seven Major stratification types (even-parallel,<br />

discont<strong>in</strong>ous even-parallel, wavy-parallel, wavy-<br />

nonparallel, discont<strong>in</strong>ous wavy-parallel, discont<strong>in</strong>uous<br />

wavy-parallel, and structureless) and numerous<br />

microscopic sedimentary structures were identified.<br />

2. Three major lithologies were identified, organic-rich<br />

claystones, organic-deficient claystones, and organic-<br />

deficient claystones <strong>in</strong>terlam<strong>in</strong>ated with organic-rich<br />

claystones.<br />

3. Five microfacies were def<strong>in</strong>ed by variations <strong>in</strong> the<br />

abundance of m<strong>in</strong>eral and organic constituents and by<br />

variations <strong>in</strong> the nature of lam<strong>in</strong>ation. These <strong>in</strong>clude:<br />

1 ami nat ed organic-deficient <strong>in</strong>terlam<strong>in</strong>ated with<br />

organic-rich, and organic-rich carbonate.<br />

4. Vertical variations <strong>in</strong> the relative abundance of m<strong>in</strong>eral<br />

and organic constituents, microfacies, and microfossils<br />

enable def<strong>in</strong>ition of a generalized microstratigraphy<br />

which is correlative between cores.<br />

1-1


Stratigraphic <strong>Studies</strong><br />

1-2<br />

Objective 1: Dist<strong>in</strong>guish any possible <strong>in</strong>ternal<br />

stratigraphy with<strong>in</strong> the seem<strong>in</strong>gly homogenous black-shales <strong>in</strong><br />

the eastern <strong>Kentucky</strong> outcrop belts.<br />

Study: The results of this study are conta<strong>in</strong>ed <strong>in</strong> a<br />

thesis by Dennis Swager completed <strong>in</strong> 1978.<br />

Results:<br />

1. It was found that the black-shale sequence could be<br />

divided <strong>in</strong>to lithostratigraphic, biostratigraphic and<br />

radioactive units.<br />

2. Six lithostratigraphic units and two biostratigraphic<br />

units were reported <strong>in</strong> the black shales of eastern <strong>Kentucky</strong>.<br />

3. More importantly, six of the radioactive units which<br />

Provo had def<strong>in</strong>ed <strong>in</strong> the subsurface were found <strong>in</strong><br />

outcrop and correlated along the length of the Outcrop<br />

belts. Of the seven radioactive units recognized by<br />

Provo, five were recognized consistently <strong>in</strong> the Outcrop<br />

belt The lower two units (6 & 7) p<strong>in</strong>ch out to the<br />

east before reach<strong>in</strong>g the outcrop belt.<br />

4. Each of the units successively overlap each other as the<br />

C<strong>in</strong>c<strong>in</strong>nati Arch is approached. Moreover, each of these<br />

units progressively th<strong>in</strong>s to the southwest as they<br />

onlap the C<strong>in</strong>c<strong>in</strong>nati Arch. On the highest part of the<br />

arch, only the three upper units are present.<br />

5. The onlapp<strong>in</strong>g relationships of the radioactive units<br />

show that the <strong>Black</strong>-Shale Sea was transgressive and<br />

that the C<strong>in</strong>c<strong>in</strong>nati Arch was positive at this time.<br />

6. In parts of eastern <strong>Kentucky</strong>, the Devonian-Misissippian<br />

boundary occurs <strong>in</strong> the Bedford Shale. However, <strong>in</strong><br />

areas where the Bedford Shale is absent and<br />

Mississippian and Devonian black shales are<br />

superimposed, Mississippian black shales can be<br />

dist<strong>in</strong>guished from Devonian black shales <strong>in</strong> outcrop<br />

with a sc<strong>in</strong>tillometer because the Mississippian shales<br />

are far more radioactive.


1-3<br />

Objective 2: Construct suitably placed stratigraphic cross-<br />

sections though the Appalachian Bas<strong>in</strong> us<strong>in</strong>g well logs,<br />

sample studies, and outcrop data where pert<strong>in</strong>ent.<br />

Results:<br />

1. Three cross sections were constructed <strong>in</strong> conjunction<br />

with Roy C. Kepferle, Edward N. Wilson, J. Zafar.<br />

These sections <strong>in</strong>clude a section through the southern<br />

part of the Appalachian Bas<strong>in</strong>, the Rome Trough section,<br />

and the Eastern Longitud<strong>in</strong>al section. The first<br />

section is published; the latter two are <strong>in</strong> press.<br />

Objective 3: Characterize the subsurface stratigraphy of the<br />

blackshale sequence through a series of isopach and<br />

radioactive isopach maps of certa<strong>in</strong> black-shale units and<br />

through a series of structure contour maps drawn on the base<br />

of each major black-shale unit.<br />

Study: The results of this study are <strong>in</strong>cluded <strong>in</strong> a thesis<br />

and <strong>in</strong> a series of maps completed by Scott Dillman <strong>in</strong> 1980.<br />

A copy of the thesis <strong>in</strong> enclosed as Appendix A, and the<br />

eight isopach and eight structure maps w i l l be published by<br />

M.E.T.C.<br />

Results:<br />

1. Four radioactive isopach maps, eight isopach<br />

maps, and eight structure contour maps were<br />

generated dur<strong>in</strong>g the course of the study.<br />

2. The total shale thickness ranges from 7.3 m<br />

(24 ft) on the crest of the C<strong>in</strong>c<strong>in</strong>nati Arch to<br />

556.2 m (1825 ft) <strong>in</strong> eastern Pike County.<br />

3- A greater clastic content close to West<br />

Virg<strong>in</strong>ia clastic sources dilutes radioactivity<br />

with<strong>in</strong> the black shale sequence, which is<br />

reflected on gamma-ray logs as a weaker positive<br />

signature.<br />

4. A h<strong>in</strong>ge l<strong>in</strong>e which runs nearly north-south<br />

from western Lewis County to eastern Bell County<br />

separates a broad area of relatively th<strong>in</strong> black<br />

shale from an area of rapidly thicken<strong>in</strong>g black<br />

shale to the east.<br />

5. Dist<strong>in</strong>ct thicken<strong>in</strong>g and th<strong>in</strong>n<strong>in</strong>g trends are<br />

apparent on isopach maps and often represent local<br />

syncl<strong>in</strong>al and anticl<strong>in</strong>al structures, which can be<br />

identified on county structure maps <strong>in</strong> <strong>Kentucky</strong>.<br />

6. Structures like the Rockcastle River Uplift<br />

and Rome Trough were apparently active both dur<strong>in</strong>g


1-4<br />

and after black-shale deposition. Others like the<br />

Pa<strong>in</strong>t Creek Uplift, were only active after black-<br />

shale deposition.<br />

7. Structure contour maps <strong>in</strong>dicate that the<br />

Devonian axis of the C<strong>in</strong>c<strong>in</strong>nati Arh was 10 to 12<br />

km east of the Ordovician axis of Jillson (1931)<br />

<strong>in</strong> L<strong>in</strong>coln, Casey, and northern Russell Counties.<br />

8, The greatest thickness of highly radioative<br />

shale occurs <strong>in</strong> northern Floyd, Johnson, and<br />

northern Mart<strong>in</strong> Counties. Although black-shale<br />

thicknesses <strong>in</strong>crease even more to the east, the<br />

amount of highly radioative black shale dereases<br />

<strong>in</strong> an eastward direction due to clastic dilution.


1-5<br />

Paleoenvironmental-Paleontological <strong>Studies</strong><br />

Objective 1: Determ<strong>in</strong>e a depositional model for<br />

the black-shale sequences <strong>in</strong> eastern <strong>Kentucky</strong>.<br />

Results:<br />

1. A relatively new depositional model for the<br />

entire blackshale sequence has been developed<br />

which relates blacksshale deposition to the<br />

<strong>in</strong>teraction of tectonic and climatic factors. A<br />

copy of the model, is <strong>in</strong>cluded as Appendix B. The<br />

most important aspects of the model are:<br />

a. <strong>Black</strong> shales were deposited dur<strong>in</strong>g a time of<br />

cratonic subidence and transgression.<br />

b. The black-shales do not represent all deep or<br />

all shallow conditions. Rather, the black shales<br />

reflects progressively deepen<strong>in</strong>g seas.<br />

c. The black shales were deposited <strong>in</strong> a nearly<br />

enclosed, equatorial, epicont<strong>in</strong>ental sea.<br />

d. Because of the warm, equatorial nature of the<br />

sea and the likelihood of brackish surficial<br />

waters, a stratified water column or PyCnOCl<strong>in</strong>e<br />

developed which prevented vertical circulation and<br />

oxygenation of deep bottom waters.<br />

e. Anaerobic coditions developed below the<br />

pycnocl<strong>in</strong>e <strong>in</strong> which the abundant organic matter<br />

was preserved from Oxidation.<br />

f. Cratonic portions of the <strong>Black</strong>-Shale Sea<br />

essentially developed <strong>in</strong> the ra<strong>in</strong>shadow of the<br />

Acadian Mounta<strong>in</strong>s, which prevented large-scale<br />

clastic <strong>in</strong>flux <strong>in</strong>to the sea.<br />

g* A subsid<strong>in</strong>g peripheral bas<strong>in</strong> (Appalachian<br />

Bas<strong>in</strong>) just west of the Acadian Mounta<strong>in</strong> acted as<br />

a barrier of the transportation of coarser<br />

clastics <strong>in</strong>to western cratonic parts of the <strong>Black</strong>-<br />

Shale Sea. Hence, most of those coarser clastics<br />

which prograde westward from the Acadian Mounta<strong>in</strong>s<br />

were conf<strong>in</strong>ed to the subsid<strong>in</strong>g Appalachian<br />

peripheral bas<strong>in</strong>.<br />

Objective 2: Compile a detailed study of black-<br />

shale paleontology and paleoecology.<br />

Study: This is the subject of a thesis by Lance<br />

S. Barron completed <strong>in</strong> 1980. A prelim<strong>in</strong>ary copy<br />

of the study is <strong>in</strong>cluded as Appendix C.


1-6<br />

Results: 1. An extensive bibliography of black-<br />

shale paleontology and paleoecology, conta<strong>in</strong><strong>in</strong>g<br />

over 1200 entries has been compiled and is be<strong>in</strong>g<br />

revised for f<strong>in</strong>al publication by M.E.T.C. A copy<br />

of this is <strong>in</strong>cluded as Appendix D.<br />

2. A study of black-shale paleontology and<br />

paleoeology along with an atlas of common black-<br />

shale fossils has been completed and is <strong>in</strong>luded as<br />

Appendix C.<br />

3. These studies support the presence of a<br />

stratified water column and progressively<br />

deepen<strong>in</strong>g conditions.


APPENDIX I-A<br />

I- 7


SUBSURFACE GEOLOGY OF THE UPPER DEVONIAN-LOWER MISSISSIPPIAN<br />

BLACK-SHALE SEQUENCE IN EASTERN KENTUCKY<br />

THESIS<br />

-<br />

A thesis submitted <strong>in</strong> partial fulfillment of the<br />

requirements for the degree of Master of Science<br />

at The University of <strong>Kentucky</strong><br />

BY<br />

SCOTT BRIAN DILLMAN<br />

Lex<strong>in</strong>gton, <strong>Kentucky</strong><br />

Director: Dr. Frank R. Ettensohn, Assist. Professor of Geology<br />

Lex<strong>in</strong>gton, <strong>Kentucky</strong><br />

1980


ABSTRACT OF THESIS<br />

SUBSURFACE GEOLOGY OF THE UPPER DEVONIAN-LOWER MISSISSIPPIAN<br />

BLACK-SHALE SEQUENCE IN EASTERN KENTUCKY<br />

The Upper Devonian-Lower Mississippian black-shale sequence is an<br />

important source of natural gas <strong>in</strong> eastern <strong>Kentucky</strong> and with technolog-<br />

ical advances may be an important source of synthetic oil and uranium<br />

on the flanks of the C<strong>in</strong>c<strong>in</strong>nati arch. To enhance the understand<strong>in</strong>g and<br />

development of these resources <strong>in</strong> the black-shale sequence, eight iso-<br />

pach maps, eight structure-contour maps and n<strong>in</strong>e isopach maps of highly<br />

radioactive black shale were constructed.<br />

Structural features <strong>in</strong>clud<strong>in</strong>g the Rome trough, Rockcastle River<br />

uplift, P<strong>in</strong>e Mounta<strong>in</strong> thrust fault, <strong>Kentucky</strong> River and Pa<strong>in</strong>t Creek<br />

fault zones and unnamed bas<strong>in</strong>al areas <strong>in</strong> Greenup, Pike, and Knott<br />

counties were identified on the maps. Faults bound<strong>in</strong>g the Rome trough<br />

and other structures were active <strong>in</strong>termittently throughout Late Devonian<br />

time.<br />

Other st3ltlctures show only post-Devonian activity, whereas some<br />

show both Devonian and post-Devonian activity. Comparison of structurecontour<br />

and isopach maps allow the differentiation of syn- and postsedimentary<br />

structural activity relative to the black-shale sequence.<br />

A north-south trend<strong>in</strong>g h<strong>in</strong>ge l<strong>in</strong>e separates a broad platform area from<br />

an area of rapid eastward thicken<strong>in</strong>g <strong>in</strong>to the Appalachian bas<strong>in</strong>.<br />

Units<br />

7 through 1 progressively onlap the C<strong>in</strong>c<strong>in</strong>nati arch; units 4 through 1<br />

cover the arch.<br />

Author's Name


ACKNOWLEDGMENTS<br />

The author is <strong>in</strong>debted to the many people who <strong>in</strong> different<br />

capacities made this study possible. I wish to thank Dr. F. R.<br />

Ettensohn for his suggestions and careful review of the maps and<br />

manuscript as thesis director, and Dr. William C. MacQuown and Dr.<br />

Thomas G. Roberts for review<strong>in</strong>g the manuscript.<br />

is owed to Danna L. Anto<strong>in</strong>e for the great job of draft<strong>in</strong>g the maps<br />

and figures, to John P. Farrell for draft<strong>in</strong>g the radioactive isopach<br />

maps, and to Patricia L. Bryant, Jane T. Wells, and Barbara L. Col-<br />

l<strong>in</strong>s for typ<strong>in</strong>g ofmanuscripts.<br />

Carol<strong>in</strong>e Penn<strong>in</strong>gton, Scott Yankey, John Goble, Margaret Rogers and<br />

Ann Larsen for help <strong>in</strong> collect<strong>in</strong>g and process<strong>in</strong>g data, and to Dr.<br />

F. R. Ettensohn, Lance Barron, and Donald Chesnut for help <strong>in</strong><br />

plott<strong>in</strong>g and contour<strong>in</strong>g the radioactive isopach maps us<strong>in</strong>g the<br />

Borden Shale basel<strong>in</strong>e.<br />

mation provided by Edward N. Wilson and Gabriel M. Hartl. A special<br />

thanks is extended to the author's wife, Margaret, for her help<br />

throughout the project and for her endless patience, understand<strong>in</strong>g<br />

and encouragement.<br />

A debt of gratitude<br />

Tanks also go to Donald Chesnut,<br />

The author is also appreciative of the <strong>in</strong>for-<br />

This study was funded by the United States Department of <strong>Energy</strong><br />

<strong>in</strong> conjunction with the Morgantown <strong>Energy</strong> Research Center, Morgan-<br />

town, West Virg<strong>in</strong>ia under contract number DE-AC21-76ET12040. A<br />

two-year research assistantship awarded to the author by the Univer-<br />

sity of <strong>Kentucky</strong>, Department of Geology provided f<strong>in</strong>ancial support<br />

for this research.<br />

iii


TABLE OF CONTENTS<br />

Page<br />

ACKNOWLEDGMENTS . ......................... iii<br />

TABLE OF CONTENTS . ........................ iv<br />

LIST OF FIGURES . ......................... viii<br />

INTRODUCTION . .......................... 1<br />

PURPOSE . .............................. 3<br />

LOCATION . ............................ 4<br />

TECHNIQUES AND PROCEDURES . .................... 6<br />

STRATIGRAPHIC NOMENCLATURE .................... 8<br />

Introduction . ......................... 8<br />

Previous <strong>Studies</strong> ........................ 8<br />

Map and Cross Section Review . ................. 10<br />

STRATIGRAPHIC UNITS . ....................... 12<br />

Introduction . ......................... 12<br />

Radioactive Java Formation and West Falls Formation . ..... 14<br />

Radioactive Stratigraphic Unit 7 . ............... 14<br />

Radioactive Stratigraphic Unit 6 . ............... 16<br />

Radioactive Stratigraphic Unit 5 . ............... 16<br />

Radioactive Stratigraphic Unit 4 . ............... 16<br />

Radioactive Stratigraphic Unit 3 . ............... 16<br />

Radioactive Stratigraphic Unit 2 . ............... 17<br />

Radioactive Stratigraphic Unit 1 . ............... 17<br />

CORRELATION ............................ 18<br />

Introduction ........................... 18<br />

Java Formation. Pipe Creek Member of the Java Formation and the<br />

West Falls Formation ...................... 19<br />

Radioactive Unit 7 ....................... 22<br />

Radioactive Unit 6 ....................... 22<br />

Radioactive Unit 5 ........................ 22<br />

Radioactive Unit 4 ....................... 22<br />

Radioactive Unit 3 ....................... 25<br />

Radioactive Unit 2 ....................... 23<br />

Radioactive Unit 1 ....................... 24<br />

Radioactiveunit B ....................... 24<br />

Radioactive Unit S ....................... 25<br />

ISOPACH MAP DISTRIBUTIONS ..................... 27<br />

Introduction .......................... 27<br />

Rh<strong>in</strong>estreet Shale - Unit 7 . .................. 29<br />

Upper Olentangy Shale - Unit 6 . ................ 29<br />

Lower Huron Shale Member - Unit 5 . .............. 30<br />

Middle Huron Shale Member - Unit 4 . .............. 30<br />

Upper Huron Shale Member - Unit 3 . .............. 30<br />

ThreeLickBed-Unit 2 .................... 31<br />

Cleveland Shale - Unit 1 .................... 31<br />

ISOPACH ANOMALIES ......................... 32<br />

Introduction .......................... 32<br />

C<strong>in</strong>c<strong>in</strong>nati Arch ........................ 32<br />

iv


V<br />

Page<br />

ISOPACH ANOMALIES Cont<strong>in</strong>ued . ...................<br />

Unnamed Thickened Lobe . .................... 34<br />

Unnamed Thicken<strong>in</strong>g Trend . ................... 35<br />

RomeTrough . ......................... 39<br />

Rockcastle River Uplift ..................... 40<br />

P<strong>in</strong>e Mounta<strong>in</strong> Thrust . ..................... 41<br />

Another Unnamed Thicken<strong>in</strong>g Trend . ............... 41<br />

M<strong>in</strong>or Syncl<strong>in</strong>es and Anticl<strong>in</strong>es . ................. 41<br />

STRUCTURAL RELATIONS . ...................... 43<br />

Introduction . ......................... 43<br />

C<strong>in</strong>c<strong>in</strong>nati Arch . ....................... 43<br />

Rome Trough . ......................... 44<br />

Rockcastle River Uplift .................... 44<br />

Pa<strong>in</strong>t Creek Uplift ....................... 46<br />

Middlesboro Syncl<strong>in</strong>e . P<strong>in</strong>e Mounta<strong>in</strong> Thrust . ......... 47<br />

M<strong>in</strong>or Structures . ....................... 47<br />

RADIOACTIVE ISOPACH MAPS . .................... 49<br />

Introduction . ......................... 49<br />

Procedure . .......................... 50<br />

Three Lick Bed Basel<strong>in</strong>e Versus Borden Shale Basel<strong>in</strong>e . ..... 52<br />

RADIOACTIVE ISOPACH ANOMALIES COMPARED TO REGULAR ISOPACH AND<br />

STRUCTURE CONTOUR MAPS ...................... 54<br />

West Falls Formation . Rh<strong>in</strong>estreet Shale Member . ....... 54<br />

Java Formation . Olentangy Shale . ............... 55<br />

Unit 2. Unit 3. Unit 4. & Unit 5 . ............... 56<br />

Unit 1 . ............................ 57<br />

HYDROCARBON POTENTIAL AND PRODUCTION FROM THE UPPER DEVONIAN-<br />

LOWER MISSISSIPPIAN BLACK-SHALE SEQUENCE . ............ 59<br />

Introduction .......................... 59<br />

Big Sandy Gas Field ...................... 60<br />

Ashland . Boyd County Gas Field . ............... 60<br />

Gas Fields Associated With Faults . .............. 62<br />

Gas Fields On the Flanks of Uplifts . ............. 62<br />

Devonian Shale Gas <strong>in</strong> the P<strong>in</strong>e Mounta<strong>in</strong> Thrust Block . ..... 63<br />

RESULTS AND CONCLUSIONS ...................... 64<br />

APPENDIX 1 ..................... .(<strong>in</strong> back pocket)<br />

Map 1: Isopach Map of the Devonian <strong>Black</strong>-Shale Sequence<br />

(New Albany . Chattanooga - Ohio Shale) <strong>in</strong> Eastern<br />

<strong>Kentucky</strong> . ................ .(<strong>in</strong> back pocket)<br />

Map 2: Isopach Map of the Rh<strong>in</strong>estreet Shale (Unit 7) <strong>in</strong><br />

Eastern <strong>Kentucky</strong> . ............ .(<strong>in</strong> back pocket)<br />

Map 3: Isopach Map of the Upper Olentangy Shale (Unit 6)<br />

In Eastern <strong>Kentucky</strong> . ........... .(<strong>in</strong> back pocket)<br />

Map 4: Isopach Map of the Lower Huron Shale Member (Unit 5)<br />

of the Ohio Shale <strong>in</strong> Eastern <strong>Kentucky</strong> . .. .(<strong>in</strong> back pocket)<br />

Map 5: Isopach Map of the Middle Huron Shale Member (Unit 4)<br />

of the Ohio Shale <strong>in</strong> Eastern <strong>Kentucky</strong> . .. .(<strong>in</strong> back pocket)


APPENDIX 1 Cont<strong>in</strong>ued<br />

Map 6: Isopach Map of the Upper Huron Shale Member (Unit 3)<br />

vi<br />

Page<br />

of the Ohio Shale <strong>in</strong> Eastern <strong>Kentucky</strong>. . . .(<strong>in</strong> back pocket)<br />

Map 7: Isopach Map of the Three Lick Bed (Unit 2) of<br />

the Ohio Shale <strong>in</strong> Eastern <strong>Kentucky</strong> .... .(<strong>in</strong> back pocket)<br />

Map 8: Isopach Map of the Cleveland Shale Member (Unit 1).<br />

of the Ohio Shale <strong>in</strong> Eastern <strong>Kentucky</strong>. . . .(<strong>in</strong> back pocket)<br />

APPENDIX 2 ..................... .(<strong>in</strong> back pocket)<br />

Map 1: Structure Contour Map of the Base of the Ohio<br />

Shale <strong>in</strong> Eastern <strong>Kentucky</strong>. . ....... .(<strong>in</strong> back pocket)<br />

Map 2: Structure Contour Map on the Base of the West<br />

Falls Formation (Rh<strong>in</strong>estreet Shale, Unit 7) <strong>in</strong><br />

Eastern <strong>Kentucky</strong> . ............ .(<strong>in</strong> back pocket)<br />

Map 3: Structure Contour Map on the Base of the Java<br />

Formation/Olentangy Shale (Unit 6) <strong>in</strong> Eastern<br />

<strong>Kentucky</strong> . .............. .(<strong>in</strong> back pocket)<br />

Map 4: Structure Contour Map on the Base of the Lower<br />

Huron Shale Member (Unit 5) of the Ohio Shale<br />

<strong>in</strong> Eastern <strong>Kentucky</strong>. ........... .(<strong>in</strong> back pocket)<br />

Map 5: Structure Contour Map on the Base of the Middle<br />

Huron Shale Member (Unit 4) of the Ohio Shale<br />

<strong>in</strong> Eastern <strong>Kentucky</strong>. . .......... .(<strong>in</strong> back pocket)<br />

Map 6: Structure Contour Map on the Base of the Upper<br />

Huron Shale Member (Unit 3) of the Ohio Shale<br />

<strong>in</strong> Eastern <strong>Kentucky</strong>. . .......... .(<strong>in</strong> back pocket)<br />

Map 7: Structure Contour Map on the Base of the Three<br />

Lick Bed (Unit 2) of the Ohio Shale <strong>in</strong> Eastern<br />

<strong>Kentucky</strong> . ................ .(<strong>in</strong> back pocket)<br />

Map 8: Structure Contour Map on the Base of the Cleveland<br />

Shale Member (Unit 1) of the Ohio Shale <strong>in</strong> Eastern<br />

<strong>Kentucky</strong> . ................ .(<strong>in</strong> back pocket)<br />

Appendix 3 (Maps us<strong>in</strong>g Three Lick Bed basel<strong>in</strong>e). .. .(<strong>in</strong> back pocket)<br />

Map 1: Isopach Map of Radioactively Intense <strong>Black</strong> Shale<br />

<strong>in</strong> the West Falls Formation of- the -Ohio Shale<br />

(Unit W) ................. .(<strong>in</strong> back pocket)<br />

Map 2: Isopach Map of Radioactively Intense <strong>Black</strong> Shale<br />

<strong>in</strong> the Java Formation of the Ohio Shale<br />

(Unit J) ................. .(<strong>in</strong> back pocket)<br />

Map 3: Isopach Map of Radioactively Intense <strong>Black</strong> Shale<br />

<strong>in</strong> the Three Lick Bed and W o n Shale Member of<br />

the Ohio Shale (Units 2, 3, 4 & 5) .... .(<strong>in</strong> back pocket)<br />

Map 4: Isopach Map of Radioactively Intense <strong>Black</strong> Shale<br />

<strong>in</strong> the Cleveland Shale Member of the Ohio Shale<br />

(Unit 1) .................. (<strong>in</strong> back pocket)<br />

Appendix 4 (Maps us<strong>in</strong>g Borden Shale basel<strong>in</strong>e). .... (<strong>in</strong> back pocket)<br />

Map 1: Isopach Map of Highly Radioactive <strong>Black</strong> <strong>Shales</strong><br />

<strong>in</strong> the Chattanooga Shale of South-Central<br />

<strong>Kentucky</strong> . ................. (<strong>in</strong> back pocket)<br />

Map 2: Isopach Map of Highly Radioactive <strong>Black</strong> <strong>Shales</strong><br />

<strong>in</strong> Rh<strong>in</strong>estreet Shale Member of the West Falls


APPENDIX 4 Cont<strong>in</strong>ued .......................<br />

vii<br />

Page<br />

Formation (Unit 7) ............ .(<strong>in</strong> back pocket)<br />

Map 3: Isopach Map of Highly Radioactive <strong>Black</strong> <strong>Shales</strong><br />

<strong>in</strong> the Olentangy Shale (Unit 6). ..... .(<strong>in</strong> back pocket)<br />

Map 4: Isopach Map of Highly Radioactive <strong>Black</strong> Shale<br />

<strong>in</strong> the Three Lick Bed and Huron Shale Member of<br />

the Ohio Shale (Units 2, 3, 4 & 5) ..... .(<strong>in</strong> back pocket)<br />

Map 5: Isopach Map of Highly Radioactive <strong>Black</strong> Shale<br />

<strong>in</strong> the Cleveland Shale Member of the Ohio Shale<br />

(Unit 1) ................. .(<strong>in</strong> back pocket)<br />

BIBLIOGRAPHY . .......................... 67<br />

VITA . .............................. 72


INTRODUCTION<br />

The Upper Devonian-Lower Mississippian black-shale sequence is<br />

currently a major source of natural gas <strong>in</strong> eastern <strong>Kentucky</strong> (Avila,<br />

1976; Thomas, 1951; Hunter and Young, 1953; and others). Vost of the<br />

shale is characterized by a high concentration of organic and radio-<br />

active material. With grow<strong>in</strong>g energy needs, advances <strong>in</strong> technology,<br />

and chang<strong>in</strong>g world political situations, the Upper Devonian-Lower<br />

Mississippian black-shale sequence may become an important source of<br />

synthetic oil and uranium.<br />

Surpris<strong>in</strong>gly little stratigraphic study has been done on the<br />

seem<strong>in</strong>gly homogeneous Upper Devonian-Lower Mississippian black-shale<br />

sequence <strong>in</strong> eastern <strong>Kentucky</strong>; most major studies were done <strong>in</strong> adjo<strong>in</strong>-<br />

<strong>in</strong>g states. Provo (1977) pioneered the stratigraphic study of the<br />

Upper Devonian-Lower Mississippian black-shale sequence us<strong>in</strong>g the<br />

radioactive characteristics of the shale. She was able to identify<br />

a readily workable <strong>in</strong>ternal stratigraphy of seven uni'-;s <strong>in</strong> the sub-<br />

surface based on gamma-ray log signatures.<br />

identify and correlate the same subsurface stratigraphic units along<br />

the east-central <strong>Kentucky</strong> outcrop belt us<strong>in</strong>g a sc<strong>in</strong>tillometer tech-<br />

nique described by Ettensohn and others (1979).<br />

Swager (1978) was able to<br />

A series of eight isopach maps, eight structure contour maps,<br />

and two series of isopach maps of highly radioactive shale, which are<br />

<strong>in</strong> Appendices 1, 2, 3, and 4 located <strong>in</strong> a large pocket <strong>in</strong> the back<br />

of this volume, were generated based largely on subsurface data from<br />

wire1 <strong>in</strong>e<br />

(1978).<br />

study to<br />

logs, drillers' logs and outcrop descriptions by Swager<br />

The radioactive stratigraphy of Provo (1977) was used <strong>in</strong> this<br />

divide the shale sequence. The result<strong>in</strong>g maps <strong>in</strong> Appendices<br />

1


1, 2, 3, and 4 will be referred to throughout this report and are <strong>in</strong><br />

the open file of the U.S. Department of <strong>Energy</strong> <strong>in</strong> Morgantown, West<br />

Virg<strong>in</strong>ia.<br />

by, and available from, the U.S. Department of <strong>Energy</strong> <strong>in</strong> Morgantown,<br />

West Virg<strong>in</strong>ia.<br />

The isopach and structure contour maps will be published<br />

The text which follows further describes the data employed <strong>in</strong> the<br />

compilation of the maps and presents possible <strong>in</strong>terpretations of the<br />

various features present on them. It is hoped the maps and <strong>in</strong>forma-<br />

tion presented here will be a valuable contribution to the understand-<br />

<strong>in</strong>g of the Upper Devonian-Lower Mississippian black-shale sequence <strong>in</strong><br />

eastern <strong>Kentucky</strong>.<br />

2


PURPOSE<br />

Chang<strong>in</strong>g world political and economic conditions and dw<strong>in</strong>dl<strong>in</strong>g<br />

supplies of oil and gas have made the Upper Devonian-Lower Mississip-<br />

pa<strong>in</strong> black-shale sequence a more desirable target for <strong>in</strong>vestigation of<br />

hydrocarbons potential.<br />

concern<strong>in</strong>g the black shale.<br />

Recently there has been a flurry of activity<br />

Various companies have been buy<strong>in</strong>g the<br />

m<strong>in</strong>eral rights around the central <strong>Kentucky</strong> black-shale outcrop belt.<br />

The state government is presently work<strong>in</strong>g on legislation concern<strong>in</strong>g<br />

the black shale. It rema<strong>in</strong>s to be seen whether the black shale can<br />

be economically exploited for hydrocarbons and uranium.<br />

A better knowledge of the <strong>in</strong>ternal stratigraphy will help <strong>in</strong> the<br />

evaluation and del<strong>in</strong>eationofpossible economic units and zones.<br />

paper is <strong>in</strong>tended to add <strong>in</strong>formation which, it is hoped, will aid <strong>in</strong><br />

<strong>in</strong>creas<strong>in</strong>g the recovery of hydrocarbons and uranium.<br />

3<br />

This


LOCATION<br />

The Upper Devonian-Lower Mississippian black-shale sequence oc-<br />

curs widely throughout east-central North America; the shale sequence<br />

can be traced from Canada to Alabama (Provo, 1977). This report ex-<br />

am<strong>in</strong>es the Devonian-Mississippian black-shale sequence <strong>in</strong> the Appala-<br />

chian bas<strong>in</strong> area of eastern <strong>Kentucky</strong>.<br />

the Ohio state l<strong>in</strong>e to the north, the West Virg<strong>in</strong>ia and Virg<strong>in</strong>ia state<br />

l<strong>in</strong>es to the east, the Tennessee border to the south, and on the west<br />

by the trace of the black-shale outcrop belt along the eastern flank<br />

of the C<strong>in</strong>c<strong>in</strong>nati arch.<br />

The study area is bounded by<br />

The shale sequence varies <strong>in</strong> thickness from more than 61 m<br />

(200 ft) <strong>in</strong> Lewis County <strong>in</strong> northern <strong>Kentucky</strong> to less than 9.2 m<br />

(30.0 ft) <strong>in</strong> Cumberland County <strong>in</strong> south-central <strong>Kentucky</strong>. A thickness<br />

<strong>in</strong> excess of 392 m (1300 ft) is present near the eastern limit of the<br />

study area <strong>in</strong> Pike County.<br />

the surface along the black-shale outcrop belts along the eastern<br />

flank of the C<strong>in</strong>c<strong>in</strong>nati arch (see Figure 1).<br />

<strong>in</strong>to the subsurface.<br />

shale is 765 m (2509 ft) below sea level or 1116 m (3660 ft) below<br />

ground level <strong>in</strong> Pike County.<br />

The black-shale sequence is visible at<br />

It dips gently eastward<br />

An approximate maximum depth to the top of the<br />

Well locations used <strong>in</strong> this study, as well as the outcrop sec-<br />

tions of Swager (1978), are plotted on structure-contour maps <strong>in</strong><br />

Appendix 2; isopach maps <strong>in</strong> Appendix 1; and radioactive isopach maps<br />

<strong>in</strong> Appendices 3 and 4.<br />

4


Figure 1. Eastern <strong>Kentucky</strong> study area (shaded).<br />

5


TECHNIQUES AND PROCEDURES<br />

Data for this study were obta<strong>in</strong>ed from the well records of the<br />

<strong>Kentucky</strong> Geological Survey, housed on the campus of the University<br />

of <strong>Kentucky</strong>, Lex<strong>in</strong>gton, <strong>Kentucky</strong>. Literally thousands of well re-<br />

cords were exam<strong>in</strong>ed for <strong>in</strong>formation on the Upper Devonian-Lower Mis-<br />

sissippian black-shale sequence. Subsurface log <strong>in</strong>formation was re-<br />

corded from approximately 1100 gamma-ray logs and 8300 drillers' logs<br />

which penetrated the Upper Devonian-Lower Mississippian black-shale<br />

sequence <strong>in</strong> the 43-county study area. Data from 11 outcropswerealso<br />

used (Swager, 1978).<br />

Approximately 600 of the 1100 gamma-ray logs were actually used<br />

<strong>in</strong> the construction of the maps on which this study is based.<br />

Many<br />

of the gamma-ray logs did not fully penetrate the Devonian-Mississip-<br />

pian black-shale sequence. The drastic decrease <strong>in</strong> data control can<br />

be seen by compar<strong>in</strong>g the maps of the Cleveland Shale Member with those<br />

of the Rh<strong>in</strong>estreet Shale. Many logs barely penetrated the top of the<br />

shale, so were not used at all. In areas with poor gamma-ray log<br />

control, data from high quality drillers' logs were used. Some gamma-<br />

ray logs were off-scale for the'entire thickness of the black-shale<br />

sequence, so that only the top and bottom of the shale sequence could<br />

be identified. In some areas, the well control was so good that many<br />

po<strong>in</strong>ts were not used to avoid overcrowd<strong>in</strong>g. These areas offer enough<br />

data po<strong>in</strong>ts to allow detailed local study, but study of.this nature<br />

is beyond the scope of this report.<br />

Data for each well were recorded <strong>in</strong> large ledger books and <strong>in</strong>-<br />

cluded: owner, operator, permit number, elevation, well depth, type<br />

of log, depth to the base of the black-shale sequence as well as<br />

I<br />

6


depths to the top of the Sunbury Shale, the Bedford-Berea sequence,<br />

and each of Provo's seven units.<br />

<strong>in</strong> the Devonian-Mississippian black-shale sequence and of units both<br />

overly<strong>in</strong>g and underly<strong>in</strong>g the black-shale sequence were also recorded.<br />

Thicknesses of Provo's seven units (Cleveland Shale; Three Lick Bed;<br />

Upper, Middle, and Lower Huron Shale, Olentangy Shale and Rh<strong>in</strong>estreet<br />

Shale) and the thickness of the Java and West Falls formations were<br />

compiled us<strong>in</strong>g the data recorded <strong>in</strong> the ledger books. Isopach maps<br />

of the various units were constructed from the compiled data for the<br />

various <strong>in</strong>tervals (Appendix 1).<br />

units were subtracted from the surface elevation of the well, yield-<br />

<strong>in</strong>g elevations of the units relative to sea level <strong>in</strong>stead of ground<br />

level. This data was then used <strong>in</strong> construct<strong>in</strong>g structure contour<br />

maps on the base of the various units (Appendix 2).<br />

maps were generated <strong>in</strong> which only the more radioactively <strong>in</strong>tense<br />

portions of Provo's seven units and the Java and West Falls forma-<br />

tions were isopached (Appendices 3, 4). The methods and criteria<br />

used <strong>in</strong> the construction of these maps will be expla<strong>in</strong>ed <strong>in</strong> the<br />

section entitled "Radioactive Isopach Maps".<br />

The drillers'-log names of the units<br />

The depths to each of the various<br />

A third set of<br />

Closed circles on the isopach and structure-contour maps<br />

(Appendices 1, 2) and radioactive isopach maps (Appendices 3, 4) re-<br />

present data po<strong>in</strong>ts where <strong>in</strong>formation from gamma-ray logs were used.<br />

Open circles represent data po<strong>in</strong>ts where drillers' logs were used.<br />

Open squares represent outcrop data obta<strong>in</strong>ed from Swager (1978).<br />

The grids on the maps are <strong>in</strong> the Carter Coord<strong>in</strong>ate System, and all<br />

data po<strong>in</strong>ts were plotted us<strong>in</strong>g that grid system.<br />

7


STRATIGRAPHIC NOMENCLATURE<br />

Introduction<br />

Although much has been written on various aspects of the.black-<br />

shale sequence, only the high po<strong>in</strong>ts will be covered <strong>in</strong> this report.<br />

Most of the authors cited <strong>in</strong> this section have <strong>in</strong>cluded detailed<br />

literature reviews <strong>in</strong> their papers. The reader is referred to those<br />

papers for reviews of earlier studies<br />

Previous <strong>Studies</strong><br />

Most studies have been limited <strong>in</strong> geographic extent and unfortu-<br />

nately most end at or near state l<strong>in</strong>es; few of those studies are re-<br />

gional <strong>in</strong> nature. The first major stratigraphic study of the Upper<br />

Devonian-Lower Mississippian black-shale sequence was undertaken by<br />

Guy Campbell <strong>in</strong> 1946. He divided the New Albany Group of southern<br />

Indiana <strong>in</strong>to formations and correlated them with formations <strong>in</strong> central<br />

<strong>Kentucky</strong>.<br />

He also divided the Chattanooga Shale of southern <strong>Kentucky</strong><br />

and Tennessee <strong>in</strong>to members. In 1951, Louise B. Freeman studied the<br />

regional stratigraphy of the black shales <strong>in</strong> <strong>Kentucky</strong>, and us<strong>in</strong>g sub-<br />

surface <strong>in</strong>formation, constructed an isopach and structure-contour map<br />

of the undivided shale sequence. Hass (1956) presented a detailed<br />

study of the Upper Devonian-Lower Mississippian black-shale sequence<br />

<strong>in</strong> Tennessee. His correlations and subdivisions were based on cono-<br />

dont zonation.<br />

An extensive literature review on the age and correla-<br />

tion of the black-shale sequence was <strong>in</strong>cluded <strong>in</strong> his work.<br />

Hoover (1960) presented a review of previous correlations <strong>in</strong><br />

Ohio and northeastern <strong>Kentucky</strong> and discussed his <strong>in</strong>terpretations of<br />

the stratigraphy based on lithologic character; he also reviewed the<br />

8


"<strong>Black</strong> Shale Problem". A detailed study of the Chattanooga Shale and<br />

overly<strong>in</strong>g Mississippian shales <strong>in</strong> Tennessee and southern <strong>Kentucky</strong> was<br />

based on Hass' work of 1956. L<strong>in</strong>eback (1968) recommended changes <strong>in</strong><br />

Campbell's (1946) stratigraphic nomenclature for southern Indiana and<br />

western <strong>Kentucky</strong>,as some of Campbell's units were not readily identi-<br />

fiable and mappable. L<strong>in</strong>eback (1968) also discussed environments of<br />

deposition for the Upper Devonian-Lower Mississippian black-shale se-<br />

quence.<br />

In 1977, L<strong>in</strong>da Provo recog<strong>in</strong>zed seven <strong>in</strong>ternal radioactive units<br />

which she was able to correlate both at the surface and <strong>in</strong> the sub-<br />

surface over much of the Appalachian bas<strong>in</strong> with the help of a gamma-<br />

ray logs; she also discussed the stratigraphy of the Upper Devonian-<br />

Lower Mississippian black shale sequence <strong>in</strong> the central Appalachian<br />

bas<strong>in</strong>, the occurrence of other Upper Devonian-Lower Mississippian<br />

black-shale sequence throughout the world, and the sedimentary history<br />

of the shale. Patchen (1977) divided the Upper Devonian-Lower Mis-<br />

sissippian black-shale sequence <strong>in</strong> western West Virg<strong>in</strong>ia <strong>in</strong>to four<br />

subdivisions based entirely on sample descriptions, and made prelimi-<br />

nary correlations between western West Virg<strong>in</strong>ia and eastern <strong>Kentucky</strong><br />

us<strong>in</strong>g the seven units of Provo (1977); a review of gas production from<br />

the black-shale sequence was <strong>in</strong>cluded. A study of the Upper Devonian-<br />

Lower Mississippian outcrop belt <strong>in</strong> east-central <strong>Kentucky</strong> and P<strong>in</strong>e<br />

Mounta<strong>in</strong> outcrop belts by Swager (1978) found the upper six <strong>in</strong>ternal<br />

radioactive units of Provo (1977). He correlated the outcrop units,<br />

which were identified us<strong>in</strong>g sample description and hand-held sc<strong>in</strong>tillo-<br />

meter profiles, with the subsurface units of Provo (1977).<br />

9


Map and Cross Section Review<br />

The Upper Devonian shale sequence of eastern <strong>Kentucky</strong> is very<br />

dist<strong>in</strong>ctive and forms an important marker unit. Surpris<strong>in</strong>gly,<br />

very little subsurface mapp<strong>in</strong>g <strong>in</strong> this black-shale <strong>in</strong>terval has been<br />

done to date. In 1931, Jillson constructed a structural geologic map<br />

of <strong>Kentucky</strong> with structure contours on top of the Upper Devonian black<br />

shale. Wood and Walker (1954) constructed a prelim<strong>in</strong>ary oil and gas<br />

map of <strong>Kentucky</strong> which <strong>in</strong>cluded structure contours adapted from Jill-<br />

son (1931). Although Freeman (1959) studied some aspects of the<br />

black-shale sequence and drew subsurface maps based on sample descrip-<br />

tion which <strong>in</strong>cluded the black shale, she did not try to subdivide the<br />

shale. breover, most of her study was concentrated <strong>in</strong> western Ken-<br />

tucky. Dever (1965) constructed a structure contour map on the base<br />

of the Ohio Shale <strong>in</strong> Rowan County, <strong>Kentucky</strong>. deWitt and others (1975)<br />

<strong>in</strong>cluded eastern <strong>Kentucky</strong> <strong>in</strong> a series of isopach maps of Upper Devon-<br />

ian and Silurian rocks <strong>in</strong> the’Appalachian bas<strong>in</strong>.<br />

Areas of hydrocarbon<br />

production from the Upper Devonian-Lower Mississippian black shales<br />

were also outl<strong>in</strong>ed. In 1977, Provo subdivided the Upper Devonian-<br />

Lower Mississippian black-shale sequence <strong>in</strong>to seven radioactive units<br />

and constructed isopach maps of the seven units, a total isopach map<br />

and a structure contour map on top of the Upper Devonian-Lower Missis-<br />

sippian black shale <strong>in</strong> eastern <strong>Kentucky</strong>. Potter (1978) constructed<br />

a structure contour map on the top of the Upper Devonian-Lower Missis-<br />

sippian black shale and an isopach map of the black shale <strong>in</strong> central<br />

<strong>Kentucky</strong> <strong>in</strong> the C<strong>in</strong>c<strong>in</strong>nati arch area. Wallace and others (1977) and<br />

Roen and others (1978) constructed prelim<strong>in</strong>ary stratigraphic cross<br />

sections of the Upper Devonian <strong>Shales</strong> from Tennessee to New York which<br />

10


<strong>in</strong>cluded <strong>Kentucky</strong>'s Upper Devonian shale. KepCerle and others (1978)<br />

constructed a prelim<strong>in</strong>ary stratigraphic cross section from south-cen-<br />

tral Ohio through eastern <strong>Kentucky</strong> and <strong>in</strong>to southwesternmost Virg<strong>in</strong>ia.<br />

11


STRATIGRAPHIC UNITS<br />

Introduction<br />

Through careful study and comparison of outcrop lithology and<br />

outcrop sc<strong>in</strong>tillation profiles to nearby wells with available gamma-<br />

ray logs, sample chips and cores, Provo (1977) was able to def<strong>in</strong>e<br />

seven subdivisions <strong>in</strong> the subsurface <strong>in</strong> eastern <strong>Kentucky</strong>. She was the<br />

first to successfully divide the Upper Devonian black-shale sequence<br />

<strong>in</strong>to easily correlatable units <strong>in</strong> the subsurface.<br />

readily traceable throughout eastern <strong>Kentucky</strong> and hence were used <strong>in</strong><br />

this subsurface study. To date, no other subdivision of the Upper<br />

Devonian-Lower Mississippian black-shale sequence has been devised<br />

that can be traced between the subsurface and outcrop with such ease,<br />

speed, and consistency. She cited an outcrop along Interstate 64<br />

near Morehead, Rowan County, <strong>Kentucky</strong> as a well-exposed reference<br />

section which conta<strong>in</strong>ed good examples of units 1 through 5.<br />

Gas Company well number 533, Coalton Tract Fee, located 1030 feet FNL<br />

x 1310 feet FWL <strong>in</strong> section 11-V-81 of Boyd County was designate$ as<br />

a comparable reference well <strong>in</strong> her study. The well had very good do-<br />

cumentation <strong>in</strong>clud<strong>in</strong>g gamma-ray logs, compensated density logs, and a<br />

complete set of well-sample chips. Moreover, all seven radioactive<br />

units were recognized <strong>in</strong> this well (Figure 2).<br />

These units are<br />

Inland<br />

'The Gamma Ray Log is a measurement of the natural radioactivity<br />

of the formations.<br />

The log is therefore useful <strong>in</strong> detect<strong>in</strong>g and<br />

evaluat<strong>in</strong>g deposits of radioactive m<strong>in</strong>erals such as potash or uranium<br />

ore." (Schlmberger, 1972). In sedimentary formations the gamma-ray<br />

radioactive elementstendtobeconcentratedwithf<strong>in</strong>eorganicmaterial <strong>in</strong><br />

clays and shales. Higher-than-normal radioactivity <strong>in</strong> black organic-<br />

12


ich shales comes from the close association of uranium and thorium<br />

with the abundant organic material (Swanson, 1969a, b).<br />

Swager (1978) was able to produce synthetic gamma-ray logs on<br />

Upper Devonian-Lower Mississippian outcrops us<strong>in</strong>g a hand-held sc<strong>in</strong>til-<br />

lometer technique described by Ettensohn and others (1977, 1979).<br />

Swager found the same dist<strong>in</strong>ctive pattern <strong>in</strong> the outcrop as Provo<br />

found <strong>in</strong> the subsurface. Figure 3 shows a comparison of Provo's radio-<br />

active units <strong>in</strong> the subsurface and outcrop (Ettensohn and others, 1977,<br />

1979).<br />

Radioactive Java Formation and West Falls Formation<br />

The West Falls and Java formations are <strong>in</strong>cluded as parts of units<br />

6 and 7 (Figures 2, 5) and have been traced southwestward from New<br />

York <strong>in</strong>to eastern <strong>Kentucky</strong> by Roen and others (1978) and Wallace and<br />

others (1978).<br />

The Java Formation <strong>in</strong>cludes upper parts of Unit 6,<br />

whereas the West Falls Formation <strong>in</strong>cludes the lower part of Unit 6 and<br />

all of Unit 7. These units are best identified on the bulk density<br />

log, for the Java Formation is characterized by a th<strong>in</strong> black shale at<br />

its base which gives a strong negative deviation on the bulk density<br />

log (Figure 2).<br />

Falls formations.<br />

This strong negative peak separates the Java and West<br />

Radioactive Stratigraphic Unit 7<br />

Unit 7 is a black, carbonaceous shale with <strong>in</strong>terbedded greenish-<br />

gray shale layers.<br />

of Unit 5, but Unit 7 can be differentiated from Unit 5 by its th<strong>in</strong>ner<br />

black-shale layers, lower total thickness and smaller positive re-<br />

sponse on g--ray logs.<br />

It exhibits a gamma-ray response similar to that<br />

14<br />

It is the lowermost unit of the black-shale


'I Morehead Section" Penmoil Inland Gas<br />

Radioactivity Profile No. 1 Jones No. 533Fee ( Coalton 1<br />

5-T-72 4-T - 75 I I-v-81<br />

Vertical ~ ~ 0 ~ 0 8<br />

API units<br />

d<br />

c ..-<br />

I" " I<br />

0 200 400<br />

AP1 unih<br />

Figure 3. Comparison of Provols gamma-ray units <strong>in</strong> the subsurface<br />

and outcrop (Etttnsohn and others, 1978, 1979).<br />

15


sequence <strong>in</strong> eastern <strong>Kentucky</strong>.<br />

Radioactive Stratigraphic Unit<br />

Unit 6 is a greenish-gray, organic-poor shale and mudstone, which<br />

may be calcareous (Provo, 1977). Unit6consistentlygivesa negative<br />

gamma-ray response throughout its thickness.<br />

Radioactive Stratigraphic Unit 5<br />

Unit 5 is a carbonaceous, brownish-black shale conta<strong>in</strong><strong>in</strong>g th<strong>in</strong><br />

zones of greenish-gray, organic-poor shales.<br />

ray curve of Unit 5 is erratic due to alternation ofhigtilyradioactive<br />

brownish-black shales with organic-poor green shales.<br />

shales typically exhibit evidance,o'fmuch burrow<strong>in</strong>g.<br />

Unit 5 has a much more positive gamma-ray response than does Units<br />

4 or 6.<br />

Radioactive Stratigraphic Unit 4<br />

6<br />

The dist<strong>in</strong>ctive gamma-<br />

The green<br />

On the average,<br />

Unit 4 is lithologically similar to Unit 3 but can be differen-<br />

tiated by the presence of the pelagic alga Foerstia (Schop€ and<br />

Schwieter<strong>in</strong>g, 1970; Fig. 2, p. 6-7). The contact between the black<br />

shales of Units 3 and 4 can only be determ<strong>in</strong>ed through radioactive<br />

means (sc<strong>in</strong>tillometer or gamma-ray profile). Subtle lithologic<br />

changes may be responsible for the decrease gamma-ray respone of Unit<br />

4 (Provo, 1977).<br />

Radioactive Stratigraphic Unit 3<br />

Unit 3 is another highly radioactive, carbonaceous, brownish-<br />

black shale which is recognized by its strong positive gamma-ray<br />

signature and stratigraphic position below Unit 2. Unit 3.is<br />

16


lam<strong>in</strong>ated, homogeneous, and may conta<strong>in</strong> bedded pyrite, and discont<strong>in</strong>u-<br />

ous cone-<strong>in</strong>-cone limestones.<br />

Radioactive Stratigraphic Unit 2<br />

Unit 2 consists of two black carbonaceous shales <strong>in</strong>terbedded with<br />

three.greenish-gray, organic-poor shales and may conta<strong>in</strong> discont<strong>in</strong>uous<br />

cone-<strong>in</strong>-cone limestones. This bed has a dist<strong>in</strong>ctive alternation of<br />

three low and two high kicks on the gamma-ray logs (Figure 2).<br />

and others (1978) reported the importance of Unit 2 as a widespread<br />

marker bed which is easily dist<strong>in</strong>guished <strong>in</strong> the outcrop and on wire-<br />

l<strong>in</strong>e logs.<br />

but is very persistent and can be recognized throughout the study<br />

area.<br />

Unit 2 is relatively th<strong>in</strong> compared to the other units,<br />

Radioactive Stratigraphic Unit 1<br />

Provo<br />

Unit 1 is a black, carbonaceous shale which is characterized by<br />

abundant phosphate nodules and also conta<strong>in</strong>s L<strong>in</strong>gula and pyrite<br />

nodules.<br />

Relatively high concentrations of uranium and thorium <strong>in</strong><br />

association with high organic content is responsible for the high<br />

gamma-ray log plateau which characterizes Unit 1 (Swager, 1978).<br />

See Figure 2 for a gamma-ray log with units identified.<br />

17


CORRELATION<br />

Introduction<br />

The Upper Devonian-Lower ?/Iiss iss ippian bl ac k-shal e sequence lack-<br />

ed any workable stratigraphy that couldbeused overabroad geographic<br />

area. Internal stratigraphic units developed us<strong>in</strong>g outcrop exposures<br />

typically did not lend themselves to subsurface identification and<br />

correlation.<br />

Criteria developed by various authors were not univer-<br />

sally used and were not universally applicable <strong>in</strong> correlat<strong>in</strong>g.<br />

fossils can be extremely valuable <strong>in</strong> mak<strong>in</strong>g such correlations, but,<br />

unfortunately, hicropaleontologic methods do not lend themselves to<br />

easy, relatively quick determ<strong>in</strong>ations.<br />

Micro-<br />

Provo (1977) was able to recognize an <strong>in</strong>ternal stratigraphy which<br />

could be successfully correlated over broad geographic areas both <strong>in</strong><br />

the subsurface and <strong>in</strong> outcrops with speed and accuracy us<strong>in</strong>g methods<br />

developed by Ettensohn and others (1977, 1979). Swager (1978) used<br />

these methods to identify and correlate Provots radioactive strati-<br />

graphic units along the east-central <strong>Kentucky</strong> outcrop belt and <strong>in</strong> the<br />

Upper Devonian-Lower Mississippian outcrop belt along the P<strong>in</strong>e<br />

Mounta<strong>in</strong> thrust block.<br />

The ability to subdivide a seem<strong>in</strong>gly homogeneous shale sequence<br />

has enabled correlation with equivalent units <strong>in</strong> other areas.<br />

understand<strong>in</strong>g of depositional histories and age relationships has been<br />

greatly enhanced by a workable <strong>in</strong>ternal stratigraphy.<br />

thicken<strong>in</strong>g, th<strong>in</strong>n<strong>in</strong>g and structural activity dur<strong>in</strong>g deposition of<br />

different <strong>in</strong>ternal units can now be identified. The time-span of<br />

- activities can now be identified with much more accuracy. Relation-<br />

The<br />

Episodes of<br />

ships between the radioactive <strong>in</strong>ternal stratigraphy of Provo (1977)<br />

18


employed <strong>in</strong> this study arid <strong>in</strong>ternal stratigraphies used by other<br />

authors are discussed and correlated <strong>in</strong> the succeed<strong>in</strong>g sections.<br />

Java Formation, Pipe Creek Member of the<br />

Java Formation and the West Falls Formation<br />

A th<strong>in</strong>, black shale called the Pipe Creek Shale Member of the<br />

Java Formation has been identified and traced from New York <strong>in</strong>to<br />

extreme eastern <strong>Kentucky</strong>.<br />

Java Formation and is easily dist<strong>in</strong>guished on good gamma-ray and<br />

density logs (Figure 2).<br />

This shale member marks the base of the<br />

Recognition of the Pipe Creek Shale (Figure 5) is critical <strong>in</strong><br />

identify<strong>in</strong>g the Java and West Falls formations.<br />

Where the Pipe Creek<br />

p<strong>in</strong>ches out or becomes too th<strong>in</strong> to be recognized on wirel<strong>in</strong>e logs,<br />

the Hanover and Angola shales are treated as a s<strong>in</strong>gle green-shale unit<br />

called Unit 6 (Figure 4) or the Upper Olentangy Shale. In these<br />

cases, Unit 7 or the Rh<strong>in</strong>estreet Shale is split as a separate unit.<br />

No older Devonian black shales are known from eastern <strong>Kentucky</strong>.<br />

The Java Formation is equivalent to upper Upper Olentangy Shale<br />

and upper radioactive Unit 6 and the Pipe Creek Member of the Java<br />

Formation is equivalent to the middle Upper Olentangy Shale.<br />

Angola Shale Member of the West Falls Formation is equivalent to the<br />

lower Upper Olentangy Shale.<br />

correlatable whether the Pipe Creek Shale Member is present or not.<br />

Where the Pipe Creek Shale Member is absent or <strong>in</strong>dist<strong>in</strong>guishable,<br />

the similar Java Formation and Angola Shale Member are <strong>in</strong>divisible<br />

on geophysical wirel<strong>in</strong>e logs.<br />

Upper Olentangy Shale.<br />

The<br />

The Rh<strong>in</strong>estreet is identifiable and<br />

They are then correlative with the<br />

19


-@!<br />

<strong>Black</strong><br />

shale<br />

LWM<br />

Intorboddad<br />

Shde<br />

Foerrtlq<br />

Zone<br />

Unlt 8<br />

Unlt I<br />

Unlt 2<br />

Unlt 3<br />

unlt4<br />

Unlt 6<br />

Unlt 6<br />

Unlt 7<br />

Three Lkk Bed<br />

KMWa\M&<br />

Upper Huron<br />

Shale Member<br />

Mlddle Huron<br />

Shale Member<br />

Lower Huron<br />

shale Member<br />

Olentangy<br />

Shale<br />

Marcellus (7)<br />

Shale<br />

Uppw Gosrawoy<br />

Member<br />

Mlddk Gassoway<br />

Member<br />

Lowar Gorsowoy<br />

Member<br />

upperDowmom,<br />

Member<br />

mw Dowelltown<br />

Member<br />

wper<br />

Devonian<br />

herHuron<br />

Shale Member<br />

"Upper"<br />

Nontangy Shale<br />

Rhbwrlrool Shab<br />

kmbw of Wort Fdh<br />

wma+bnofNowYork<br />

Figure 4. Correlation chart for the Upper Devonian-Lower Mississippian black-sh<br />

(modified from Swager, 1978).<br />

Bro<br />

bf No<br />

V<br />

Low<br />

sha<br />

y<br />

lenta<br />

Rhln<br />

Ircnb<br />

nmal


I<br />

slnbw 1 .. .. a<br />

shak-<br />

Br#-Bodford I h ._<br />

I<br />

unit s<br />

.* n<br />

S m m c m I unn D<br />

Middlr Huron<br />

Shak Manbor<br />

Unit 4<br />

Unit 5<br />

Middlo Huron<br />

Shah Membu<br />

Figure 5. Correlation chart show<strong>in</strong>g further subdivisions of the<br />

Java and West Falls Formations and their radioactive<br />

equivalents.<br />

21


Radioactive Unit 7<br />

Radioactive Unit 7 was tentatively correlated with the Marcellus<br />

Shale by Provo (1977). Kepferle and others (1978) and Roen and others<br />

(1978), however, have correlated Unit 7 with the Rh<strong>in</strong>estreet Shale<br />

Member of the West Falls Formation of New York. Unit 7 is not present<br />

<strong>in</strong> Tennessee (Hass, 1956) or <strong>in</strong> the batucky outcrop belt (Swager,<br />

1978).<br />

Radioactive Unit 6<br />

Radioactive Unit 6 was correlated with the Olentangy Shale (Provo,<br />

977). More recent correlations by Kepferle and others (1978) and<br />

Roen and others (1978) have correlated Unit 6 with only the Upper<br />

Olentangy Shale.<br />

There is.no Unit 6 equivalent <strong>in</strong> the Chattanooga<br />

Shale of Tennessee (Hass, 1956) or <strong>in</strong> the <strong>Kentucky</strong> outcrop belt except<br />

possibly <strong>in</strong> northernmost <strong>Kentucky</strong> (Swager, 1978).<br />

Radioactive Unit 5<br />

Radioactive Unit 5 is correlative with the Lower Huron Member of<br />

the Ohio Shale and with the Lower Dowelltown Member of the Chattanooga<br />

Shale (Hass, 1956). The Lower W o n Member (Unit 5) can be traced<br />

<strong>in</strong>to western Virg<strong>in</strong>ia (Kepferle and others, 1978), <strong>in</strong>to western West<br />

Virg<strong>in</strong>ia (Roen and others, 1978), and <strong>in</strong>to western New York and Penn-<br />

sylvania where it is equivalent to the Dunkirk Shale (Roen and others,<br />

1978). The lower half of Unit 5 comprises the entire lower <strong>in</strong>terbedd-<br />

ed shale lithostratigraphic unit of Swager (1978) and conta<strong>in</strong>s lower<br />

parts of the Foerstia biostratigraphic zone (Figure 4).<br />

Radioactive Unit 4<br />

Radioactive Unit 4 is correlative with the Middle Huron Member<br />

22


of the Ohio Shale (Provo, 1977) and the Upper Dowelltown Member of the<br />

Chattanooga Shale (Hass, 1956). Unit 4 p<strong>in</strong>ches out <strong>in</strong> southern and<br />

easterly directions <strong>in</strong>to the lowermost parts of the Brallier Shale of<br />

north-central Virg<strong>in</strong>ia (Kepferle and others, 1978) and <strong>in</strong>to lower<br />

parts of an undivided sequence of Upper Devonian silty brown shales <strong>in</strong><br />

western West Virg<strong>in</strong>ia (Roen and others, 1978). Unit 4 is <strong>in</strong>cluded <strong>in</strong><br />

Swager's (1978) lower black shale lithostratigraphic unit, and lower<br />

parts of the unit are placed <strong>in</strong> the Foerstia biostratigraphic zone.<br />

Radioactive Unit 3<br />

Radioactive Unit. 3 is correlative with the Upper Huron Member of<br />

the Ohio Shale (Provo, 1977). It also correlates with the Lower Gas-<br />

saway Member of the Chattanooga Shale (kss, 1956) and p<strong>in</strong>ches out <strong>in</strong><br />

a southern and easterly direction <strong>in</strong>to the middle Brallier Shale of<br />

north-central Virg<strong>in</strong>ia (Kepferle and others, 1978) and <strong>in</strong>to an undi-<br />

vided sequence of Upper Devonian silty brown shales <strong>in</strong> western West<br />

Virg<strong>in</strong>ia (Roen and others, 1978). Unit 3 is <strong>in</strong>cluded <strong>in</strong> upper parts<br />

of Swager's (1978) lower black shale lithostratigraphic unit.<br />

Radioactive Unit 2<br />

Radioactive Unit 2 is correlative with the Three Lick Bed and<br />

represents a th<strong>in</strong> southern tongue of the Chagr<strong>in</strong> Shale of Ohio (Provo,<br />

1977 and Provo and others, 1978). To the south and east, it p<strong>in</strong>ches<br />

out <strong>in</strong>to upper parts of the Brallier Shale (Kepferle and others, 1978)<br />

and <strong>in</strong>to an undivided sequence of Upper Devonian silty brown shales<br />

(Roen and others, 1978). The Three Lick Bed is correlative with the<br />

Middle Gassaway Member of the Chattanooga Shale (Hass, 1956) and the<br />

Upper Interbedded Shale lithostratigraphic unit of Swager (1978). It<br />

23


is also <strong>in</strong>cluded as part of Swager's (1978) lower L<strong>in</strong>gula biostrati-<br />

graphic zone.<br />

Radioactive Unit 1<br />

Radioactive Unit 1 is correlative with the Cleveland Shale Member<br />

of the Ohio Shale (Provo, 1977), the Upper Gassaway Member of the Chat-<br />

tanooga Shale (Hass, 1956), and the upper black shale of Swager's<br />

(1978) lithostratigraphic sequence. Unit 1 is equivalent with the<br />

Upper Brallier Shale of north-central Virg<strong>in</strong>ia (Kepferle and others,<br />

1978), and the uppermost undivided Upper Devonian of western West<br />

Virg<strong>in</strong>ia (Roen and.others, 1978), and the upper part of the lower<br />

L<strong>in</strong>gula biostratigraphic zone of Swager (1978).<br />

Bedford-Berea Shale Sequence - Radioactive Unit B<br />

The Bedford-Berea sequence, Unit B, lies directly below the Sun-<br />

bury Shale <strong>in</strong> northern and extreme eastern parts of the <strong>Kentucky</strong> study<br />

area.<br />

of Unit 1.<br />

It separates the black shales of the Sunbury Shale from those<br />

The Bedford-Berea sequence represents a series of deltaic<br />

facies <strong>in</strong> Ohio (Hoover, 1960). Although both parts of Unit B are<br />

present <strong>in</strong> parts of <strong>Kentucky</strong>, only the Berea Sandstone facies is<br />

present <strong>in</strong> western West Virg<strong>in</strong>ia (Roen and others, 1978). Neither the<br />

Bedford Shale nor Berea Sandstone is present <strong>in</strong> Tennessee or south-<br />

central <strong>Kentucky</strong> (Hass, 1956), and the Bedford-Berea sequence is pro-<br />

bably equivalent to the uppermost parts of the Brallier Shale <strong>in</strong><br />

north-central Virg<strong>in</strong>ia (Kepferle and others, 1978). The Bedford-Berea<br />

sequence is also equivalent to Swager's (1978) lithostratigraphic<br />

green shale and light siltstone.<br />

24


Sunbury Shale - Radioactive Unit S<br />

The Sunbury Shale, Unit S of this study, is recognized <strong>in</strong> the<br />

northern and eastern positions of the study area (Figure 6). It is<br />

separated from Unit 1 by the Bedford-Berea sequence called Unit B <strong>in</strong><br />

this study.<br />

Where Unit B is absent <strong>in</strong> the southern part of the study<br />

area, Unit S lies directly on Unit 1 and cannot be separated from it<br />

lithologically. The two units can, however, be dist<strong>in</strong>guished by<br />

conodont assemblages (Hass, 1956) and differences <strong>in</strong> radioactivity.<br />

The Sunbury Shale and its th<strong>in</strong>ner equivalents to the south are much<br />

more radioactive than underly<strong>in</strong>g Devonian shales and are characterized<br />

by a dist<strong>in</strong>ctive positive deviation on gamma-ray logsandradioactivity<br />

profiles, even where Unit B is not present (Ettensohn and others,<br />

1979; Ettensohn, 1979).<br />

The Sunbury Shale is traced from western Vfrg<strong>in</strong>ia <strong>in</strong>to Ohio on<br />

correlation chart OC-85 (Kepferle and others, 1978). In western<br />

Virg<strong>in</strong>ia, the Sunbury Shale is correlated with the Big Stone Gap<br />

Shale as used by Bartlett and Webb (1971). Roen and others (1978)<br />

traced the Sunbury Shale <strong>in</strong>to western West Virg<strong>in</strong>ia.<br />

equivalent exists <strong>in</strong> the Chattanooga Shale of Tennessee and south-<br />

central <strong>Kentucky</strong> (Hass, 1956).<br />

A Sunbury<br />

25


South -Central<br />

<strong>Kentucky</strong><br />

r<br />

Chattanooga<br />

Shale<br />

I<br />

,---<br />

East- Central<br />

<strong>Kentucky</strong><br />

A<br />

ad.n<br />

0 hio<br />

Shale<br />

.----<br />

Northeastern<br />

Kent uc k y<br />

A<br />

M n '<br />

'ormat i on<br />

Sunbury Shale<br />

Ohio<br />

Shale<br />

Figure'6. Chart show<strong>in</strong>g the relationships of the Sunbury, Bedford,<br />

Berea, Ohio and New Albany Formation <strong>in</strong> eastern <strong>Kentucky</strong><br />

' (from Swager, 1978; and Ettensohn, 1979).<br />

26


ISOPACH MAP DISTRIBUTIONS<br />

Introduction<br />

The Devonian-Mississippian black-shale sequence is present<br />

throughout all of the eastern <strong>Kentucky</strong> study area (Appendices 1, 2,<br />

3, 4, and Figure 7), and ranges <strong>in</strong> thickness from a m<strong>in</strong>imum of ap-<br />

proximately 7.3 m (24 ft) <strong>in</strong> southwest Cl<strong>in</strong>ton County <strong>in</strong> south-central<br />

<strong>Kentucky</strong> to a maximum of approximately 556.2 m (1825 ft) <strong>in</strong> the south-<br />

eastern tip of Pike County <strong>in</strong> southeastern <strong>Kentucky</strong>; it reaches a<br />

thickness of 762 m (2500 ft) <strong>in</strong> West Virg<strong>in</strong>ia (Provo, 1977). Along<br />

the outcrop belt, the sequence atta<strong>in</strong>s thicknesses rang<strong>in</strong>g from 7.3 m<br />

(24 ft) <strong>in</strong> Cl<strong>in</strong>ton County to 68.6 m (225 ft) <strong>in</strong> Lewis County <strong>in</strong> north-<br />

central <strong>Kentucky</strong>.<br />

Identification of <strong>in</strong>ternal radioactive units <strong>in</strong> areas where the<br />

Upper Devonian-Lower Mississippian shale sequence is th<strong>in</strong> is h<strong>in</strong>dered<br />

by the quality of gamma-ray logs.<br />

Many gamma-ray logs do not have<br />

adequate resolution to allow the <strong>in</strong>dividual units to be identified.<br />

Moreover, this shale sequence is so much higher <strong>in</strong> radioactivity than<br />

units above and below that the gamma-ray log often goes off scale,<br />

mak<strong>in</strong>g identification of units difficult if not impossible.<br />

formation <strong>in</strong> such an <strong>in</strong>terval is lost.<br />

Dilution of the black, organic, highly radioactive shale by<br />

All <strong>in</strong>-<br />

clastic <strong>in</strong>flux from the east decreases the <strong>in</strong>tensity of the black-<br />

shale gamma-ray response, thereby hamper<strong>in</strong>g the identification of<br />

<strong>in</strong>ternal units <strong>in</strong> the eastern part of the study area nearer to the<br />

clastic source.<br />

In western West Virg<strong>in</strong>ia the upper four ?1ackf1-shale<br />

units are undifferentiable because of the <strong>in</strong>dist<strong>in</strong>ct gamma-ray log<br />

response due to the dilution (e.g., Roen and others, 1978).<br />

-<br />

27


Figure 7. Worm's-eye map of the base of the Devonian black-shale<br />

sequence <strong>in</strong> eastern <strong>Kentucky</strong>.<br />

28


a<br />

Thickness distributions were not contoured south of the P<strong>in</strong>e<br />

Mounta<strong>in</strong> Thrust Fault on the thrust block, which runs through Whitley,<br />

Bell, Harlan, Letcher, and Pike counties. Thicknesses <strong>in</strong> this area<br />

are commonly repeated due to the fault<strong>in</strong>g (Weaver and others, 1978).<br />

A worm's-eye view map is <strong>in</strong>cluded which shows the progressive onlap<br />

of Units 7 through 4 onto the positive C<strong>in</strong>c<strong>in</strong>nat arch (Figure 7).<br />

Rh<strong>in</strong>estreet Shale - Unit 7<br />

The Rh<strong>in</strong>estreet Shale has the most restricted distribution of<br />

the seven units <strong>in</strong> eastern <strong>Kentucky</strong>.<br />

It is found only <strong>in</strong> the deepest<br />

part of the bas<strong>in</strong> and is not present <strong>in</strong> any outcrops <strong>in</strong> the study area<br />

The zero l<strong>in</strong>e for the Rh<strong>in</strong>estreet Shale runs through Greenup, Carter,<br />

Elliott, Lawrence, Morgan, Johnson, Magoff<strong>in</strong>, Breathitt, Perry,<br />

Leslie, and Harlan counties (Figure 7). The Rh<strong>in</strong>estreet Shale reaches<br />

a thickness of more than 45.7 m (150 ft) <strong>in</strong> eastern Mart<strong>in</strong> and Pike<br />

counties <strong>in</strong> eastern <strong>Kentucky</strong>.<br />

Upper Olentangy Shale - Unit 6<br />

The Upper Olentangy Shale is questionably present <strong>in</strong> only one<br />

outcrop <strong>in</strong> Lewis County (Swager, 1978). In this outcrop, Swager<br />

(1978) found approximately 6 m (20 ft) of <strong>in</strong>terbedded black and green-<br />

ish-gray shale which he tentatively called Unit 6.<br />

A gamma-ray log<br />

from a well south and east of the outcrop has 0.6 m (2 ft) of Unit 6.<br />

South and east of the outcrop belt, Unit 6 thickens tomore than 99 m<br />

(325 ft) <strong>in</strong> Pike County <strong>in</strong> southeastern <strong>Kentucky</strong>. The Upper Olentangy<br />

Shale is present only <strong>in</strong> the deeper parts of the bas<strong>in</strong> but onlaps a<br />

little further westward than Unit 7. The zero l<strong>in</strong>e for this unit m ns<br />

through Lewis, Carter, Rowan, Morgan, Wolfe, Breathitt, Owsley,<br />

29


Jackson, Laurel, and Knox counties (Figure 7).<br />

Lower Huron Shale Member - Unit 5<br />

The Lower Huron Member has a more restricted distribution than<br />

any of the younger members, Units 1 through 4 (Figure 7), and does not<br />

onlap the C<strong>in</strong>c<strong>in</strong>nati arch as far west as Unit4 (Figure 7), (Appendix<br />

1). The zero l<strong>in</strong>e for Unit 5 runs through southern McCreary County,<br />

northeastern Wayne and Russell counties, and southwestern Casey County<br />

<strong>in</strong> south-central <strong>Kentucky</strong>, and the unit thickens eastward to a maximum<br />

thickness greater than 76.5 m (251 ft) <strong>in</strong> southeastern Pike County <strong>in</strong><br />

easternmost <strong>Kentucky</strong>.<br />

Lower Huron Member did not fully penetrate the entire unit.<br />

Huron Member ranges from complete absence <strong>in</strong> south-central <strong>Kentucky</strong><br />

outcrop belt to 16.5 m (54 ft) <strong>in</strong> the north-central <strong>Kentucky</strong> outcrop<br />

belt.<br />

The well hav<strong>in</strong>g the greatest thickness of the<br />

Middle Huron Shale Member - Unit 4<br />

30<br />

The Lower<br />

The Middle Huron Member is present throughout the entire study<br />

area, and it is the stratigraphically lowest unit that completely<br />

crosses the C<strong>in</strong>c<strong>in</strong>nati arch (Figure 7) which was a positive feature<br />

dur<strong>in</strong>g its deposition.<br />

The Middle Huron Member ranges from 0.6 m<br />

(1.9 ft) <strong>in</strong> southwestern Cumberland and Cl<strong>in</strong>ton counties <strong>in</strong> south-<br />

central <strong>Kentucky</strong> to approximately 144.8 m (465 ft) <strong>in</strong> southeastern<br />

Pike County <strong>in</strong> easternmost <strong>Kentucky</strong>. In the central <strong>Kentucky</strong> outcrop<br />

belt, it ranges from 0.6 m (2.0 ft) <strong>in</strong> Cumberland County to 19.8 m<br />

(65 ft) <strong>in</strong> Lewis County <strong>in</strong> north-central <strong>Kentucky</strong>.<br />

Upper Huron Shale Member - Unit 3<br />

This Upper Huron Member is also present throughout the entire


study area. It ranges from approximately 2.7 m (9 ft) <strong>in</strong> southwest<br />

Cl<strong>in</strong>ton County<strong>in</strong>south-central <strong>Kentucky</strong>to40.8 m (134 ft) <strong>in</strong> south-cen-<br />

tral Pike County<strong>in</strong>eastern <strong>Kentucky</strong>. Inthe central <strong>Kentucky</strong> outcrop<br />

belt, this member ranges fromam<strong>in</strong>imumof approximately 3.Om (10 ft) <strong>in</strong><br />

southeastern Russell County <strong>in</strong> south-central <strong>Kentucky</strong> to amaximum of<br />

approximately9.1m (30 ft) <strong>in</strong> Lewis County<strong>in</strong>north-central <strong>Kentucky</strong>.<br />

Three Lick Bed - Unit2<br />

The Three Lick Bed of the Ohio Shale is also present throughout<br />

the entire study area. TheThree Lick Bed isrelatively th<strong>in</strong> but very<br />

persistent. It reaches amaximum of approximately 41.5m (136 ft) <strong>in</strong><br />

southwestern Mart<strong>in</strong> County<strong>in</strong>eastern <strong>Kentucky</strong> and am<strong>in</strong>imum of approxi-<br />

mately 0.9 m (3 ft) <strong>in</strong> Cumberland County <strong>in</strong> south-central <strong>Kentucky</strong>.<br />

In the central <strong>Kentucky</strong> outcrop belt, it ranges from 0.9 m (3 ft) <strong>in</strong><br />

Cumberland County to 4.9 m (16 ft) <strong>in</strong> Lewis County <strong>in</strong> north-central<br />

<strong>Kentucky</strong>.<br />

Cleveland Shale - Unit 1<br />

The Cleveland Shale Member of the Ohio Shale is present through-<br />

out the entire eastern <strong>Kentucky</strong> study area. It has been traced from<br />

the Ohio-<strong>Kentucky</strong> border south tothe <strong>Kentucky</strong>-Tennessee border along<br />

the central <strong>Kentucky</strong> outcrop belt by Swager (1978), and can be traced<br />

fromthecentral <strong>Kentucky</strong> outcrop belt eastward <strong>in</strong>to Virg<strong>in</strong>ia and West<br />

Virg<strong>in</strong>ia. The Cleveland Shale ranges from approximately 12..2 m (40ft)<br />

<strong>in</strong> Lewis County<strong>in</strong>north-central <strong>Kentucky</strong>to approximately 3 m (10 ft) <strong>in</strong><br />

Cumberland County <strong>in</strong> south-central <strong>Kentucky</strong>. The Cleveland Shale<br />

thickens eastward from approximately 3 m (10 ft) <strong>in</strong> Cumberland County<br />

to approximately 52.7 m (173 ft) <strong>in</strong> southeastern Lawrence County.<br />

31


ISOPACH ANOMALIES<br />

Introduction<br />

Dur<strong>in</strong>g the construction of a series of eight isopach maps for the<br />

seven previously mentioned black-shale units <strong>in</strong> the Upper Devonian-<br />

Lower Mississippian black-shale sequence (Appendix l), many major and<br />

m<strong>in</strong>or anomalies became apparent (Figure 8). A description of each<br />

anomaly, its development through time, as shown on successive isopach<br />

maps, and an explanation of possible mechanisms for the anomaly follow.<br />

Two major prov<strong>in</strong>ces have been identified:<br />

plateau area and a bas<strong>in</strong> area.<br />

a broad, relatively flat<br />

A h<strong>in</strong>ge l<strong>in</strong>e runn<strong>in</strong>g north-south from<br />

western Lewis County to eastern Bell County (Figure 8, no. 45) sepa-<br />

rates the western plateau area from the eastern bas<strong>in</strong> area and may<br />

mark the eastern extent of the C<strong>in</strong>c<strong>in</strong>nati arch. Ammerman and Keller<br />

(1979) noted that the deeper part of the Rome trough is found east of<br />

the Owsley County uplift (Rockcastle River uplift of this study).<br />

This co<strong>in</strong>cides with thehkgel<strong>in</strong>e described <strong>in</strong> this study (Figure 8,<br />

no. 13, 45).<br />

C<strong>in</strong>c<strong>in</strong>nati Arch<br />

The C<strong>in</strong>c<strong>in</strong>nati arch is the most <strong>in</strong>fluential positive feature <strong>in</strong><br />

the study area (Figure 8, no. 1). Mapp<strong>in</strong>g the distribution of units<br />

(Figure 7) and construction of sections suggests that the arch was a<br />

positive feature throughoutthetimeofdepositionofUnit 7 through 1<br />

(Provo, 1977; Provo and others, 1978; Swager, 1978; Roen and others,<br />

1978; Ettensohn and others, 1979; and Hoover, 1960). Freeman (1959)<br />

suggested the C<strong>in</strong>c<strong>in</strong>nati arch was emergent dur<strong>in</strong>g Middle Devonian<br />

time prior to the beg<strong>in</strong>n<strong>in</strong>g of Upper Devonian deposition. The<br />

32


worm's-eye map (Figure 7), cross section <strong>in</strong> Figure 10, and cross sec-<br />

tions by Roen and others (1978), by Provo and others (1978), and by<br />

Provo (1977) show the progressive onlapp<strong>in</strong>g relationship of Upper<br />

Devonian-Lower Mississippian black shales onto the C<strong>in</strong>c<strong>in</strong>nati arch.<br />

Units 4, 3, 2, and 1 can be traced over the crest of the C<strong>in</strong>c<strong>in</strong>nati<br />

arch onto the western flank of the arch. Dur<strong>in</strong>g deposition of Unit<br />

4, onlap of the C<strong>in</strong>c<strong>in</strong>nati arch was completed, as Unit 4 was first to<br />

blanket the crest of the arch. Units 3, 2, and 1 were also deposited<br />

over the arch (Provo, 1978; Conant and Swanson, 1961; and L<strong>in</strong>eback,<br />

1970). The C<strong>in</strong>c<strong>in</strong>nati arch was still a positive feature dur<strong>in</strong>g the<br />

deposition of Units 3, 2, and 1 as evidenced by the great th<strong>in</strong>n<strong>in</strong>g of<br />

those units onto the arch (Appendix 1 and Figure 10).<br />

Unnamed Thickened Lobe<br />

The major thicken<strong>in</strong>g trend (Figure 8, no. 47) was noted <strong>in</strong> Green-<br />

up, eastern Lewis, and northern Carter counties. The l<strong>in</strong>ear trend<br />

suggests a thickened lobe which, to my knowledge, has not been named.<br />

The same thickened lobe was also noted by Provo (1977), who suggested<br />

that it might be related to variations <strong>in</strong> sediment supply.<br />

pared-this thickened lobe of sediment to similar lobes described by<br />

Lewis and Schwieter<strong>in</strong>g (1971). Each of their thickened lobes are<br />

separated by th<strong>in</strong>ner areas trend<strong>in</strong>g east-west.<br />

<strong>in</strong> Greenup, Lewis, and Carter counties progressively expanded westward<br />

from the time of deposition of Unit 7 through Unit 2.<br />

zone of th<strong>in</strong>n<strong>in</strong>g, which flanks the thickened lobe to the south, became<br />

more prom<strong>in</strong>ent dur<strong>in</strong>g the deposition of Unit I and restricted the<br />

scope of lobe deposition.<br />

She com-<br />

"he thickened lobe<br />

A higher area,<br />

The southern uplifted area may co<strong>in</strong>cide<br />

with the uplifted northern side of the <strong>Kentucky</strong> River fault zone, as<br />

34


def<strong>in</strong>ed by the<br />

lobe also lies<br />

Mavity monocl<strong>in</strong>e (Figure 8, no. 34). The thickened<br />

above a broad, gentle, gravity high (Ammerman and Kel-<br />

ler, 1979), (Figure 9), and occurred just east of Lower Ordovician<br />

Waverly arch of Woodward (1961) (Figure 11) by the time Unit 7 was<br />

deposited.<br />

cian axis. Woodward (1961) showed that the axis of the Waverly bch<br />

migrated westward through time; Ettensohn (1975, 1977, 1980) showed<br />

a more westward position of the arch dur<strong>in</strong>g the Mississippian which<br />

corroborates this idea.<br />

cian and Mississippian axes of the Waverly arch.<br />

ment of the Waverly arch apparently allowed the thickened lobe to ex-<br />

pand westward beh<strong>in</strong>d it.<br />

Unit 7 and 6 onlap the Waverly arch and cover its Ordovi-<br />

Figure 11 shows the locations of the Ordovi-<br />

The westward move-<br />

The mov<strong>in</strong>g axis might have resulted <strong>in</strong> a<br />

broader, lower arch <strong>in</strong>stead of a higher, stationary one. Such an<br />

arch would have been onlapped and covered more readily, and perhaps<br />

this can account for its lack of expression <strong>in</strong> these rocks. Of<br />

course,another factortaaccountforthelackof expression of the Waverly<br />

arch, may be the scant well coverage <strong>in</strong> the area.<br />

Unnamed Thicken<strong>in</strong>g Trend ,<br />

A thicken<strong>in</strong>g trend is present <strong>in</strong> Knott and southern Floyd counties<br />

(Figure 8, no. 49). This trend co<strong>in</strong>cides with the Floyd County channel<br />

of Ammerman and Keller (1979), (Figure 9). This channel was <strong>in</strong>itially<br />

identified on a Bouguer gravity map by Ammerman and Keller; who sugi<br />

gested that the Floyd County channel might be a narrow arm of the Rome<br />

trough (Figure 9).<br />

graphic extent throughout the deposition of Units 7 through 1.<br />

dence <strong>in</strong> the channel apparently kept up with the rate of deposition<br />

through the Upper Devonian.<br />

The channel seems to be fairly constant <strong>in</strong> geo-<br />

35<br />

Subsi-


Figure 9. Simple bouguer gravity map of eastern <strong>Kentucky</strong><br />

from Ammennan and Keller (1979).<br />

36


\ -It<br />

I<br />

1<br />

Figure 10. Stratigraphic cross section of the Upper Devonian-Lower Mississippian black-<br />

I<br />

eastern <strong>Kentucky</strong>.<br />

-f


Rome Trough<br />

The Rome trough is a major basement structure which was formed<br />

and was most active dur<strong>in</strong>g Middle Cambrian time, as evidenced by great<br />

thicknesses of the Rome Formation <strong>in</strong> the trough (Webb, 1969; Silber-<br />

man, 1972).<br />

The Rome trough is graben-shaped and may represent a<br />

cont<strong>in</strong>ental rift zone formed by extensional tectonics (Ammerman and<br />

Keller, 1979) or it may represent an aulacogen (Rank<strong>in</strong>, 1976).<br />

The northern boundary of the trough (Figure 8, no. 44) corresponds<br />

approximately with the <strong>Kentucky</strong> River Fault zone (Figure 8, nos. 32,<br />

34, 35). Individual structures <strong>in</strong> the fault zone <strong>in</strong>clude the Little<br />

Sandy fault (Figure 8, no. 32), Mavity monocl<strong>in</strong>e (Figure 8, no. 34),<br />

and the Ross Chapel monocl<strong>in</strong>e (Figure 8, no. 35).<br />

ary of the Rome trough (Figure 8, no. 43) is marked by the Warfield<br />

fault (Figure 8, no. 4).<br />

and Pike county gravity highs (Ammerman and Keller, 1979), (Figure 9),<br />

which are best seen <strong>in</strong> the radioactive isoach maps (Appendices 3, 4).<br />

39<br />

The southern bound-<br />

It is also marked on the south by the Perry<br />

Webb (1975) suggested cont<strong>in</strong>ued movement on the Rome trough<br />

boundary-faults through Pennsylvanian time due to tectonism associated<br />

with Appalachian orogenic activity; this suggestion seems to be true,<br />

at least for the Upper Devonian, as <strong>in</strong>dicated by the isopach and<br />

structure-contour maps generated <strong>in</strong> this study. Thicken<strong>in</strong>g was noted<br />

on the'down-dropped sides of all border faults of the Rome trough due<br />

to growth fault<strong>in</strong>g, which was active dur<strong>in</strong>g deposition of all the<br />

black-shale units.<br />

The area of <strong>in</strong>creas<strong>in</strong>g thickness apparently ex-<br />

panded westward as the aerial extent of each successive unit also<br />

expanded westward.<br />

The Rome trough is not a simple graben. The down-dropped central<br />

.


portion is borken by many faults and is actually a series of many<br />

down-dropped blocks. The Pa<strong>in</strong>t Creek fault zone, Johnson Creek fault,<br />

Bla<strong>in</strong>e fault system, and probably the Little Sandy fault (Figure 8,<br />

nos. 28, 29, 36, 32) divide the graben <strong>in</strong>to various blocks. Dur<strong>in</strong>g<br />

Upper Devonian-Lower Mississippian time, the Rome trough exhibited<br />

characteristics of a mature aulacogen as described by Hoffman and<br />

others (1974). Growth fault<strong>in</strong>g has been identified on the Pa<strong>in</strong>t Creek<br />

fault zone, Johnson Creek fault, and the Bla<strong>in</strong>e fault system; activity<br />

on the Little Sandy fault is not as well documented. Thickness varia-<br />

tion associated with the Little Sandy fault dur<strong>in</strong>g the deposition of<br />

Units 6 through 1 exhibit a possible th<strong>in</strong>n<strong>in</strong>g on the down-dropped<br />

south side of the fault which would <strong>in</strong>dicate the fault had reversed<br />

the direction of displacement prior to Upper Devonian-Lower Mississip-<br />

pian black-shale deposition. Silberman (1972) noted possible reversal<br />

of movement along the Little Sandy fault based on work by Avila (per-<br />

sonal communication).<br />

conclusions.<br />

Data control <strong>in</strong> the area precludes any def<strong>in</strong>ite<br />

Rockcastle River Uplift<br />

The Rockcastle River uplift was identified on a structure con-<br />

tour map of Clay County (Theis and others, 1927) and was the subject<br />

of a structure contour map by Jillson and Hudnall (1923). The Rock-<br />

castle River uplift was a positive feature throughout the deposition<br />

of the Upper Devonian-Lower Mississippian black-shale sequence.<br />

6 through 1 th<strong>in</strong> over the crest of the uplift (Appendices 1, 2); Unit<br />

7 was not deposited that far west (Figure 7).<br />

lift<br />

The crest of the up-<br />

prevent sediment from be<strong>in</strong>g deposited on the crest; no onlapp<strong>in</strong>g<br />

40<br />

Units<br />

was not sufficiently high dur<strong>in</strong>g deposition of any one unit to


elationships have been identified.<br />

If the Rockcastle River uplift<br />

had been stationary dur<strong>in</strong>g the time of Upper Devonian-Lower Mississip-<br />

pian deposition, the amount of th<strong>in</strong>n<strong>in</strong>g over the crest would be ex-<br />

pected to decrease as successive units accumulated around the.uplift.<br />

Eventual burial, and no expression <strong>in</strong> younger rock units would be<br />

expected; however, this is not borne out by the maps generated <strong>in</strong> this<br />

study. Structure-contour maps (Appendix 2) reflect syndepositional<br />

or postdepositional activity by the Rockcastle River uplift; some<br />

thickness variation may be accounted for by dropp<strong>in</strong>g and differential<br />

compaction. -<br />

P<strong>in</strong>e Mounta<strong>in</strong> Thrust<br />

Erratic shale thicknesses and poor well control did not allow<br />

isopach contour<strong>in</strong>g on the P<strong>in</strong>e Mounta<strong>in</strong> thrust block. Thrust<strong>in</strong>g<br />

passes through the Upper Devonian-Lower Mississippian black-shale<br />

sequence and causes stack<strong>in</strong>g and repetition of <strong>in</strong>ternal units <strong>in</strong> some<br />

areas and loss of <strong>in</strong>ternal units <strong>in</strong> other areas (Swager, 1978).<br />

Another Unnamed Thicken<strong>in</strong>g Trend<br />

A dist<strong>in</strong>ct thicken<strong>in</strong>g trend is present <strong>in</strong> south-central Pike<br />

County (Figure 8, no. 48). This trend is best developed <strong>in</strong> Units 1,<br />

2, and 3 and is co<strong>in</strong>cident with a Bourguer gravity low south of the<br />

Pike County uplift (Ammerman and Keller, 1979), (Figure 9). The<br />

thicken<strong>in</strong>g trend <strong>in</strong> souther Pike County conta<strong>in</strong>s the greatest thick-<br />

ness of Upper Devonian-Lower Mississippian black shale <strong>in</strong> the eastern<br />

<strong>Kentucky</strong> study area (Appendix 1).<br />

M<strong>in</strong>or Syncl<strong>in</strong>es and Anticl<strong>in</strong>es<br />

A number of smaller syncl<strong>in</strong>es and anticl<strong>in</strong>es are apparent on the<br />

41


maps of the study area. Many of these fall <strong>in</strong> or near theRometrough.<br />

The trough boundaries, shown on the <strong>in</strong>set maps and on Figures 8and 12,<br />

represent the basement boundaries of the trough as shown on the<br />

Bouguer gravity map of eastern <strong>Kentucky</strong> by Ammerman and Keller (1979).<br />

Hoffman and others (1974) suggest that the area affected by subsidence<br />

of the graben may become broader with time.<br />

The broadened area is<br />

downwarped with the ancestral graben area and ultimately also became<br />

broken by faults. An example is the Mavity monocl<strong>in</strong>e (fault) (Figure<br />

8, no. 34). By Late Devonian-Early Mississippian time, the area <strong>in</strong>-<br />

fluenced by the Rome trough subsidence may have been much greater<br />

than the area orig<strong>in</strong>ally affected.<br />

local fault<strong>in</strong>g associated with trough subsidence may be responsible<br />

for the majority of m<strong>in</strong>or structures present.<br />

structures seen on these maps are shown <strong>in</strong> Figure 8.<br />

can be identified by reference to structure maps of the county <strong>in</strong><br />

which they occur (e.g., "Reconnaissance Structural Geology Map of<br />

Clay County", Theis and Iiudnall, 1927). Structures 23, 25, 25, and<br />

27 (Figure 8) may be associated with activity of the Perry County<br />

uplift.<br />

-<br />

Differential pressures and m<strong>in</strong>or<br />

The most important<br />

42<br />

Other structures


STRUCTURAL RELATIONS<br />

Introduction<br />

Structure contour maps were constructed on the base of each of<br />

Provo's (1977) seven units, on the base of the Java Formation and on<br />

the base of the entire Upper Devonian-Lower Mississippian black-shale<br />

sequence. The base of the Java Formation was contoured wherever the<br />

Pipe Creek Member could be identified.<br />

was not present, or too th<strong>in</strong> to be recognized, the base of the<br />

Olentangy Shale was contoured (Appendix 2).<br />

ous horizons contoured <strong>in</strong> this study. The <strong>in</strong>dividual structure con-<br />

tour maps can be found <strong>in</strong> Appendix 2 <strong>in</strong> volume 2.<br />

C<strong>in</strong>c<strong>in</strong>nati Arch<br />

Where the Pipe Creek Shale<br />

Figure 2 shows the vari-<br />

Structure contours on the base of the Upper Devonian black-shale<br />

sequence and on the base of the <strong>in</strong>ternal radioactive units show a<br />

def<strong>in</strong>ite parallelism with the trace of the C<strong>in</strong>c<strong>in</strong>nati arch (Figure<br />

7).<br />

These units generally dip to the southeast at approximately 8.2<br />

m/km (42 ft/mi).<br />

This trend suggests that uplift of the C<strong>in</strong>c<strong>in</strong>nati<br />

arch and/or subsidence of the Appalachian bas<strong>in</strong> were the major<br />

sources of regional structural movement both dur<strong>in</strong>g and after deposi-<br />

tion of the black shale. Structure contours term<strong>in</strong>ate at the zero<br />

isopach l<strong>in</strong>es of the various units [Appendix 2).<br />

The axis of the C<strong>in</strong>c<strong>in</strong>nati arch shown on the maps was taken from<br />

Jillson (1931) who determ<strong>in</strong>ed the trace of the axis from Ordovician<br />

rocks. Structure contour maps generated <strong>in</strong> this study <strong>in</strong>dicate the<br />

axis of the C<strong>in</strong>c<strong>in</strong>nati arch for Devonian age rocks was 10 to 20 km<br />

(6 to 12 mi) east of the "Ordovician axis" <strong>in</strong> L<strong>in</strong>coln, Casey and<br />

43


norther Russell counties (Figure 11).<br />

Rome Trough<br />

Structural activity <strong>in</strong> the Rome trough began <strong>in</strong> Middle Cambrian<br />

time and cont<strong>in</strong>ued through Pennsylvanian time (Webb <strong>in</strong> Ammerman and<br />

Keller, 1979; <strong>Black</strong>, 1970). Faults associated with the Rome trough<br />

exhibit post-Upper Devonian activity (see structure contour maps,<br />

Appendix 2).<br />

Upper Devonian-Lower Mississippian units exhibit dis-<br />

placement below the Mavity monocl<strong>in</strong>e and Ross Chapel monocl<strong>in</strong>e which<br />

<strong>in</strong>dicates they are faults at depth (Appendix 2).<br />

fault, Bla<strong>in</strong>e fault, Pa<strong>in</strong>t Creek fault, Johnson Creek’fault and the<br />

Warfield fault were active dur<strong>in</strong>g and after Upper Devonian black-<br />

shale deposition (Appendixes 1, 2) (Webb <strong>in</strong> Ammerman and Keller,1979).<br />

Activity on the faults is probably attributable to further subsidence<br />

<strong>in</strong> the Rome trough (Webb <strong>in</strong> Ammerman and Keller, 1979).<br />

Rockcastle River Uplift<br />

The Little Sandy<br />

The Rockcastle River uplift is a prom<strong>in</strong>ent feature on the struc-<br />

ture contour maps on the bases of Units 6 through 1 (Figure 12, no.<br />

15).<br />

Unit 7 and the Pipe Creek Shale Member of the Java Formation<br />

were not deposited that far west.<br />

44<br />

The Rockcastle River uplift appears<br />

to be a doubly plung<strong>in</strong>g anticl<strong>in</strong>e whose long axis trends northeast-<br />

southwest.<br />

A Bouguer gravity high co<strong>in</strong>cides with parts of the uplift<br />

<strong>in</strong> Breathitt and Owsley Eounties (Figures 9, 12). The Owsley County<br />

uplift (Ammerman and Keller, 1979) seems to be the same structure<br />

which I call the Rockcastle River uplift <strong>in</strong> this study. The uplift<br />

is centered over north-western Casey County and extends <strong>in</strong>to south-<br />

eastern Laurel and central Owsley counties (Figures 9, 12), where it


I UWNNATl ARCH I? ST' FORK ANTlCUNE<br />

2 8OOsE CKEK eRA8eW AH0 I8 WEST Ll8ERTY DOME<br />

FAULTS I9 JOHNSON CREEK FAULT<br />

3 TRACE FORK PAUU 20 TAUtBltESYNCfJNE<br />

4 MINt0NVlLl.E DOME 21 OWWS BRANCH DOME<br />

5 SUNIWBROOK ANTICLINE 22 LITTLE SANOY FAULT<br />

6 SWPVlLLE MONOCUNE<br />

7 WY SULFUR FAULT<br />

b Mt. VERWN FAULT<br />

s r r n r v o mcwe<br />

10 PLAT Uo< ANTICUNE<br />

I I WHITE MTN. AND DORTON BRANCH<br />

PUILT ZONES<br />

I2 pmf YOUNTAW THRUST FAULT<br />

13 ROCKY PAcf FAULT<br />

I+ FdOR YlLf DOME<br />

13 ROClCASTLE RIVER UPLIFT0<br />

I6 PAINT CREW FAULT ZONE<br />

P ROCK SPRlNQS ANTICUNL<br />

24 M " Y MONOCLINE<br />

23 ROSS CHAPEL MONOCUNE<br />

ZU BLAINE FAULT SYSTEM<br />

27 LAURELCREEK DOME<br />

a PAW' C m UPLIFTf;><br />

WARFIELD FAULT<br />

30 TURKEY CREEK BASIN<br />

31 APPffoXIMATE NORTHERN<br />

B6uAc)IvIToFR6MEn#x16H-<br />

32 APPROXIMATE SOUTHERN<br />

BOUWOISRT Of ROME muoH ---<br />

Figure 12. Structures trends referred from the eight structure<br />

contour maps (Appendix 2).<br />

45


forms a pronounced high extend<strong>in</strong>g a short distance <strong>in</strong>to the Rome<br />

trough near its southwestern boundary. The Rockcastle River uplift<br />

also occurs just west of the h<strong>in</strong>ge l<strong>in</strong>e determ<strong>in</strong>ed from the isopach<br />

maps <strong>in</strong> this study and may be part of that broad h<strong>in</strong>ge l<strong>in</strong>e.<br />

uplift was active prior to and dur<strong>in</strong>g Upper Devonian deposition as<br />

discussed <strong>in</strong> the section on isopach maps.<br />

cont<strong>in</strong>ued after Upper Devonian-Lower Mississippian deposition as<br />

<strong>in</strong>dicated on the structure contour maps (Appendix 2) made dur<strong>in</strong>g this<br />

study and on the structure contour maps of younger units (e.g., - "Map<br />

of the Rockcastle River uplift <strong>in</strong> Laurel and Clay counties, <strong>Kentucky</strong>,<br />

Jillson and Hudnall, 1923).<br />

Pa<strong>in</strong>t Creek Uplift<br />

The<br />

Activity on the structure<br />

The Pa<strong>in</strong>t Creek uplift is a broad area of uplift which appears<br />

as a doubly plung<strong>in</strong>g anticl<strong>in</strong>e.<br />

The long axis of the uplift trends<br />

northwest-southeast (Figure 12, no. 28). This structure covers most<br />

of Johnson, Magoff<strong>in</strong>, and Floyd counties (Appehdix 2) and is present<br />

<strong>in</strong> parts of southeastern Elliott, southwestern Lawrence, eastern<br />

Morgan, eastern Breathitt, and northern Knott counties, but does not<br />

co<strong>in</strong>cide with any Bouguer gravity highs (Figure 9). The Pa<strong>in</strong>t Creek<br />

uplift had no apparent effect on Upper Devonian-Lower Mississippian<br />

black-shale thicknesses as evidenced on the isopach maps (Appendix 1)<br />

<strong>in</strong>dicat<strong>in</strong>g that the Pa<strong>in</strong>t Creek uplift was a post Devonian structure.<br />

EarlierupI'ifG, if any, was erased by pre-Late Devonian erosion. The<br />

uplift was quiescent dur<strong>in</strong>g Late Devonian-Early Mississippian black-<br />

shale deposition and because it has no basement expression, some<br />

other mechanism must account for the uplift.<br />

For example, the area<br />

may have become more resistant to subsidence or th<strong>in</strong>-sk<strong>in</strong>ned tectonic<br />

46


activity associated with presures from late activity by the Acadian<br />

orogeny or the later Appalachian orogeny might have caused the Pa<strong>in</strong>t<br />

Creek uplift.<br />

Middlesboro Syncl<strong>in</strong>e - P<strong>in</strong>e Mounta<strong>in</strong> Thrust<br />

The Middlesboro syncl<strong>in</strong>e lies on the P<strong>in</strong>e Mounta<strong>in</strong> thrust sheet.<br />

Unfortunately subsurface data on the thrust sheet areverylimited.<br />

Due to those limitations only form-l<strong>in</strong>es were drawn with a contour<br />

<strong>in</strong>terval of 152.4 m (500 ft). The Middlesboro syncl<strong>in</strong>e appears to<br />

be a direct result of thrust<strong>in</strong>g on the P<strong>in</strong>e Mounta<strong>in</strong> fault (Weaver<br />

and others, 1978) (Figure 4). Most of the thrust<strong>in</strong>g appears to have<br />

occurred <strong>in</strong> the lower Huron member as evidenced by repetition of<br />

portions of that member.<br />

Swager (1978) noted fault gauge and miss-<br />

<strong>in</strong>g units <strong>in</strong> outcrops along the P<strong>in</strong>e. Mounta<strong>in</strong> thrust fault.<br />

major activity on the P<strong>in</strong>e Mounta<strong>in</strong> thrust fault is dated as late<br />

Paleozoic (Shumaker; 1976). Unit 6 through 1 have been identified<br />

on gamma-ray logs <strong>in</strong> the Middlesboro syncl<strong>in</strong>e; Unit 7 has not been<br />

identified <strong>in</strong> that area.<br />

M<strong>in</strong>or Structures<br />

Many smaller structures are present <strong>in</strong> the study area. Some of<br />

the structures are pre- or Late Devonian <strong>in</strong> age whereas others are<br />

def<strong>in</strong>itely Late Devonian <strong>in</strong> age. Some structures were present and<br />

active dur<strong>in</strong>g and after Upper Devonian-Lower Mississippian black-<br />

shale deposition.<br />

The<br />

A comparison of these structures on Figures 8 and<br />

12 will show which structures are pre-, syn-, and post-Upper Devonian.<br />

The Sunnybrook anticl<strong>in</strong>e and the Flat Lick anticl<strong>in</strong>e, (Figure 12, nos.<br />

5 and 10) for example, are post-Late Devonian; they show no <strong>in</strong>fluence<br />

47


on the isopach maps, (Appendix 1, <strong>in</strong> volume 2). On the other had,<br />

the Turkey Creek bas<strong>in</strong> (Figure 12, no. 30) was active dur<strong>in</strong>g Late<br />

Devonian-Early Mississippian deposition as evidenced by thicken<strong>in</strong>g<br />

<strong>in</strong> the bas<strong>in</strong> and deflection of structure contours.<br />

The orig<strong>in</strong> of structures may vary with their age. Late Devoni-<br />

an-Early Mississippian and earlier structureswereprobably associated<br />

with forces generated by readjustment of the Rome trough.<br />

Devonian-Early Mississippian structures might also be caused by re-<br />

adjustment <strong>in</strong> the Rome trough.<br />

to Paleozoic orogenic activity to the east.<br />

Post-Late<br />

All of these adjustments are related<br />

48


RADIOACTIVE ISOPACH MAPS<br />

Introduction<br />

The Upper Devonian-Lower Mississippian black-shale sequence has<br />

a much higher concentrationofuranium and thorium than other mar<strong>in</strong>e<br />

shales (Swanson, 1960a, b; Provo, 1977). Radioactivity varies be-<br />

tween the <strong>in</strong>ternal units and geographically (Conant and Swanson,<br />

1961; Provo, 1977). This variation probably reflects the amount of<br />

organic material with which the radioactive material is closely associ-<br />

ated (Swanson, 1960b). Radioactive concentration is fairly consis-<br />

tent <strong>in</strong> areas where the thickness of the shale unit be<strong>in</strong>g considered<br />

rema<strong>in</strong>s constant.<br />

Shale <strong>in</strong> Tennessee and decreases northward <strong>in</strong>to <strong>Kentucky</strong> due to dilu-<br />

tion of organic matter by clastic material (Conant and Swanson, 1961;<br />

Provo, 1977). Nonetheless, the Upper Devonian-Lower Mississippian<br />

black shale <strong>in</strong> northern <strong>Kentucky</strong> is still high <strong>in</strong> radioactivity com-<br />

pared to other shales. Radioactivity also decreases eastward as the<br />

clastic content <strong>in</strong>creases and dilutes the amount of organic matter<br />

and its associated radioactivity.<br />

material is diluted so much that it is no higher <strong>in</strong> radioactivity<br />

than other normal mar<strong>in</strong>e shales.<br />

The radioactivity is highest <strong>in</strong> the Chattanooga<br />

In West Virg<strong>in</strong>ia the radioactive<br />

Because the gamma-ray log is a measure of the natural radio-<br />

activity of the formations, and the radioactivity <strong>in</strong> turn is an<br />

approximate measure of the amount of organic matter <strong>in</strong> a shale,<br />

the gamma-ray logs give some measure of the amount of organic matter<br />

<strong>in</strong> the shales.<br />

The amount of organic matter is important because<br />

this can <strong>in</strong>dicate potential sources of gas and oil.<br />

Inorderto<br />

determ<strong>in</strong>e concentrations of organic matter and possible sources for<br />

49


oil and gas, two series of isopach maps of highly radioactive shale<br />

were generated based on Provo's seven stratigraphic units and radia-<br />

tion <strong>in</strong>tensities recorded from gamma-ray logs, us<strong>in</strong>g one API base<br />

l<strong>in</strong>e for four maps (Appendix 3) and another for five maps (Appendix<br />

4) f<br />

In the subsurface, high radioactive anomalies may <strong>in</strong>dicate an<br />

area of higher organic content <strong>in</strong> the shale.<br />

reservior conditions, and that the organic matter has adequate ther-<br />

mal maturity, the area would be expected to yield a larger volume<br />

of hydrocarbons than an area with lower radioactivity.<br />

Procedure<br />

Assum<strong>in</strong>g adequate<br />

The procedure used <strong>in</strong> construct<strong>in</strong>g the radioactive isopach maps<br />

(Appendices 3, <strong>in</strong> volume 2) is presented <strong>in</strong> a step-by-step list be-<br />

low. Figure 13 shows a worked example.<br />

1.<br />

2.<br />

3.<br />

4.<br />

Radioactive stratigraphic units of Provo (1977) were used<br />

to divide the Upper Deeonian-Lower Mississippian black-shale<br />

sequence vertically.<br />

A basel<strong>in</strong>e was drawn down the length of the black-shale<br />

sequence parallel to the API scale on gamma-ray logs.<br />

This l<strong>in</strong>e can be located as high or low on the M I scale<br />

as desired depend<strong>in</strong>g on the <strong>in</strong>tensity of radiation be<strong>in</strong>g<br />

measured.<br />

The basel<strong>in</strong>e was then shifted 20 API units higher so that<br />

only the most highly radioactive parts of the seven units<br />

rema<strong>in</strong>ed above the basel<strong>in</strong>e.<br />

Count the number of feet of shale which lie above the base-<br />

l<strong>in</strong>e.<br />

50


m<br />

Figure 13. Examples of two radioactive-shale basel<strong>in</strong>es; Borden Shale<br />

basel<strong>in</strong>eonleft, ThreeLick Bed basel<strong>in</strong>e on right.<br />

51


5. Plot the thickness total at the location of the well on a<br />

=P -<br />

6.<br />

Repeat steps 1 through 5 until all wells <strong>in</strong> the study area<br />

have been evaluated and plotted or until adequate control<br />

has been obta<strong>in</strong>ed, whichever comes first.<br />

7. Contour data po<strong>in</strong>ts to make a map show<strong>in</strong>g the thickness<br />

variation of the radioactively <strong>in</strong>tense shale.<br />

Three Lick Bed Basel<strong>in</strong>e Versus Borden Shale Basel<strong>in</strong>e<br />

The radioactive isopach maps described <strong>in</strong> this section were<br />

generated as partial fulfillment of contractual requirements of the<br />

U.S. Department of <strong>Energy</strong>. The first series of maps presented here<br />

were constructed on a basel<strong>in</strong>e different than that required by the<br />

D.O.E..<br />

The basel<strong>in</strong>e-used was 20 API units above a gray-green Borden<br />

Shale which is stratigraphically above the Upper Devonian-Lower Mis-<br />

sissippian black-shale sequence.<br />

The second series of maps were con-<br />

structed us<strong>in</strong>g a specified basel<strong>in</strong>e 20 API units higher than the<br />

Three Lick Bed.<br />

The first series of maps is <strong>in</strong>cluded because they were developed<br />

based on what appears to be a m re reliable basel<strong>in</strong>e.<br />

The Three Lick<br />

Bed was an unfortunate choice for the shale basel<strong>in</strong>e because it is<br />

with<strong>in</strong> the sequence be<strong>in</strong>g studied and is <strong>in</strong>fluenced by changes with<strong>in</strong><br />

the sequence.<br />

less prone to error.<br />

A datum outside the studied sequence would have been<br />

of shale conta<strong>in</strong><strong>in</strong>g the most radioactivity.<br />

The maps were <strong>in</strong>tended to measure the thickness<br />

and Provo (1977) have shown that the black-shales <strong>in</strong> the central<br />

<strong>Kentucky</strong> outcrop belt are the most highly radioactive <strong>in</strong> the study<br />

area, yet due to fluctuations <strong>in</strong> radioactivity Unit 2 is almost as<br />

52<br />

Conant and Swanson (1961)


highly radioactive as the other units <strong>in</strong> the sequence <strong>in</strong> that area.<br />

When the basel<strong>in</strong>e was drawn 20 API units above Unit 2, little Thick-<br />

ness of shale was left above the basel<strong>in</strong>e <strong>in</strong> the area where the most<br />

highly radioactive shale is present accord<strong>in</strong>g to Conant and Swanson<br />

(1961) and Provo (1977). The Borden Shale basel<strong>in</strong>e would not have<br />

been affected by fluctuations <strong>in</strong> radioactivity, as Unit 2 was, so<br />

would have been a better choice.<br />

The Borden Shale basel<strong>in</strong>e represents a lower radioactivity<br />

level on the API scale than the Unit 2 basel<strong>in</strong>e. An alternative to<br />

us<strong>in</strong>g the higher radioactive basel<strong>in</strong>e of Unit 2, would have been<br />

to shift the Borden Shale basel<strong>in</strong>e 40 or 60 API units upward, <strong>in</strong>stead<br />

of 20 APT units.<br />

shale zones to be <strong>in</strong>cluded on the isopach maps of highly radioactive<br />

shale as did the Unit 2 basel<strong>in</strong>e and there would have been no bias<br />

caused by variations <strong>in</strong> radioactivity with<strong>in</strong> Unit 2. Another alter-<br />

native would be to designate some absolute datum, perhaps the 200 ~<br />

API l<strong>in</strong>e or the 300 API l<strong>in</strong>e. This would elim<strong>in</strong>ate all <strong>in</strong>terpreta-<br />

tional variation and error due to fluctuations <strong>in</strong> the radioactivity<br />

<strong>in</strong> the datum unit.<br />

This would allow only the most highly radioactive<br />

53


RADIOACTIVE ISOPACH ANOMALIES<br />

COMPARED TO REGULAR ISOPACH MAPS AND STRUCTURE CONTOUR MAPS<br />

Introduction<br />

Radioactive isopach maps based on the Borden Shale basel<strong>in</strong>e were<br />

contoured us<strong>in</strong>g the follow<strong>in</strong>g <strong>in</strong>tervals; Unit 1, Unit 2 through5<strong>in</strong>-<br />

clusive, Unit 5, and Unit 7. Units 3 through 5 were comb<strong>in</strong>ed because<br />

they represent the <strong>in</strong>ternal radioactive units of the Huron Shale Mem-<br />

ber of the Ohio Shale.<br />

the Huron Shale and the relative th<strong>in</strong>ness of Unit 2, it was <strong>in</strong>cluded<br />

with the Huron Shale radioactive units.<br />

based on the Three Lick Bed basel<strong>in</strong>e were contoured us<strong>in</strong>g the follow-<br />

<strong>in</strong>g <strong>in</strong>tervals:<br />

tion and West Falls Formation.<br />

Due to the close relationship of Unit 2 with<br />

Radioactive isopach maps<br />

Unit 1, Unit 2 thorugh Unit 5 <strong>in</strong>clusive, Java Forma-<br />

Direct comparisons can be made between the two maps of highly<br />

radioactive shale for Unit 1 and the two maps of highly radioactive<br />

shale for Unit 2 through Unit 5. Though the isopach maps of highly<br />

radioactive shale for Unit 6, Unit 7, the Java Formation and the<br />

West Falls Formation can not be directly compared s<strong>in</strong>ce different<br />

<strong>in</strong>tervals were contoured (Figure 2), some comments and comparisons<br />

of trends and relationships may be made.<br />

West Falls Formation - Rh<strong>in</strong>estreet Shale Member<br />

The West Falls Formation was contoured us<strong>in</strong>g the Three Lick Bed<br />

radioactivity <strong>in</strong>tensity basel<strong>in</strong>e and the Rh<strong>in</strong>estreet Shale Member of<br />

the West Falls Formation was contoured us<strong>in</strong>g the Borden Shale base-<br />

l<strong>in</strong>e (Appendix 4 and Fiugre 13).<br />

The West Falls Formation is a<br />

thicker <strong>in</strong>terval than the Rh<strong>in</strong>estreet Shale Member but was contoured<br />

54


us<strong>in</strong>g the higher Three Lick Bed basel<strong>in</strong>e. The isopach map of highly<br />

radioactive shale <strong>in</strong> the West Falls Formation showed a greater thick-<br />

ness of highly radioactive shale even with the higher basel<strong>in</strong>e. Due<br />

to limited data, the two maps are very general. The thicken<strong>in</strong>g trend<br />

<strong>in</strong> southernmost Pike County is the most prom<strong>in</strong>ent feature on these<br />

maps.<br />

Prom<strong>in</strong>ent thicken<strong>in</strong>g is also present on the down-dropped side<br />

of the Ross Chapel monocl<strong>in</strong>e (fault).<br />

Java Formation - Olentangy Shale<br />

The isopach map of highly radioactive shale for the Olentangy<br />

Shale was based on the Borden Shale basel<strong>in</strong>e. The highly radioactive<br />

shale <strong>in</strong> this unit thickens <strong>in</strong>to the Rome trough, the Floyd County<br />

channel, the unnamed thickened lobe <strong>in</strong> Greenup and eastern Lewis<br />

counties, and the unnamed syncl<strong>in</strong>e <strong>in</strong> southernmost Pike County. The<br />

Borden Shale basel<strong>in</strong>e was not very sensitive <strong>in</strong> separat<strong>in</strong>g moderately<br />

radioactive shale from highly radioactive shale so was probably not<br />

as good a choice as the Three Lick Bed basel<strong>in</strong>e for this set of maps.<br />

The radioactive isopach trends are generally similar to the regular<br />

isopach trends except <strong>in</strong> central Lawrence County where there is a<br />

decrease <strong>in</strong> this thickness of highly radioactive shale.<br />

This de-<br />

crease may be associated with a clastic <strong>in</strong>flux, or a decrease <strong>in</strong><br />

organic matter with which the radioactive material is associated.<br />

The isopach map of highly radioactive shale of the Java Forma-<br />

tion shows the Java Formation has very little highly radioactive<br />

shale <strong>in</strong> it.<br />

eastern Lawrence and Mart<strong>in</strong> counties, <strong>in</strong> eastern <strong>Kentucky</strong>, associated<br />

with the Rome trough and another area <strong>in</strong> southernmost Pike County <strong>in</strong><br />

southeastern <strong>Kentucky</strong>.<br />

There is a small area of highly radioactive shale <strong>in</strong><br />

No highly radioactive shale occurs <strong>in</strong> this<br />

55


unit with<strong>in</strong> the syncl<strong>in</strong>e <strong>in</strong> Greenup and eastern Lewis counties <strong>in</strong><br />

northern <strong>Kentucky</strong>. There is no anomaly associated with the Floyd<br />

County channel.<br />

The differences associated with the Java Formation and the<br />

Olentangy Shale isopach maps of highly radioactive black shale can be<br />

expla<strong>in</strong>ed by the differences <strong>in</strong> basel<strong>in</strong>es and differences <strong>in</strong> the<br />

<strong>in</strong>tervals contoured.<br />

Unit 2, Unit 3, Unit 4, & Unit 5<br />

The isopach map of highly radioactive black shale based on the<br />

Three Lick Bed basel<strong>in</strong>e (Appendix 3) is markedly different than the<br />

isopach map of highly radioactive black shale based on the Borden<br />

Shale basel<strong>in</strong>e (Appendix 4).<br />

l<strong>in</strong>e did not differ <strong>in</strong> trend from the regular isopach maps (Appendix<br />

1). The Borden Shale basel<strong>in</strong>e did not fall high enough on the API<br />

scale to discrim<strong>in</strong>ate the highly radioactive shale from the moder-<br />

ately radioactive shale, so consequently, both were <strong>in</strong>cluded on the<br />

map.<br />

was able to separate the highly radioactive shale from the modcirate<br />

and low radioactive shale.<br />

The map based on the Borden Shale base-<br />

The Three Lick Bed basel<strong>in</strong>e was higher on the API scale and<br />

Thicken<strong>in</strong>g trends on the isopach map of highly radioactive black<br />

shale for units 2 through 5 <strong>in</strong>clusive, us<strong>in</strong>g the Three Lick Bed base-<br />

l<strong>in</strong>e, con-esponded closely with the thicken<strong>in</strong>g trends noted for the<br />

isopach maps of highly black shale for Unit 1.<br />

In Units 2 through 5<br />

<strong>in</strong>clusive, the shale thickened <strong>in</strong>to the Rome trough, the Floyd County<br />

channel, the unnamed thickened lobe <strong>in</strong> Greenup and eastern Lewis<br />

counties, and the unnamed syncl<strong>in</strong>e <strong>in</strong> southernmost Pike County; The<br />

thickest section of highly radioactive shale is <strong>in</strong> Lawrence County.<br />

56


The thick area is associated with the Rome trough and extends west-<br />

ward <strong>in</strong>to West Virg<strong>in</strong>ia. The thickness of highly radioactive black<br />

shale does not decrease as rapidly eastward, <strong>in</strong> the <strong>in</strong>terval <strong>in</strong>clud-<br />

<strong>in</strong>g Units 2 through 5 <strong>in</strong>clusive as it does <strong>in</strong> Unit 1. This <strong>in</strong>dicates<br />

there was less dilution due to clastic <strong>in</strong>flux. The eastern source<br />

area (Conant and Swanson, 1961; Harris and others, 1978) was not<br />

supply<strong>in</strong>g as much sediment, or the source was farther away, dur<strong>in</strong>g<br />

deposition of Units 2 through 5 <strong>in</strong>clusive.<br />

Unit 1<br />

As mentioned previously, the radioactive isopach map based on<br />

the Borden Shale basel<strong>in</strong>e <strong>in</strong>cludes greater thicknesses of shale than<br />

the radioactive isopach maps based on the Three Lick Bed basel<strong>in</strong>e<br />

(Appendix 3).<br />

Both maps show similar thicken<strong>in</strong>g and th<strong>in</strong>n<strong>in</strong>g trends. .<br />

The major trend readily apparent on both isopach maps of highly<br />

radioactive shale is the thicken<strong>in</strong>g of Unit 1 <strong>in</strong>to the Rome trough<br />

and the Floyd County channel (Appendices 3, 4).<br />

Three Lick Bed basel<strong>in</strong>e shows that the greatest thickness <strong>in</strong>tensity<br />

contours are centered over the northern half of Floyd County, Johnson<br />

County, and the northern half of Mart<strong>in</strong> County. Thickness <strong>in</strong>tensity<br />

contours decrease eastward <strong>in</strong>to West Virg<strong>in</strong>ia which <strong>in</strong>dicates that<br />

eastern <strong>Kentucky</strong> conta<strong>in</strong>s the greatest thickness of radioactively<br />

<strong>in</strong>tense black shale. The thick trend cont<strong>in</strong>ues <strong>in</strong>to West Virg<strong>in</strong>ia<br />

on the maps us<strong>in</strong>g the Borden Shale basel<strong>in</strong>e.<br />

of thicken<strong>in</strong>g is present <strong>in</strong> south-central Pike County. It is separ-<br />

ated from the Floyd County channel anomaly by the southern extension<br />

of the Pike County uplift (Figure 9).<br />

57<br />

The map based on the<br />

Another small area<br />

This same area showed a syn-<br />

cl<strong>in</strong>al trend on the regular isopach maps and irregularities on the


structure contour maps.<br />

The shale thickens eastward <strong>in</strong>to West Vir-<br />

g<strong>in</strong>ia on the regular isopach map, yet the highly. radioactive black<br />

shale rapidly th<strong>in</strong>s eastward. This may be accounted for by dilution<br />

of organic matter by clastic material com<strong>in</strong>g from an eastern deltic<br />

source (Conant and Swanson, 1961; Harris and others, 1978). The<br />

thicken<strong>in</strong>g trend noted <strong>in</strong> the section on the regular isopach maps<br />

<strong>in</strong> Greenup and Lewis counties and the th<strong>in</strong>n<strong>in</strong>g trend <strong>in</strong> Carter, Rowan,<br />

and Elliott counties are also prom<strong>in</strong>ent on both of the isopach maps<br />

of highly radioactive shale of Unit 1 (Appendices 3, 4).<br />

ness<br />

<strong>in</strong> a<br />

box and eastern Whitley counties have a slightly greater thick-<br />

of radioactive black shale than surround<strong>in</strong>g areas. The area is<br />

low between the East Cont<strong>in</strong>ent gravity high on the west (Ammer-<br />

man and Keller, 1979), the Rockcastle River uplift to the north<br />

(Jillson and Hudnall, 1923), and the Peny County high on the east<br />

(Ammerman and Keller, 1979).<br />

58


HYDROCARBON POTENTIAL AND PRODUCTION FROM THE<br />

UPPER DEVONIAN-LOWER MISSISSIPPIAN BLACK-SHALE SEQUENCE<br />

Introduction<br />

Much has been written about the economic aspects of the Upper<br />

Devonian-Lower Mississippian black-shale sequence (Examples <strong>in</strong>clude:<br />

Hunter and Munyan, 1932; Hunter and others, 1937; Hunter and Young,<br />

1953; Hunter 1935, 1955, 1964; Walker 1955, 1956; 1957; Thomas, 1951;<br />

and Patchen, 1977). The most important factors which <strong>in</strong>fluence the<br />

presence and extractability of gas from the Upper Devonian-Lower Mis-<br />

sissippian black shale ape the thermal maturity, thickness of shale,<br />

and presence of fracture systems for gas transport (Claypool and<br />

others, 1978; Harris and others, 1978; Hunter and Young, 1953;<br />

Patchen, 1977; Wilson and Zaffar, 1977; Zafar and Wilson, 1978).<br />

Patchen (1977) described three phases of shale-gas production:<br />

an <strong>in</strong>itial high yield of free gas with<strong>in</strong> fractures, followed by gas<br />

adsorbed on fracture surfaces, and f<strong>in</strong>ally gas adsorbed with<strong>in</strong> the<br />

shale matrix. Production quickly drops from <strong>in</strong>itial open flows of<br />

100-300 Mcfpd to appmximatley 50 Mcfpd.<br />

sistent producers and may produce near the 50 Mcfpd rate for up to<br />

twenty-five years and more.<br />

The wells are very per-<br />

The majority of wells have very low<br />

<strong>in</strong>itial open flows but up to 90 percent of the wells can be<br />

stimulated <strong>in</strong>to economic producers us<strong>in</strong>g fractur<strong>in</strong>g tech<strong>in</strong>ques.<br />

Shale composition is also an important factor <strong>in</strong> the pmducibility<br />

of gas from the Upper Devona<strong>in</strong>-Lower Mississippian black shales.<br />

The black-shale sequence grades eastward <strong>in</strong>to deltaic clastics sedi-<br />

ments (Conant and Swanson, 1961; Provo, 1977). In the transition<br />

zones, dispersed clastic gra<strong>in</strong>s and th<strong>in</strong> layers of clastic material<br />

59


may provide avenues for migration of gas from the shale to the frac-<br />

ture systems and eventually to the well-bore hole. Secondary poros-<br />

ity and permeability may be formed by pyrite growth on planes<br />

throughout the shale.<br />

Big Sandy Gas Field<br />

The most important gas production from the Upper Devonian-Lower<br />

Mississippian black-shale sequence comes from eastemmost <strong>Kentucky</strong>.<br />

The best known and most important gas produc<strong>in</strong>g area <strong>in</strong> eastern<br />

<strong>Kentucky</strong> is the Big Sandy gas field which covers most of Mart<strong>in</strong>,<br />

Pike, Floyd, Perry, and Knott counties and part of Johson and Letcher<br />

counties (Figure 14, no. 18) and also extends <strong>in</strong>to southwestern West<br />

Virg<strong>in</strong>ia (Patchen, 1977). Factors which <strong>in</strong>fluence gas production<br />

<strong>in</strong> the Big Sandy gas field <strong>in</strong>clude the great thickness of black shale,<br />

its proximity to the West Virg<strong>in</strong>ia clastic source, and structural<br />

activity <strong>in</strong> the Rome trough, Floyd County channel, and on the Pike<br />

and-Perry county uplifts. Weaver and others (1978) report that the<br />

Devonian shale is the primary produc<strong>in</strong>g horizon <strong>in</strong> the two-trillion<br />

cubic foot Big Sandy field.<br />

Ashland-Boyd County Gas Field<br />

A thicken<strong>in</strong>g trend with<strong>in</strong> the Upper Devonian-Lower Mississippian<br />

black-shale sequence is also present <strong>in</strong> the Ashland-Boyd County gas<br />

field which covers the northeastern fifth of Boyd County, a small<br />

part of eastern Greenup County and adjacent parts of southern Ohio<br />

and western West Virg<strong>in</strong>ia (Figure 13, no. 1). Post-depositional<br />

subsidence <strong>in</strong> the bas<strong>in</strong> area and movement along faults associated<br />

with the Rome trough may have <strong>in</strong>creased production potential <strong>in</strong> this<br />

60


1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

0.<br />

9.<br />

ASHLAHD-BOYD COUNTY GAS POOL<br />

HITc8ENs GAS POOL<br />

MhQITx GAS POOL<br />

BEETLE SOtrra GAS POOL<br />

FAtLsBURG CAS WOL<br />

cBlo00 SCBOOL AND CORDELL GAS<br />

GRASSY CREEX GAS POOL<br />

INDEX CAS POOL<br />

REDBUSH GAS POOL<br />

POOLS<br />

10. SALYERsPruE GAS POOL<br />

11. BlLRNETTs CREEK Gas OOOL<br />

12. SWAblp BzzlwCH GAS POOL<br />

13. BURNING SPRINGS GAS POOL<br />

14. AVAWAM GAS POOL<br />

15. WPY EOLLOW GAS POOL<br />

16. LITTLE GOOSE GAS POOL<br />

17. STONEY FORK GAS POOL<br />

10. BIG SANDY GAS FIELD<br />

19. CANADA mUNTAIN GAS POOL<br />

Figure 14. Gas pools and fields which produce from the Upper<br />

Denronian-Lower Mississippian black-shale sequence<br />

(from Wilson and Sutton, 1976).<br />

61


area by form<strong>in</strong>g a well developed fracture system.<br />

Over 90 percent<br />

of the gas production <strong>in</strong> the Ashland-Boyd County gas field has come<br />

from the Devonian black-shale sequence, unfortunately over 90 percent<br />

of the extractible gas reserves w,ere exploited by 1955 (Hunter, 1955).<br />

Gas Fields Associated With Faults<br />

A number of gas fields with production from the Upper Devonian-<br />

Lower Mississippian black-shale sequence are located <strong>in</strong> areas of<br />

greater shale thicknesses along the down-dropped sides of faults<br />

associated with the Rome trough.<br />

and proximity to active faults <strong>in</strong>creases the likelihood of signifi-<br />

cant gas production.'<br />

"he greater black-shale thicknesses<br />

Some of the gas fields which fit <strong>in</strong> this cate-<br />

gory are the Barnetts Creek gas field <strong>in</strong> Johnson County, the Beetle<br />

South gas field <strong>in</strong> Carter County, the Cando School gas field, the<br />

Crodell gas field, and the Fallsburg gas field <strong>in</strong> Lawrence Counby,<br />

Mavity gas field <strong>in</strong> Boyd County, the<br />

Johnson County, and the Salyersville<br />

(Figure 14, nos. 11, 4, 6, 6, 3, 12,<br />

Swamp Branch gas field <strong>in</strong><br />

gas field <strong>in</strong> Magoff<strong>in</strong> County<br />

10). Fault<strong>in</strong>g and fractur<strong>in</strong>g<br />

at depth on the Mavity monocl<strong>in</strong>e (fault) are probably responsible<br />

for gas production from the Hitch<strong>in</strong>s gas field <strong>in</strong> Carter County<br />

(Figure 14, no. 2).<br />

Gas fields on the Flanks of Uplifts<br />

?he other important sett<strong>in</strong>g for gas fields is on the flanks of<br />

uplifted, and anticl<strong>in</strong>al? areas. The majority of uplift <strong>in</strong> these<br />

areas must be post Late Devonian <strong>in</strong> age t o allow adequate thicknesses<br />

of black shale to accumulate and tomaxmizefracture porosity and<br />

permeability formation with<strong>in</strong> the black-shale section. Gas fields on<br />

62


’<br />

the flanks of uplifts and anticl<strong>in</strong>es <strong>in</strong>clude the Avawam gas field on<br />

the Perry County gravity high <strong>in</strong> Perry and Leslie counties, the Burn-<br />

<strong>in</strong>g Spr<strong>in</strong>gs gas field on the north nose of the plung<strong>in</strong>g Rockcastle<br />

River uplift <strong>in</strong> Clay County, the Little Goose gas field on the<br />

flank of the Rockcastle River uplift <strong>in</strong> Clay County, the Happy Hol-<br />

low gas field on the south nose of the Rockcastle River uplift <strong>in</strong><br />

Laurel County, the Index gas field on the flank of the West Liberty<br />

dome <strong>in</strong> Morgan County, the Redbush gas field on the Laurel Creek<br />

dome and Pa<strong>in</strong>t Creek uplift <strong>in</strong> Johnson and Lawrence counties, and<br />

the Grassy Creek gas field on the Stacy Fork anticl<strong>in</strong>e <strong>in</strong> Morgan<br />

County (Figure 13, nos. 14, 13, 16, 15, 8, 9, 7).<br />

Devonian Shale Gas <strong>in</strong> the P<strong>in</strong>e Mounta<strong>in</strong> Thrust<br />

Weaver and others (1978) reported widespread Devonian shale gas<br />

production <strong>in</strong> the Canada Mounta<strong>in</strong> gas field (Figure 12, no. 19) associ-<br />

ated with repetition of black shales due to faults which splay off<br />

the P<strong>in</strong>e Mounta<strong>in</strong> sole fault. Adequate thicknesses of a potential<br />

gas source, the Upper Devonian-Lower Mississippian black shale, and<br />

the <strong>in</strong>tensive fractur<strong>in</strong>g caused by thrust fault<strong>in</strong>g make this area an<br />

<strong>in</strong>terest<strong>in</strong>g prospect for the future. Other anticl<strong>in</strong>al structures<br />

formed by stack<strong>in</strong>g of the Upper Devonian-Lower Mississippian black-<br />

shale wedges by the P<strong>in</strong>e Mounta<strong>in</strong> thrust, may yet rema<strong>in</strong> to be<br />

identified and exploited.<br />

63


RESULTS AND CONCLUSIONS<br />

Twenty-five maps and one cross section of the Upper Devonian-<br />

Lower Mississippian black-shale sequence <strong>in</strong> eastern <strong>Kentucky</strong> <strong>in</strong><br />

addition to a study of the pert<strong>in</strong>ent literature were used to draw<br />

the follow<strong>in</strong>g conclusions:<br />

d<br />

1. Radioactive stratigraphic units identified by Provo (1977)<br />

2.<br />

3.<br />

4.<br />

5.<br />

allowed correlation of <strong>in</strong>ternal units <strong>in</strong> the Upper Devonian-<br />

Lower Mississippian black-shale sequence throughout eastern<br />

<strong>Kentucky</strong>.<br />

The C<strong>in</strong>c<strong>in</strong>nati arch was a positive feature dur<strong>in</strong>g Upper<br />

Devonian black-shale deposition as demonstrated by the<br />

restricted distribution of radioactive stratigraphic<br />

Units 7, 6, and S and their marked westward th<strong>in</strong>n<strong>in</strong>g.<br />

The total shale thickness ranges from 7.3 m (24 ft) on the .<br />

the crest of the C<strong>in</strong>c<strong>in</strong>nati arch to 556.2 m (1825 ft) <strong>in</strong><br />

eastern Pike County.<br />

Progressive onlap of the C<strong>in</strong>c<strong>in</strong>natiarchby units beg<strong>in</strong>n<strong>in</strong>g<br />

with Unit7 cont<strong>in</strong>ued until Unit4 covered theC<strong>in</strong>c<strong>in</strong>nati arch.<br />

Units 3, 2, and 1 were subsequently deposited across the<br />

C<strong>in</strong>c<strong>in</strong>nati arch.<br />

Greater clastic content closer to the West Virg<strong>in</strong>ia clastic<br />

source dilutes radioactivity with<strong>in</strong> theblack-shale sequence<br />

which shows up on the gamma-ray log as a much weaker posi-<br />

tive signature.<br />

A h<strong>in</strong>ge l<strong>in</strong>e which m ns approximately north-south from<br />

western Lewis County to eastern Bell County separates a<br />

broad area of relatively th<strong>in</strong> black shale from an area<br />

64


6.<br />

7.<br />

of rapidly thicken<strong>in</strong>g black shale to the east.<br />

Dist<strong>in</strong>ct thicken<strong>in</strong>g trends were identified on isopach maps<br />

generated <strong>in</strong> this study, for example, thicken<strong>in</strong>g <strong>in</strong>to the<br />

Rome trough, an unnamed thicken<strong>in</strong>g trend <strong>in</strong> Knott and<br />

southern Flaydcounties, an unnamed thickened lobe <strong>in</strong><br />

Greenup, eastern Lewis, and northern Carter counties, and<br />

<strong>in</strong> another unnamed thicken<strong>in</strong>g trend <strong>in</strong> south-central Pike<br />

County. Many smaller thicken<strong>in</strong>g trends were also noted.<br />

Dist<strong>in</strong>ct th<strong>in</strong>n<strong>in</strong>g trends were also identified on isopach<br />

maps generated <strong>in</strong> this study. Some of these <strong>in</strong>clude: The<br />

C<strong>in</strong>c<strong>in</strong>nati arch and the Rockcastle River uplift.<br />

8. Structure contour maps generated <strong>in</strong> this study <strong>in</strong>dicate the<br />

9.<br />

10.<br />

axis of the C<strong>in</strong>c<strong>in</strong>nati arch for Devonian age rocks was 10<br />

to 20 km (6 to 12 mi) east of the "Ordovician axis" of<br />

Jillson (1931) <strong>in</strong> L<strong>in</strong>coln, Casey, and northern Russell<br />

counties.<br />

The Rome trough was structurally active throughout the time<br />

of depositon of the Upper Devonian-Lower Mississippian<br />

black-shale sequence.<br />

The Rockcastle River uplift was a positive feature through-<br />

out Upper Devonian-Lower Mississippian black-shale deposi-<br />

tion, but also underwent extensive post-Devonian uplift.<br />

11. The Pa<strong>in</strong>t Creek uplift is a post-Upper Devonian-Lower Mis-<br />

12.<br />

sissippian feature as shown by isopach and structure contour<br />

map relationships.<br />

Isopach maps of highly radioactive shale show the greatest<br />

thickness of highly radioactive shale are <strong>in</strong> northern<br />

d<br />

65


Floyd, Johnson, and northern Mart<strong>in</strong> counties. Although<br />

black-shale thicknesses <strong>in</strong>crease even more to the east<br />

of this area, the amount of highly radioactive black shale<br />

decreases <strong>in</strong> an eastward direction due to clastic dilution<br />

from an eastern source area.<br />

66


BIBLIOGRAPHY<br />

Ammerman, M. L. and G. R. Keller, 1979, Del<strong>in</strong>eation of Rome trough<br />

<strong>in</strong> eastern <strong>Kentucky</strong> by gravity and deep drill<strong>in</strong>g data, Am.<br />

Assoc. Petroleum Geologists Bull., v. 63, p. 341-353.<br />

Avila, John, 1976, Devonian shale as a source of gas: <strong>in</strong> Natural<br />

Gas from Unconventional Sources, <strong>National</strong> ResearchTouncil ,<br />

Wash<strong>in</strong>gton, D.C., p. 73-85<br />

Bartlett, C. S., Jr. and H. W. Webb, '1971, Geology of Bristol and<br />

Wallace quadrangles, Virg<strong>in</strong>ia, Virg<strong>in</strong>ia Division of M<strong>in</strong>eral<br />

Resources, Rept. Inv. 25, 93 p.<br />

<strong>Black</strong>, D. F. B., 1970, Structural features <strong>in</strong> part of central<br />

<strong>Kentucky</strong>, Geol. SOC. America Abs. with Programs, v. 2, no. 3,<br />

p. 196.<br />

Bright, 0. T., 1956, Introduction of radioactivity logg<strong>in</strong>g, Proceed-<br />

<strong>in</strong>gs of the Technical Session, <strong>Kentucky</strong> Oil and Gas Assoc.<br />

Annual Mid-Year Meet<strong>in</strong>g, May 25, 1956, <strong>Kentucky</strong> Geol. Survey<br />

Spec. Pub. no. 9, series IX, p. 40-47.<br />

Campbell, Guy, 1946, New Albany Shale, Geol. SOC. America Bull., v.<br />

57, p. 829-908.<br />

Claypool, G. E., C. N. Threlkeld and N. H. Bostwick, 1978, Natural<br />

gas occurrence related to regional thermal rank of organic<br />

matter (maturity) <strong>in</strong> Devonian rocks of the Appalachian Bas<strong>in</strong>:<br />

-<br />

<strong>in</strong> Second Eastern Gas <strong>Shales</strong> Symposium, Prepr<strong>in</strong>ts sponsored<br />

by Morgantown <strong>Energy</strong> Research Center, ERDA, Morgantown, W.Va.,<br />

p. 54-65.<br />

Conant, L. C. and V. E. Swanson, 1961, Chattanooga Shale and related<br />

rocks of Central Tennessee and nearby areas, U.S. Geol. Survey<br />

Prof. Paper 357, 91 p.<br />

Dever, G. R., Jr., 1965, Oil, Gas, and Structure Map Rowan County,<br />

<strong>Kentucky</strong>, <strong>Kentucky</strong> Geol. Survey, series X, scale 1:48,000.<br />

delhtt, Wallace, Jr., W. J. Perry and L. G. Wallace, 1975, Oil and<br />

gas data from Devonian and Silurian rocks <strong>in</strong> the Appalachian<br />

Bas<strong>in</strong>, U.S. Geol. Survey Misc. Investigations Series Maps I-917B.<br />

Ettensohn, F. R. , 1975, Stratigraphic and paleoenvironmental aspects of<br />

Upper Mississippian rotks (Upper N emn Group), eqst-central- Ken-<br />

tucky, UniversityofIll<strong>in</strong>ois,-Ph.D,.Bissertation (unpub.), 231 p.<br />

Ettensohn, F. R., 1977, Effects of synsedimentary tectonic activity<br />

on the Upper Nemn Limestpne and Penn<strong>in</strong>gton Formation: <strong>in</strong><br />

Ettensohn, F. R. and others, Stratigraphic Evidence 65r Lze Paleozoic Tectonism <strong>in</strong> Northeastern <strong>Kentucky</strong>, Field Trip Guidebook,<br />

Am. Assoc. Petroleum Geologists, Eastern Section Ann.<br />

Mtg., <strong>Kentucky</strong> Geol. Survey, p. 18-29.<br />

67


Ettensohn, F. R., L. P. Fulton and R. C. Kepferle, 1977, Use of the<br />

sc<strong>in</strong>tillometer and gamma-ray logs for correlation from the sub-<br />

surface to the surface <strong>in</strong> black shale: <strong>in</strong> First Eastern Gas<br />

<strong>Shales</strong> Symposium, Prepr<strong>in</strong>ts sponsored byTorgantown <strong>Energy</strong> Re-<br />

search Center, ERDA, Morgantwon, W.Va., p. 520-533.<br />

Ettensohn, F.. R., 1979, Radioactive stratigraphy at the Devonian-Mississippian<br />

boundary: <strong>in</strong> Carboniferous Geology from the Appalachian<br />

Bas<strong>in</strong> through Eazern Ohio and <strong>Kentucky</strong>, Guidebook for<br />

Field Trip no. 4 for the N<strong>in</strong>th International Congress of Carboniferous<br />

Stratigraphy and Geology, University of <strong>Kentucky</strong>, Lex<strong>in</strong>gton,<br />

<strong>Kentucky</strong>,p. 166-171.<br />

Ettensohn, F. R., L. P. Fulton and R. C. Kepferle, 1979, Use of<br />

sc<strong>in</strong>tillometer and gamma-ray logs for correlation and strati-<br />

graphy <strong>in</strong> homogenous black shales, Geol. Soc. America Bull.,<br />

V. 90, p. 421-423.<br />

Ettensohn, F. R., 1980, An alternative to the barrier-shorel<strong>in</strong>e model<br />

for deposition of Mississippian and Pennsylvanian rocks <strong>in</strong> north<br />

eastern <strong>Kentucky</strong>, Geol. Soc. America Bull.partII,v.91, p. 934-<br />

1056.<br />

Freeman, L. B., 1951, repr<strong>in</strong>ted 1959, Regions1 aspects of Silurian<br />

and Devonian stratigraphy <strong>in</strong> <strong>Kentucky</strong>, <strong>Kentucky</strong> Geol. Survey<br />

. Bull., no. 6, series IX, 565 p.<br />

Harris, L. D., Wallace deWiat, Jr. and G. W. Colton, 1978, What are<br />

possible stratigraphic controls on gas fields <strong>in</strong> eastern black<br />

shales? The Oil and gas Journal, v. 76, no. 14, p. 162-165.<br />

Hass, W. H., 1956, Age and correlation of the Chattanooga Shale and<br />

the bury Formation, U.S. Geol. Survey Prof. Paper 286, 47 p.<br />

Hoffman, Paul, J. F. Dewey and Kev<strong>in</strong> Burke, 1974, Aulacogens and<br />

their genetic relationship to geosyncl<strong>in</strong>es, with a Paleozoic<br />

example from Creat Slave Lake, Canada: <strong>in</strong> Dott, R. H. Jr. and<br />

R. H. Shaver, Modern and Acient Geosyncl&l Sedimentation,<br />

Society of Economic Paleontologists and M<strong>in</strong>eralogists, Spec.<br />

Pub. no. 19, p. 38-55<br />

Hoover, K. V., 1960, Devonian-Mississippian shale sequence <strong>in</strong> Ohio.<br />

Ohio Geol. Survey, Infor. Circular no. 27, 154 p.<br />

Hunter, C. D. and A. C. Munyan, 1932, <strong>Black</strong> shales, Appalachian Geol.<br />

Society, Devonian <strong>Shales</strong> Symposium, p. 127.<br />

Hunter, C. D., 1935, Natural gas <strong>in</strong> eastern <strong>Kentucky</strong>: <strong>in</strong> Geology of<br />

Natural Gas, Ley, H. A. (ed.), Am. Assoc. Petroleu6-Geologists,<br />

1227 p.<br />

Hunter, C. D., I. B. Brown<strong>in</strong>g,". W. Shiarella, 1938, Oil and gas<br />

development <strong>in</strong> <strong>Kentucky</strong>, Am. Inst. M<strong>in</strong>. Met. Eng. Trans., v.<br />

127, p. 398-412.<br />

68


Hunter, C. D. and D. M. Young, 1953, Relationship of natural gas oc-<br />

currance and production <strong>in</strong> eastern <strong>Kentucky</strong> (Big Sandy gas field)<br />

to jo<strong>in</strong>ts and fractures <strong>in</strong> Devonian bitum<strong>in</strong>ous shale, Am. Assoc.<br />

Petroleum Geologists Bull., v. 37, no. 2, p. 282-299.<br />

Hunter, C. D., 1955, Development of natural gas fields of eastern<br />

<strong>Kentucky</strong>, The Petroleum Eng<strong>in</strong>eer, p. 333-336.<br />

Hunter, C. D., 1964, Gas development, production and estimated ulti-<br />

mate recovery of Devonian shale <strong>in</strong> eastern <strong>Kentucky</strong>, <strong>Kentucky</strong><br />

Geol. Survey, series 10, Spec. Pub. no. 8, p. 21-29.<br />

Jillson, W. R. and J. S. Hudnall, 1923, Map of the Rockcastle River<br />

uplift <strong>in</strong> Laurel and Clay counties, <strong>Kentucky</strong>, <strong>Kentucky</strong> Geol.<br />

Survey, series VI.<br />

Jillson, W. R., 1931, Structural Geologic Map of <strong>Kentucky</strong>, <strong>Kentucky</strong><br />

Geol. Survey, series VI, Scale 1:500,000.<br />

Kepferle, R. C., E. N. Wilson and F. R. Ettensohn, 1978, Prelim<strong>in</strong>ary<br />

Stratigraphic cross section show<strong>in</strong>g radioactive zones <strong>in</strong> the<br />

Devonian black shales <strong>in</strong> the southern part of the Appalachian<br />

Bas<strong>in</strong>, U.S. Geol. Survey Oil and Gas Inv. Chart OC-85, 1 sheet.<br />

Lewis, T. L. andJ. F.Schwieter<strong>in</strong>g,1971,The distributionofthe Cleve-<br />

land Shale<strong>in</strong>Ohio, Geol. SOC. America Bull., v. 82, p. 3477-3482.<br />

L<strong>in</strong>eback, J. A., 1968, Subdivisions and depositional environments of<br />

New Albany shale (Devonian and Mississippian) <strong>in</strong> Indiana, Am.<br />

Assoc. Petroleum Geologists Bull., v. 52, p. 1291-1303.<br />

Patchen, D. G. and R. E. Larese, 1976, Stratigraphy and petrology of<br />

the Devonian "brown" shale <strong>in</strong> West Virg<strong>in</strong>ia: <strong>in</strong><br />

Production and Potential, Shumaker, R. C. (ed.>t<br />

Patchen, D. G., 1976, Subsurface stratigrpahy and gas<br />

the Devonian shales <strong>in</strong> West Virg<strong>in</strong>ia, U.S. ERDA,<br />

<strong>Energy</strong> Research Center MERC/CR-77/5, 35 p.<br />

Devonian Shale<br />

MERC/SP-76/2.<br />

production of<br />

Mor gantown<br />

Potter, P. E., 1978, Structure and isopach map of the New Albany-Chattanooga-Ohio<br />

Shale (Devonian and kississippian) <strong>in</strong> <strong>Kentucky</strong>,<br />

<strong>Kentucky</strong> Geol. Survey, series X, Central Sheet, Scale1:250,000.<br />

Provo, L. J,., 1977, Stratigraphy and sedimentology of radioactive<br />

Devonian-Mississippian shales of the central Appalachian Bas<strong>in</strong>,<br />

University of C<strong>in</strong>c<strong>in</strong>nati, Ph.D. dissertation (unpub.), 177 p.<br />

Provo, L. J., R. C. Kepferle, and P. E. Potter, 1978, Division of<br />

black Ohio shale <strong>in</strong> eastern <strong>Kentucky</strong>, Am. Assoc. Petroleum<br />

Geologists Bull., v. 62, p. 1703-1714.<br />

Rank<strong>in</strong>, D. W., 1976, Appalachian salients and recesses; late Precam-<br />

brian cont<strong>in</strong>ental breakup and the open<strong>in</strong>g of the Iapetus ocean,<br />

Jour. Geophys. Research, v. 81, p. 5605-5619.<br />

69


Roen, J. B., L. G. Wallace and Wallace deWitt Jr., 1978, Prelim<strong>in</strong>ary<br />

stratigraphic cross section show<strong>in</strong>g radioactive zones on the<br />

Devonian black shales <strong>in</strong> the central part of the Appalachian<br />

Bas<strong>in</strong>, U.S. Geol. Survey Oil and Gas Inv. Chart OC-87, 2 sheets.<br />

Schlumberger Limited, 1972, Schlumberger log <strong>in</strong>terpretation pr<strong>in</strong>-<br />

ciples, New York, v. 1, 113 p.<br />

Schopf, J. M. and J. F. Schwieter<strong>in</strong>g, 1970, The Foerstia Zone of<br />

the Ohio and Chattanooga shale, U.S. Geol. Survey Bull. 1294H.<br />

-<br />

Shumaker, R. C., 1976, A diagest of Appalachian structural geology:<br />

<strong>in</strong> Devonian Shale Production and Potential, editor Shumaker,<br />

MERC/SP-76/2.<br />

Silberman, J. D., 1972, Cambro-Ordovician stnrctural and strati-<br />

graphic relationships of a portion of the Rome trough, <strong>Kentucky</strong><br />

Geol. Survey Spec. pub. no. 21, series X, p. 35-45.<br />

Smith, J. W. and K. E. Stanfield, 1964, Oil yields of Devonian New<br />

Albany shales, <strong>Kentucky</strong>, Am. Assoc. Petroleum Geologists Bull.,<br />

V. 48, p. 712-714.<br />

Swager, D. R., 1978, Stratigraphy oE the Upper Devonian-Lower Missis-<br />

sippian shale sequence <strong>in</strong> eastern <strong>Kentucky</strong> outcrop belts, Univ-<br />

ersity of <strong>Kentucky</strong>, M.S. thesis (unpub.), 116 p.<br />

Swanson, V. E., 1960a, Oil yield and uranium content of black shales,<br />

U.S. Geol. Survey Prof. Paper 356-A, p. 1-44.<br />

Swanson, V. E., I96Ob,Geology and geochemistry of uranium <strong>in</strong> mar<strong>in</strong>e<br />

black shales, a review, U.S. Geol. Survey, Prof. Paper 356-C,<br />

p. 67-112.<br />

Theis, C. V., and J. S. Hudnall, D. .B. Chisholm, R. Miller and S;<br />

W<strong>in</strong>ters, 1927, repr<strong>in</strong>ted 1949, Reconnaissance, structural geologic<br />

map of Clay County, <strong>Kentucky</strong>, <strong>Kentucky</strong> Geol. Survey, series VI<br />

(1927); repr<strong>in</strong>t series IX 91949), Scale 1 <strong>in</strong>ch = 1 mile. .<br />

Thomas, R. N., 1951, Devonian shale gas product<strong>in</strong> .<strong>in</strong> central Appala-<br />

chian area, Am. Assoc. Petroleum Geologist Bull., v. 35, p. 2249-2256<br />

Walker, F. H., 1955, Exploration extensive <strong>in</strong> east <strong>Kentucky</strong>, <strong>Kentucky</strong><br />

Geol. Survey, series IX, repr<strong>in</strong>t no. 11 from the Petroleum 1<br />

Eng<strong>in</strong>eer, v. 27, no. 9, p. B34-B40.<br />

Walker, F. H., 1956, Oil and gas developments <strong>in</strong> <strong>Kentucky</strong> <strong>in</strong> 1955,<br />

Am. Assoc. Petroleum Geologists Bull., v. 40, p. 1108-1117.<br />

Walker, F. H., D. J. Jones and E. 0. Ray, 1957, Oil and gas develop-<br />

ments <strong>in</strong> <strong>Kentucky</strong> <strong>in</strong> 1956, Am.,Assoc. Petroleum Geologists Bull.,<br />

V. 41, p. 1037-1045.<br />

70


Wallace, L. G., J. B. Roen and Wallace deWitt Jr., 1977, Prelim<strong>in</strong>ary<br />

stratigraphic cross section show<strong>in</strong>g radioactive zones <strong>in</strong> the<br />

Devonian black shales <strong>in</strong> the western part of the Appalachian<br />

Bas<strong>in</strong>, U.S. Geol. Survey Oil and Gas Inv. Chart OC-80.<br />

Weaver, 0. D., W. H. McGuire and James Smitherman, 111, 1978, Over-<br />

thrust belt <strong>in</strong> southeast <strong>Kentucky</strong> yields prolific discovery,<br />

Oil and Gas Journal, v. 76, p. 92-95.<br />

Webb, E. J., 1969, Geologic history of the Cambrian system <strong>in</strong> the<br />

Appalachian Bas<strong>in</strong>, <strong>Kentucky</strong> Geol. Survey Spec. Pub. no. 18,<br />

series X, p. 7-15.<br />

Wilson, E. N. and D. G. Sutton, 1973, Oil and gas map of <strong>Kentucky</strong>,<br />

Sheet 3, East-central part, <strong>Kentucky</strong> Geol. Survey., series X,<br />

Scale 1:250,000.<br />

Wilson, E. N. and D. G. Sutton, 1976, Oil and gas map of <strong>Kentucky</strong>,<br />

Sheet 4, Eastern part, <strong>Kentucky</strong> Geol. Survey, series X, Scale<br />

1:250,000.<br />

Wilson, E. N. and J. S. Zafar, 1977, Wirel<strong>in</strong>e logs and sample studies<br />

<strong>in</strong> stratigraphy and gas occurrence of the Devonian shales along<br />

the southern tie section <strong>in</strong> eastern <strong>Kentucky</strong> and vic<strong>in</strong>ity, Pro-<br />

ceed<strong>in</strong>gs .First Eastern Gas <strong>Shales</strong> Symposium, MERC/SP-77/5.<br />

Wood, E. B. and F. H. Walker, 1954, Prelim<strong>in</strong>ary oil and gas map of<br />

<strong>Kentucky</strong>, <strong>Kentucky</strong> Geol. Survey, series IX, Scale 1:500,000.<br />

Woodward, H. P., 1961, Prelim<strong>in</strong>ary subsurface study of southeastern<br />

Appalachian <strong>in</strong>terior plateau, Am. Assoc. Petroleum Geologists<br />

Bull., V. 45, p. 1634-1655.<br />

Zafar, J. S. and E. N. Wilson, The effects of the P<strong>in</strong>e Mounta<strong>in</strong> over-<br />

thrust and other regional faults on the stratigraphy and gas<br />

occurrence of Devonian <strong>Shales</strong> south and east of Big Sandy Gas<br />

Field <strong>in</strong> <strong>Kentucky</strong> and Virg<strong>in</strong>ia, Second Eastern Gas <strong>Shales</strong><br />

Symposium, hepr<strong>in</strong>ts sponsored by Morgantown <strong>Energy</strong> Research<br />

Center, ERDA, Morgantown, W.Va., METC/SP-78/6, v. 1, p. 404-414.<br />

71


VITA<br />

Scott Brian Dillman was born <strong>in</strong> Orange County, New Jersey on<br />

November 21, 1955. Follow<strong>in</strong>g graduation from Sweet Home Central High<br />

School, Williamsville, New York <strong>in</strong> June, 1974, the author entered<br />

the State University of New York at Buffalo.<br />

1978, with a Bachelor of Arts degree <strong>in</strong> Geology.<br />

the author enrolled <strong>in</strong> The Graduate School of the University of<br />

<strong>Kentucky</strong>.<br />

1978 through May, 1978 and a position as research assistant was held<br />

‘from May, 1978 through June, 1980. The author was awarded a New York<br />

State Regents Scholarship <strong>in</strong> 1974. He was also a member of the Sigma<br />

Gamma Epsilon homor fraternity, and a student and junior member of<br />

the American Association of Petroleum Geologists.<br />

<strong>in</strong> this report will be published by the United States Department of<br />

<strong>Energy</strong>.<br />

Cities Service Company <strong>in</strong> Oklahoma City, Oklahoma.<br />

He graduated-<strong>in</strong>February,<br />

In January, 1978,<br />

A position as teach<strong>in</strong>g assistant was held from January,<br />

Maps generated<br />

After graduation the author expects to beg<strong>in</strong> work with<br />

Signature<br />

72


APPENDIX I-B<br />

1-8


TABLE OF CONTENTS<br />

Page<br />

ABSTRACT . .............................. 1<br />

INTRODUCTION . ............................ 3<br />

ACKNOWLEDGMENTS . .......................... 6<br />

Sedimentary. Paleontologic. Stratigraphic Farmework . ........ 7<br />

Tectonic Sett<strong>in</strong>g . .......................... 16<br />

Paleogeography and Paleoclimatology . ................ 21<br />

DEPOSITIONAL MODEL . ...................... ... 28<br />

Orig<strong>in</strong> of <strong>Black</strong> Muds . ....................<br />

Sources of Organic Matter . ................<br />

... 29<br />

... 29<br />

Preservation of Organic Matter . ............. ... 31<br />

Clastic Sources . ..................... ... 32<br />

Barriers of Clastic Sedimentation <strong>in</strong> the <strong>Black</strong>-Shale Sea . .. .... 35<br />

Middle and Late Devonian Transgression (and Regression) . . ... 38<br />

Development of Anaerobic Conditions <strong>in</strong> the lv<strong>Black</strong>-Shale Sea" . ... 44<br />

Formation of a Stratified Water Column . ......... ... 44<br />

Conditions <strong>in</strong> the "<strong>Black</strong>-Shale Seaf1 ............ ... 51<br />

Depths . ......................... ... 55<br />

Sequential History of <strong>Black</strong>-Shale Deposition . ........ ... 56<br />

CONCLUSIONS . ............................ 66<br />

REFERENCES CITED . .......................... 70<br />

ILLUSTRATIONS<br />

Figure<br />

1 Generalized. composite black-shale sequence from east-central<br />

<strong>Kentucky</strong> . .......................... 8<br />

2 Radioactive stratigraphy and stratigraphic nomenclature from<br />

eastern <strong>Kentucky</strong> . ......................<br />

3 Schematic cross section show<strong>in</strong>g the distribution of black<br />

shales and related facies from New York to Idaho . ......<br />

4 Generalized Late Devonian paleogeogrpahy and lithofacies for<br />

North America . ........................<br />

5 A model for the cyclicity of alternat<strong>in</strong>g black shales and<br />

coarser clastics <strong>in</strong> the Catskill delta . ...........<br />

6 Schematic diagram show<strong>in</strong>g characteristics of a stratified water<br />

column and the sediments accumulat<strong>in</strong>gwith<strong>in</strong>eachwaterlayer . .<br />

7 A.)Development of quasi-estur<strong>in</strong>e circulation and upwell<strong>in</strong>g<br />

<strong>in</strong> an epicont<strong>in</strong>ental sea; B.) Disruption of upwell<strong>in</strong>g through<br />

progradation sediment <strong>in</strong>flux . ................<br />

8 A series of schematic sections from New York to the Ouachita<br />

area show<strong>in</strong>g the <strong>in</strong>ferred sequential development of blackshale<br />

depositional environments from the Middle Devonian<br />

through the Early Mississippian . ...............<br />

12<br />

14<br />

18<br />

36<br />

47<br />

50<br />

57


DEPOSITIONAL MODEL FOR THE DEVONIAN-MISSISSIPPIAN<br />

BLACK-SHALE SEQUENCE OF NORTH AMERICA:<br />

A TECTONO-CLIMATIC APPROACH<br />

June, 1980<br />

FRANK R. ETTENSOHN AND LANCE S. BARRON<br />

Of<br />

Department of Geology, University of <strong>Kentucky</strong><br />

<strong>Kentucky</strong> Research Group<br />

Lex<strong>in</strong>gton, <strong>Kentucky</strong> 40506<br />

Prepared for<br />

UNITED STATES DEPARTMENT OF ENERGY<br />

EASTERN GAS SHALES PROJECT<br />

MORGANTOWN ENERGY TECHNOLOGY CENTER<br />

MORGANTOWN, WEST VIRGINIA<br />

UNDER<br />

CONTRACT NO. DE-AC21-76ET12040


DEPOSITIONAL MODEL FOR THE DEVONIAN-MISSISSIPPIAN<br />

BLACK-SHALE SEQUENCE OF NORTH AMERICA:<br />

A TECTONO-CLIMATIC APPROACH<br />

Frank R. Ettensohnl and Lance S. Barron2<br />

ABSTRACT<br />

The Devonian-Mississippian black-shale sequence of North America is<br />

a dist<strong>in</strong>ctive stratigraphic <strong>in</strong>terval that reflects a low rate of clasticsediment<br />

<strong>in</strong>flux, high organic productivity, and development of anaerobic<br />

conditions <strong>in</strong> a stratified water column with<strong>in</strong> an <strong>in</strong>land, equatorial,<br />

epicont<strong>in</strong>ental sea.<br />

The orig<strong>in</strong> of these conditions apparently is related<br />

to the <strong>in</strong>teraction of tectonism and climatic conditions unique to North<br />

America at this time.<br />

<strong>Black</strong>-shale deposition was co<strong>in</strong>cident with and related to the cont<strong>in</strong>-<br />

ent-cont<strong>in</strong>ent collision that caused the Acadian Mounta<strong>in</strong>s. This ris<strong>in</strong>g<br />

mounta<strong>in</strong> belt developed across the equator just east of the ll<strong>Black</strong>-Shale<br />

Sea", and effectively completed enclosure of the sea and became the major<br />

source of clastic sediments. Collision and result<strong>in</strong>g uplift, however,<br />

were apparently episodic. Dur<strong>in</strong>g periods of uplift, the mounta<strong>in</strong>s acted<br />

as a barrier to the moisture-laden trade w<strong>in</strong>ds converg<strong>in</strong>g on the equator;<br />

this caused ra<strong>in</strong>shadow conditions west of the mounta<strong>in</strong>s and reduced<br />

clastic <strong>in</strong>flux <strong>in</strong>to the "<strong>Black</strong>-Shale Sea." In the absence of clastics,<br />

organic-rich muds were deposited throughout the sea.<br />

Concurrent with and related to the periods of uplift and subduction,<br />

were episodes of widespread cratonic subsidence and transgression, which<br />

were especially effective <strong>in</strong> the l<strong>in</strong>ear peripheral or foreland (Appalachian)<br />

bas<strong>in</strong> west of the mounta<strong>in</strong>s. Dur<strong>in</strong>g these periods of subsidence<br />

and transgression, the sediment-starved "<strong>Black</strong>-Shale Sea" migrated eastward<br />

over parts of the Catskill Delta and westward over exposed parts of<br />

the craton. Dur<strong>in</strong>g <strong>in</strong>terven<strong>in</strong>g periods of tectonic quiesence, subsidence<br />

abated and the mounta<strong>in</strong>s were lowered by erosion to the po<strong>in</strong>t that trade<br />

w<strong>in</strong>ds crossed unimpeded and delivered precipitation to westernparts of<br />

the mounta<strong>in</strong>s near the equator. This resulted <strong>in</strong> a vast <strong>in</strong>flux of<br />

clastics and rapid westward deltaic progradation <strong>in</strong>to the "<strong>Black</strong>-Shale<br />

Sea." Seven such major cycles of alternat<strong>in</strong>g of black shale and coarse<br />

clastics are present <strong>in</strong> the Catskill Delta complex.<br />

Few of the deltaic progradations migrated westward beyond the periph-<br />

eral bas<strong>in</strong> because of its conf<strong>in</strong><strong>in</strong>g effects, so that even dur<strong>in</strong>g ra<strong>in</strong>y<br />

periods, sediment-starved conditions persisted <strong>in</strong> cratonic portions of the<br />

1Assistant Professor of Geology, University of <strong>Kentucky</strong><br />

2Research Assistant , University of <strong>Kentucky</strong><br />

1


sea. Progressive deepen<strong>in</strong>g <strong>in</strong> cratonic portions of the sea comb<strong>in</strong>ed with<br />

the equatorial nature of the sea caused a stratified water column (pycnocl<strong>in</strong>e)<br />

to develop which prevented oxygenation of the deeper bottom waters.<br />

The organic-rich muds deposited <strong>in</strong> the sea were preserved <strong>in</strong> the anaerobic,<br />

azoic conditions that resulted.<br />

Eventually the sea deepened to the po<strong>in</strong>t<br />

that upwell<strong>in</strong>g oceanic waters entered from the cont<strong>in</strong>ental marg<strong>in</strong> <strong>in</strong> the<br />

Ouachita area.<br />

The "<strong>Black</strong>-Shale Seat1 and its organic-rich mudswereessentially the<br />

result of subsidence and sediment-starved conditions created by the col-<br />

lisional event which formed the Acadian Mounta<strong>in</strong>s. The <strong>in</strong>teraction of<br />

these mounta<strong>in</strong>s with the atmospheric circulation patterns of the time<br />

is an important aspect of black-shale deposition which apparently has<br />

never been exam<strong>in</strong>ed before.<br />

This study was supported under contract number DE-AC21-76ET12040 from<br />

the Department of <strong>Energy</strong>, Morgantown <strong>Energy</strong> Technology Center.<br />

KEY WORDS: Devonian-Mississippian black-shale sequence, North America,<br />

sediment-starved, high organic productivity, anaerobic, stratified<br />

water column, "<strong>Black</strong>-Shale Sea", ra<strong>in</strong>shadow, upwell<strong>in</strong>g, Acadian Mounta<strong>in</strong>s.<br />

2


INTRODUCTION<br />

Although black shales are not uncommon <strong>in</strong> the geologic record, the<br />

Devonian-Mississippian black-shale sequence of North America is unusual <strong>in</strong><br />

its widespread distribution and homogeneity. This black-shale sequence,<br />

though known by many stratigraphic names, forms a significant and easily<br />

recognized stratigraphic marker horizon that is cont<strong>in</strong>uous throughout m ch<br />

of midcont<strong>in</strong>ental United States with extensions <strong>in</strong>to the Southwest and <strong>in</strong>to<br />

west-central Canada. These shales are thickest <strong>in</strong> the area of the Appala-<br />

chian Bas<strong>in</strong> where they may compose as much as one-fourth of the Devonian<br />

sedimentary sequence.<br />

These shales are also unusual because of their high<br />

organic-matter content, high radioactivity, and paucity of fossils, especially<br />

benthic forms. In addition, they are important sources of natural gas (Avila,<br />

1976) and may <strong>in</strong> time be economically viable sources for some radioactive<br />

elements (Glover, 1959; Conant and Swanson, 1961; Breger and Brown, 1962)<br />

and some forms of synthetic fuel. Yet, despite the long-stand<strong>in</strong>g <strong>in</strong>terest<br />

<strong>in</strong> these shales and m ch <strong>in</strong>tensive study, the orig<strong>in</strong> of these shales is still<br />

uncerta<strong>in</strong>. Basically, there are two schools of thought regard<strong>in</strong>g the orig<strong>in</strong><br />

of these shales: one suggest<strong>in</strong>g a shallow-water orig<strong>in</strong> (L<strong>in</strong>ney, 1882, 1884;<br />

Grabau, 1917; Branson, 1924; Hard, 1931; Twenhofel, 1939; Stock-<br />

dale, 1939; Campbell, 1946; Wells, 1947; Conant, 1955; Conant and Swanson,<br />

1961; Hallam, 1967; Lewis and Schwieter<strong>in</strong>g, 1971; Schwieter<strong>in</strong>g, 1978) and<br />

another suggest<strong>in</strong>g a deep-water orig<strong>in</strong> (Newberry, 1873; Shaler, 1877; Clarke,<br />

1903; Schuchert, 1910; Reudemann, 1934, 1935; Woodward, 1943;<br />

Rich, 1951; Byers, 1977, 1979). Some workers, (Hard, 1931; Provo, 19771,<br />

however, suggestedthatwaterdepth is not necessarily a controll<strong>in</strong>g factor <strong>in</strong><br />

the deposition of these shales.<br />

They emphasize <strong>in</strong>stead the necessity of a<br />

model which can account for the production and preservation of abundant<br />

3


organic matter <strong>in</strong> a mar<strong>in</strong>e environment,<br />

toward the production and preservation of abundant organic matter have been<br />

discussed recently by Heckel (1977) and Byers (1977), but more fundamental<br />

yet, are the regional controls that permit such conditions to develop.<br />

controls will also be exam<strong>in</strong>ed.<br />

The mar<strong>in</strong>e conditions conducive<br />

S<strong>in</strong>ce these <strong>in</strong>terpretations were orig<strong>in</strong>ally published, much additional<br />

4<br />

These<br />

<strong>in</strong>formation on the sedimentological , paleontological, stratigraphic, tectonic,<br />

and paleoclimatic framework of these shales has accumulated.<br />

<strong>in</strong>formation has accumulated as a result of the Eastern Gas <strong>Shales</strong> Project<br />

under Department of <strong>Energy</strong> sponsorship.<br />

has also made us more aware of problems which must be expla<strong>in</strong>ed before the<br />

orig<strong>in</strong> of these shales can be fully understood.<br />

are :<br />

Much of this<br />

However, this additional <strong>in</strong>formation<br />

Foremost among these problems<br />

1.) A means of produc<strong>in</strong>g and preserv<strong>in</strong>g the vast amounts of<br />

2.)<br />

3.)<br />

4.)<br />

5.)<br />

6.)<br />

organic debris present <strong>in</strong> the shale.<br />

The widespread, homogeneous nature of the shale.<br />

The unusual concentrations of various heavy metals <strong>in</strong> the<br />

shale .<br />

The unusual nature of the fauna and flora found <strong>in</strong> the shales.<br />

The presence of prom<strong>in</strong>ent and widespread green-shale horizons<br />

<strong>in</strong> the black-shale sequence.<br />

The relationship between the black shales and contiguous<br />

units.<br />

This study <strong>in</strong>tegrates both new and old evidence to provide new l<strong>in</strong>es<br />

of evidence, expla<strong>in</strong> the above problems, and develop a depositional model<br />

which can expla<strong>in</strong> the orig<strong>in</strong> of the shale <strong>in</strong> terms of the known sedimento-<br />

logic, paleontologic, stratigraphic, tectonic, paleoclimatic, and paleogeographic


framework.<br />

The presently available evidence <strong>in</strong> each of these areas will<br />

be exam<strong>in</strong>ed briefly <strong>in</strong> follow<strong>in</strong>g sections.<br />

The model is developed with<br />

particular reference to eastern <strong>Kentucky</strong> where much of the new evidence was<br />

collected.<br />

S


ACKNOWLEDGEMENTS<br />

We wish to give special thanks to Dennis R. Swager, Michael L. Miller,<br />

Scott B. Dillman, and Gerald Markowitz, former research assistants <strong>in</strong> the<br />

black-shale program at the University of <strong>Kentucky</strong>, whose theses proeded<br />

valuable new data for our model. We also wish to thank Roy C. Kepferle,<br />

Edward N. Wilson, and Philip H. Heckel for their trips <strong>in</strong>to the field with<br />

us and valuable discussion.<br />

who typed and proofed the manuscript and to Danna L. Anto<strong>in</strong>e, who drafted<br />

the figures.<br />

Our special gratitude goes to Jane T. Wells<br />

Fund<strong>in</strong>g for this study was provided under contract number DE-AC21-76ET-<br />

12040 fromthe Department of <strong>Energy</strong>, Morgantown <strong>Energy</strong> Technical Center.<br />

6


Sedimentary, Paleontologic, Stratigraphic Framework<br />

The Upper Devonian-Lower Mississippian black-shale sequence is one of<br />

the most dist<strong>in</strong>ctive and well-known stratigraphic <strong>in</strong>tervals <strong>in</strong> east-central<br />

and midwestern United States. The sedimentology and stratigraphy (Campbell,<br />

1946; Ellison, 1950; Hoover, 1960; Conant and Swanson, 1961; Oliver and others,<br />

1967), and petrology (Patchen and Larese, 1976; Miller, 1978; Harvey and<br />

others, 1978; Samartojo and Waldste<strong>in</strong>, 1978; Potter and others, 1980) of<br />

these shales are fairly well-known and suggest some of the characteristics<br />

below as be<strong>in</strong>g most dist<strong>in</strong>ctive.<br />

The black-shale sequence is nearly everywhere unconformable with under-<br />

ly<strong>in</strong>g units, which range <strong>in</strong> age from Middle Ordovician to Middle Devonian.<br />

Moreover, the unconformity surface is relatively flat and smooth, and over<br />

some areas the black shales exhibit uniformity <strong>in</strong> thickness and composition,<br />

suggest<strong>in</strong>g a pre-depositional penepla<strong>in</strong> (Conant and Swanson, 1961). In some<br />

areas, this surface may have been karstic (Carmen and Shillhan, 1930).<br />

Basal parts of the black-shale sequence that overlie this surface typically<br />

exhibit a basal lag, sandstone or '%one bed" vary<strong>in</strong>g <strong>in</strong> thickness from a few<br />

millimeters to a few meters (Fig. 1). Locally, this part of the sequence may<br />

be thick enough that it has a member or formational status (e.g., - Misener,<br />

Sylamore, Hillsboro (?), Hard<strong>in</strong>, Duff<strong>in</strong>/Harg/Ravenna facies). These basal<br />

beds vary <strong>in</strong> composition from a silty clay to a dist<strong>in</strong>ct sandstone conta<strong>in</strong>-<br />

<strong>in</strong>g f<strong>in</strong>e to very coarse sand-size quartz gra<strong>in</strong>s, phosphatic pellets and<br />

nodules, glauconite rock fragments, plant spores, small pyritized gastropods,<br />

fish bones and teeth, conodonts, and wood fragments. The cement may be cal-<br />

careous, siliceous, siliceous-pyritic, or phosphatic. Not only do lag hori-<br />

zons occur at the bases of the black-shale sequences, but we have noted their<br />

presence wherever major black-shale units sharply overlie green-*ale units<br />

7


RELATIVE<br />

LITHOLOGY ABUNDANCE<br />

---. -. - > -<br />

...... . Basal Lag<br />

- Block Shale<br />

-- I--<br />

--<br />

--<br />

,/----*- --<br />

Increas<strong>in</strong>g<br />

Greenshale<br />

Figure 1. Generalized, composite black-shale sequence from east-central<br />

<strong>Kentucky</strong> show<strong>in</strong>g the distribution of lithologies and the rela-<br />

tive vertical abundances of radioactivity, substances, phosphor-<br />

OUS, and.heavy metals (data from Swager, 1978, and Markowitz,<br />

1979). c<br />

8


with<strong>in</strong> the black-shale sequence itself. Conk<strong>in</strong> and Conk<strong>in</strong> (1975) suggest<br />

that these lag horizons mark paracont<strong>in</strong>uities or diastems represent<strong>in</strong>g periods<br />

of little sedimentation followed by rapid transgression.<br />

Conk<strong>in</strong> suggest that paracont<strong>in</strong>uities reflect very shallow, near-shore coudi-<br />

tions, we suggest that <strong>in</strong> parts of the black-shale sequence they may also<br />

represent deeper, subaequeous sedimentational diastems.<br />

9<br />

Although Conk<strong>in</strong> and<br />

The black-shale sequence is generally characterized by two dom<strong>in</strong>ant lithol-<br />

ogies, an organic-rich, brownish-black to black, fissile shale and an organic-<br />

deficient, gray to green clayey shale. The brownish-black to black shales are<br />

highly carbonaceous and owe their dark coloration to the dom<strong>in</strong>ance of organic<br />

matter over clay.<br />

high concentrations of trace elements. By volume, organic matter comprises<br />

approximately a third of the rock, which is consistent with the 15 to 20 per-<br />

cent organic matter by weight and by petrographic analysis (Conant and Swanson,<br />

1961, p. 43-44; Potter and others, 1980, Table 4). The organic matter con-<br />

sists primarily of organic films on clay-particleaggregates, spores, algae,<br />

woody material, and opaque macerals (Miller, 1978). This organic material<br />

always occurs <strong>in</strong> close association with angular, silt-size and clay-size<br />

quartz gra<strong>in</strong>s.<br />

matter or as paper-th<strong>in</strong> lam<strong>in</strong>ae, which give the black shale a pronounced fis-<br />

sility upon weather<strong>in</strong>g.<br />

5.0 mm.<br />

The shales are also notable for their high radioactivity and<br />

The quartz occurs either randomly dispersed with<strong>in</strong> the. organic<br />

Individual lam<strong>in</strong>ae range <strong>in</strong> thicknesses from .01 to<br />

Unweathered shale seen <strong>in</strong> cores is typically massive and uncleavable,<br />

exhibit<strong>in</strong>g little of the fissility seen <strong>in</strong> outcrops.<br />

appears t o be concentrated <strong>in</strong> the black organic-rich shales;<br />

Most of the quartz<br />

quartz comprises<br />

20 to 25 percent of these shales (Conant and Swanson, 1961). Although clays<br />

may compose up to 50 percent of some black shales [Potter and others, 1980),<br />

claysare generally much less abundant, usually around 10% (Conant and Swanson,


1961; Miller, 1978).<br />

F<strong>in</strong>ely dissem<strong>in</strong>ated, microscopic phosphate occurs throughout most of the<br />

black shale (Conant and Swanson, 1961), but <strong>in</strong> upper parts of the black-shale<br />

sequence, the phosphate also occurs as concretionary bodies which vary <strong>in</strong><br />

shape from small spheroidal concretions and ellipsoidal nodules a few centi-<br />

meters <strong>in</strong> diameter to large, irregular amoebaform bodies with long dimensions<br />

approach<strong>in</strong>g a meter (Fig. 1). A phosphate-rich zone of phosphatic nodules,<br />

pellets, fossils and cements also typically occurs at the base of a sequence<br />

associated with the basal lag (Fig. 1). The basal contacts of black-shale<br />

units are almost always sharply def<strong>in</strong>ed, whereas vertical and lateral con-<br />

tacts are typically gradational <strong>in</strong>to gray or green shales.<br />

Much has been written about the paleontology of this shale sequence, and<br />

this is the topic of an extensive bibliography by Barron and Ettensohn (In<br />

press). Mar<strong>in</strong>e body fossils are relatively rare <strong>in</strong> the black shales, but those<br />

that are found usually <strong>in</strong>dicate a nektic, planktic, epiplanktic, or necro-<br />

planktic life mode. Benthic forms are especially rare throughout most of<br />

the black shales. When benthic forms do occur, however, they always occur<br />

near the base of the sequence (Savage, 1930, 1931; Campbell, 1946; L<strong>in</strong>eback,<br />

1968; Fig. 1) or <strong>in</strong> the eastern, shoreward <strong>in</strong>tertongu<strong>in</strong>gs with the Catskill<br />

Delta complex (Sutton and others, 1970; Byers, 1977). These low-diversity<br />

communities are typically composed of eurytopic brachiopods, gastropods and<br />

pelecypods.<br />

associated with the black shales were probably epiplanktic on logs (Rudwick,<br />

1965).<br />

L<strong>in</strong>gula and other <strong>in</strong>articulate brachiopods which are commonly,<br />

The basal parts of cratonic black-shale sequences may also exhibit<br />

<strong>in</strong>terbedded, fossiliferous carbonates and coarser clastics (basal lag?)<br />

10


exhibit<strong>in</strong>g ripple marks and flaser beds. The Duff<strong>in</strong>/Harg/Ravenna facies<br />

of eastern <strong>Kentucky</strong> is an example of this (Foerste, 1906; Campbell, 1946).<br />

Interbedded with the black shales <strong>in</strong> many areas are irregular bedded<br />

green to gray, organic-deficient mudstones and shales (Fig. 1). In the<br />

green to gray shales, lam<strong>in</strong>ae are absent or poorly developed.<br />

to the black shales, the organic content <strong>in</strong> these shales decreases to approx-<br />

imately five percent, whereas the percentage of clays <strong>in</strong>creases to nearly<br />

80 percent. Except for local siltstone lenses and beds, the percentage of<br />

quartz is drastically reduced, generally averag<strong>in</strong>g 5 to 10 percent (Miller,<br />

1978). These shales are also relatively nonradioactive (Fig. 2). Compared<br />

to the black shales, the diversity.of life <strong>in</strong> these shales is markedly <strong>in</strong>-<br />

creased. Although, similar nektic, planktic, epiplanktic, and necroplanktic<br />

forms still occur, they are not as abundant as <strong>in</strong> adjacent black shales.<br />

Unlike the black shales, however, benthic fossils do occur, and <strong>in</strong>clude <strong>in</strong><br />

. - situ L<strong>in</strong>gula and a variety of trace fossils, as well as a micromorph fauna<br />

11<br />

In contrast<br />

consist<strong>in</strong>g of ostracods, cephalopods, pelecypods, gastropods, and Foram<strong>in</strong>i-<br />

fera (Barron and Ettensohn, 1980).<br />

Stratigraphically, even the most homogeneous black-shale sequence can<br />

be divided <strong>in</strong>to dist<strong>in</strong>ctive units based on radioactivity (Ettensohn and<br />

others, 1979).<br />

Seven of these units were <strong>in</strong>itially designated <strong>in</strong> the Ohio-<br />

New Albany-Chattanooga shale sequence (F.ig. 2) from the subsurface of Ohio<br />

and eastern <strong>Kentucky</strong> by Provo (1977).<br />

These units were subsequently cor-<br />

related with named surficial units and traced <strong>in</strong>to the black-shale outcrop<br />

belts of <strong>Kentucky</strong> and Ohio (Swager, 1978; Provo and others, 1978), as well<br />

as eastward <strong>in</strong>to the subsurface of Virg<strong>in</strong>ia, West Virg<strong>in</strong>ia, eastern Ohio,<br />

Pennsylvania, and New York where they p<strong>in</strong>ch out <strong>in</strong>to coarser bas<strong>in</strong>al and<br />

slope-edge clastics (Chagr<strong>in</strong>, Brallier, and "Portage Facies"),which <strong>in</strong><br />

-


Figure 2. Radioactive stratigraphy and stratigraphic nomenclature from<br />

eastern <strong>Kentucky</strong> show<strong>in</strong>g correlations with the New York section.<br />

Units 2 (Three Lick-Chagr<strong>in</strong>) and 6 (Upper Olentary - Angola<br />

ShaleDanover Shale) and the Bedford-Berea sequence conta<strong>in</strong><br />

significant amounts of less radioacitve green shale and are<br />

represented by prom<strong>in</strong>ent negative deviations.<br />

12


turn grade eastward <strong>in</strong>to even coarser marg<strong>in</strong>al-mar<strong>in</strong>e and terrestrial shelf-<br />

edge clastics (Yhemung and Catskill" facies) (Piotrowski and Krajewski, 1977;<br />

Wallace and others, 1978; Kepferle and others, 1978; Roen and others, 1978a,b;<br />

Potter and others, 1980). Of course, this sequence of transitions represents<br />

major time-transgressive facies changes that occurred dur<strong>in</strong>g deposition of<br />

the Catskill Delta <strong>in</strong> the Middle and Late Devonian and <strong>in</strong> the Early Missis-<br />

sippian and this has been well documented <strong>in</strong> many earlier studies (e.g.,<br />

Barrell, 1913, 1914; Caster, 1934; Broughton and others, 1962; Rickard, 1975).<br />

Because the Catskill deIta experienced periods of progradation, punc-<br />

tuated by periods of transgression, a dist<strong>in</strong>ct sequence of cyclic lithologies<br />

developed (Fig. 3).<br />

differences <strong>in</strong> the amount of clastic <strong>in</strong>put dur<strong>in</strong>g different phases of deltaic<br />

13<br />

Because of vary<strong>in</strong>g distances from the source area and<br />

progradation, the vertical sequences are not everywhere similar throughout<br />

the distribution of the black shale,as might be expected. Figure 3 demon-<br />

strates some of the regional variations <strong>in</strong> the black-shale sequence..<br />

Near the eastern source area, the sequence consists of cyclic alterna-<br />

tions of unfossiliferous, black, fissile shale with <strong>in</strong>tervals of green to<br />

gray shale, siltstone and sandstone, which may be very fossiliferous; locally,<br />

fossiliferous limestones may be <strong>in</strong>terbedded with the green to gray shale.<br />

In an eastward direction, the black shales eventually tongue out <strong>in</strong>to the<br />

coarser clastics, whereas the coarser, clastic <strong>in</strong>tervals p<strong>in</strong>ch out westwardly<br />

<strong>in</strong>to the black shales. In general, there is an eastward change to coarser<br />

and coarser clastics and a gradation from black shales <strong>in</strong> the west to redbeds<br />

<strong>in</strong> the east.<br />

Because few of the coarser clastic <strong>in</strong>tervals prograded beyond the<br />

Appalachian Bas<strong>in</strong>, the black-shale sequence <strong>in</strong> eastern and east-central<br />

parts of the adjacent craton are largely unfossiliferous fissile black


~~ ~ ~~~<br />

North Odrota Iowa Ill<strong>in</strong>ois Central <strong>Kentucky</strong> Western Oh<br />

Figure 3. Schematic cross section show<strong>in</strong>g the distribution of black shales and related facies f<br />

to Idaho. The th<strong>in</strong> Pipe Creek black shale separates the Angola and Hanover Shale (7)<br />

th<strong>in</strong> to show on the section. Not drawn to scale (adapted from Gutschick and Moreman<br />

Potter and others, 1980


shales with two or three, th<strong>in</strong> unfossiliferous,but bioturbated,green-shale<br />

<strong>in</strong>tervals. In central and western parts of the craton, where the green<br />

shales and coarser clastics from eastern sources have p<strong>in</strong>ched out (Fig. 3),<br />

the sequence may be composed entirely of black, fissile shale. Some of these<br />

black-shale sequences on western parts of the adjacent craton may conta<strong>in</strong><br />

th<strong>in</strong> green-shale <strong>in</strong>tervals derived from sources other than the Catskill<br />

Delta.<br />

In the Catskill Delta and adjacent parts of western Pennsylvania and<br />

Ohio, seven major black-shale units (Marcellus, Geneseo, Middlesex, Rh<strong>in</strong>e-<br />

street, Huron-Dunkirlc, Cleveland, and Sunbury) and <strong>in</strong>terven<strong>in</strong>g clastic units<br />

occur. Each successive black-shale unit overlaps underly<strong>in</strong>g black-shale<br />

units on the western marg<strong>in</strong> of the Appalachian Bas<strong>in</strong> as they were progres-<br />

sively displaced westwardly by prograd<strong>in</strong>g wedges of green shale and coarser<br />

clastics (Fig. 3). Only the last three black-shale units (Huron-Dunkirk,<br />

Cleveland, and Sunbury) and the last three coarser clastic wedges (Upper<br />

Olentangy-Mover-Angola, Chagr<strong>in</strong>-Three Lick, and Bedford-Berea) effectively<br />

migrated beyond the Appalachian Bas<strong>in</strong> onto parts of the C<strong>in</strong>c<strong>in</strong>nati Arch and<br />

beyond.<br />

The earlier black-shale units and <strong>in</strong>terven<strong>in</strong>g coarser clastic<br />

<strong>in</strong>tervals are essentially restricted to the Appalachian Bas<strong>in</strong> (Fig. 3).<br />

15


Tectonic Sett<strong>in</strong>g<br />

It is difficult to discuss a depositional model for the Upper Devonian-<br />

Lower Mississippian black shales of the east-central United States without<br />

some reference to the regional tectonic framework, for much of the black-shale<br />

deposition occurred dur<strong>in</strong>g and at the end of a major cont<strong>in</strong>ent-cont<strong>in</strong>ent col-<br />

lisional event known as the Acadian Orogeny.<br />

This collisional event not<br />

only created the Acadian highlands <strong>in</strong> what is now New England and the Mari-<br />

time prov<strong>in</strong>ces of Canada, from which most of the Upper Devonian clastics <strong>in</strong><br />

this area were derived, but also probably caused reactivation of certa<strong>in</strong><br />

basement structures and periods of broad epeirogenic uplift and subsidence<br />

which <strong>in</strong>fluenced black-shale deposition.<br />

Devonian-Mississippian black-shale deposition occurred dur<strong>in</strong>g a period<br />

of global transgression or submergence which accompanied the Acadian and<br />

other coeval tectonic events characterized by convergence at craton marg<strong>in</strong>s.<br />

The correspondence of global transgression with periods of plate convergence<br />

probably is not co<strong>in</strong>cidental.<br />

related periods of global transgression to periods of plate convergence dur<strong>in</strong>g<br />

which spread<strong>in</strong>g rates were accelerated. The relationship is twofold. Dur<strong>in</strong>g<br />

periods of accelerated spread<strong>in</strong>g, spread<strong>in</strong>g centers and adjacent ocean bot-<br />

toms are typically elevated caus<strong>in</strong>g upward displacement of ocean waters and<br />

hence transgression (Johnson, 1971).<br />

Both Johnson (1971) and Sloss and Speed (1974)<br />

At the same time, subduction beneath<br />

the <strong>in</strong>volved cont<strong>in</strong>ents caused differential subsidence of the craton and<br />

transgression (Sloss and Speed, 1974).<br />

Although the Acadian event has been ascribed to a number of different<br />

plate-tectonic models, some <strong>in</strong>volv<strong>in</strong>g different plates, we have chosen a<br />

model developed by McKerrow and Ziegler (1972) and later expanded on by<br />

Dewey and Kidd (1974) as best fitt<strong>in</strong>g the present evidence. Their tectonic<br />

16


scenario began with the Caledonian Orogeny <strong>in</strong> the Upper Silurian and lower-<br />

most Devonian. At this time, the Baltic Shield (Baltica) collided with North<br />

America-Greenland (Laurentia) thereby partially clos<strong>in</strong>g the Proto-Atlantic<br />

or Iapetus Ocean from northern Scandanavia to Ireland.<br />

formation of the Caledonides and a larger cont<strong>in</strong>ental mass known as Laurussia<br />

(see Ziegler and others, 1979, for reconstructions; Fig. 4). Accord<strong>in</strong>g to<br />

McKerrow and Ziegler (1972) and Dewey and Kidd (1974), however, the southern<br />

portion of the Proto-Atlantic did not close completely dur<strong>in</strong>g the Caledonian<br />

Orogeny, which left the southern part of the former Baltica extend<strong>in</strong>g south-<br />

westward as a long pen<strong>in</strong>sula.<br />

chusetts Pen<strong>in</strong>sula (McKerrow and Ziegler, 1972) or as the Avalon Prong (Dewey<br />

and Kidd, 1974) and consisted of present-day eastern Newfoundland, eastern<br />

Nova Scotia, and eastern Massachusetts (Fig. 4). Dur<strong>in</strong>g the Middle Devonian,<br />

this pen<strong>in</strong>sula was impacted aga<strong>in</strong>st North America by collision with north-<br />

western South America from Peru to Venezuela (Gondwanaland) result<strong>in</strong>g <strong>in</strong> the<br />

Acadian Orogeny (McKerrow and Ziegler, 1972; Dewey and Kidd,1974;Fig.4). Most<br />

major deformation was conf<strong>in</strong>ed to the northern Appalachians from eastern New-<br />

foundland to Pennsylvania (Rodgers, 1967) where the cont<strong>in</strong>ent-cont<strong>in</strong>ent col-<br />

lision had occurred. Collision occurred first to the northeast and with time<br />

extended to the southwest. Accord<strong>in</strong>g to Donohoe and Pajarie (1973) the<br />

orogenic event <strong>in</strong> the northeast may have begun as early as the late Early<br />

Devonian, but the ma<strong>in</strong> collisional event occurred dur<strong>in</strong>g the late Middle and<br />

early LateDevonian. Nonetheless, the eventapparentlycont<strong>in</strong>ued episodically <strong>in</strong>to<br />

the Early Mississippian farther to the southwest (Rodgers, 1967). With the<br />

Acadian Orogeny, Baltica was completely welded to Laurentia and the last<br />

phase <strong>in</strong> the formation of the Old Red Sandstone Cont<strong>in</strong>ent (Fig. 4) was com-<br />

pleted.<br />

17<br />

This resulted <strong>in</strong> the<br />

This pen<strong>in</strong>sula is known as the Avalon-Massa-


Figure 4. Generalized Late Devonian palemgeography and lithofacies for<br />

North America. Palmgeography summarized from McKerrow and<br />

Ziegler (1972), Seyfert and Serken (1973), Badham and Halls<br />

(1975), and Heckel and Witzke (1980); lithofacies largely from<br />

heckel and Witzke (1980).<br />

18


*<br />

In the southern Appalachians, there is also evidence of an Acadian<br />

orogenic event but the <strong>in</strong>tensity of the event was less and the style of<br />

tectonism differed from that to the north. The Avalon Zone has been traced<br />

<strong>in</strong>to the southern Appalachians (Williams, 1978) and evidence of deformation<br />

(e.g., Hatcher, 1978), volcanism (Dennison and Textoris, 1970, 1978) and<br />

granitic <strong>in</strong>trustion (e.g., - Plavlides, 1976) is present. Nonetheless, defor-<br />

mation and accompany<strong>in</strong>g relief were not as great <strong>in</strong> the southern Appalachians<br />

as to the north, for very little post-orogenic sediment was produced. Most<br />

of the Upper Devonian sediments <strong>in</strong> the foreland bas<strong>in</strong> of the southern Appa-<br />

lachians are either black shales or clastics derived from the northeast<br />

(Rodgers, 1967). It is unlikely that Acadian orogenic activity <strong>in</strong> the southern<br />

Appalachians resulted from cont<strong>in</strong>ent-cont<strong>in</strong>ent collision as <strong>in</strong> the north.<br />

A more likely cause is westward subduction beneath an island-arc system, micro-<br />

cont<strong>in</strong>ents (rifted cont<strong>in</strong>ental fragments), or a pen<strong>in</strong>sular cont<strong>in</strong>ental frag-<br />

ment (Hatcher, 1978).<br />

In the northern Appalachians where cont<strong>in</strong>ent-cont<strong>in</strong>ent collision occurred,<br />

the sites of most <strong>in</strong>tense deformation and tight sutur<strong>in</strong>g corresponded with<br />

projections or promontories <strong>in</strong> the irregular North American cont<strong>in</strong>ental mar-<br />

g<strong>in</strong>; <strong>in</strong> adjacent structural re-entrants, deformation was less <strong>in</strong>tense and sub-<br />

sidence may have predom<strong>in</strong>ated (Dewey and Kidd, 1974; Thomas, 1977). Such<br />

promontories collided first and more <strong>in</strong>tensely creat<strong>in</strong>g areas of great tectonic<br />

relief (Dewey and Burke, 1974; Dewey and Kidd, 1974). In this context, it is<br />

<strong>in</strong>terest<strong>in</strong>g to note that the position of the Catskill Delta, which apparently<br />

provided much of the f<strong>in</strong>e-gra<strong>in</strong>ed detritus found <strong>in</strong> the black shales, cor-<br />

responds to the New York promontory (see Williams, 1978).<br />

post-orogenic clastics derived from the tectonic highlands associated with<br />

this promontory accumulated <strong>in</strong> parts of the foreland or peripheral bas<strong>in</strong><br />

19<br />

Thick sequences of


associated with adjacent structural re-entrants (Dewey and Kidd, 1974; Thomas,<br />

1977). This accounts for the great thickness of Middle and Upper Devonian<br />

clastics found <strong>in</strong> the Catskill delta of Pennsylvania and southeastern New<br />

York (see Meckel, 1970; Thomas, 1977).<br />

Accord<strong>in</strong>g to McKerrow and Ziegler (1972) and Dewey and Kidd (1974), the<br />

collisional event produc<strong>in</strong>g the Acadian Orogeny was followed by rift<strong>in</strong>g,<br />

separation and south westward rotation of South America dur<strong>in</strong>g the Late Devon-<br />

ian and Early Carboniferous.<br />

movement of Africa toward the southern European microcont<strong>in</strong>ents (Fig. 4)<br />

20<br />

At the same time, however, the northwestward<br />

caused these microcont<strong>in</strong>ents to collide with east-central portions of Laurus-<br />

sia (Badham and Halls, 1975) and thereby ma<strong>in</strong>ta<strong>in</strong>ed the compressional regime<br />

<strong>in</strong> the Acadian area. As a result, pulses of clastic progradation, some with<br />

a more northerly source area, cont<strong>in</strong>ued to be debouched <strong>in</strong>to adjacent parts<br />

. of the foreland or peripheral bas<strong>in</strong>. Not until the Late Carboniferous-Early<br />

Permian did extensive cont<strong>in</strong>ental collision occur aga<strong>in</strong>, when northern Africa<br />

- (Gondwanaland) collided with European and North American parts of Laurussia <strong>in</strong><br />

the Hercynian and Alleghenian orogenies.


Paleogeography and Paleoclimatology<br />

In the Middle Devonian, collision of Laurentia and Baltica resulted <strong>in</strong><br />

a reassembled equatorial landmass called Laurussia (Ziegler and others, 1979;<br />

Bambach and others, 1980). Terrestrial or cont<strong>in</strong>ental portions of this landmass<br />

have been called the Old Red Sandstone (ORS) Cont<strong>in</strong>ent (e.g., - Goldr<strong>in</strong>g<br />

and Langenstrassen, 1979; Fig. 4). Southeastern portions of the ORS Conti-<br />

nent (present-dayCanadianblaritimeprov<strong>in</strong>ces andNew England; Fig. 4)werebounded<br />

by the Acadian Mounta<strong>in</strong>s which apparently formed the southwestern part of a<br />

pen<strong>in</strong>sula which extended partially down what is today the New England and<br />

mid-Atlantic coastl<strong>in</strong>e of the United States. Farther northward, the Acadian<br />

Mounta<strong>in</strong>s jo<strong>in</strong>ed the Caledonide Mounta<strong>in</strong>s <strong>in</strong> what are parts of present-day<br />

Ireland, Scotland, Greenland,and Norway.<br />

This belt of mounta<strong>in</strong>s cont<strong>in</strong>ued<br />

westward around northern Greenland <strong>in</strong>to parts of the Canadian Arctic Archi-<br />

pelago. On the western marg<strong>in</strong> of the cont<strong>in</strong>ental landmass, the Antler orogenic<br />

highlands began to rise dur<strong>in</strong>g the Late Devonian,as older Devonian and under-<br />

ly<strong>in</strong>g oceanic rocks were deformed and subsequently obducted eastward on-to the<br />

western marg<strong>in</strong> of the craton (Poole, 1974).<br />

Ly<strong>in</strong>g between the Antler orogenic belt to the northwest and the Acadian<br />

orogenic belt to the southwest was a large expanse of low-ly<strong>in</strong>g craton partially<br />

covered by epicont<strong>in</strong>ental seas dur<strong>in</strong>g the Late Devonian. Immediately craton-<br />

ward of each belt, subsid<strong>in</strong>g foreland, peripheral, or exogeosyncl<strong>in</strong>al bas<strong>in</strong>s<br />

developed <strong>in</strong> which great thicknesses of flyschlike mudstone, siltstone, and<br />

sandstone with m<strong>in</strong>or amounts of impure limestone accumulated.<br />

parts of the craton were generally low-ly<strong>in</strong>g with essentially little or no<br />

relief.<br />

Middle-Late Devonian transition resulted <strong>in</strong> brief periods of emergence and<br />

erosional planation caus<strong>in</strong>g the low relief (Ham and Wilson, 1967).<br />

The <strong>in</strong>terven<strong>in</strong>g<br />

Epeirogenic uplift dur<strong>in</strong>g the late Early Devonian and aga<strong>in</strong> near the<br />

21<br />

Although


local domes and arches like the C<strong>in</strong>c<strong>in</strong>nati Arch were probably periodically<br />

emergent dur<strong>in</strong>g the Late Devonian, none of these structures was apparently<br />

high enough or of sufficient duration to affect circulation <strong>in</strong> the cratonic<br />

seas for long.<br />

the Transcont<strong>in</strong>ental Arch which extended southwestward from the Canadian<br />

Shield to New Mexico as a large pen<strong>in</strong>sula or series of large islands (Fig. 4).<br />

This arch stood high enough dur<strong>in</strong>g the Late Devonian that it acted as an<br />

emergent barrier or shoal area that prevented large-scale exchange of sedi-<br />

ments and waters so that different sedimentary regimes developed on each<br />

side of the arch.<br />

The only major structure which had this b<strong>in</strong>d of effect was<br />

On the northwestern side of the arch, carbonate deposition<br />

dom<strong>in</strong>ated, whereas the southeastern side was dom<strong>in</strong>ated by the deposition of<br />

black, eux<strong>in</strong>ic muds.<br />

The eux<strong>in</strong>ic epicont<strong>in</strong>ental sea southeast of the Trans-<br />

cont<strong>in</strong>ental Arch, hereafter called the "<strong>Black</strong>-Shale Sea", opened to the south-<br />

west <strong>in</strong>to deeper oceanic waters, but <strong>in</strong> the northward direction, the sea<br />

progressively tapered to a narrow arm project<strong>in</strong>g <strong>in</strong>to the area presently<br />

known as Hudson Bay (Fig. 4). The "<strong>Black</strong>-Shale Sea" was not only enclosed<br />

on the western side by the Transcont<strong>in</strong>ental Arch, but also on the north by<br />

the Old Red Sandstone Cont<strong>in</strong>ent, on the east by the Acadian Mounta<strong>in</strong>s, and<br />

on the southeast and south (Conant and Swanson, 1961; breger and Brown, 1962;<br />

Cook and Bally, 1975) by a low-ly<strong>in</strong>g pen<strong>in</strong>sula, which at times may have been<br />

jo<strong>in</strong>ed to the emergent Ozark Uplift (Fig. 4). Most of these border<strong>in</strong>g lands<br />

were probably vegetated at one time or another (Beck, 1964). Hence, except<br />

for a southwestern outlet to the open ocean and a shallow-water connection<br />

across the Transcont<strong>in</strong>ental Arch, the "<strong>Black</strong>-Shale Sea" was a nearly enclosed<br />

epicont<strong>in</strong>ental sea.<br />

Most workers agree that Laurussia was an equatorial landmass, but there<br />

is some difference regard<strong>in</strong>g placement of the Devonian'paleoequator. Smith<br />

22


and others (1973) <strong>in</strong>terpreted the paleoequator to have run north of Green-<br />

land and northwest of Alaska, whereas many other workers (McElh<strong>in</strong>ny, 1973;<br />

Woodrow and others, 1973; Seyfert and Sirk<strong>in</strong>, 1973; Dott and Batten, 1971;<br />

Lowe, 1975; Zonenshap and Gorodnitskiy, 1977; Habicht, 1979) <strong>in</strong>dicated that<br />

the paleoequator passed through southern Greenland, Hudson Bay and the Pacific<br />

Coast. Others, however, suggested that the paleoequator essentially paral-<br />

led the eastern Atlantic coastl<strong>in</strong>e of the United States (Ba<strong>in</strong>, 1963) or ran<br />

through northern Greenland and north-central Canada (Gre<strong>in</strong>er, 1978). More<br />

recently, two new <strong>in</strong>terpretations for paleoequator placement have been devel-<br />

oped by Heckel and Witzke (1970) and Ziegler and others (19791, Scotese and<br />

others (1979), and Bambach and others (1980). Heckel and Witzke (1979) placed<br />

the Late Devonian paleoequator east of Alaska and ran it through British<br />

Columbia, Wash<strong>in</strong>gton, Oregon, and California; their <strong>in</strong>terpretation is based<br />

largely on climatic and sedimentological criteria. Heckel and Witzke (1979)<br />

not only provided new and <strong>in</strong>trigu<strong>in</strong>g<strong>in</strong>terpretations about the placement of the<br />

-<br />

Devonian paleoequator and climatic belts, but also discussedthe <strong>in</strong>consistencies<br />

of earlier paleoequator reconstructions. Heckel and Witzke did not consider,<br />

however, the newer reconstruction of Ziegler and others (1979), Scotese<br />

and others (1979) and Bambach and others (1980) which <strong>in</strong>dicates that the<br />

Devonian paleoequator cont<strong>in</strong>ued from the Canadian Maritime prov<strong>in</strong>ces through<br />

the central United States and Baja California (Fig. 4). This reconstruction<br />

is based on the <strong>in</strong>tegration of paleomagnetic, faunal, tectonic, and climatic<br />

evidence and appears to be more consistent with currently available evidence<br />

than does the reconstruction by Heckel and Witzke (1979).<br />

The patterns and dynamics of atmospheric circulation have rema<strong>in</strong>ed much<br />

the same s<strong>in</strong>ce the beg<strong>in</strong>n<strong>in</strong>g of the Phanerozoic (Drewry and others, 1974).<br />

Because atmospheric circulation and its modification by cont<strong>in</strong>ental<br />

23


physiography ultimately exert a major control over the distribution of mar<strong>in</strong>e<br />

carbonates, evaporites, clastics, and certa<strong>in</strong> organo-sedimentary structures<br />

such as reefs, the distribution of these sediments and structures can provide<br />

valuable paleogeographic and paleoclimatic implications for the Late Devonian<br />

(Heckel and Witzke,,1979). Heckel and Witzke have summarized the most impor-<br />

tant sedimentological patterns and have developed a set of reasonable paleo-<br />

geographic <strong>in</strong>ferences from them for the Late Devonian.<br />

believe that these <strong>in</strong>ferences can adequately expla<strong>in</strong> Late Devonian black-shale<br />

deposition, which must have some basis <strong>in</strong> paleogeography and paleoclimatology.<br />

Us<strong>in</strong>g the same data as Heckel and Witzke (1979) and the paleoequator of Ziegler,<br />

Scotese, Bambach and their co-workers, an alternate set of paleogeographic and<br />

paleoclimatic <strong>in</strong>ferences for the Late Devonian can be made which are consistent<br />

with modern patterns of oceanographic and atmospheric circulation and aid<br />

considerably <strong>in</strong> understand<strong>in</strong>g black-shale deposition. We will now exam<strong>in</strong>e<br />

the distribution of carbonates, evaporites, reefs and other features.<br />

24<br />

However, we do not<br />

Upper Devonian shallow-water carbonates <strong>in</strong> our <strong>in</strong>terpretation are restricted<br />

to a waxqtropical-subtropical belt which is free of major clastic <strong>in</strong>flux and<br />

located with<strong>in</strong> 30 degrees of the equator (Fig. 4). Upper Devonian reefs are<br />

restricted to a similar belt. Precipitation of carbonate by both biological<br />

and physical means is greatly enhanced <strong>in</strong> this belt due to <strong>in</strong>creased temperature<br />

and sal<strong>in</strong>ity (Lees, 1975.; Heckel and Witzke, 1979; Habicht, 1979).<br />

Evaporites typically form <strong>in</strong> restricted environments characterized by<br />

excessive evaporation. Accord<strong>in</strong>g to Lisitz<strong>in</strong> (1972) and Heckel and Witzke<br />

(1979) such arid conditions characterize the dry, tropical trade-w<strong>in</strong>d belts<br />

occurr<strong>in</strong>g on either side of the equator with<strong>in</strong> the carbonate belt (approximately<br />

10 to 30 degrees North and South); evaporites are absent <strong>in</strong> the humid, equa-<br />

torial belt (doldrums) because of dilution by excess precipitation. In our


econstrktion, thick, Upper Devonian evaporites are restricted to latitudes<br />

10 to 20 degrees north of the paleoequator <strong>in</strong> the dry, trade-w<strong>in</strong>d belt <strong>in</strong><br />

the ra<strong>in</strong>-shadow of Caledonide mounta<strong>in</strong>s.<br />

Clastics are most abundant <strong>in</strong> the ra<strong>in</strong>y, humid zones where vast amounts<br />

of detrital sediments are supplied by weather<strong>in</strong>g and erosion of adjacent land<br />

masses. These ra<strong>in</strong>y zones <strong>in</strong>clude the humid, equatorial belt (doldrums) with<strong>in</strong><br />

5 to 10 degrees of and on either side of the equator, the temperate storm belts<br />

rang<strong>in</strong>g from approximately 35 to 60 degrees north and south of the equator, and<br />

w<strong>in</strong>dward sides of mounta<strong>in</strong> ranges <strong>in</strong> the trade-w<strong>in</strong>d belt (Strahler and Strahler,<br />

1973; Heckel and Witzke, 1979).<br />

means that the tropical carbonate belt may be split along the equator by an<br />

equatorial clastic belt and bounded poleward by temperate clastic belts (Hec-<br />

kel and Witzke, 1979).<br />

25<br />

This arrangement of humid, clastic-rich belts<br />

Heckel and Witzke (1979, Fig. 3c) suggested that the Late Devonian equa-<br />

torial and temporate clastic belts nearly co<strong>in</strong>cided with the Antler and Acad-<br />

ian mounta<strong>in</strong> belts respectively.<br />

quences associated with these belts required great amounts of ra<strong>in</strong> which neces-<br />

sitate presence <strong>in</strong> one of the two humid, clastic belts.<br />

the necessity of ra<strong>in</strong> nor the immensity of the clastic deposits associated<br />

with the Antler mounta<strong>in</strong> belt, but we do question the paleoclimatic and<br />

paleogeographic orig<strong>in</strong>s of that ra<strong>in</strong> and the relative immensity of the Cats- .<br />

kill delta clastics <strong>in</strong> comparison.<br />

They argued that the immense detrital se-<br />

We do not question<br />

In our <strong>in</strong>terpretation (Fig. 4), the clastics associated with the Antler<br />

Mounta<strong>in</strong>s were deposited on the w<strong>in</strong>dward side of the mounta<strong>in</strong>s <strong>in</strong> a trade-<br />

w<strong>in</strong>d belt.<br />

The dry trade w<strong>in</strong>ds would have picked up sufficient moisture while<br />

over the epicont<strong>in</strong>ental seas east of the mounta<strong>in</strong>s. As the trade w<strong>in</strong>ds were<br />

forced to rise when cross<strong>in</strong>g the Antler Mounta<strong>in</strong>s, a great deal of orographic<br />

precipitation would have resulted on the eastern flank, carry<strong>in</strong>g much detrital


material <strong>in</strong>to adjacent parts of the epicont<strong>in</strong>ental sea. Clastics <strong>in</strong> the<br />

extreme northwestern parts of Canada and south of the Arctic Archipelago<br />

Mounta<strong>in</strong>s occurred <strong>in</strong> the temperate, humid belt. Moreover, as the prevail-<br />

<strong>in</strong>g westerly w<strong>in</strong>ds imp<strong>in</strong>ged on the Arctic Archipelago Mounta<strong>in</strong>s,,they would<br />

have been forced to rise, result<strong>in</strong>g <strong>in</strong> a great deal of orographic precipi-<br />

tation. This precipitation and the result<strong>in</strong>g alluvial and deltaic sedimen-<br />

tation, comb<strong>in</strong>ed with the humid, subtropical climate, expla<strong>in</strong>s the presence<br />

of Late Devonian coal <strong>in</strong> the Arctic Archipelago islands.<br />

The Catskill delta, on the other hand, was apparently located <strong>in</strong> the<br />

humid equatorial belt near the southern belt of easterly trade w<strong>in</strong>ds.<br />

dom<strong>in</strong>ance of easterly w<strong>in</strong>ds <strong>in</strong> this area is <strong>in</strong>dicated by the distribution and<br />

thickness patterns of the Tioga Bentonite (Dennison and Textoris, 1970, 1971,<br />

1978). The delta, we believe, was very def<strong>in</strong>itely located <strong>in</strong> the ra<strong>in</strong>shadow<br />

of the Acadian Mounta<strong>in</strong>s and hence did not receive the maximum precipitation nor<br />

mally associated with the humid, equatorial belt.<br />

sediment-starved nature of the adjacent, epicont<strong>in</strong>ental (black-shale) seas<br />

and by <strong>in</strong>dicators of restricted ra<strong>in</strong>fall such as dipnoan trace fossils,<br />

carbonate paleosols, and redbeds <strong>in</strong> the Catskill-Old Red Sandstone facies<br />

(Woodrow and others, 1973; Allen, 1979). We will return to these arguments<br />

aga<strong>in</strong> <strong>in</strong> a later section.<br />

26<br />

The<br />

This is reflected <strong>in</strong> the<br />

Further westward, the humid equatorial belt co<strong>in</strong>cided with parts of the<br />

Transcont<strong>in</strong>ental Arch. However, because the arch had no significant relief<br />

and was developed on older carbonates, it did not supply sufficient detrital<br />

sediments to form the thick, coarse clastic sequences that often characterize<br />

the humid equatorial belt.<br />

Because of this, th<strong>in</strong> green-shales and shaly<br />

carbonates predom<strong>in</strong>ated <strong>in</strong> this part of the Late Devonian equatorial belt.<br />

South America (western Gondwanaland, Fig. 4) at this time was largely


situated between 5 and 30 degrees south latitude, an area where abundant<br />

carbonates might<br />

be expected, but<br />

few Devonian rocks are present <strong>in</strong> reality.<br />

Although doubt exists about whether many Upper Devonian rocks are<br />

<strong>in</strong> the northern and western seaway, those rocks present are largely clastic.<br />

Conditions for carbonate deposition apparently were not favorable, for north-<br />

ern parts of the sea were on the w<strong>in</strong>dward side of a mounta<strong>in</strong> range (Columbia<br />

and Venezuela) where clastic <strong>in</strong>flux would have diluted any carbonates, and<br />

western sides of the seaway were probably subject to upwell<strong>in</strong>gs of cold,<br />

less sal<strong>in</strong>e waters from the subtropical gyre on the eastern side of the<br />

ocean (see Lees, 1975; Heckel and Witzke, 1979).<br />

27<br />

present


DEPOSITIONAL MODEL<br />

Although the specific purpose of this study is to expla<strong>in</strong> the deposi-<br />

tion of the Upper Devonian-Lower Mississippian black-shale sequence <strong>in</strong><br />

eastern <strong>Kentucky</strong>, this task cannot adequately be completed without exam<strong>in</strong>-<br />

<strong>in</strong>g the black shale throughout its entire distribution <strong>in</strong> North America, as<br />

well as the units contiguous with it.<br />

of these black shales have already been proposed, and significant po<strong>in</strong>ts<br />

regard<strong>in</strong>g the orig<strong>in</strong> of these shales have been brought out <strong>in</strong> many of them.<br />

Most of the models represent some variation on llshallow-waterll or "deep-<br />

water" themes the most important of which are listed <strong>in</strong> the <strong>in</strong>troductory<br />

section.<br />

A number of models for the deposition<br />

We believe that neither of these basic models can adequately ex-<br />

pla<strong>in</strong> the entire black-shale sequence; whatever model is f<strong>in</strong>ally def<strong>in</strong>ed<br />

must be able to expla<strong>in</strong> both shallow- and deep-water shales <strong>in</strong> the same<br />

sequence, for there is ample evidence of both types of shale.<br />

The model we have developed emphasizes regional tectonic, climatic,<br />

and sedimentary patterns rather than the specifics of black-shale deposition.<br />

The specific conditions under which black shaLes accumulate are already<br />

fairly well known.<br />

What is not so well known, however, are the regional<br />

controls which permitted these conditions to form and operate.<br />

regional controls that will be emphasized <strong>in</strong> this model.<br />

parts of the model are really totally new.<br />

our evidence has been discussed by earlier workers.<br />

useful the recent work of Heckel (1977) and Heckel and Witzke (1979), al-<br />

though we disagree with their placement of the paleoequators.<br />

It is these<br />

Nonetheless, few<br />

At some time or other, most of<br />

We found particularly<br />

What is new<br />

about this model is our s<strong>in</strong>gular contention that these black shales owe their<br />

orig<strong>in</strong> to an <strong>in</strong>terplay of tectonic and paleoclimatic factors unique to the<br />

Laurussian cont<strong>in</strong>ental mass (North America and northwestern Europe, Fig. 4)<br />

28


29<br />

from the Middle Devonian through the earliest Mississippian. In many earlier<br />

studies, the <strong>in</strong>fluence of tectonic and climatic factors on the orig<strong>in</strong> of these<br />

black shales was too often overlooked.<br />

Sources of Organic Matter<br />

Orig<strong>in</strong> of <strong>Black</strong> Muds<br />

Two problems are <strong>in</strong>herent <strong>in</strong> the orig<strong>in</strong> of black muds: a source of<br />

abundant organic matter and a means of preserv<strong>in</strong>g that organic matter from<br />

the normal physical processes of oxidation that destroy it and biological<br />

processes that consume it.<br />

<strong>in</strong> the plankton that <strong>in</strong>habit the surface waters of seas and oceans almost<br />

everywhere. Trask (1939) estimated an annual production rate for organic<br />

matter <strong>in</strong> the ocean on the order of 1000 grams per square meter (approximately<br />

3000 tons per square mile).<br />

A source of organic matter is readily available<br />

This productivity may be further enhanced <strong>in</strong><br />

smaller, largely enclosed seas where surface runoff from nearby land can<br />

cont<strong>in</strong>ually replenish nutrients; or <strong>in</strong> seas along the eastern marg<strong>in</strong>s of<br />

oceans where nutrient-rich waters from oceanic depths upwell and mix with<br />

shallow waters result<strong>in</strong>g <strong>in</strong> great plankton blooms(Schopf, 1980, p. 102;<br />

Bougis, 1976). Paleogeographic reconstructions of North America dur<strong>in</strong>g the<br />

Late Devonian <strong>in</strong>dicate that the "<strong>Black</strong>-Shale Sea" was a largely enclosed sea<br />

or embayment (Fig. 4). Because this sea opened to the southwest and some of<br />

the shales deposited <strong>in</strong> it are highly phosphatic, it is also likely that<br />

deep, nutrient-rich, oceanic waters upwelled and mixed with the shallower<br />

waters of the "<strong>Black</strong>-Shale Sea."<br />

We will return to the role of oceanic up-<br />

well<strong>in</strong>g <strong>in</strong> the deposition of the black shale <strong>in</strong> a later section.<br />

Another important source of organic matter is that of terrestrial<br />

orig<strong>in</strong>. Gripenberg (1934) estimated that up to 2 million metric tons of


terrestrial organic material per year was be<strong>in</strong>g carried by rivers <strong>in</strong>to the<br />

Baltic Sea, where black anoxic muds are currently accumulat<strong>in</strong>g locally, and<br />

the Baltic Sea is about half the size of the "<strong>Black</strong>-Shale Sea." Unless this<br />

material is destroyed by physical oxidation or consumed by organisms or trans-<br />

ported beyond the depositional bas<strong>in</strong>, it must be deposited with the other<br />

sediments.<br />

In the Devonian-Mississippian black-shale sequence of North America<br />

evidence of terrestrial organic matter is nearly everywhere abundant.<br />

literature abounds with accounts of stems, logs, lepidostrobi, and other<br />

parts of terrestrial plants (e.g., - Hoover, 1960; Conant and Swanson, 1961;<br />

Breger and Brown, 1962, 1963). Callixylon logs are perhaps the best known ter-<br />

restrial constituents of the black shale. Most of this terrestrial organic<br />

material is assumed to have orig<strong>in</strong>ated <strong>in</strong> the east, especially around<br />

the Catskill Delta area where coals are known to occur (Woodrow and others,<br />

1973; Heckel and Witzke, 1979) and the <strong>in</strong>-place stumps of entire Callixylon<br />

forests have been exhumed (Goldr<strong>in</strong>g, 1924). The Ozark uplift and C<strong>in</strong>c<strong>in</strong>nati<br />

Arch may have also been sources of terrestrial plant debris.<br />

(1962, 1963) suggested that the black shales are composed primarily of ter-<br />

restrial (humic) organic debris, whereas more recent studies of the organic<br />

matter us<strong>in</strong>g carbon isotopes, suggest that the contribution of terrestrial<br />

organic matter <strong>in</strong>creases <strong>in</strong> an easterly direction toward the major source areas<br />

Potter and others, 1980).<br />

30<br />

The<br />

Breger and Brown<br />

The pr<strong>in</strong>cipal po<strong>in</strong>t of the preceed<strong>in</strong>g discussion is the fact that organic<br />

matter was relatively abundant <strong>in</strong> the large embayment that comprised the<br />

"<strong>Black</strong>-Shale Sea." Although the amount of organic matter <strong>in</strong> the form of<br />

plankton and other larger organisms liv<strong>in</strong>g <strong>in</strong> upper parts of the water column<br />

is usually rather large, conditions <strong>in</strong> and near the "<strong>Black</strong>-Shale Seal' -<br />

bas<strong>in</strong> configuration and size, nearby terrestrial sources of nutrients and


organic debris, and the presence of upwell<strong>in</strong>gs dur<strong>in</strong>g at least parts of<br />

black-shale deposition - would have served to enhance the production and<br />

accumulation of organic matter.<br />

Preservation of Organic Matter<br />

The effects of such a vast amount of organic matter can easily be<br />

reduced by physical oxidation, biologic consumption, or sediment dilution.<br />

When unusually large amounts of organic debris are sedimented, the oxygen<br />

demand of the physical system overrides that of the biological system, and<br />

free oxygen is depleted (Thiel, 1978). In a stratified water column where<br />

vertical replenishment of oxygen to the bottom can not take place, anoxic,<br />

reduc<strong>in</strong>g conditions develop, and more and more organic matter is preserved.<br />

The lack of free oxygen prevents metazoan life and only anaerobic and facul-<br />

tative anaerobic life can exist. A mechanism similar to this has been sug-<br />

gested by Byers (1977, 1979) and Heckel and Witzke (1979).<br />

It is also possible, however, for organic matter to be preserved under<br />

oxidiz<strong>in</strong>g conditions.<br />

<strong>in</strong> such abundance and so fast that organisms and oxidiz<strong>in</strong>g processes simply<br />

can not decompose all the mass.<br />

This can occur wherever organic matter accumulates<br />

accumulate organic matter <strong>in</strong> an oxidiz<strong>in</strong>g realm.<br />

tions would rapidly set <strong>in</strong> below the sediment-water <strong>in</strong>terface, environmental<br />

conditions on and above the substrate could be normal and support prolific<br />

benthic communities. The pr<strong>in</strong>cipal difference between this and the previous<br />

anaerobic situation is the fact that the abundant organic matter accumulates<br />

<strong>in</strong> water shallow enough to allow vertical mix<strong>in</strong>g and replenishment of oxygen<br />

as it is destroyed by oxidation and biological processes.<br />

these are probably represented by the upper Cretaceous Mancos <strong>Shales</strong> <strong>in</strong><br />

31<br />

In these circumstances, it is possible to<br />

Although reduc<strong>in</strong>g condi-<br />

Conditions like


Colorado, the lower Pennsylvanian Belden Shale of Colorado, the Upper Mis-<br />

sissippian, lower Penn<strong>in</strong>gton shales of eastern <strong>Kentucky</strong> and other fissile<br />

black shales which exhibit prolific benthic faunas. Similar conditions<br />

probably persisted locally dur<strong>in</strong>g the early stages of Devonian-Mississippian<br />

black-shale deposition, for <strong>in</strong> many areas possible <strong>in</strong>-place benthic faunas<br />

occur on black-shale substrates <strong>in</strong> lower parts of the section (L<strong>in</strong>ney, 1884;<br />

Foerste, 1906, Savage, 1930, 1931; Campbell, 1946; Hoover, 1960; L<strong>in</strong>eback,<br />

1968).<br />

Although evidence supports the presence of both reduc<strong>in</strong>g and oxidiz<strong>in</strong>g<br />

environmental conditions dur<strong>in</strong>g the deposition of the black muds themselves,<br />

we believe, as have most previous workers, that the former predom<strong>in</strong>ated. The<br />

relative lateral and vertical distributions of these two environmental con-<br />

ditions are particularly <strong>in</strong>structive to the depositional model and will be<br />

discussed later.<br />

Clastic Sources<br />

Although production and preservation of organic matter are important<br />

aspects <strong>in</strong> understand<strong>in</strong>g the formation of these black shales, we do not<br />

believe that they fully expla<strong>in</strong> the abundance or predom<strong>in</strong>ance of organic<br />

matter <strong>in</strong> the black-shale sequence.<br />

of these shales may be composed of organic matter.<br />

lack of clay and coarser clastics <strong>in</strong> these shales, especially <strong>in</strong> view of the<br />

fact that the Acadian orogenic event was occurr<strong>in</strong>g to the east.<br />

expect a situation similar to the earlier Taconic orogenic event, where the<br />

vast amounts of clastic debris debouched <strong>in</strong>to adjacent seas and was trans-<br />

ported as far west as Indiana, <strong>Kentucky</strong>, and Tennessee. If vast amounts of<br />

clastic debris and the pulses of oxidiz<strong>in</strong>g waters that accompanied them had<br />

32<br />

As previously mentioned up to one-third<br />

There is a surpris<strong>in</strong>g<br />

One might


een debouched <strong>in</strong>to the nearly enclosed "<strong>Black</strong>-Shale Sea?' to the west, it<br />

is doubtful that the present black-shale sequence would have been formed.<br />

Clastic dilution, comb<strong>in</strong>ed with oxidation and biologic consumption, would have<br />

reduced the relative abundance of organic debris, and its <strong>in</strong>fluence on the<br />

development of reduc<strong>in</strong>g conditions. Though not a new idea, we suggest that<br />

development of the present black-shale sequence is <strong>in</strong> large part related to<br />

the slow rate of clastic sedimentation, <strong>in</strong>dicated by the relative paucity<br />

of clay <strong>in</strong> much of the sequence.<br />

has been frequently applied to black-shale depositional conditions, is<br />

rather appropriate.<br />

some care, because even though slow sedimentation characterized large por-<br />

tions of the bas<strong>in</strong>, thick sequences of deltaic and turbiditic sediments<br />

were accumulat<strong>in</strong>g <strong>in</strong> the Catskill Delta region of New York and Pennsylvania.<br />

The questions then arise, why was clastic sedimentation so slow, and why<br />

was the <strong>in</strong>fluence of the Catskill Delta so comparatively small <strong>in</strong> the enclosed,<br />

<strong>in</strong>land bas<strong>in</strong> occupied by the "<strong>Black</strong>-Shale Sea"?<br />

Hence, the term "starved bas<strong>in</strong>", which<br />

The term Itstarved bas<strong>in</strong>", however, must be used with<br />

lies <strong>in</strong> the relationship between regional tectonic and climatic factors.<br />

33<br />

We suggest that the answer<br />

That the Catskill Delta was the major source of clastic sediment <strong>in</strong> what<br />

is now eastern United States dur<strong>in</strong>g the Middle and Late Devonian is Unques-<br />

tioned. Provenance studies (Towe, 1963; Potter and others, 1980), paleocur-<br />

rent studies (Potter and others, 1979, 1980) and the large, regional facies<br />

relationships (e.g., - Rich, 1951; Dunbar, 1960; Broughton and others, 1962)<br />

clearly <strong>in</strong>dicate an eastern source.<br />

Even though this <strong>in</strong>land sea was bordered<br />

on nearly all sides by land, these land areas except for the Acadian Mounta<strong>in</strong>s,<br />

were relatively low-ly<strong>in</strong>g (Conant and Swanson, 1961) and probably covered by<br />

forests and other vegetative cover (Beck, 1964). This land, an extension<br />

of the flat surface over which black-shale seas transgressed (Conant and Swanson,


1961), had apparently been nearly peneplaned dur<strong>in</strong>g the largely, emergent,<br />

erosive episode separat<strong>in</strong>g Middle and Upper Devonian rocks throughout most<br />

of the central United States.<br />

This event is marked by a prom<strong>in</strong>ent uncon-<br />

formity which Ham and Wilson (1967) suggested was probably the greatest<br />

unconformity of Devonian time. This surface which formed much of the land<br />

border<strong>in</strong>g the "<strong>Black</strong>-Shale Sea" was low <strong>in</strong> relief and largely developed on<br />

a carbonate terra<strong>in</strong>. Therefore, although border<strong>in</strong>g lands may have provided<br />

waters rich <strong>in</strong> dissolved substances, they apparently provided little <strong>in</strong> the<br />

way of substantial clastic <strong>in</strong>put.<br />

far removed from the <strong>in</strong>fluence of the Catskill Delta (Conant and Swanson,<br />

34<br />

Localized sandy facies with<strong>in</strong> black shales<br />

1961, p. 53) no doubt represent small streams debouch<strong>in</strong>g <strong>in</strong>to the sea from<br />

adjacent borderlands, but their <strong>in</strong>put was probably <strong>in</strong>consequential compared<br />

to that of the Catskill Delta.<br />

The Catskill Delta complex is an exogeosyncl<strong>in</strong>al wedge of clastic sedi-<br />

ment that spread cratonward through fluvial, deltaic, and turbiditic processes<br />

from an uplifted suture belt represented by the Acadian Mounta<strong>in</strong>s. These thick<br />

clastic wedges accumulated <strong>in</strong> the subsid<strong>in</strong>g peripheral or foreland bas<strong>in</strong> (also<br />

called an exogeosyncl<strong>in</strong>al or pericratonic bas<strong>in</strong>) just westward of the area of<br />

most <strong>in</strong>tense deformation, the New York promontory previously mentioned. Al-<br />

though vast amounts of f<strong>in</strong>e- and coarse-gra<strong>in</strong>ed clastics from the delta accum-<br />

ulated <strong>in</strong> the subsid<strong>in</strong>g peripheral bas<strong>in</strong>, comparatively little of this material<br />

was transported farther westward to cratonic portions of the 'I<strong>Black</strong>-Shale Sea".<br />

Only f<strong>in</strong>e-gra<strong>in</strong>ed clastics <strong>in</strong> suspension and f<strong>in</strong>e-gra<strong>in</strong>ed clastics from the<br />

distalmost portions of the delta ever reached the tt<strong>Black</strong>-Shale Sea".


Barriers to Clastic Sedimentation <strong>in</strong> the <strong>Black</strong>-Shale Sea<br />

Paleomagnetic data (e.g., - Ziegler and others, 1979) and lithostrati-<br />

graphic data used to compile the reconstruction of Late Devonian paleogeo-<br />

graphy <strong>in</strong> Figure 4 <strong>in</strong>dicate that the Late Devonian paleoequator crossed<br />

parts of the "<strong>Black</strong>-Shale Sea" and crossed the Acadian Mounta<strong>in</strong>s obliquely<br />

<strong>in</strong> the Maritime prov<strong>in</strong>ces of Canada.<br />

The equatorial belt is typically a<br />

rather humid, ra<strong>in</strong>y belt, because as the easterly, moisture-laden trade<br />

w<strong>in</strong>ds, particularly those blow<strong>in</strong>g across the ocean, converge at the equator,<br />

they undergo convection, rise, and drop their moisture as ra<strong>in</strong> due to cool<strong>in</strong>g<br />

and condensation (Strahler and Strahler, 1973). However, because the Acadian<br />

Mounta<strong>in</strong>s, at least periodically, formed a high orographic barrier which<br />

crossed the equator at an angle (Fig. 4), the easterly trade w<strong>in</strong>ds could<br />

not everywhere (e.g., - west of the Acadian Mounta<strong>in</strong>s) converge at the equator<br />

and undergo normal convection. Instead, when the trade w<strong>in</strong>ds met the<br />

Acadian Mounta<strong>in</strong>s, they were forced to rise before reach<strong>in</strong>g the equator.<br />

The cool<strong>in</strong>g and condensation that resulted caused most of the precipitation<br />

to fall on the eastern side of the mounta<strong>in</strong>s. Most of the heavy precipitation<br />

was dropped on the east side of the mounta<strong>in</strong>s.<br />

mounta<strong>in</strong>s, the then dry air descended and was heated, caus<strong>in</strong>g net evaporation<br />

rather than precipitation.<br />

After pass<strong>in</strong>g over the<br />

To summarize, the Acadian Mounta<strong>in</strong>s periodically<br />

formed a high orographic barrier which would have caused heavy orographic<br />

precipitation (Strahler and Strahler, 1.973) on the east side of the range,<br />

and a dry ra<strong>in</strong>shadow on the western side of the range (Fig. 5).<br />

Unfortunately,<br />

the thick clastic sequences which would have formed on the east side of the<br />

mounta<strong>in</strong>s have been so altered or destroyed by episodes of orogenic activity<br />

<strong>in</strong> this area, that their former presence is difficult to prove. Periods of<br />

35


I I I<br />

----- i<br />

'I a<br />

z<br />

Y<br />

vr<br />

c,<br />

(d<br />

U


a<strong>in</strong>shadow conditions on the western side, however, would have resulted <strong>in</strong><br />

low fluvial <strong>in</strong>put and slow sedimentation throughout most parts of the ad-<br />

jacent "<strong>Black</strong>-Shale Sea."<br />

permitted the abundant organic matter to become a major constituent of any<br />

sediment that accumulated <strong>in</strong> this sea.<br />

lar to this was presented by Grabau <strong>in</strong> 1913.<br />

The small amount of clastic <strong>in</strong>put would have<br />

37<br />

Interest<strong>in</strong>gly, a model somewhat simi-<br />

Besides the Acadian Mounta<strong>in</strong>s, no other major source of clastics for<br />

the <strong>in</strong>land "<strong>Black</strong>-Shale Seaf1 existed, and when that mounta<strong>in</strong> range was<br />

fully elevated, precipitation necessary for erod<strong>in</strong>g and transport<strong>in</strong>g sedi-<br />

ment <strong>in</strong>to that sea was probably not available due to the ra<strong>in</strong>shadow effect.<br />

Potential<br />

moisture-bear<strong>in</strong>g trade w<strong>in</strong>ds com<strong>in</strong>g from the northeast across<br />

the Old Red Sandstone Cont<strong>in</strong>ent would have been equally dry after cross<strong>in</strong>g<br />

the Caledonides (Fig. 4), and any convectional precipitation which did occur<br />

along the equator <strong>in</strong> this region would have fallen on the sea itself or on<br />

low-ly<strong>in</strong>g lands <strong>in</strong>capable of supply<strong>in</strong>g much clastic debris. The situation<br />

would have been much the same for trade w<strong>in</strong>ds approach<strong>in</strong>g from-the south and<br />

southeast. Therefore, we suggest that the prom<strong>in</strong>ent black-shale units which<br />

<strong>in</strong>tertongue with the thick clastics of the Catskill Delta, represent among<br />

other th<strong>in</strong>gs, periods when the Acadian Mounta<strong>in</strong>s formed an effective ra<strong>in</strong>-<br />

shadow barrier (Fig. 5) to the moisture-laden trade w<strong>in</strong>ds converg<strong>in</strong>g at the<br />

equator.<br />

On the other hand, when the mounta<strong>in</strong>ous barrier was lowered so that<br />

precipitation reached western parts of the mounta<strong>in</strong>s and provided the runoff<br />

and flwial discharge necessary for erod<strong>in</strong>g and transport<strong>in</strong>g the vast amounts<br />

of clastic debris westward to the Catskill Delta, much of this material never<br />

reached western cratonic portions of the "<strong>Black</strong>-Shale Sea."<br />

So the nearly<br />

cont<strong>in</strong>uous black-shale sequences farther westward on the craton not only


eflect periods of ra<strong>in</strong>shadow development, but the general <strong>in</strong>effectiveness<br />

of clastic-sediment transport mechanisms transverse to the mounta<strong>in</strong> range<br />

and peripheral bas<strong>in</strong>.<br />

We suggest <strong>in</strong> the follow<strong>in</strong>g section that this is related to the con-<br />

f<strong>in</strong><strong>in</strong>g nature of the subsid<strong>in</strong>g peripheral bas<strong>in</strong>.<br />

Middle and Late Devonian Transgression (and Regression)<br />

The Middle Devonian-through-Lower Mississippian black-shale sequence<br />

<strong>in</strong> North America represents a period of dom<strong>in</strong>ant transgression (e.g.,<br />

Conant and Swanson, 1961; Sloss, 1963; Gutschick and Moreman, 1967; Sutton<br />

and others, 1970; Byers, 1977, 1979) even though local areas like the Cat-<br />

skill Delta experienced dom<strong>in</strong>ant regression due to deltaic progradation.<br />

If the black-shale sequence is viewed as a s<strong>in</strong>gle unit, it can be traced<br />

laterally from the Middle Devonian Marcellus Shale of central New York<br />

across the cont<strong>in</strong>ent to the Lower Mississippian Exshaw Shale of western<br />

Canada. Viewed <strong>in</strong> this way, the transgression occurred dur<strong>in</strong>g a period of<br />

time l<strong>in</strong>k<strong>in</strong>g the Middle Devonian through Early Mississippian, result<strong>in</strong>g <strong>in</strong><br />

widespread deposition of the diachronous black-shale sequence (Conybeare,<br />

1979). The black-shale sequence is part of the larger Kaskaskia sedimentary<br />

sequence, encompass<strong>in</strong>g the Middle Devonian through Early Carboniferous; it<br />

represents a time of maximum cratonic subsidence and transgression (Sloss,<br />

1963; Sloss and. Speed, 1974). More importantly, however, Johnson (1971)<br />

and Sloss and Speed (1974) have related this and other dom<strong>in</strong>antly trans-<br />

gressive periods to episodes of <strong>in</strong>creased sea-floor spread<strong>in</strong>g, characterized<br />

by plate convergence at craton marg<strong>in</strong>s through obduction, subduction or<br />

collision.<br />

Moreover, this convergent mode seems to have dom<strong>in</strong>ated through-<br />

out the Middle and Late Devonian, and is evident <strong>in</strong> the subduction and<br />

38


collision form<strong>in</strong>g the Acadian Mounta<strong>in</strong>s (e.g., - McKerrow and Ziegler, 1972),<br />

the obduction form<strong>in</strong>g the Antler Mounta<strong>in</strong>s <strong>in</strong> the Cordilleran region (Poole,<br />

1974),and <strong>in</strong> the various degrees of subduction and/or collision form<strong>in</strong>g the<br />

ancestral Frank<strong>in</strong> Mounta<strong>in</strong>s <strong>in</strong> northern Canada, the Taimyr Mounta<strong>in</strong>s <strong>in</strong><br />

eastern ancestral Siberia,and the Tabberabberan Mounta<strong>in</strong>s along the southern<br />

and eastern marg<strong>in</strong>s of Gondwanaland (M<strong>in</strong>tz, 1977, p. 363). Cont<strong>in</strong>ental sub-<br />

mergence and result<strong>in</strong>g transgression are not only related to eustatic changes<br />

brought on by the elevation of spread<strong>in</strong>g centers and the accompany<strong>in</strong>g dis-<br />

placement of ocean water, but also by progressive cratonic depression, par-<br />

ticularly <strong>in</strong> craton-<strong>in</strong>terior bas<strong>in</strong>s with a "primordial predilection" for<br />

subsi!ence (Sloss and Speed, 1974). Moreover,, if subduction proceeds to<br />

the stage of imm<strong>in</strong>ent or ongo<strong>in</strong>g cont<strong>in</strong>ent-cont<strong>in</strong>ent collision,as occurred<br />

<strong>in</strong> the Acadian Mounta<strong>in</strong>s dur<strong>in</strong>g the Middle and Late Devonian, the edge of<br />

the consumed cont<strong>in</strong>ental block would have been further depressed by partial<br />

subduction <strong>in</strong>to a l<strong>in</strong>ear peripheral or foreland bas<strong>in</strong> on the cratonic side<br />

of the suture zone (see Dick<strong>in</strong>son, 1974). The progressive subsidence char-<br />

acteriz<strong>in</strong>g such a bas<strong>in</strong>, would have a def<strong>in</strong>ite conf<strong>in</strong><strong>in</strong>g effect on any<br />

clastics dumped <strong>in</strong>to it, and may expla<strong>in</strong> why coarser clastics were not trans-<br />

ported beyond the peripheral bas<strong>in</strong> <strong>in</strong>to the cratonic "<strong>Black</strong>-Shale Sea",<br />

although longitud<strong>in</strong>al transport along the bas<strong>in</strong> was effective as far south as<br />

Tennessee.<br />

Nonetheless, coarse-clastic sedimentation <strong>in</strong> the Catskill Delta occurred<br />

as regressive, progradational pulses of light-colored shale, siltstone and<br />

sandstone separated by transgressive pulses of black, clastic-deficient,<br />

organic-rich shales (Fig. 3). We suggest that the cyclicity of black shale<br />

and coarser clastics <strong>in</strong> the Catskill Delta was related to a pulsatory spread-<br />

<strong>in</strong>g rate and a resultant pulsatory rate of subduction, and/or collision <strong>in</strong> the<br />

39


Acadian Mounta<strong>in</strong>s (Fig. 5).<br />

the occurrence of <strong>in</strong>creased or decreased spread<strong>in</strong>g and subduction rates, the<br />

cyclicity of the thick clastic wedges <strong>in</strong> the Catskill Delta certa<strong>in</strong>ly repre-<br />

sents the alternation of times of high source areas and those of low source<br />

40<br />

Although it is difficult to prove specifically<br />

areas. In a collisional suture zone such as the Acadian Mounta<strong>in</strong>s, times of<br />

high, mounta<strong>in</strong>ous clastic sources would seem to best reflect times of <strong>in</strong>creased<br />

subduction and/or collision.<br />

<strong>in</strong>creased spread<strong>in</strong>g (and the result<strong>in</strong>g highlands) and climatic factors already<br />

discussed that apparently caused the cyclicity of black shales and clastics<br />

seen <strong>in</strong> the Catskill Delta.<br />

and illustrated with a sample stratigraphic <strong>in</strong>terval from the Catskill Delta<br />

<strong>in</strong> Figure 5.<br />

It is the <strong>in</strong>terrelationship between times of<br />

These <strong>in</strong>terrelationships are shown schematically<br />

An episode <strong>in</strong> our model beg<strong>in</strong>s with a period of <strong>in</strong>creased spread<strong>in</strong>g,<br />

caus<strong>in</strong>g <strong>in</strong>tensified subduction and/or collision <strong>in</strong> the Acadian Mounta<strong>in</strong>s (Fig.<br />

5, Phase 1); the result was twofold. First, the Acadian Mounta<strong>in</strong>s were up-<br />

lifted to form a high, orographic barrier.<br />

Secondly, the result<strong>in</strong>g eustatic<br />

sea-level rise and cratonic subsidence comb<strong>in</strong>ed to cause rapid transgression.<br />

The high orographic barrier created by the uplifted mounta<strong>in</strong>s blocked moisture-<br />

laden, easterly trade w<strong>in</strong>ds, so that most of their precipitation fell on the<br />

eastern side of the mounta<strong>in</strong>s. This created a ra<strong>in</strong>shadow on the western side<br />

of the mounta<strong>in</strong>s, and even though the mounta<strong>in</strong>s were high and could supply<br />

vast amounts of clastic debris, little or no precipitation was available here<br />

to erode and transport the debris to the adjacent seas.<br />

of redbeds, calcareous crusts, and associated features <strong>in</strong> parts of the Catskill<br />

Delta suggest that areas west of the mounta<strong>in</strong>s may have been arid and dry (see<br />

Woodrow and others, 1973).<br />

In fact, the presence<br />

The result<strong>in</strong>g low clastic <strong>in</strong>put from these moun-<br />

ta<strong>in</strong>s, the only major clastic source <strong>in</strong> southeastern Larussia, produced


"starved-bas<strong>in</strong>" conditions <strong>in</strong> the adjacent 81<strong>Black</strong>-Shale Sea. It The sediments<br />

deposited <strong>in</strong> the sea at this time largely reflect sedimentation of the abun-<br />

dant organic debris produced <strong>in</strong> upper layers of the lv<strong>Black</strong>-Shale Sea."<br />

At the same time clastic sedimentation was effectively reduced, waters<br />

from the adjacent ll<strong>Black</strong>-Shale Sea" rapidly transgressed over former bas<strong>in</strong><br />

and slope clastics and low-ly<strong>in</strong>g alluvial and delta pla<strong>in</strong>s (Sutton and others,<br />

1970) to the east, as well as over older black muds and/or a relatively smooth<br />

erosion surface to the west. Such episodes of uplift and transgression appar-<br />

ently occurred rapidly, for the basal contact of the black shales with under-<br />

ly<strong>in</strong>g clastics is usually sharp and any shallow-water deposits are usually<br />

condensed <strong>in</strong>to the basal lag deposits already described, rarely is there any<br />

<strong>in</strong>ter. tongu<strong>in</strong>g.<br />

Periodically, the spread<strong>in</strong>g rate slowed and became episodic so that<br />

periods of active tectonism (subduction and collision) alternated with periods<br />

of tectonic cpiesence (Fig. 5, Phase 2). As a result, short periods of uplift,<br />

accompanied by small and brief, but rapid, transgressions of sediment-starved<br />

seas, alternated with short periods of tectonic quiesence and regression,<br />

dur<strong>in</strong>g which the ra<strong>in</strong>shadow effect was reduced and sediment transport <strong>in</strong>to the<br />

<strong>Black</strong>-Shale Sea resumed. The lithologic expression of this phase <strong>in</strong> the model<br />

is a series of black-shale <strong>in</strong>tertongues that term<strong>in</strong>ate most of the black-shale<br />

units <strong>in</strong> an eastward direction (Figs. 3, 5). In some th<strong>in</strong>ner black-shale units<br />

like the Pipe Creek, this <strong>in</strong>tertongu<strong>in</strong>g is essentially absent or reflected as<br />

a stillstand stage between Phase 1 and Phase 3.<br />

In Phase 3 of our model, spread<strong>in</strong>g, and hence subduction, slowed to such<br />

a po<strong>in</strong>t that weather<strong>in</strong>g and erosion ga<strong>in</strong>ed ascendancy over uplift <strong>in</strong> the Acad-<br />

ian Mounta<strong>in</strong>s. As the mounta<strong>in</strong>s were slowly lowered, the orographic barrier<br />

to the moisture-laden trade w<strong>in</strong>ds disappeared, permitt<strong>in</strong>g the w<strong>in</strong>ds to cross<br />

41


the lower mounta<strong>in</strong>s relatively unimpeded and deliver precipitation to the west<br />

side because of convection near the equator (Figs. 4, 5). The runoff and dis-<br />

charge would have been sufficient to erode vast quantities of debris from the<br />

mounta<strong>in</strong>s and transport it westwardly to the ll<strong>Black</strong>-Shale Sea" where one of<br />

the large Catskill Delta complexes would have formed.<br />

so formed would have <strong>in</strong>troduced so much clastic material and accompany<strong>in</strong>g pulses<br />

of oxidiz<strong>in</strong>g water that any organic matter would have been effectively diluted<br />

or destroyed <strong>in</strong> the area of clastic <strong>in</strong>flux. At the same time,because of dras-<br />

tically reduced spread<strong>in</strong>g, the amount of subsidence apparently decl<strong>in</strong>ed and<br />

eustatic sea-level was lowered (see Sloss and Speed, 1974). This, comb<strong>in</strong>ed<br />

with the actively prograd<strong>in</strong>g Catskill Delta, would have resulted <strong>in</strong> rapid<br />

regression <strong>in</strong> the area of the delta. This depositional scenario (Fig. 5) was<br />

repeated at least eight times result<strong>in</strong>g <strong>in</strong> the cyclic alternation of black<br />

shales and clastic wedges seen <strong>in</strong> the Catskill Delta (Fig. 3). Because some<br />

of the clastic wedges never prograded beyond the edge of the peripheral<br />

to the craton, and none ever prograded throughout all parts of the cratonic<br />

"<strong>Black</strong>-Shale Sea", large parts of the cratonic black-shale sequence conta<strong>in</strong><br />

noth<strong>in</strong>g but -homogeneous biack shales.<br />

42<br />

The prograd<strong>in</strong>g delta<br />

bas<strong>in</strong><br />

Each of the thick prograd<strong>in</strong>g clastic wedges compris<strong>in</strong>g the Catskill Delta<br />

complex emptied <strong>in</strong>to parts of the peripheral<br />

episodes of subsidence.<br />

1978; Kepferle and others, 1978; Roen and others, 1978; Potter and others, 1978)<br />

and isopach maps <strong>in</strong> preparation, the western h<strong>in</strong>ge l<strong>in</strong>e of this bas<strong>in</strong> ran<br />

approximately through eastern Ohio, western West Virg<strong>in</strong>ia and west-central<br />

Virg<strong>in</strong>ia.<br />

bas<strong>in</strong> created by successive<br />

Based on regional cross sections (Wallace and others,<br />

Apparently the cumulative effects of subsidence <strong>in</strong> the peripheral bas<strong>in</strong><br />

far exceeded the ability of the first three successive delta complexes <strong>in</strong>


the Hamilton, Genesee, and Sonyea groups to fill it.<br />

43<br />

And the <strong>in</strong>terven<strong>in</strong>g<br />

black-shale units (Marcellus, Geneseo-Burket, and Middlesex), at the most<br />

a few hundred meters thick each, contributed little to the <strong>in</strong>fill<strong>in</strong>g because<br />

of the sediment-starved conditions they represent and their great compacti-<br />

bility.<br />

Dur<strong>in</strong>g the last three episodes of deltaic progradation on the Catskill<br />

Delta (Upper Olentangy-Angola-Hanover; Chagr<strong>in</strong>-Three Lick; Bedford-Berea)<br />

and dur<strong>in</strong>g later lower Mississippian progradation (Borden-Gra<strong>in</strong>ger-Price-<br />

Maccrady-Pocono), subsidence <strong>in</strong> eastern parts of the peripheral bas<strong>in</strong> appar-<br />

ently decl<strong>in</strong>ed, and as the bas<strong>in</strong> filled from the east, these progradations<br />

migrated westward onto the craton. This also pushed the eastern limit of<br />

each successive, <strong>in</strong>terven<strong>in</strong>g, black-shale transgression farther westward<br />

(Fig. 3).<br />

parts of the peripheral bas<strong>in</strong> and adjacent parts of the craton, cratonic por-<br />

tions of the "<strong>Black</strong>-Shale Sea" appear to have deepened. The Huron, Cleveland<br />

and Sunbury black shales are thicker <strong>in</strong> this area than elsewhere, and conta<strong>in</strong><br />

paleontological and sedimentological evidence of deepen<strong>in</strong>g discussed <strong>in</strong> the<br />

follow<strong>in</strong>g section.<br />

As the locus of subsidence and sedimentation shifted to western<br />

of clastic sedimentation, may have been related to the development of addi-<br />

tional source areas to the north and northwest of the Catskill Delta as<br />

Africa and the southern European microcont<strong>in</strong>ents began to collide with east-<br />

central parts of Laurussia dur<strong>in</strong>g the Late Devonian and Early Mississippian<br />

(Badham and Halls, 1975).<br />

The successive westward shift of subsidence and the locus<br />

Nonetheless, sediments from no one of these progradational events were<br />

effectively deposited throughout the entire "<strong>Black</strong>-Shale Sea."<br />

As these wedges<br />

th<strong>in</strong>ned and p<strong>in</strong>ched out westwardly with <strong>in</strong>creas<strong>in</strong>g distance from the source<br />

area, the black muds, that were deposited dur<strong>in</strong>g successive, <strong>in</strong>terven<strong>in</strong>g


transgressive events (manifest largely as progressive deepen<strong>in</strong>g on the<br />

craton), were progressively superposed on each other, form<strong>in</strong>g the nearly<br />

homogeneous black-shale sequences seen <strong>in</strong> central and western parts of the<br />

craton.<br />

Hence, the failure of these major clastic <strong>in</strong>fluxes to reach most<br />

parts of the cratonic "<strong>Black</strong>-Shale Sea" had the same effect as the imposi-<br />

tion of a "perpetual" Late Devonian ra<strong>in</strong>shadown.<br />

Development of Anaerobic Conditions <strong>in</strong> the "<strong>Black</strong>-Shale Sea"<br />

Formation of a Stratified Water Column<br />

Development of stagnant, anaerobic conditions is typically related to<br />

restrictions <strong>in</strong> mix<strong>in</strong>g of surficial and deeper waters; <strong>in</strong> most moder <strong>in</strong>stances<br />

this is related to a density stratification of the water column.<br />

stratification may be related to differences <strong>in</strong> temperature and/or sal<strong>in</strong>ity<br />

between warmer and/or less sal<strong>in</strong>esurface waters and colder, more sal<strong>in</strong>e<br />

bottoms waters (see Heckel, 1977; Byers, 1977). Because oxygen will not<br />

rapidly diffuse downward through the water column to the bottom, active oxygen-<br />

44<br />

Density<br />

ation only occurs <strong>in</strong> a shallow surface zone, where oxygen can be mixed <strong>in</strong><br />

from the atmosphere by local w<strong>in</strong>d-driven circulation cells (see Heckell, 1977;<br />

Byers, 1977).<br />

Oxygen is also provided through photosynthesis by the abundant<br />

phytoplankton that live <strong>in</strong> this well-lighted portion of the water column.<br />

Oxygenation of deeper waters is typically dependent on strong vertical currents<br />

to carry oxygenated surface waters downward (Byers, 1977). Although dense,<br />

sediment-laden gravity-flow (turbidity) currents and storms can accomplish<br />

this on a local scale (Slsemann and Emery, 1961), the most significant, large-<br />

scale vertical circulation is accomplished by thermal currents, generated where<br />

Colled surface water s<strong>in</strong>ks to the bottom (Byers, 1977).<br />

Such currents are<br />

usually <strong>in</strong>itiated <strong>in</strong> polar regions and are best developed dur<strong>in</strong>g times of


glaciation (Berry and Wilde, 1978).<br />

suggested for the <strong>Black</strong>-Shale Sea (Fig. 4), the water rarely cools enough to<br />

s<strong>in</strong>k to deeper levels and displace colder bottom waters, so that a layer of<br />

warmer, lighter oxygenated water is formed near the surface (Byers, 1977).<br />

The zone between surficial and bottom layers where this temperature change<br />

occurs is called the thermocl<strong>in</strong>e.<br />

45<br />

In warm, temperate climates like that<br />

Even though the surficial layer of water<br />

may be oxygenated from the surface, if no large-scale vertical circulation<br />

exists, mix<strong>in</strong>g will not occur, and the bottom waters will be relatively de-<br />

pleted of oxygen below the thermocl<strong>in</strong>e.<br />

due to the absence of mix<strong>in</strong>g, but also due to the decay of organic matter that<br />

settles below the level of net-oxygen replenishment by photosynthesis and sur-<br />

ficial circulation.<br />

Moreover, depletion not only occurs<br />

The top of the oxygen-m<strong>in</strong>imum zone generally co<strong>in</strong>cides<br />

with the thermocl<strong>in</strong>e and may occur at depths no greater than 50 meters (Sver-<br />

drup and others, 1942; Brongersma-Sanders, 1971; Heckel, 1977).<br />

Vertical stratification of the type necessary to prevent mix<strong>in</strong>g may also<br />

result from or be enhanced by the creation of a sal<strong>in</strong>ity gradient.<br />

seas with a large fresh-water <strong>in</strong>flux, the lighter, fresh or brackish water<br />

floats above the heavier, saltier, normal sea water.<br />

prevent normal vertical circulation and lead to the loss of bottom oxygenation<br />

and the accumulation of black, organic-rich muds.<br />

served at present <strong>in</strong> the Baltic Sea and <strong>Black</strong> Sea where black,organic-rich<br />

muds are accumulat<strong>in</strong>g <strong>in</strong> the deeper parts (Segerstrale, 1957; Caspers, 1957).<br />

This density stratification leads to the formation of a halocl<strong>in</strong>e, or a zone<br />

of abrupt transition between fresh to brackish, surface waters and more salty,<br />

deeper waters.<br />

meters thick and beg<strong>in</strong>s at about 85 to 100 meters below the surface (Tully and<br />

Barber, 1961).<br />

In enclosed<br />

This situation can also<br />

Similar conditions are ob-<br />

In the eastern Pacific, the halocl<strong>in</strong>e is approximately 100<br />

Not surpris<strong>in</strong>gly, the depths and thicknesses of modern-day


thermocl<strong>in</strong>es and halocl<strong>in</strong>es approximately correspond to each other, and<br />

Byers (1977) refers to this zone of rapid change of sal<strong>in</strong>ity and density as<br />

a pycnocl<strong>in</strong>e.<br />

In the pycnocl<strong>in</strong>e, no vertical mix<strong>in</strong>g occurs and the amount<br />

of oxygen decreases from normal surface values to nearly zero (Byers, 1977).<br />

Us<strong>in</strong>g present-day depths and oxygen values from the <strong>Black</strong> Sea (Caspers, 1957),<br />

Byers (1977) established a idealized pattern of vertical water stratification<br />

for enclosed bas<strong>in</strong>s, which <strong>in</strong> at least a general way can serve as a comparative<br />

model for examples from the geologic record.<br />

stratification with the biofacies of Rhoads and Morse (1971) that result where<br />

the different water layers <strong>in</strong>tersect the bottom (Fig. 6).<br />

46<br />

Byers also compared this depth<br />

The surface zone is characterized by well-oxygenated, warmer, and often<br />

less-dense water; it is nearly uniform <strong>in</strong> sal<strong>in</strong>ity and density and extends to<br />

a depth of at least 50 meters.<br />

terized by a diverse calcified epifauna.<br />

<strong>in</strong> depth, is also uniform <strong>in</strong> sal<strong>in</strong>ity and density, and characterized by colder,<br />

saltier waters. More importantly, because of no vertical circulation and rapid<br />

use of available oxygen by organisms and decay, the zone has almost no oxygen<br />

and supports an anerobic biofacies.<br />

and any major circulation, this biofacies is characterized by f<strong>in</strong>e, organic-<br />

rich muds which are nearly azoic except for certa<strong>in</strong> bacteria, protozoans and<br />

small metazoans especially adapted to oxygen-deficient, reduc<strong>in</strong>g conditions.<br />

All normal, benthic fauna and bioturbation are absent <strong>in</strong> this zone, therefore<br />

all stratification (usually lam<strong>in</strong>ae) are undisturbed.<br />

This zone supports an aerobic biofacies charac-<br />

A deep zone, greater than 150 meters<br />

Because of the near absence of oxygen<br />

Between the surface and the deep, bottom zones is a zone approximately<br />

100 meters thick (between 50 and 150 meters, Fig. 6) where<strong>in</strong> sal<strong>in</strong>ity and<br />

density change rapidly; this is the pycnocl<strong>in</strong>e.<br />

Because vertical mix<strong>in</strong>g does<br />

not occur and oxygen values decl<strong>in</strong>e rapidly, the fauna is reduced to a few


Figure 6. Schematic diagram show<strong>in</strong>g characteristics of a stratified water<br />

.<br />

column and the sediments accumulat<strong>in</strong>g with<strong>in</strong> each water layer.<br />

Depths and oxygen content are general estimates based on the<br />

<strong>Black</strong> Sea (adapted from Rhoads and Morse, 1971, and Byers,<br />

1977).<br />

47


specialized <strong>in</strong>fauna adapted to lower levels of oxygen.<br />

<strong>in</strong>clude various soft-bodied worms, phosphatic brachiopods and weakly cal-<br />

cified crustaceans, pelecypods and articulate brachiopods.<br />

dom<strong>in</strong>antly <strong>in</strong>faunal nature of the fauna, the facies is typically biotur-<br />

bated.<br />

These typically<br />

is usually present and the sediments exhibit green to gray colors.<br />

48<br />

Because of the<br />

Because some oxygen is always present <strong>in</strong> this zone, a limited <strong>in</strong>fauna<br />

F<strong>in</strong>ally, it should be noted that the depths and thickness of these three<br />

layers are variable depend<strong>in</strong>g on various seasonal and oceanographic parameters<br />

(Tully and Barber, 1961; Heckel, 1977; Byers, 1977).<br />

Development of such a stratified water column requires <strong>in</strong> most cases,<br />

that there be no lateral exchange between deep waters <strong>in</strong> the enclosed sea<br />

and open ocean waters. Although horizontal mix<strong>in</strong>g of some degree will always<br />

occur <strong>in</strong> the upper aerobic zone, horizontal mix<strong>in</strong>g at depth would <strong>in</strong>troduce<br />

oxygen to deep bottom waters and halt stagnation. Prevent<strong>in</strong>g lateral exchange<br />

or horizontal mix<strong>in</strong>g at depth usually requires a sill or bar near the entrance<br />

to the sea, as <strong>in</strong> the <strong>Black</strong> Sea (Caspers, 1957), or the sea may be divided<br />

<strong>in</strong>to a series of deeper bas<strong>in</strong>s separated by broad, higher rises or thresholds<br />

as <strong>in</strong> the Baltic Sea (Segerstrale, 1957). In the latter case, even though<br />

waters of the upper zone, and perhaps some from the pycnocl<strong>in</strong>e, are widely<br />

distributed throughout upper parts of the sea,anaerobicbottom waters of the<br />

deep zone are restricted to the <strong>in</strong>dividual bas<strong>in</strong>s if the bas<strong>in</strong>s are not con-<br />

nected. This can give rise to "different" anaerobic, bottom facies <strong>in</strong> each<br />

bas<strong>in</strong>.<br />

Heckel (1977), however, has suggested that a sill or other barrier to<br />

lateral bottom exchange is not necessary when the only water available to<br />

circulate at depth is already depleted <strong>in</strong> oxygen.<br />

He <strong>in</strong>dicated that if depth<br />

<strong>in</strong> an enclosed epicont<strong>in</strong>ental sea became great enough, anaerobic conditions


would be established normally <strong>in</strong> the bottom waters below the pycnocl<strong>in</strong>e.<br />

Moreover, <strong>in</strong> this deep sett<strong>in</strong>g, any lateral bottom circulation from the open<br />

ocean would supply oceanic water from below the pycnocl<strong>in</strong>e already depleted<br />

<strong>in</strong> oxygen (Fig. 7). In a further ramification of this model, he suggested<br />

that the oxygen-m<strong>in</strong>imum level and pycnocl<strong>in</strong>e might be elevated <strong>in</strong> the water<br />

column on the eastern sides of tropical oceans due to quasi-estuar<strong>in</strong>e circu-<br />

lation and the result<strong>in</strong>g upwell<strong>in</strong>g. In these circumstances, the persistent<br />

easterly trade w<strong>in</strong>ds drive enough of the lighter, oxygenated surface water<br />

offshore to allow the colder, poorly oxygenated bottom waters to rise and<br />

take their place on the east side of the ocean bas<strong>in</strong> by upwell<strong>in</strong>g (Brongersma-<br />

Sanders, 1971; Heckel, 1977, 1980). Not only is the deeper, upwell<strong>in</strong>g water<br />

depleted <strong>in</strong> oxygen, but it is rich <strong>in</strong> phosphate, which is released at depth<br />

by oxidation of settl<strong>in</strong>g organic matter dur<strong>in</strong>g sulphate reduction (Heckel,<br />

1977; Burnett, 1977). The upwell<strong>in</strong>g of waters rich <strong>in</strong> phosphate furnishes<br />

this critical nutrient <strong>in</strong> great abundance to the oxygenated surfical waters<br />

caus<strong>in</strong>g plankton blooms. The upwell<strong>in</strong>g waters may also be rich <strong>in</strong> dissolved<br />

silica so that the tests of silica-secret<strong>in</strong>g phytoplankton like radiolarians<br />

may accumulate on the bottoms <strong>in</strong> such abundance <strong>in</strong> the area of upwell<strong>in</strong>g<br />

that extensive chert deposits can develope (Diester-Haass, 1978) . The plank-<br />

ton concentrate the phosphate and other substances, notably certa<strong>in</strong> heavy<br />

metals (Orren, 1973; Heckel, 1977), are transported by w<strong>in</strong>d-driven currents<br />

throughout the sea where they settle below the pycnocl<strong>in</strong>e, decay, and further<br />

deplete the oxygen.<br />

The result is not only a tremendous ra<strong>in</strong> of organic debris,<br />

which accumulates as an organic-rich mud on anaerobic bottoms below the pycno-<br />

cl<strong>in</strong>e, but also the release of the concentrated phosphate and heavy metals for<br />

precipitation or recycl<strong>in</strong>g through the upwell<strong>in</strong>g (Brongersma-Sanders, 1971;<br />

Heckel, 1977). New phosphate is also cont<strong>in</strong>ually added to the system from deep,<br />

49


CIR<br />

OPEN<br />

. OCEAN<br />

W<br />

PHOSPHATE-RICH,<br />

OXYGEN-POOR<br />

/<br />

- -<br />

CR ATON I C<br />

SEA<br />

A.<br />

LOWER DELTA<br />

PLAIN<br />

MODERATE PLUVIAL,<br />

f--- c--- PREVAILING WIND C - - - C - - - FRESH-WATER INPUT<br />

B.<br />

E<br />

50<br />

INCREASED FLUVIAL INPUT<br />

AND<br />

PROBRAOATIONAL SEDIMENT<br />

WIND C--- C--- INFLUX<br />

Figure 7. A.) Development of.quasi-estur<strong>in</strong>e circulation and upwell<strong>in</strong>g<br />

<strong>in</strong> an epicont<strong>in</strong>ental sea;<br />

B.)<br />

Disruption of upwell<strong>in</strong>g through progradation sediment<br />

<strong>in</strong>flux. -


upwell<strong>in</strong>g oceanic waters.<br />

<strong>in</strong> the <strong>in</strong>terstitial waters of bottom sediments, it will precipitate or replace<br />

available carbonate material.<br />

ply of organic matter, a low rate of detrital sedimentation (which prevents<br />

dilution), a decrease <strong>in</strong> pressure, and an <strong>in</strong>crease <strong>in</strong> temperature and pH<br />

(Manheim and others, 1975; Heckel, 1977); all are conditions that could have<br />

been fulfilled if an upwell<strong>in</strong>g entered an enclosed, sediment-starved epi-<br />

cont<strong>in</strong>ental sea like that proposed already for the lf<strong>Black</strong>-Shale Sea" (Fig. 4).<br />

Conditions <strong>in</strong> the "<strong>Black</strong>-Shale Sea"<br />

51<br />

If the phosphate becomes sufficiently concentrated<br />

This process is facilitated by a constant sup-<br />

The ll<strong>Black</strong>-Shale Sea" was an island, equatorial , epicont<strong>in</strong>ental sea enclosed<br />

on nearly all sides by land or shallow, submerged barriers (possibly, at<br />

times, the Transcont<strong>in</strong>ental Arch, Fig. 4). The only major contact with the<br />

open ocean was along the cont<strong>in</strong>ental marg<strong>in</strong> to the south between the Marathon<br />

region of Texas and the Ouachita region of Oklahoma and Arkansas, and the<br />

presence of thicker deposits of radiolarian chert <strong>in</strong>terbedded with phosphatic<br />

black shales <strong>in</strong> these areas throughout the Devonian and Early Mississippian<br />

(Park and Croneis, 1969; Morris, 1974; Lowe, 1975) suggests a divergence of<br />

oceanic currents marked by an upwell<strong>in</strong>g (see Heckel and Witzke, 1979; Schopf,<br />

1980).<br />

Shallow connections across the Transcont<strong>in</strong>ental Arch with epiconti-<br />

nental seas to the west existed <strong>in</strong> Kansas and Colorado and possibly at times<br />

<strong>in</strong> Iowa and South Dakota (Fig. 4), but deeper oceanic waters would not have<br />

passed through these connections.<br />

Because the Middle and Late Devonian were not times of glaciation, large-<br />

scale turbulent mix<strong>in</strong>g of the oceans and epicont<strong>in</strong>ental seas was probably<br />

absent (Berry and Wilde, 1978).<br />

Vertical mix<strong>in</strong>g on a smaller scale was also probably restricted <strong>in</strong> the


"<strong>Black</strong>-Shale Sea." Because the sea was equatorial, at least periodically,<br />

the large amounts of ra<strong>in</strong> and runoff would have formed a lighter, fresh or<br />

brackish water layer throughout the sea lead<strong>in</strong>g to the formation of a halo-<br />

cl<strong>in</strong>e.<br />

Tasmanites (Brooks, 1971) and Foerstia (Schopf and Schwieter<strong>in</strong>g, 1970; Schopf,<br />

1978) <strong>in</strong> abundance throughout all or parts of the black shale support this<br />

idea.<br />

The presence of supposed brackish to mar<strong>in</strong>e, pelagic algae such as<br />

In addition, the warm, tropical nature of the equatorial area, would<br />

have permitted very little cool<strong>in</strong>g of surface waters to occur. This <strong>in</strong> turn<br />

would have resulted <strong>in</strong> a temperature stratification or thermocl<strong>in</strong>e, which is<br />

also effective <strong>in</strong> prevent<strong>in</strong>g vertical circulation.<br />

52<br />

In equatorial areas, more-<br />

over, thethermocl<strong>in</strong>eislikelytobepermanent (Degens andstoffers, 1976). F<strong>in</strong>ally, tl<br />

enclosed nature of the sea, the uniformity of the equatorial climate, the<br />

position of the sea <strong>in</strong> a ra<strong>in</strong>shadow for long periods of time, and the low-<br />

ly<strong>in</strong>g nearly penepla<strong>in</strong>ed surface over which the sea developed are all factors<br />

which would have mitigated or prevented vertical circulation.<br />

factors, comb<strong>in</strong>ed with <strong>in</strong>ferences from the presence of the shale itself, strongly<br />

<strong>in</strong>dicate that a sal<strong>in</strong>ity and density stratification, or pycnocl<strong>in</strong>e, existed<br />

<strong>in</strong> the "<strong>Black</strong>-Shale Sea."<br />

culation and oxygenation of the bottom and created suitable conditions for the<br />

accumulation of abundant organic material <strong>in</strong> an anaerobic, reduc<strong>in</strong>g environ-<br />

ment.<br />

All of the above<br />

The pycnocl<strong>in</strong>e would have prevented vertical cir-<br />

It is also likely that an upwell<strong>in</strong>g current moved <strong>in</strong>to the ll<strong>Black</strong>-Shale<br />

Sea" sometime dur<strong>in</strong>g the late stages of black-shale deposition.<br />

Phosphate,<br />

both <strong>in</strong> f<strong>in</strong>ely dissem<strong>in</strong>ated and large concretional fom, is largely concentrated<br />

<strong>in</strong> upper parts of the black-shale sequence. In <strong>Kentucky</strong>, phosphate concentration<br />

shows a marked <strong>in</strong>crease from the level of the upper Huron Shale upward (Marko-<br />

witz, 1978; Fig. 1). Moreover, the ll<strong>Black</strong>-Shale Sea" was on the eastern side


of a tropical ocean <strong>in</strong> the trade w<strong>in</strong>d belt (Fig. 4j and an area of oceanic<br />

current divergence and upwell<strong>in</strong>g had been established on the southern conti-<br />

nental marg<strong>in</strong>s s<strong>in</strong>ce at least the beg<strong>in</strong>n<strong>in</strong>g of the Devonian (Morris, 1974;<br />

Lowe, 1975). These conditions are all favorable for the development of an<br />

upwell<strong>in</strong>g current, but water depth <strong>in</strong> the "<strong>Black</strong>-Shale Sea" must have <strong>in</strong>-<br />

creased to the po<strong>in</strong>t where deep, cold, oxygen-poor, and phosphate-rich oceanic<br />

waters could have flowed unimpeded <strong>in</strong>to the enclosed sea. Although the "<strong>Black</strong>-<br />

Shale Sea" probably was not <strong>in</strong>itially deep enough to permit this, as we. have<br />

discussed previously, four l<strong>in</strong>es of evidence suggest that the sea progressively<br />

deepened with time to the po<strong>in</strong>t where this exchange could have occurred:<br />

1.) The Late Devonian was a time of world-wide transgression which cont<strong>in</strong>ued<br />

<strong>in</strong>to the Early Mississippian due to <strong>in</strong>creased spread<strong>in</strong>g rates (Sloss, 1963;<br />

Sloss and Speed, 1974); subsidence and eustatic sea-level rise can be cor-<br />

related with the active collision and subduction occurr<strong>in</strong>g along the marg<strong>in</strong>s<br />

of Laurussia;<br />

Appalachian Bas<strong>in</strong> onto the C<strong>in</strong>c<strong>in</strong>nati Arch (Fig. 3) suggests net transgression<br />

and deepen<strong>in</strong>g;<br />

2.)<br />

the progressive onlapp<strong>in</strong>g of black-shale units from the<br />

3. ) the predom<strong>in</strong>ance of Palmatolepis and other wide-platform<br />

conodonts which are considered to be <strong>in</strong>dicators of deeper water {Seddon and<br />

Sweet, 1971; h ce, 1973; Griffith, 1977) <strong>in</strong> the Late Devonian black shales;<br />

and 4.) the upward succession of trace-fossil communities from green-shale<br />

<strong>in</strong>tervals with<strong>in</strong> the black-shale sequence of Ohio and <strong>Kentucky</strong> also suggest<br />

<strong>in</strong>creas<strong>in</strong>g depth with time (Potter and others, 1980; Jordan, 1980).<br />

F<strong>in</strong>ally, <strong>in</strong> order for the deeper ocean waters to upwell <strong>in</strong> the "<strong>Black</strong>-<br />

Shale Sea", surficial waters nust have been displaced westward by surface<br />

currents.<br />

Surface currents generated by the tradew<strong>in</strong>ds and deflected to the<br />

right by the Coriolis effect (see Anikouch<strong>in</strong>e and Sternberg, 1973) would have<br />

transported surface waters westward and enabled upwell<strong>in</strong>g to occur almost<br />

53


anywhere <strong>in</strong> central parts of the "<strong>Black</strong>-Shale Sea."<br />

abundant phosphate <strong>in</strong> the upper black shales as well as evidence for deepen-<br />

<strong>in</strong>g and the presence of appropriate climatic and oceanographic conditions<br />

suggest that upwell<strong>in</strong>g occurred at least periodically <strong>in</strong> central portions of<br />

the "<strong>Black</strong>-Shale Sea. It<br />

54<br />

Hence, the presence of<br />

One further l<strong>in</strong>e of evidence support<strong>in</strong>g the presence of an upwell<strong>in</strong>g is<br />

the <strong>in</strong>creased concentration of certa<strong>in</strong> heavy metals <strong>in</strong> black shales from upper<br />

parts of the section.<br />

ern <strong>Kentucky</strong> by Markowitz (1979) <strong>in</strong>dicate <strong>in</strong>creased concentrations of heavy<br />

metals like barium, copper, z<strong>in</strong>c, molybdenum, strontium, vanadium, thorium<br />

and uranium (Fig. 1) <strong>in</strong> upper parts of the sequence. Although uranium is<br />

relatively concentrated throughout the entire black-shale sequence because<br />

it is adsorbed by certa<strong>in</strong> organic materials (Breger, 1955; Swanson, 1961;<br />

Breger and Brown, 1962), its <strong>in</strong>creased concentration, as well as that of the<br />

other metals, suggests abundant organic enrichment like that accompany<strong>in</strong>g an<br />

upwell<strong>in</strong>g (Diester-Haass, 1978). In an area of oceanic upwell<strong>in</strong>g, the high<br />

nutrient contents <strong>in</strong>troduced <strong>in</strong>to the shallow waters result <strong>in</strong> high biologic<br />

productivity.<br />

Geochemical analysis of black-shale sequences <strong>in</strong> east-<br />

Many of these organisms will selectively concentrate heavy<br />

metals both <strong>in</strong> life and after death (Siebold, 1970; Bostrom and others, 1974),<br />

so that the result<strong>in</strong>g sediments are enriched <strong>in</strong> these metals.<br />

In areas of<br />

upwell<strong>in</strong>g, where the production of organic matter is very high, the enrich-<br />

ment of these metals <strong>in</strong> the result<strong>in</strong>g sediment can be significant (Brongersma-<br />

Sanders, 1965). Therefore, the <strong>in</strong>creased concentration of such metals <strong>in</strong><br />

upper parts of the black shale provides additional evidence of upwell<strong>in</strong>g.<br />

To summarize, we suggest that conditions <strong>in</strong> the "<strong>Black</strong>-Shale Sea" were<br />

appropriate for the development of a stratified water column and pycnocl<strong>in</strong>e.<br />

Once these conditions were established, the abundant organk debris produced


and deposited <strong>in</strong> the sediment-starved sea could accumulate undisturbed <strong>in</strong><br />

anaerobic conditions below the pycnocl<strong>in</strong>e. It is likely that this stage<br />

of black-shale formation was conf<strong>in</strong>ed to the deeper, subsid<strong>in</strong>g cratonic<br />

bas<strong>in</strong>s and that <strong>in</strong>terven<strong>in</strong>g cratonic highs like the C<strong>in</strong>c<strong>in</strong>nati Arch acted<br />

as barriers or thresholds to deep circulation and <strong>in</strong>tersected the pycnocl<strong>in</strong>e,<br />

similar to the present situation <strong>in</strong> the Baltic Sea. As transgression and<br />

deepen<strong>in</strong>g cont<strong>in</strong>ued throughout the Late Devonian, it is likely that water<br />

<strong>in</strong> the cratonic sea deepened sufficiently that a pycnocl<strong>in</strong>e was established<br />

throughout the sea and black, organic-rich muds accumulated even on the<br />

cratonic highs. With further deepen<strong>in</strong>g <strong>in</strong> the latest Devonian, oxygen-poor,<br />

phosphate-rich, deep oceanic waters upwelled <strong>in</strong>to the "<strong>Black</strong>-Shale Sea" from<br />

the cont<strong>in</strong>ental marg<strong>in</strong> to the south, enhanc<strong>in</strong>g organic production and<br />

promot<strong>in</strong>g deposition of phosphate <strong>in</strong> the black shales.<br />

Depth<br />

The depth of the "<strong>Black</strong>-Shale Sea" has been the subject of cont<strong>in</strong>ued<br />

controversy. Certa<strong>in</strong>ly, the regional facies relationships suggest that the<br />

black shales represent a bas<strong>in</strong>al or distal facies of the westwardly prograd<strong>in</strong>g<br />

Catskill Delta.<br />

sidence of the craton which must have accompanied ongo<strong>in</strong>g subduction and<br />

collision <strong>in</strong> both the Antler and Acadian mounta<strong>in</strong>s at this time. Us<strong>in</strong>g the<br />

method of Kle<strong>in</strong> (1974) to calculate the depth of the "<strong>Black</strong>-Shale Sea" dur-<br />

<strong>in</strong>g Sunbury time <strong>in</strong> eastern <strong>Kentucky</strong>, a m<strong>in</strong>imum depth of 230 meters (700 ft)<br />

is obta<strong>in</strong>ed.<br />

Potter and others (1980).<br />

This <strong>in</strong>terpretation is consistent with the progressive sub-<br />

This is consistent with depths obta<strong>in</strong>ed by Rich (1951) and<br />

considerably greater <strong>in</strong> parts of the Appalachian peripheral bas<strong>in</strong> where sub-<br />

sidence apparently was much greater.<br />

However, we believe that depths may have been<br />

55


It is also important to realize that dur<strong>in</strong>g the <strong>in</strong>itial phases of trans-<br />

gression onto the craton, the "<strong>Black</strong>-Shale Sea" was relatively shallow.<br />

shallow water deposits, however, are usually poorly developed or condensed<br />

<strong>in</strong>to a basal lag zone due to the rapidity of transgression and the low-ly<strong>in</strong>g<br />

nature of the surface over which transgression occurred. Generally, the<br />

cratonic black-shale sequence represents deposition <strong>in</strong> a progressively deepen-<br />

<strong>in</strong>g <strong>in</strong>land sea.<br />

Sequential History of <strong>Black</strong>-Shale Deposition<br />

56<br />

These<br />

The history of Devonian-Mississippian black-shale must beg<strong>in</strong> <strong>in</strong> the Mid-<br />

dle Devonian with the deposition of the Onondaga Limestone and equivalent car-<br />

bonate units as a rather broad blanket of shallow-water, platform deposits<br />

extend<strong>in</strong>g through east-central and midwestern United States (see Heckel and<br />

Witzke, 1979, Fig. 3B; Fig. 8A). Although probably submergent, the C<strong>in</strong>c<strong>in</strong>nati<br />

Arch was present because limestones equivalent to the Onondaga th<strong>in</strong> on its<br />

flanks.<br />

The Ozark Uplift was uplifted and emergent, and to the south and<br />

southwest <strong>in</strong> the Ouachita and Marathon region, divergence of oceanic currents,<br />

upwell<strong>in</strong>g andhighorganicproductivityis<strong>in</strong>dicatedbythepresenceof radiolarian<br />

chert, that <strong>in</strong>tertongues with cherty limestones to the north.<br />

The first <strong>in</strong>dication of an uplifted clastic source <strong>in</strong> the east and the<br />

beg<strong>in</strong>n<strong>in</strong>g of the Acadian Orogeny occurs at this time. In parts of Virg<strong>in</strong>ia,<br />

West Virg<strong>in</strong>ia, Maryland and southern Pennsylvania, the Onondaga grades east-<br />

ward <strong>in</strong>to the dark, calcareous Needmore Shale.<br />

This shale marks the first<br />

appearance of the Catskill Delta facies and is <strong>in</strong>terpreted to represent<br />

bas<strong>in</strong>al, prodeltaic deposition (Dennison, 1971). The Needmore grades west-<br />

ward <strong>in</strong>to the Huntersville Chert and Onondaga Limestone and conta<strong>in</strong>s fissile,<br />

phosphatic black shale, as well as dark, fossiliferous, calcareous shales


sw<br />

~~~<br />

C. MIDDLE DEVONIAN/LATE DEVONIAN - REGIONAL UNCONFORMITY<br />

Cont<strong>in</strong>ental<br />

Marg<strong>in</strong><br />

6. MIDDLE DEVONIAN - MARCELLUS SH.<br />

-<br />

Marcdlw Shale<br />

A. MIDDLE DEVONIAN - ONONDAGA LS. NE<br />

Omrk<br />

UDlift<br />

C<strong>in</strong>c<strong>in</strong>nati<br />

Arch<br />

Acadian<br />

Highkndr<br />

Figure 8. A series of schematic sections from New York to the Ouachita<br />

area show<strong>in</strong>g the <strong>in</strong>ferred sequential development of blackshale<br />

depositional environments from the Middle Devonian<br />

through the Early Mississippian. Even though the Ozark<br />

Uplift appears to have been a barrier to circulation <strong>in</strong> these<br />

sections, currents could have moved around the uplift (see<br />

Fig. 4). Not drawn to scale.


.--<br />

F. EARLY MISSISSIPPIAN - BORDEN FM.<br />

E. LATE DEVONIAN - CLEVELAND SH.<br />

D. LATE DEVONIAN - RHINESTREET SH.


<strong>in</strong>terbedded with limestone (Inners, 1979). Although conta<strong>in</strong><strong>in</strong>g anaerobic,<br />

dysaerobic, and aerobic facies (Newton, 1979), the Needmore appears to largely<br />

represent deposition near the base of the aerobic zone or top of the pycnocl<strong>in</strong>e.<br />

The presence of phosphate and chert may represent the short-liued <strong>in</strong>cursion of<br />

an upwell<strong>in</strong>g current <strong>in</strong>to southwestern parts of the Appalachian peripheral<br />

bas<strong>in</strong> (Inners, 1979) before the border<strong>in</strong>g Acadian landmass to the east and<br />

south (Fig, 4) developed <strong>in</strong> the late Middle Devonian and Late Devonian. The<br />

importance of the Needmore Shale lies <strong>in</strong> the fact that it reflects the beg<strong>in</strong>-<br />

n<strong>in</strong>g of the Acadian Orogeny and the result<strong>in</strong>g development of a peripheral bas<strong>in</strong><br />

deep enough to restrict vertical circulation and permit at least local develop-<br />

ment of a pycnocl<strong>in</strong>e.<br />

By the late Middle Devonian, collision between the Avalon Prong and the<br />

east-central marg<strong>in</strong> of Laurussia (New England Maritime region) was imm<strong>in</strong>ent<br />

or <strong>in</strong> progress. Collision resulted <strong>in</strong> the formation of a high Acadian mounta<strong>in</strong><br />

front crass the equator, and perhaps more importantly, subsidence and warp<strong>in</strong>g<br />

of the craton. Although subsidence was apparently greatest <strong>in</strong> the peripheral<br />

bas<strong>in</strong>, just west of the mounta<strong>in</strong>s, other cratonic bas<strong>in</strong>s (Ill<strong>in</strong>ois and Michigan<br />

bas<strong>in</strong>s) also subsided. This subsidence, comb<strong>in</strong>ed with the eustatic rise <strong>in</strong><br />

sea level accompany<strong>in</strong>g periods of <strong>in</strong>creased spread<strong>in</strong>g and subduction, resulted<br />

<strong>in</strong> transgression and deepen<strong>in</strong>g of the cratonic sea. Moreover, formation of the<br />

Acadian highlands to the south and east effectively enclosed the cratonic ,sea<br />

except for oceanic connections <strong>in</strong> the Arkansas and Oklahoma region (Fig. 4).<br />

The net effect of the subsidence, transgression, and the uplifted Acadian front<br />

was to create isolated, subsid<strong>in</strong>g bas<strong>in</strong>s (Fig. 8B) <strong>in</strong> the ra<strong>in</strong>shadow of the<br />

Acadian Mounta<strong>in</strong>s.<br />

Even though subsidence occurred <strong>in</strong> all of the major cratonic bas<strong>in</strong>s as<br />

<strong>in</strong>dicated by the thickened carbonate sequence <strong>in</strong> the Ill<strong>in</strong>ois and Michigan<br />

58


as<strong>in</strong>s, only <strong>in</strong> the Appalachian peripheral bas<strong>in</strong> did subsidence exceed<br />

sedimentation. This is <strong>in</strong>dicated by the presence of the black Marcellus<br />

Shale, which we suggest developed <strong>in</strong> the ra<strong>in</strong>shadow of the Acadian Moun-<br />

ta<strong>in</strong>s (Fig. 8B). The dom<strong>in</strong>antly organic <strong>in</strong>put to the sediment <strong>in</strong> this<br />

starved bas<strong>in</strong> dur<strong>in</strong>g a time of net transgression was apparently not suf-<br />

ficient to keep pace with <strong>in</strong>creased subsidence <strong>in</strong> the peripheral bas<strong>in</strong>.<br />

The fact that so much of the organic matter was preserved as black shale<br />

<strong>in</strong>dicates that as the bas<strong>in</strong> deepened, a stratified water column developed<br />

which prevented vertical mix<strong>in</strong>g; this is the most likely orig<strong>in</strong> for black,<br />

organic-rich muds <strong>in</strong> nearly-enclosedseas. In the cratonic bas<strong>in</strong>s more<br />

distant from the ris<strong>in</strong>g Acadian Mounta<strong>in</strong>s, subsidence apparently was<br />

slower or the carbonate sedimentation was better able to keep pace with<br />

sedimentation, for the presence of thick fossiliferous carbonates <strong>in</strong> these<br />

bas<strong>in</strong>s <strong>in</strong>dicates that these bas<strong>in</strong> bottoms never subsided below the surficial,<br />

oxygenated layer (Fig. 8B).<br />

Deepen<strong>in</strong>g <strong>in</strong> the Appalachian peripheral bas<strong>in</strong> at this time was appar-<br />

ently progressive and somewhat slower than that occurr<strong>in</strong>g dur<strong>in</strong>g the Late<br />

Devonian, for this is one of the few <strong>in</strong>stances where the basal contact of<br />

a black-shale unit with the underly<strong>in</strong>g unit is one of <strong>in</strong>tertongu<strong>in</strong>g. The<br />

Marcellus <strong>in</strong>tertongues with parts of the Onondaga and laterally equivalent<br />

carbonate units <strong>in</strong> western parts of the peripheral bas<strong>in</strong> (east flank of the<br />

C<strong>in</strong>c<strong>in</strong>nati Arch; see Dennison, 1971). With transgression and deepen<strong>in</strong>g,<br />

. the Marcellus black shales progressively displaced carbonate facies on the<br />

flank of the C<strong>in</strong>c<strong>in</strong>nati Arch <strong>in</strong> an onlapp<strong>in</strong>g facies relationship (see<br />

Schwieter<strong>in</strong>g, 1979). Certa<strong>in</strong>ly, with this k<strong>in</strong>d of relationship, between<br />

carbonates and black shales, the <strong>in</strong>itial Marcellus black shales probably did<br />

not represent extremely deep-water deposits. In fact, the presence of locally<br />

59


abundant, low-diversity benthic faunas, the absence of a uniform black,<br />

coloration, and the presence of local fossiliferous carbonate units wholly<br />

with<strong>in</strong> the Marcellus, <strong>in</strong>dicates that some of the Marcellus deposition occurred<br />

with<strong>in</strong> or slightly above the dysaerobic layer (Fig. 8B); at other times the<br />

organic-rich sediments accumulated <strong>in</strong> the bottom anaerobic layer.<br />

Seem<strong>in</strong>gly, Marcellus deposition is related to the fact that subsidence<br />

<strong>in</strong> the Appalachian peripheral bas<strong>in</strong> exceeded the ability of carbonate sedi-<br />

mentation to keep pace with it. As subsidence and transgression cont<strong>in</strong>ued,<br />

<strong>in</strong> the absence of clastic <strong>in</strong>put (ra<strong>in</strong>shadow effect], the sea bottom progres-<br />

sively subsided <strong>in</strong>to or below the pycnocl<strong>in</strong>e, where only black, organic-rich<br />

muds accumulated.<br />

Near the end of the Middle Devonian, these conditions changed drastically<br />

as erosional lower<strong>in</strong>g of the Acadian Mounta<strong>in</strong>s allowed the trade w<strong>in</strong>ds to<br />

cross the mounta<strong>in</strong>s and deliver their precipitation to the western side of<br />

the range near the equator.<br />

debouched <strong>in</strong>to the adjacent sea result<strong>in</strong>g <strong>in</strong> the first major progradation of<br />

the Catskill Delta, which is represented by the Ludlowville and Moscow for-<br />

mations <strong>in</strong> New York and the Mahantango Formation elsewhere.<br />

are represented primarily by grayish-green fossiliferous shales and siltstones<br />

which were products of prodeltaic and delta-front depositon.<br />

these units, however, are represented by very dark brown to nearly black<br />

shales, suggest<strong>in</strong>g deposition <strong>in</strong> deeper, possibly dysaerobic prodelta or<br />

bas<strong>in</strong>al conditions. Prom<strong>in</strong>ent limestones occur <strong>in</strong> the two New York formations<br />

and apparently reflect periods of decreased clastic <strong>in</strong>put on the delta plat-<br />

forms. Even though distal parts of this clastic progradation overlapped the<br />

underly<strong>in</strong>g Marcellus on the C<strong>in</strong>c<strong>in</strong>nati Arch, these clastics never prograded<br />

beyond the peripheral bas<strong>in</strong>.<br />

This caused a large <strong>in</strong>flux of clastics to be<br />

60<br />

These formations<br />

Some parts of


This like all of the clastic <strong>in</strong>tervals between the black shales repre-<br />

sents a rapid regression <strong>in</strong> the area of the delta accompany<strong>in</strong>g a period of<br />

tectonic quiesence, decreased subsidence, and a drop <strong>in</strong> eustatic sea level.<br />

Most of these deltaic clastics accumulated <strong>in</strong> the upper oxygenated layer or<br />

<strong>in</strong> upper parts of the dysaerobic layer.<br />

The Middle Devonian-Late Devonian boundary is marked by a prom<strong>in</strong>ent<br />

unconformity throughout most parts of central United States.<br />

ity represents a time of rapid uplift, warp<strong>in</strong>g and local emergence all over<br />

the craton (Fig. 8C) and may reflect a time when subduction was effectively<br />

halted by collision.<br />

regional uplift, when-even the peripheral bas<strong>in</strong> is largely dra<strong>in</strong>ed (Dick<strong>in</strong>son-,<br />

1974).<br />

and were deeply eroded.<br />

slightly submerged beneath very shallow waters, the waters were so shallow<br />

that erosion predom<strong>in</strong>ated over deposition.<br />

61<br />

The uncomform-<br />

This k<strong>in</strong>d of event typically results <strong>in</strong> a period of<br />

Parts of the craton like the C<strong>in</strong>c<strong>in</strong>nati Arch were certa<strong>in</strong>ly emergent<br />

Even though other parts of the craton may have been<br />

Dur<strong>in</strong>g this <strong>in</strong>terval of uplift <strong>in</strong> the Catskill Delta, structures created<br />

to the east formed temporary, local barriers to clastic sedimentation on<br />

western parts of the uplifted delta platform which permitted a brief episode<br />

of carbonatekedimentation, represented by the Tully, to develope <strong>in</strong> the<br />

shallow, aerobic,clastic-deficient waters (Heckel, 1973). With renewed uplift<br />

<strong>in</strong> the Acadian Mounta<strong>in</strong>s to the east dur<strong>in</strong>g the early Late Devonian, renewed<br />

subsidence, transgression, and sediment-starved conditions resumed on the<br />

craton, particularly <strong>in</strong> the Appalachian peripheral bas<strong>in</strong>, where the filly<br />

carbonate platform subsided below the pycnocl<strong>in</strong>e, giv<strong>in</strong>g rise to the black,<br />

fissile Geneseo or Burket shales (Fig. 8D).<br />

In the Late Devonian and Early Mississippian, six major cyclic alterna-<br />

tions of black, fissile shale and <strong>in</strong>terven<strong>in</strong>g fossiliferous clastics are


epresented <strong>in</strong> the record of the Catskill Delta (Fig. 3). Each cyclic alterna-<br />

tion of black shale and fossiliferous clastics represents the alternation of<br />

tectonically active, elevated conditions with tectonically quiesent, low<br />

conditions <strong>in</strong> the Acadian Mounta<strong>in</strong>s as described <strong>in</strong> Figure 5.<br />

with the circumstances of Marcellus deposition, subsidence and transgression<br />

apparently were more rapid;for the black shales that were deposited dur<strong>in</strong>g<br />

these sediment-starved, transgressive periods def<strong>in</strong>itely accumulated below<br />

the pycnocl<strong>in</strong>e (Fig. 8D). Although nektic, planktic, and epiplanktic fossils<br />

are locally common <strong>in</strong> these black shales, there is little evidence of a<br />

benthic fauna or conditions which would have supported one.<br />

62<br />

In contrast<br />

Like the Marcellus, the lower three Late Devonian black-shale units .<br />

(Geneseo-Burket, Middlesex, and Rh<strong>in</strong>estreet) and their <strong>in</strong>terven<strong>in</strong>g clastic<br />

deposits do not occur beyond the peripheral Appalachian Bas<strong>in</strong>.<br />

Eustatic<br />

sea-level rise and subsidence across the craton apparently were not yet<br />

great enough to establish a pycnocl<strong>in</strong>e and an anaerobic bottom layer beyond<br />

the cratonic bas<strong>in</strong>s. Hence, cratonic highs like the C<strong>in</strong>c<strong>in</strong>nati Arch <strong>in</strong>ter-<br />

sected the pycnocl<strong>in</strong>e (Fig. 8D). Nonetheless, biostratigraphic evidence<br />

<strong>in</strong>dicates that black-shale deposition was occurr<strong>in</strong>g <strong>in</strong>dependently <strong>in</strong> the<br />

separate cratonic bas<strong>in</strong>s (e.g., - Hass, 1947a; Hass, 1956; Scott and Coll<strong>in</strong>son,<br />

1961; Oliver and others, 1967; Klapper and others, 1971; Fig. 8D). Because<br />

none of the clastic <strong>in</strong>tervals present <strong>in</strong> the Appalachian peripheral bas<strong>in</strong><br />

prograded beyond eastern parts of the C<strong>in</strong>c<strong>in</strong>nati Arch, the stratigraphic<br />

sequences <strong>in</strong> all three bas<strong>in</strong>s are largely different. While black shales<br />

were accltlrmlat<strong>in</strong>g separately <strong>in</strong> the three cratonic bas<strong>in</strong>s, the <strong>in</strong>terven<strong>in</strong>g<br />

high areas like the C<strong>in</strong>c<strong>in</strong>nati Arch were subjected to periods of subaerial<br />

and/or subaequeous erosion <strong>in</strong> the very shallow waters that covered them (Fig.<br />

8D). Very little deposition occurred <strong>in</strong> these areas, because carbonate


sedimentation was not favored <strong>in</strong> the less sal<strong>in</strong>e, equatorial waters (Lees,<br />

1975; Heckel and Witzke, 1979) and little clastic <strong>in</strong>put reached these areas<br />

from source areas to the east due to the ra<strong>in</strong>shadow effect and the conf<strong>in</strong><strong>in</strong>g<br />

nature of the peripheral bas<strong>in</strong>.<br />

and rework<strong>in</strong>g rather than deposition.<br />

<strong>in</strong> these shallow waters are lag or condensation deposits, composed of gra<strong>in</strong>s<br />

reworked from underly<strong>in</strong>g units or transported from adjacent exposed lowlands,<br />

conodonts, fish fragments and plant materials derived from the water column,<br />

as well as phosphate reworked from underly<strong>in</strong>g units and deposited authigenically<br />

Some ofthesedepositsmayhavebeenaccumulat<strong>in</strong>gunderconditionsoflowsedimen-<br />

tation s<strong>in</strong>ce the Middle Devonian. Phosphate may be deposited authigenically<br />

<strong>in</strong> shallow waters with low clastic <strong>in</strong>put, near low-ly<strong>in</strong>g land masses, which sup-<br />

ply phosphate-rich surface waters to the adjacent seas (Bromley, 1967). This<br />

k<strong>in</strong>d of phosphate occurrence is dist<strong>in</strong>ctly different from that accompany<strong>in</strong>g<br />

an upwell<strong>in</strong>g; such a shallow-water mechanism may account for the abundance of<br />

phosphate seen <strong>in</strong> the basal parts of the cratonic black-shale sequences (Fig.<br />

1). Most important about this, however, is the fact that this and adjacent<br />

63<br />

Also, the very shallow waters favored erosion<br />

Therefore, the only deposits that formed<br />

portions of the basal black-shale sequences on the craton accumulated <strong>in</strong> shallow<br />

waters and represent aerobic and dysaerobic conditons.<br />

deepen<strong>in</strong>g progressed dur<strong>in</strong>g the late Devonian, shallow waters would have<br />

<strong>in</strong>itially covered high parts of the craton.<br />

the craton were low <strong>in</strong> relief, transgression would have been rapid.<br />

rapidity of transgression comb<strong>in</strong>ed with the low rate of sediment <strong>in</strong>put would<br />

have resulted <strong>in</strong> very little sedimentary expression of these shallow-water<br />

conditions.<br />

As transgression and<br />

However, because these parts of<br />

What sedimentary expression does occur is restricted to the basal<br />

sandstone layers (lags) and the rare occurrences of fossiliferous carbonates<br />

and shales at the base of the sequence (e.g., - Duff<strong>in</strong>/Harg/Ravenna facies of<br />

The


eastern <strong>Kentucky</strong>).<br />

black-shale units on the C<strong>in</strong>c<strong>in</strong>nati Arch and other l<strong>in</strong>es of evidence already<br />

mentioned, the "<strong>Black</strong>-Shale Sea" progressively deepened on the craton. Even-<br />

tually, deepen<strong>in</strong>g was great enough that a pycnocl<strong>in</strong>e was established through-<br />

out the cratonic "<strong>Black</strong>-Shale Sea", and black, organic-rich muds accumulated<br />

<strong>in</strong> the bottom layer throughout the sea.<br />

the deposition of the middle Huron Shale Member, for this is the first unit<br />

to completely overlap the C<strong>in</strong>c<strong>in</strong>nati Arch (Swager, 1978; Ettensohn and others,<br />

1979).<br />

As shown by evidence from the progressive onlapp<strong>in</strong>g of<br />

phosphate nodules <strong>in</strong> the upper Huron Shale Member, suggest<strong>in</strong>g that the "<strong>Black</strong>-<br />

Shale Sea" had deepened sufficiently to allow upwell<strong>in</strong>g (Fig. 8E).<br />

64<br />

In <strong>Kentucky</strong>, this occurred dur<strong>in</strong>g<br />

This is approximately co<strong>in</strong>cident with the first major occurrence of<br />

Dur<strong>in</strong>g the same period, eastern parts of the peripheral bas<strong>in</strong> were<br />

essentially filled by the Catskill Delta, and the locus of subsidence and<br />

sedimentation moved westward, push<strong>in</strong>g the effective eastward limit of succes-<br />

sive black-shale transgressions progressively westward also (Fig. 8E). As<br />

tlie locus of sedimentation moved westward, the two last <strong>in</strong>terven<strong>in</strong>g prograda-<br />

tional episodes (Three Lick-Chagr<strong>in</strong>, and Bedford-Berea) migrated onto portions<br />

of the C<strong>in</strong>c<strong>in</strong>nati Arch, thereby push<strong>in</strong>g the upwell<strong>in</strong>g waters westward and<br />

establish<strong>in</strong>g short-lived periods, of dysaerobic conditions (Barron and<br />

Ettensohn, 1980; Fig. 7).<br />

In the Early Mississippian, the "<strong>Black</strong>-Shale Sea" atta<strong>in</strong>ed its greatest<br />

extent, extend<strong>in</strong>g from eastern Ohio westward to southern Alberta. Large-scale<br />

collisional movements at this time <strong>in</strong> the Antler Belt (Poole, 1974) and <strong>in</strong><br />

the present North Atlanta area where parts of Africa pushed the southern<br />

European microcont<strong>in</strong>ents aga<strong>in</strong>st east-central portions of Laurussia (Badham<br />

and Halls, 1975; see Fig. 4) resulted <strong>in</strong> depression of the entire central<br />

portion of the craton and eustatic rise <strong>in</strong> sea-level, caus<strong>in</strong>g the "<strong>Black</strong>-Shale


Sea" to transgress westwardlyacross theTranscont<strong>in</strong>enta1 Arch (Fig. ). Eventhough<br />

the transgression was relatively brief, the presence of relatively unfossili-<br />

ferous fissile, black shales as far westward as Alberta <strong>in</strong>dicate that the sea<br />

was sufficiently deep to establish a pycnocl<strong>in</strong>e and an anaerobic.bottom layer.<br />

Although upwell<strong>in</strong>g, as <strong>in</strong>dicated by the presence of phosphate, cont<strong>in</strong>ued <strong>in</strong><br />

central portions of the Mississippian "<strong>Black</strong>-Shale Sea", it is uncerta<strong>in</strong><br />

whether upwell<strong>in</strong>g occurred <strong>in</strong> the newer, western extension of the sea.<br />

The Lower and Middle Mississippian clastic wedge (Borden-Gra<strong>in</strong>ger-Pocono)<br />

that overlies the Mississippian black shale actually marks the end of the<br />

last black shale-clastic cycle (Figs. 5, 8F) and the beg<strong>in</strong>n<strong>in</strong>g of a period<br />

of regional tectonic quiesence.<br />

were eroded, vast amounts of deltaic clastics prograded westward and south-<br />

65<br />

As the newly elevated mounta<strong>in</strong>s to the east<br />

westward <strong>in</strong> the "<strong>Black</strong>-Shale Sea" of the central craton (Fig. 8F). A similar<br />

progradation from the Antler Belt may have migrated eastward <strong>in</strong>to western<br />

extensions of the sea (see Gutschick and Moreman, 1967). As subsidence and<br />

transgression decl<strong>in</strong>ed <strong>in</strong> this period of tectonic quiesence, the deltaic<br />

clastics and associated deposits (e.g., Fort Payne) essentially filled the<br />

"<strong>Black</strong>-Shale Sea", establish<strong>in</strong>g first, dysaerobic conditions (e.g., Nancy<br />

Shale of eastern <strong>Kentucky</strong>), and later aerobic conditions. The shallow-water<br />

platform built out <strong>in</strong>to the former "<strong>Black</strong>-Shale Sea" bas<strong>in</strong> dur<strong>in</strong>g this<br />

progradation became the site of extensive, shallow-water carbonate deposition<br />

dur<strong>in</strong>g the Middle and Late Mississippian.<br />

-<br />

-


1.)<br />

2.)<br />

CONCLUSIONS<br />

The Devonian-Mississippian black-shale sequence was deposited <strong>in</strong> an<br />

equatorial, <strong>in</strong>land, epicont<strong>in</strong>ental sea. The sea was bounded on the<br />

west by the Transcont<strong>in</strong>ental Arch, on the north by the Old Red Sand-<br />

stone Cont<strong>in</strong>ent, and on the south and east by the Acadian highlands.<br />

The only open<strong>in</strong>g to the open ocean was to the southwest <strong>in</strong> the<br />

Ouachita region of Arkansas and <strong>in</strong> the Marathon region of Texas.<br />

Devonian-Mississippian black-shale deposition reflects a low rate of<br />

clastic <strong>in</strong>flux, high organic productivity, and development of<br />

anaerobic conditions <strong>in</strong> a stratified water column with<strong>in</strong> a restricted<br />

<strong>in</strong>land sea.<br />

3.) The organic productivity <strong>in</strong> the "<strong>Black</strong>-Shale Sea" apparently was rather<br />

4.)<br />

high. Although organic productivity <strong>in</strong> upper parts of the water<br />

column is usually high, organic productivity <strong>in</strong> upper parts of the<br />

"<strong>Black</strong>-Shale Seav1 apparently was extraord<strong>in</strong>arily high.<br />

lated to the equatorial nature of the sea, cont<strong>in</strong>ual replenishment of<br />

nutrients by surface runoff from surround<strong>in</strong>g land, and the presence of<br />

an oceanic upwell<strong>in</strong>g dur<strong>in</strong>g later parts of black-shale deposition.<br />

Considerable organic <strong>in</strong>put was also derived from terrestrial sources<br />

to the east, but much of the terrestrial organic matter is concentrat-<br />

ed <strong>in</strong> eastern parts of the black-shale sequence.<br />

This was re-<br />

The black shales were deposited dur<strong>in</strong>g a dom<strong>in</strong>antly transgressive<br />

period, which can be related to a time of <strong>in</strong>creased spread<strong>in</strong>g rateson<br />

a world-wide basis.<br />

The <strong>in</strong>creased spread<strong>in</strong>g rates were reflected <strong>in</strong><br />

<strong>in</strong>creased subduction, obduction, and collision at cont<strong>in</strong>ental marg<strong>in</strong>s.<br />

66


5.)<br />

Deposition of the North American black shales was concurrent with and<br />

related to the Acadian Orogeny.<br />

developed across the paleoequator and just east of the "<strong>Black</strong>-Shale<br />

Sea.<br />

The result<strong>in</strong>g Acadian Mounta<strong>in</strong>s<br />

6.) Collision and uplift <strong>in</strong> the Acadian Mounta<strong>in</strong>s not only caused<br />

cratonic subsidence and transgression to the west, but created a<br />

barrier to the moisture-laden trade w<strong>in</strong>ds. This caused ra<strong>in</strong>shadow<br />

conditions west of the mounta<strong>in</strong>s and reduced clastic <strong>in</strong>flux <strong>in</strong>to the<br />

"<strong>Black</strong>-Shale Sea." In the absence of clastics, the <strong>in</strong>digenous organic<br />

debris form<strong>in</strong>g <strong>in</strong> the upper part of the water column was the major<br />

constituent of accumulat<strong>in</strong>g sediments.<br />

7,) Dur<strong>in</strong>g periods of tectonic quiesence, subsidence abated and erosion<br />

8.)<br />

lowered the mounta<strong>in</strong>s to the po<strong>in</strong>t that the trade w<strong>in</strong>ds could cross<br />

the equator anddeliver precipitation to western parts of the mounta<strong>in</strong>s.<br />

This resulted <strong>in</strong> vast <strong>in</strong>fluxes of clastics and rapid westward pro-<br />

gradations of the Catskill Delta <strong>in</strong>to the "<strong>Black</strong>-Shale Sea."<br />

Seven such major cycles of alternat<strong>in</strong>g black shales and coarse<br />

clastics are represented <strong>in</strong> the Catskill Delta complex. The black-<br />

shale units from these cycles are: Marcellus, Geneseo-Burket, Mid-<br />

dlesex, Rh<strong>in</strong>estreet, Huron-Dunkirk, Cleveland, and Sunbury. The<br />

Pipe Creek Shale represents yet another black-shale unit occurr<strong>in</strong>g<br />

between the Rh<strong>in</strong>estreet and Huron-Dunkirk; because of its comparatively<br />

th<strong>in</strong> nature, it is not <strong>in</strong>cluded with the others.<br />

shale units, only the latter three units (Hyron-Dunkirk, Cleveland,<br />

and Sunbury) were effectively deposited beyond the Appalachian periph-<br />

eral bas <strong>in</strong>.<br />

67<br />

Of the major black-


9.) Cratonic subsidence was greatest <strong>in</strong> the Appalachian peripheral or<br />

foreland bas<strong>in</strong> west of the mounta<strong>in</strong>s. The <strong>in</strong>creased subsidence <strong>in</strong><br />

this bas<strong>in</strong> apparently had a conf<strong>in</strong><strong>in</strong>g effect on the progradational<br />

wedges, for most of the clastic wedges did not migrate beyond the<br />

peripheral bas<strong>in</strong>. Hence, even dur<strong>in</strong>g ra<strong>in</strong>y periods to the east,<br />

starved-sediment conditions persisted <strong>in</strong> cratonic portions of the<br />

"<strong>Black</strong>-Shale Sea."<br />

10.) Because the "<strong>Black</strong>-Shale Sea" received at least periodic <strong>in</strong>fluxes of<br />

fresh water, the surface waters were probably somewhat brackish.<br />

Moreover, due to the equatorial<br />

nature of the sea, the surface<br />

waters were probably warmer and less dense than the bottom waters.<br />

These conditions apparently resulted <strong>in</strong> the formation of a stratified<br />

water column or pycnocl<strong>in</strong>ewhich prevented vertical circulation and<br />

oxygenation of the cold, dense bottom waters, Under these conditions,<br />

organic-rich sediments were preserved <strong>in</strong> anaerobic, azoic conditions<br />

below the pycnocl<strong>in</strong>e.<br />

11 .) Dur<strong>in</strong>g the <strong>in</strong>itial stages of transgression, each cratonic bas<strong>in</strong><br />

(Appalachian, Ill<strong>in</strong>ois, Michigan) developed its own pycnocl<strong>in</strong>e, and<br />

black muds accumulated spearately <strong>in</strong> each bas<strong>in</strong>.<br />

progressively with transgression, a pycnocl<strong>in</strong>e developed throughout<br />

the entire "<strong>Black</strong>-Shale Sea", so that black muds were deposited<br />

uniformly throughout the bas<strong>in</strong> of deposition.<br />

curred dur<strong>in</strong>g deposition of the upper Huron Shale, which was the<br />

first part of the shale sequence to completely overlap the C<strong>in</strong>c<strong>in</strong>nati<br />

Arch <strong>in</strong> <strong>Kentucky</strong>.<br />

well<strong>in</strong>g oceanic waters entered from the cont<strong>in</strong>ental marg<strong>in</strong>.<br />

68<br />

As depth <strong>in</strong>creased<br />

In <strong>Kentucky</strong> this oc-<br />

Eventually, depth <strong>in</strong>creased to the po<strong>in</strong>t that up-<br />

This is


<strong>in</strong>dicated by the presence of phosphates <strong>in</strong> the upper part of the<br />

black-shale sequence.<br />

12.) If the black-shale sequence is viewed as a s<strong>in</strong>gle unit, it can be<br />

traced laterally from the Middle Devonian Marcellus Shale of New<br />

York across the cont<strong>in</strong>ent to the Lower Mississippian Exshaw Shale of<br />

western Canada. Viewed <strong>in</strong> this way, the black-shale sequence repre-<br />

sents a transgression dur<strong>in</strong>g a period of time l<strong>in</strong>k<strong>in</strong>g the Middle<br />

Devonian through Early Mississippian.<br />

13.) The cratonic black-shale sequence represents deposition <strong>in</strong> a pro-<br />

‘gressively deepen<strong>in</strong>g sea.<br />

water conditions which are poorly preserved or condensed due to the<br />

rapidity of transgression and the low-ly<strong>in</strong>g surface over which the<br />

sea transgressed.<br />

the deepest phases of the sea.<br />

69<br />

Basal parts of the shale represent shallow-<br />

Upper phosphatic portions of the shale represent<br />

14.) The “<strong>Black</strong>-Shale Sea” atta<strong>in</strong>ed its greatest extent dur<strong>in</strong>g the Early<br />

Mississippianwhenit extended fromeasternOhio across the Transcon-<br />

t<strong>in</strong>ental Arch <strong>in</strong>to Alberta, Canada. This extensive transgression is<br />

related to widespread cratonic subsidence accompany<strong>in</strong>g pulses of<br />

tectonism <strong>in</strong> the Acadian and Antler mounta<strong>in</strong> belts.


REFERENCES CITED<br />

Allen, J. R. L., 1979, Old red sandstone facies <strong>in</strong> external bas<strong>in</strong>s, with<br />

particular reference to southern Brita<strong>in</strong>: Spec. Pap. <strong>in</strong> Palaeontology<br />

NO. 23, p. 65-80<br />

Anikouch<strong>in</strong>e, W. A,, and Sternberg, R. W., 1973, The world ocean, an <strong>in</strong>tro-<br />

duction to oceanography: Prentice-Hall, Inc., Englewood Cliff, New<br />

Jersey, 338 p.<br />

Avila, John, 1976, Devonian shale as a source of gas, <strong>in</strong> Natural gas from<br />

unconventional sources: <strong>National</strong> Research Council, Wash<strong>in</strong>gton, D .C . ,<br />

p. 78-85.<br />

Badham, J. P. N., and Halls, C., 1975, Microplate tectonics, oblique col-<br />

lisions, and evolution of Hercynian orogenic systems: Geology, v. 3,<br />

p. 373-376.<br />

Bambach, R. K., Scotese, C. R., and Ziegler, A. M., 1980, Before Pangea:<br />

the geographies of the Paleozoic world: Am. Scientist, v. 68, p.<br />

26-38.<br />

Barrell, J., 1913, The Upper Devonian delta of the Appalachian geosyn-<br />

cl<strong>in</strong>e: Am. Jour. Sci., 4th ser., v. 36, p. 430-472.<br />

Barrell, J., 1914, The Upper Devonian delta of the Appalachian geosyn-<br />

cl<strong>in</strong>e - part 11: Am. Jour. Sci., 4th ser., v. 37, p. 87-109.<br />

Barron, L. S., and Ettensohn, F. R., 1980, Paleontology and paleoecology<br />

of a prom<strong>in</strong>ent green-shale horizon <strong>in</strong> the Upper Devonian black<br />

shales of east-central <strong>Kentucky</strong>: Geol. SOC. Amer. Abstracts with<br />

PrOgramS,vl 12, p. 218.<br />

Barron, L. S., and Ettensohn, F. R., In press, A bibliography of the<br />

paleontology and paleoecology of the Devonian-Mississippian blackshale<br />

sequence <strong>in</strong> North America: Morgantown <strong>Energy</strong>Technology Center,<br />

Morgantown, W. Virg<strong>in</strong>ia.<br />

Ba<strong>in</strong>, G. W., 1963, Climatic zones throughout the ages, <strong>in</strong> Munyan, A. (ed.),<br />

Polar wander<strong>in</strong>g and cont<strong>in</strong>ental drift : Soc. Econ.Paleontologists<br />

and M<strong>in</strong>eralogists Spec. Pub. No. 10, p. 100-130.<br />

Beck, C. B., 1964, Predom<strong>in</strong>ance of Archaeopteris <strong>in</strong> Upper Devonian flora<br />

of western Catskills and adjacent Pennsylvania: Botanical Gazette,<br />

V. 125, p. 126-128.<br />

Berry, W. B. N., and Wilde, P., 1978, Progressive ventilation of the<br />

oceans - an exploration of the distribution of lower Paleozoic<br />

black shales: Am. Jour. Sci., v. 278, p. 256-275.<br />

Bostrom, K., Joensum, O., and Brohm, J., 1974, Plankton: its chemical<br />

composition and its si’wificance as a source of pelagic sediments:<br />

Chem. Geol., v. 14, p. 255-271.<br />

70


Bougis, Paul, 1976, Mar<strong>in</strong>e plankton ecology: North-Holland Pub. Co.,<br />

Amsterdam, 355 p.<br />

Branson, E. B., 1924, The Devonian ofMissouri: Missouri Bureau of Geology<br />

and M<strong>in</strong>es, 2nd series, v. 17, 279 p.<br />

Breger, I. A., and Brown, Andrew, 1962, Kerogen <strong>in</strong> the Chattanooga Shale:<br />

Science, v. 137, p. 221-224.<br />

Breger, I. A., and Brown, Andrew, 1963, Distribution and types of organic<br />

matter <strong>in</strong> a barred mar<strong>in</strong>e bas<strong>in</strong>: N. Y. Acad. Sci., Trans., ser. 2,<br />

V. 25, p. 741-755.<br />

Breger, I. A., and Schopf, J. M., 1955, Germanium and uranium <strong>in</strong> coalified<br />

wood from Upper Devonian black shale: Geochemica et Cosmochemica<br />

Acta, v. 7, p. 287-293.<br />

Bromley, R. G., 1967, Mar<strong>in</strong>e phosphates as depth <strong>in</strong>dicators: Mar. Geol.,<br />

V. 5, p. 503-509.<br />

Brongersma-Sanders, M., 1965, Metals of Kuperschiefer supplied by normal<br />

sea water: Geol. Rundsch., v. 55, p. 365-375.<br />

Brongersma-Sanders, M., 1971, Orig<strong>in</strong> of major cyclicity of evaporites and<br />

bitum<strong>in</strong>ous rocks; and actualistic model: Mar. Geol., v. 11, p. 123-144.<br />

Brooks, 1971, Some chemical and geochemical studies on sporopollen<strong>in</strong>,<br />

Brooks, J., and others (eds.), Sporopollen<strong>in</strong>: Academic Press, London,<br />

p.. 351-407.<br />

Broughton, J. G., Fisher, D. W., Isachsen, Y. W., and Rickard, L. V., 1962,<br />

The geology of New York State: New York State Mus. and Sci. Serv.,<br />

Geol. Surv. Map and Chart Ser. No. 5, 42 p.<br />

Burnett,-W. C., 1977, Geochemistry and orig<strong>in</strong> of phosphorite deposits from<br />

off Peru and Chile: Geol. Soc. America Bull., v. 88, p. 813-823.<br />

Byers, C. W., 1977, Biofacies patterns <strong>in</strong> eux<strong>in</strong>ic bas<strong>in</strong>s: a general model:<br />

Soc: Econ. Paleontologists and M<strong>in</strong>eralogists Spec. Pub. No. 25, p. 5-17.<br />

Byers, C. W., 1979, Biogenic structures of black shale paleoenvironments:<br />

Postilla, no. 174, 43 p.<br />

Campbell, Guy, 1946, New Albany Shale: Geol. SOC. America, v. 57, p. 829-<br />

908.<br />

Carman, J. E., and Schillhan, E. O., 1930, The Hillsboro Sandstone of Ohio:<br />

J. Geol., v. 38, p. 246-261.<br />

Caspers, Hubert, 1967, <strong>Black</strong> Sea and Sea of AZOV, <strong>in</strong> Hedgpeth, J. W. (ed.),<br />

Treatise on mar<strong>in</strong>e ecology and paleoecology, 1: Geol. SOC. Amer-<br />

ica Mem. 67, p. 801-890.<br />

71


Caster, K. E., 1934, The stratigraphy and paleontology of northwestern<br />

Pennsylvania: Bull. her. Paleontology, v. 21, 185 p.<br />

Clarke, J. M., 1903, Orig<strong>in</strong> of the limestone faunas of the Marcellus<br />

<strong>Shales</strong> of New York (abstr.) Geol. SOC. America, v. 13, p. 535.<br />

Conant, L. C., 1955, Environment of accumulation of the Chattanooga Shale:<br />

U.S. Geol. Surv. Trace Element Investigation <strong>Report</strong> 237, 22 p.<br />

Conant, L. C., and Swanson, V. E., 1961, Chattanooga Shale and related<br />

rocks of central Tennessee and nearby areas: U.S. Geol. Surv. Prof.<br />

Pap. 357, 91 p.<br />

Conk<strong>in</strong>, J. E., and Conk<strong>in</strong>, B. M., 1975, The Devonian-Mississippian and<br />

K<strong>in</strong>derhookian-Osagean boundaries <strong>in</strong> east-central United States are<br />

paracont<strong>in</strong>uites: Univ. Louisville, <strong>Studies</strong> <strong>in</strong> Paleontology and<br />

Stratigraphy 4, 54 p.<br />

Conybeare, C. E. B., 1979, Lithostratigraphic analysis of sedimentary<br />

bas<strong>in</strong>s: Academic Press, New York, 555 p.<br />

Cook, T. D., and Bally, A. W., eds., 1975, Stratigraphic Atlas of North<br />

and Central America: Pr<strong>in</strong>ceton Univ. Press, Pr<strong>in</strong>ceton, N.J., 272 p.<br />

Degens, E. T;, and Stoffers, Peter, 1976, Stratified waters as a key to<br />

the past: Nature, v. 263, p. 22-27.<br />

Dennison, J. M., 1971, Petroleum related to Middle and Upper Devonian<br />

deltaic facies <strong>in</strong> Central Appalachians: Am. Assoc. Petroleum<br />

Geologists Bull., v. 55, p. 1179-1193.<br />

Dennison, J. M., and Textoris, D. A., 1970, Devonian Tioga tuff <strong>in</strong> north-<br />

eastern United States: Bull. Volcanologique, v. 34, p. 289-294.<br />

Dennison, J. M., and Textoris, D, A., 1971, Devonian Tioga tuff: Vrig<strong>in</strong>ia<br />

Div. M<strong>in</strong>. Res. Inf. Arc. 16, p. 64-68.<br />

Dennison, J. M., and Textoris, D.' A., 1978, Tioga bentonite time-markers<br />

associated with Devonian shales <strong>in</strong> Appalachian Bas<strong>in</strong>, <strong>in</strong>' Schott,<br />

G. L., and others (eds.), Proceed<strong>in</strong>gs, first eastern gas shales<br />

symposium: Morgantown <strong>Energy</strong> Research Center, Morgantown, W.<br />

Virg<strong>in</strong>ia, p. 166-182.<br />

Dewey, J. F., and Burke, K. C. A., 1973, Hot spots and cont<strong>in</strong>ental break-<br />

up: implications for collisional orogeny: Geology, v. 2, p. 57-60.<br />

Dewey, J. F., and Kidd, W. S. F., 1974, Cont<strong>in</strong>ental collisions <strong>in</strong> the<br />

Appalachian-Caledonian belt: variations related to complete and<br />

<strong>in</strong>complete sutur<strong>in</strong>g: Geology, v. 2, p. 543-546.<br />

Dick<strong>in</strong>son, W. R., 1974, Plate tectonics and sedimentation, <strong>in</strong> Dick<strong>in</strong>son, W.<br />

R. (en.), Tectonics and sedimentation: SOC. Econ. Paleontologists and<br />

M<strong>in</strong>eralogists Spec. Pub. No. 22, p. 1-27.<br />

72


Diester-Haass, L., 1978, Sediments as <strong>in</strong>dicators of upwell<strong>in</strong>g, <strong>in</strong> Boje, R.,<br />

and Tomczak, M. (eds .) , Upwell<strong>in</strong>g ecosystems : Spr<strong>in</strong>ger-Vexag, New<br />

York, p. 261-281.<br />

Donohoe, H. V., Jr., and Pajarie, George, 1973, The age of the Acadian<br />

deformation <strong>in</strong> Mar<strong>in</strong>e-New Brunswich: Maritime Sediments, v. 9,<br />

p. 78-82.<br />

Dott, R. H., Jr., and Batten, R. L., 1976, Evolution of the Earth, 2nd ed.:<br />

McGraw-Hill, New York, 504 p.<br />

Drewry, G. E., Ramsay, A. T. S., and Smith, A. G., 1974, Climatically con-<br />

trolled sediments, the geomagnetic field and trade w<strong>in</strong>d belts <strong>in</strong><br />

Phanerozoic time: J. Geol., v. 82, p. 531-553.<br />

Druce, E. C., 1973, Upper Paleozoic and Triassic conondont distribution<br />

and the recognition of biofacies, <strong>in</strong> Rhodes, F. H. T. (ed.), Conodont<br />

Paleozoology: Geol. Soc. America Spec. Pap. 141, p. 191-237.<br />

Dunbar, C. O., 1960, Historical geology: John Wiley and Sons, Inc., New<br />

York, 500 p.<br />

Ellison, S. P., 1950, Subsurface Woodford black shale, west Texas and<br />

southeast New Mexico: Texas Univ., Bur. Econ. Geol., Rep. Inves.,<br />

v. 7, 20 p.<br />

Ettensohn, F. R., Fulmn, L. P., and Kepferle, R. C., 1979, Use of<br />

sc<strong>in</strong>tillometerand gamma-ray logs for correlation and stratigraphy<br />

<strong>in</strong> homogeneous black shales: Geol. SOC. America Bull., v. 90,<br />

Part I, p. 421-423 (Part 11, p. 828-849).<br />

Foerste, A. F., 1906, The Silurian, Devonian and Irv<strong>in</strong>e formations of east-<br />

central <strong>Kentucky</strong>: Ky. Geol. Surv. Bull., v. 7, 369 p.<br />

Glover, Lynn, 1959, Stratigraphy and uranium content of the Chattanooga<br />

Shale <strong>in</strong> northeastern Alabama, northwestern Georgia and eastern<br />

Tennessee: U.S. Geol. Surv. Bull. 1087-E, p. 133-168.<br />

Goldr<strong>in</strong>g, Roland, and Langenstrassen, Frank, 1979, Open shelf and near-<br />

shore clastic facies <strong>in</strong> the Devonian: Spec. Papers <strong>in</strong> Paleontology<br />

NO. 23, p. 81-97.<br />

Goldr<strong>in</strong>g, W., 1924, The Upper Devonian forest of seed ferns <strong>in</strong> eastern<br />

New York: N.Y. State Mus. Bull., v. 251, p. 50-72.<br />

Grabau, A. W., 1913, Early Paleozoic delta deposits of North America:<br />

Geol. Soc. America Bull., v. 24, p. 399-512.<br />

Grabau, A. W., 1917, Age and stratigraphic relations of the Olentangy Shale<br />

of central Ohio, with remarks on the Prout Limestone and so-called<br />

Olentangy shales of northern Ohio: J. Geol., v. 25, p. 337-343.<br />

73


Gre<strong>in</strong>er, H., 1978, Late Devonian facies <strong>in</strong>ter-relationships <strong>in</strong>border<strong>in</strong>g<br />

areas of the North Atlantic and their paleogeographic implications:<br />

Palaeogeography, Palaeoclimatology, and Palaeoecology, v. 25, p.<br />

241-263.<br />

Griffith, C., 1977, Stratigraphy and paleoenvironment of the New Albany<br />

Shale (Upper Devonian) of north-central <strong>Kentucky</strong> (M.S. thesis):<br />

Univ. Wiscons<strong>in</strong>, Madison, 214 p.<br />

Gripenberg, S. A., 1934, A study of the sediments of the north Baltic and<br />

adjo<strong>in</strong><strong>in</strong>g seas: Merentutimuslait. julk./Havsforskn<strong>in</strong>gs<strong>in</strong>tit.<br />

Hels<strong>in</strong>ki/Hels<strong>in</strong>gfors skr. no. 96, p. 1-23/.<br />

Gutschick, R. C., and Moreman, W. L., 1967, Devonian-Mississippian boundary<br />

relations along the cratonic marg<strong>in</strong> of the United States, <strong>in</strong> Oswald,<br />

D. H. (ed.), International Symposium on the Devonian Syster v. 2:<br />

Alberta SOC. Petroleum Geologists, Calgory , Alberta, p. 1009-1023.<br />

Habicht, J. K. A., 1979, Paleoclimate, paleomagnetism and cont<strong>in</strong>ental<br />

drift: Am. Assoc. Petroleum Geologists <strong>Studies</strong> <strong>in</strong> Geol. No. 9,<br />

31 p.<br />

Hallam, A., 1967, The depth significance of shales with bitum<strong>in</strong>ous layers:<br />

Mar. Geol., v. 5, p. 481-493.<br />

Ham, W. E., and Wilson, J. E., 1967, Paleozoic epeirogeny and orogeny <strong>in</strong><br />

the central United States: Am. Jour. Sci., v. 265, p. 332-407.<br />

Hard, E. W., 1931, <strong>Black</strong> shale deposition <strong>in</strong> central New York: Am. Assoc.<br />

Petroleum Geologists Bull., v. 15, p. 165-181.<br />

Harvey, R. D., White, W. A,, Cluff, R. M., Frost, J. K., and DuMontelle,<br />

P. B,, 1978, Petrology of New Albany Shale Groups (Upper Devonian<br />

and K<strong>in</strong>derhookian) <strong>in</strong> the Ill<strong>in</strong>ois Bas<strong>in</strong>, a prelim<strong>in</strong>ary report, - <strong>in</strong><br />

Schott, G. L. and others (eds.), Proceed<strong>in</strong>gs, First eastern gas<br />

shales symposium: Morgantown <strong>Energy</strong> Research Center, Morgantown,<br />

W. Virg<strong>in</strong>ia, MERC/SP-77/5, p. 328-354.<br />

Hass, W. H., 1947, Conodont zones <strong>in</strong> Upper Devonian and Lower Mississippian<br />

. formations of Ohio: Jour. Paleontology, v. 21, p. 131-141.<br />

Hatcher, R. D., Jr., 1978, Tectonics of the western Piedmont and Blue<br />

Ridge, southern Appalachians: review and speculation: Am. Jour.<br />

Sci., v. 278, p. 276-304.<br />

Heckel, P. H., 1973, Nature, orig<strong>in</strong>, and significance of the Tully Lime-<br />

stone: Geol. SOC. America Spec. Pap. 138, 244 p.<br />

Heckel, P. H., 1977, Orig<strong>in</strong> of phosphatic black shale facies <strong>in</strong> Pennsylvan-<br />

ian cyclothems of Mid-Cont<strong>in</strong>ent North America: Am. Assoc. Petroleum<br />

Geologists Bull., v. 61, p. 1045-1068.<br />

74


Heckel, P. H., and Witzke, B. J., 1979, Devonian world paleogeography<br />

determ<strong>in</strong>ed from distribution of carbonate and related lithic,<br />

paleoclimatic <strong>in</strong>dicators: Spec. Papers <strong>in</strong> Paleontology 23, p.<br />

99-123.<br />

Hoover, K. V., 1960, Devonian-Mississippian shale sequence <strong>in</strong> Ohio: Inf.<br />

Circ. No. 27, 154 p-.<br />

Hiilsemann, J., and Emery, K. O., 1961, Stratification <strong>in</strong> recent sediments<br />

of Santa Barbara Bas<strong>in</strong> as controlled by organisms and water char-<br />

acter: J. Geol., v. 69, p. 279-290.<br />

Inners, J. D., 1979, The Onesquethaw Stage <strong>in</strong> south-central Pennsylvania<br />

and nearby areas, <strong>in</strong> Dennison, J. M., and others (eds.), Devonian<br />

shales <strong>in</strong> south-cezral Pennsylvania and Maryland: Guidebook, 44th<br />

Ann. Field Conf. of Pennsylvania Geologists, p. 38-55.<br />

Johnson, J. G., 1971, Tim<strong>in</strong>g and coord<strong>in</strong>ation of orogenic, epeirogenic and<br />

eustatic events: Geol. SOC. America Bull., v. 82, p. 3263-3298.<br />

Jordan, D. W., 1980, Trace fossils and stratigraphy of Devonian black<br />

shale <strong>in</strong> east-central <strong>Kentucky</strong>: Am. Assoc. Petroleum Geologists<br />

Bull., V. 65, p. 729-730.<br />

Kepferle, R. C., Wilson, E. N., and Ettensohn, F. R., 1978, Prelim<strong>in</strong>ary<br />

stratigraphic cross section show<strong>in</strong>g radioactive zones <strong>in</strong> the<br />

Devonian black shales <strong>in</strong> the southern part of the Appalachian Bas<strong>in</strong>:<br />

U.S. Geol. Surv. Oil and Gas 1nves.ChartOC-85.<br />

Klapper, Gilbert, Sandberg, C. A., Coll<strong>in</strong>son, Charles, Huddle, J. W., Orr,<br />

R. W., Rickard, L. V., Schumbacher, Dietman, Seddon, George, and<br />

Uyeno, T. T., 1971, North American Devonian conodont biostratigraphy,<br />

- <strong>in</strong> Sweet, W. C., and Bergstrom, S. M. (eds.), Symposium on conodont<br />

biostratigraphy: Geol. Soc. America Men. 127, p. 285-316.<br />

Kle<strong>in</strong>, G. deV., 1970, Estimat<strong>in</strong>g water depths from analysis of barrier<br />

island and deltaic sedimentary sequences: Geology, v. 2, p. 409-412.<br />

Lees, A., 1975, Possible <strong>in</strong>fluence of sal<strong>in</strong>ity and temperature on modern<br />

shelf carbonate sedimentation: Mar. Geol. v. 19, p. 159-198.<br />

Lewis, T. L., and Schwieter<strong>in</strong>g, J. F., 1971, Distribution of the Cleveland<br />

black shale.<strong>in</strong> Ohio: Geol. SOC. America Bull., v. 82, p. 3477-3482.<br />

L<strong>in</strong>eback, J. A., 1968, Subdivisions and depositional environments of the<br />

New Albany Shale (Devonian-Mississippian) <strong>in</strong> Indiana: Am. Assoc.<br />

Petroleum Geologists Bull., v. 53, p. 1291-1303.<br />

L<strong>in</strong>ney, W. M., 1882, Geology of L<strong>in</strong>coln County: Geol. Surv. Ky., ser. 2,<br />

v. 3, p. 20-22.<br />

L<strong>in</strong>ney, W. M., 1884, <strong>Report</strong> on the geology of Clark County: Geol. Surv.<br />

Ky., ser. 2, v. 5, pt. 2, p. 33-37.<br />

75


Lisitz<strong>in</strong>, A. P., 1972, Sedimentation <strong>in</strong> the world ocean: SOC. Econ.<br />

Paleontologists and M<strong>in</strong>eralogists Spec. Pub. No. 17, 218 p.<br />

Lowe, D. R., 1975, Regional controls on silica sedimentation <strong>in</strong> the<br />

Ouachita System: Geol. SOC. America Bull., v. 86, p. 1123-1127.<br />

McElhenny, M. W., 1963, Palaeomagnetism and plate tectonics: Cambridge<br />

Univ. Press, 358 p.<br />

McKerrow, W. S., and Ziegler, A. M., 1972, Paleozoic oceans: Nature, v.<br />

240, p. 92-94.<br />

Manheim, F. T., Roue, G. T., and Jipa, D., 1975, Mar<strong>in</strong>e phosphorite forma-<br />

tion off Peru: Jour. Sed. Petrology, v. 45, p. 243-251.<br />

Markowitz, Gerald, 1979, A geochemical study of the Upper Devonian-Lower<br />

Mississippian black shales <strong>in</strong> eastern <strong>Kentucky</strong> (M.S. Thesis): Univ.<br />

<strong>Kentucky</strong>, Lex<strong>in</strong>gton, Ky., 226 p.<br />

Meckel, L. D., 1970, Paleozoic alluvial deposition <strong>in</strong> the central Appalachian:<br />

a summary, <strong>in</strong> Fisher, G. W., and others (eds.), <strong>Studies</strong> of<br />

'Appalachian geology: Interscience Publishers, New York, p. 49-67.<br />

Miller, M. L., 1978, A petrographic study of the Upper Devonian-Lower<br />

Mississippian black shales <strong>in</strong> eastern <strong>Kentucky</strong> (M.S. Thesis): Univ.<br />

<strong>Kentucky</strong>, Lex<strong>in</strong>gton, Ky., 108 p.<br />

M<strong>in</strong>tz, L. W., 1977, Historical geology, the science of a -dynamic Earth,<br />

2nd ed: C. E. Merrill Pub. Co., Columbus, Ohio, 588 p.<br />

Morris, R. C., 1974, Sedimentary and tectonic history of the Ouachita<br />

Mounta<strong>in</strong>s, <strong>in</strong> Dick<strong>in</strong>son, W. h. (ed.), Tectonics and sedimentation:<br />

SOC. Econ. Paleontologists and M<strong>in</strong>eralogists Spec. Pub. No. 22, p.<br />

120-142.<br />

Newberry, J. S., 1873, Devonian system, <strong>in</strong> Geology and paleontology:<br />

Geol. Sum. Ohio, v. 1, pt. 1, p. 140-167.<br />

Newton, C. R., 1979, Aerobic, dysaerobic andanaerobic facies with<strong>in</strong> the<br />

Needmore Shale (Lower to Middle Devonian), <strong>in</strong> Dennison, J. M., and<br />

others, Devonian shales <strong>in</strong> south-central PeGsylvania and Maryland :<br />

Guidebook, 44th Ann. Field Conf. of Pennsylvania Geologists, p. 56-<br />

60.<br />

Oliver, W. A., delitt, Wallace, Jr., Dennison, J. M., Hosk<strong>in</strong>s, D. M., and<br />

Huddle, J. W., 1967, Devonian of the Appalachian Bas<strong>in</strong>, &Oswald,<br />

D. H. (ed.), Proceed<strong>in</strong>gs, International Symposium on the Devonian,<br />

v. 1: Alberta Soc. Petroleum Geologists, Calgary, Alberta, p.<br />

1001-1040.<br />

Orren, M. J., 1973, The distribution of trace elements <strong>in</strong> upwell<strong>in</strong>g areas<br />

off the south west coast of Africa, <strong>in</strong> Ingerson, Earl (ed.), Proceed<strong>in</strong>gs<br />

of symposium on hydrogeochemistry anrbiogeochemistry, v. 2: The<br />

Clark Co., Wash<strong>in</strong>gton, D. C., p. 544-555.<br />

76


Park, D. E., Jr., and Croneis, Carey, 1969, Orig<strong>in</strong> of Caballos and<br />

Arkansas Novaculite formation: Am. Assoc. Petroleum Geologists,<br />

V. 53, p. 94-111.<br />

Patchen, D. G., and Dugol<strong>in</strong>sky, B. K., 1979, Guidebook, Middle and Upper<br />

Devonian clastics, central and western New York State: U.S. Dept of<br />

<strong>Energy</strong>, Eastern Gas <strong>Shales</strong> Project, Morgantown <strong>Energy</strong> Technology<br />

Center, Morgantown, 170 p.<br />

Patchen, D. G., and Larese, R. E., 1976, Stratigraphy and petrology of<br />

the Devonian brown shale <strong>in</strong> West Virg<strong>in</strong>ia, <strong>in</strong> Shumaker, R. C. and<br />

Overby, W. K. (eds.): E.R.D.A. Technical RGort MERC/SP-76/2, p. 4-<br />

15.<br />

Pavlides, Louis, 1976, Piedmont geology of the Fredericksburg, Virg<strong>in</strong>ia<br />

area and vic<strong>in</strong>ity: Guidebook for Fieldtrips 1 and 4, Geol. SOC.<br />

her. Northeast-Southeast Sections Jo<strong>in</strong>t Meet<strong>in</strong>g, 43 p.<br />

Piotrowski, R. G., and Krajewski, S. A., 1977, Prelim<strong>in</strong>ary stratigraphic<br />

cross section (C4-D4) show<strong>in</strong>g radioactive black shale zones and<br />

sandstones <strong>in</strong> the Middle and Upper Devonian, western Pennsylvania:<br />

U.S. Department of <strong>Energy</strong>, Eastern Gas <strong>Shales</strong> Project, EGSP Ser. No.<br />

5.<br />

Poole, F. G., 1974, Flysch deposits of Antler foreland bas<strong>in</strong>, western<br />

United States; <strong>in</strong> Dick<strong>in</strong>son, W. R. (ed.), Tectonics and sedimenta-<br />

tion: Soc. Ecor Paleontologists and M<strong>in</strong>eralogists Spec. Pub. No.<br />

' 22, p. 58-82.<br />

Potter, P. E., Maynard, J. B., and Pryor, W. A., 1980, F<strong>in</strong>al report of<br />

special geological, geochemical, and petrological studies of the<br />

Devonian shales <strong>in</strong> the Appalachian Bas<strong>in</strong>: Univ. of C<strong>in</strong>c<strong>in</strong>nati,<br />

C<strong>in</strong>c<strong>in</strong>nati, Ohio, 86 p. (available thorugh Morgantown <strong>Energy</strong><br />

Technology Center Morgantown, W. Virg<strong>in</strong>ia).<br />

Potter, P. E., Pryor, W. A., Lundegard, Paul, Samuels, Neil, and Maynard,<br />

J. B., 1979, Devonian Paleocurrents of the Appalachian Bas<strong>in</strong>:<br />

METC/CR-79/22, 60 p.<br />

Provo, L. J., 1977, Stratigraphy and sedimentology of radioactive<br />

Devonian-Mississippian shales of the central Appalachian Bas<strong>in</strong>:<br />

Grand Junction, Colo., U.S. Department of <strong>Energy</strong>, <strong>Report</strong> no.<br />

GJBX-37 (77), 102 p.<br />

Provo, L. J., Kepferle, R. C., and Potter, P. E., 1978, Division of the<br />

black Ohio Shale <strong>in</strong> eastern <strong>Kentucky</strong>: Am. Assoc. Petroleum<br />

Geologists, v. 62, p. 1703-1713.<br />

Rhoads, D. C., and Morse, J. W., 1971, Evolutionary and ecologic signifi-<br />

Lethaia, v. 4, p. 413-428.<br />

cance of oxygen-deficient mar<strong>in</strong>e bas<strong>in</strong>s:<br />

Rich, J. L., 1951, Probable fondo orig<strong>in</strong> of Marcellus-Ohio-New Albany-Chat-<br />

tanooga bitum<strong>in</strong>ous shales: Am. Assoc. Petroleum Geologists Bull.,<br />

V. 35, p. 2017-2040.<br />

77


Rickard, L. V., 1975, Correlation of the Silurian and Devonian rocks <strong>in</strong><br />

New York State: New York State Mus. and Sci. Serv., Geol. Surv. Map<br />

and Chart Ser. No. 24.<br />

Rodgers, John, 1967, Chronology of tectonic movements <strong>in</strong> the Appalachian<br />

region of eastern North America: Am. Jour. Sci., v. 265, p. 408-427.<br />

Roen, J. B., Wallace, L. G., and deWhitt, Wallace, Jr., 1978a, Prelim<strong>in</strong>ary<br />

stratigraphic cross section show<strong>in</strong>g radioactive zones of the Devoni-<br />

an black shales <strong>in</strong> eastern Ohio and west-central Pennsylvania: U.S.<br />

Geol. Surv. Oil and Gas Inves. Chart OC-82.<br />

Roen, J. B., Wallace, L. G., and deWitt, Wallace, Jr., 1978b, Prelim<strong>in</strong>ary<br />

stratigraphic cross section show<strong>in</strong>g radioactive zones <strong>in</strong> the Devonian<br />

black shales <strong>in</strong> the central part of the Appalachian Bas<strong>in</strong>: U.S.<br />

Geol. Surv. Oil and Gas Inves. Chart OC-87.<br />

Rudwick, M.J.S., 1965, Ecology and paleoecology, <strong>in</strong> Moore, R. C. (ed.)<br />

Treatise on <strong>in</strong>vertebrate paleontology: Part H, Brachipoda, p. H199-<br />

H214.<br />

Ruedemann, R. R., 1934, Paleozoic plankton of North America: Geol. SOC.<br />

America Memoir 2, 141 p.<br />

Ruedemann, R. R., 1935, Ecology of black mud shales of eastern New York:<br />

Jour. Paleontology, v. 9, p. 79-91.<br />

Savage, T. E., 1930, Devonian rock of <strong>Kentucky</strong>: Ky. Geol. Surv., ser. 6,<br />

V. 33, p. 14-163.<br />

Savage, T. E., 1931, The Devonian fauna of <strong>Kentucky</strong>, <strong>in</strong> The paleontology<br />

of <strong>Kentucky</strong>: Ky. Geol. Surv., ser. 6, v. 36, 218p.<br />

Schopf, T. J. M., 1980, Paleoceanography: Harvard Univ. Press, Cambridge,<br />

Mass., 341 p.<br />

Schopf, J. M., 1978, Foerstia and recent <strong>in</strong>terpretations of early vascular<br />

land plants: Lethaia, v. 11, p. 139-143.<br />

Schopf, J. M., and Schwieter<strong>in</strong>g, J. F., 1970, The Foerstia zone of the<br />

Ohio and Chattanooga shales: U.S. Geol. Surv. Bull. 1294-H, 15 p.<br />

Schuchert, Charles, 1910, Paleogeography of North America: Geol. SOC.<br />

America Bull., v. 20, p. 420-606.<br />

Schwieter<strong>in</strong>g, J. F., 1978, Prelim<strong>in</strong>ary model of Catskill Delta <strong>in</strong> West<br />

Virg<strong>in</strong>ia, <strong>in</strong> Schott, G. L. and others (eds.): Proceed<strong>in</strong>gs, first<br />

eastern garshales sumposium: Morgantown <strong>Energy</strong> Research Center,<br />

MERC/SP-77/5, p. 195-205.<br />

Scotese, C. R., Bambach, R. K., Barton, C., Van der Voo, R., and Ziegler, A.M.,<br />

1979, Paleozoic base maps: J. Geol. v. 87, p. 217-268.<br />

78


Scott, A. J., and Coll<strong>in</strong>son, Charles, 1961, Conodont faunas from the<br />

Louisiana and McCraney formations of Ill<strong>in</strong>ois, Iowa, and Missouri:<br />

Kansas Geol. SOC. Guidebook, 26th Ann, Field Conf., p. 110-141.<br />

Seddon, George, and Sweet, W. C., 1971, An ecologic model for conodonts:<br />

Jour. Paleontology, v. 45, p. 869-880.<br />

Segerstrale, S. G., 1957, Baltic Sea, <strong>in</strong> Hedgpeth, J. W. (ed.), Treatise<br />

on mar<strong>in</strong>e ecology and paleoecology: v. 1: Geol. Soc. America Mem.<br />

67, p. 751-800.<br />

Seyfert, C. K., and Sirken, L. A,, 1973, Earth history and plate tectonics:<br />

Harper and Row, New York, 504 p.<br />

Shaler, N. S., 1877, Notes on the <strong>in</strong>vestigations of the <strong>Kentucky</strong> Geological<br />

Survey, <strong>in</strong> <strong>Report</strong>s of Progress: Ky. Geol. Surv., v. 3, new series,<br />

p. 169-173.<br />

Siebold, E., 1970, Der Meeresboden als Rohstoffquella und die<br />

Konzentrierungsverfahren der natur: Chemie-1ng.-Technik, v. 42,<br />

A2091-AZ103.<br />

Sloss, L. L., 1963, Sequences <strong>in</strong> the cratonic <strong>in</strong>terior of North America:<br />

Geol. SOC. America Bull., v. 74, p. 93-114.<br />

Sloss, L. L., and Speed, R. C., 1974, Relationships of cratonic and<br />

cont<strong>in</strong>ental-marg<strong>in</strong> tectonic episodes, <strong>in</strong> Dick<strong>in</strong>son, W. R., (ed.),<br />

Tectonics and sedimentation: SOC. EcoT Paleontologists and<br />

M<strong>in</strong>eralogists Spec. Pub. No. 22, p. 98-119.<br />

Stockdale, P. B., 1939, Lower Mississippian rocks of the east-central<br />

<strong>in</strong>terior: Geol. SOC. America, Spec. Pap. 22, 248 p.<br />

Strahler, A. N., and Strahler, A. H., 1973, Environmental geoscience:<br />

<strong>in</strong>teraction between natural systems and man: Hamilton Pub. Co.,<br />

Santa Barbara, California, 511 p.<br />

Sumartojo, Jojok, and Waldste<strong>in</strong>, Peter, 1978, A petrologic study of the<br />

Devonian shales from central Tennessee and West Virg<strong>in</strong>ia, Schott<br />

and others (eds.), Proceed<strong>in</strong>gs, first eastern gas shales symposium:<br />

Morgantown <strong>Energy</strong> Research Center, Morgantown, W. Virg<strong>in</strong>ia, MERC/SP-<br />

77/5, p. 311-327.<br />

Sverdrup, H. U., Johnson, M. W., and Flem<strong>in</strong>g, R. H., 1942, The oceans:<br />

Prentice-Hall, Englewood Cliffs, N.J., 1087 p.<br />

Sutton, R. G., Bowmen, Z. P., and McAlester, A. L., 1970, Mar<strong>in</strong>e shelf<br />

environments of the Upper Devonian Sonyea Group of New York: Geol.<br />

SOC. America Bull., v. 81, p. 2975-2992.<br />

Swager, D. R., 1978, Stratigraphy of the Upper Devonian-Lower Mississippian<br />

shale sequence <strong>in</strong> the eastern <strong>Kentucky</strong> outcrop belts (M.S. Thesis):<br />

Univ. <strong>Kentucky</strong>, Lex<strong>in</strong>gton, Ky., 116 p.<br />

79


Swanson, V. E., 1961, Geology and geochemistry of uranium <strong>in</strong> mar<strong>in</strong>e black<br />

shales: U.S. Geol. Surv. Prof. Pap. 356-C, p. 67-112.<br />

Thiel, H., 1978, Benthos <strong>in</strong> upwell<strong>in</strong>g regions: <strong>in</strong> Boje, R., and Tomczak,<br />

M. (eds.), Upwell<strong>in</strong>g ecosystems; New York, Spr<strong>in</strong>ger-Verlag, p. 124-<br />

138.<br />

Thomas, W. A., 1977, Evolution of Appalachian-Ouachita salients and re-<br />

cesses from reentrants and promontories <strong>in</strong> the cont<strong>in</strong>ental marg<strong>in</strong>:<br />

Am. Jour. Sci., v. 277, p. 1233-1278.<br />

Towe, K. M., 1963, Paleogeographic significance of quartz elasticity<br />

measurements: J. Geol., v. 71, p. 790-793.<br />

Trask, P. D., 1939, Organic content of recent mar<strong>in</strong>e sediments, - <strong>in</strong> Trask,<br />

P. D. (ed.), Recent mar<strong>in</strong>e sediments: Dover, New York, p. 428-453.<br />

Tully, J. P., and Barber, F. G., 1961, An estuar<strong>in</strong>e model of the sub-<br />

Arctic Pacific Ocean, <strong>in</strong> Sears, Mary (ed.), Oceanography:<br />

for the Advancement of3cience Pub. No. 67, p. 425-454.<br />

80<br />

Am. Assoc.<br />

Twenhofel, W. H., 1939, Environments of orig<strong>in</strong> of black shales: Am. Assoc.<br />

Petroleum Geologists Bull., v. 23, p. 1178-1198.<br />

Wallace, L. G., Roen, J. B., and deWitt, Wallace, Jr., 1978, Prelim<strong>in</strong>ary<br />

stratigraphic cross section show<strong>in</strong>g radioactive zones <strong>in</strong> the Devoni-<br />

an black shales <strong>in</strong> southeastern Ohio and west-central West Virg<strong>in</strong>ia:<br />

U.S. Geol. Surv. Oil and Gas Inves. Chart OC-83.<br />

Wells, J. W., 1947, Provisional paleoecological analysis of the Devonian<br />

rocks of the Columbus region: Ohio Jour. Sci., v. 47, p. 119-126.<br />

Williams, Harold, 1978, Tectonic lithofacies map of the Appalachian<br />

orogen: Memorial Univ. of Newfoundland, St. John;s, Newfoundland,<br />

scale: 1:1,000,000.<br />

Woodrow, D. L., Fletcher, F. W., and Ahrnsbrak, W. F., 1973, Paleo-<br />

geography and paleoclimate at the deposition sites of the Devonian<br />

Catskill Delta and Old Red facies: Geol. SOC. her. Bull., v. 84,<br />

p. 3051 -3064.<br />

Woodward, H. P., 1943, Devonian system of West Virg<strong>in</strong>ia: W. Va. Geol.<br />

Surv., v. 15, 655 p.<br />

Ziegler, A. M., Scotese, C. R., McKerrow, W. S., Johnson, M. E., and<br />

Bambach, R. K., 1979, Paleozoic paleogeography: Ann. Revs. Earth<br />

and Planet. Sci., v. 7, p. 473-502.<br />

Zonenshap, L. P., and Gorodnitskiy, A. M., 1977, Paleozoic and Mesozoic<br />

reconstructions of the cont<strong>in</strong>ents and oceans, Article I, Early and<br />

Middle Paleozoic reconstructions: Geotectonics (Am. Geophys. Union<br />

Transl.), v. 11, p. 83-94.


APPENDIX I-C<br />

1-9


PALEOECOLOGY OF THE DEVONIAN-MISSISSIPPIAN<br />

BLACK-SHALE SEQUENCE IN EASTERN KENTUCKY<br />

August, 1980<br />

BY<br />

LANCE S. BARRON AND FRANK R. ETTENSOHN<br />

Of<br />

Department of Geology, University of <strong>Kentucky</strong><br />

<strong>Kentucky</strong> Research Group<br />

Lex<strong>in</strong>gton, <strong>Kentucky</strong> 40506<br />

Prepared for<br />

UNITED STATES DEPARTMENT OF ENERGY<br />

EASTERN GAS SHALES PROJECT<br />

MORGANTOWN ENERGY TECHNOLOGY CENTER<br />

MORGANTOWN, WEST VIRGINIA<br />

UNDER<br />

CONTRACT NO. DE-AC21-76ET12040


PALEOECOLOGY OF THE DEVONIAN-MISSISSIPPIAN<br />

BLACK-SHALE SEQUENCE IN EASTERN KENTUCKY<br />

by<br />

Lance S. Barron' and Frank R. Ettensohn2<br />

ABSTRACT<br />

The Devonian-Mississippian black-shale sequence of eastern North<br />

America is a dist<strong>in</strong>ctive stratigraphic <strong>in</strong>terval that is generally characterized<br />

by low clastic sedimentation, high organic production <strong>in</strong> the<br />

water column, anaerobic bottom conditions, and a relative absence of<br />

fossil evidence of biologic activity. The lam<strong>in</strong>ated black shales which<br />

constitute most of the black-shale sequence are broken by two major sets<br />

of <strong>in</strong>terbeds of greenish-gray clayey shales which conta<strong>in</strong> bioturbation,<br />

<strong>in</strong> place phosphatic brachiopods, and pyritized micromorph <strong>in</strong>vertebrates.<br />

The black shales conta<strong>in</strong> abundant evidence of life from the upper part<br />

of the water column with fossils of fish and fish parts, conodonts,<br />

algae and other phytoplankton; however, there is a lack of evidence of<br />

benthic life. Brachiopods, cr<strong>in</strong>oids, and some molluscs were probably<br />

epiplanktic. Asignificant physical dist<strong>in</strong>ction between the environment<br />

<strong>in</strong> which the black sediments were deposited and that <strong>in</strong> which the greenish-gray<br />

sediments were deposited, is the level of dissolved oxygen.<br />

The lam<strong>in</strong>ated black shales po<strong>in</strong>t to anaerobic conditions and the bioturbated<br />

greenish-gray shales suggest dysaerobic to marg<strong>in</strong>ally aerobicdysaerobic<br />

conditions. A paleoenvironmental model <strong>in</strong> which quasiestuar<strong>in</strong>e<br />

circulation compliments and strengthen a stratified water<br />

column can account for both depletion of dissolved oxygen <strong>in</strong> the bottom<br />

environment and for prevention of oxygen replenishment. Clastic<br />

<strong>in</strong>flux from adjacent fluvial environments can br<strong>in</strong>g <strong>in</strong> the more<br />

abundant clays of the greenish-gray shales, and oxygen to support benthic<br />

life on the sea bottom. These pulses of greenish-gray clastic were shortlived<br />

and eventually were replaced by anaerobic condition and low rates<br />

of clastic sedimentation.<br />

'Research Assistant, University of <strong>Kentucky</strong><br />

2Assistant Professor of Geology, University of <strong>Kentucky</strong>


ACKNOWLEDGMENT<br />

We wish to give special thanks to Dennis R. Swager, Michael L.<br />

Miller, and Scott B. Dillman, former research assistants <strong>in</strong> the black-<br />

shale program at the University of <strong>Kentucky</strong>, whose theses provided<br />

valuable new data for our work.<br />

Edward N. Wilson, and Philip H. Heckel for their trips <strong>in</strong>to the field<br />

with us and valuable discussion. Our special gratitude goes to P. L.<br />

Bryant who typed the manuscript and to Danna L. Anto<strong>in</strong>e, who drafted<br />

the figures.<br />

iii<br />

We also wish to thank Roy C. Kepferle,


TABLE OF CONTENTS<br />

Page<br />

ABSTRACT ..............................<br />

ACKNOWLEDGMENT ........................... i i i<br />

TABLE OF CONTENTS ......................... iv<br />

PALEOECOLOGY . ........................... 1<br />

INTRODUCTION ......................... 1<br />

THEPLANKTON ......................... 2<br />

Tasmanites . ........................ 2<br />

Acritarchs . ........................ 4<br />

Spores . .......................... 5<br />

Chit <strong>in</strong>ozoans . ....................... 6<br />

Radiolarians . ....................... 6<br />

THE NEKTOPLANKTON ....................... 8<br />

Ostracods ......................... 8<br />

Conodonts ......................... 10<br />

THEEPIPLANKTON . ....................... 15<br />

Brachiopods and Pelecypods . ................ 16<br />

Graptolites ........................ 21<br />

Cr<strong>in</strong>oids . .......................... 21<br />

THENEKTON .......................... 22<br />

Fishes . .......................... 24<br />

Cephalopods ........................ 31<br />

Nektic Gastropods ..................... 34<br />

Phyllocarid Crustaceans .................. 35<br />

BENTHOS ............................ 35<br />

TraceFossils ....................... 37<br />

L<strong>in</strong>jwla .......................... 40<br />

Molluscs . ......................... 42<br />

Foram<strong>in</strong>ifera . ....................... 45<br />

Ostracods ......................... 45<br />

Organism-oxygen Relationships ............... 46<br />

Other Benthos ....................... 47<br />

PLANTS ............................ 48<br />

General .......................... 48<br />

Foerstia or Protosalv<strong>in</strong>ia ................. 50<br />

THE TWO MAJOR FACIES ........................ 53<br />

REFERENCES CITES . ......................... 59<br />

PLATES1-14 ............................<br />

iv


INTRODUCTION<br />

PALEOECOLOGY<br />

A paleoecological study of the Upper Devonian-Lower Mississippian<br />

black shale is difficult not only because the depositional environment of<br />

these shales is poorly understood, but also because the Late Devonian was<br />

a critical time <strong>in</strong> the evolution and development of life on Earth.<br />

the first time s<strong>in</strong>ce their <strong>in</strong>itial appearance <strong>in</strong> the Silurian, land plants<br />

evolved to the po<strong>in</strong>t that upland forests could develop,<br />

rapidly <strong>in</strong> both fresh and mar<strong>in</strong>e waters, and a few fresh-water forms ap-<br />

parently evolved <strong>in</strong>to amphibians at this time. The enigmatic conodont-<br />

bear<strong>in</strong>g animal underwent explosive evolution and radiation, while large<br />

numbers of brachiopod genera became ext<strong>in</strong>ct.<br />

controls reflected <strong>in</strong> these biotic changes may be directly or <strong>in</strong>directly<br />

related to those responsible for black-shale deposition, yet because the<br />

shale lacks abundant fossil evidence of metazoan life, because its fossils<br />

are both terrestrial and mar<strong>in</strong>e, and because its fossils are generally<br />

rare and poorly preserved, the connection rema<strong>in</strong>s unclear. Nonetheless,<br />

some significant paleoecological <strong>in</strong>ferences about the <strong>in</strong>cluded biota<br />

can be made us<strong>in</strong>g modern analogues, functional morphology, and sediment-<br />

organism relationships.<br />

paleoecological overview of the black-shale sequence through <strong>in</strong>tegration<br />

of the above techniques with observations from the literature and field.<br />

Because ecologic studies typically deal with organism habitats, the first<br />

part of the study will deal with fossils from the black shale <strong>in</strong> terms of<br />

of their larger habitats or environmental preferences.<br />

Fish evolved<br />

part of the study, the two major facies of the black-shale sequence will<br />

For<br />

The underly<strong>in</strong>g environmental<br />

It is the purpose of this study to generate a<br />

1<br />

In the second


e exam<strong>in</strong>ed <strong>in</strong> terms of the fossils conta<strong>in</strong>ed <strong>in</strong> them.<br />

THE PLANKTON<br />

Throughout the black-shale sequence, plankton form the most widely<br />

present k<strong>in</strong>d of fossil evidence.<br />

present; phytoplankton typically predom<strong>in</strong>ate.<br />

Tasmanites<br />

Both phytoplankton and zooplankton are<br />

Tasmanites as found <strong>in</strong> the fossil record are translucent amber-to-<br />

red colored discs or, when not collapsed by compaction, spheres. They<br />

range <strong>in</strong> size from 100 to 600 microns. Characteristically they lack sur-<br />

face ornamentation, and they lack unequivocally trilete or monolete<br />

mark<strong>in</strong>gs.<br />

<strong>in</strong>conspicuous punctae are also present (Newton, 1875; Schopf, Wilson, and<br />

Bentall, 1944).<br />

At high magnification, a slight rugose nature is apparent and<br />

In the past, this genus has been both misunderstood and mis<strong>in</strong>terpreted;<br />

<strong>in</strong>terpreted for the most part as the spores of land plants which were<br />

transported by the w<strong>in</strong>d or currents <strong>in</strong>to the black-shale sea.<br />

Dawson (1871a) had described similar spore-like disc as Sporangites,<br />

Newton (1875)<br />

gave a much more thorough description of the fossil<br />

Although<br />

organism and named it Tasmanites after the Tasmanian white coal which is<br />

composed of these discs. Newton stated that Tasmanites were, "vegetable<br />

organs", but he was not sure from which plant the "spore cases" had come.<br />

He suggested that they were related to Lycopod macrospores. Referr<strong>in</strong>g<br />

to Ralph (1865) and his suggestion that the (Tasmanites) material was<br />

algal, Newton said, '!* . . improbable." S<strong>in</strong>ce that time, Tasmanites<br />

generally has been described as a spore of terrestrial orig<strong>in</strong>.<br />

Schopf, Wilson, and Bentall (1944) discounted the relationship of<br />

2


Tasmanites to any of the primitive higher plants contemporary with the<br />

Devonian occurrence of the genus. They concluded, 'I. . . these micro-<br />

scopic fossil bodies represent about as great a realm for speculation<br />

now as they ever did as to their actual nature and aff<strong>in</strong>ity, but this can<br />

hardly be represented as a valid excuse for their cont<strong>in</strong>ued neglect."<br />

In 1962, Wall suggested that Tasmanites was algal <strong>in</strong> orig<strong>in</strong> and was<br />

very similar to the modern green alga Pachysphaera pelagica Ostenfield.<br />

Pachysphaera was described <strong>in</strong> detail by Parke (1966) as a planktic,<br />

mar<strong>in</strong>e green alga of the family Pras<strong>in</strong>ophyceae, similar or identical to<br />

the fossil genus Tasmanites.<br />

The encysted phase of the Pachysphaera<br />

is the phase that resembles the fossil Tasmanites.<br />

The cyst stage<br />

develops from a motile form that bears four flagellae. The cyst beg<strong>in</strong>s<br />

with one chloroplast, one nucleus, and one pyrenoid with a starch sheath.<br />

Growth cont<strong>in</strong>ues until the nucleus beg<strong>in</strong>s to divide. Nuclear division<br />

is accompanied by division of the cell contents. Eventually motile<br />

phases are produced and liberated by break<strong>in</strong>g of the tough, organic outer<br />

wall.<br />

Each cell of the motile phase conta<strong>in</strong>s one nucleus, one chloroplast,<br />

and one pyrenoid. Cells of both the motile and the encysted stages have<br />

been reported from depths of 70 meters <strong>in</strong> the English Channel and <strong>in</strong> the<br />

North Atlantic (Parke, 1966).<br />

Chaloner and Orbell (1971) and Brooks (1971) supported <strong>in</strong>clusion of<br />

Tasmanites with the Pras<strong>in</strong>ophyceae. Brooks (1971) further stated that the<br />

exact nature of Tasmanites, whether mar<strong>in</strong>e or fresh-water, had not been<br />

firmly established.<br />

gested a brackish environment, whereas the 8' 3C values for Tasmanites<br />

punctatus suggested a mar<strong>in</strong>e environment.<br />

Us<strong>in</strong>g 613C values for an Alaskan tasmanite, he sug-<br />

lived <strong>in</strong> brackish to mar<strong>in</strong>e water and were concentrated by currents.<br />

3<br />

He concluded that the organisms


Chemical analyses of the Tasmanites wall have shown that it is com-<br />

posed of sporopollen<strong>in</strong>, a substance also identified <strong>in</strong> Carboniferous mega-<br />

spores as well as <strong>in</strong> spores and pollen of Recent higher plants.<br />

chemical analyses of d<strong>in</strong>oflagellate thecae report properties similar to<br />

those from the walls of Tasmanites (Brooks, 1971).<br />

Some<br />

Tasmanites rema<strong>in</strong>s have been found from a black shale below the<br />

Boyle Dolomite (Middle Devonian), <strong>in</strong> the Boyle Dolomite, and throughout<br />

the black-shale sequence up to and <strong>in</strong>clud<strong>in</strong>g the Sunbury Shale.<br />

stratigraphic range on a world-wide basis is from the Silurian to the<br />

Cretaceous (Brooks, 1971).<br />

The occurrence of a planktic green alga such as Tasmanites <strong>in</strong> the<br />

upper parts of the black-shale sea suggests the presence of primary pro-<br />

ducers, phytoplankton which would have been a source of oxygen.<br />

algae also made a significant contribution to the organic matter deposited<br />

on the black-shale sea floor.<br />

and with Recent occurrences suggest a brackish to mar<strong>in</strong>e, planktic<br />

environment for the probable green alga Tasmanites.<br />

Acri t archs<br />

The<br />

The<br />

Comparisons withother fossil occurrences<br />

Acritarchs are unicellular or colonial organic-walled microfossils<br />

that have a spherical, ovoidal, or triangular body or vesicle. The body<br />

may possess sp<strong>in</strong>es, processes or membranes which project outward (Williams,<br />

1978). These enigmatic, organic-walled microfossils have been reported<br />

from the black-shale sequence by Boneham (1970), Wicander (1973a, b),<br />

McLaughl<strong>in</strong> and Reaugh (1974), Reaugh and McLaughl<strong>in</strong> (1975), and Mart<strong>in</strong> and<br />

Ziel<strong>in</strong>ski (1978). These fossils occur <strong>in</strong> both black shales and greenish-<br />

gray shales of the black-shale sequence.<br />

Although the exact aff<strong>in</strong>ities<br />

of acritarchs are unknown, they are generally regarded as some form of<br />

4


mar<strong>in</strong>e phytoplankton. Acritarchs <strong>in</strong>dicate mar<strong>in</strong>e conditions, even though<br />

some Holocene forms are apparently found <strong>in</strong> fresh-water deposits (Williams,<br />

1978). Wicander (1973a, b) reported an apparent decrease <strong>in</strong> abundance<br />

and diversity of acritarchs upward <strong>in</strong> the section from a core <strong>in</strong> the Ohio<br />

Shale; the acritarchs became quite rare <strong>in</strong> the Bedford Shale.<br />

periods of abundance and diversity <strong>in</strong> both the Chagr<strong>in</strong> Shale and <strong>in</strong> the<br />

Cleveland Shale. Mart<strong>in</strong> and Ziel<strong>in</strong>ski (1978) also reported vary<strong>in</strong>g<br />

abundances and diversities <strong>in</strong> conjunction with occurrences of Tasmanites<br />

and spores.<br />

large numbers of acritarchs, restricted mar<strong>in</strong>e with large numbers of<br />

Tasmanites, and terrestrial when the spores were dom<strong>in</strong>ant. It is<br />

doubtful that the black-shale sea was ever terrestrial <strong>in</strong> nature, though<br />

some of its sediment certa<strong>in</strong>ly had a terrestrial orig<strong>in</strong>.<br />

5<br />

He did note<br />

They <strong>in</strong>terpreted these variances to <strong>in</strong>dicate open mar<strong>in</strong>e with<br />

Therefore, the acritarchs were probably mar<strong>in</strong>e phytoplankton, per-<br />

haps related to thecholophyceae (Downie, 1967j, and served as primary<br />

producers <strong>in</strong> the black-shale seas. They not only provided a source of<br />

nutrition for mar<strong>in</strong>e consumers, but contributed substantially to the<br />

organic matter deposited on the sea bottom. Tasch (1967) suggested that<br />

acritarchs were the lead<strong>in</strong>g primary producers of the Paleozoic.<br />

Spores<br />

Spores are <strong>in</strong>cluded <strong>in</strong> this section even though most were not native<br />

to the mar<strong>in</strong>e environment, hav<strong>in</strong>g been blown or washed <strong>in</strong>to the mar<strong>in</strong>e<br />

environment form the terrestrial environment.<br />

In papers concerned with<br />

the study of acid-<strong>in</strong>soluble, organic-walled microfossils or palynomorphs,<br />

spores are generally treated with the acritarchs and tasmanitids.<br />

In an<br />

environment like that represented by the black-shale sequence, where trees,<br />

cones, and other terrestrial plant materials are preserved, it is certa<strong>in</strong>ly


not surpris<strong>in</strong>g to f<strong>in</strong>d spores <strong>in</strong> the same deposits.<br />

terrestrial plant material preserved <strong>in</strong> the black shale are more <strong>in</strong>dica-<br />

tive of terrestrial conditions than of the mar<strong>in</strong>e environment <strong>in</strong> which<br />

they were deposited and preserved (Heusser, 1978). Nonetheless, the rela-<br />

6<br />

Spores, like other<br />

tive abundance of spores and other terrestrial plant material may be used<br />

as an <strong>in</strong>dicator of relative proximity to shorel<strong>in</strong>e.<br />

Chit<strong>in</strong>ozoans<br />

Chit<strong>in</strong>ozoans are small, hollow, vase-shaped microfossils with organic<br />

walls and radial symmetry about a central axis.<br />

Their aff<strong>in</strong>ities are very<br />

poorly understood. Reaugh and McLaughl<strong>in</strong> (1975) reported them from the<br />

Chattanooga Shale of Tennessee, occurr<strong>in</strong>g <strong>in</strong> one assemblage with abundant<br />

and djverse acritarchs and scolecodonts; and <strong>in</strong> another assemblage with<br />

abundant land plant spores, but reduced acritarchs, and scolecodonts.<br />

Chit<strong>in</strong>ozoans were apparently mar<strong>in</strong>e, but whether they lived high <strong>in</strong> the<br />

water column or on the bottom is uncerta<strong>in</strong> (Jansonius and Jenk<strong>in</strong>s, 1978).<br />

They are listed <strong>in</strong> the plankton section because the nature of the black-<br />

shale deposits favors a planktic mode over a benthic one.<br />

between chit<strong>in</strong>ozoans and graptolites has been suggested (Jenk<strong>in</strong>s, 1970),<br />

but only one occurrence of graptolites has been reported from the black-<br />

shale sequence of this area (Butts, 1922). Nevertheless, this associa-<br />

tion can not be completely discounted.<br />

Radiolarians<br />

A relationship<br />

Radiolarians are sarcod<strong>in</strong>e Protistans which secrete skeletons<br />

composed of amorphous hydrated silica (opal A) (Schopf, 1980), but may have<br />

been composed of other m<strong>in</strong>erals <strong>in</strong> the past. The skeletons are exceed-<br />

<strong>in</strong>gly <strong>in</strong>tricate and may be radially symmetrical or helmet-shaped


(Kl<strong>in</strong>g, 1978).<br />

cell <strong>in</strong>to an outer and <strong>in</strong>ner zone separated by a membrane. This dis-<br />

t<strong>in</strong>guishes them from the rest of the members of the Protista (Kl<strong>in</strong>g,<br />

1978).<br />

They possess psuedopodia and divide the contents of the<br />

Spumellarian radiolarians were reported from the calcareous nodules<br />

near the base of the Ohio Shale by Foreman (1959, 1963). Additionally,<br />

radiolarians were reported by Conant and Swanson (1961, cited a personal<br />

communication from Henbest) from phosphate nodules near the top of the<br />

Chattanooga Shale. Henbest (1936) reported radiolarians from the Arkansas<br />

Novaculite (Upper Devonian) which <strong>in</strong>tertongues with black shales, and<br />

also mentioned radiolarians from phosphate nodules <strong>in</strong> the Tennessee black<br />

shale.<br />

Pyritized radiolarians have also been found <strong>in</strong> the black shale<br />

(Upper Devonian) of Ontario and Michigan (Mason, 1962).<br />

The ecology, geographic distribution, and bathymetric range of<br />

modern radiolariansare not well understood. We do know that radiolarians<br />

are mar<strong>in</strong>e planktic organisms that feed on various forms of phytoplankton<br />

and zooplankton up to the size of copepods, and that a varied assemblage<br />

of food material would have been available for radiolarians <strong>in</strong> the black-<br />

shale sea.<br />

The general absence of radiolarians outside of various nodules<br />

is probably related to destruction by compaction. The <strong>in</strong>tricate opall<strong>in</strong>e<br />

tests are delicate and easily destroyed by compaction, recrystallization,<br />

or solution. Calcareous radiolarian-like forms have been reported from<br />

silt lam<strong>in</strong>ae <strong>in</strong> the New Albany Shale of Ill<strong>in</strong>ois and north-central Ken-<br />

tucky (Harvey and others, 1977;Griffith, 1977). Although these were de-<br />

signated as calcispheres, their disthctive structure suggests that they<br />

are radiolarian skeletons replaced by calcite. It is likely that radio-<br />

larians were present <strong>in</strong> the plankton dur<strong>in</strong>g most of black-shale deposition,<br />

7


ut simply were not preserved (Conant and Swanson, 1961). They are<br />

preferentially preserved <strong>in</strong> chert and various nodules because of pre-<br />

compaction lithification.<br />

The presence of the radiolarians further supports the existence of<br />

normal mar<strong>in</strong>e conditions <strong>in</strong> the upper part of the water column of the<br />

black-shale sea. More importantly, however, the presence of abundant<br />

radiolarians such as occur <strong>in</strong> the Arkansas and Caballos novaculites,<br />

which are partially equivalent to and <strong>in</strong>tertongue with the black shales,<br />

probably reflect the presence of oceanic upwell<strong>in</strong>g near a cont<strong>in</strong>ental<br />

marg<strong>in</strong>.<br />

marg<strong>in</strong>s result <strong>in</strong> large plankton blooms, which usually <strong>in</strong>clude abundant<br />

radiolarians (Schopf, 1980; Koopman, Sarnthe<strong>in</strong>, and Schrader, 1978;<br />

Diester-Haass, 1978). Silica from these skeletons <strong>in</strong> numbers greater<br />

than normal will saturate the <strong>in</strong>terstitial waters with dissolved silica,<br />

and possibly allow formation of radiolarian chert. Normally, opall<strong>in</strong>e<br />

tests are dissolved rather than preserved <strong>in</strong> bottom sediments.<br />

abnormally high productivity occurs can the <strong>in</strong>terstitial waters become<br />

saturated <strong>in</strong> dissolved silica (Diester-Haass, 1978).<br />

THE NEKTOPLANKTON<br />

The upwell<strong>in</strong>g of cold, nutrient-rich oceanic water near cont<strong>in</strong>ental<br />

a<br />

Only when<br />

This environmental subdivision is used to describe fossil organisms<br />

hav<strong>in</strong>g Recent analogues that are known to be nektoplanktic, as well as<br />

those hav<strong>in</strong>g no Recent analogue, and whose specific environmental pre-<br />

ferences are relatively unknown.<br />

Ostracods<br />

Ostracods are microscopic, bivalved crustaceans (Arthropoda) which<br />

are known <strong>in</strong> the fossil record from the early Cambrian. The carapace,


which is<br />

elevations (lobes) and depressions (sulci) modify the valve and these<br />

features are reflected on both the <strong>in</strong>ternal and external surfaces of the<br />

valve.<br />

and may consist<br />

usually calcified, may possess valvular vault<strong>in</strong>g <strong>in</strong> which<br />

Sculptural features are expressed only on the exterior surface<br />

acters (Pokornt, 1978).<br />

of meshes, ridges, tubercles, sp<strong>in</strong>es, or other char-<br />

These small crustaceans have been known for some time from Middle<br />

Devonian deposits, but only recently have they been reported from Upper<br />

Devonian rocks of the eastern United States. Stewart and Hendrix (1945b)<br />

reported ostracods from the Olentangy Shale of Ohio, and Stewart (1944)<br />

reported them from the underly<strong>in</strong>g Delaware Formation.<br />

Warshauer (1978) and Duffield and Warshauer (1979) have reported<br />

ostracods from a core <strong>in</strong> the black-shale sequence of West Virg<strong>in</strong>ia.<br />

A genus common to all of those reports is Richter<strong>in</strong>a, an<br />

(f<strong>in</strong>gerpr<strong>in</strong>t'ostracotl) also found <strong>in</strong> the Three Lick Bed <strong>in</strong> eastern<br />

<strong>Kentucky</strong>.<br />

They occur over a wide geographic range, and make good Upper Devonian<br />

guide fossils (Porkom?, 1978). Duffield and Warshauer (1979) reported<br />

that the assemblage of ostracods <strong>in</strong> the black-shale core of their study<br />

showed similarities with European species of Late Devonian age.<br />

ostracods are pyritized and are found <strong>in</strong> the greenish-gray shales of the<br />

black-shale sequence.<br />

<strong>in</strong> the black shales may be the result of preservational bias and not their<br />

absence from the upper part of the water column <strong>in</strong> the Late Devonian black-<br />

shale sea.<br />

More recently,<br />

entomozoid<br />

The entomozoids are <strong>in</strong>terpreted to have been mar<strong>in</strong>e plankton.<br />

The<br />

The lack of planktic or nektoplanktic ostracods<br />

The probable presence of ostracods <strong>in</strong> the upper part of the water<br />

column further supports the oxygenated nature of that part of the water<br />

9


column.<br />

waters is somewhat uncerta<strong>in</strong>, but the entomozoids are generally considered<br />

to have been mar<strong>in</strong>e forms. Be<strong>in</strong>g planktic organisms, their carapaces<br />

conta<strong>in</strong>ed less calcite and were not as thick as the carapaces of benthic<br />

ostracods; therefore, the carapaces dissolved more easily than did the<br />

more heavily calcified carapaces of benthic forms. Preservation of these<br />

planktic shells <strong>in</strong> the green shales, even by pyritization, <strong>in</strong>dicates that<br />

the conditions <strong>in</strong> which the greenish-gray muds were deposited differed<br />

from those <strong>in</strong> the black sediments were deposited.<br />

slightly higher and may have allowed the pyritization to preserve the<br />

ostracods prior to solution. In the black sediments, the pH was lower<br />

and solution of the slightly calcified carapaces probably occurred much<br />

more quickly.<br />

Conodont s<br />

Whether they preferred completely mar<strong>in</strong>e or brackish surface<br />

10<br />

The pH may have been<br />

Conodonts are microscopic, toothlike fossils composed of calcium-<br />

fluorapatite.<br />

Apparently some of the conodont-bear<strong>in</strong>g animals bore more<br />

than one type of element, but neither the functions of the elements nor<br />

the nature of the animal is known.<br />

the tooth analogue of conodonts cont<strong>in</strong>ues to be well refuted.<br />

suggested that the elements functioned as basal supports of tentacles on<br />

a worm-like creature. The "genust1 and "species" names attached to part-<br />

icular elements are form names only.<br />

Early and even recent speculation on<br />

Assemblage names which group<br />

elements together are not considered <strong>in</strong> this discussion.<br />

One theory<br />

The enigmatic conodont-bear<strong>in</strong>g animal evolved very rapidly <strong>in</strong> the<br />

Late Devonian, and as a pelagic nektoplanktic animal it distributed its<br />

phosphaticrema<strong>in</strong>s<strong>in</strong> many different facies over a wide geographic range.


For these two reasons, conodonts are excellent <strong>in</strong>dex fossils. Although<br />

very little work has been done with the Late Devonian conodonts from<br />

<strong>Kentucky</strong>, extensive studies <strong>in</strong> the Late Devonian have been made <strong>in</strong> Tennes-<br />

see (Hass, 1956), Ohio (Bond, 1948; Cooper, 1931; Gable, 1973; Hass, 1947a),<br />

Indiana (Huddle, 1934; Rexroad, 1969; Rexroad and Scott, 1964), and West<br />

Virg<strong>in</strong>ia (Duffield, 1978; Duffield and Warshauer, 1979). These workers<br />

have found conodonts throughout most of the black-shale sequence.<br />

the basal green shales of the outcrops <strong>in</strong> <strong>Kentucky</strong>, and <strong>in</strong> the Bedford<br />

Shale, they become rather scarce. The bone beds or lag zones found <strong>in</strong><br />

the sequence are well-<strong>in</strong>durated, phosphatic sandstones with up to 15,000<br />

conodont elements per kilogram of sample (Chapl<strong>in</strong>, personal communication)<br />

along with fish rema<strong>in</strong>s, Tasmanites, and pyritized or phosphatized gastro-<br />

pods. Both the black shales and the greenish-gray shales conta<strong>in</strong> cono-<br />

donts, as do the phosphate nodules found <strong>in</strong> upper parts of the section.<br />

The biostratigraphic aspects of conodonts long overshadowed their<br />

potential as <strong>in</strong>dicators of biofacies. Early work by Merrill (1965) <strong>in</strong><br />

the Pennsylvanian of North America developed the idea of facies assemblages<br />

of conodonts. Subsequent work <strong>in</strong> the Devonian of Europe, North America,<br />

and Australia has led to a biofacies model for conodont assemblages.<br />

Druce (1970) and Seddon (1970) both presented models which were developed<br />

from work done with carbonates <strong>in</strong> the Cann<strong>in</strong>g Bas<strong>in</strong> of Australia. In<br />

these models, Palmatolepis, Ancyrodella, Ancyrognathus, Playfordia, and<br />

Polylophodonta were found only from "deep-water" sedimentary units.<br />

Icriodus, Polygnathus, and simple cones came from "shallow-water" facies.<br />

Druce (1970) suggested that distance from the shore determ<strong>in</strong>ed the habitats;<br />

whereas Seddon (1970) suggested that vertical stratification, which implied<br />

some relationship with distance from shore, was the important factor.<br />

In<br />

11


In K<strong>in</strong>derhookian sediments from the same area, Siphonodella, Psuedopoly-<br />

pathus, and Gnathodus (complex forms) formed the llshallow-waterll assem-<br />

blate. Members of the "shallow-water" assemblage were found <strong>in</strong> the more<br />

dom<strong>in</strong>ant Palmatolepis-Ancyrodella assemblage, but the "deep-water" forms<br />

were rare <strong>in</strong> the llshallow-waterll assemblage dom<strong>in</strong>ated by Icriodus and<br />

Polygnathus (see figure 1).<br />

A model developed further by Seddon and Sweet (1971) presented a<br />

vertical stratification of conodonts <strong>in</strong> which the Icriodus assemblage<br />

occupied the uppermost part of the water column and <strong>in</strong> which the Palmato-<br />

lepis assemblage occupied the deeper part. This placed the morphologi-<br />

cally simple forms <strong>in</strong> shallow water above the more complex, deeper-water<br />

forms and expla<strong>in</strong>ed the occurrence of Icriodus <strong>in</strong> a Palmatolepis assem-<br />

blage and the absence of Palmatolepis <strong>in</strong> the Icriodus assemblage.<br />

In Druce's (1973) model, a comb<strong>in</strong>ation of distance from shore and<br />

depth controlled the occurrence of conodonts <strong>in</strong> three biofacies.<br />

facies I represented a very shallow water facies conta<strong>in</strong><strong>in</strong>g primarily<br />

Bio-<br />

simple cones. Biofacies I1 represented a facies of <strong>in</strong>termediate depth<br />

(possibly to 50 meters) and conta<strong>in</strong>ed Icridodus , Pelekysgnathus, and<br />

Polygnathus. Biofacies I11 represented a deeper water facies (possibly<br />

below 50 meters) and conta<strong>in</strong>ed Palmatolepis, Ancyrodella, Polylophodonta,<br />

and Ancyrognathus.<br />

Subsequent work <strong>in</strong> North America seemed to verify the use of<br />

conodonts <strong>in</strong> determ<strong>in</strong><strong>in</strong>g biofacies <strong>in</strong> carbonates and shales of western<br />

Canada (Chatterton, 1976), <strong>in</strong> the Snyder Creek Shale and Cedar Valley<br />

Formation of Missouri (Schumacker, 1976), and <strong>in</strong> carbonates and shales<br />

of the western United States (Sandberg, 1976). In all of these situa-<br />

tions, Icriodus represented the shallow-water facies, whereas Palmatolepis<br />

12


I<br />

n<br />

6<br />

f<br />

ii<br />

a<br />

0<br />

u


or wide-platform polygnathids or both represented the deep-water facies.<br />

Sandberg (1980) used conodonts to determ<strong>in</strong>e eight biofacies vary<strong>in</strong>g from<br />

peritidal to offshore pelagic.<br />

Us<strong>in</strong>g absolute and relative frequencies of Icriodus and Polygnathus,<br />

Weddige and Ziegler (1976, 1979) showed that the respective genera occupied<br />

different habitats <strong>in</strong> the sea.<br />

vertically stratified habitats and that Icriodus was dom<strong>in</strong>ant <strong>in</strong> the more<br />

shallow, higher-energy habitats.<br />

They suggested that the two occupied<br />

With regard to the black-shale sequence, Griffith (1977) used the<br />

Seddon and Sweet (1971) model and work done by Davis (1975) <strong>in</strong> the New<br />

York Devonian, to suggest that the New Albany Shale, which conta<strong>in</strong>s p<br />

gnathus and some Icriodus <strong>in</strong> the base, and Palmatolepis and Ancyrodella<br />

14<br />

Poly-<br />

and some Polygnathus higher <strong>in</strong> the section, deepened upward. Hass (1956)<br />

had earlier reported the presence of Palmatolepis from the th<strong>in</strong> basal<br />

sandstone (bone bed?) <strong>in</strong> .the lower black shale of the Dowelltown-Member<br />

all the way up to the lower part of the phosphate-nodule horizon <strong>in</strong> the<br />

upper black shale of the Gassaway Member of the Chattanooga Shale <strong>in</strong><br />

Tennessee.<br />

Polygnathus occurred only <strong>in</strong> the basal sandstone, whereas<br />

Icriodus occurred from the basal sandstone up to the middle of the upper<br />

black shale of the Gassaway Member.<br />

Conodonts recovered <strong>in</strong> reconnaissance samples from a black-shale out-<br />

crop on Interstate Highway 64 <strong>in</strong> Rowan County <strong>in</strong> eastern <strong>Kentucky</strong> supported<br />

the f<strong>in</strong>d<strong>in</strong>gs of Hass <strong>in</strong> the Chattanooga Shale. Conodonts <strong>in</strong> the basal<br />

sandstone at the bottom of the lower Huron Shale or radioactive unit 5<br />

of Swager (1978), <strong>in</strong>cluded Palmatolepis, Polygnathus, a few Icriodus, and<br />

a few simple cones; this sandstone is equivalent to bone bed number 17<br />

of Conk<strong>in</strong> and Conk<strong>in</strong> (1979). The bone bed or lag deposit near the top


of radioactive unit 5 (Swager, 1978) also conta<strong>in</strong>ed Palmatolepis, p Poly-<br />

gnathus, and Ancyrognathus. Samples from the three greenish-gray shales<br />

of the Three Lick Bed conta<strong>in</strong>ed both Palmatolepis and Spathognathodus.<br />

The lag zone at the base of the Sunbury Shale conta<strong>in</strong>ed numerous Gnathodus<br />

(complex forms), Psuedopolygnathus, Polygnathus, and Siphonodella.<br />

The evidence of Palmatolepis and the other "deep-water" genera <strong>in</strong><br />

the black shales of eastern <strong>Kentucky</strong> is suggestive of deeper water for<br />

the deposition of the black-shale sequence. However, a typical progres-<br />

sion from an Icriodus-dom<strong>in</strong>ant fauna at the base of the section to a<br />

Palmatolepis-dom<strong>in</strong>ated assemblage at the top does not appear to be<br />

present. All biofacies seem to be concentrated <strong>in</strong> the bone beds (lag<br />

deposits), and the <strong>in</strong>terven<strong>in</strong>g shales seem to be dom<strong>in</strong>ated by a Palmato-<br />

lepis assemblage. This k<strong>in</strong>d of concentration of facies <strong>in</strong> a basal lag<br />

might be expected if the <strong>in</strong>itial transgression was relatively rapid,<br />

as is suspected <strong>in</strong> the case of the black shales of eastern <strong>Kentucky</strong>.<br />

Nonetheless, the conodont biofacies and result<strong>in</strong>g bathymetric <strong>in</strong>ferences<br />

can only be taken as suggestive of deeper water until a much more de-<br />

tailed study is undertaken.<br />

If Palmatolepis was a deep-water form, the<br />

black-shale sea would have been considerably deeper than the 50 meter depth<br />

suggested, because the 50 meter figure would only represent the top of<br />

the Palmatolepis habitat.<br />

THE EPIPLANKTON<br />

Normally benthic organisms which attached themselves, either perman-<br />

ently or temporarily, to float<strong>in</strong>g objects such as logs or other<br />

plant debris occupied an epiplanktic habitat. Some early researchers<br />

used the term psuedoplanktonic <strong>in</strong> referr<strong>in</strong>g to this habitat. Normally<br />

benthic organisms could have attached themselves to float<strong>in</strong>g superstrates<br />

15


as a reaction to a number of possible environmental factors: Float<strong>in</strong>g<br />

logs of the size and durability of Callixylon were comparatively new to<br />

mar<strong>in</strong>e waters, and as such, presented new, albeit mobile, superstrates<br />

for organisms normally found <strong>in</strong> the benthos. Logs or stems float<strong>in</strong>g <strong>in</strong><br />

the sea naturally occur <strong>in</strong> the upper oxygenated or aerobic zone of the<br />

water column, and they may have formed the only habitable po<strong>in</strong>t of at-<br />

tachment at times when the sea bottom was anaerobic and black sediments<br />

were accumulat<strong>in</strong>g. The float<strong>in</strong>g plant material probably was carried<br />

through a near-shore region of the sea where normal mar<strong>in</strong>e conditions<br />

prevailed, dur<strong>in</strong>g which period, larvae of <strong>in</strong>vertebrates attached to<br />

the float<strong>in</strong>g superstrate. The plant debris cont<strong>in</strong>ued to float and moved<br />

from the normal-mar<strong>in</strong>e area out <strong>in</strong>to the part of the sea <strong>in</strong> which the<br />

black sediments were accumulat<strong>in</strong>g. Eventually the float<strong>in</strong>g material<br />

became waterlogged and sank, kill<strong>in</strong>g the attached creatures <strong>in</strong> the toxic<br />

bottom waters. For small pieces of flotage, the growth of the attached<br />

organisms and the weight that they contributed may have caused relatively<br />

early s<strong>in</strong>k<strong>in</strong>g of the material (Thayer, 1974).<br />

Such occurrences <strong>in</strong> the black-shale sequence <strong>in</strong>clude cr<strong>in</strong>oids at-<br />

tached to Callixylon logs (Wickwire, 1936; Wells, 1939, 1941, 1947;<br />

McIntosh, 1978), pelecypods attached to small pieces of plant matter<br />

(Nye, Brower, and Wilson, 1975), and brachiopods such as L<strong>in</strong>gula, Orbi-<br />

culoidea, and Leiorhynchus, of a supposed epiplanktic life (Thayer,<br />

1974).<br />

Brachiopods and Pelecypods<br />

Inarticulate, phosphatic brachiopods such as L<strong>in</strong>gula, L<strong>in</strong>gulipora,<br />

Orbiculoidea, and Schizobolus occur <strong>in</strong> black, lam<strong>in</strong>ated shales that<br />

show no evidence of benthic life. These brachiopods usually are expla<strong>in</strong>ed<br />

16


as hav<strong>in</strong>g been epiplanktic (Rudwick, 1965; 1970; House, 197Sb; Thayer,<br />

1974; Newton, 1979). Prosser (1912a) reported receiv<strong>in</strong>g a letter from<br />

the amateur paleontologist, Rev. Herzer, with whom he had worked.<br />

the letter, Herzer described f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> a calcareous nodule a Callixylon<br />

log, It. . . with many attached L<strong>in</strong>gula." Althoughmodernepiplanktic<br />

l<strong>in</strong>gulids have not been reported, modern L<strong>in</strong>gula and Glottidia possess<br />

muscular pedicles coated with a sticky substance which was probably true<br />

of fossil forms.<br />

the L<strong>in</strong>gula to a log or to other plant debris.<br />

Glottidia attached the end of its pedicle to a piece of shell or other<br />

hard material while it was <strong>in</strong> its burrow. When the organism <strong>in</strong> its bur-<br />

row was buried by an additional six <strong>in</strong>ches of sand, it detached from the<br />

shell and burrowed out. Assum<strong>in</strong>g that fossil l<strong>in</strong>gulid brachiopods had<br />

similar pedicle characteristics, they might have detached from their float-<br />

<strong>in</strong>g superstrates as these pieces of flotage began to s<strong>in</strong>k <strong>in</strong>to anaerobic<br />

waters.<br />

aerobic bottom waters. Williams (1977) suggested the evolution <strong>in</strong> the<br />

l<strong>in</strong>gulids has been very slow over geologic time; reflect<strong>in</strong>g that early on<br />

it developed a successful physiology and morphology that has required<br />

little change over time. Pa<strong>in</strong>e (1970) also suggested that L<strong>in</strong>gulas have<br />

been conservative over time.<br />

This sticky pedicle probably was capable of attach<strong>in</strong>g<br />

tion, attribute modern characteristics to fossil forms.<br />

In<br />

17<br />

In studies by Pa<strong>in</strong>e (1963),<br />

Be<strong>in</strong>g unable to swim, the brachiopods sank and died <strong>in</strong> the an-<br />

With this <strong>in</strong> m<strong>in</strong>d perhaps we can, with cau-<br />

The above situations can possibly expla<strong>in</strong> why cerha<strong>in</strong> brachiopods<br />

sometimes are found on pieces of plant debris (Prosser, 1912a), sometimes<br />

<strong>in</strong> close association with plant material as <strong>in</strong> 'figure 2, and at other times<br />

not associated with any plant material or other recognizable flotage as <strong>in</strong><br />

figure 3. Very small, th<strong>in</strong>-shelled l<strong>in</strong>gulids may also represent larval


Figure 2. Brachiopods <strong>in</strong> close association with fossil wood.<br />

18


Figure 3. Brachiopods not associated with fossil wood.<br />

19


forms which existed as plankton for a longer period of time than normal<br />

because a habitable substrate (superstrate) was not present (Ziegler and<br />

others, 1968). After reach<strong>in</strong>g a certa<strong>in</strong> size, the weight prevented further<br />

planktic existance, and the organisms sank <strong>in</strong>to the anaerobic bottom waters.<br />

The presence of L<strong>in</strong>gula and related <strong>in</strong>articulate brachiopods has<br />

been and still is used to <strong>in</strong>fer a near-shore, shallow-water environment of<br />

deposition for the black-shale sequence (Cooper, 1936-1937, 1957; Lewis and<br />

Schwieter<strong>in</strong>g, 1971). Additionally, L<strong>in</strong>gula is regarded as hav<strong>in</strong>g been a<br />

resident of a shallow-water, near-shore environment throughout its<br />

geologic record (Raup and Stanley, 1971). Regard<strong>in</strong>g the nature of l<strong>in</strong>gulid<br />

brachiopods <strong>in</strong> the fossil record, Rudwick (1965) said, ''. . . the occur-<br />

rence of fossil l<strong>in</strong>gulids without other brachiopods may, if there are no<br />

<strong>in</strong>dications of toxic conditions, be taken to reflect littoral (<strong>in</strong>tertidal)<br />

conditions of deposition."<br />

were attached to plant flotage or to other organisms (Rudwick, 1965, 1970).<br />

In any case, L<strong>in</strong>gula found <strong>in</strong> black, lam<strong>in</strong>ated shales were not liv<strong>in</strong>g on<br />

20<br />

He suggested l<strong>in</strong>gulids found <strong>in</strong> black shales<br />

the sea bottom, and as fossils of epiplanktic organisms, can not be used<br />

as <strong>in</strong>dicators of nearness to shore.<br />

This conclusion is further supported<br />

by the taphonomy of many l<strong>in</strong>gulid specimens found <strong>in</strong> the shale.<br />

Many of<br />

the specimens exhibit s<strong>in</strong>gle valves, of similar size and <strong>in</strong> preferential<br />

orientation. This sugggests post-mortem transport and orientation of dis-<br />

sociated valves. As epiplanktic organisms, however, they lived <strong>in</strong> shallow<br />

water, but this says noth<strong>in</strong>g about the depth of the sea <strong>in</strong> which they<br />

floated. L<strong>in</strong>gulids as <strong>in</strong>dicators of depth and nearness to shore will be<br />

discussed further <strong>in</strong> the section on the benthos.<br />

Other epiplanktic organisms <strong>in</strong>clude the brachiopods Leiorhynchus,<br />

Schizobolus, Orbiculoidea, and Barroisella (Rudwick, 1965; Thayer, 1974),


and the pelecypods Buchiola (McAlester, 1970) and Lunulacardium (Nye,<br />

Brower, and Wilson, 1975). Forms such as Pterochaenia, Prosochasma, and<br />

Buchiola which have th<strong>in</strong>, chit<strong>in</strong>ous shells were probably branchiopods<br />

(Thayer, 1974).<br />

Graptolites.<br />

Graptolites were colonial, chit<strong>in</strong>oid organisms preserved generally<br />

as flattened carbonaceous films. The colony consisted of branches (stipes)<br />

bifurcat<strong>in</strong>g from a support<strong>in</strong>g thread (nema). Each stipe bore overlapp<strong>in</strong>g<br />

cups (thecae) which conta<strong>in</strong>ed the animals. Graptolites are known from the<br />

Cambrian through the Mississippian, and form excellent guide fossils for<br />

the Ordovician and Silurian.<br />

Graptolites have been reported only once from the black-shale sequence<br />

of eastern <strong>Kentucky</strong>. Butts (1922) found one Dictyonema specimen from the<br />

lower3meters of the black shale at Irv<strong>in</strong>e, Estill County, <strong>Kentucky</strong>.<br />

Planktic members of the Graptolith<strong>in</strong>a became ext<strong>in</strong>ct <strong>in</strong> the Silurian, which<br />

leads to the <strong>in</strong>ference that Dictyonema was epiplanktic. Moore, Lalicker,<br />

and Fisher (1952) suggested that the nema was too flimsy to support the<br />

rhabdosome (colony) on the bottom, and that it probably held the colony<br />

from above <strong>in</strong> an epiplanktic habitat. If the previously discussed relation-<br />

ship between the chit<strong>in</strong>ozoans and the graptolites is accurate, then the<br />

occurrence of epiplanktic graptolites is possible. Ruedemann and Lochman<br />

(1942) reported graptolites from the Lower Mississippian Englewood Forma-<br />

tion <strong>in</strong> the <strong>Black</strong> Hills of South Dakota, a formation coeval with the Sun-<br />

bury Shale to the east.<br />

Cr<strong>in</strong>oids<br />

Cr<strong>in</strong>oids are complexly organized and highly varied ech<strong>in</strong>oderms.<br />

21


Although most forms found today are not attached to the bottom, most fos-<br />

sil forms were. They are exclusively mar<strong>in</strong>e animals, composed of<br />

articulated calcareous hard parts that can number up to several thousand.<br />

Although several reports of epiplanktic cr<strong>in</strong>oids were mentioned earlier,<br />

cr<strong>in</strong>oids <strong>in</strong> the black-shale sequence are considerably less abundant than<br />

are brachiopods. Some of this may have been preservational bias because<br />

the calcareous hard parts of the cr<strong>in</strong>oids would have been more easily dis-<br />

solved than the phosphatic shells of the brachiopods. Hoover (1960) des-<br />

cribed cr<strong>in</strong>oids, probably benthic forms, from the Olentangy Shale of<br />

Ohio. The conditions of that unit (probably Middle Devonian) were better<br />

oxygenated than that of the normal black-shale sea because the heavily<br />

calcified hard parts of the cr<strong>in</strong>oids would certianly require a higher con-<br />

centration of oxygen, follow<strong>in</strong>g the model of Rhoads and Morse (1971).<br />

Epiplanktic cr<strong>in</strong>oids have been described from the Posidonia <strong>Shales</strong><br />

(Lias), which are black shales, by Seilacher, Drozdzewski, and Haude<br />

(1968) and from the Lyme Regis Lias by Jackson (1966). Figure 4 is a<br />

photograph of cr<strong>in</strong>oid columnals attached to a silicified Callixylon log<br />

from the black shale. Accord<strong>in</strong>g to McIntosh (1978) Melocr<strong>in</strong>ites clarkei<br />

Williams was found attached to logs <strong>in</strong> the Angola Shale of New York.<br />

Wells (1947) reported the same genus on Callixylon logs <strong>in</strong> the Huron<br />

Shale.<br />

(Stewart and Hendrix, 1944).<br />

THE NEKTON<br />

This same genus is known also from the Olentangy Shale of Ohio<br />

Swimm<strong>in</strong>g organisms such as cephalopods, fish, and possibly some<br />

pteropod-like gastropods are called nekton, and fossils of these organisms<br />

occur throughout the sequence. Usually, however, they are not as abundant<br />

22


Figure 4. Callixylon log with cr<strong>in</strong>oids attached.<br />

section).<br />

.<br />

....<br />

23<br />

(plan view and cross


as the planktic forms.<br />

scales and teeth. Some fish fossils like those from the Cleveland<br />

Shale are preserved <strong>in</strong> such detail that muscle fiber and other detailed<br />

morphologic features can be observed. Molluscs, on the other hand,<br />

are not abundant, but they are reported <strong>in</strong> the literature and are known<br />

from the outcrop and from cores <strong>in</strong> eastern <strong>Kentucky</strong>.<br />

typically preserved by pyritization.<br />

Fishes<br />

The most common fish fossils are <strong>in</strong>dividual<br />

The shells are<br />

From Moy-Thomas and Miles (1971) the def<strong>in</strong>ition of fishes is:<br />

'I. . . all those free-liv<strong>in</strong>g, aquatic, cold-blooded, gill-breath<strong>in</strong>g<br />

craniates <strong>in</strong> which f<strong>in</strong>s and not pentadactyl limbs are developed."<br />

the Devonian Period, and more specifically by the Late Devonian, the<br />

fishes underwent a period of explosive evolution and radiation <strong>in</strong> which<br />

members of the Aganthids (jawless fishes), the Acanthoidians (first<br />

true jawed fishes) , the Arthrodire and non-Arthrodire Placoderms (armor-<br />

ed fishes), the Chondrichthyans (sharklike fishes), and the Osteich-<br />

thyans (the bony fishes) were all present <strong>in</strong> various Late Devonian<br />

aqueous environments (Colbert, 1969; Moy-Thomas and Miles, 1971; Olson,<br />

1971).<br />

Devonian fossil fishes from North America can be divided <strong>in</strong>to two<br />

basic assemblages:<br />

The Scaumenac Bay fauna of Quebec is characterized<br />

by Placoderms such as Bothriolepis, lung-fishes (Dipnoi), and Cross-<br />

opterygians (tassle-f<strong>in</strong>ned fishes); The Cleveland Shale fauna is char-<br />

acterized by the giant Arthrodires such as Dunkleosteus (D<strong>in</strong>ichthys)<br />

and sharks like Cladoselache (Colbert, 1969). The characteristic groups<br />

from Scaumenac Bay were either all fresh-water species or a mixed as-<br />

semblage conta<strong>in</strong><strong>in</strong>g both fresh-water and mar<strong>in</strong>e species. After the<br />

24<br />

By


Early Devonian, the Crossopterygians were primarily fresh-water, whereas<br />

the dipnoans (lung fish) probably lived on the bottom <strong>in</strong> shallow, fresh<br />

water.<br />

The lung-fish probably possessed the ability to breath air<br />

(Moy-Thomas and Miles, 1971; Romer, 1968). Placoderms lived mostly on<br />

the bottom and they developed more sophisticated adaptations to bottom<br />

life as the Devonian progressed. Through the Middle Devonian, the<br />

Placoderms were ma<strong>in</strong>ly fresh-water forms, but by the Late Devonian they<br />

had become mar<strong>in</strong>e.<br />

fresh-water, perhaps estuar<strong>in</strong>e or brackish, <strong>in</strong>nature whereas the Cleve-<br />

land Shale fauna, consist<strong>in</strong>g ma<strong>in</strong>ly of sharks, which are generally con-<br />

sidered to have been almost always mar<strong>in</strong>e creatures, and the d<strong>in</strong>ichthyids<br />

and other Placoderms which were probably mar<strong>in</strong>e (Moy-Thomas and Miles,<br />

1971) appears to have occupied a mar<strong>in</strong>e environment.<br />

25<br />

Thus, the Scaumenac Bay fuana appears to have been<br />

The black-shale sequence of <strong>Kentucky</strong>, Ohio, Indiana, and Tennessee<br />

has long been known for its fish fossils.<br />

haps most diverse assemblage of fishes is <strong>in</strong> the Cleveland Shale, re-<br />

ma<strong>in</strong>s are known from the entire sequence, from the basal lag zones to<br />

the Sunbury Shale.<br />

carried out by Newberry (1857 and later) and this work was apparently<br />

spurred on by an itenerant preacher and part-time paleontologist, the<br />

Reverend Herzer, who pa<strong>in</strong>stak<strong>in</strong>gly extricated the fish bones from cal-<br />

careous nodules <strong>in</strong> the lower part of the black shale.<br />

Though the largest and per-<br />

Early morphological work with these fossils was<br />

Foremost among the fishes of the black-shale sea, of which we now<br />

have record, were the sharks and the Placoderms. The Placoderms were<br />

almost completely Devonian with no known Silurian ancestors, and only<br />

a few occurrences <strong>in</strong> the lowermost Mississippian.<br />

The most abundant of<br />

these armored fishes were the Arthrodires, which were characterized by


ody and head armor, pectoral f<strong>in</strong>s, and a pectoral sp<strong>in</strong>e.<br />

and pectoral sp<strong>in</strong>e were reduced with time, whereas the pectoral f<strong>in</strong>s became<br />

more developed (Romer, 1968). In the Late Devonian, Dunkleosteus (a<br />

d<strong>in</strong>ichthyid) was foremost among the Arthrodires, and represented some<br />

sophistication over its bottom-scaveng<strong>in</strong>g predecessors of the Early Devonian.<br />

The dorsal-ventral flatten<strong>in</strong>g, whish characterized most Placoderms that<br />

dwelt on the sea bottom and some other bottom-dwell<strong>in</strong>g fishes (Gaudant,<br />

1979), was reduced <strong>in</strong> the genus Dunkleosteus.<br />

analysis of Gaudant (1979) and perhaps extend<strong>in</strong>g it to an ext<strong>in</strong>ct group<br />

at some risk, some of the life habits of Dunkleosteus can be <strong>in</strong>ferred.<br />

Moy-Thomas and Miles (1971) suggested that Dunkleosteus possessed a<br />

powerful bite, with the ability to exert a great deal of pressure upon<br />

anterior picks. Follow<strong>in</strong>g reason<strong>in</strong>g from Gaudant (1979), the placement<br />

of the mouth (buccal open<strong>in</strong>g) was related to the position of the food with<br />

respect to the fish.<br />

with an <strong>in</strong>ferred large bite suggests a predatory life <strong>in</strong> the water column,<br />

not on the bottom.Colbert (1969) noted that Dunkleosteus had the ability<br />

to raise its head as it dropped its jaw due to the presence of of a h<strong>in</strong>ge<br />

between the head shield and the thoracic shield. This would have allowed<br />

large bites. Olson (1971) also po<strong>in</strong>ted out the development of cervical<br />

musculature and its role <strong>in</strong> the action of the head which was important<br />

<strong>in</strong> feed<strong>in</strong>g.<br />

preyed on rather large fish found <strong>in</strong> the water column.<br />

f<strong>in</strong>s became more developed <strong>in</strong> the Arthrodires, and probably were used as<br />

glide planes and controls (Moy-Thomas and Miles, 1971); a life mode up<br />

<strong>in</strong> the water column is further supported by reductions of the body armor<br />

which should have made swimm<strong>in</strong>g more efficient.<br />

26<br />

The body armor<br />

Us<strong>in</strong>g the morphofunctional<br />

Therefore, the term<strong>in</strong>al open<strong>in</strong>g of the mouth together<br />

The evidence seems to strongly suggest that Dunkleosteus<br />

The pectoral<br />

Characteristics of the


placoderm vertebral column suggest that the swimm<strong>in</strong>g was accomplished by<br />

eel-like motions (Moy-Thomas and Miles, 1971). The heterceral tail of<br />

most placoderms (Moy-Thomas and Miles, 1971) is suggestive of rapidly<br />

swimm<strong>in</strong>g pelagic forms, when also supported by other morphological char-<br />

acteristics (Gaudant, 1979). The anaerobic nature of the bottom sediments<br />

further support the life position of Dunkleosteus <strong>in</strong> the water column,<br />

and not on the bottom.<br />

Two characteristics of placoderms contributed to their replacement<br />

by Chondrichthyans <strong>in</strong> the Mississippian.<br />

27<br />

The modified dermal bone used<br />

for cutt<strong>in</strong>g and gr<strong>in</strong>d<strong>in</strong>g <strong>in</strong> the placoderm <strong>in</strong>stead of true teeth probably<br />

became a strong handicap <strong>in</strong> the later part of an adult placoderm life.<br />

When this dermal bone was worn away, it was not replaced (Moy-Thomas<br />

and Miles, 1971).<br />

Chondrichthyes was the energy used to build and ma<strong>in</strong>ta<strong>in</strong> a calcified<br />

skeleton and armor.<br />

Another limit<strong>in</strong>g factor of placoderms ~ ot found <strong>in</strong> the<br />

The cartilag<strong>in</strong>ous skeleton of the Chondrichthyes<br />

less metabolic effort and additionally was more conducive to nektonic life.<br />

The efficiency and versatility conferred by this skeleton allowed the<br />

sharks to outcompete their probable ancestors, the placoderms, <strong>in</strong> the<br />

water column of the Late Devonian black-shale sea.<br />

The sharks have often been viewed as primitive fishes primarily be-<br />

cause of the cartilag<strong>in</strong>ous skeleton, and the belief that it preceeded<br />

ossification. The fossil record conta<strong>in</strong>s no evidence of sharks or other<br />

elasmobrachs prior to the few scattered teeth <strong>in</strong> the Middle Devonian.<br />

The Osteichthyes (bony fishes) are very well represented <strong>in</strong> the Early<br />

Devonian rocks, so that the cartilag<strong>in</strong>ous skeleton probably appeared<br />

after ossified skeletons. One theory suggested that the Chondrichthyans<br />

evolved from the placoderms. Stensio (accord<strong>in</strong>g to Romer, 1968) grouped


the placoderms with the Chondrichthyans <strong>in</strong>to one supergroup called<br />

Elasmobrachiomorphii, a classification which was used by Moy-Thomas and<br />

Miles (1971).<br />

The sharks are considered to have been mar<strong>in</strong>e except for Pleurocanths<br />

which apparently <strong>in</strong>vaded fresh-water environments. Pleurocanth rema<strong>in</strong>s<br />

are poorly known from rocks older than Pennsylvanian (Romer, 1968). A<br />

common shark <strong>in</strong> the black-shale sea was Cladoselache which was amaz<strong>in</strong>gly<br />

well-preserved <strong>in</strong> the Cleveland Shale.<br />

Cladodus, and Ctenacanthus were all very smilar and probably very closely<br />

related (Romer, 1968). From the excellently preserved Cleveland Shale<br />

cladoselachians, we know that they possessed a torpedo-like shape, a<br />

broad heteroceral tail, and extremely well-developed pectroal f<strong>in</strong>s useful<br />

<strong>in</strong> balance and glide-control (Colbert, 1969). Functional morphology along<br />

the l<strong>in</strong>es of Gaudant (1979) allows us to <strong>in</strong>fer a rapidly swimm<strong>in</strong>g, pelagic<br />

predatory life style for the genus Cladoselache. Large eyes (Colbert,<br />

1969; Moy-Thomas and Miles, 1971) and an atypically foreshortened snout<br />

28<br />

The three genera Cladoselache,<br />

seem to <strong>in</strong>dicate that sight was more impontant <strong>in</strong> prey detection than is<br />

the olfactory sense <strong>in</strong> other sharks, <strong>in</strong>clud<strong>in</strong>g the Recent forms (Moy-<br />

Thomas and Miles, 1971).<br />

Other characteristics of Cladoselache seem to <strong>in</strong>dicate that it could<br />

have been the prototype ancestral shark.<br />

It possessed a primitive jaw<br />

articulation called amphistylic suspension (Colbert, 1969) which did not<br />

allow the saw<strong>in</strong>g action of the moremodern hyostylic suspension (Moy-<br />

Thomas and Miles, 1971). Cladoselache also lacked claspers used <strong>in</strong><br />

copulation. Claspers are found <strong>in</strong> sharks that succeeded the cladosela-<br />

chians <strong>in</strong> the Mississippian (Romer, 1968). In well-preserved specimens<br />

from the Cleveland Shale, the gut contents of Cladoselache <strong>in</strong>cluded<br />

"cladodont" shark teeth and scales of bony fishes (Moy-Thomas and Miles, 1971).


Members of the family Osteichthyes are also known from the black<br />

shale, and they <strong>in</strong>clude the crossopterygians and act<strong>in</strong>opterygians. The<br />

crossopterygians or tassle-f<strong>in</strong>ned fishes possessed paired f<strong>in</strong>s with muscular<br />

tissue extend<strong>in</strong>g <strong>in</strong>to the f<strong>in</strong>s from the body.<br />

terrestrial amphibians evolved from this l<strong>in</strong>eage.<br />

Ichthyostega is known from Devonian rocks <strong>in</strong> Greenland (Romer, 1968).<br />

29<br />

Apparently the tetrapod,<br />

The earliest tetrapod<br />

It is quite reasonable to expect fresh- to brackish-water bony fishes<br />

<strong>in</strong> the black-shale seas; also, some of the bony fishes were mar<strong>in</strong>e.<br />

Dur<strong>in</strong>g floods and periods of generally large fluival <strong>in</strong>flux the resultant<br />

large lens of brachish water could have allowed the river<strong>in</strong>e fish to move<br />

<strong>in</strong>to the former mar<strong>in</strong>e enviroment.<br />

f<strong>in</strong>d mar<strong>in</strong>e fish fossils <strong>in</strong> comt<strong>in</strong>ental deposits.<br />

Conversely, it would be unlikely to<br />

One question that often arises is why are there not more complete<br />

fish fossils found <strong>in</strong> the black shale, given the apparently good<br />

conditions for the preservation of organic materials. Schafer (1972)<br />

gives an excellent account of the conditions attend<strong>in</strong>g the post-mortem<br />

phase of the history of a fish.<br />

vertebrates <strong>in</strong> general and <strong>in</strong>vertebrates, regard<strong>in</strong>g preservation and<br />

fossilization.<br />

<strong>in</strong>tact because the skeleton is usually <strong>in</strong> one piece. Vertebrate hard<br />

parts or skeletons generally consist of many smaller hard parts bound<br />

together by ligaments, tendons, and other uncalcified tissues which are<br />

quite susceptible to decay.<br />

also disarticulate a fish skeleton. The difference lies <strong>in</strong> that one<br />

valve of a clam is much more readily identified than is one bone of a<br />

fish.<br />

A fundamental difference exists between<br />

Invertebrates which possess hard parts often are preserved<br />

Currents which can disarticulate a clam can<br />

A cr<strong>in</strong>oid is an example of an <strong>in</strong>vertebrate that is comparatively<br />

rare <strong>in</strong> articulated form, and is more often found as columnals and plates


than as articulated calyx, cup, and column.<br />

lungs<br />

Vertebrates, particularly the Osteichthyes which apparently possessed<br />

<strong>in</strong> the Devonian, were likely to float for a length of time after<br />

death due to the accumulation of gases.<br />

refloat several times.<br />

be rare.<br />

where the water temperature is high, as it would have been <strong>in</strong> the<br />

equatorial, Late Devonian sea. Even fishes such as sharks which did not<br />

possess lungs could have floated because of gas accumulation <strong>in</strong> the<br />

abdom<strong>in</strong>al cavity.<br />

particularly difficult to preserve <strong>in</strong>tact. In the black-shale sea, the<br />

fish may have never touched bottom <strong>in</strong> a whole state, if the production of<br />

gas were fast enough,<br />

30<br />

A dead dish may float, s<strong>in</strong>k, and<br />

Given such conditions, complete skeletons would<br />

Gas production as a byproduct of decay is particularly high<br />

With a cartilag<strong>in</strong>ous skeleton, a shark would be<br />

Schafer (1972) lists two ways <strong>in</strong> which complete vertebrate skeletons<br />

may be preserved <strong>in</strong> mar<strong>in</strong>e sediments; the skeleton must be buried quickly<br />

by rapid sedimentation or else buried <strong>in</strong> a place unaffected by transporta-<br />

tion forces.<br />

and Barron (<strong>in</strong> preparation), the black shale accumulated under starved-<br />

bas<strong>in</strong> conditions so that a skeleton could not have been buried rapidly.<br />

The model envisioned is not one of necessarily stagnant bottom waters<br />

either, so that preservation of <strong>in</strong>tact fish fossils would be comparatively<br />

rare. Schafer (1972) does po<strong>in</strong>t out that fish which s<strong>in</strong>k <strong>in</strong>to anaerobic<br />

enviroments do not produce abundant gas, because the rate<br />

have been much slower than <strong>in</strong> an oxygenated environment.<br />

been espeically true if the fish sank directly <strong>in</strong>to the anoxic waters<br />

immediately after death.<br />

As suggested <strong>in</strong> the paleoenvironmentalmodel of Ettensohn<br />

of decay would<br />

This would have<br />

In the equatorial region where the black-shale<br />

sea was situated (see Ettensohn and Barron, <strong>in</strong> preparation), the warm


temperature may have allowed gas formation to float the fish before it<br />

could s<strong>in</strong>k <strong>in</strong>to anoxic waters.<br />

With the difficulty of preserv<strong>in</strong>g a fish skeleton <strong>in</strong>tact, the<br />

question rema<strong>in</strong><strong>in</strong>g is why are the fish preserved so well <strong>in</strong> the Cleveland<br />

Shale? Aga<strong>in</strong>, Schafer (1972) po<strong>in</strong>ts out that one of the primary causes<br />

of catastrophic fish kills is plankton blooms, or the so-called red tides.<br />

In these situations several environmental factors act to kill the fish.<br />

Schafer (1972) cites Numann (1957) regard<strong>in</strong>g a "red tide" on the west<br />

coast of Africa.<br />

killed by tox<strong>in</strong>s from the bloom.<br />

The ones killed <strong>in</strong> the upper ten meters of water were<br />

either smothered by anoxic waters which resulted from the oxygen demand of<br />

the decay<strong>in</strong>g organic matter, or the gills of the fish closed due to ir-<br />

ritation from large numbers of microorganisms.<br />

31<br />

The ones below the ten-meter depth were<br />

Plankton blooms such as these occur <strong>in</strong> areas of upwell<strong>in</strong>g currents<br />

which br<strong>in</strong>g nutrient-rich bottom waters up <strong>in</strong>to the photic zone. The<br />

extremely high level of nutrients would allow primary productivity to<br />

occur at an explosive rate (Schopf, 1980; Brongersma-Sanders, 1948). In<br />

the model of Ettensohn and Barron (<strong>in</strong> preparation), the deepen<strong>in</strong>g black-<br />

shale sea would have allowed upwell<strong>in</strong>g to occur dur<strong>in</strong>g depositon of upper<br />

parts of the black-shale sequence.<br />

deposition, and the resultant red tide could expla<strong>in</strong> the large numbers of<br />

fish rema<strong>in</strong>s <strong>in</strong> the Cleveland Shale.<br />

that the water of the black-shale sea became deep enough<br />

and the resultant plankton blooms to occur.<br />

Cephalopods<br />

Such an upwell<strong>in</strong>g dur<strong>in</strong>g Cleveland<br />

This may also reflect the first time<br />

for upwell<strong>in</strong>g<br />

Cephalopods are the most advanced of all the <strong>in</strong>vertbrates <strong>in</strong> that<br />

they possess well-developed eyes, prehensile sucker-bear<strong>in</strong>g tentacles,


and the ability to swim well. However, the surviv<strong>in</strong>g shelled form,<br />

Nautilus, is geographically restricted to the southwest Pacific Ocean<br />

and may be more stenotypic than its ancestors (Furnish and Glenister,<br />

1964). Although extrapolation from the eceologic characteristics of<br />

Nautilus to those of its early ancestors <strong>in</strong> the Devonian is somewhat<br />

risky, it may serve to provide some <strong>in</strong>sight <strong>in</strong>to the ecology of Devonian<br />

ammonoids. Modern Nautilus typically occurs at depths of 600 meters or<br />

greater, but it apparently moves <strong>in</strong>to more shallow water at night. They<br />

prey largely on decapod crustaceans, but they also scavenge.<br />

conta<strong>in</strong>s gas which is used to atta<strong>in</strong><br />

32<br />

The shell<br />

buoyancy and balance; us<strong>in</strong>g jets<br />

of water pulsed through their siphon, they are quite good swimmers. The<br />

buoyancy mechanism, however, only impledes paleoecological <strong>in</strong>terpretation,<br />

assum<strong>in</strong>g that the ancestors of Nautilus were similarly disposed.<br />

Follow-<br />

<strong>in</strong>g death, the buoyant gas-filled chambers allow currents to transport<br />

the shell great distances, and thus the shells may be deposited <strong>in</strong> a<br />

facies where cephalopods never naturally occurred <strong>in</strong> life (Furnish and<br />

Glenister, 1964; Miller and Furnish, 1936-1937). Miller (19571 po<strong>in</strong>ted<br />

out that where various stages of ontogenetic development occur together,<br />

it can be <strong>in</strong>ferred that cephalopods were liv<strong>in</strong>g there.<br />

<strong>Report</strong>s of cephalopods <strong>in</strong> the black-shale sequence date from at<br />

least L<strong>in</strong>ney (1884) who reported an orthoceratite <strong>in</strong> pyritized accumula-<br />

tion near the base of the black shale <strong>in</strong> Clark County, <strong>Kentucky</strong>.<br />

More<br />

recently House (1978) reported a communication from Gorden that a fuana<br />

of cephalopods had been discovered near the base of the Cleveland Shale<br />

<strong>in</strong> Ohio by Dr. Hlav<strong>in</strong>. These fossils were pyritized also. In addition,<br />

pyritized cephalopods have been reported from a core <strong>in</strong> the black shale<br />

of Mart<strong>in</strong> County, <strong>Kentucky</strong>, from greenish-gray shales <strong>in</strong> the black-shale


sequence (Miller, 1978), and from a core <strong>in</strong> Carrol County, Ohio (Byrer<br />

and Rhoades, 1976). Also, pyritized, micromorph cephalopods have been<br />

found <strong>in</strong> the greenish-gray shales of the Three Lick Bed of eastern Ken-<br />

tucky (Barron and Ettensohn, 1980).<br />

The aragonite composition of the cephalopod shell further h<strong>in</strong>ders<br />

preservation because of the unstable nature of the aragonite. This was<br />

particularly important <strong>in</strong> the more acid, bottom waters which apparently<br />

characterized the sea dur<strong>in</strong>g most of black-shale deposition. Sensitive<br />

as the shells would have been to solution, preservation of those that<br />

are found was probably because of temporary improvement (higher pH) of<br />

the bottom environment as <strong>in</strong> the Three Lick Bed or very rapid replace-<br />

ment of the aragonite with pyrite.<br />

It is difficult to make much of a statement about the paleoecology<br />

of the cephalopods from the black-shale sequence.<br />

and likelihood of post-mortem transport, some uncerta<strong>in</strong>ty exists about<br />

their true life habitat, but given the other <strong>in</strong>dicators of mar<strong>in</strong>e environ-<br />

mental conditions, it seems that they could have lived <strong>in</strong> the upper part<br />

of the water column.<br />

33<br />

Given the possibility<br />

Kummel (1948) discussed dwarfed cephalopod faunas and their possible<br />

significance.<br />

effect of high concentrations of iron, low levels of oxygen, and presence<br />

of hydrogen sulfide.<br />

He po<strong>in</strong>ted out previous studies that showed the stunt<strong>in</strong>g<br />

The micromorph forms of the Three Lick Bed could<br />

be expla<strong>in</strong>ed by either of these ways, or by still other mechanisms.<br />

Larger cephalopods may have been present but either were not preserved<br />

or were transported out of the bas<strong>in</strong> after death.<br />

The micromorph forms<br />

may have also been preserved because of special conditions <strong>in</strong> a mirco-<br />

scopic burial environment, which did not protect the macroscopic forms.


If there were no larger forms present, the micromorph cephalopods could<br />

have been stunted adults, short-lived juveniles, or both. Low sal<strong>in</strong>ity<br />

may have been present <strong>in</strong> conjunction with the <strong>in</strong>flux of f<strong>in</strong>e clastics<br />

which formed the greenish-gray shales.<br />

Similar conditions of low<br />

sal<strong>in</strong>ity are <strong>in</strong>ferred to have caused the stunt<strong>in</strong>g of possibly euryhal<strong>in</strong>e<br />

mar<strong>in</strong>e cephalopods (Kummel , 1948) .<br />

Nektic Gastropods<br />

Some of the more unusual forms of molluscs are the pteropods or<br />

!'sea butterflies .I1<br />

These are swimm<strong>in</strong>g gastropods that often display<br />

rather bizarre morphologies as well as those considered to be more normal.<br />

As pelagic forms, these gastropods possess th<strong>in</strong>ner shells, which would<br />

have been more subject to solution.<br />

They are presently found only <strong>in</strong><br />

mar<strong>in</strong>e environments to depths of about 500 meters (Herman, 1978).<br />

Styliol<strong>in</strong>a and Tentaculites have often been reported as pteropods,<br />

but they are classed <strong>in</strong> the Miscellanea of the Treatise - on Invertebrate<br />

Paleontology under the cricoconarids, described as small, straight, narrow<br />

cones.<br />

Micromorph, pyritized gastropods form a substantial fraction of the<br />

microfauna of the greenish-gray shales of the Three Lick Bed.<br />

sible that these gastropods were pelagic swimmers and were preserved <strong>in</strong><br />

the less harsh bottom conditions dur<strong>in</strong>g deposition of greenish-gray muds.<br />

34<br />

It is pos-<br />

These same forms, however, might have been dissolved <strong>in</strong> the harsher condi-<br />

tions of black-shale deposition. Pyritized, micromorph gastropods are<br />

also found <strong>in</strong> the lag zone at the base of the sequence <strong>in</strong> eastern <strong>Kentucky</strong>,<br />

which tends to support an <strong>in</strong>terpretation of a pelagic mode of life, s<strong>in</strong>ce<br />

the other major constituents of lag deposits, fish rema<strong>in</strong>s, conodonts,<br />

and Tasmanites, were most likely pelagic forms.


Phyllocarid Crustaceans<br />

These arthropods, a subclass of the lsalacostracans, possessed a<br />

large, loose carapace and leaf-like appendages. The fossils of these<br />

are found largely <strong>in</strong> Paleozoic rocks. Fossils such as Ech<strong>in</strong>ocaris ant<br />

35<br />

forms<br />

Spathiocaris have been reported <strong>in</strong> the literature (Campbell, 1946; Hoover,<br />

1961).<br />

Some of these forms from the black shale have also been suggested<br />

to have been the anaptychi of cephalopods (Ruedemann, 1934). If they<br />

were <strong>in</strong>deed crustaceans, they probably led a nektonic life <strong>in</strong> the black-<br />

shale sea, or perhaps were associated with flotage as are modern arthro-<br />

pods <strong>in</strong> the Sargasso Sea.<br />

pyritized carapaces. Campbell (1946) actually named a zone after<br />

Spathiocaris, but it is seldom recognized today because of difficulty<br />

<strong>in</strong> f<strong>in</strong>d<strong>in</strong>g the fossils.<br />

BEN"?iOS<br />

They occur <strong>in</strong> the black-shale sequence as<br />

Benthic organisms with preservable hard parts apparently were ex-<br />

tremely rare <strong>in</strong> the Devonian-Mississippian black-shale sea.<br />

nated nature of the black shales <strong>in</strong> the sequence is strong evidence that<br />

even animals with only soft parts were unable to live <strong>in</strong> or on this sea<br />

bottom.<br />

been cited as evidence of the shallow-water and near-shore nature of the<br />

deposits (Cooper, 1936-1937, 1957); however, these brachiopods were<br />

probably epiplanktic dur<strong>in</strong>g black-shale deposition as previously dis-<br />

cussed (Rudwick, 1965, 1970). Had the L<strong>in</strong>gula lived <strong>in</strong> or on the black-<br />

shale sea bottom, the lam<strong>in</strong>ae would almost certa<strong>in</strong>ly show disruptive<br />

evidence of their presence. An exception to this condition possibly<br />

existed <strong>in</strong> the early stages of black-shale deposition, which are typically<br />

represented by basal portions of the black-shale sequence.<br />

The lami-<br />

The L<strong>in</strong>gula and Orbiculoidea found <strong>in</strong> the black shales have<br />

Relatively


abundant Leiorhynchus, Schizobolus, Chonetes, W isella, and other<br />

~. -- - - - __ __ __ .<br />

36<br />

__________ - - -<br />

fossils found <strong>in</strong> the basal portions of the black-shale sequence (Has~,<br />

1956; Campbell, 1946; L<strong>in</strong>eback, 1968; Wells, 1947; K<strong>in</strong>dle, 1900) sug-<br />

gest slightly less harsh conditions <strong>in</strong> the <strong>in</strong>itial depositional envir-<br />

onntent on the craton.<br />

The brachiopods are present locally <strong>in</strong> such<br />

numbers as to suggest aerobic or dysaerobic conditions. Nevertheless,<br />

despite the oxygenation, organic matter cont<strong>in</strong>ued to be the major sed-<br />

imentary constituent and accumulated <strong>in</strong> such quantities that it predom-<br />

<strong>in</strong>ated <strong>in</strong> the sediment. The aerobic-dysaerobic <strong>in</strong>terface would have<br />

had to have been at or very near to the sediment-water <strong>in</strong>terface so<br />

that the brachiopods could have survived <strong>in</strong> a marg<strong>in</strong>ally oxygenated<br />

environment.<br />

The presence of shallow-water sedimentary features such<br />

as flaser beds and ripple marks, as weil as the presence of carbonates<br />

<strong>in</strong> the Duff<strong>in</strong>-Harg-Ravenna facies, also supports a shallow-water phase<br />

at the beg<strong>in</strong>n<strong>in</strong>g of black-shale deposition.<br />

L<strong>in</strong>ney (1884) noted the presence of pyritized fossils near the base<br />

of the black-shale sequence <strong>in</strong> Clark County, <strong>Kentucky</strong>, although he <strong>in</strong>ter-<br />

preted the pyritized accumulations as fish coprolites. Butts (1915)<br />

reported Schizobolus and Leiorhynchus <strong>in</strong> the "lower few feet" of the<br />

section of Jefferson County, <strong>Kentucky</strong>. Butts (1922) aga<strong>in</strong> reported<br />

fossils <strong>in</strong> the basal part (lower 3 to 5 meters) of the sequence at<br />

Irv<strong>in</strong>e <strong>in</strong> Estill County, <strong>Kentucky</strong>. Savage (1930) found gastropods<br />

which were similar to Bellerophon and Strapamllus along with Styliol<strong>in</strong>a<br />

<strong>in</strong> the lower part of the black-shale sequence. Dolomitic lenses about<br />

three meters above the base of the section <strong>in</strong> Estill County, <strong>Kentucky</strong>,<br />

conta<strong>in</strong>ed Ambocoelia, Chonetes, Gypidula, Hypothyrid<strong>in</strong>a (Hypothyris),<br />

and Strophalosia. Savage (1930) after list<strong>in</strong>g the above fossils also


cited a comnunication from E.M. K<strong>in</strong>dle which reported an assemblage<br />

of fossils from the basal New Albany Shale of Indiana.<br />

reported a small variety of fossils from the basal part of his Port-<br />

wood Formation (Harg, Duff<strong>in</strong>, Ravenna facies).<br />

dom<strong>in</strong>ant fossil <strong>in</strong> the overly<strong>in</strong>g Trousdale Formation.<br />

<strong>in</strong> <strong>Kentucky</strong> support those of the above workers, but we have also noted<br />

the presence of reworked Middle Devonianforms <strong>in</strong> the basal lag deposits.<br />

37<br />

Campbell (1946)<br />

Schizobolus was the<br />

Our observations<br />

The basal part of the black-shale sequence, which <strong>in</strong>cludes a local<br />

dolomitic facies, seems to represent a shallow-water accumulation dur<strong>in</strong>g<br />

the <strong>in</strong>itial transgressive phase of the black-shale sea.<br />

The bottom<br />

conditions which characterized the larger part of the black-shale depo-<br />

sition were, at best, dysaerobic, with oxygen demand quite high because<br />

of the large amount of organic matter present.<br />

seem to have had higher oxygen levels; perhaps this was because of the<br />

effect of somwhat higher energy which prevented the organic matter<br />

from settl<strong>in</strong>g out, and provided oxygen to the bottom water through<br />

vertical mix<strong>in</strong>g.<br />

Trace Fossils<br />

The dolomitic facies<br />

Higher <strong>in</strong> the black-shale sequence, the only evidence of benthic<br />

life occurs <strong>in</strong> greenish-gray shales or dolomites <strong>in</strong>terbedded with black<br />

shales <strong>in</strong> the lower Huron Member, the Three Lick Bed, or Bedford-Berea<br />

(Provo, 1977; Provo and others, 1977; Swager, 1978). The evidence <strong>in</strong> the<br />

lower Huron Member consists almost exclusively of burrows <strong>in</strong> the green<br />

shales, some of which penetrate the underly<strong>in</strong>g black shales (figure 5).<br />

Jordan (1980) listed the various genera of trace fossils for the lower<br />

Huron Member and from the gray shales overly<strong>in</strong>g the upper Huron Member.<br />

Griffith (1977) also found trace fossils <strong>in</strong> the Blocher Member and the


Figure 5. Trace fossils filled with greenish-gray shale <strong>in</strong> a black-shale<br />

matrix.<br />

Figure 6. Broad greenish-gray shale L<strong>in</strong>gula lftrailll<br />

with pedicle impression<br />

and L<strong>in</strong>mla shell.<br />

38


Camp Run Member of the New Albany Shale <strong>in</strong> north-central <strong>Kentucky</strong>.<br />

Blocher is probably correlative with the lower Huron, and the Camp Run<br />

is probably correlative with the Three Lick Bed (Provo and others, 1977).<br />

Trace fossils <strong>in</strong> the lower unit appears to have a more vertical orienta-<br />

tion whereas those <strong>in</strong> the upper unit have a more horizontal orientation,<br />

concentrated along the black shale-green shale <strong>in</strong>terface (Griffith, 1977).<br />

The trace-fossil evidence of Griffith (1977) and the conclusions of Jordan<br />

(1980) suggest that the cratonic black-shale sea became progressively<br />

deeper with time and transgression.<br />

As Rhoads and Morse (1971), Griffith (1977), and Byers (1977, 1979)<br />

have po<strong>in</strong>ted out, the presence of bioturbation <strong>in</strong> an otherwise lam<strong>in</strong>ated<br />

shale sequence strongly suggests an <strong>in</strong>flux of oxygen and a change from<br />

anaerobic conditions to at least dysaerobic conditions.<br />

of a clacified fauna and a presence of bioturbation are characteristic<br />

of the dysaerobic zone of Rhoads and Morse (1971).<br />

The absence<br />

In southern Indiana, a change to more oxygenated conditions <strong>in</strong> the<br />

lower <strong>Black</strong>iston Member of the black-shale sequence is supported by<br />

"worm trails", clams, and preserved goniatite cephalopods reported by<br />

Campbell (1946). The lower <strong>Black</strong>iston of Campbell (1946) is probably<br />

correlative with the lower Huron Member of Provo (1977) and Swager<br />

(1978) .<br />

Evidence of benthic life is quite strong <strong>in</strong> the Three Lick Bed of<br />

eastern <strong>Kentucky</strong>.<br />

bioturbation, and a pyritized micromorph fauna of clams, gastropods,<br />

agglut<strong>in</strong>ated Foram<strong>in</strong>ifera, and ostracods <strong>in</strong> the three greenish-gray<br />

shales of the bed. Trace fossils <strong>in</strong> this bed also extend from the green-<br />

ish-gray shales <strong>in</strong>to the underly<strong>in</strong>g black shales.<br />

39<br />

The<br />

Barron and Ettensohn (1980) reported -- <strong>in</strong> situ L<strong>in</strong>gula,<br />

Some of the most unusual forms of bioturbation <strong>in</strong> the Three Lick Bed


consist of rather wide (1.S centimeters) "trailst1 of green shale <strong>in</strong><br />

surround<strong>in</strong>g black shale which end with a comparatively large (2 centi-<br />

meters) L<strong>in</strong>gula specimen with a mold or the pyritized rema<strong>in</strong>s of the<br />

pedicle <strong>in</strong> the center of the l%rail*t (Figure 6). Complete, <strong>in</strong>-place<br />

L<strong>in</strong>gula specimens are best known from an outcrop <strong>in</strong> Madison County,<br />

<strong>Kentucky</strong>, west of Berea, but have also been found <strong>in</strong> other sections as<br />

well, notably <strong>in</strong> Rowan County, <strong>Kentucky</strong>. The L<strong>in</strong>mla with their phos-<br />

phatic shells apparently were able to thrive <strong>in</strong> low-oxygen conditions<br />

which were too serve to allow normal calcified forms to do likewise.<br />

L<strong>in</strong>gula<br />

L<strong>in</strong>gula has often been used as <strong>in</strong>dicative of near-shore, shallow-<br />

water facies.<br />

The L<strong>in</strong>gula-molluscan assemblage of the Ordovician is<br />

widely used to <strong>in</strong>dicate lagoonal conditions (Walker, 1972). Locally,<br />

<strong>in</strong> the Brannm Member of the Ordivician Lex<strong>in</strong>gton Limestone, L<strong>in</strong>mla<br />

molluscs, and trilobites are present, but the environment of deposition<br />

appears to have been deeper, offshore mar<strong>in</strong>e, with less oxygen and cur-<br />

rent activity, rather than shallow lagoon (Cressman, 1973). The occur-<br />

rence of rather large L<strong>in</strong>gula, obviously <strong>in</strong>-place, and apparently<br />

thriv<strong>in</strong>g <strong>in</strong> the greenish-gray mud deposited <strong>in</strong> near-reduc<strong>in</strong>g conditions<br />

does not seem to support a shallow-water, near-shore <strong>in</strong>terpretation.<br />

Patricularly when found with open-mar<strong>in</strong>e <strong>in</strong>dicators such as conodonts<br />

and goniatite cephalopods.<br />

Thayer and Steele-Petrovic' (1975) suggested that L<strong>in</strong>gula did not<br />

<strong>in</strong>habit f<strong>in</strong>e-gra<strong>in</strong>ed sediment for three reasons:<br />

The f<strong>in</strong>e-gra<strong>in</strong>ed<br />

material would have passed through the setae and fouled the <strong>in</strong>sides;<br />

The f<strong>in</strong>e-gra<strong>in</strong>ed sediments may have acted as fluids and had <strong>in</strong>sufficient<br />

strength to support the burrow<strong>in</strong>g activity of L<strong>in</strong>gula; The f<strong>in</strong>e material<br />

40


would have been easily re-suspended and would have clogged the organisms'<br />

feed<strong>in</strong>g and respiratory mechanisms.<br />

paper, they suggested that a mucous substance secreted from between the<br />

valves may have allowed the L<strong>in</strong>gula to cope with the first two problems.<br />

If Glottidia (modern relative of L<strong>in</strong>gula) can close its valve to survive<br />

periods of lower sal<strong>in</strong>ity and oxygen and the general stress of a near-<br />

shore c odty, perhaps L<strong>in</strong>gula could have closed its valves to endure<br />

the m re turbide periods of deposition of the Three Lick Bed. The fact<br />

that the greenish-gray clays accumulated seems to <strong>in</strong>dicate that re-sus-<br />

pend<strong>in</strong>g currents were rare, if they occurred at all.<br />

In a later section of the sampe<br />

Tak<strong>in</strong>g a modern characteristic of a genus, even of a "liv<strong>in</strong>g fossil"<br />

such as L<strong>in</strong>gula, and apply<strong>in</strong>g it to a Late Devonian form is highly specula-<br />

tive.<br />

Nevertheless, modern L<strong>in</strong>gula possess the blood pigment hemerythr<strong>in</strong>.<br />

Dur<strong>in</strong>g periods of noral moxygen levels, oxygen is bound to the pigment.<br />

Dur<strong>in</strong>g periods of lowered oxygen levels, the'oxygen is released from the<br />

pigment (Pa<strong>in</strong>e, 1970).<br />

Such a mechanism, if it was present <strong>in</strong> fossil<br />

L<strong>in</strong>gula could expla<strong>in</strong> the ability of L<strong>in</strong>gula to survive <strong>in</strong> marg<strong>in</strong>al<br />

oxygenated environments as well as <strong>in</strong> <strong>in</strong>tertidal environments.<br />

Cherns (1978) reported L<strong>in</strong>gula from deep, bas<strong>in</strong>al waters <strong>in</strong> a<br />

Silurian bas<strong>in</strong> <strong>in</strong> life-position.<br />

He also reported a L<strong>in</strong>gula from<br />

shallower, shelf environments. He stated that neither served, <strong>in</strong> that<br />

<strong>in</strong>stance, as a near-shore, shallow- or brackish-water <strong>in</strong>dicator.<br />

Pa<strong>in</strong>e (1970) stated that both L<strong>in</strong>gula and its modern relative<br />

Glottidia lived <strong>in</strong> muddy bottoms at depths of ten meters and greater.<br />

He supported that conclusion by show<strong>in</strong>g that L<strong>in</strong>gula lived <strong>in</strong> shales<br />

which accumulated below wave base.<br />

A Recent species of Glottidia<br />

was known to become most abundant <strong>in</strong> deeper water. Pa<strong>in</strong>e suggested<br />

that modern research is biased toward the near-shore, shallow, sandy<br />

41


substrate because of sampl<strong>in</strong>g convenience. Becuase of high-energy condi-<br />

tions and the result<strong>in</strong>g destruction of shell material, the fossil record<br />

is probably biased toward preservation <strong>in</strong> deeper, lower-energy environments<br />

where muds accumulated.<br />

The po<strong>in</strong>t of this section is that L<strong>in</strong>gula have <strong>in</strong> the past and do<br />

presently <strong>in</strong>habit the stressful near-shore environment, but they are<br />

not limited to that environment today, and were not likely limited to<br />

only that environment <strong>in</strong> the geologic past. As Rudwick (1965) said,<br />

L<strong>in</strong>gula can be used as an <strong>in</strong>dicator of the near-shore environment <strong>in</strong> the<br />

absence of toxic conditions and other brachiopods. Most of the L<strong>in</strong>gula<br />

<strong>in</strong> the black shales were not liv<strong>in</strong>g <strong>in</strong> the black muds, but were probably<br />

epiplanktic.<br />

S<strong>in</strong>ce L<strong>in</strong>gula did occupy apparent near-shore environments<br />

<strong>in</strong> the Ordovician and later times, it is likely that they developed very<br />

early the capability to survive low levels of oxygen us<strong>in</strong>g the pigment<br />

hererythr<strong>in</strong>. This capability would have allowed the Late Devonian<br />

L<strong>in</strong>gula to survive and even to thrive <strong>in</strong> the greenish-gray muds of the<br />

Three Lick Bed and other similar horizons <strong>in</strong> the black-shale sequence.<br />

Mo 1 lusc s<br />

The micromorph clams found with<strong>in</strong> the green shales from the black-<br />

shale sequence probably wereliv<strong>in</strong>g <strong>in</strong> or on the bottom as both valves<br />

are generally recovered <strong>in</strong>tact and articulated. Alternatively, one can<br />

not entirely rule out a possible epiplanktic mode; however, suggestive<br />

evidence is not apparent. Scann<strong>in</strong>g electron micrographs of the clams<br />

fail to show growth l<strong>in</strong>es or other such details. At higher magnification,<br />

the crystallization pattern seems similar to published micrographs of<br />

aragonitic structure (Harvey, 1972). If this replacment pattern is<br />

correct, the pyritization must have been synsedimentary. Clark and Lutz<br />

42


(1980), Nussman (1975), and Brown (1966) presented evidence suggest<strong>in</strong>g<br />

that pyrite replaces aragonite before solution or change to clacite.<br />

Berner (1970) and Howarth (1979) stated that pyrite production is related<br />

to the activity of sulfate-reduc<strong>in</strong>g bacteria; sulfate is reduced through<br />

anaerobic bacterial respiration to sulfide, and then the chemically free<br />

oxygen is used by the bacteria.<br />

form hydrotroilite (FeS.nH20) which is later changed to pyrite (L<strong>in</strong>eback,<br />

1968).<br />

high level <strong>in</strong> the black-shale sea. Although Clark and Lutz (1980) found<br />

surficial pyritization on liv<strong>in</strong>g mollusc shells, the possibility of such<br />

development for fossils from the Three Lick Bed can only be speculated<br />

upon at this time. The suggestion by Clark and Lutz (1980) that pyritiza-<br />

tion seems to co<strong>in</strong>cide with the occurrence of organic material <strong>in</strong> the<br />

mollusc shell is supported by selective pyritization of some burrows<br />

which may have been l<strong>in</strong>ed with mucous, and by the pyritization of L<strong>in</strong>gula<br />

pedicles. Zangerl and Richardson (1963) reported f<strong>in</strong>d<strong>in</strong>g pyritized<br />

pelecypods <strong>in</strong> association with unpyritized phosphatic brachiopods.<br />

attributed the difference <strong>in</strong> preservation to the presence of phosphate<br />

<strong>in</strong> the brachiopods and its absence <strong>in</strong> the pelecypods.<br />

furthermore, stated that the occurrence of pyrite <strong>in</strong> sedimentary rocks<br />

is very strong evidence for the deposition of organic matter which was<br />

certa<strong>in</strong>ly the case dur<strong>in</strong>g the dpeosition of the black shale.<br />

micromorph fossils from the Three Lick Bed the pattern of pyritization<br />

appears to be similar <strong>in</strong> all the molluscs but different from that of<br />

the ostracods (figure 7).<br />

43<br />

The sulfide then comb<strong>in</strong>es with iron to<br />

Such bacterial activity can be <strong>in</strong>ferred to have been at quite a<br />

Schopf (1980),<br />

In the<br />

They<br />

The micromorph gastropods found <strong>in</strong> the Three Lick Bed probably were<br />

benthic. Alternatively, some of these gastropods may have been pelagic


Figure 7. Ostracod from Three Lick Bed. SEM micrograph. Area of box<br />

magnified 700 times to show pyrite replacement pattern.<br />

Figure 8. Pyritized pelecypod from Three Lick Bed. Magnified 230 times on<br />

left and 950 times on the right to show pyrite replacement pattern.<br />

44


swimmers, similar to pteropods. Pteropods have been recovered from<br />

Recent anaerobic sediments similar to the black shales <strong>in</strong> the Santa<br />

Barbara Bas<strong>in</strong> (Berger and Soutar, 1970). The presence of m<strong>in</strong>eralized<br />

gastropods <strong>in</strong> the basal lag of the black-shale sequence (also reported<br />

by Griffith, 1977) tends to support this <strong>in</strong>terpretation.<br />

Foram<strong>in</strong>ifera<br />

Pyritized benthic, agglut<strong>in</strong>ated Foram<strong>in</strong>ifera also occur <strong>in</strong> the Three<br />

Lick Bed and <strong>in</strong>clude the three genera: Rhabdmm<strong>in</strong>a, Psuedoastrorhiza,<br />

and Thuramm<strong>in</strong>a.<br />

organisms.<br />

by Conk<strong>in</strong> (1961) and Conk<strong>in</strong> and Conk<strong>in</strong> (1964b, 1967, 1977) from the<br />

Upper Devonian greenish-gray shales, and are known from Middle Devonian<br />

sediments of Ohio (Stewart and Lampe, 1947). Accord<strong>in</strong>g to Toomey and<br />

Mamet (1978) the Late Devonian was dom<strong>in</strong>ated by the Saccamm<strong>in</strong>idae and<br />

the Ammodiscidae, both families hav<strong>in</strong>g tests formed of agglut<strong>in</strong>ated sand<br />

or mud particles, and possess<strong>in</strong>g only one chamber. Although benthic<br />

Foram<strong>in</strong>ifera were very common dur<strong>in</strong>g the Devonian, planktic Foram<strong>in</strong>ifera<br />

had not yet devleoped. Benthic Foram<strong>in</strong>ifera today occupy habitats vary-<br />

<strong>in</strong>g from ephemeral tidal ponds to abyssal red-clay ocean bottoms. It is<br />

possible that Late Devonian forms were equally opportunistic and could<br />

quickly move <strong>in</strong>to the dysaerobic environment <strong>in</strong> which the greenish-gray<br />

muds were deposited.<br />

0s tracods<br />

These are <strong>in</strong>terpreted to have been strictly benthic<br />

Similar benthic Foram<strong>in</strong>ifera have been reported previously<br />

Benthic ostracods are also present <strong>in</strong> the greenish-gray shales of<br />

the Three Lick Bed.<br />

Similar forms have been reported by Stewart (1944)<br />

from the Middle Devonian bone beds of Ohio, by Stewart and Hendrix (1939)<br />

45


from the Olentangy Shale, more recently by Duffield and Warshauer (1979),<br />

and Warshauer (1978) from greenish-gray shales <strong>in</strong> a black-shale core from<br />

West Virg<strong>in</strong>ia.<br />

and attributed this low diveristy to harsh bottom conditions.<br />

Three Lick Bed ostracods were generally not heavily ornamented and as<br />

such probably fit <strong>in</strong>to a deeper-water, off-shore group such as described<br />

by Gooday and Becker (1978).<br />

The latter reported a low diversity of benthic forms<br />

These ostracods were probably nekto-benthic predators and grazers.<br />

They also formed an important source of food for larger predators.<br />

ostracods occupy a very wide range of habitats<br />

sufficiently eurytopic <strong>in</strong> the Late Devonian to<br />

environment such as the one <strong>in</strong> which the Three<br />

muds were deposited.<br />

Organism-oxygen Relationships<br />

Pelecypods, gastropods, Foram<strong>in</strong>ifera, and<br />

The<br />

46<br />

The<br />

today and probably were<br />

move <strong>in</strong>to a dysaerobic<br />

Lick Bed greenish-gray<br />

ostracods are generally<br />

considered to have been more eurytopic <strong>in</strong> nature than were the calcareous<br />

brachiopods.<br />

gray mud environment was colonized by molluscs, ostracods, Foram<strong>in</strong>ifera,<br />

and phosphatic brachiopods; wereas heavily calcareous benthic organisms<br />

are absent.<br />

This may expla<strong>in</strong> why the imporved, but still harsh, greenish-<br />

The absence of heavily calcareous benthos is largely related<br />

to a lack of oxygen (Rhoads and Morse, 1971). Rhoads and Morse (1971)<br />

<strong>in</strong>dicated that heavily calcified forms were present only where the con-<br />

centration of dissolved oxygen was greater than 1.0 milliilter per liter;<br />

some lightly calcified organisms could have exited below this level.<br />

Oxygen concentrations of about .1 to .3 millilters per liter apparently<br />

were necessary to support macrofaunal burrow<strong>in</strong>g organisms. At levels<br />

below that, aerobic metazoans were largely absent and as a result, the


the sediments reta<strong>in</strong>ed their orig<strong>in</strong>al lam<strong>in</strong>ation.<br />

Based on this model, the lower Huron Member appears to have been<br />

primarily dysaerobic, with bioturbation provid<strong>in</strong>g evidnece of the <strong>in</strong>creased<br />

oxygen levels compared with the normal anaerobic black-shale sea bottom.<br />

The conditions of deposition for the greenish-gray muds of the Three Lick<br />

Bed may have been marg<strong>in</strong>ally aerobic-dysaerobic.<br />

the micromorph molluscs could have been either juveniles that died<br />

before they reached maturity, or stunted adults that could not develop<br />

<strong>in</strong> a normal manner under such harsh conditions. A mechanism for <strong>in</strong>creas-<br />

<strong>in</strong>g the level of oxygen will be discussed <strong>in</strong> a later section.<br />

Other Benthos<br />

With this <strong>in</strong> m<strong>in</strong>d,<br />

Other evidence of benthic life is found <strong>in</strong> the phosphate-nodule<br />

zone near the upper part of the black-shale sequence.<br />

to acrothoracic barnacles have been identified <strong>in</strong> phosphate nodules.<br />

Similar bor<strong>in</strong>gs have been reported by Toml<strong>in</strong>son (1969) from the Devonian.<br />

The bor<strong>in</strong>gs were probably made after lithification of the nodule, but<br />

prior to burial.<br />

nodules may <strong>in</strong>dicate that the nodules were flipped about by currents,<br />

leav<strong>in</strong>g only the edges as a safe habitat. That currents were present<br />

is further supported by imbrication of the nodules at some locations<br />

(Steve Lamb, personal communication). Apparently, the nodules existed<br />

for some time <strong>in</strong> a somewhat soft, semi-consolidate state, because L<strong>in</strong>gula<br />

specimens <strong>in</strong> apparent life position have been found <strong>in</strong> some nodules. The<br />

trace fossil L<strong>in</strong>gulichnites Szmuc, Osgood, and Me<strong>in</strong>ke (1976) has a some-<br />

what similar outl<strong>in</strong>e <strong>in</strong> plan view to that of bor<strong>in</strong>gs made by acrothoracic<br />

barnacles. The two types of bor<strong>in</strong>gs, however, are not always easily<br />

dist<strong>in</strong>guished <strong>in</strong> plan view.<br />

47<br />

Bor<strong>in</strong>gs attributed<br />

Concentrations of some bor<strong>in</strong>gs on the edges of the


PLANTS<br />

Terrestrial vegetation began to accumulate <strong>in</strong> sediments as early as<br />

Silurian time.<br />

were comparatively rare.<br />

From then until the Middle Devonian, preserved plants<br />

Evidently, beg<strong>in</strong>n<strong>in</strong>g <strong>in</strong> the Middle Devonian<br />

. and becom<strong>in</strong>g very widely divergent and geographically dispersed, land<br />

plants became firmly established <strong>in</strong> the Late Devonian.<br />

Apparently an<br />

ecological succession occurred, similar to succession known from mar<strong>in</strong>e<br />

enivronments <strong>in</strong> that the earlier plants eventually so modified the land<br />

(soil development) that larger, more sophisticated plants devleoped and<br />

spread.<br />

a rather substantial upland forest with significantly large trees (20<br />

meters high) and a diverse and abundant assemblage of lesser plants be-<br />

came an important part of the terrestrial environment.<br />

development of a cpmparatively lush vegetation, habitats suitable to<br />

terrestrial animals were developed, and rather quickly occupied. The<br />

oldest tetraped fossil is known from Upper Devonian rocks from Greenland.<br />

Likewise some of the earliest <strong>in</strong>sect fossils are from the Late Devonian.<br />

What effect then did this vegetation have on the Late Devonian black-<br />

shale sea, the life <strong>in</strong> that sea, and the sediments deposited there<strong>in</strong>?<br />

General<br />

From the fossil record, we might <strong>in</strong>fer that <strong>in</strong> the Late Devonian,<br />

48<br />

Ancillary to the<br />

First of all, the plant fossils found <strong>in</strong> the Upper Devonian-Lower<br />

Mississippian black-shale sequence are preserved by several methods:<br />

silicification, coalification, pyritization, calcification, phosphatiza-<br />

tion, and <strong>in</strong> a relatively unaltered chemical state. One might su?pose<br />

that the method of preservation might shed some light on the environment<br />

<strong>in</strong> which the plant material came to be deposited.


Silicified, slightly compressed logs probably were buried and<br />

m<strong>in</strong>eralized fairly rapidly <strong>in</strong> sediment conta<strong>in</strong><strong>in</strong>g silica-saturated<br />

<strong>in</strong>terstitial water. A mechanism for silica enrichment has been discussed<br />

under the section on radiolariams. The coalified material occurs as<br />

carbonized films just a few millimeters thick.<br />

reported coalified woody plant tissue the same as vitra<strong>in</strong> correspond<strong>in</strong>g<br />

to a rank of high-volatile A bitum<strong>in</strong>ous coal.<br />

the upper Chattanooga Shale <strong>in</strong> Tennessee.<br />

almost certa<strong>in</strong>ly deposited <strong>in</strong> anaerobic reduc<strong>in</strong>g conditions where abundant<br />

hydrogen sulfide was produced by bacterial action,<br />

and plant material are associated primarily with the phosphate nodules<br />

<strong>in</strong> the upper parts of the sequence and have been exhaustively treated by<br />

Cross and Hosk<strong>in</strong>s (1951a, b) and Hosk<strong>in</strong>s and Cross (1947, 1951, 1952),<br />

Read and Campbell (1939), Read (1936a, b; 1937), and Scott and Jeffery<br />

(1914).<br />

the sequence <strong>in</strong> Ohio (Prosser, 1912; Cross and Hosk<strong>in</strong>s, 1951b).<br />

49<br />

Breger and Schopf (1955)<br />

The material came from<br />

The pyritized material was<br />

Phosphatized wood<br />

Logs are also known from calcareous nodules near the base of<br />

Regard<strong>in</strong>g reconstruction of the ancient vegetated landscape and<br />

ecology, little has been done <strong>in</strong> this area relative to the work done <strong>in</strong><br />

classical paleobotany and systematics. Not alone, but perhaps foremost<br />

among paleobotanical ecologists is Beck.<br />

of the occurrence of Archaeopteris foliage and fructifications organically<br />

connected with Callixylon wood. Prior to that time, they had been con-<br />

sidered as two plants, which together had dom<strong>in</strong>ated Late Devonian plant<br />

fossils.<br />

In 1960 he published an account<br />

Beck (1964a) stated that the Archaeopteris tree was the ma<strong>in</strong> con-<br />

stituent of heavily forested highlands <strong>in</strong> New York state and Pennsylvania<br />

dur<strong>in</strong>g the Late Devonian. The presence of forested land areas could


possibly be a part of the cause of starved bas<strong>in</strong> conditions <strong>in</strong> that the<br />

forest cover reduced run-off, thereby reduced erosion and the sediment<br />

load of the rivers discharg<strong>in</strong>g from the Catskill Delta.<br />

Clearly some of the most abundant and diverse assemblages of plant<br />

fossils have been found <strong>in</strong> the phosphate nodules <strong>in</strong> the upper part of<br />

the section.<br />

Plants preserved <strong>in</strong> these nodules <strong>in</strong>clude both small bush-<br />

like or rush-type plants as well as stems from trees (Callixylon).<br />

addition to plants, animal rema<strong>in</strong>s such as brachiopods, conodonts,<br />

crustaceans, and fish rema<strong>in</strong>s are found <strong>in</strong> these nodules.<br />

Cross and Hosk<strong>in</strong>s (1951b) suggested that the concentration of<br />

platns <strong>in</strong>creased as the crest of the C<strong>in</strong>c<strong>in</strong>nati Arch was approached.<br />

They noted that this was less true for Callixylon rema<strong>in</strong>s than for<br />

material found ma<strong>in</strong>ly <strong>in</strong> the phosphate nodules. Distances from either<br />

Ozarkia or the land mass to the east led them to specilate that a low-<br />

ly<strong>in</strong>g land mass near C<strong>in</strong>c<strong>in</strong>nati may have provided a source for the smaller,<br />

more fragile stems (2.3 millimeters diameter) found <strong>in</strong> the phosphate<br />

nodules.<br />

It may also be possible that the smaller stems are preserved<br />

because ofthe\phosphatization, and may have not been unique to the seas<br />

of that time, but only uniquely preserved by the phosphatization.<br />

Foerstia or Protosalv<strong>in</strong>ia<br />

Forestia or Protosalv<strong>in</strong>ia as a problematic plant fossil occupies<br />

a controversy over its paleobotanical relationship.<br />

name is a subject of debate.<br />

50<br />

In<br />

Even the seneric<br />

The Malloid shape and general resemblance<br />

to tucoid algae along with association <strong>in</strong> the rock record with mar<strong>in</strong>e<br />

fossils have lead some workers to classify Foerstia as a pelagic<br />

mar<strong>in</strong>e alga (White and Stadnichenko, 1923; Schopf and Schwieter<strong>in</strong>g, 1970;<br />

Schwieter<strong>in</strong>g and Neal, 1978; Schopf, 1978). Others suggest that


Protosalv<strong>in</strong>ia was adapted to a terrestrial environment and that it was<br />

not an alga but a member of an entirely separate group of plants (Gray<br />

and Boucot, 1978). A third <strong>in</strong>terpretation suggests a littoral environ-<br />

ment for Protosalv<strong>in</strong>ia and a similarity to members of the Phaeophyta<br />

(brown alga regard<strong>in</strong>g reproduction and thallus-shape (Niklas and Phillips,<br />

1976). Such a cluster problem such as aff<strong>in</strong>ity, paleoecology, and taxonomy<br />

clearly falls beyond the scope of this project.<br />

Although Foerstia rema<strong>in</strong>s occur over a geographically broad range,<br />

it limited stratigraphic occurrence is a narrow zone <strong>in</strong> the Upper Devonian<br />

rocks of Indiana, Ohio, <strong>Kentucky</strong>, Tennessee, Oklahoma, Virg<strong>in</strong>ia, Pennsyl-<br />

vania, New York, and Ontario (Schwieter<strong>in</strong>g and Neal, 1978). In eastern<br />

<strong>Kentucky</strong>, Foerstia occurs <strong>in</strong> radioactive units 4 and 5, the middle and<br />

lower Huron Member of Swager (1978) and Provo (1977). That Foerstia or<br />

Protosalv<strong>in</strong>ia has been found only <strong>in</strong> mar<strong>in</strong>e sedimentary units, and never<br />

<strong>in</strong> nonmar<strong>in</strong>e or unequivocally near-shore mar<strong>in</strong>e facies poses a substantial<br />

problem for an <strong>in</strong>terpretation as a terrestrial plant.<br />

(1978) state:<br />

51<br />

Gray and Boucot<br />

"It is possible, therefore, to conclude that a variety of<br />

circumstances account for the present distribution pattern and<br />

depositional sites of Protosalv<strong>in</strong>ia rather than the simple ex-<br />

planation that the depositional-preservational sites are the<br />

orig<strong>in</strong>al life site as Schopf speculates."<br />

Foerstia thalli conta<strong>in</strong> lign<strong>in</strong>-like long-cha<strong>in</strong> hydrocarbon compounds<br />

and the tetradi conta<strong>in</strong> sporo-pollen<strong>in</strong> (Niklas and Phillips, 1976). Gray<br />

and Boucot (1978) note the presence of resistant walls with sufficient<br />

durability to withstand transport over long distnaces and extreme<br />

chemical conditions. While this argument certa<strong>in</strong>ly can expla<strong>in</strong> how these<br />

so-called land plants got all over the bas<strong>in</strong> <strong>in</strong> one particular zone. More<br />

than this, though, it raises the question, that if these plants were do


durable, why hasn't even one been found <strong>in</strong> the nonmar<strong>in</strong>e rock of the Upper<br />

Devonian of the eastern United States?<br />

out that uncalcified alga is very rare <strong>in</strong> the geologic record and that such<br />

durable walls are unusual for algae. Hiklas and Phillips (1976) suggested<br />

that the lign<strong>in</strong>-like compunds and the production of dessication resistant<br />

spores <strong>in</strong>dicate at least periods of dry<strong>in</strong>g out.<br />

Gray and Boucot (1978) po<strong>in</strong>ted<br />

In this short section, we have not tried to put forward one <strong>in</strong>terpreta-<br />

tion over another, but have attempted to show some of the complexity as-<br />

sociated with paleoecological <strong>in</strong>terpretation of Foerstia or Protosalv<strong>in</strong>ia.<br />

52


THE TWO MAJOR FACIES<br />

The so-called homogeneous black-shale sequence conta<strong>in</strong>s several dif-<br />

ferent facies; but the black, lam<strong>in</strong>ated fissile shales and the greenish-<br />

gray clayey shales dom<strong>in</strong>ate the sequence.<br />

th<strong>in</strong> coaly layers, cone-<strong>in</strong>-cone limestone, dolomite, and the phosphate<br />

nodule zone. A number of characteristics dist<strong>in</strong>guish the black, fissile<br />

shales from the greenish-gray clayey shales.<br />

obvious dist<strong>in</strong>ction.<br />

of benthic life; the black shales do not.<br />

the lam<strong>in</strong>ation conta<strong>in</strong>ed <strong>in</strong> the black shales and the occurrence of<br />

bioturbation <strong>in</strong> the greenish-gray shales.<br />

ta<strong>in</strong> more organic matter and quartz than the greenish-gray shales, and<br />

the greenish-gray shales conta<strong>in</strong> more clay (illite) th&n the black shales.<br />

These factors affect the colors of the two facies.<br />

M<strong>in</strong>or facies <strong>in</strong>clude bone beds,<br />

The color forms the most<br />

The greenish-gray shales generally conta<strong>in</strong> evidence<br />

This is directly related to<br />

The greenish-gray shales con-<br />

In figure 9 and <strong>in</strong> figure 10, the fossils from the two respective<br />

facies are shown <strong>in</strong> a suggested possible paleoenvironmental reconstruction.<br />

These are rather rough, schematic block diagrams which are not drawn to<br />

scale. The black, fissile shale enviornment shows lam<strong>in</strong>ated sediment<br />

undisturbed by bioturbation <strong>in</strong> which pyrite nodules form and <strong>in</strong>to which<br />

necroplanktic logs have sunk with associated ep5planktic life.<br />

bottom sediments, anaerobic bacteria and perhaps other anaerobic and<br />

facultative anaerobes such as blue-green algae and nematodes respectively<br />

lived <strong>in</strong> a primitive sulfide community.<br />

In the<br />

A similar community has been<br />

described <strong>in</strong> Recent sand deposits by Fenchel and Riedl (1970). The dashed<br />

l<strong>in</strong>es represent <strong>in</strong>ferred gradations from anaerobic through dysaerobic to<br />

aerobic levels of oxygen based on the models of Rhoads and Morse (1971)<br />

and Byers (1977, 1979). In the aerobic zone (no depth <strong>in</strong>ferred) "normal"<br />

53


Figure 9. Schematic block diagram of a reconstructed greenish-gray shale<br />

environment. Not to scale. Cladodus from a draw<strong>in</strong>g by Grace<br />

Dar 1 <strong>in</strong>g .<br />

54


Figure 10. Schematic black diagram of a reconstructed black shale environ-<br />

ment. Not to scale. Cladoselache from a draw<strong>in</strong>g by Grace Darl<strong>in</strong>g.<br />

55


nektic, planktic, nekto-planktic, and eptplanktic life are represented.<br />

All fish are represented <strong>in</strong> this diagram by a draw<strong>in</strong>g of the shark<br />

Cladoselache.<br />

by a purely hypothetical, highly speculative draw<strong>in</strong>g.<br />

goniatite cephalopods, Tasmanites, acritachs, and epiplanktic brahciopods<br />

and cr<strong>in</strong>oids are shown. Inferrred ostracods and radiolarians are also<br />

represented.<br />

<strong>in</strong> the water column.<br />

Both shallow- and deep-water conodont animals are represented<br />

Additionally,<br />

Tripton is the non-liv<strong>in</strong>g organic particulate matter found<br />

The greenish-gray shale diagram shows a significant change from the<br />

black shale diagram.<br />

turbated sediments which are greenish-gray and not black. The benthos<br />

<strong>in</strong>cludes L<strong>in</strong>gula, unidentified soft-bodied burrowers, micromorph forms<br />

of pelecopods, gastropods, orthocone ceplhalopods, ostracods, and<br />

Foram<strong>in</strong>ifera.<br />

gradational change from dysaerobic to aerobic oxygen levels.<br />

aerobic zone, the life forms are essentially the same as for the black-<br />

shale diagram. All fish are represented by a draw<strong>in</strong>g of the Arthaodire<br />

Cladodus.<br />

an <strong>in</strong>creased suspended clay content and <strong>in</strong>ferred pteropod-like gastropods.<br />

56<br />

The bottom conta<strong>in</strong>s life forms and disrupted or bio-<br />

Higher <strong>in</strong> the water column, the dashed l<strong>in</strong>e represents a<br />

In the<br />

Represented <strong>in</strong> this diagram and not <strong>in</strong> the previous one are<br />

The greenish-gray shales occur <strong>in</strong> the lower <strong>in</strong>terbedded unit, the<br />

Three Lick Bed, and <strong>in</strong> the Bedford Shale-Sunbury Shale of the black-shale<br />

sequence. We will use the Three Lick Bed as an example to demonstrate a<br />

mechanism for deposition of the black, lam<strong>in</strong>ated sediments; and how varia-<br />

tions on this mechanism can account for deposition of greenish-gray, clayey<br />

sediments.<br />

(1980) .<br />

This has been previously presented by Barron and Ettensohn<br />

The diagrams <strong>in</strong> figure llshow the two mechanisms which we suggest can


OPEN<br />

OCEAN<br />

*---<br />

CRATONIC<br />

SEA<br />

B.<br />

57<br />

LOWER DELTA<br />

PLAIN<br />

INCREASED FLUVIAL INPUT<br />

AND<br />

PROBRADATIONIL SEDIMENT<br />

+--- PREVAILING WINO C--- +--- INFLUX<br />

EENISH-GRAY SHALL<br />

OYSALROBlC<br />

Figure 11. A.) Development of quasi-estura<strong>in</strong>e circulation and upwell<strong>in</strong>g<br />

<strong>in</strong> black-shale sea.<br />

B.) Disruption of upwell<strong>in</strong>g through progradation sediment<br />

<strong>in</strong>flux.


account for the deposition of the different facies.<br />

quasi-estuar<strong>in</strong>e circulation occurs because the w<strong>in</strong>d tends to blow water<br />

out to sea, away from shore; a net deficit of water results near-shore.<br />

Water along the bottom moves to replace the water blown out to sea.<br />

causes upwell<strong>in</strong>g of cold phosphate-rich, oxygen-poor bottom water.<br />

upwell<strong>in</strong>g br<strong>in</strong>gs to the oxygen-rich photic zone abundant nutrients, which<br />

support a high level of organic productivity.<br />

the aerobic zone by mix<strong>in</strong>g of w<strong>in</strong>d-driven circulation cells and from<br />

photosynthesis ofthe phytoplankton. This diagram is after Heckel (1977)<br />

and Miller (1978).<br />

In diagram A,<br />

In diagram B, a change occurs <strong>in</strong> the amount of fluvial <strong>in</strong>put.<br />

58<br />

This<br />

The<br />

Oxygen is replenished to<br />

with that, the clastic <strong>in</strong>put from the delta also <strong>in</strong>creases.<br />

-br<strong>in</strong>gs with it oxygen and the comb<strong>in</strong>ed effect is to pushtheupwell<strong>in</strong>g<br />

Coupled<br />

This <strong>in</strong>flux<br />

further seaward, to establish dysaerobic conditions on the sea-bottom,<br />

and to deposit greenish-gray muds on the bottom.<br />

tions devloped, opportunistic benthic life can colonize the bottom as<br />

shown <strong>in</strong> figure 9. Eventually the conditions controll<strong>in</strong>g the <strong>in</strong>flux<br />

would subside and thequasi-estuar<strong>in</strong>e circulation would return to re-<br />

establish anaerobic bottom conditions.<br />

Once dysaerobic condi-<br />

The Three Lick Bed is a southern tongue of the Chagr<strong>in</strong> Shale of<br />

Ohio, which was one of the last major progradations of the Catskill Delta.<br />

Local turbidity-current deposits are known to be associated with this unit.<br />

A similar mechanism was suggested by Griffith (1977) and by Byers (1977,<br />

1979).


REFERENCES CITED<br />

Barron, L.S., and Ettensohn, F.R., 1980, Paleontology and paleoecology<br />

of a prom<strong>in</strong>ent green-shale horizon <strong>in</strong> the Upper Devonian black shales<br />

of east-central <strong>Kentucky</strong>: Geological Society of America Abstracts<br />

with Programs, v. 12, p. 218.<br />

Beck, C.B., 1960, The identity of Archaeopteris and Callixylon: Brittonia,<br />

V. 12, p. 351-368.<br />

-<br />

, 1964, Predom<strong>in</strong>ance of Archaeopteris <strong>in</strong> Upper Devonian flora of<br />

western Catskills and adjacent Pennsylvania: Botanical Gazette,<br />

V. 125, p. 126-128.<br />

Berger, W.H., and Soutar, Andrew, 1970, Preservation of plankton shells<br />

<strong>in</strong> an anaerobic bas<strong>in</strong> off California: Geological Society of America<br />

Bullet<strong>in</strong>, v. 81, p. 275-282.<br />

Boersma, Anne, 1978, Foram<strong>in</strong>ifera: <strong>in</strong> Haq, B.U., and Boersma, Anne (eds.),<br />

Introduction to mar<strong>in</strong>e micropaleontology: New York, Elsevier, p. 19-<br />

77.<br />

Bond, R.H., 1947, Ohio Shale conodonts: Ohio Journal of Science, v. 47,<br />

p. 21-37.<br />

Boneham, R.F., 1970, Acritarchs <strong>in</strong> the New Albany Shale of sourthern<br />

Indiana: Indiana Academy of Science Proceed<strong>in</strong>gs, 1969, v. 79, p. 251-<br />

262.<br />

Breger, I.A., and Schopf, J.M., 1955, Germanium and uranium <strong>in</strong> coalified<br />

wood from Upper Devonian black shale: Geochemica et Cosmochimica<br />

Acta, v. 7, p. 287-293.<br />

Brooks, J., 1971, Some chemical and geochemical studies on sporopollen<strong>in</strong>:<br />

- <strong>in</strong> Brokks, J., and others (eds.), Sporopollen<strong>in</strong>: London, Academic<br />

Press, p. 351-407.<br />

Brown, P.R., 1966, Pyritization <strong>in</strong> some molluscan shells: Journal of<br />

Sedimentary Petrology, v. 36, p. 1149-1152.<br />

Butts, Charles, 1915, Geology and m<strong>in</strong>eral resources of Jefferson Co., Ky.:<br />

<strong>Kentucky</strong> Geological Survey, series 4, v. 3, part 2, 270 pp.<br />

, 1922, The Mississippian series <strong>in</strong> eastern <strong>Kentucky</strong>: <strong>Kentucky</strong><br />

Geological Survey, series 6, v. 7, p. 4-27.<br />

Byers, C.W., 1977, Biofacies <strong>in</strong> ew<strong>in</strong>ic bas<strong>in</strong>s, general model: Society<br />

of Economic Paleontologists and M<strong>in</strong>eralogists Special Publication,<br />

V. 25, p. 5-17.<br />

, 1979, Biogenic structures of black shale paleoenvironments: Postilla,<br />

no. 174, 43 pp.<br />

Byrer, C.W., and Rhoades, S.J., 1976, Lithologic description of core material<br />

from Glen Gery No. 5-745 well, Rose Township, Carroll County, Ohio:<br />

59


Morgantown <strong>Energy</strong> Research Center, MERC/TPR-76/6, 20 pp.<br />

Campbell, Guy, 1946, New Albany Shale: Geological Society of America<br />

Bullet<strong>in</strong>, v. 57, p. 829-903.<br />

Chaloner, W.G., and Orbell, G., 1971, A palaeobiological def<strong>in</strong>ition of<br />

sporopollen<strong>in</strong>: <strong>in</strong> Broaks, J., and others (eds.), Sporopollen<strong>in</strong>:<br />

New York, Academz Press, p. 273-294.<br />

Chatterton, B.D.E., 1976, Distribution and paleoecology of Eifelian<br />

and early Givetian conodonts from western and northwestern<br />

Canada: Geological Association of Canada Special Paper, number 15,<br />

p. 143-157.<br />

Cherns, Lesley, 1978, The environmental significance of L<strong>in</strong>gula <strong>in</strong> the<br />

Ludlow Series of the Welsh borderlands and Wales: Lethaia,<br />

V. 12, p. 35-46.<br />

Clark, G.R., 11, and Lutz, R.A., 1980, Pyritization <strong>in</strong> the shells of<br />

liv<strong>in</strong>g bivalves: Geology, v. 8, p. 268-271.<br />

Conant, L.C., and Swanson, V.E., 1961, Chattanooga Shale and related<br />

rocks of central Tennessee and nearby areas: U.S. Geological<br />

Survey Professional Paper 357, 91 pp.<br />

Conk<strong>in</strong>, J.E., 1961, Mississippian smaller Foram<strong>in</strong>ifera of <strong>Kentucky</strong>,<br />

southern Indiana, northern Tennessee, and south-central Ohio:<br />

Bullet<strong>in</strong>s of American Paleontology, v. 43, p. 129-368.<br />

Conk<strong>in</strong>, J.E., and Conk<strong>in</strong>, B.M., 1964, Pre-Pennsylvanian arenaceous<br />

Foram<strong>in</strong>ifera of North America: 22d International Geological<br />

Congress, Section 8, Palaeontology and Stratigraphy, p. 319-<br />

335.<br />

-' 1967, Arenaceous Foram<strong>in</strong>ifera as a key to Upper Devonian-<br />

Lower Mississippian relationships <strong>in</strong> the type Mississippian<br />

area: <strong>in</strong> Teichert, Curt, and Yochelson, Ellis L. (eds.), Essays<br />

<strong>in</strong> PaleGtology and Stratigraphy, R. C. Moore Commemorative Volume,<br />

University of Kansas Department of Geology, Special Publication<br />

2, Lawrence, University of Kansas Press, p. 85-101.<br />

, 1973, The paracont<strong>in</strong>uity and the determ<strong>in</strong>ation of the Devonian-<br />

Mississippian boundary <strong>in</strong> the type Lower Mississippian area of<br />

North America: University of Louisville <strong>Studies</strong> <strong>in</strong> Paleontology<br />

and Stratigraphy, no. 1, 36 pp.<br />

Conk<strong>in</strong>, J.E., and Conk<strong>in</strong>, B.M. (eds.), 1979, Devonian-Mississippian<br />

boundary <strong>in</strong> southern Indiana and northwestern <strong>Kentucky</strong>: Field Trip<br />

7, N<strong>in</strong>th International Congress of Carboniferous Stratigraphy and<br />

Geology, Louisville, University of Louisville, 141 pp.<br />

Cooper, C.L., 1931, Conodonts from the Arkansas Novaculite, Woodford<br />

Formation, Ohio Shale, and Sunbury Shale: Journal of Paleontology,<br />

V. 5, p. 143-151.<br />

60


Cooper, G.A., 1936-1937, Brachiopod ecology and paleoecology: <strong>in</strong><br />

Twenhofel, W.H. (Chairman), <strong>Report</strong> of the committee on palzecology,<br />

1936-1937: Wash<strong>in</strong>gton, D.C., <strong>National</strong> Research Council, p. 26-53.<br />

Cressman, E.R., 1973, Lithostratigraphy and depositional environments of<br />

the Lex<strong>in</strong>gton Limestone (Ordovician) of central <strong>Kentucky</strong>: U.S.<br />

Geological Survey Professional Paper 768, 59 pp.<br />

Cross, A.T., and Hosk<strong>in</strong>s, J.H., 1951a, Paleobotany of the Devonian-<br />

Mississippian black shale: Journal of Paleontology, v. 25, p. 713-728.<br />

, 1951b, The Devonian-Mississippian transition flora of east-<br />

central United States: Third Congress of the Stratigraphy and<br />

Geology of the Carboniferous, Compte Rendu, Heerlen, p. 113-122.<br />

Davis, W.E., Jr., 1975, Significance of conodont distribution <strong>in</strong> the<br />

Tully Limestone (Devonian), New York State: Journal of Paleontology,<br />

V. 49, p. 1097-1104.<br />

Dawson, J.W., 1871, On spore cases <strong>in</strong> coal: American Journal of Science,<br />

3d series, v. 1, p. 256-263.<br />

Diester-Haass, L., 1978, Sediments as <strong>in</strong>dicators of upwell<strong>in</strong>g: <strong>in</strong><br />

Boje, R., and Tomczak, M. (eds.) Upwell<strong>in</strong>g ecosystems: NewTork,<br />

Spr<strong>in</strong>ger-Verlag, p. 261-281.<br />

Downie, C., 1967, The geological histroy of the microplankton: Review<br />

of Palaeobotany and Palynology, v. 1, p. 269-281.<br />

Druce, Edric, 1970, Upper Paleozoic conodont distribution: Geological<br />

Society of America Abstracts with Programs, v. 2, p. 386.<br />

Druce, E.C., 1973, Upper Paleozoic and Triassic conodont distribution<br />

' and the recognition of biofacies: <strong>in</strong> Rhodes, F.H.T. (ed.), Conodont<br />

Paleozoology, Geological Society ofxerica Special Paper 141, p.<br />

191-237.<br />

Duffield, S.L., and Warshauer, S.M., 1979, An <strong>in</strong>tegrated study of Mid-<br />

Appalachian subsurface shales (Upper Devonian): Conodont biostratigraphy<br />

and ostracode paleoecology (abstr.): Geological Society of<br />

America Abstracts with Programs, v. 11, p. 10-11.<br />

Ettensohn, F.R., and Barron, L.S., <strong>in</strong> preparation, Depositional model<br />

for the Devonian-Mississippian black-shale sequence of North<br />

America: A tectono-climatic approach.<br />

Foreman, H.P., 1959, A new occurrence of Devonian radiolaria <strong>in</strong><br />

calcareous concretions of the Huron Member of the Ohio Shale:<br />

Journal of Paleontology, v. 33, p. 76-80.<br />

, 1963, Upper Devonian radiolaria from the Huron Member of the Ohio<br />

Shale: Micropaleontology, v. 9, p. 267-304.<br />

Gable, K.M., 1973, Conodonts and biostratigraphy of the Olentangy Shale<br />

61


(Middle-Upper Devonian) Ohio: Unpublished Masters thesis, Ohio<br />

State University, Columbus.<br />

Gaudant, Jean, 1979, Pr<strong>in</strong>cipes et methodes d'une paleoichthyologie<br />

bathymetrique: Palaeogeography, Palaeoclimatology, Palaeeecolagy,<br />

V. 28, p. 263-278.<br />

Gooday, A.J., and Becker, G., 1979, Ostracods <strong>in</strong> Devonian biostrati-<br />

graphy: &House, M.R., Scrutton, C.T., and Bassett, M.G. (eds.),<br />

The Devonian System, Special Papers <strong>in</strong> Palaeontology, no. 23,<br />

p. 193-197.<br />

Gray, Jane, and Boucot, A.J., 1979, The Devonian land plant Protosalv<strong>in</strong>ia:<br />

Lethaia, v. 12, p. 57-63.<br />

Griffith, C., 1977, Stratigraphy and paleoenvironment of the New Albany<br />

Shale (Upper Devonian) of north-central <strong>Kentucky</strong>: Unpublished<br />

masters thesis, University of Wiscons<strong>in</strong>, Madison, 214 pp.<br />

Harvey, R.D., 1970, Petrographic and m<strong>in</strong>eralogical characteristics of<br />

carbonate rocks related to sorption of sulfur oxides <strong>in</strong> flue gases:<br />

Ill<strong>in</strong>ois Geological Survey Environmental Geology Notes, number 38,<br />

31 PP*<br />

Harvey, R.D., and others, 1977, Petrology of the New Albany Shale Group<br />

(Upper Devonian and K<strong>in</strong>derhookian) <strong>in</strong> the Ill<strong>in</strong>ois bas<strong>in</strong>, a prelim<strong>in</strong>ary<br />

report: <strong>in</strong> First Eastern Gas <strong>Shales</strong> Symposium Prepr<strong>in</strong>ts:<br />

Morgantown, MorganGwn <strong>Energy</strong> Research Center, p. 239-265.<br />

Hass, W.H., 1947, Conodont zones <strong>in</strong> Upper Devonian and Lower Mississippian<br />

formations of Ohio: Journal of Paleontology, v. 21, p. 131-141.<br />

, 1956, Age and correlation of the Chattanooga Shale and the Maury<br />

Formation: U.S. Geological Survey Professional Paper 286, 47 pp.<br />

Heckel, P.H., 1977, Orig<strong>in</strong> of phosphatic black shale facies <strong>in</strong> Pennsylvanian<br />

cyclothems of mid-cont<strong>in</strong>ent North America: American Association<br />

of Petroleum Geologists Bullet<strong>in</strong>, v. 61, p. 1045-1068.<br />

Henbest, L.B., 1936, Radiolaria <strong>in</strong> the Arkansas Novaculite, Caballos<br />

Novaculite and Bigfork Chert: Journal of Paleontology, v. 10,<br />

p. 76-78.<br />

Herman, Yvonne, 1978, Pteropods: <strong>in</strong> Haq, B.U., and Boersma, Anne (eds.),<br />

Introduction to mar<strong>in</strong>e micropzeontology: New York, Elsevier, p.<br />

15 1- 159.<br />

Heusser, L<strong>in</strong>da, 1978, Spores and pollen <strong>in</strong> the mar<strong>in</strong>e realm: <strong>in</strong> Haq,<br />

B. U., and Boersma, Anne (eds.) , Introduction to mar<strong>in</strong>e miGopaleon-<br />

tology: New York, Elsevier, p. 327-339.<br />

Hoover, K.V., 1960, Devonian-Mississippian shale sequence <strong>in</strong> Ohio:<br />

Ohio Department of Natural Resources, Geological Survey Information<br />

Circular 27, 154 pp.<br />

62


Hosk<strong>in</strong>s, J.H., and Cross, A.T., 1947, Survey of certa<strong>in</strong> Devonian-<br />

Mississippian transition flora, part I, Geological considerations:<br />

part 11, Paleobotanical considerations (abstr.): Geological Society<br />

of America Bullet<strong>in</strong>, v. 58, p. 1194.<br />

, 1951, The structure and classification of four plants from the<br />

New Albany Shale: American Midland Naturalist, v. 46, p. 684-716.<br />

- ,1952, The petrifaction flora of the Devonian-Mississippian black<br />

shale: Palaeobotanist, v. 1, p. 215-238.<br />

House, M.R., 1975, Faunas and time <strong>in</strong> Devonian tropical areas: Proceed<strong>in</strong>gs<br />

of the Yorkshire Geological Society, v. 40, p. 459-490.<br />

, 1978, Devonian ammonoids from the Appalachians and their bear<strong>in</strong>g<br />

on <strong>in</strong>ternational zonation and correlation: Special Papers <strong>in</strong><br />

Palaeontology, no. 21, 70 pp.<br />

Howarth, R.W., 1979, Pyrite: Its rapid formation <strong>in</strong> a salt marsh and its<br />

importance <strong>in</strong> ecosystem metabolism: Science, v. 203, p. 49-51.<br />

Huddle, J.W., 1934, New Albany conodonts: Bullet<strong>in</strong>s of American Paleontology,<br />

V. 21, p. 28-29.<br />

Jackson, J.F., 1966, - <strong>in</strong> Geological Magaz<strong>in</strong>e, v. 103, p. 365-366.<br />

Jansonius, J., and Jenk<strong>in</strong>s, W.A.M., 1978, Chit<strong>in</strong>ozoa: <strong>in</strong> Haq, B.U., and<br />

Boersma, Anne (eds. ) , Introduction to mar<strong>in</strong>e microFleontology:<br />

New York, Elsevier, p. 341-357.<br />

Jenk<strong>in</strong>s, W.A.M, 1970, Chit<strong>in</strong>ozoa: Geosci. Man, v. 1, p. 1-21.<br />

Jordan, D.W., 1980, Trace fossils, and stratigraphy of Devonian black<br />

shale <strong>in</strong> east-central <strong>Kentucky</strong> (abstr.): American Association of<br />

Petroleum Geologists Bullet<strong>in</strong>, v. 64, p. 729-730.<br />

K<strong>in</strong>dle, E.M., 1900, Devonian fossils and stratigraphy of Indiana: Indiana<br />

Department of Geology and Natural Resources 25th Annual <strong>Report</strong>, p.<br />

529- 759.<br />

Kl<strong>in</strong>g, S.A., 1978, Radiolaria: <strong>in</strong> Haq, B.U., and Boersma, Anne (eds.),<br />

Introduction to mar<strong>in</strong>e micrFaleontology: New York, Elsevier,<br />

p. 203-244.<br />

Koopman, B., Sarnthe<strong>in</strong>, M., and Schrader, H. -J., 1978, Sedimentation<br />

<strong>in</strong>fluenced by upwell<strong>in</strong>g <strong>in</strong> the subtropical Baie du Levrier (West<br />

Africa): <strong>in</strong> Boje, R., and Tomczak, M. (eds.), Upwell<strong>in</strong>g Ecosystems:<br />

New York, Spr<strong>in</strong>ger-Verlag, p. 282-300.<br />

Kummel, Bernhard, 1948, Environmental significance of dwarfed cephalo-<br />

pods: Journal of Sedimentary Petrology, v. 18, p. 61-64.<br />

Lewis, T.L., and Schwieter<strong>in</strong>g, J.F., 1971, Distribution of the Cleveland<br />

black shale <strong>in</strong> Ohio: Geological Society of America Bullet<strong>in</strong>, v. 82,<br />

p. 3477-3482.<br />

63


L<strong>in</strong>eback, J.A., 1968, Subdivisions and depositional environments of the<br />

New Albany Shale (Devonian-Mississippian) <strong>in</strong> Indiana: American<br />

Association of Petroleum Geologists Bullet<strong>in</strong>, v. 52, p. 1291-1303.<br />

L<strong>in</strong>ney, W.M., 1884, <strong>Report</strong> on the geology of Clark County: Geological<br />

Survey of <strong>Kentucky</strong>, series 2, v. 5, part 2, p. 33-37.<br />

McAlester, A.L., 1970, Animal ext<strong>in</strong>ctions, oxygen consumption, and<br />

atmosphere history: Journal of paleontology, v. 44, p. 405-<br />

409.<br />

McIntosh, G.C., 1978, Psuedoplanktonic cr<strong>in</strong>oid colonies attached to<br />

Upper Devonian (Frasnian) logs (abstr.): Geological Society of<br />

America Abstracts with Programs, v. 10, p. 453.<br />

McLaughl<strong>in</strong>, R.E., and Reaugh, A.B., 1974, Palynomorphs <strong>in</strong> the Chatta-<br />

nooga black shale <strong>in</strong> Tennessee (abstr.): Geological Society of<br />

America Abstracts with Programs, v. 6, p. 381.<br />

Mart<strong>in</strong>, S.J., and Ziel<strong>in</strong>ski, R.E., 1978, A biostratigraphic analysis<br />

of core samples from wells drilled <strong>in</strong> the Devonian shale <strong>in</strong>terval<br />

of the Appalachian and Ill<strong>in</strong>ois bas<strong>in</strong>s: U.S. Department of <strong>Energy</strong><br />

Eastern Gas <strong>Shales</strong> Project, Open File <strong>Report</strong> 113, p. 9-22.<br />

Mason, David, 1962, Pyritized microfossils from the Upper Devonian<br />

black shale of southwestern Ontario and southern Michigan (abstr.):<br />

Canadian M<strong>in</strong><strong>in</strong>g Journal, v. 83, p. 95.<br />

Merrill, G.K., 1965, Conodonts from the Burnam Limestone of central<br />

Texas: Texas Journal of Science, v. 17, p. 345-403.<br />

Miller, M.L., 1978, A petrographic study of the Upper Devonian-Lower<br />

Mississippian black shales <strong>in</strong> eastern <strong>Kentucky</strong>: Unpublished masters<br />

thesis, University of <strong>Kentucky</strong>, Lex<strong>in</strong>gton, 107 pp.<br />

Miller, A.K., 1957, Ammonoids of the Paleozoic: <strong>in</strong> Ladd, H.S. (ed.)<br />

Treatise on Mar<strong>in</strong>e Ecology and Paleoecology,Geological Society of<br />

America Memoir 67, p. 853-860.<br />

Moore, R.C., Lalicker, C.G., and Fischer, A.G., 1952, Invertebrate fossils:<br />

New York, McGraw-Hill Book Co., Inc., 766 pp.<br />

Moy-Thomas, J.A., and Miles, R.S., 1971, Palaeozoic fishes, second edition:<br />

London, Chapman and Hall, Ltd., 259 pp.<br />

Newberry, J.S., 1857, New fossil fishes from the Devonian rocks of Ohio:<br />

American Journal of Science, 2d series, v. 24, p. 147-149.<br />

Newton, C.R., 1979, Aerobic, dysaerobic, and anaerobic facies with<strong>in</strong><br />

the Needmore Shale (Lower and Middle Devonian): <strong>in</strong> Dennison, J.M.,<br />

and others (eds .) , Devonian <strong>Shales</strong> <strong>in</strong> South-Centrx Pennsylvania<br />

and Maryland, 44th Annual Field Conference for Pennsylvania Geologists,<br />

Guidebook, Harrisburg, Pennsylvania, Bureau of Topographic and Geo-<br />

logicSurvey,p. 56-60.<br />

64


Newton, E.J., 1875, On 'Tasmanite' and Australian 'white coal': Geological<br />

Magaz<strong>in</strong>e, series 2, v. 2, p. 337-342.<br />

Niklas, K.J., and Phillips, T.L., 1976, Morphology of Protosalv<strong>in</strong>ia from<br />

the Upper Devonian of Ohio and <strong>Kentucky</strong>: American Journal of Botany,<br />

V. 63, p. 9-29.<br />

Numann, W., 1957, Naturliche and Kuntsliche 'redwater' mit anschliessendem<br />

Fischsterbern im Meer: Arch. Fischersiwiss, v. 8, p. 204-209,<br />

Braunschweig.<br />

Nussman, D.G., 1975, Paleoecology and pyritization: University of Mich-<br />

igan Museum of Paleontology, Papers on Paleontology, no. 8,<br />

p. 173-223.<br />

Nye, O.B., grower, J.C., and Wilson, S.E., 1975, Hitchhik<strong>in</strong>g clams <strong>in</strong><br />

the Marcellus sea: Bullet<strong>in</strong>s of American Paleontology, v. 67,<br />

p. 287-298.<br />

Olson, E.C., 1971, Vertebrate paleozoology: New York, Wiley-Interscience,<br />

839 pp.<br />

Pa<strong>in</strong>e, R.T., 1963, Ecology of the brachiopod Glottidia pyrimidata: Ecology<br />

Monographs, v. 33, p. 187-213.<br />

, 1970, The sediment occupied by recent l<strong>in</strong>gulid brachiopods and some<br />

paleoecological implications: Palaeogeography, Palaeoclimatology,<br />

Palaeoecology, v. 7, p. 21-31.<br />

Parke, Mary, 1966, The genus Pachysphaera (Pras<strong>in</strong>ophyceae): <strong>in</strong> Barnes,<br />

Harold (ed.), Some contemporary studies <strong>in</strong> mar<strong>in</strong>e sciencc London,<br />

George Allen and Unw<strong>in</strong>, Ltd., p. 555-563.<br />

Pokorny, Vladimir, 1978, Ostracodes: <strong>in</strong> Haq, B.U., and Boersma, Anne<br />

(eds. 1, Introduction to mar<strong>in</strong>e mizopaleontology: New York, Elsevier,<br />

p. 109-149.<br />

Prosser, C.S., 1912, The Devonian and Mississippian formations of north-<br />

eastern Ohio: Ohio Geological Survey, 4th Series, Bullet<strong>in</strong> 15,<br />

p. 509-548.<br />

Provo, L.J., 1977, Stratigraphy and sedimentology of radioactive Devonian-<br />

Mississippian shales of the central Appalachian Bas<strong>in</strong>: Grand<br />

Junction, CO, U.S. Department of <strong>Energy</strong>, <strong>Report</strong> no. GJBX-37(77), 102 pp.<br />

Provo, L.J., Kepferle, R.C., and Potter, P.E., 1977, Three Lick Bed: Use-<br />

ful stratigraphic marker <strong>in</strong> Upper Devonian shale <strong>in</strong> eastern <strong>Kentucky</strong><br />

and adjacent areas of Ohio, West Virg<strong>in</strong>ia, and Tennessee: Morgantown,<br />

West Virg<strong>in</strong>ia, Morgantown <strong>Energy</strong> Research Center MERC/CR-77/2, 56 pp.<br />

Ralph, T.S., 1865, (abstr.), Transactions of the Royal Society of Victoria,<br />

v. 6, p. 7.<br />

65


Raup, D.M., and Stanley, S.M., 1971, Pr<strong>in</strong>ciples of paleontology: San<br />

Francisco, W.H. Freeman and Co., p. 208.<br />

Read, C.B., 1936a, A Devonian flora from <strong>Kentucky</strong>: Journal of Paleontology,<br />

V. 10, p. 215-227.<br />

- , 1936b, The flora of the New Albany Shale: Part I, Diichnia<br />

kentuckiensis, a new representative of the Calamopityeae: U.S.<br />

Geological Survey Professioanl Paper 185-H, p. 149-161.<br />

, 1937, The flora of the New Albany Shale: Part 11, The Calamopityeae<br />

and their relationships: U.S. Geological Survey Professional Paper<br />

186-F, p. 81-104.<br />

Read, C.B, and Campbell, Guy, 1939, Prelim<strong>in</strong>ary account of the New Albany<br />

Shale flora: American Midland Naturalist, v. 21, p. 435-453.<br />

Reaugh, A.B., and McLaughl<strong>in</strong>, R.E., 1975, Environment-related palynomorph<br />

groups <strong>in</strong> the Chattanooga black shale (abstr.): Geological Society<br />

of America Abstracts with Programs, v. 7, p. 1239.<br />

Rexroad, C.B., 1969, Conodonts from the Jacobs Chapel Bed (Mississippian)<br />

of the New Albany Shale <strong>in</strong> southern Indiana: Indiana Geological Survey<br />

Bullet<strong>in</strong> 41, 55 pp.<br />

Rexroad, C.B., and Scott, A.J., 1964, Conodont zones <strong>in</strong> the Rockford<br />

Limestone and the lower part of the New Providence Shale (Mississippian)<br />

<strong>in</strong> Indiana: Indiana Geological Survey Bullet<strong>in</strong> 30, 54 pp.<br />

Rhoads, D.C., and Morse, J.W., 1971, Evolutionary and ecologic signi-<br />

ficance of oxygen-deficient mar<strong>in</strong>e bas<strong>in</strong>s: Lethaia, v. 4, p. 413-<br />

428.<br />

Romer, A.S., 1968, Notes and comments on vertebrate paleontology: Chicago,<br />

The University of Chicago Press, 304 pp.<br />

Rudwick, M.J.S., 1965, Ecology and paleoecology: <strong>in</strong> Treatise on Invertebrate<br />

Paleontology, Part H, Brachiopoda: BGlder, Geological<br />

Society of America, v. 1, p. H199-H214.<br />

- , 1970, Liv<strong>in</strong>g and fossil brachiopods: London, Hutch<strong>in</strong>son, 199 pp.<br />

Ruedemann, R., 1934, Paleozoic plankton of North America: Geological<br />

Society of America Memoir 2, p. 33-34, 41, 56-61.<br />

Ruedemann, R., and Lochman, C., 1942, Graptolites from the Englewood<br />

Formation (Mississippian) of the <strong>Black</strong> Hills, South Dakota: Journal<br />

of Paleontology, v. 16, p. 657-659.<br />

Sandberg, C.A., 1976, Conodont biofacies of Late Devonian Polygnathus<br />

styriacus Zone <strong>in</strong> western United States: <strong>in</strong> Barnes, C.R. (ed.),<br />

Geological Association of Canada Special PFer, number 15, p. 171-186.<br />

, 1980, Use of Devonian conodonts <strong>in</strong> petroleum exploration, western<br />

66


United States:<br />

v. 64, p. 780.<br />

67<br />

American Association of Petroleum Geologists Bullet<strong>in</strong>,<br />

Savage, T.E., 1930, Devonian rock of <strong>Kentucky</strong>: <strong>Kentucky</strong> Geological Survey,<br />

series 6, v. 33, p. 14-163.<br />

Schafer, Wilhelm, 1972, Death dis<strong>in</strong>tegration, and burial: <strong>in</strong> Ecology<br />

and paleoecology of mar<strong>in</strong>e environments : Ed<strong>in</strong>burgh, Oxver and<br />

Boyd, p. 10-90.<br />

Schopf, J.M., 1978, Foerstia and recent <strong>in</strong>terpretations of early, vas-<br />

cular land plants: Lethaia, v. 11, p. 139-143.<br />

Schopf, J.M., and Schwieter<strong>in</strong>g, J.F., 1970, The Foerstia zone of the<br />

Ohio and Chattanooga shales: U.S. Geological Survey Bullet<strong>in</strong><br />

1294-H, 15 pp.<br />

Schopf, J.m., Wilson, L.R., and Bentall, Ray, 1944, An annotated<br />

synopsis of Paleozoic fossil spores and the def<strong>in</strong>ition of generic<br />

groups: Ill<strong>in</strong>ois State Geological Survey <strong>Report</strong> of Investigations<br />

91, 74 pp.<br />

Schopf, T.J.M, 1980, Paleoceanography: Cambridge, Harvard University<br />

Press, 341 pp.<br />

Schumacher, Dietmar, 1976, Conodont biofacies and paleoenviroiments <strong>in</strong><br />

Middle Devonian - Upper Devonian boundary beds, central Missouri:<br />

- <strong>in</strong> Barnes, L.R. (ed.), Geological Association of Canada Special<br />

Paper, number 15, p. 159-169.<br />

Schwieter<strong>in</strong>g, J.F., and Neal, D.W., 1978, Occurrence of Foerstia<br />

(Protosalv<strong>in</strong>ia) <strong>in</strong> L<strong>in</strong>coln County, West Virg<strong>in</strong>ia: Geology, v. 6,<br />

p. 493-494.<br />

Scott, D.H., and Jeffrey, E.C., 1914, On fossil plants show<strong>in</strong>g structure<br />

from the base of the Waverly Shale of <strong>Kentucky</strong>: Philosophical<br />

Transactions of the Royal Society of London, v. 205B, p. 315-373.<br />

Seddon, George, 1970, Frasnian conodonts from the Sadler Ridge-Bugle<br />

Gap area, Cann<strong>in</strong>g Bas<strong>in</strong>, Western Australia: Journal of the<br />

Geological Society of Australia, v. 16, p. 723-753.<br />

Seddon, George, and Sweet, W.C., 1971, An ecologic model for condonts:<br />

Journal of Paleontology, v. 45, p. 869-880.<br />

Seilacher, A., Drodzewski, G., and Haude, R., 1968, Form and function<br />

of a stem <strong>in</strong> a psuedo-planktonic cr<strong>in</strong>oid (Seirocr<strong>in</strong>us): Palaeontology,<br />

V. 11, p. 275-282.<br />

Stewart, G.A., 1944, Ostracoda from Middle Devonian bone beds <strong>in</strong><br />

central Ohio: Journal of Paleontology, v. 24, p. 652-666.<br />

Stewart, G.A., and Hendrix, W.E., 1945, Ostracoda of the Olentangy Shale,<br />

Frankl<strong>in</strong> and Delaware County, Ohio: Journal of Paleontology, v. 19,<br />

p. 96-115.


Stewart, G.A., and Lampe, Lois, 1947, Foram<strong>in</strong>ifera from the Middle Devonian<br />

bone beds of Ohio: Journal of Paleontology, v. 21, p. 529-536.<br />

Swager, D.R., 1978, Stratigraphy of the Upper Devonian-Lower Mississippian<br />

black shale sequence <strong>in</strong> the eastern <strong>Kentucky</strong> outcrop belts: Unpublished<br />

masters thesis, University of <strong>Kentucky</strong>, Lex<strong>in</strong>gton, 116 pp.<br />

Szmuc, E.J., Osgood, R.G., Jr., and Me<strong>in</strong>ke, D.W., 1976, L<strong>in</strong>wlichnites,<br />

a new trace fossil genus for l<strong>in</strong>gulid brachiopod burrows: Lethaia,<br />

V. 9, p. 163-167.<br />

Tasch, Paul, 1967, The problem of primary production <strong>in</strong> the seas through<br />

geologic time: Review of Palaeobotany, v. 1, p. 283-290.<br />

Thayer, C.W., 1974, Mar<strong>in</strong>e paleoecology <strong>in</strong> the Upper Devonian of New York:<br />

Lethaia, v. 7, p. 121-155.<br />

Thayer, C.W., and Steele-Petrovic, H.M., 1975, Burrow<strong>in</strong>g of the l<strong>in</strong>gulid<br />

brachiopod Glottidia pyrimidata: its ecologic and paleoecologic<br />

significance: Lethaia, v. 8, p. 209-221.<br />

Toml<strong>in</strong>son, J.T., 1969, The burrow<strong>in</strong>g barnacles (Cirripedia: Order<br />

Acrothoracica): U.S. <strong>National</strong> Museum Bullet<strong>in</strong> 296, 162 pp.<br />

Toomey, D.F., Mamet, B.L., 1979, Devonian protozoa: <strong>in</strong> House, M.R.,<br />

Scrutton, C.T., and Bassett, M.G. (eds.), The DeKnian System,<br />

Special Papers <strong>in</strong> Palaeontology, no. 23, p. 189-192.<br />

Walker, K.R., 1972, Trophic analysis: A method for study<strong>in</strong>g the function<br />

of ancient communities: Journal of Paleontology, v. 46, p. 82-93.<br />

Wall, D., 1962, Evidence from recent plankton regard<strong>in</strong>g the biological<br />

aff<strong>in</strong>ities of Tasmanites Newton 1875 and Leiosphaeridia Eisenack<br />

1958: Geological Magaz<strong>in</strong>e, v. 99, p. 353-362.<br />

Warshauer, S.M., 1978, Ostracode biostratigraphy <strong>in</strong> the bottom 395<br />

feet of CGTC Well 20403, L<strong>in</strong>coln County, W.VA.: Eastern Gas <strong>Shales</strong><br />

Project, Open File <strong>Report</strong> 109, 12 pp.<br />

Weddige, Karsten, and Ziegler, W i l l i , 1976, The significance of<br />

1criodus:Polygnathus ratios <strong>in</strong> limestones from the type Eifelian,<br />

Germany: <strong>in</strong> Barnes, C. R. (ed.) , Conodont Paleoecology, Geological<br />

Associationof Canada Special Paper, number 15, p. 187-199.<br />

, 1979, Evolutionary patterns <strong>in</strong> Middle Devonian conodont genera<br />

Polygnathus and Icriodus: Geologica et Palaeontologica, v. 13,<br />

p. 157-164.<br />

Wells, J.W., 1939, Association of cr<strong>in</strong>oids with Callixylon <strong>in</strong> the lower -<br />

Ohio Shale: Paleobiologica, v. 7, p. 105-110.<br />

, 1941, Cr<strong>in</strong>oids and Callixylon: American Journal of Science, v.<br />

239, p. 454-456.<br />

68


Wells, J.W., 1947, Provisional paleoecological analysis of the Devonian<br />

rocks of the Columbus region: Ohio Journal of Science, v. 47,<br />

p. 119-126.<br />

White, C.D., and Stadnichenko, T., 1923, Some mother plants of petroleum<br />

<strong>in</strong> the Devonian black shales: Economic Geology, v. 18, p. 238-252.<br />

Wicander, E.R., 1973a, Phytoplankton abundance and diversity dur<strong>in</strong>g the<br />

Late Devonian and Early Mississippian of Ohio (abstr.): American<br />

Association of Petroleum Geologists Bullet<strong>in</strong>, v. 57, p. 812.<br />

1973b, Mar<strong>in</strong>e primary productivity dur<strong>in</strong>g the Late Devonian-Early<br />

Mississippian of Ohio (abstr.): Cordilleran Section, 69th Annual<br />

Meet<strong>in</strong>g, Geological Society of America Abstracts with Programs,<br />

v. 5, p. 121-122.<br />

Wickwire, G.T., 1936, Cr<strong>in</strong>oid stems on fossil wood: American Journal<br />

of Science, 5th series, v. 32, p. 145-146.<br />

Williams, A.J., 1977, Insight <strong>in</strong>to ligulid evolution from the Late Devonian:<br />

Alcher<strong>in</strong>ga, v. 1, p. 401-406.<br />

Williams, G.L., 1978, D<strong>in</strong>oflagellates, Acritarchs and Tasmanitids:<br />

- <strong>in</strong> Haq, B.U., and Boersma, Anne (eds.), Introduction to mar<strong>in</strong>e<br />

micropaleontology: New York, Elsevier, p. 322-324.<br />

Zangerl, Ra<strong>in</strong>er, and Richardson, E.S., Jr., 1963, The paleoecological<br />

history of two Pennsylvanian black shales: Fieldiana: Geology<br />

Memoirs, v. 4, 352 pp.<br />

Ziegler, A.M., and others, 1968, The composition and structure of lower<br />

Silurian mar<strong>in</strong>e communities: Lethaia, v. 1, p. 1-27.<br />

69


A. ?Rhabdanun<strong>in</strong>a sp.<br />

Pyritized. x40.<br />

PLATE 1<br />

Three Lick Bed, Ohio Shale, Rowan County, <strong>Kentucky</strong>.<br />

B. ?Thuramm<strong>in</strong>a sp. Three Lick Bed, Ohio Shale, Rowan County, <strong>Kentucky</strong>.<br />

Pyritized. ~100.<br />

C. ?Psuedoastrorhiza sp. Three Lick Bed, Ohio Shale, Rowan County,<br />

<strong>Kentucky</strong>. Pyritized. x40.<br />

D. Richter<strong>in</strong>a sp. Three Lick Bed, Ohio Shale, Rowan County, <strong>Kentucky</strong>.<br />

Pyritized. x60.<br />

E. Unidentified ostracod. Three Lick Bed, Ohio Shale, Rowan County,<br />

<strong>Kentucky</strong>. SEM micrograph x60.<br />

F. Unidentified ostracod. Three Lick Bed, Ohio Shale, Rowan County,<br />

<strong>Kentucky</strong>. SEM micrograph x300.


D<br />

A<br />

F<br />

B<br />

--<br />

RATE 1<br />

E<br />

C


PLATE 2<br />

A. L<strong>in</strong>gulipora sp. Ohio Shale, <strong>Kentucky</strong>. x4.5.<br />

B. ?Barroisella sp. x5.<br />

C. Orbiculoidea sp. Ohio Shale, Burkesville, <strong>Kentucky</strong>. x4.5.<br />

D. Schizobolus sp. Chattanooga Shale, Cl<strong>in</strong>ch Mounta<strong>in</strong>, Tennessee. x3.<br />

E. Orbiculoid brachiopod. Chattanooga Shale, Cl<strong>in</strong>ch Mounta<strong>in</strong>, Tennessee.<br />

x3.<br />

F. Chonetes sp. New Albany Shale, North Vernon, Indiana. xS.<br />

G. Very badly preserved specimen, possibly a Rhynchonellid.<br />

H. Very badly preserved speimen, possibly a Rhynchonellid.


C<br />

A<br />

\I-<br />

--<br />

B<br />

D E -<br />

G H


PLATE 3<br />

A. Unidentified gastropods. Three Lick Bed, Ohio Shale, Rowan County,<br />

<strong>Kentucky</strong>. SEM micrograph, x240.<br />

B. Unidentified gastropod. Three Lick Bed, Ohio Shale, Rowan County,<br />

<strong>Kentucky</strong>. SEM micrograph, x120.<br />

C. Columella from high-spired gastropod. Three Lick Bed, Ohio Shale,<br />

Rowan County, <strong>Kentucky</strong>. SEM micrograph, x1100.<br />

D. ?Edmondia sp. Three Lick Bed, Ohio Shale, Rowan County, <strong>Kentucky</strong>.<br />

SEM micrograph, x240.


PLATE 4<br />

A. Unidentified cephalopods. Ohio Shale, core from Columbia Gas well<br />

#20336, Mart<strong>in</strong> County, <strong>Kentucky</strong>. about x2.<br />

B. Unidentified cephalopod. Ohio Shale, core from Columbia Gas well<br />

#20336, Mart<strong>in</strong> County, <strong>Kentucky</strong>, about x7.<br />

C. ?Anaptychi of a cephalopod. <strong>Black</strong> shale core. x3.


D<br />

A<br />

FlAE 4<br />

B


PLATE 5<br />

A. Goniatite cephalopod fragment. Three Lick Bed, Ohio Shale, Rowan<br />

County, <strong>Kentucky</strong>. Pyritized. SEM micrograph, x200.<br />

B. ?Orthoconic cephalopod. Three Lick Bed, Ohio Shale, Rowan County,<br />

<strong>Kentucky</strong>. SEM micrograph, x500.<br />

C. Orthocone cephalopod fragment. Three Lick Bed, Ohio Shale, Rowan<br />

County, <strong>Kentucky</strong>. SEM micrograph, x150.


5<br />

--<br />

a<br />

3


PLATE 6<br />

A. Cr<strong>in</strong>oids attached to Callixlon log. New Albany Shale, Lex<strong>in</strong>gton,<br />

Indiana. xl. (From University of C<strong>in</strong>c<strong>in</strong>nati Geology Department Collections)<br />

B. L<strong>in</strong>gula sp. In place <strong>in</strong> greenish-gray shale. Three Lick Bed, New<br />

Albany Shale, Madison County, <strong>Kentucky</strong>. x2.5.


A<br />

B<br />

FlAlE 6


A. Spathognathodus sp.<br />

x40.<br />

PLATE 7<br />

Three Lick Bed, Ohio Shale, Rowan County, <strong>Kentucky</strong>.<br />

B. Siphonodella sp. Lag deposit at the base of the Sunbury Shale, Rowan<br />

County, <strong>Kentucky</strong>. x40.<br />

C. Gnathodus sp. Lag deposity at the base of the Sunbury Shale, Rowan<br />

County, <strong>Kentucky</strong>. x40.<br />

D. and E. Palmatolepis sp. Lag deposit at top of the lower <strong>in</strong>terbedded<br />

unit (Swager, 1978), Ohio Shale, Rowan County, <strong>Kentucky</strong>. x40.<br />

F. Polygnathus sp.<br />

<strong>Kentucky</strong>. x40.<br />

Lag deposit at the base of the Ohio Shale, Rowan County,<br />

G. Icriodus sp. Lag deposit at the base of the Ohio Shale, Rowan County,<br />

<strong>Kentucky</strong>. x40.<br />

H. Styliol<strong>in</strong>a sp. Chattanooga Shale, Cl<strong>in</strong>ch Mounta<strong>in</strong>, Tennessee. x15.


A<br />

RATE 7<br />

H J<br />

I<br />

G<br />

-- -


PLATE 8<br />

A. Trace Fossil filled with green shale <strong>in</strong> black shale.<br />

Rowan County, <strong>Kentucky</strong>.<br />

Ohio Shale,<br />

B. Trace Fossil, Planolites-type. <strong>Kentucky</strong> Highway 51, near Irv<strong>in</strong>e, <strong>Kentucky</strong>.


A<br />

B


PLATE 9<br />

A. Zoophycos-type trace fossil. Ohio Shale, Rowan County, <strong>Kentucky</strong>. xl.<br />

B. Zoophycos-type trace fossil. Devonian black shale, <strong>Kentucky</strong>. x.5.


A<br />

B<br />

--<br />

RATE 9


PLATE 10<br />

A. L<strong>in</strong>gula trace fossils filled with greenish-gray shale <strong>in</strong> black shale.<br />

Three Lick Bed, New Albany Shale, Madison County, <strong>Kentucky</strong>. xl.<br />

B. L<strong>in</strong>gula and L<strong>in</strong>gulichnites-like trace fossil.<br />

Shale, Madison County, <strong>Kentucky</strong>. xl.<br />

Three Lick Bed, New Albany


.<br />

A<br />

B<br />

. ..


PLATE 11<br />

A. "Cladodont" shark tooth. <strong>Black</strong> shale, eastern <strong>Kentucky</strong>. x10<br />

B. Fish scale. <strong>Black</strong> shale, eastern <strong>Kentucky</strong>. x20.<br />

C. Fish tooth. <strong>Black</strong> shale, eastern <strong>Kentucky</strong>. x10.<br />

D. Act<strong>in</strong>opterygian jaw. New Albany Shale, Madison County, <strong>Kentucky</strong>. x5.5.<br />

E. Unidentified headless fish. The head may have been bitten off.<br />

New Albany Shale, eastern <strong>Kentucky</strong>. x1.5.


L a’<br />

A B<br />

D<br />

E<br />

4<br />

C


PLATE 12<br />

A. Tasmanites sp. Ohio Shale, Rowan County, <strong>Kentucky</strong>. x150.<br />

B. Tasmanites sp. Plane polarized light. Ohio Shale, eastern <strong>Kentucky</strong>.<br />

C. Foerstia or Protosalv<strong>in</strong>ia. Ohio Shale, Vanceburg, <strong>Kentucky</strong>. x6.<br />

D. Foerstia or Protosalv<strong>in</strong>ia. Plane polarized light. Ohio Shale, eastern<br />

<strong>Kentucky</strong>.


PLATE 13<br />

A. Unidentified cone or fructification. New Albany Shale, eastern <strong>Kentucky</strong>.<br />

B. Coalified plant material. <strong>Black</strong> shale, eastern <strong>Kentucky</strong>.


PLATE 14<br />

A. Calli lon wood with attached cr<strong>in</strong>oids. New Albany Shale, Lex<strong>in</strong>gton,<br />

&x 1. (from University of C<strong>in</strong>c<strong>in</strong>nati Geology Department<br />

collections)<br />

B. Carbonized films of stems. Chattanooga Shale, Cl<strong>in</strong>ch Mounta<strong>in</strong>,<br />

Tennessee. x2.


A<br />

B


APPENDIX I-D<br />

1-10


A BIBLIOGRAPHY OF THE PALEONTOLOGY AND PALEOECOLOGY<br />

OF THE DEVONIAN-MISSISSIPPIAN BLACK-SHALE<br />

SEQUENCE IN NORTH AMERICA<br />

June, 1980<br />

Lance S. Barron and Frank R. Ettensohn<br />

Of<br />

Department of Geology, University of <strong>Kentucky</strong><br />

<strong>Kentucky</strong> Research Group<br />

Lex<strong>in</strong>gton, <strong>Kentucky</strong> 40506<br />

Prepared for<br />

UNITED STATES DEPARTMENT OF ENERGY<br />

EASTERN GAS SHALES PROJECT<br />

MORGANTOWN ENERGY TECHNOLOGY CENTER<br />

MORGANTOWN, WEST VIRGINIA<br />

UNDER<br />

CONTRACT NO. EY-76-C-05-5202


CONTENTS<br />

Abstract.... .........................................................<br />

Introduction........ .................................................<br />

Acknowledgements .....................................................<br />

Biblio~aphy .........................................................<br />

Index................................ ................................<br />

Page


A BIBLIOGRAPHY OF THE PALEONTOLOGY AND PALEOECOLOGY<br />

OF THE DEVONIAN-MISSISSIPPIAN BLACK SHALE<br />

SEQUENCE IN NORTH AMERICA<br />

by<br />

Lance S. Barronl/ - and Frank R. EttensohnZ/ -<br />

ABSTRACT<br />

.The Devonian-Mississippian black-shale sequence is one of the most<br />

prom<strong>in</strong>ent and well-known stratigraphic horizons <strong>in</strong> the Paleozoic of the<br />

United States, yet the paleontology and its paleoecologic and paleoenvironmental<br />

implications are poorly known. This is <strong>in</strong> larger part related<br />

to the scarcity of fossils preserved <strong>in</strong> the shale - <strong>in</strong> terms of both diversity<br />

and abundance. Nonetheless, that biota which is preserved is wellknown<br />

and much described, but there is little synthesis of this data. The<br />

first step <strong>in</strong> such a synthesis is the compilation of an <strong>in</strong>clusive bibliography<br />

such as this one. This bibliography conta<strong>in</strong>s entries cover<strong>in</strong>g<br />

all the major works deal<strong>in</strong>g with Devonian-Mississippian black-shale paleontology<br />

and paleoecology <strong>in</strong> North America. Articles deal<strong>in</strong>g with areas of<br />

peripheral <strong>in</strong>terest, such as paleogeography, paleoclimatology, ocean circulation<br />

and chemistry, and modern analogues, are also cited. In the <strong>in</strong>dex,<br />

the various genera, taxonomic groups, and other general topics are crossreferenced<br />

to the cited articles. It is hoped that this compilation will<br />

aid <strong>in</strong> the synthesis of paleontologic and paleoecologic data toward a better<br />

understand<strong>in</strong>g of these unique rocks and their role as a source of energy.<br />

KEY WORDS: Devonian-Mississippian black-shale sequence, North Ameritsa,<br />

paleontology, paleoecologic and paleoenvironmental implications, synthesis,<br />

bibliography, paleogeography, paleoclimatology, energy.<br />

INTRODUCTION<br />

The Devonian-Mississippian black-shale sequence is one of the most<br />

prom<strong>in</strong>ent stratigraphic horizons <strong>in</strong> the Paleozoic of the United States,<br />

and is of great economic importance because of its potential as a gas and<br />

oil shale. These shales are remarkable <strong>in</strong> their homogeneous nature and wide-<br />

spread distribution throughout east-central and mid-western United States<br />

with extensions <strong>in</strong>to the Southwest and <strong>in</strong>to west-central Canada. Equally<br />

remarkable about these shales, is the apparent scarcity of typical mar<strong>in</strong>e<br />

fossils. Most studies report an absence of fossils or a restricted fossil<br />

fauna composed of the same few <strong>in</strong>vertebrate elements, namely L<strong>in</strong>gula,<br />

-<br />

1/ Research Assistant, University of <strong>Kentucky</strong><br />

2/ Assistant Professor of Geology, University of <strong>Kentucky</strong><br />

-


conodonts, and fish-bone fragments. An unusual floral assemblage consist-<br />

<strong>in</strong>g of coalified logs (usually Callixylon), Tasmanites, and Foerstia is<br />

also typically reported. These are the common floral and faunal elements,<br />

and they are reported almost universally from the shales; yet many other<br />

floral and faunal elements also occur <strong>in</strong> these shales, but they usually<br />

are rare or local <strong>in</strong> occurrence. The unusual composition of the black-shale<br />

biota and its low diversity are attributed by most workers to widespread<br />

anaerobic conditions thought to exist throughout much of the North American<br />

epeiric sea at that time. Toward the eastern limits of the shale distribu-<br />

tion, however, the fossil fauna gradually <strong>in</strong>creases <strong>in</strong> diversity and abun-<br />

dance reflect<strong>in</strong>g a change to dysaerobic and aerobic environments as the<br />

eastern source areas were approached. Many of the above faunas represent<br />

typical open-mar<strong>in</strong>e assemblages. Hence, the black-shale sequence is not<br />

everywhere typified by a scarcity of fauna and flora.<br />

In order to better characterize the black-shale biota, to study its<br />

changes through time and space, and to determ<strong>in</strong>e its paleoenvironmental<br />

implications, we thought it important <strong>in</strong>itially to compile a bibliography<br />

of black-shale paleontology and paleoecology. The follow<strong>in</strong>g bibliography<br />

of entries is a compilation of all the major articles deal<strong>in</strong>g with<br />

the paleoecology of the Devonian-Mississippian black-shale sequence of<br />

North America. The compiled references cover the paleontology and paleo-<br />

ecology of black shales rang<strong>in</strong>g from Middle Devonian (Eifelian-Givetian)<br />

to Earliest Mississippian (K<strong>in</strong>derhookian) <strong>in</strong> age. Geographically, the<br />

references cover areas rang<strong>in</strong>g from Georgia to Alberta and from Arizona<br />

to eastern Canada. References deal<strong>in</strong>g with extra-cont<strong>in</strong>ental Devonian<br />

faunas are <strong>in</strong>cluded for cosmopolitan groups such as the conodonts and<br />

cephalopoda. Also <strong>in</strong>cluded are topics related to paleogeography, paleo-<br />

climatology, ocean circulation and chemistry, modern analogues, and black-<br />

shale paleoecology. Although some of the articles deal with specific organ-<br />

isms or communities from the black shale, many merely record the occurrences<br />

- of some rather common, nearly ubiquitous fossils~<strong>in</strong> the black shale. Such<br />

references typically mention Tasmanites (Sporangites),<br />

(Protosalv<strong>in</strong>ia),<br />

and conodonts. A<br />

or early 19OO's, and hence the nomenclature used for fossils may be outdated,<br />

and <strong>in</strong> some cases, totally <strong>in</strong>appropriate. Where possible, these names are<br />

synonymized with more modern names <strong>in</strong> the <strong>in</strong>dex.<br />

Articles are listed alphabetically and designated with numbers. In the<br />

<strong>in</strong>dex, various genera, taxonomic groups, and other general topics are cross-<br />

referenced to these articles through their numerical designations. All of<br />

the articles were exam<strong>in</strong>ed and verified except those marked with an asterisk<br />

("1


ACKNOWLEDGEMENTS<br />

Our gratitude is extended to Mrs. Vivian Hall, Mrs. Mary Ransbottom<br />

Spencer, and the student staff of the University of <strong>Kentucky</strong> Geology Library<br />

for their assistance. We also wish to thank Trudy H. Bellardo of the Reference<br />

Department of the Margaret I. K<strong>in</strong>g Memorial Library, University of <strong>Kentucky</strong>.<br />

Special thanks are also due Jane T. Wells and Barbara A. Ross respectively for<br />

their typ<strong>in</strong>g and proofread<strong>in</strong>g of the manuscript.<br />

Fund<strong>in</strong>g for this study was provided under contract number EY-76-C-05-<br />

5202 from the Department of <strong>Energy</strong>, Morgantown <strong>Energy</strong> Technology Center.


0001<br />

0002<br />

0003<br />

0004<br />

0005<br />

0006<br />

0007<br />

0008<br />

0009<br />

0010<br />

0011<br />

0012<br />

0013<br />

0014<br />

0015<br />

0016<br />

BIBLIOGRAPHY<br />

Aberdeen, E., 1940, Radiolarian fauna of the Caballos Formation,<br />

Marathon Bas<strong>in</strong>, Texas: Journal of Paleontology, v. 14,<br />

p. 127-139.<br />

Adams, G. I., and Ulrich, E. O., 1905, Fayetteville folio, Arkan-<br />

sas-Missouri: U.S. Geological Survey Geologic Atlas of the<br />

United States, Folio no. 119, 6 p.<br />

Amsden, T. W., Caplan, W. M., Hilpman, P. L., McGlasson, E. H.,<br />

Rowland, T. L., and Wise, 0. A., Jr., 1967, Devonian of the<br />

southern Midcont<strong>in</strong>ent area, United States: <strong>in</strong> Oswald, D. H.<br />

(ed.) , International Symposium on the Devonian System, 1967<br />

Proceed<strong>in</strong>gs, Calgary Alberta, Alberta Society of Petroleum<br />

Geologists, v. 1, p. 913-932.<br />

Amsden, T. W., and Klapper, Gilbert, 1972, Misener Sandstone<br />

(Middle-Upper Devonian), north-central Oklahoma: American<br />

Association of Petroleum Geologists Bullet<strong>in</strong>, v. 56, p. 2323-<br />

2334.<br />

Anderson, W. I., 1964, Upper Devonian and Lower Mississippian cono-<br />

dont faunas, north-central Iowa: Iowa Academy of Science Pro-<br />

ceed<strong>in</strong>gs, v. 71, p. 320-334.<br />

-’ 1966, Upper Devonian cmodonts and the Devonian-Mississip-<br />

pian boundary of north-central Iowa: Journal of Paleontology,<br />

V. 40, p. 395-415.<br />

Andrews, E. B., 1871, <strong>Report</strong> of progress <strong>in</strong> the second district:<br />

Ohio Geological Survey, <strong>Report</strong> of Progress 1869, p. 55-142.<br />

Andrews, H. N., and Alt, K. S., 1956, A new fossil plant from the<br />

New Albany Shale with some comments on the orig<strong>in</strong> of land vascular<br />

plants, Part 1 - Carocalophyton, a new transitional sealand<br />

plant, Part 2 - Some comments &the orig<strong>in</strong> of land vascular<br />

plants and taxonomic position of Carocalophyton: Annual of<br />

+<br />

the Missouri Botanical Gardens, v. 43, p. 355-378.*<br />

Andrews, H. N., and Phillips, T. L., 1968, Rhaco h on from the<br />

Upper Devonian of West Virg<strong>in</strong>ia: Journal o the L<strong>in</strong>nean Society,<br />

Botany, v. 51, p. 37-64.*<br />

Andrews, H. N., Read, Charles B., Mamay, Sergius H., 1971, A<br />

Devonian lycopod stem with well-preserved cortical tissue: Palaeontology,<br />

v. 14, part l, p. 1-9.<br />

Anteos, E., 1925, The climatologic significance of annual r<strong>in</strong>gs<br />

<strong>in</strong> fossil wood: American Journal of Science, 5th Series, v. 9,<br />

p. 296.<br />

Arber, E. A. Newell, 1921, Devonian floras: Cambridge, Cambridge<br />

University Press.*<br />

Arkle, Thomas, Jr., and others, 1979, Mississippian flora: <strong>in</strong><br />

The Mississippian and Pennsylvanian (Carboniferous) SysteG <strong>in</strong><br />

the United States - West Virg<strong>in</strong>ia and Maryland: U.S. Geological<br />

Survey Professional Paper 1110-D, p. D-19.<br />

Arnold, C. A., 1928, Some Devonian plant localities of central<br />

and western New York: Science, v. 67, p. 276, 277.<br />

- , 1929a, Petrified wood <strong>in</strong> the New Albany Shale: Science,<br />

new series, v. 70, p. 581, 582.<br />

- , 1929b, On the radial pitt<strong>in</strong>g <strong>in</strong> Callixylon: American Journal<br />

of Botany, v. 16, p. 391-393.<br />

1


0017<br />

0018<br />

0019<br />

0020<br />

0021<br />

0022<br />

0023<br />

0024<br />

0025<br />

0026<br />

0027<br />

0028<br />

0029<br />

0030<br />

0031<br />

0032<br />

Arnold, C. A,, 1930, The genus Callixylon from the Upper Devonian<br />

of central and western New York: Papers of the Michigan Academy<br />

of Science, Arts,<br />

+<br />

and Letters, v. 11, p. 1-50.<br />

1931, Callixylon newbe : contributions to miscellaneous<br />

-1<br />

paleontology: University o Michigan Museum Paleontology Contributions,<br />

v. 3, p. 207-232.<br />

- , 1934a, The so-called branched impressions of Callixylon<br />

newberryi (Dawson) Elk<strong>in</strong>s and Wieland and the condition of<br />

their preservation: Journal of Geology, v. 42, p. 71-76.<br />

-9 193ib, Callixylon whiteanum sp. nov. from the Woodford<br />

Chert of Oklahoma: Botanical Gazette, v. 96, p. 180-185.<br />

, 1935, Some new forms and new occurrences of fossil plants<br />

yrom the Middle and Upper Devonian of New York state: Buffalo<br />

Society of Natural Science Bullet<strong>in</strong>, v. 17, p. 1-12.*<br />

-' 1936, Observations on fossil plants from the Devonian of<br />

eastern North America: University of Michigan Museum Paleontology<br />

Contributions, v. 5, p. 37-55, p. 75-78, p. 271-314.<br />

- , 1937, Devonian and Mississippian plant-bear<strong>in</strong>g formations<br />

<strong>in</strong> eastern America: Second Congress of Stratigraphy of the<br />

Carboniferous, Heerlen 1935, Compte Rendu, v. 1, p. 47-62.<br />

-' 1939, Observations on fossil plants from the Devonian of<br />

eastern North America: 1. Plant rema<strong>in</strong>s from the Catskill<br />

Delta deposits of northern Pennsylvania and southern New York:<br />

University of Michigan Museum Paleontology Contributions,<br />

V. 5, p. 271-313.<br />

-' 1952, A specimen of Prototaxites from the Kettle Po<strong>in</strong>t black<br />

shale of Ontario: Palaeontographica, Abt. B., v. 93, p. 45-56.*<br />

Arthur, M. A., and Schlanger, S. O., 1979, Cretaceous 'Oceanic<br />

Anoxic Events' as causal factors <strong>in</strong> development of reef-reservoired<br />

giant oil fields: American Association of Petroleum<br />

Geologists Bullet<strong>in</strong>, v. 63, p. 870-885.<br />

Ashley, G. H., 1917, Oil resources of black shales of the eastern<br />

United States: U.S. Geological Survey Bullet<strong>in</strong> 641, p. 311-324;<br />

(abstr.), Wash<strong>in</strong>gton Academy of Science Journal, v. 7, p. 564-<br />

565.<br />

Avary, K. L., 1979a, Devonian clastics <strong>in</strong> West Virg<strong>in</strong>ia and Maryland,<br />

Field Trip Guide: Morgantown, West Virg<strong>in</strong>ia, West Virg<strong>in</strong>ia<br />

Geological and Economic Survey, 100 pp.<br />

- , 1979b; The Back Creek Siltstone, a newly-named member of the<br />

Brallier formation (Upper Devonian) <strong>in</strong> Virg<strong>in</strong>ia and West Virg<strong>in</strong>ia:<br />

<strong>in</strong> Avary, K. L. (ed.), Devonian Clastics <strong>in</strong> West Virg<strong>in</strong>ia<br />

anrMaryland, Field Trip Guide, Morgantown, West Virg<strong>in</strong>ia,<br />

West Virg<strong>in</strong>ia Geological and Economic Survey, p. 89-92.<br />

Baars, D. L., 1972, Devonian System: <strong>in</strong> Geologic Atlas of the<br />

Rocky Mounta<strong>in</strong> Region: Rocky Mount& Association of Geologists,<br />

p. 90-99.<br />

Ba<strong>in</strong>, G. W., 1963, Climatic zones throughout the ages: <strong>in</strong> Myan,<br />

A. C. (ed.), Polar wander<strong>in</strong>g and cont<strong>in</strong>ental drift, Society of<br />

Economic Paleontologists and M<strong>in</strong>eralogists Special Publication<br />

10, p. 100-130.<br />

Baker, Roger C., 1942, The age and fossils of the Olentangy Shale<br />

of central Ohio: American Journal of Science, v. 240, p. 137-<br />

143.<br />

2


0033<br />

0034<br />

0035<br />

0036<br />

0037<br />

0038<br />

0039<br />

0040<br />

004 1<br />

0042<br />

0043<br />

0044<br />

0045<br />

0046<br />

0047<br />

0048<br />

Ballard, Norval, 1938, Stratigraphy and structural history of<br />

east-central United States: American Association of Petroleum<br />

Geologists Bullet<strong>in</strong>, v. 22, p. 1519-1559.<br />

Barrell, J., 1913, The Upper Devonian delta of the Appalachian<br />

geosyncl<strong>in</strong>e: American Journal of Science, 4th series, v. 36,<br />

p. 430-472.<br />

- , 1914, The Upper Devonian delta of the Appalachian geo-<br />

.syncl<strong>in</strong>e - Part 11: American Journal of Science, 4th series,<br />

V. 37, p. 87-109.<br />

- , 1916, Influence of Silurian-Devonian climates on the rise<br />

of air-breath<strong>in</strong>g vertebrates: Geological Society of America '.<br />

Bullet<strong>in</strong>, v. 27, p. 387-436.<br />

Barrett, N. O., 1922, Notes on Ill<strong>in</strong>ois bitum<strong>in</strong>ous shales, <strong>in</strong>-<br />

clud<strong>in</strong>g results of their experimental distillation: <strong>in</strong><br />

Ill<strong>in</strong>ois State Geological Survey Bullet<strong>in</strong> 38, p. 4477<br />

Barrows, Mary H., Cluff, Robert M., and Harvey, Richard D.,<br />

1979a, Petrology and maturation of dispersed organic matter<br />

<strong>in</strong> the New Albany Shale Group of the Ill<strong>in</strong>ois Bas<strong>in</strong>: <strong>in</strong><br />

Third Eastern Gas <strong>Shales</strong> Symposium, Proceed<strong>in</strong>gs, Morgcown,<br />

West Virg<strong>in</strong>ia, U.S. Department of <strong>Energy</strong>, Morgantown <strong>Energy</strong><br />

Technology Center, METC/SP-79/6, p. 85-114.<br />

-<br />

, 1979b, Petrology and maturation of dispersed organic mat-<br />

ter <strong>in</strong> the New Albany Shale Group of the Ill<strong>in</strong>ois Bas<strong>in</strong>:<br />

Ill<strong>in</strong>ois State Geological Survey Repr<strong>in</strong>t 1979N, 30 pp.<br />

Bass, N. W., 1936, Chattanooga Shale <strong>in</strong> Osage County, Oklahoma,<br />

and adjacent areas: American Association of Petroleum Geol-<br />

ogists Bullet<strong>in</strong>, v. 20, p. 91-102.<br />

Bassler, R. S., 1909, The Nettleroth collection of <strong>in</strong>vertebrate<br />

fossils: Smithsonian Miscellaneous Collections 52 (Q15),<br />

p. 121-152.<br />

-' 1911, The Waverlian period of Tennessee: U.S. <strong>National</strong><br />

Museum Proceed<strong>in</strong>gs, v. 14, p. 209-224.<br />

- , 1932, The stratigraphy of the central bas<strong>in</strong> of Tennessee:<br />

Department of Education, Division of Geology, Nashville,<br />

p. 133-143, 234 -235.<br />

Bassler, R. S., and Kellett, Betty, 1934, Bibliographic <strong>in</strong>dex<br />

of Paleozoic ostracoda: Geological Society of America Special<br />

Paper 1, p. 73-87.<br />

Bates, T. F., 1957, M<strong>in</strong>eralogy, petrography, and radioactivity<br />

of representative samples of Chattanooga Shale:<br />

Geological<br />

Society of America Bullet<strong>in</strong>, v. 68, p. 1305-1314.<br />

Batrukova, L. S., 1967, Stratigraphic importance of Devonian<br />

l<strong>in</strong>gulid brachiopods <strong>in</strong> the U.S.S.R.: <strong>in</strong> Oswald, D. H. (ed.),<br />

International Symposium on the DevonianTystem, 1967 Proceed<strong>in</strong>gs,<br />

Calgary, Alberta, Alberta Society of Petroleum<br />

Geologists, v. 2, p. 525-529.<br />

Beach, G. A., 1961, Late Devonian and Early Mississippian biostratigraphy<br />

of central Utah: Brigham Young University<br />

Research <strong>Studies</strong>, Geology Series, v. 8, p. 37-54.<br />

Beck, C. B., 1953, A new root species of Callixylon: American<br />

Journal of Botany, v. 40, p. 226-233.<br />

3


0049<br />

0050<br />

0051<br />

0052<br />

0053<br />

0054<br />

0055<br />

0056<br />

0057<br />

0058<br />

0059<br />

0060<br />

006 1.<br />

0062<br />

0063<br />

0064<br />

0065<br />

Beck, C. B., 1960a, <strong>Studies</strong> of New Albany shale plants:<br />

1. Stenokoleos simplex comb. nov.: American Journal of<br />

-<br />

Botany, V. 47, p. 115-124.<br />

, 1960b, The identity of Archaeopteris and Callixylon:<br />

Brittonia.<br />

+<br />

v. 12. D. 351-368.<br />

-’ 1961, Cali i& from the New Albany shale (abstr.) :<br />

Aplerican Journal o Botany. v. 48, P. 540.<br />

-’ 1962 , Reconstruction of - Archaeopieris and further con-<br />

sideraticms of its phylogenetic position: American Journal<br />

Of Botany, V. 49, p. 373-382.<br />

+<br />

1964a, Predom<strong>in</strong>ance of Archaeo teris <strong>in</strong> Upper Devonian<br />

-,<br />

flora of western Catskills an adjacent Pennsylvania: Botanical<br />

Gazette, v. 125, p. 126-128.<br />

- , 1964T1, The woody fern-like trees of the Devonian: Torrey<br />

Botany Club Memoir, v. 21, p. 26-37.<br />

-, 1965, The genus Periastron (abstr.): American Journal of<br />

Botany, v. 52, p. 637.<br />

- , 1970a, The appearance of gymnospermous structure: Biological<br />

Reviews, v. 45, p. 379-400.<br />

- , 1970b, Stelar morphology <strong>in</strong> some progymnosperms (abstr.) :<br />

American Journal of Botany, v. 57, p. 755.<br />

-1 1971, Problems of generic delimitation <strong>in</strong> paleobotany:<br />

- <strong>in</strong> Yochslson, E. L. (ed.), Proceed<strong>in</strong>gs of the North American<br />

paleontological convention, Lawrence, Kansas, Allen Press,<br />

Inc., p. 173-193.<br />

Beck, C. B., and Bailey, Robert E., 1966, A Lyg<strong>in</strong>orachis-like<br />

specimen from the New Albany Shale (abstr.): American Journal<br />

of Botany, v. 53, p. 629.<br />

- , 1967, Plants of the New Albany Shale - Part 3, Chapelia<br />

campbelli gen. n.: American Journal of Botany, v. 54,<br />

p. 998-1007.<br />

Beecher, C. E., 1884, Ceratiocaridae from the Chemung and<br />

Waverly groups of Pennsylvania: Pennsylvania Geological<br />

Survey Second <strong>Report</strong>, p.<br />

+<br />

1-22.<br />

-’ 1900, Restoration of St lonurus lacoanus, a giant arthropod<br />

from the Upper Devonian o the United States: American<br />

Journal of Science, 4th series, v. 10, p. 145-150; Geological<br />

Magaz<strong>in</strong>e, 4th series, v. 7, p. 481-485.<br />

- ,1902, Revision of the phyllocarida from the Chemung and<br />

Waverly groups of Pennsylvania: Quarterly Journal of the<br />

Geological Society of London, v. 58, p. 441-449.<br />

Belyea, Helen R., Moyer, G. L., Grey, F. F,, and Grayston, L.<br />

D., 1961, Upper Devonian: <strong>in</strong> McCrossan, R. G.,ad Glaister,<br />

R. P. (eds.), Geological History of Western Canada, Alberta<br />

Society of Petroleum Geologists, Calgary, Alberta, p. 60-88.<br />

Benson, Richard H., and Coll<strong>in</strong>son, Charles, 1958, Three ostracode<br />

faunas from Lower and Middle Mississippian strata <strong>in</strong><br />

southern Ill<strong>in</strong>ois: Ill<strong>in</strong>ois State Geological Survey Circular<br />

255, 26 pp.<br />

4


0066<br />

0067<br />

0068<br />

0069<br />

0070<br />

0071<br />

0072<br />

0073<br />

0074<br />

0075<br />

0076<br />

0077<br />

0078<br />

0079<br />

0080<br />

0081<br />

0082<br />

0083<br />

0084<br />

Bergstrom, Robert E., and Shimp, Neil F., 1977, Geologic and<br />

geochemical studies of the New Albany Group <strong>in</strong> Ill<strong>in</strong>ois<br />

(Devonian black shale) to evaluate its characteristics as a<br />

source of hydrocarbons: Univeristy of Ill<strong>in</strong>ois; Ill<strong>in</strong>ois<br />

State Geological Survey Annual <strong>Report</strong>, September 30, 1977,<br />

U.S. ERDA contract E-(40-1)-5203, p. 57-59.<br />

Berner, R. A., 1970, Pyrite formation <strong>in</strong> the oceans: <strong>in</strong> Symposium<br />

on Hydrogeochemistry, v. 1, Wash<strong>in</strong>gton, D. C: Clark<br />

CO., p. 402-417.*<br />

Berry, E. W., 1906, Leaf-rafts and fossil leaves: Torrega,<br />

V. 6, p. 246-248.<br />

-1 1927, Devonian floras: American Journal of Science, 5th<br />

series, v. 14, p. 109-120.<br />

-9 1932, A remarkable specimen of Callixylon newberryi (Dawson)<br />

Elk<strong>in</strong>s et Wieland. from the Ohio Shale: Ohio Journal<br />

of Science, v. 32, p. 385-388.<br />

-' 1939, Branch<strong>in</strong>g of Callixylon: American Journal of<br />

Science, v. 237, p. 124-129.<br />

Berry, W. B. N., and Wilde, P., 1978, Progressive ventilation<br />

of the oceans - an exploration of the distribution of the<br />

.<br />

lower Paleozoic black shales: American Journal of Science,<br />

V. 278, p. 257-275.<br />

Bharadwaj, D. C., Tiwari, R. S., and Venkatachala, B. S., 1973,<br />

An Upper Devonian mioflora from New Albany Shale, <strong>Kentucky</strong>,<br />

U.S.A.: Palaeobotanist, v. 19, p. 29-39.*<br />

Boalch, G. T., and Parke, M., 1971, The Pras<strong>in</strong>ophycean genera<br />

(Chlorophyta) possibly related to fossil genera, <strong>in</strong> particular<br />

the genus Tasmanites: <strong>in</strong> Far<strong>in</strong>acci, A. (ed.), 2d Planktonic<br />

Confermce, Proceed<strong>in</strong>F, Rome, p . 99-105. *<br />

Bonamo, P. M., and Banks, H. P., 1966, Calamophyton <strong>in</strong> the Mid-<br />

Devonian of New York State: American Journal of Botany, v.<br />

53, p. 778-791.<br />

Bond, R. H., 1947, Ohio Shale conodonts: Ohio Journal of Science,<br />

v. 47, p. 21-37.<br />

Boneham, R. F., 1970, Acritarchs <strong>in</strong> the New Albany Shale of<br />

southern Indiana: Indiana Academy of Science Proceed<strong>in</strong>gs,<br />

1969, V. 79, p. 251-262.*<br />

Borden, W. W., 1874, Scott County: Geological Survey of Indiana<br />

6th Annual <strong>Report</strong>, p. 125.<br />

Bowen,.Z. P., Rhoads, D. C., and McAlester, A. L., 1974, Mar<strong>in</strong>e<br />

benthic connmmities <strong>in</strong> the Upper Devonian of New York: Lethaia,<br />

v. 7, p. 93-120.<br />

Brack, S. D., and Taylor, T. N., 1972, The ultrastructure and<br />

organization of Gdosporites: Micropaleontology, v. 18,<br />

p. 101-109.<br />

Brahon, E. B., 1908a, Notes on D<strong>in</strong>ichthys terrilli Newberry,<br />

with a restoration: Ohio Naturalist, v. 8, p. 363-369.<br />

- , 1908b, D<strong>in</strong>ichth s <strong>in</strong>tewedius Newberry, from the Huron<br />

male (of ' d i e n c e , new series, v. 28, p. 94.*<br />

- , 1909, Notes on some d<strong>in</strong>ichthyids from northern Ohio<br />

(abstr.): Science, new series, v. 29, p. 197.<br />

- , 1911, Notes on the Ohio Shale and its fauna: Missouri<br />

University Bullet<strong>in</strong>, v. 2, p. 23-32.<br />

5


-.<br />

0085<br />

0086<br />

0087<br />

0088<br />

0089<br />

0090<br />

0091<br />

0092<br />

0093<br />

0094<br />

0095<br />

0096<br />

0097<br />

0098<br />

0099<br />

0100<br />

0101<br />

0102<br />

0103<br />

Branson, E. B., 1913, Devonian fishes of Missouri (abstr.):<br />

Geological Society of America Bullet<strong>in</strong>, v. 24, p. 119.<br />

- , 1914, The Devonian fishes of Missouri: Missouri University<br />

Bullet<strong>in</strong>, v. 15, p. 59-74.<br />

-’ 1924, The Devonian of Missouri: Missouri Bureau of Geology<br />

and M<strong>in</strong>es, 2d series, v. 17, 279 pp.<br />

-9 1938a, Stratigraphy and paleontology of the Lower Mississippian<br />

of Missouri, Part 1: Missouri University <strong>Studies</strong>,<br />

v. 13, no. 3, p. 1-208.*<br />

-’ 1938b, Stratigraphy and paleontology of the Northview and<br />

Hannibal: <strong>in</strong> Branson, E. B., and others, Stratigraphy and<br />

paleontolow-of the Lower Mississippian of Missouri, Part 2 :<br />

Missouri University <strong>Studies</strong>, v. 13, no. 4, p. 3-52.*<br />

-’ 1944, Devonian of northeastern Missouri: - <strong>in</strong> Ill<strong>in</strong>ois<br />

Geological Survey Bullet<strong>in</strong> 68, p. 174-181.<br />

Branson, E. B., and Greger, D. K., 1915, Devonian of central<br />

Missouri (abstr.): Geological Society of America Bullet<strong>in</strong>,<br />

v. 26, p. 112.<br />

Branson, E. B., and Mehl, M. G., 1933, Conodonts from the Grassy<br />

Creek Shale of Missouri: Missouri University <strong>Studies</strong>, v. 8,<br />

no. 3, p. 171-259.*<br />

-’ 1934, Conodonts’ from the Bushberg Sandstone and equivalent<br />

formations <strong>in</strong> Missouri: <strong>in</strong> Branson, E. B., and others,<br />

Stratigraphy and paleontology of the Lower Mississippian of<br />

Missouri, Part 2, Missouri University <strong>Studies</strong>, v. 13, no. 4,<br />

p. 128-148.*<br />

- , 1938, The conodont genus Icriodus and its stratigraphic<br />

distribution: Journal of Paleontology, v. 12, p. 156-166.<br />

- , 1940a, The recognition and <strong>in</strong>terpretation of mixed conodont<br />

fauna: Denison University Scientific Laboratory Journal,<br />

v. 35, 15 pp.<br />

- , 1940b, The recognition and <strong>in</strong>terpretation of mixed fauna:<br />

Denison University Bullet<strong>in</strong>, v. 40, p. 195-209.<br />

Breger, Irv<strong>in</strong>g A., 1961, Kerogen: <strong>in</strong> McGraw-Hi11 Encyclopedia<br />

of Science and Technology, New Yzk, McGraw-Hill, v. 7,<br />

p. 337.<br />

Breger, Irv<strong>in</strong>g A,, and Brown, Andrew, 1962, Kerogen <strong>in</strong> the Chattanooga<br />

Shale: Science, v. 137, p. 221-224.<br />

- , 1963, Distribution and types of organic matter <strong>in</strong> a barred<br />

mar<strong>in</strong>e bas<strong>in</strong>: New York Academy of Science Transactions,. 2d<br />

series, v. 25, p. 741 - 755.<br />

Breger, Irv<strong>in</strong>g A., and Schopf, J. M., 1955, Germanium and urani,m<br />

<strong>in</strong> coalified wood from Upper Devonian black shale: Geocxfmica<br />

et Cosmochimica Acta, v. 7, p. 287-293.<br />

Brett, Carlton E., 1974, Biostratigraphy and paleoecology of<br />

the W<strong>in</strong>dom Shale Member (Moscow Formation) <strong>in</strong> Erie County,<br />

N. Y.: <strong>in</strong> New York State Geological Association Field Trip<br />

Guidebook, 46th Annual Meet<strong>in</strong>g, p. G1-G10.<br />

Briggs, C., Jr., 1838, First Annual <strong>Report</strong>: Ohio Geological<br />

Survey, p. 77-80.<br />

Bromley, R. G., 1967, Mar<strong>in</strong>e phosphates as depth <strong>in</strong>dicators:<br />

Mar<strong>in</strong>e Geology, v. 5, p. 503-509.<br />

6


0104<br />

0105<br />

0106<br />

0107<br />

0108<br />

0109<br />

0110<br />

0111<br />

0112<br />

0113<br />

0114<br />

0115<br />

0116<br />

0117<br />

0118<br />

0119<br />

0120<br />

Brongersma-Sanders, M., 1948, The importance of upwell<strong>in</strong>g water<br />

to vertebrate paleontology and oil geology: Afd. Nat. Verh.<br />

K. Ned. Akad. Wet. Afd. Nat., series 2, v. 45, p. 1-112.*<br />

- , 1971, Orig<strong>in</strong> of major cyclicity of evaporites and bitum<strong>in</strong>ous<br />

rocks: an actualistic model: Mar<strong>in</strong>e Geology, v. 11,<br />

p. 123-144.<br />

Brooks, J., Grant, P. R., Muir, Marjorie, Gijzel, P. Van, and<br />

Shaw, G., 1971, Spompollen<strong>in</strong>: New York, Academic Press,<br />

718 pp.<br />

Brown, Andrew, 1956, Uranium <strong>in</strong> the Chattanooga Shale of eastern<br />

Tennessee: U.S. Geological Survey Professional Paper<br />

300, p. 457-467.<br />

Browne, Ruth, 1958, Deposition of the Devonian: <strong>in</strong> Browne,<br />

Ruth, Conk<strong>in</strong>, J. E., Conk<strong>in</strong>, Barbara, and MacCEy, L. M.,<br />

Sedimentation and Stratigraphy of Silurian and Devonian rocks<br />

<strong>in</strong> the Louisville area, <strong>Kentucky</strong>, Field trip itenerary: Geological<br />

Society of <strong>Kentucky</strong> <strong>in</strong> cooperation with the <strong>Kentucky</strong><br />

Geological Survey, p. 41-44.<br />

Bryant, W. L., 1921, The Genesee conodonts: Buffalo Society of<br />

Natural Science Bullet<strong>in</strong>, v. 13, no. 2, p. 1-58,*<br />

-' 1929, A new Coccosteus from the Portage shales of eastern<br />

New York: New York State Museum Bullet<strong>in</strong>, v. 281, p. 41-46.<br />

Butts, Charles, 1903, Fossil faunas of the Olean quadrangle:<br />

New York State Wseum Bullet<strong>in</strong> 69, p. 990-995.<br />

-<br />

, 1913, Contributions to the black shale problem (abstr.):<br />

Geological Society of America Bullet<strong>in</strong>, v. 24, p. 113.<br />

-' 1915, Geology and m<strong>in</strong>eral resources of Jefferson Co., Ky.:<br />

<strong>Kentucky</strong> Geological Survey, series 4, v. 3, part 2, 270 pp.<br />

-' 1922, The Mississippian series <strong>in</strong> eastern <strong>Kentucky</strong>: <strong>Kentucky</strong><br />

Geological Survey, series 6, v. 7, p. 4-27.<br />

- , 1925, Descriptive geology: <strong>in</strong> Geology and M<strong>in</strong>eral Resources<br />

of the Equality-Shawneecm area (parts of Gallat<strong>in</strong><br />

and Sal<strong>in</strong>e counties): Ill<strong>in</strong>ois State Geological Survey Bullet<strong>in</strong><br />

47, p. 14-16.<br />

-<br />

, 1926, Geology of Alabama: The Paleozoic rocks, Alabama<br />

Geological Survey Special <strong>Report</strong> 14, p. 158-161.<br />

-' 1941, Geology of the Appalachian Valley <strong>in</strong> Virg<strong>in</strong>ia: Virg<strong>in</strong>ia<br />

Geological Survey Bullet<strong>in</strong> 52, Part I, 568 pp., Part<br />

11, 135 pls.<br />

Butts, Charles, and Gildersleeve, Benjam<strong>in</strong>, 1948, Geology and<br />

M<strong>in</strong>eral resources of the Paleozoic area <strong>in</strong> northwest Georgia:<br />

Georgia Department of M<strong>in</strong>es, M<strong>in</strong><strong>in</strong>g, and Geology, The Geological<br />

Survey Bullet<strong>in</strong>, no. 54, p. 39-40.<br />

Butts, Charles, and Weller, S., 1920, Devonian: <strong>in</strong> Weller, S.,<br />

The geology of Hard<strong>in</strong> County and the adjo<strong>in</strong><strong>in</strong>gyart of Pope<br />

County: Ill<strong>in</strong>ois State Geological Survey Bullet<strong>in</strong> 41,<br />

p. 87-90.<br />

Byers, Charles W., 1972, Analysis of paleoenvironments <strong>in</strong><br />

Devonian black shale by means of biogenic structures (abstr.):<br />

Geological Society of America Abstracts with Programs, v. 4,<br />

p. 464.<br />

7


0121<br />

0122<br />

0123<br />

0124<br />

01.25<br />

0126<br />

0127<br />

0128<br />

0129<br />

0130<br />

0131<br />

0132<br />

0133<br />

0134<br />

0135<br />

Byers, Charles W., 1973, Biogenic Structures of <strong>Black</strong> Shale<br />

paleoenviroments (abstc.): Dissertation Abstracts International,<br />

v. 34, p. 20958.<br />

-' 1974, Shale fissility: relation to bioturbation: Sedimentology,<br />

v. 21, p. 479-484.<br />

- , 1977, Biofacies <strong>in</strong> eux<strong>in</strong>ic bas<strong>in</strong>s, general model: Society<br />

of Economic Paleontologists and M<strong>in</strong>eralogists Special<br />

Publication, v. 25, p. 5-17.<br />

-<br />

, 1979, Biogenic structures of black shale paleoenvironments:<br />

Postilla, no. 174, 43 pp.<br />

Byrer, C. W., and Rhoades, S. J., 1976, Lithologic description<br />

of core material from Glen Gery No. 5-745 well, Rose Townsup,<br />

Carroll County, Ohio: Morgantown, West Uirg<strong>in</strong>ia,<br />

Morgantown <strong>Energy</strong> Research Center, MERC/TPR-76-6/6, 20 pp.<br />

Byrer, C. W., and Trumbo, D. B., 1976, Lithologic description<br />

firom Nfcholas Combs No. 7239 well, Perry County, <strong>Kentucky</strong>:<br />

Morgantown., West Virg<strong>in</strong>ia, Morgantown <strong>Energy</strong> Research Center,<br />

bERC/TPR-76/2, 22 pp.<br />

Byrer, C. W., Timubo, D. B., and Rhoades, S. J., 1976, Lithologic<br />

description of cored wells No. 11940 and No. 12041 <strong>in</strong><br />

the Devonian shale <strong>in</strong> the Cottageville, West Va. area: Morgantown,<br />

West Virg<strong>in</strong>ia, Morgantown <strong>Energy</strong> Research Center,<br />

MERC/TPR-76/7, 22 pp.<br />

Byrer, C. W., Vickers, M. K., Rhoades, S. J., and Easterday,<br />

B. G., 1976, Lithologic description of cored wells No. 20402<br />

and No. 20403 <strong>in</strong> the Devonian shale <strong>in</strong> L<strong>in</strong>coln County, West<br />

Virg<strong>in</strong>ia: Morgantown, West Virg<strong>in</strong>ia, Morgantown <strong>Energy</strong> Research<br />

Center , MERC/TPR-76/9, 58 pp.<br />

Caley, J. F., 1943, Paleozoic geology of the London area, Ontario:<br />

Canada Department of M<strong>in</strong>es and Resources, M<strong>in</strong>es and<br />

Geology Branch, Geological Survey Memoir 237 (no. 2470),<br />

171 pp.<br />

Calvert, Samuel, 1898, On the geology of Johnson County, Iowa:<br />

American Journal of Science, 4th series, v. 6, p. 149-151.<br />

Calvert, Warren L., Bernhagen, Ralph J., and Bowman, Richard S.,<br />

1968, Detailed discussion of outcrops observed at Ohio field<br />

stops, Friday, May 17, 1968, Geological Aspects of the Maysville-Portsmouth<br />

region, southern Ohio and northeastern<br />

<strong>Kentucky</strong>:<br />

<strong>in</strong> Ohio Geological Society - Geological Society<br />

of <strong>Kentucky</strong>'-Sb<strong>in</strong>t Field Conference , p. 21-37.<br />

Calv<strong>in</strong>, Samuel, 1878, On some dark shale recently discovered<br />

below the Devonian limestones at Independence, Iowa; with a<br />

notice of its fossils and description of new species: United<br />

States Geological and Geographical Survey of the Territories<br />

(Hayden) Bullet<strong>in</strong> 4, p. 725-730; - <strong>in</strong> part, American Journal<br />

of Science, 3rd series, v. 15, p. 460-462.<br />

Cameron, Barry, 1968, Commensalism of new serpulid worm from<br />

the Hamilton Group (Middle Devonian) of New York: Journal<br />

of Paleontology, v. 42, p. 850-852.<br />

- , 1969, New name for Paleosabella prisca (McCoy), a<br />

Devonian worm-bor<strong>in</strong>g, and its probable borer: Journal of<br />

Paleontology, v. 43, p. 189-192.<br />

Campbell, Guy, 1937, New Albany Shale (abstr.): Geological<br />

Society of America Proceed<strong>in</strong>gs, p. 67, 68.*<br />

8


0136<br />

0137<br />

0138<br />

0139<br />

0140<br />

0141<br />

0142<br />

0143<br />

0144<br />

0145<br />

0146<br />

0147<br />

0148<br />

0149<br />

0150<br />

0151<br />

0152<br />

0153<br />

0154<br />

Campbell, Guy, 1946, New Albany Shale: Geological Society of<br />

America Bullet<strong>in</strong>, v. 57, p. 829-903.<br />

Canis, W. G., 1968, Conodonts and biostratigraphy of the Lower<br />

Mississippian of Missouri: Journal of Paleontology, v. 42,<br />

p. 525-555.<br />

Carluccio, L., 1966, Contributions to the morphology and anatomy<br />

of the Devonian progymnosperm Archaeopteris: Ph.D. thesis,<br />

Cornell University, Ithaca, 149 pp.*<br />

C a m , J. E., 1930, The Hillsboro Sandstone of Ohio: Journal<br />

of Geology, v. 38, p. 246-261.<br />

- , 1947, Geologic section of the Chillicothe test-core:<br />

Ohio Journal of Science, v. 47, p. 49-54.<br />

Carman, J. E., and Schillhahn, E. O., 1929, The Hillsboro<br />

Sandstone of Ohio (abstr.): Geological Society of America<br />

Bullet<strong>in</strong>, v. 40, p. 113-114, 250-251.<br />

Carter, J. L., and Carter, R. C., 1970, Bibliography of North<br />

American Carboniferous brachiopods: Geological Society of<br />

America Memoir 128, 382 pp.<br />

Caster, K. E., 1934, The stratigraphy and paleontology of northwestern<br />

Pennsylvania: Bullet<strong>in</strong>s of American Paleontology,<br />

v. 21, 185 pp.<br />

Cayeaux, M. L., 1929, Les calcispheres typiques sont des algues<br />

siphonees: Academy of Science of Paris Comptes Rendus,<br />

V. 188, p. 594-597.<br />

Chadwick, G. H., 1925, Chagr<strong>in</strong> Formation of Ohio: Geological<br />

Society of America Bullet<strong>in</strong>, v. 36, p. 455-464.<br />

Chadwick, W. H., 1935, Faunal differentiation <strong>in</strong> the Upper<br />

Devonian: Geological Society of America Bullet<strong>in</strong>, v. 46,<br />

p. 305-342.<br />

Chalmer, W. G., 1959, Devonian megaspores from Arctic Canada:<br />

Palaeontology, v. 1, part 4, p. 321-332.<br />

Chaloner, W. G., and Orbell, G., 1971, A palaeobiological<br />

def<strong>in</strong>ition of sporopollen<strong>in</strong>: <strong>in</strong> Brooks, J., and others<br />

(eds.), Sporopollen<strong>in</strong>:<br />

New Yox, Academic Press, p. 273-294.<br />

Chaloner, W. G., and Sheer<strong>in</strong>, Anne, 1979, Devonian macrofloras:<br />

House, M. R., Scrutton, C. T., and Bassett, M. G. (eds.),<br />

The Devonian System, Special Papers <strong>in</strong> Palaeontology, no. 23,<br />

p. 145-161.<br />

Chamberl<strong>in</strong>, T. C., 1900, On the habitat of the early vertebrates:<br />

Journal of Geology, v. 8, p. 400-412.<br />

Clark, David L., 1967, Conodonts as <strong>in</strong>dicators of diachronisrn<br />

<strong>in</strong> Devonian rocks of the Great Bas<strong>in</strong>, United States: <strong>in</strong><br />

Oswald, D. H. (ed.), International Symposium on the Devonian<br />

System, 1967 Proceed<strong>in</strong>gs, Calgary, Alberta, Alberta Society<br />

of Petroleum Geologists, v. 2, p. 673-677.<br />

Clark, David L., and Eth<strong>in</strong>gtm, R. L., 1967, Conodonts and zonation<br />

of the Upper Devonian <strong>in</strong> Great Bas<strong>in</strong>: Geological<br />

Society of America Memoir 103, 107 pp.<br />

Clarke, J. M., 1882a, New phyllopod crustaceans from the Devonian<br />

of western New York: American Journal of Science, 3d series,<br />

-1<br />

V. 23, p. 476-478.<br />

1882b, Cirriped crustacean from the Devonian: American<br />

Journal of Science, 3d series, v. 24, p. 55-56.<br />

9<br />

- <strong>in</strong>


0155<br />

0156<br />

0157<br />

0158<br />

0159<br />

0160<br />

0161<br />

0162<br />

0163<br />

0164<br />

0165<br />

0166<br />

0167<br />

0168<br />

0169<br />

0170<br />

0171<br />

Clarke, J. M., 1883, New discoveries <strong>in</strong> Devonian crustacea:<br />

American Journal of Science, 3d series, v. 25, p. 120-125.<br />

-’ 1885a, On Devonian spores: American Journal of Science,<br />

3d series, v. 29, p. 284-289.<br />

-8 1885b, On the higher Devonian faunas of Ontario County,<br />

New York: U.S. Geological Survey Bullet<strong>in</strong> 16, 80 pp.<br />

-’ 1887a, Annelid teeth from the lower portion of the Hamilton<br />

Group and from the Naples shales of Ontario County, New<br />

York: New York State Geological Survey 6th Annual <strong>Report</strong>,<br />

p. 30-33.<br />

- , 1887b, A noteworthy specimen of Devonian Lepidodendron:<br />

Science, v. 9, p. 516.*<br />

-’ 1889, A list of the species constitut<strong>in</strong>g the known fauna<br />

and flora of the Marcellus epoch <strong>in</strong> the State of New York:<br />

New York State Geological: Survey, 8th Annual <strong>Report</strong>, p. 60-<br />

61; New York State Museum 42nd Annual <strong>Report</strong>, p. 406-407.’<br />

-’ 1891, The fauna with Goniatites <strong>in</strong>tumescens Beyrich <strong>in</strong><br />

western New York: American Geologist, v. 8, p. 86-105;<br />

Neues Jahrbuch fur M<strong>in</strong>eralogie, Geologie, und Palzontologie;<br />

Beilage Band, v. I, p. 161-168.<br />

-9 1892, The discovery of Clymenia <strong>in</strong> the fauna of the - <strong>in</strong>tumescens<br />

zone (Naples beds) of western New York, and its<br />

geological significance: American Journal of Science, 3d<br />

series, v. 43, p. 57-63.<br />

-’ 1893a, On the structure of the carapace <strong>in</strong> the Devonian<br />

crustacean Rh<strong>in</strong>ocaris: and the relation of the genus - Mesoand<br />

the Phyllocarida: American Naturalist, v. 27,<br />

-* 189323, The protoconch of Orthoceras: American Geologist,<br />

V. 12, p. 112-115.<br />

- , 1896, The structure of certa<strong>in</strong> Paleozoic barnacles: American<br />

Geologist, v. 17, p. 137-143.<br />

- , 1897, Notes on some crustaceans from the Chexmmg Group of<br />

New York: New York State Geological Survey, 15th Annual<br />

<strong>Report</strong>, p. 729-738; New York State Museum, 49th Annual <strong>Report</strong>,<br />

V. 2, p. 729-738.*<br />

1899, The Naples fauna (fauna with Manticoceras <strong>in</strong>tumescenes)<br />

<strong>in</strong> western New York: New York State Geologist, 16th<br />

Annual <strong>Report</strong>, p. 29-161; New York State Museum, 50th Annual<br />

<strong>Report</strong>, V. 2, p. 29-161.*<br />

-’ 1900a, A remarkable occurrence of Orthoceras <strong>in</strong> the<br />

Oneonta beds of the Chenango<br />

-=+-<br />

Valley, New York: New York<br />

State Museum Bullet<strong>in</strong> 39. D. 167-171.<br />

, 1900b, Paropsmema c to hya, a peculiar ech<strong>in</strong>oderm<br />

f r o m the <strong>in</strong>tumescens zone ( ortage beds) of western New York:<br />

New York State Museum Bullet<strong>in</strong> 39, p. 172-186.<br />

- , 19OOc, Dictyon<strong>in</strong>e hexact<strong>in</strong>ellid sponges from the Upper<br />

Devonic of New York (Nepheliospongia): New York State<br />

Museum Bullet<strong>in</strong> 39, p. 187-194.<br />

- , 1901a, Limestones of central and western New York, <strong>in</strong>terbedded<br />

with bitum<strong>in</strong>ous shales of the Marcellus Stage; with<br />

notes on the nature and orig<strong>in</strong> of their faunas: New York<br />

State Museum Bullet<strong>in</strong> 49, p. 115-138.*<br />

10<br />

-


0172 Clarke, J. M., 1901b, Value of Amnigenia as an <strong>in</strong>dicator<br />

of fresh-water deposits dur<strong>in</strong>g the Devonic of New York,<br />

Ireland, and the Rh<strong>in</strong>eland: New York State Museum Bullet<strong>in</strong><br />

49, p. 199-203.*<br />

0173 - , 1902a, Notes on Paleozoic crustaceans (Psuedoniscus and<br />

Phyllocarida): New York State Museum, 54th Annual <strong>Report</strong>.<br />

v. 1, Appendix 3, p. 83-124.*<br />

0174 - 1902b, A new genus of Paleozoic brachiopods, - Eunoa; with<br />

some considerations there from on the ornanic bodies known<br />

as Disc<strong>in</strong>ocaris, Spathiocaris , and CardiGcaris : New York<br />

%ate Museum Bullet<strong>in</strong> 52, P. 606-615.*<br />

01.75<br />

0176<br />

-9 1902c, The <strong>in</strong>digene aid-alien faunas of the New York<br />

DeVQniC: New York State Museum Bullet<strong>in</strong> 52, p. 664-672.*<br />

1903a, Naples fauna <strong>in</strong> western New York: New York State<br />

0177<br />

0178<br />

0179<br />

0180<br />

0181<br />

0182<br />

0183<br />

0184<br />

0185<br />

0186<br />

0187<br />

0188<br />

0189<br />

0190<br />

-’<br />

Museum, <strong>Report</strong> 57, v. 3, Memoir 6, p. 199-201.<br />

-9 1903b, Orig<strong>in</strong> of the limestone faunas of the Marcellus<br />

<strong>Shales</strong> of New York (abstr.): Geological Society of America<br />

Bullet<strong>in</strong>, v. 13, p. 535; Science, new series, v. 17, p. 219.<br />

Clarke, J. M., and Swartz, C. K., 1913, Systematic paleontology<br />

of the Upper Devonian deposits of Maryland: <strong>in</strong> Middle and<br />

Upper Devonian, Maryland Geological Survey, v-6, p. 539-699.<br />

1915, Conceptions regard<strong>in</strong>g the American Devonic: New<br />

-8<br />

York Museum Bullet<strong>in</strong> 177, p. 115-133.<br />

’<br />

-’ 1917, Strand and undertow mark<strong>in</strong>gs of Upper Devonian time<br />

as <strong>in</strong>dicators of the prevail<strong>in</strong>g climate: New York State<br />

Museum Bullet<strong>in</strong> 196, p. 197-238.<br />

-’ 1921, The oldest of the forests: Scientific Monthly,<br />

January, p. 83-91.*<br />

Clarke, J. M., and Ruedemann, Rudolf, 1912, The Eurypterida of<br />

New York: New York State Museum Memoir 14, Parts I and 11,<br />

439 pp., 88 pls.<br />

Claypole, E. W., 1883a, Note on a large fish-plate from the<br />

upper Chenumg (?) beds of northern Pennsylvania: American<br />

Philosophical Society Proceed<strong>in</strong>gs, v. 20, p. 664-666.*<br />

1883b, On a large crustacean from the Catskill group of<br />

-’<br />

Pennsylvania (abstr.): Proceed<strong>in</strong>gs of the American Association<br />

for the Advancement of Science, v. 32, p. 265; Science,<br />

v. 2, p. 327.*<br />

-’ 1885, On Ctenacanthus and G acanthus from the Chemung of<br />

Pennsylvania (abstr.): Proceed<strong>in</strong>gs 1T-----f o the American Association<br />

for the Advancement of Scienie, v. 33, p. 489-490.*<br />

-’ 1887, Prelim<strong>in</strong>ary note on some fossil wood from the Carboniferous<br />

rocks of Ohio (abstr.): Proceed<strong>in</strong>gs of the<br />

American Association for the Advancement of Science, 35th<br />

Meet<strong>in</strong>g, 1886, p. 219-220.<br />

1888, Fossil fish from the Ohio shale: .American Geolo-<br />

-i<br />

DSt, - V. 2, P. 62-64.<br />

-3 1892a, bekition of Titanichthys and its allies (abstr.):<br />

American Geologist, v. 10, p. 193.<br />

- , 1892b, The head of D<strong>in</strong>ichthys: American Geologist, v. 10,<br />

p. - 199-207.<br />

-’ 1892c, A new gigantic placoderm from Ohio: American<br />

Geologist, v. 10, p. 1-4.<br />

11


0191<br />

0192<br />

0193<br />

0194<br />

0195<br />

01'96<br />

0197<br />

0198<br />

0199<br />

0200<br />

0201<br />

0202<br />

0203<br />

0204<br />

0205<br />

0206<br />

0207<br />

0208<br />

Claypole, E. W., 1893a, The cladodont sharks of the Cleveland<br />

Shale: American Geologist, v. 11, p. 325-331.<br />

-, 1893b, The fossil fishes of Ohio: <strong>in</strong> Economic geology,<br />

archaeology, botany, paleontology, OhirGeological Survey<br />

<strong>Report</strong>s, v. 7, p. 602-626.<br />

-8 1893c, A new coccostean - Coccosteus cuyahogae: American<br />

Geologist, v. 11, p. 167-171.<br />

-, 18933, The three great fossil placoderms of Ohio: American<br />

Geologist, V. 12, P. 89-99.<br />

1, 1893e, On three new species of D<strong>in</strong>ichthys: American Geol-<br />

OfiSt, V. 12, p. 275-279.<br />

-* 1893f, The Upper Devonian fishes of Ohio: Geological<br />

Magaz<strong>in</strong>e, v. 10, p. 443-448.<br />

-' 1894a, Cfadodus? magnificus, a new selachian: American<br />

Geologist, v. 14, pi 137-140.<br />

- , 1894b, On a new placoderm, Brontichthys clarki, from the<br />

Cleveland Shale: American Geologist, v. 14, p. 379-380.<br />

- , 1894c, Structure of the bone of D<strong>in</strong>ichthys: American<br />

Microscopical Society Proceed<strong>in</strong>gs, v. 15, p. 1-7.*<br />

-* 1895a, The great Devonian placodenus of Ohio: Geological<br />

Magaz<strong>in</strong>e, (4), v. 2, p. 473-474.<br />

- , 1895b, The cladodonts of the Upper Devonian of Ohio:<br />

<strong>Report</strong> of the British Association for the Advancement of<br />

Science, p. 69S.*<br />

- , 1895c, On a new specimen of Cladodw clarki: American<br />

Geologist, v. 15, p. 1-7.<br />

- , 1895d, Recent contributions to our knowledge of the<br />

cladodont sharks: American Geologist, v. 15, p. 363-368.<br />

- , 18956, Act<strong>in</strong>ophorus' clarki Newberry: American Geologist ,<br />

V. 16, p. 20-25.<br />

- , 189Sf, On the structure of the teeth of the Devonian<br />

cladodont sharks : American %icroscopical Society, Proceed<strong>in</strong>gs,<br />

v. 16, p. 191-195.*<br />

- , 1896, The ancestry of the Upper Devonian placoderms of<br />

Ohio: American Geologist, v. 17, p. 349-360.<br />

- , 1896a, A new Titanichthys: American Geologist, v. 17,<br />

p. 166-169.<br />

-* 1896b, D<strong>in</strong>ichthys prentis-clarki: American Geologist,<br />

V. 18, p. 199-201.<br />

0209 -3 1897; A new D<strong>in</strong>ichthys - D<strong>in</strong>ichthys kepleri: American<br />

Geologist, v. 19, p. 322-324.<br />

0210 - , 1900, The American Devonian placoderms: Geological<br />

Society of America Bullet<strong>in</strong>, v. 11, p. 616.<br />

0211 - , 1903, The Devonian era <strong>in</strong> the Ohio Bas<strong>in</strong>: American<br />

Geologist, v. 132, p. 15-41, 79-105, 240-250, 312-322,<br />

335-353.<br />

0212 Cleland, H. F., 1903, Fauna of the Hamilton formation of the<br />

Cayuga Lake section <strong>in</strong> central New York: U.S. Geological<br />

Survey Bullet<strong>in</strong> 206, 112 pp.<br />

0213 - , 1911, The fossils and stratigraphy of the middle Devonic<br />

of Wiscons<strong>in</strong>: Wiscons<strong>in</strong> Geological Survey Bullet<strong>in</strong> 21,<br />

science series 6, 222 pp.*<br />

12


0214<br />

0215<br />

0216<br />

0217<br />

0218<br />

0219<br />

0220<br />

0221<br />

0222<br />

0223<br />

0224<br />

0225<br />

0226<br />

0227<br />

0?28<br />

0229<br />

Cleveland Museum of Natural History, 1923, Fish of the black<br />

shale: Cleveland Museum of Natural History Bullet<strong>in</strong>, v. 8,<br />

p, 29 -30.*<br />

-<br />

, 1924, Ext<strong>in</strong>ct ocean fishes found <strong>in</strong> rocks near Cleveland:<br />

Cleveland Neum of Natural History Bullet<strong>in</strong>, v. 16, p. 61-<br />

63."<br />

- ,1926, Harvest<strong>in</strong>g fossils with an electric shovel: Cleveland<br />

Museum of Natural History Bullet<strong>in</strong>, v. 36, p. 141-142.*<br />

Cloud, Preston, E., 1948, Assemblages of dim<strong>in</strong>uitive brachiopods<br />

and their paleoecological significance: Journal of<br />

Sedimentary Petrology, v. 18, p. 56-60.<br />

Cloud, Preston E., Barnes, V. E., and Hass, W. H., 1957, Devon-<br />

ian-Mississippian transition <strong>in</strong> central Texas: Geological<br />

Society of America Bullet<strong>in</strong>, v. 68, p. 807-816.<br />

Cobb, J. C., and Kulp, J. I,., 1960, U-Pb age of the Chattanooga<br />

Shale: Geological Society of America Bullet<strong>in</strong>, v. 71, p. 223-<br />

224.<br />

Colbert, Edw<strong>in</strong>, H., 1961, Placoderms: <strong>in</strong> Evolution of the Vertebrates,<br />

New York, John Wiley and Sonz p. 33-41.<br />

Coll<strong>in</strong>s, Horace R., 1979, Biostratigraphy: <strong>in</strong> The Mississippian<br />

and Pennsylvanian (Carboniferous) Systems<strong>in</strong> the United<br />

States - Ohio: U.S. Geological Survey Professional Paper<br />

111O-E, p. €017.<br />

Coll<strong>in</strong>son, Charles, 1958, Age of the Spr<strong>in</strong>gville Shale (Mississippian)<br />

of southern Ill<strong>in</strong>ois: Ill<strong>in</strong>ois State Geological<br />

Survey Circular 254, 12 pp.<br />

-' 1961, The K<strong>in</strong>derhookian Series <strong>in</strong> the Mississippian Valley:<br />

<strong>in</strong> Kansas Geological Society Guidebook, 26th Annual Field<br />

Conference, p. 100-109.<br />

-' 1967, Devonian of the north-central region, United States:<br />

-<br />

<strong>in</strong> Oswald, D. H. (ed.), International Symposium on the<br />

Devonian System, 1967 Proceed<strong>in</strong>gs, Calgary, Alberta, Alberta<br />

Society of Petroleum Geologists, v. 1, p. 933-971.<br />

-' 1969, Devonian-Mississippian biostratigraphy of northeastern<br />

Missouri and western Ill<strong>in</strong>ois: North American Paleontological<br />

Association, Field Trip 3, 23 pp.<br />

Coll<strong>in</strong>son, Charles, and Atherton, Elwood, 1975, Knobs Megagroup:<br />

-<br />

<strong>in</strong> Willman, H. B., and others, Handbook of Ill<strong>in</strong>ois Stratig-<br />

raphy: Ill<strong>in</strong>ois State Geological Survey Bullet<strong>in</strong> 95, p. 119-<br />

123.<br />

Coll<strong>in</strong>son, Charles,.Rexroad, C. B., and Scott, A. J., 1959,<br />

Abundance and stratigraphic distribution of Devonian and<br />

Mississippian conodonts <strong>in</strong> the upper Mississippi Valley:<br />

Journal of Paleontology, v. 33, p. 692-696.<br />

Coll<strong>in</strong>son, Charles, and Schwalb, H. R., 1955, North American<br />

Paleozoic Chit<strong>in</strong>ozoa: Ill<strong>in</strong>ois Geological Survey <strong>Report</strong> of<br />

Investigations 186, 33 pp.<br />

Coll<strong>in</strong>son, Charles, Scott, A. J., and Rexroad, C. B., 1962, Six<br />

charts show<strong>in</strong>g biostratigraphic zones, and correlations based<br />

on conodonts from the Devonian and Mississippian rocks of the<br />

upper Mississippi valley: Ill<strong>in</strong>ois State Geological Survey<br />

Circular 328, 32 pp.<br />

13


0230<br />

0231<br />

0232<br />

0233<br />

0234<br />

0235<br />

0236<br />

0237<br />

0238<br />

0239<br />

0240<br />

0241<br />

0242<br />

0243<br />

Conant, L. C., 1952, Orig<strong>in</strong> of the Chattanooga Shale: U.S. Geological<br />

Survey Trace Element Investigation <strong>Report</strong> 237.<br />

- , 1955, Environment of accumulation of the Chattanooga Shale:<br />

U. S. Geological Survey Professional Paper 300, p. 463-467.<br />

Conant, L. C., and Stansfield, R. G., 1968, Oil Shale: <strong>in</strong> M<strong>in</strong>eral<br />

Resources of the Appalachian Region, U. S . Geologzal<br />

Survey Professional Paper 580, p. 133-136.<br />

Conant, L. C., and Swanson, V. E., 1961, Chattanooga Shale and<br />

related rocks o€ central Tennessee and nearby areas: U.S.<br />

Geological Survey Professional Paper 357, 91 pp.<br />

Conk<strong>in</strong>, J; E., 1961, Mississippian smaller foram<strong>in</strong>ifera of <strong>Kentucky</strong>,<br />

southern Indiana, northern Tennessee, and south-central<br />

Ohio: Bullet<strong>in</strong>s of American Paleontology, v. 43,<br />

p. 129-368.<br />

Conk<strong>in</strong>, J. E., and Conk<strong>in</strong>, B. M., 1964a, Devonian foram<strong>in</strong>ifera:<br />

Part I. The Louisville Limestone of Missouri and Ill<strong>in</strong>ois:<br />

Bullet<strong>in</strong>s of American Paleontology, v. 47, p. 53-105.<br />

-9 1964b, Pre-Pennsylvanian arenaceous foram<strong>in</strong>ifera of North<br />

America: 22d International Geological Congress, Section 8,<br />

Palaeontology and Stratigraphy, p. 319-335.<br />

-’ 1967, Arenacsous foram<strong>in</strong>ifera as a key to Upper Devonian-<br />

Lower Mississippian relationships <strong>in</strong> the type Mississippian<br />

area: <strong>in</strong> Teichert, Curt, and Yochelsm, Ellis L. (eds.),<br />

Essays <strong>in</strong> Paleontology and Stratigraphy, R. C. Moore Commemorative<br />

Volume, University of Kansas Department of Geology,<br />

Special Publication 2, Lawrence, University of Kansas<br />

Press, p. 85-101.<br />

Devonian-Mississippian boundary <strong>in</strong> the type Lower Mississippian<br />

area of North America:<br />

ies <strong>in</strong> Paleontology and Stratigraphy, no. 1, 36 pp.<br />

Delaware Formation of central Ohio (abstr.): North Central<br />

Section, 8th Annual Meet<strong>in</strong>g, Geological Society of America<br />

Abstracts with Programs, v. 6, p. 500- 501.<br />

- , 1975a, The Devonian-Mississippian and K<strong>in</strong>derhookian-Osagean<br />

boundaries <strong>in</strong> the east-central United States are paracont<strong>in</strong>uities:<br />

University of Louisville <strong>Studies</strong> <strong>in</strong> Paleontology<br />

and Stratigraphy, no. 4, 54 pp.<br />

- , 1975b, Middle Devonian bone beds and the Columbus-Dela-<br />

- , 1973, The Paracont<strong>in</strong>uity and the determ<strong>in</strong>ation of the<br />

University of Louisville Stud-<br />

- , 1974, The L zone of the Middle Devonian (Hamiltonian)<br />

ware (Onondagan-Hamiltonian) contact <strong>in</strong> central Ohio: Bullet<strong>in</strong>s<br />

of American Paleontology, v. 67, p. 99-122.<br />

- , 1977, Paleozoic smaller foram<strong>in</strong>ifera of the North American<br />

Atlantic borderlands: <strong>in</strong> Swa<strong>in</strong>, F. M. (ed.), Stratigraphic<br />

micropaleontology oTthe Atlantic Bas<strong>in</strong> and borderlands,<br />

Developments <strong>in</strong> Palaeontology and Stratigraphy, no. 6,<br />

New York, Elsevier, p. 61-84.<br />

- , 1978, The Devonian section at Paris Land<strong>in</strong>g, Stewart county,<br />

Tennessee (abstr.): Geological Society of America Abstracts<br />

with Programs, v. 10, p. 165.<br />

14


0244<br />

0245<br />

0246<br />

0247<br />

0248<br />

0249<br />

0250<br />

0251<br />

0252<br />

0253<br />

0254<br />

0255<br />

0256<br />

0257<br />

0258<br />

0259<br />

Conk<strong>in</strong>, J. E., and Conk<strong>in</strong>, B. M., (eds.), 1979, Devonian-Mississippian<br />

boundary <strong>in</strong> southern Indiana and northwestern <strong>Kentucky</strong>:<br />

Field Trip 7, N<strong>in</strong>th International Congress of Carboniferous<br />

Stratigraphy and Geology, Louisville, University of<br />

Louisville, 141 pp.<br />

Conk<strong>in</strong>, J. E., Conk<strong>in</strong>, B. M., and Lipch<strong>in</strong>sky, Z. L., 1973,<br />

Middle Devonian (Hamiltonian) stratigraphy and bone beds on<br />

the east side of the C<strong>in</strong>c<strong>in</strong>nati Arch <strong>in</strong> <strong>Kentucky</strong>: Part 1 -<br />

Clark, Madison, and Casey Counties: University of Louisville<br />

<strong>Studies</strong> <strong>in</strong> Paleontology and Stratigraphy, no. 2, 42 pp.<br />

Cook, T. D., and Bally, A. W., 1975, Stratigraphic Atlas of<br />

North and Central America: Pr<strong>in</strong>ceton, Pr<strong>in</strong>ceton University<br />

Press, 272 pp.<br />

Cooper, C. L., 1931, Conodonts from the Arkansas Novaculite,<br />

Woodford Formation, Ohio Shale, and Sunbury Shale: Journal<br />

of Paleontology, v. 5, p. 143-151.<br />

- , 1936, Act<strong>in</strong>opterygian jaws from the Mississippian black<br />

shales of the Mississippian valley: Journal of Paleontology,<br />

V. 10, p. 92-94.<br />

1939, Conodonts from a Bushberg-Hannibal horizon <strong>in</strong> Okla-<br />

-;ma: Journal of Paleontology, v. 13, p. 379-422.<br />

-’ 1947, K<strong>in</strong>derhook micropaleontology (abstr.): Geological<br />

Society of America Bullet<strong>in</strong>, v. 58, p. 1272-1273.<br />

-’ 1948, K<strong>in</strong>derhook micropaleontology: <strong>in</strong> Weller, J. M. (ed.),<br />

Symposium on problems of Mississippian S’ss;Btigraphy and Correlation:<br />

Journal of Geology, v. 56, p. ‘353-366.<br />

Cooper, C. L., and Sloss, LI L., 1943, Conodont fauna and distribution<br />

of a Lower Mississippian black shale <strong>in</strong> Montana and<br />

Alberta: Journal of Paleontology, v. 17, p. 168-176.<br />

Cooper, G. A,, 1930, Stratigraphy of the Hamilton Group of New<br />

York: American Journal of Science, 5th series, v. 19, p. 116-<br />

134, 214-236.*<br />

-’ 1933, Stratigraphy of the Hamilton Group of eastern New<br />

York: American Journal of Science, 5th series, v. 26, p. 537-<br />

551.<br />

, 1934, Stratigraphy of the Hamilton Group of eastern New<br />

York, Part 11: American Journal of Science, 5th series,<br />

V. 27, p. 1-12.<br />

, 1944, Remarks on correlation of Devonian formations <strong>in</strong><br />

Ill<strong>in</strong>ois and adjacent states: - <strong>in</strong> Ill<strong>in</strong>ois Geological Survey<br />

Bullet<strong>in</strong> 68, p. 217-223.<br />

-<br />

-<br />

-’<br />

1957, Paleaecology of the Middle Devonian of eastern and<br />

central United States: <strong>in</strong> Ladd, H. S. (ed.), Treatise on<br />

Mar<strong>in</strong>e Ecology and Paleozology, Geological Society of America<br />

Memoir 67, v. 2, p. 249-278.<br />

Cooper, G. A., and Williams, J. S., 1935, Tully Formation of<br />

New York: Geological Society of America Bullet<strong>in</strong>, v. 46,<br />

p. 781-868.<br />

Cooper, G. A., Butts, Charles, Caster, Kenneth E., Chadwick,<br />

G. H., Goldr<strong>in</strong>g, W<strong>in</strong>nifred, K<strong>in</strong>dle, E. M., Kirk, Edw<strong>in</strong>,<br />

Merriam, C. W., Swartz, F. M., Warren, P. S., Warth<strong>in</strong>, A. S.,<br />

and Willard, Bradford, 1942, Correlation of the Devonian sedi-<br />

mentaryformationsofNorthAmerica: Geological SocietyofAmerica<br />

Bullet<strong>in</strong>, v. 53, p. 1729-1794.<br />

15


0260<br />

0261<br />

0262<br />

0263<br />

0264<br />

0265<br />

0266<br />

0267<br />

0268<br />

0269<br />

0270<br />

0271<br />

0272<br />

0273<br />

0274<br />

0275<br />

0276<br />

0277<br />

0278<br />

Cooper, W. F., 1888, Tabulate$ list of fossils known to occur<br />

<strong>in</strong> the Waverly of Ohio: Denison University Scientific Laboratory<br />

Bullet<strong>in</strong>, v. 4, p. 123-130.<br />

Cope, E. D., 1891, On the cranial structure of Macropetalichthys:<br />

U.S. <strong>National</strong> Museum Proceed<strong>in</strong>gs, v. 14, p. 449-456.<br />

Copper,. P., 1966, Ecological distribution of Devonian atrypid<br />

brachiopods: Palaeogeography, Palaeoclimatology,’and Palaeoecology,<br />

v. 2, p. 245-266.<br />

-’ 1973, New Siluro-Devonian atrypoid brachiopods: Journal<br />

of Paleontology, v. 47, p. 484-500.<br />

- , 1977, Paleolatitudes <strong>in</strong> the Devonian of Brazil and the<br />

Frasnian-Famemian mass ext<strong>in</strong>ction: Palaeogeography, Palaeoclimatology,<br />

and Palaeoecology, v. 21, p. 165-207.<br />

Cornet, B., Phillips, T. L., and Andrews, H. N., 1976, Morphology<br />

of Rhacophyton certangium and its bear<strong>in</strong>g on frond evolution:<br />

Palaeontographica, Abt. B, v. 158, 105-129.*<br />

Coryell, H. N. ,-and Malkive, D. S., 1936, Some Hamilton ostracodes<br />

from Arkona, Ontario: American Museum Novitates, no.<br />

91, 20 pp.*<br />

Craig, G. Y., 1952, A comparative study of the ecology and paleoecology<br />

of L<strong>in</strong>gula: Transactions of the Ed<strong>in</strong>burgh Geological<br />

Society, v. 15, p. 110-120.<br />

Cressler, C. W., 1974, Geology and ground-water resources of<br />

Gordon, Whitfield, and Murray Counties, Georgia: Georgia<br />

Geological Survey Information Circular, no. 47, 56 pp.<br />

Crickmay, C. H., 1952, Discrim<strong>in</strong>ation of later Upper Devonian:<br />

Journal of Paleontology, v. 26, p.. 585.<br />

Crider, A. F., 1906, Geology and m<strong>in</strong>eral resources of Mississippi:<br />

U.S. Geological Survey Bullet<strong>in</strong> 283, p. 7-12.<br />

Cross, A. T., and Hosk<strong>in</strong>s, J. H., 1951a, Paleobotany of the<br />

Devonian-Mississippian black shale: Journal of Paleontology,<br />

V. 25, p. 713-728.<br />

-, 1951b, The Devonian-Mississippian transiton flora of eastcentral<br />

United States: Third Congress of the Stratigraphy<br />

and Geology of the Carboniferous, Compte Rendu, Heerlen,<br />

p. 113-122.<br />

Crwse, C. S., 1925, An economic study of the black Devonian<br />

shales of <strong>Kentucky</strong>: <strong>Kentucky</strong> Geological Survey, series 6,<br />

V. 21, p. 58-97.<br />

Culbtrtson, Glenn, 1912, The occurrence of hand specimens of<br />

jo<strong>in</strong>ted structure <strong>in</strong> the New Albany Shale: Indiana Academy<br />

of Science Proceed<strong>in</strong>gs 1911, p. 171-172.<br />

- , 1916, The geology and natural resources of Jefferson Co.:<br />

Indiana Department of Geology and Natural Resources 40th<br />

Annual <strong>Report</strong>, p. 223-239.<br />

Curry, R. P., 1975, Miospores from the Upper Devonian (Frasnian)<br />

Greenland Gap Group, Allegheny Front, Maryland, West Virg<strong>in</strong>ia,<br />

and Virg<strong>in</strong>ia, U.S.A. : Review of Palaeobotany and Palynology,<br />

V. 20, p. 119-131.<br />

Cush<strong>in</strong>g, H. P., 1912, The age of the Cleveland Shale: American<br />

Journal of Science, 4th series, v. 33, p. 581-584.<br />

- , 1915, Diastrophic importance of the unconformity at the<br />

base of the Berea Grit <strong>in</strong> Ohio: Geological Society of America<br />

Bullet<strong>in</strong>, v. 26, p. 205-216.<br />

16


0279<br />

0280<br />

0281<br />

0282<br />

0283<br />

0284<br />

0285<br />

0286<br />

0287<br />

0288<br />

0289<br />

0290<br />

0291<br />

0292<br />

0293<br />

0294<br />

0295<br />

0296<br />

0297<br />

0298<br />

0299<br />

Cushman, J. A., and Sta<strong>in</strong>brook, M. A., 1943, Some foram<strong>in</strong>ifera<br />

from the Devonian of Iowa: Contributions from the Cushman<br />

Laboratory of Foram<strong>in</strong>ifera1 Research, v. 19, part 4, p. 73-79.<br />

Dawson, J. W., 1862, On the flora of the Devonian Period <strong>in</strong><br />

northeastern America: Quarterly Journal of the Geological<br />

Society.of London, v. 18, p. 296-330.<br />

- , 1863, On the flora of the Devonian Period <strong>in</strong> northeastern<br />

America: American Journal of Science, 2d series, v. 35,<br />

p. 311-319.<br />

- , 1871, On spore cases <strong>in</strong> coal: American Journal of Science,<br />

3d series, v. 1, p. 256-263.<br />

-’ 1884, On rhizocarps <strong>in</strong> the Paleozoic period: Proceed<strong>in</strong>gs<br />

of the American Association for the Advancement of Science,<br />

32d Meet<strong>in</strong>g, p. 260-264.<br />

- , 1886, On rhizocarps <strong>in</strong> the Erian (Devonian) period <strong>in</strong><br />

America: Chicago Academy of Science Bullet<strong>in</strong>, v. 1, p.<br />

105-118. *<br />

- , 1888a, On sporocarps discovered by Prof. E. Orton <strong>in</strong> the<br />

Erian shale of Columbus, Ohio: Canadian Record of Science,<br />

V. 3, p. 137-140.*<br />

, 18888, The gealogical history of plants: London, Kegan,<br />

7-1, Trench and Co., 290 pp.<br />

-’ 1893, The study of fossil plants: Geological Society of<br />

America Bullet<strong>in</strong>, v. 5, p. 2-5.<br />

Dawson, J. W., and Penhallow, D. P., 1891, Note on specimens of<br />

fossil wood from the Erian (Devonian) of New York and <strong>Kentucky</strong>:<br />

Canadian Record of Science, v. 4, p. 242-244.*<br />

Dean, Bashford, 1893, Contributions to the anatomy of D<strong>in</strong>ichthys:<br />

New York Academy of Science Transactions, v. 12, p. 121-125.*<br />

-’ 1894a, Contributions to the morphology of Cladoselache:<br />

Journal of Morphology, v. 9, p. 85-115.<br />

- , 1894b, A new cladodont from the Ohio Waverly, Cladoselache<br />

newbemi n. sp.: New York Academy of Science Transactions,<br />

V. 13, p. 115-118.*<br />

-<br />

, 18967 On the vertebral column and f<strong>in</strong>s and ventral annor-<br />

<strong>in</strong>g of D<strong>in</strong>ichthys: New York Academy of Science Transactions,<br />

V. 15, P. 157-163.* ‘<br />

- , 1897; Note on the ventral armor<strong>in</strong>g of D<strong>in</strong>ichthys: New<br />

York Academy of Science Transactions, v. 16, p. 57-61.<br />

-’ 1899, Devonian fishes for the American Museum: Science,<br />

new series, v. 10, p. 978.<br />

- , 1901a, On two new arthrodires from the Cleveland Shale of<br />

Ohio: New York Academy of Science Memoir, v. 2, p. 86-loo.*<br />

- , 1901b, On the characters of Mylostoma Newberry: New York<br />

Academy of Science Memoir, v. 2, part 3, p. 101-109.*<br />

-’ 1901c, Paleontological notes: New York Academy of Science<br />

Memoir, v. 2, p. 85-la.*<br />

- , 1902, The preservation of muscle fibers <strong>in</strong> sharks of the<br />

Cleveland Shale: American Geologist, v. 30, p. 273-279.<br />

- , 1909a, <strong>Studies</strong> on fossil fishes (sharks, chimaeroids, and<br />

arthrodires): American Museum of Natural History Memoir,<br />

V. 9, p. 211-287.<br />

17


0300<br />

0301<br />

0302<br />

0303<br />

0304<br />

0305<br />

0306<br />

0307<br />

0308<br />

0309<br />

0310<br />

0311<br />

0312<br />

0313<br />

03i4<br />

0315<br />

Dean, Bashford, 1909b, On the arthrodire Trachostius clarki<br />

Newberry: American Museum of Natural Hisory Memoir, v. 9,<br />

part 5, p. 211-287.<br />

-' 1911a, Collect<strong>in</strong>g fossil fishes <strong>in</strong> Ohio: American Museum<br />

Journal, v. 11, p. 302-303.<br />

-' 1911b, Note on the Ohio placoderm D<strong>in</strong>ichthys terrelli:<br />

Science, new series, v. 34, p. 801.<br />

Degens, E. T., and Ross, D. A. (eds.), 1974, The <strong>Black</strong> Sea:<br />

Geology, Chemistry, and Biology: American Association of<br />

Petroleum Geologists Memoir 20, 633 pp.<br />

Degens, E. T., and Stoffers, P., 1976, Stratified waters as a<br />

key to the past: Nature, v. 263, p. 22-27.<br />

Deleroryas, Theodore, 1964, Palaeobotany and plant classification:<br />

<strong>in</strong> Heywood, V. H., and McNeill, J. (eds.), Phenetic<br />

and phyxgenetic classification, London, The Systematics<br />

Association, v. 6, p. 29-36.<br />

Dennison, J. M., 1960, Stratigraphy of Devonian Onesquethaw<br />

Stage <strong>in</strong> West Virg<strong>in</strong>ia, Virg<strong>in</strong>ia, and Maryland: Unpub. Ph.D.<br />

thesis, University of Wiscons<strong>in</strong>, Madison, 339 pp.<br />

-J 1961, Stratigraphy of Onesquethaw Stage of Devonian <strong>in</strong><br />

West Virg<strong>in</strong>ia and border<strong>in</strong>g states: West Virg<strong>in</strong>ia Geological<br />

Survey Bullet<strong>in</strong>, v. 22, 87 pp.<br />

-7 1971, Petroleum related to Middle and Upper Devonian deltaic<br />

facies <strong>in</strong> central Appalachians: American Association<br />

of Petroleum Geologists Bullet<strong>in</strong>, v. 55, p. 1179-1193.<br />

- , 1976, Tuff-rework<strong>in</strong>g model for uranium concentration <strong>in</strong><br />

the Chattanooga Shale (abstr.): Geological Society of America<br />

Abstracts with Programs, v. 8, p. 160- 161.<br />

Dennison, J. M., and Boucot, A. J., 1974, Little War Gap at<br />

Cl<strong>in</strong>ch Mounta<strong>in</strong> provides standard reference section for<br />

Silurian Cl<strong>in</strong>ch Sandstone and most nearly complete Devonian<br />

section <strong>in</strong> eastern Tennessee: Southeastern Geology, v. 16,<br />

p. 79-101.<br />

Dennison, J. M., and Hasson, K. O., 1976, Stratigraphic cross<br />

section of Hamilton Group (Devonian) and adjacent strata<br />

along south border of Pennsylvania: American Association of<br />

Petro€eum Geologists Bullet<strong>in</strong>, v. 60, p. 278-287.<br />

Dennison, J. M., Hasson, K. O., Hosk<strong>in</strong>s, Donald M., Jolley,<br />

Richard M., and Sevon, William D., 1979, Devonian shales <strong>in</strong><br />

south-central Pennsylvania and Maryland: 44th Annual Field<br />

Conference of Pennsylvania Geologists, Guidebook, Harrisburg,<br />

Pennsylvania, Bureau of Topographic and Geologic Survey,<br />

116 pp.<br />

Dennison, J. M., and Head, J. W., 1975, Sea level variations<br />

<strong>in</strong>terpreted from the Appalachian bas<strong>in</strong> Silurian and Devonian:<br />

American Journal of Science, v. 275, p. 1089-1120.<br />

Dennison, J. M., and Morrison, A. K., 1966, Facies relationships<br />

of hystrichospheres <strong>in</strong> Onesquethaw Stage [Devonian) of central<br />

Appalachians (abstr.): American Association of Petroleum<br />

Geologists Bullet<strong>in</strong>, v. 50, p. 610.<br />

Dennison, J. M., and Textoris, D. A., 1970, Devonian Tioga Tuff<br />

<strong>in</strong> northeastern United States: Bullet<strong>in</strong> of Volcanology, v.<br />

34, p. 289-294.<br />

18


0316<br />

0317<br />

0318<br />

0319<br />

0320<br />

0321<br />

0322<br />

0323<br />

0324<br />

0325<br />

0326<br />

0327<br />

0328<br />

0329<br />

0330<br />

Dennison, J. M., and Textoris, D. A,, 1971, Devonian Tioga<br />

Tuff: Virg<strong>in</strong>ia Division of M<strong>in</strong>eral Resources Information<br />

Circular, no. 16, p. 64-68.<br />

- , 1978, Tioga Bentonite time-marker associated with Devonian<br />

shales <strong>in</strong> Appalachian Bas<strong>in</strong>: <strong>in</strong> Schott, Garry L., and<br />

others (eds.), First Eastern Gas Szles Symposium, Proceed<strong>in</strong>gs,<br />

Morgantown, West Virg<strong>in</strong>ia, U.S. Department of <strong>Energy</strong>,<br />

Morgantown <strong>Energy</strong> Research Center, MERC/SP-77/5, p. 166-182.<br />

De Posada, Luis C. Sanchez, 1977, Late Paleozoic ostracodes of<br />

western Europe and North America: <strong>in</strong> Swa<strong>in</strong>, F. M. (ed.),<br />

Stratigraphic micropaleontology of Elantic Bas<strong>in</strong> and borderlands:<br />

Developments <strong>in</strong> Palaeontology and Stratigraphy,<br />

no. 6, New York, Elsevier, p. 61-84.<br />

de Witt, Wallace, Jr., 1951, Strata of the Berea Sandstone and<br />

associated rocks <strong>in</strong> northeastern Ohio and northwestern Pennsylvania:<br />

Geological Society of America Bullet<strong>in</strong>, v. 62,<br />

p. 1347-1370.<br />

- , 1970, Age of the Bedford Shale, Berea Sandstone, and Sunbury<br />

Shale <strong>in</strong> the Appalachian and Michigan bas<strong>in</strong>s, Pennsylvania,<br />

Ohio, and Michigan: U.S. Geological Survey Bullet<strong>in</strong><br />

1294-G, 11 p ~ .<br />

de Witt, Wallace, Jr., and Colton, G. W., 1959, Revised Correlations<br />

of lower Upper Devonian rocks <strong>in</strong> western and central<br />

New York: American Association of Petroleum Geologists Bullet<strong>in</strong>,<br />

v. 43, p. 2810-2828.<br />

Donnell, J. R., 1976, Environments of deposition of oil shale<br />

(abstr.): American Association of Petroleum Geologists Bullet<strong>in</strong>,<br />

v. 60, p. 666.<br />

Downie, C., 1967, The geological history of the microplankton:<br />

Review of Palaeobotany and Palynology, v. 1, p. 269-281.<br />

- , 1973, Observations on the nature of acritarchs: Palaeontolow,<br />

V. 16, p. 239-259.<br />

- , 1979, Devonian acritarchs: <strong>in</strong> House, M. R., Scrutton,<br />

C. T., and Bassett, M. G. (eds.), The Devonian System, Special<br />

Papers <strong>in</strong> Palaeontology, no. 23, p. 185-188.<br />

Downie, C., Evitt, W. R., and Sargeant, W. A. S., 1963, D<strong>in</strong>oflagellates,<br />

hystrichospheres, and classification of the<br />

acritarchs: Stanford University Publications, Geological<br />

Sciences, v. 7, p. 1-16.<br />

Downie, C., and Sargeant, W. A. S., 1964, Bibliography and<br />

<strong>in</strong>dex of fossil d<strong>in</strong>oflagellates and acritarchs: Geological<br />

Society of America Memoir 94, 194 pp.<br />

Drewry, G. E., Ramsay, A. T. S., and Smith, A. G., 1974, Climatically<br />

controlled sediments, the geomagnetic field, and<br />

trade w<strong>in</strong>d belts <strong>in</strong> Phanerozoic time: Journal of Geology,<br />

V. 82, p. 531-553.<br />

Du his, E. P., 1943, Evidence on the nature of conodonts:<br />

Journal of Paleontology, v. 17, p. 155-159.<br />

Duden, H., 1897, Some notes on the black slate or Genesse Shale<br />

of New Albany, Indiana: Indiana Department of Natural Resources<br />

<strong>Report</strong> 21, p. 109-119.<br />

19


0331<br />

0332<br />

0333<br />

0334<br />

0335<br />

0336<br />

0337<br />

0338<br />

0339<br />

0340<br />

0341<br />

0342<br />

0343<br />

0344<br />

0345<br />

0346<br />

0347<br />

Duffield, S. L., 1978, Devonian Conodont Biostratigraphy <strong>in</strong> a<br />

L<strong>in</strong>coln County, West Virg<strong>in</strong>ia, Core: Unpub. Masters thesis,<br />

West Virg<strong>in</strong>ia University, Morgantown.*<br />

Duffield, S. L., and Warshauer, S. M., 1979, An <strong>in</strong>tegrated<br />

study of Mid-Appalachian subsurface shales (Upper Devonian):<br />

Conodont biostratigraphy and ostracode paleoecology (abstr.):<br />

Geological Society of America Abstracts with Programs, v. 11,<br />

p. 10-11.<br />

Dunbar, Carl O., 1917, Devonian and black shale succession of<br />

western Tennessee (abstr.): Geological Society of America<br />

Bullet<strong>in</strong>, v. 28, p. 207.<br />

- , 1918, Stratigraphy and correlation of the Devonian of<br />

western Tennessee: American Journal of Science, 4th series,<br />

V. 46, p. 732-756.<br />

-' 1919, Stratigraphyandcorrelationofthe Devonianofwestern<br />

Tennessee: Tennessee State Geological Survey Bullet<strong>in</strong> 21,<br />

127 pp.<br />

Dunkle, D. H., 1942, The <strong>in</strong>fero-gnathal plates of Titanichthys:<br />

Cleveland Museum of Natural History Scientific Publications,<br />

V. 8, p. 49-59.*<br />

- , 1947, A new genus and species of Arthrodirian fish from<br />

the Upper Devonian Cleveland Shale: Cleveland Museum of<br />

Natural Ustory Publication, v. 8, p. 103-117.*<br />

- , 1964, Prelim<strong>in</strong>ary description of a paleoniscoid fish from<br />

the Upper Devonian of Ohio: Cleveland Museum of Natural<br />

History Scientific Publication, new series, v. 3, p. 1-16.*<br />

Dunkle, D. H., and Bungart, Peter A., 1939, A new Arthrodire<br />

from the Cleveland Shale Formation: Cleveland Museum of<br />

Natural History Publication, v. 8, p. 13-28.<br />

-' 1940, One of the least known of the Cleveland Shale Arthrodires:<br />

Cleveland Museum of Natural History Publication, V. 8,<br />

p. 29-47.*<br />

- , 1942, A new genus and species of Arthrodire from the Cleveland<br />

Shale: Cleveland Museum of Natural History Publication,<br />

V. 8, p. 65-71."<br />

- , 1943, Comments on Diplognathus mirabilis Newberry: Cleveland<br />

Museum of Natural History Scientific Publication, v. 8,<br />

p. 73-84.*<br />

- , 1945a, A new Arthrodiran fish from Upper Devonian Ohio<br />

<strong>Shales</strong>: Cleveland Museum of. Natural History, Scientific<br />

Publication, v. 8, p. 85-95.*<br />

- , 1945b, Prelim<strong>in</strong>ary notice of a remarkable Arthrodirian<br />

gnathal plate: Cleveland Museum of Natural History Scientific<br />

Publication, v. 8, p. 97-102.*<br />

Dunkle, D. H., and Schaeffer, Bobb, 1973, Tegeolepis clarki<br />

(Newberry) a palaeoniscifom from the Upper Devonian Ohio<br />

Shale: Palaeontographica, Abt. A, v. 143, p. 151-158.*<br />

Eastman, Charles, R., 1896a, Observations on the dorsal shields<br />

<strong>in</strong> the D<strong>in</strong>ichthyids (abstr.): American Geologist, v. 18,<br />

p. 222.<br />

- , 1896b, Prelim<strong>in</strong>ary note on the relations of certa<strong>in</strong> body<br />

plates <strong>in</strong> the d<strong>in</strong>ichthyids: American Journal of Science,<br />

4th series, v. 2, p. 46-50.<br />

20


0348<br />

0349<br />

0350<br />

0351<br />

0352<br />

0353<br />

0354<br />

0355<br />

0356<br />

0357<br />

0358<br />

0359<br />

0360<br />

0361<br />

0362<br />

0363<br />

0364<br />

0365<br />

0366<br />

Eastman, Charles R., 1897a, On the relations of certa<strong>in</strong> plates<br />

<strong>in</strong> the d<strong>in</strong>ichthyids, with descriptions of new species: Harvard<br />

College Museum of Comparative Zoology Bullet<strong>in</strong>, v. 31,<br />

P. 19-44.*<br />

- , 1897b, On the characters of Macropetalichthys: American<br />

Naturalist, v. 31, p. 493-499.<br />

- , 1897c, On Ctenacanthus sp<strong>in</strong>es from the Keokuk limestone<br />

of Iowa: American Journal of Science, 4th series, v. 4,<br />

p. 10-12.<br />

- , 1897d, Tamiobatis vetustus, a new form of fossil skate<br />

(Powell Co., Ky.): American Journal of Science, 4th series,<br />

-<br />

-<br />

V. 4, p. 85-90.<br />

, 1897e, On the occurrence of fossil fishes <strong>in</strong> the Devonian<br />

of Iowa: Iowa Geological Survey <strong>Report</strong>s, v. 7, p. 108-116.*<br />

, 1898, Some new po<strong>in</strong>ts <strong>in</strong> d<strong>in</strong>ichthyid osteology: American<br />

Naturalist, v. 32, p. 747-768; (abstr.), Proceed<strong>in</strong>gs of the<br />

American Association for the Advancement of Science, v. 47,<br />

p. 371-372..<br />

- , 1899a, Upper Devonian fish-fauna of Delaware County, New<br />

York: New York State Museum, Slst Annual <strong>Report</strong>, v. 2,<br />

p. 317-327.<br />

- , 1899b, Descriptions of new Diplodus teeth from the Devonian<br />

of northeastern Ill<strong>in</strong>ois: Journal of Geology, v. 7,<br />

p. 489-493.<br />

- ,<br />

OW, V. 8, p. 32-41.<br />

1900, Dentition of some Devonian fishes: Journal of Geol-<br />

- , 1903, Devonian fish fauna of Iowa (abstr.): Geological<br />

Society of America Bullet<strong>in</strong>, v. 13, p. 537.<br />

-’ 1904, On Upper Devonian fish rema<strong>in</strong>s from Colorado: American<br />

Journal of Science, 4th series, v. 18, p. 253-260.<br />

- , 1906, Dipnoan aff<strong>in</strong>ities of arthrodires: American Journal<br />

of Science, 4th series, v. 21, p. 131-143; (abstr.): Science,<br />

new series, v. 23, p. 290: Proceed<strong>in</strong>gs of the American Association<br />

for the Advancement of Science, v. 55, p. 379.<br />

- , 1907, Devonic fishes of New York formations: New York<br />

State Museum Memoir, v. 10, p. 7-225.<br />

-’ 1908, Devonian fishes of Iowa: Iowa Geological Survey<br />

Annual <strong>Report</strong> (1907), v. 18, p. 29-386.<br />

-’ 1913, Bra<strong>in</strong> structure of fossil fishes from the Caney<br />

<strong>Shales</strong> (abstr.): Geological Society of America Bullet<strong>in</strong>,<br />

V. 24, p. 119 -120.<br />

- , 1917, Fossil fishes <strong>in</strong> the collection of the U.S. <strong>National</strong><br />

Museum: U.S <strong>National</strong> Museum Proceed<strong>in</strong>gs, v. 52, p. 235-304.<br />

Edwards, B. D., 1979, Animal-sediment relationships <strong>in</strong> dysaerobic<br />

bathyal environments, California cont<strong>in</strong>ental borderland:<br />

Unpub. Ph.D. thesis, University of Southern California, LOS<br />

Angeles, 102 pp.<br />

Edwards, D., 1973, Devonian floras: <strong>in</strong> Hallam, A. (en.), Atlas<br />

of Palaeobiogeography: New York,Elsevier , p. 105-115<br />

Elk<strong>in</strong>s, M. G., and Wieland, G. R., 1914, Cordaitean wood from<br />

the Indian black shale: American Journal of? Science, 4th<br />

series, v. 38, p. 68-78.<br />

21


0367<br />

0368<br />

0369<br />

0370<br />

0371<br />

0372<br />

0373<br />

0374<br />

0375<br />

0376<br />

0377<br />

0378<br />

0379<br />

0380<br />

Ellison, Samuel P., 1946, Conodonts as Paleozoic guide fossils:<br />

Journal of Paleontology, v. 30, p. 93-110.<br />

-’ 1950, Subsurface Woodford black shale, west Texas and<br />

southeast New Mexico: Texas University, Bureau of Economic<br />

Geology <strong>Report</strong> of Investigations, v. 7, 20 pp.<br />

Ellison, R. L., 1965, Stratigraphy and paleontology of the Mahantango<br />

Formation of south-central Pennsylvania: Pennsylvania<br />

Geological Survey Bullet<strong>in</strong> G-48, 298 pp.<br />

Ells, R. W., 1909, Bitum<strong>in</strong>ous shales of Nova Scotia and New Brunswick:<br />

With notes on the geology of the oil-shales: Canada<br />

Geological Survey Summary <strong>Report</strong> for 1908, p. 132-142.<br />

Emery, K. O., 1960, The sea off southern California: New York,<br />

John Wiley and Sons, 366 pp.<br />

Emery, K. O., and Hlilsemann, J., 1962, The relationships of sediments,<br />

life and water <strong>in</strong> a mar<strong>in</strong>e bas<strong>in</strong>: Deep-sea Research,<br />

V. 8, p. 165-180.<br />

Engeln, 0. D., and Caster, K. E., 1952, Geology: New York, Mc-<br />

Graw-Hill Book Co., Inc., 730 pp.<br />

Englmd, K. J., 1979, Big Stone Gap Member of the Chattanooga<br />

Shale: <strong>in</strong> Mississippian and Pennsylvanian (Carboniferous)<br />

Systems <strong>in</strong> the United States - Virg<strong>in</strong>ia: U.S. Geological<br />

Survey Professional Paper 111O-C, p. C-4.<br />

Epste<strong>in</strong>, A. G., 1975, Conodont color alteration - A geothermometer<br />

and <strong>in</strong>dex of organic metamorphism (abstr.): Reservoir,<br />

v. 2, p. 1-2.<br />

Eth<strong>in</strong>gton, R. L., 1965, Late Devonian and Early Mississippian<br />

conodonts frm Arizona and New Mexico: Journal of Paleontology,<br />

V. 39, p. 566-586.<br />

Ettensohn, Frank R., 1979a, Radioactive stratigraphy at the<br />

Devonian-Mississippian Boundary: <strong>in</strong> Ettensohn, F. R., and<br />

Dever, G. R. (eds.), CarboniferousGeology from the Appalachian<br />

bas<strong>in</strong> to the Ill<strong>in</strong>ois bas<strong>in</strong> through Ohio and <strong>Kentucky</strong>,<br />

Field Trip 4, N<strong>in</strong>th International Congress of Carboniferous<br />

Geology and Stratigraphy, Lex<strong>in</strong>gton, University of <strong>Kentucky</strong>,<br />

p. 166-170.<br />

-’ 1979b, Depositional framework of the Lower Mississippian<br />

subaqueous delta sediments <strong>in</strong> northeastern <strong>Kentucky</strong>: <strong>in</strong><br />

Ettensohn, F. R., and Dever, G. R. (eds.), Carboniferous<br />

Geology from the Appalachian bas<strong>in</strong> to the Ill<strong>in</strong>ois bas<strong>in</strong><br />

through eastern Ohio and <strong>Kentucky</strong>: Field Trip 4, N<strong>in</strong>th International<br />

Congress of Carboniferous Geology and Stratigraphy,<br />

Lex<strong>in</strong>gton, University of <strong>Kentucky</strong>, p. 133-136.<br />

Ettensohn, Frank R., Fulton, L<strong>in</strong>da Provo, and Kepferle, Roy C.,<br />

1978, Use ofthe sc<strong>in</strong>tillometer and gamma-ray logs for correlation<br />

from the subsurface to the surface <strong>in</strong> black shale:<br />

- <strong>in</strong> Schott, Gamy L., and others (eds.), First Eastern Gas<br />

<strong>Shales</strong> Symposium, Proceed<strong>in</strong>gs, Morgantown, West Virg<strong>in</strong>ia,<br />

U.S. Department of <strong>Energy</strong>, Morgantown <strong>Energy</strong> Research Center,<br />

%RC/SP-7/5, p. 678-690.<br />

- , 1979, Use of sc<strong>in</strong>tillometer andgamma-ray logs for correlation<br />

and stratigraphy <strong>in</strong> homogeneous black shales : Geological<br />

Society of America Bullet<strong>in</strong>, Part I, v. 90, p. 421-423;<br />

Part IT, V. 90, p. 828-849.<br />

22


0381<br />

0382<br />

0383<br />

0384<br />

0385<br />

0386<br />

0387<br />

0388<br />

0389<br />

0390<br />

0391<br />

0392<br />

0393<br />

0394<br />

0395<br />

0396<br />

0397<br />

Evans, Harry A., 1889, The relation of the flora to the geolog-<br />

ical formations <strong>in</strong> L<strong>in</strong>coln, Co., Ky.: Botanical Gazette,<br />

V. 14, p. 310-314.*<br />

Fagerstrom, J. A,, 1967, Stratigraphic and paleogeographic sig-<br />

nificance of the Holland Quarry Shale (Lower Devonian), north-<br />

western Ohio: Geological Society of America Bullet<strong>in</strong>, v. 78,<br />

p. 1185-1190.<br />

Farrow, George W., 1975, Techniques for the study of fossil and<br />

recent traces: <strong>in</strong> Frey, R. W. (ed.), The study of trace<br />

fossils, New York, Spr<strong>in</strong>ger-Verlag, p. 537-552.<br />

Feldman, Rodney M., Osgood, Richard G., Jr., Szmuc, Eugene J.,<br />

and Me<strong>in</strong>ke, Deborah W., 1978, Chagr<strong>in</strong>ichnites brooksi, a new<br />

trace fossil of arthropod orig<strong>in</strong>: Journal of Paleontology,<br />

V. 52, p. 287-294.<br />

Fenschel, T. M., and Riedl, R. J., 1970, The sulfide system: a<br />

new biotic community underneath the oxidized layer of mar<strong>in</strong>e<br />

sand bottoms: Mar<strong>in</strong>e Biology, v. 7, p. 255-268.<br />

Fisher, Donald W., 1951, Marcasite fauna of Ludlowville Formation<br />

of western New York: Journal of Paleontology, v. 25, p. 365-<br />

371.<br />

Fix, C. E., 1958, Selected annotated bibliography of the geology<br />

and occurrence of uranium-bear<strong>in</strong>g mar<strong>in</strong>e black shales <strong>in</strong> the<br />

United States: U.S. Geological Survey Bullet<strong>in</strong> 1059-F,<br />

p. 263-325.<br />

Flessa, Karl W., 1973, Comparative community ecology of the<br />

Chagr<strong>in</strong> and Bedford shales (Devonian-Mississippian, Ohio)<br />

(abstr.): Northeastern Section, 8th Annual Meet<strong>in</strong>g, Geological<br />

Society of America Abstracts with Programs, v. 5, p. 160.<br />

Flor<strong>in</strong>, R., 1951, Evolution <strong>in</strong> cordaites and conifers: Acta<br />

Horti Bergiani, v. 15, p. 285-288.*<br />

Flower, Rousseau H., 1938, Devonian brevicones of New York and<br />

adjacent areas: Palaeontographica Americana, v. 2, p. 163-<br />

246..<br />

Foerste, A. F., 1901, Silurian and Devonian limestones of Tennessee<br />

and <strong>Kentucky</strong>: Geological Society of America Bullet<strong>in</strong>,<br />

v. 12, p. 395-444.<br />

- , 1906, The Silurian, Devonian, and Irv<strong>in</strong>e formations of<br />

east-central <strong>Kentucky</strong>: <strong>Kentucky</strong> Geological Survey, Bullet<strong>in</strong>,<br />

v. 7, 369 pp.<br />

- , 1909, The Bedford fauna at Indian Fields and Irv<strong>in</strong>e, <strong>Kentucky</strong>:<br />

Ohio Naturalist, v. 9, p. 515-523.<br />

Foreman, Helm P., 1959, A new occurrence of Devonian radiolaria<br />

<strong>in</strong> calcareous concretions of the Huron Member of the Ohio<br />

Shale: Journal of Paleontology, v. 33, p. 76-80.<br />

- , 1963, Upper Devonian radiolaria from the Huron Member of<br />

the Ohio Shale: Micropaleontology, v. 9, p. 267-304.<br />

Freeman, T., and Schumacher, D., 1969, Qualitative pre-Sylamore<br />

(Devonian-Mississippian) physiography del<strong>in</strong>eated by onlapp<strong>in</strong>g<br />

cmodont zones, northern Arkansas: Geological Society of<br />

America Bullet<strong>in</strong>, v. 80, p. 2327-2334.<br />

Frey, R. W. (ed.), 1975, The Study of Trace Fossils: New York,<br />

Spr<strong>in</strong>ger-Verlag, 562 pp.<br />

23


0398<br />

0399<br />

0400<br />

0401<br />

0402<br />

0403<br />

0404<br />

0405<br />

0406<br />

0407<br />

0408<br />

0409<br />

0410<br />

0411<br />

0412<br />

0413<br />

0414<br />

0415<br />

Froelich, Albert J., 1972, Geologic Map of the Wall<strong>in</strong>s Creek<br />

quadrangle, Harlan and Bell Counties, <strong>Kentucky</strong>: U.S. Geological<br />

Survey Geologic Quadrangle Map GQ-1016.<br />

-' 1973, Geologic Map of the Louellen quadrangle, southeastern<br />

<strong>Kentucky</strong>: U.S. Geological Survey Geologic Quadrangle Map<br />

GQ-1060.<br />

Fullerton, D. S., 1961, The geology of the Silurian and Devonian<br />

<strong>in</strong> the subsurface of Larue County, <strong>Kentucky</strong>: Unpublished<br />

Masters thesis, University of <strong>Kentucky</strong>, Lex<strong>in</strong>gton, 34 pp.<br />

Fulton, L. J. P., 1978, Stratigraphy and Sedimentology of Radioactive<br />

Devonian-Mississippian <strong>Shales</strong> of the Central Appalachian<br />

Bas<strong>in</strong>: Dissertation Abstracts International, v. 38,<br />

no. 7, p. 30938.<br />

Funkhouser, W. D., and Webb, W. S., 1928, Ancient life <strong>in</strong> <strong>Kentucky</strong>:<br />

<strong>Kentucky</strong> Geological Survey, series 6, v. 34, p. 27.<br />

Gable, Krist<strong>in</strong>e M., 1973, Conodonts and Biostratigraphy of the<br />

Olentangy Shale (Middle-Upper Devonian) Ohio: Unpublished<br />

Masters thesis, Ohio State University, Columbus.<br />

Gill, E. D., 1941, The place of the genus Styliol<strong>in</strong>a <strong>in</strong> the Paleozoic<br />

palaeontology and stratigraphy of Victoria: Proceed<strong>in</strong>gs<br />

ofthe Royal Society of Victoria, new series 1, v. 53, no. 1,<br />

p. 145-164.<br />

Girty, G. H., 1898, Description of a fauna found <strong>in</strong> the Devonian<br />

American Journal of Science,<br />

black shale of eastern <strong>Kentucky</strong>:<br />

4th series, v. 6, p. 384-394.<br />

-9 1901, The Waverly Group <strong>in</strong> northeastern Ohio: Science, new<br />

series, v. 13, p. 664.*<br />

-8 1904, Upper Paleozoic rocks <strong>in</strong> Ohio and northwestern Penn-<br />

sylaania'(abstr.): Science, new series, v. 19, p. 24-25.<br />

-<br />

, 1905, The relation of some Carboniferous faunas: Wash<strong>in</strong>gton<br />

Academy of Science Proceed<strong>in</strong>gs, v. 7, p. 1-26.<br />

- , 1909, The fauna of the Caney Shale of Oklahoma: U.S. Geological<br />

Survey Bullet<strong>in</strong> 377, 106 pp.<br />

- , 1912, Geologic age of the Bedford Shale of Ohio: New York<br />

Academy of Science Annals, v. 22, p. 295-319.<br />

- , 1928a, The generic name Orbiculoidea D'Orbigny and its<br />

application: Journal of the Wash<strong>in</strong>gton Academy of Science,<br />

V. 18, p. 128-142.<br />

- , 1928b; Characters of the brachiopod genus L<strong>in</strong> lidisc<strong>in</strong>a<br />

Whitfield: Journal of the Wash<strong>in</strong>gton - Academy -+----T o Science<br />

V. 18, p. 241-249.<br />

- , 1939, Some l<strong>in</strong>guloid shells from the Late Devonian and<br />

Early Carboniferous rocks of Pennsylvania and Ohio: U.S.<br />

Geological Survey Professional Paper 1934, p. 47-67.<br />

Glenister, B. F., 1958, Upper Devonian ammonoids from the - Manticoceras<br />

zone, Fitzroy Bas<strong>in</strong>, Western Australia: Journal of<br />

Paleontology, v. 32, p. 58-96.<br />

Glover, Lynn, 1959, Stratigraphy and uranium content of the Chattanooga<br />

Shale <strong>in</strong> northeastern Alabama, northwestern Georgia,<br />

and eastern Tennessee: U.S. Geological Survey Bullet<strong>in</strong><br />

1087-E, p. 133-168.<br />

24


0416<br />

0417<br />

0418<br />

0419<br />

0420<br />

0421<br />

0422<br />

04 23<br />

0424<br />

0425<br />

0426<br />

0427<br />

0428<br />

0429<br />

0430<br />

0431<br />

0432<br />

0433<br />

Goldman, M. I., 1929, <strong>Black</strong> shale formation <strong>in</strong> and about Chesapeake<br />

Bay: American Association of Petroleum Geologists<br />

Bullet<strong>in</strong>, v. 8, p. 195.<br />

Goldr<strong>in</strong>g, R., 1962, The trace fossils of the Baggy Beds (Upper<br />

Devonian) of North Devon, England: PalXontologie Zeitschrift,<br />

V. 36, p. 232-251.*<br />

-, 1978, Devonian: <strong>in</strong> McKerrow, W. S, (ed.), The Ecology of<br />

Fossils : CambridgeTThe MIT Press, p. 125-145.<br />

Goldr<strong>in</strong>g, R., and Langenstrassen, F., 1979, Open shelf and nearshore<br />

clastic facies <strong>in</strong> the Devonian: <strong>in</strong> House, M. R., Scrutton,<br />

C. T., and Bassett, M. G. (eds.), The Devonian System:<br />

Special Papers <strong>in</strong> Palaeontology, no. 23, p. 81-97.<br />

Goldr<strong>in</strong>g, W., 1924, The Upper Devonian forest of seed ferns <strong>in</strong><br />

eastern New York: New York State Museum Bullet<strong>in</strong> 251, p. 50-<br />

72.<br />

- , 1927, The oldest known petrified forest: Scientific Monthly,<br />

V. 24, p. 514-529.<br />

-’ 1929, Handbook of Paleontology for Beg<strong>in</strong>ners and Amateurs,<br />

Part 1: The Fossils, 356 pp.<br />

Goldste<strong>in</strong>, August, Jr., and Hendricks, T, A., 1953, Siliceous<br />

sediments of Owtchita facies <strong>in</strong> Oklahoma: Geological Society<br />

of America Bullet<strong>in</strong>, v. 64, p. 421-442.<br />

Gooday, A. J., 1978, The Devonian: <strong>in</strong> Bate, R., and Rob<strong>in</strong>son, E.<br />

feds.) , A stratigraphical <strong>in</strong>dex of British Ostracoda: Liverpool,<br />

See1 House Press, Geological Journal Special Issue 8,<br />

p. 101-120.<br />

Gooday, A. J., and Becker, G., 1979, Ostracods <strong>in</strong> Devonian bio-stratigraphy:<br />

<strong>in</strong> House, M. R., Scrutton, C. T., and Bassett,<br />

M. G. (eds.), Th Devonian System, Special Papers <strong>in</strong> Palaeontology,<br />

no. 23, p. 193-197.<br />

Grabau, A. W., 1896, The succession of the fossil faunas <strong>in</strong> the<br />

Hamiltun Group at Eighteenmile Creek, N. Y. (abstr.): American<br />

Geologist, v. 18, p. 220-221; Science, new series, v. 3,<br />

p. 212-213.<br />

-’ 1898-1899, The paleontology of the Eighteenmile Creek and<br />

the Lake Shore section of Erie County, New York: Buffalo<br />

Society of Natural Science Bullet<strong>in</strong>, v. 6, p. 1-403.<br />

-’ 1899, The faunas of the Hamilton Group of Eighteenmile<br />

Creek and vic<strong>in</strong>ity <strong>in</strong> western New York: New York State Geologist<br />

16th Annual <strong>Report</strong>, p. 227-339; New York State Museum<br />

50th Annual <strong>Report</strong>, v. 2, p. 227-339.*<br />

1906, Types of sedimentary overlap: Geological Society of<br />

America Bullet<strong>in</strong>, v. 17, p. 593-613.<br />

-’ 1907, Age and stratigraphic relations of the Chattanooga<br />

black shale (abstr.): Science, new series, v. 25, p. 771.”<br />

-’ 1909, Physical and faunal evolution of North America<br />

dur<strong>in</strong>g Ordovicic, Siluric, and early Devonic time: Journal<br />

of Geology, Y. 17, p. 209-250,<br />

-’ 1913a, Early Paleozoic delta deposits of North America:<br />

Geological Society of America Bullet<strong>in</strong>, v. 24, p. 399-512.<br />

- , 1913b, Relation of Eurypterids to their environment: Geological<br />

Society of America Bullet<strong>in</strong>, v. 24, p. 498-526.<br />

25


0434<br />

0435<br />

0436<br />

0437<br />

0438<br />

0439<br />

0440<br />

0441<br />

0442<br />

0443<br />

0444<br />

0445<br />

0446<br />

044 7<br />

0448<br />

0449<br />

0450<br />

Grabau, A. W., 1915a, North American cont<strong>in</strong>ent <strong>in</strong> Upper Devonic<br />

time (abstr.): Geological Society of America Bullet<strong>in</strong>,<br />

V. 26, p. 88-90.<br />

-, 1915b, The Olentangy Shale of central Ohio and its strati-<br />

graphic significance (abstr.): Geological Society of Ameri-<br />

ca Bullet<strong>in</strong>, vr 26, p. 112.<br />

-, 1915c, North American cont<strong>in</strong>ent <strong>in</strong> Upper Devonic time<br />

(abstr.): Science, new series, v. 41, p. 509-510.<br />

-* 1915d, The black shale problem; a study <strong>in</strong> Paleozoic geog-<br />

raphy (abstr.): New York Academy of Science Annals, v. 24,<br />

p. 378-379.*<br />

-, 1917a, Age and stratigraphic relations of the Olentangy<br />

Shale of central Ohio, with remarks on the Prout Limestone<br />

and so-called Olentangy shales of northern Ohio: Journal<br />

of Geology, V. 25, p. 337-343.<br />

-9 1917b, Stratigraphic relationships of the Tully Limestone<br />

and the Genesee Shale <strong>in</strong> eastern North America: Geological<br />

Society of America Bullet<strong>in</strong>, v. 28, p. 945-958.<br />

-3 1919, Significance of the Sherburne Sandstone <strong>in</strong> Upper<br />

Devonic stratigraphy: Geological Society of America Bullet<strong>in</strong>,<br />

V. 30, p. 423-470.<br />

Grabau, A. W., and O'Connell, M., 1917, Were the graptolite<br />

shales, as a rule, deep or shallow water deposits?: Geological<br />

Society of America Bullet<strong>in</strong>, v. 28,. p. 959-964; (abstr.) :<br />

p. 205-206.<br />

Graves, R. W., Jr., 1952, Devonian conodonts from the Caballos<br />

Novdite: Journal of Paleontology, v. 26, p. 610-612.<br />

Gray, Henry H., 1979, The Devonian-Mississippian boundary and<br />

earliest Mississippian rocks: <strong>in</strong> The Mississippian and Pennsylvanian<br />

(Carboniferous) Systez of the United States -<br />

Indiana: U.S. Geological Survey Professional Paper 1110-K,<br />

9. K-7.<br />

Gray, Jane, and Boucot, Arthur J., 1977, Early vascular land<br />

plants: proof and conjecture: Lethaia, v. 10, p. 145-174.<br />

-9 1979, The Devonian land plant Protosalv<strong>in</strong>ia: Lethaia,<br />

V. 12. R. 57-63.<br />

..I<br />

Greger, D. K., 1918, Invertebrate fauna of the Grassy Creek<br />

Shale of Missouri (abstr.) : Geological Society of America<br />

Bullet<strong>in</strong>, v, 29, p. 95.<br />

Gregory, W. K., 1941, Grandfather fish and his descendants:<br />

Natural History, v. 48, p. 159-165.<br />

Gre<strong>in</strong>er, H., 1978, Late Devonian facies <strong>in</strong>ter-relationships <strong>in</strong><br />

border<strong>in</strong>g areas of the North Atlantic and their paleogeo-<br />

graphic implications: Palaeogeography, PalaeoclimatologY,<br />

Palaeoecology, v. 25, p. 241-263.<br />

Gresley, W. ST, 1894, Cone-<strong>in</strong>-cone; how it occurs <strong>in</strong> the Devonian<br />

series <strong>in</strong> Pennsylvania, U.S.A.: Quarterly Journal of the<br />

Geological Society of London, v. 50, p. 731-739.<br />

Grierson, J. D., and Banks, H. P., 1963, Lycopods of the Devonian<br />

of New York state: Palaeontographica, Americana, v. 4,<br />

p. 220-295.<br />

26


0451<br />

0452<br />

0453<br />

0454<br />

0455<br />

0456<br />

0457<br />

0458<br />

0459<br />

0460<br />

0461<br />

0462<br />

0463<br />

0464<br />

/<br />

Griffith, C., 1977, Stratigraphy and Raleoenvironment of the 5<br />

New Albany Shale (Upper Devonian) of North-Central <strong>Kentucky</strong>:<br />

Unpublished Masters thesis, University of Wiscons<strong>in</strong>, Madison,<br />

214 pp.<br />

Gualtieri, J. L., 1967a, Geologic Map of the Crab Orchard quadrangle,<br />

L<strong>in</strong>coln County, <strong>Kentucky</strong>: U.S. Geological Survey<br />

Geologic Quadrangle Map GQ-571.<br />

-’ 1967b, Geologic Map of the Brodhead quadrangle, East-Central<br />

<strong>Kentucky</strong>: U.S. Geological Survey Geologic Quadrangle<br />

Map GQ-662.<br />

Gutschick, R. C., 1947, Orig<strong>in</strong> of some bitumen <strong>in</strong> the Devonian-<br />

Mississippian black shales and the Eocene Green River Shale<br />

(abstr.): Geological Society of America Bullet<strong>in</strong>, v. 58,<br />

p. 1185.<br />

, 1954, Sponge spicules from the Lower Mississippian of<br />

-<br />

Indiana and <strong>Kentucky</strong>: American Midland Naturalist, v. 52,<br />

p. 501-509.<br />

Gutschick, R. C., and Moreman, W. L., 1967, Devonian-Mississippian<br />

boundary relations along the cratonic marg<strong>in</strong> of the<br />

United States: <strong>in</strong> Oswald, D. H. (ed.), International Symposium<br />

on the DeGnian System, 1967, Proceed<strong>in</strong>gs, Calgary<br />

Alberta, Alberta Society of Petroleum Geologists, v. 2,<br />

p. 1009-1023.<br />

Habicht, J. K. A., 1979, Paleoclimate, paleomagnetism, and cont<strong>in</strong>ental<br />

drift: American Association of Petroleum Geologists<br />

<strong>Studies</strong> <strong>in</strong> Geology no. 9, 31 pp.<br />

Hall, James, 1867, Palaeontology: conta<strong>in</strong><strong>in</strong>g descriptions and<br />

figures of the fossil Brachiopoda of the upper Helderberg,<br />

Hamilton, Portage, and Chewmg Groups, Geological Survey of<br />

New York, v. IV, part 1, 428 pp.<br />

-’ 1871, On fossil trees from Gilboa, Schoharie Co., N.Y.:<br />

Albany Institute Proceed<strong>in</strong>gs, v. 1, p. 129-131.* rb<br />

-’ 1872, On the occurrence of trunks of Psaronius <strong>in</strong> an erect<br />

positian, rest<strong>in</strong>g on their orig<strong>in</strong>al bed, <strong>in</strong> rocks of the<br />

Devonian age <strong>in</strong> the state of New York (abstr.):<br />

Magaz<strong>in</strong>e, v. 9, p. 463-465.<br />

Geological<br />

-9 1879, Palaeontology: conta<strong>in</strong><strong>in</strong>g descriptions of Gastropoda,<br />

Pteropoda, and Cephalopoda of the upper Helderburg, Hamilton,<br />

Portage, and Chenrung Groups: Geological Survey of the State<br />

of New York, v. V, partII,492 pp., 113 pls. (text and plates).<br />

-’ 18848, Palaeontology: Lamellibranchiata I: conta<strong>in</strong><strong>in</strong>g<br />

-.<br />

-:<br />

descriptions and figures of the Monomyaria of the Helderburg,<br />

Hamilton, and Chenumg Groups, Geological Survey of the State<br />

of New York, v. V, part 1, no. 1, 268 pp.<br />

, 1884b, Note on the Eurypteridae of the Devonian and Carboniferous<br />

formations of Pennsylvania: Pennsylvania Geological<br />

Survey 2d <strong>Report</strong>, p. 23-39.*<br />

1885a, Note on the Eurypteridae of the Devonian and Carboniferous<br />

of Pennsylvania; with a supplementary note on Stylo-<br />

- nurus excelsior: Proceed<strong>in</strong>gs of the American Association<br />

for the Advancement of Science, v. 33, p. 420-422.<br />

27


0465<br />

0466<br />

046 7<br />

0468<br />

0469<br />

0470<br />

0471<br />

0472<br />

0473<br />

0474<br />

0475<br />

-- 0476<br />

0477<br />

0478<br />

0479<br />

Hall, James, 1885b, Palaeontology: Lamellibranchiata 11: con-<br />

ta<strong>in</strong><strong>in</strong>g descriptions- and figures of the Dimyaria of the<br />

upper Helderberg, Hamilton, Portage, and Chemung Groups,<br />

Geological Survey of the State of New York, v. V, part I,<br />

no. 2, 561 pp.<br />

-3 1885c, Note on the <strong>in</strong>timate relations of the Chentung<br />

Group and Waverly Sandstone <strong>in</strong> northwestern Pennsylvania<br />

and southwestern New York (abstr.): Proceed<strong>in</strong>gs of the<br />

American Association for the Advancement of Science, V. 33,<br />

p. 416.419."<br />

Hall, James, and Clarke, J. M., 1888a, A list of the species<br />

constitut<strong>in</strong>g the known fauna and flora of the Marcellus epoch<br />

<strong>in</strong> the state of New York: State Geologist of New York<br />

Eighth Annual <strong>Report</strong>, p. 60, 61.<br />

- , 1888b, Descriptions of the trilobites and other crustacea<br />

of the Oriskany, upper Helderberg, Hamilton, Portage, Chemmg,<br />

and Catskill Groups: New York Geological Survey,<br />

Palemtology, v. 7, p. 1-236.<br />

Hall, James, and Whitfield, R. P., 1872, Description of new<br />

species of fossils from the vic<strong>in</strong>ity of Louisville, Ky.,<br />

and the Falls ofthe Ohio: New York State Museum, 24th<br />

Annual <strong>Report</strong>, p. 181-200.*<br />

-* 1875, Cr<strong>in</strong>oids of the Genesee Slate and Chemung Group:<br />

Ohio Geological Survey <strong>Report</strong>, v. 2, part 2, Paleontology,<br />

p. 158-161.<br />

Hallam, A., 1967, The depth significance of shales with bitum<strong>in</strong>ous<br />

layers: Mar<strong>in</strong>e Geology, v. 5, p. 481-493.<br />

- , 1973, Atlas of Palaeobiogeography: New York, Elsevier,<br />

531 pp.<br />

Ham, W. E., 1969, Regional geology: <strong>in</strong> Geology of the Arbuckle<br />

Mounta<strong>in</strong>s, Oklahoma Geological SGey Guide Book XVII,<br />

p. 11-14.<br />

Ham, W. E., and Neville, Curtis M., Jr., 1960, Common m<strong>in</strong>erals,<br />

rocks, and fossils of Oklahoma: Oklahoma Geological Survey<br />

Guide Book X, p. 27 -28.<br />

Hantzschel, W,, 1975, Trace fossils and problematica: <strong>in</strong><br />

Teichert, C. (ed.), Treatise on Invertebrate Pal eonGlogy<br />

Part W, Miscellanea, Supplement 1, Boulder, Geological<br />

Society of America, p. Wl-W269.<br />

Hard, E. W. , 1932; <strong>Black</strong>- shale deposition <strong>in</strong> central New York:<br />

American Association of Petroleum Geologists Bullet<strong>in</strong>, v. 15,<br />

p. 165-181.<br />

Harker, P., and McLaren, D. J., 1958, The Devonian-Mississippian<br />

boundary <strong>in</strong> the Alberta Rocky Mounta<strong>in</strong>s: <strong>in</strong> Goodman, A. J.,<br />

(ed.) , Jurassic and Carboniferous of westeG Canada: A<br />

symposium: American Association of Petroleum Geologists,<br />

John Andrew Allan Memorial Volume, p. 244-256.<br />

Harnly, H. J. , 1898, "Cone-<strong>in</strong>-cone" (an impure calcite) : Kansas<br />

Academy of Science Transactions, v. 15, p. 22.*<br />

Harper, A. R., 1948, Ohio <strong>in</strong> the mak<strong>in</strong>g; a brief geologic history<br />

of Ohio: Columbus, Ohio State University, College of Education,<br />

80 pp.<br />

28


0480<br />

0481<br />

0482<br />

0483<br />

0484<br />

0485<br />

0486<br />

0487<br />

0488<br />

0489<br />

0490<br />

0491<br />

0492<br />

0493<br />

Harper, John A., and Piotrowski, Robert G., 1979, Stratigraphic<br />

correlation of surface and subsurface Middle and Upper Devonian<br />

southwestern Pennsylvania: <strong>in</strong> Dennison, John M., and<br />

others, Devonian <strong>Shales</strong> <strong>in</strong> Southzentral Pennsylvania and<br />

Maryland, 44th Annual Field Conference for Pennsylvania<br />

Geologists Guidebook, Harrisburg, Pennsylvania, Bureau of<br />

Topographic and Geologic Survey, p. 18-37.<br />

Harris, Anita G., 1978, Conocont color alteration, an organom<strong>in</strong>eral<br />

metamorphic <strong>in</strong>dex, and its application to Appalachian<br />

Bas<strong>in</strong> geology: <strong>in</strong> Schott, Gamy L., and others (eds.), First<br />

Eastern Gas <strong>Shales</strong> Symposium Proceed<strong>in</strong>gs, Morgantown, West<br />

Virg<strong>in</strong>ia, U.S. Department of <strong>Energy</strong>, Morgantown <strong>Energy</strong> Research<br />

Center, MERC/SP-77/5, p. 620-663.<br />

Harris, J. E., 1938, 1. The dorsal sp<strong>in</strong>e of Cladoselache; 2. The<br />

neurocranium and jaws of Cladoselache:<br />

Natural History Scientific Publication, v. 8, no. 1, p. 1-12.<br />

-8 1951, Diademodus hydei, a new fossil shark from the Cleveland<br />

Shale: Zoological Society of London Proceed<strong>in</strong>gs, v. 120,<br />

part 4, p. 683-697.<br />

Harvey, R. D., White, W. A., Cluff, R. M., Frost, J. K., and<br />

Wntelle, P. B., 1978, Petrology of New Albany Shale Group<br />

(Upper Devonian and K<strong>in</strong>derhookian) <strong>in</strong> the Ill<strong>in</strong>ois Bas<strong>in</strong>, a<br />

prelim<strong>in</strong>ary report: <strong>in</strong> Schott, Gamy L., and others (eds.),<br />

First Eastern Gas Shass Symposium Proceed<strong>in</strong>gs, Morgantown,<br />

West Virg<strong>in</strong>ia, U.S. Department of <strong>Energy</strong>, Morgantown <strong>Energy</strong><br />

Research Center, MERC/SP-77/S, p. 328-354.<br />

Hass, W. H., 1947a, Conodont zones <strong>in</strong> Upper Devonian and Lower<br />

Mississippian formations of Ohio:<br />

Cleveland Museum of<br />

Journal of Paleontology,<br />

V. 21, p. 131-141.<br />

-9 1947b, The Chattanooga Shale type area (abstr.): Geologi-<br />

cal Society of America Bullet<strong>in</strong>, v. 58, p. 1189.<br />

1950, Age of the lower part of the Stanley Shale:<br />

-’<br />

American<br />

Association of Petroleum Geologists, Bullet<strong>in</strong>, v. 34,<br />

p. 1578-1584.<br />

1951a, Age of some black shales <strong>in</strong> cores from northeast<br />

-3<br />

Mississippi: Mississippi Geological Society Guidebook, 11th<br />

Field Trip, p. 32-33.<br />

- , 1951b, Age of the Arkansas Novaculite: American Association<br />

of Petroleum Geologists Bullet<strong>in</strong>, v. 35, p. 2526-2541.<br />

-3 1956, Age and correlation of the Chattanooga Shale and<br />

the Maw Fo-tion: U.S. Geological Survey Professional<br />

Paper 286, 47 pp.<br />

-’ 1958, Upper Devonian conodonts of New York, Pennsylvania,<br />

and <strong>in</strong>terior states: Journal of Paleontology, v. 32,<br />

p. 765-769.<br />

-’ 1959, Conodonts from the Chappel Limestone of Texas: U.S.<br />

Geological Survey Professional Paper 294-5, p. 365-399.<br />

Hass, W. H., and Huddle, J. W., 1965, Late Devonian and Early<br />

Mississippian age of the Woodford Shale <strong>in</strong> Oklahoma, as<br />

determ<strong>in</strong>ed from conodonts: U.S. Geological Survey Professional<br />

Paper 525-D, p. 125-132.<br />

29


0494<br />

049 5<br />

0496<br />

0497<br />

0498<br />

0499<br />

0500<br />

0501<br />

0502<br />

0503<br />

0504<br />

0505<br />

0506<br />

0507<br />

Hasson, K. O., 1966, Lithostratigraphy and Paleontology of the<br />

Devonian Harrell Shale along the Allegheny Front <strong>in</strong> West<br />

Virg<strong>in</strong>ia and Adjacent States: Unpublished Masters thesis,<br />

University of Tennessee, Knoxville, 89 pp.<br />

Hasson, K. O., and Dennison, John M., 1968, Relation of Type<br />

Millboro Shale <strong>in</strong> Virg<strong>in</strong>ia to Romney Group (Devonian) of<br />

West Virg<strong>in</strong>ia and Maryland (abstr.): Geological Society of<br />

America Special Paper 115, p. 476-477.<br />

-8 1979, Devonian shale stratigraphy between Perry Bay and<br />

the Fulton Lobe south-central Pennsylvania and Maryland: <strong>in</strong><br />

Dennsion, John M., and others, Devonian <strong>Shales</strong> <strong>in</strong> South-<br />

Central Pennsylvania and Maryland, 44th Annual Field Conference<br />

for Pennsylvania Geologists Guidebook, Harrisburg,<br />

Pennsylvania, Bureau of Topographic and Geologic Survey,<br />

p. 1-17.<br />

Hasson, K. O., and Liebe, R. M., 1968, Conodont correlation of<br />

Tulley Limestone outcrops <strong>in</strong> Pennsylvania and West Virg<strong>in</strong>ia<br />

(abstr.): Geological Society of America Special Paper 121,<br />

p. 443.<br />

Hay,-Oliver Perry, 1902, Description of a new species of - Clado-<br />

- dus (C. formosus) from the Devonian of Colorado: American<br />

Geologist, V. 30, p. 373-374.<br />

Heckel , P. H. , 1972, Recognition of ancient shallow mar<strong>in</strong>e environments:<br />

<strong>in</strong> Recognition of Ancient Sedimentary Environments:<br />

Society of Economic Paleontologists and M<strong>in</strong>eralogists Special<br />

Publication 16, p. 226-270.<br />

-' 1977, Orig<strong>in</strong> of phosphatic black shale facies <strong>in</strong> Pennsylvanian<br />

cyclothems of mid-cont<strong>in</strong>ent North America: American<br />

Association of Petroleum Geologists Bullet<strong>in</strong>, v. 61, p. 1045-<br />

1068.<br />

Heckel, P. H., and Witzke, Brian J., 1979, Devonian world palaeogeography<br />

determ<strong>in</strong>ed from distribution of carbonates and related<br />

lithic palaeoclimatic <strong>in</strong>dicators: <strong>in</strong> House, M. R.,<br />

Scrutton, C. T., and Bassett, M. G. (eds.), The Devonian<br />

System, Special Papers <strong>in</strong> Palaeontology, no. 23, p. 99-123.<br />

Hedgpeth, J. W. (ed.), 1957, Treatise on mar<strong>in</strong>e ecology and paleoecology:<br />

Geological Society of America Memoir 67, v. 1,<br />

1296 pp.<br />

He<strong>in</strong>tz, A,, 1931a, The antero-lateral plate <strong>in</strong> Titanichthys:<br />

Annals and Magaz<strong>in</strong>e of Natural History, v. 8, p. 208-212.<br />

- , 1931b, A reconstruction of Stenognathus gouldi (Newberry):<br />

Annals and Magaz<strong>in</strong>e of Natural History, v. 8, p. 242-249.<br />

- , 1932, The structure of D<strong>in</strong>ichthys: A contribution to our<br />

knowledge of the Arthrodira: Bashford Dean Memorial Volume,<br />

Archaic Fishes, v. 4, p. 115-224.<br />

- , 1938, Notes on the Akhrodira: Norsk Geologisk Tidsskrift,<br />

v. 18, p. 27.<br />

-3 1968 ,-The sp<strong>in</strong>al plate <strong>in</strong> Homostius and Dunkleosteus: <strong>in</strong><br />

Wig, Tor (ed.), Current Problems of Lower Vertebrate P hF<br />

logeny, Nobel Symposium 4, Stockholm, 1967 Proceed<strong>in</strong>gs, New<br />

York, Interscience, p. 145-148.<br />

30


.-<br />

0508<br />

0509<br />

0510<br />

0511<br />

0512<br />

0513<br />

0514<br />

0515<br />

0516<br />

0517<br />

0518<br />

0519<br />

0520<br />

0521<br />

0522<br />

0523<br />

0524<br />

Henbest, L. B., 1936, Radiolaria <strong>in</strong> the Arkansas Novaculite,<br />

Caballos Novaculite and Bigfork Chert: Journal of Paleon-<br />

tology, V. 10, p. 76-78.<br />

Herrick, C. L., 1888a, Geology of Lick<strong>in</strong>g County, 0. Part IV:<br />

Denison University Scientific Laboratory Bullet<strong>in</strong>, v. 4,<br />

p. 97-123.<br />

-’ 1888b, Geology of Lick<strong>in</strong>g County, Ohio, Part 4, the Subcarboniferous<br />

and Waverly groups: Denison University<br />

Scientific Laboratory Bullet<strong>in</strong>, v. 3, p. 13-110.<br />

-J 1891, The Cuyahoga Shale and the problem of the Ohio Waverly:<br />

Geological Society of America Bullet<strong>in</strong>, v. 2, p. 31-48.<br />

-’ 1893, Observations on the so-called Waverly Group of Ohio:<br />

- <strong>in</strong> Orton, E. , Economic Geology, Archaeology, Botany, Paleontology,<br />

Ohio Geological Survey <strong>Report</strong>s, v. VII, p. 495-515.<br />

Hershey, Oscar H., 1895, The Devonian series <strong>in</strong> southwestern<br />

Missouri: American Geologist, v. 16, p. 294-300.<br />

Herzer, H., 1902, New fossil plants from the Carboniferous and<br />

Devonian: Ohio State Academy of Science, 10th Annual <strong>Report</strong>,<br />

p. 40-48.*<br />

Hibbard, P. R., 1927, Conodonts from the Portage Group of western<br />

New York: American Journal of Science, 5th series, v. 13,<br />

p. 189-208.<br />

Hiclanan, R. C., and Lynch, V. J., 1967, Chattanooga Shale <strong>in</strong>vestigations:<br />

U.S. Bureau of M<strong>in</strong>es <strong>Report</strong> of Investigations 6932,<br />

55 PP9<br />

Hicks, Lewis Ezra, 1878a, Discovery of the Cleveland Shale <strong>in</strong><br />

Delaware Co., Ohio: American Journal of Science, 3d series,<br />

v. 16,-p. 70-71.<br />

- , 1878b, The Waverly Group <strong>in</strong> central Ohio: American Journal<br />

of Science, 3d series, v. 16, p. 216-224.<br />

H<strong>in</strong>de, G. J., 1879a, On conodonts from the Chazy and C<strong>in</strong>c<strong>in</strong>nati<br />

Group of the Cambro-Silurian, and from the Hamilton and<br />

Genesee Shale divisions of the Devonian, <strong>in</strong> Canada and U.S.:<br />

Quarterly Journal of the Geological Society of London, v. 35,<br />

p. 357-368.<br />

- , 1879b, On annelid jaws from the Cambro-Silurian, Silurian,<br />

and Devonian formations <strong>in</strong> Canada...: Quarterly Journal of<br />

the Geological Society of London, v. 35, p. 370-389; (abstr.),<br />

Nature, v. 19, p. 523.<br />

-’ 1899, On radiolarians <strong>in</strong> the Devonian rocks of New South<br />

Wales: Quarterly Journal of the Geological Society of Lon-<br />

Hitchcock, Charles Henry, 1868a, New American fossil fish from<br />

the Devonian: Geological Magaz<strong>in</strong>e, v. 5, p. 184-185.<br />

-’ 1868B, New Carboniferous reptiles and fishes from Ohio,<br />

<strong>Kentucky</strong>, and Ill<strong>in</strong>ois: Geological Magaz<strong>in</strong>e, v. 5, p. 186-<br />

187.<br />

-<br />

don, V. 55, p. 38-50.<br />

, 1903, Notice of a species of Acidaspis from a boulder of<br />

Marcellus Shale, found <strong>in</strong> drift, at West Bloomfield, N. J.:<br />

American Museum of Natural History Bullet<strong>in</strong>, v. 19, p. 97-98.*<br />

31


0525<br />

0526<br />

0527<br />

0528<br />

0529<br />

0530<br />

0531<br />

0532<br />

0533<br />

0534<br />

0535<br />

0536<br />

0537<br />

0538<br />

0539<br />

0540<br />

Hlav<strong>in</strong>, W. J., 1966, A prelim<strong>in</strong>ary note on some significant<br />

fossil f<strong>in</strong>ds Erom the 1-71 paleontological salvage operation:<br />

Society of Vertebrate Paleontology News Bullet<strong>in</strong>, v. 76,<br />

p. 49 -50.<br />

-’ 1972, New associations of fossil sharks from the Cleveland<br />

Shale, Upper Devonian (Famennian) (abstr.) : Northeastern<br />

Section, 7th Annual Meet<strong>in</strong>g, Geological Society of America<br />

Abstracts with Programs, v. 4, p. 21.<br />

-’ 1976, Biostratigraphy of the Late Devonian black shales<br />

on the Cratonal Marg<strong>in</strong> of the Appalachian Geosyncl<strong>in</strong>e (abstr.):<br />

Dissertation Abstracts International, v. 37, no. 3, p. 1150B.<br />

Hlav<strong>in</strong>, W. J., and Boerske, J. R., Jr., 1973, Mylostoma variable<br />

Newberry, an Upper Devonian dumphagous brachythoracid Arthrodire,<br />

with notes on related taxa: Breviora, no. 412, 12 pp.*<br />

Hoffmeister, W. S., Stapl<strong>in</strong>, F. L., and Malloy, R. E., 1955, Geologic<br />

range of Paleozoic plant spores <strong>in</strong> North America: Micropaleontology,<br />

v. 1, p-. 9-27.<br />

Holden, F. T., 1942, Lower and Middle Mississippian stratigraphy<br />

of Ohio: Journal of Geology, v. 50, p. 34-67.<br />

Holdsworth, B. K., 1977, Paleozoic radiolaria: Stratigraphic<br />

distribution <strong>in</strong> Atlantic borderlands: <strong>in</strong> Stratigraphic<br />

Micropaleontology of Atlantic Bas<strong>in</strong> andTorderlands : Developments<br />

<strong>in</strong> Paleontology and Stratigraphy, no. 6, New York,<br />

Elsevier, p. 167-184.<br />

Holmes, Grace A., 1928, A bibliography of the conodonts with<br />

descriptions of Early Mississippian species: U.S. <strong>National</strong><br />

Museum Proceed<strong>in</strong>gs, v. 72, p. 1-38.<br />

Hoover, Karl V., 1960, Devonian-Mississippian shale sequence <strong>in</strong><br />

Ohio: Ohio Department of Natural Resources, Geological<br />

Survey Information Circular 27, 154 pp.<br />

Hopk<strong>in</strong>s, Thomas Cramer, 1892, The Eureka Shale of northern Arkansas<br />

(abstr.): Proceed<strong>in</strong>gs of the American Association for<br />

the Advancement of Science, v. 40, p. 256-257.*<br />

Hosk<strong>in</strong>s, J. H., 1930, The genus Callixylon <strong>in</strong> Ohio: Ohio<br />

Academy of Science Proceed<strong>in</strong>gs, v. 8, part 7, p. 410-411.<br />

Hosk<strong>in</strong>s,<br />

+<br />

J. R., and Blickle, Arthur H., 1940, Concretionary<br />

Calli lon from the Ohio Devonian black shale: American<br />

Midlan Naturalist, v. 23, p. 472-481.<br />

Hosk<strong>in</strong>s, J. H., and Cross, A. T., 1947, Survey of certa<strong>in</strong> Devonian-Mississippian<br />

transition flora, part I, Geological considerations;<br />

part 11, Paleobotanical considerations (abstr.):<br />

Geological Society of America Bullet<strong>in</strong>, v. 58, p. 1194.<br />

- , 1951, The structure and classification of four plants from<br />

the New Albany Shale: American Midland Naturalist, v. 46,<br />

p. 684-716.<br />

- , 1952, The petrifaction flora of the Devonian-Mississippian<br />

black shale: Palaeobotanist, v. 1, p. 215-238.*<br />

House, M. R., 1962, Observations on the ammonoid succession of<br />

the North American Devonian: Journal of Paleontology, v. 36,<br />

p. 247-284.<br />

32


0541<br />

0542<br />

0543<br />

0544<br />

0545<br />

0546<br />

0547<br />

0548<br />

0549<br />

0550<br />

0551<br />

0552<br />

0553<br />

0554<br />

0555<br />

0556<br />

0557<br />

0558<br />

House, M. R., 1965, A study of the Tornoceratidae: the succession<br />

of Tornoceras and related genera <strong>in</strong> the North<br />

American Devonian: Philosophical Transactions of the Royal<br />

Society of London, Series B., v. 250, no. 763, p. 79-130."<br />

-' 1968, Devonian ammonoid zonation and correlation between<br />

North America and Europe: <strong>in</strong> Oswald, D. H. (ed.), International<br />

Symposium on the D'e'onian System, 1967 Proceed<strong>in</strong>gs,<br />

Calgary, Alberta, Alberta Society of Petroleum Geologists,<br />

V. 2, p. 1061-1068.<br />

-' 1973a, An analysis of Devonian goniatite distributions:<br />

- <strong>in</strong> Hughes, N. F. (ed.), Organisms and cont<strong>in</strong>ents through<br />

time: Special Papers <strong>in</strong> Palaeontology, no. 12, p. 305-317.<br />

-' 1973b, Devonian goniatites: <strong>in</strong> Hallam, A. (ed.), Atlas<br />

of Palaeobiogeography : New Yorr Elsevier, p. 97-104.<br />

- , 1975a, Facies and time <strong>in</strong> Devonian tropical areas: Proceed<strong>in</strong>gs<br />

of the Yorkshire Geological Society, v. 40, p. 233-<br />

288.<br />

-' 1975b, Faunas and time <strong>in</strong> Devonian tropical areas: Proceed<strong>in</strong>gs<br />

of the Yorkshire Geological Society, v. 40, p. 459-<br />

490.<br />

-' 1978, Devonian ammonoids from the Appalachians and their<br />

bear<strong>in</strong>g on <strong>in</strong>ternational zonation and correlation: Special<br />

Papers <strong>in</strong> Palaeontology, no. 21, 70 pp.<br />

- , 1979, Biostratigraphy of the early Ammonoidea: <strong>in</strong><br />

House, M. R., Scrutton, C. T., and Bassett, M. G. (eds.),<br />

The Devonian System, Special Papers <strong>in</strong> Palaeontology, no.<br />

23, p. 263-280.<br />

House, M. R., and Pedder, A. E. H., 1963, Devonian goniatites<br />

and stratigraphical correlations <strong>in</strong> western Canada: PalaeontOlOgy,<br />

V. 6, p. 491-539.<br />

House, M. R., Scrutton, C. T., and Bassett, M. G. (eds.), 1979,<br />

The Devonian System: Special Papers <strong>in</strong> Palaeontology, no. 23,<br />

353 pp.<br />

Huddle, J. W., 1933, Mar<strong>in</strong>e fossils from the tap of the New<br />

Albany Shale of Indiana: American Journal of Science, 5th<br />

series, v. 25, p. 303-314.<br />

- , 1934, New Albany conodonts: Bullet<strong>in</strong>s of American Paleontology,<br />

V. 21, p. 28- 29.<br />

- , 1968, Redescription of Upper Devonian conodont genera and<br />

species proposed by Ulrich and Bassler <strong>in</strong> 1926: U.S. Geological<br />

Survey Professional Paper 578, 55 pp.<br />

- , 1970, Revised descriptions of some Late Devonian Polygnathid<br />

conodonts: Journal of Paleontology, v. 44, p. 1029-1040.<br />

Hueber, F. M., 1961 , Psilophytes <strong>in</strong> the Upper Devonian of New<br />

York (abstr.): American Journal of Botany, v. 48, p. 541.<br />

Hughes, N. F., 1973, Organisms and cont<strong>in</strong>ents through time:<br />

Special Papers <strong>in</strong> Palaeontology, no. 12, 334 pp.<br />

Hunter, C. D., and Munyan, A. C., 1935, <strong>Black</strong> shales: <strong>in</strong> Devonian<br />

<strong>Shales</strong> - A Symposium: Appalachian Geological SEiety,<br />

v. 1, 7 pp.<br />

Hussakof, L., 1905a, Notes on the Devonian 'placoderm' D<strong>in</strong>ichthys<br />

<strong>in</strong>tewedius Newb.: American Museum of Natural History Bullet<strong>in</strong>,<br />

v. 21, p. 409-414.*<br />

33


0559<br />

05 60<br />

0561<br />

0562<br />

0563<br />

0564<br />

0565<br />

0566<br />

0567<br />

0568<br />

0569<br />

0570<br />

0571<br />

0572<br />

0573<br />

0574<br />

0575<br />

0576<br />

0577<br />

Hussakof, Louis, 1905b, On the structure of two imperfectly<br />

known D<strong>in</strong>ichthyids: American Museum of Natural History<br />

Bullet<strong>in</strong>, Y. 21, p. 409-414.*<br />

- , 1906, <strong>Studies</strong> on the Arthrodira: American Museum of<br />

Natural History Memoir, v. 9, part 3, p. 105-154.<br />

-9 1908a, Catalogue of types and figured specimens of fossil<br />

vertebrates <strong>in</strong> the American Museum of Natural History, part<br />

I, Fishes: American Museum of Natural History Bullet<strong>in</strong>,<br />

V. 25, p. 1-103.*<br />

- , 1908b, Review of Devonic fishes of the New York formations,<br />

by C. R. Eastman: Science, new series, v. 28, p. 311-313.*<br />

- , 1909, The systematic relationships of certa<strong>in</strong> American<br />

Arthrodires: American Museum of Natural History Bullet<strong>in</strong>,<br />

V. 26, p. 263-272.<br />

- , 1911, Notes on some Upper Devonian Arthrodira from Ohio,<br />

U.S.A., <strong>in</strong> the British Museum (Natural History): Geological<br />

Magaz<strong>in</strong>e, 5th series, v. 8, p. 123-238.<br />

-, 1912, Notes on the Devonic fishes from Scaumenac Bay,<br />

Quebec: New York State Museum Bullet<strong>in</strong>, v. 158, p. 127-139.<br />

Dental elements <strong>in</strong> the Arthrodire Titanichthys (abstr.) :<br />

Geological Society of America Bulleth, v. 41, p. 196.<br />

thtssakof,-Louis, and Bryant, W. L., 1915, The fauna of the conodont<br />

bed (basal Genesee) Eighteenmile Creek, N. Y. (abstr.) :<br />

Geological Society of America Bullet<strong>in</strong>, v. 26, p. 154.<br />

- , 1918, Catalog of the fossil fishes <strong>in</strong> the museum of the<br />

Buffalo Society of Natural Sciences: Buffalo Society of<br />

Natural Sciences Bullet<strong>in</strong>, v. 12, 346 pp.*<br />

Hyde, J. E., 1911, The ripples of the Bedford and Berea fonnations<br />

of central and southern Ohio, with notes on the paleogeography<br />

of that epoch: Journal of Geology, v. 19, p. 257-<br />

269.<br />

- , 1926, Collect<strong>in</strong>g fossil fishes from the Cleveland Shale:<br />

Natural History, v. 26, p. 497-504.<br />

- , 1928a, Fossil fish<strong>in</strong>g <strong>in</strong> Cleveland Shale: Cleveland<br />

Museum of Natural History Popular Publication, v. I, 12 pp.*<br />

- , 1928b, Fossil fish<strong>in</strong>g <strong>in</strong> the Cleveland Shale: Our Garden,<br />

August and September Issue.<br />

- , 1953, Mississippian formations of central and southern<br />

Ohio: <strong>in</strong> Marple, M. F. (ed.), Ohio Geological Survey Bullet<strong>in</strong><br />

51, 335 pp.<br />

- , 1965, Fossil dig - Part 2, An historical review of earlier<br />

days: Explorer, v. 7, no. 4, p. 28-31.*<br />

Hylander, C. J., 1922, A Mid-Devonian Callixylon: American<br />

Journal of Science, 5th series, v. 4, p. 315-321.<br />

Inners, J. D., 1975, The Stratigraphy and Paleontology of the<br />

Onesquethaw Stage <strong>in</strong> Pennsylvania and Adjacent States: Unpublished<br />

Ph.D. thesis, University of Massachussetts, Amherst,<br />

666 pp.<br />

- , 1979, The Onesquethaw Stage <strong>in</strong> south-central Pennsylvania<br />

and nearby areas: <strong>in</strong> Dennison, John M., and others, Devonian<br />

<strong>Shales</strong> <strong>in</strong> SouthTentral Pennsylvania and Maryland, 44th<br />

Annual Field Conference of Pennsylvania Geologists, Guidebook,<br />

Harrisburg, Pennsylvania, Bureau of Topographic and<br />

Geologic Survey, p. 38-55.<br />

.- ,*<br />

34


0578<br />

0579<br />

0580<br />

0581<br />

0582<br />

0583<br />

0584<br />

0585<br />

0586<br />

0587<br />

0588<br />

0589<br />

0590<br />

0591<br />

0592<br />

0593<br />

0594<br />

0595<br />

05 96<br />

0597<br />

0598<br />

Irv<strong>in</strong>g, E., 1977, Drift of the major cont<strong>in</strong>ental blocks s<strong>in</strong>ce<br />

the Devonian: Nature, London, v. 270, p. 304-309.<br />

Jarvik, E., 1955, The oldest tetrapods and their forerunners:<br />

Scientific Monthly, v. 80, p. 141-154.<br />

-<br />

, 1968, Aspects of vertebrate phylogeny:<br />

<strong>in</strong> Orvig, Tor<br />

(ed. ) , Current Problems of Lower VertebratrPhylogeny ,<br />

Nobel Symposium 4, Stockholm, 1967 Proceed<strong>in</strong>gs, New York,<br />

Interscience, p. 497-527.<br />

Jillson, W. R., 1919, A bibliography of <strong>Kentucky</strong> petroleum,<br />

natural gas, asphalt, and oil shale: <strong>Kentucky</strong> Department<br />

of Geology and Forestry, v. 1, no. 1, p. 37-43.<br />

- , 1927, Geology of, the oil shales of the eastern United<br />

States: <strong>Kentucky</strong> Geological Survey, series 6, Pamphlet 10,<br />

p. 15.<br />

-’ 1950, Geology of Button Knob and vic<strong>in</strong>ity: Frankfort,<br />

Roberts Pr<strong>in</strong>t<strong>in</strong>g Co., p. 22.<br />

- , 1951, Geology of Cumberland County, <strong>Kentucky</strong>: Frankfort,<br />

Roberts Pr<strong>in</strong>t<strong>in</strong>g Co., p. 61.<br />

-9 1958, Geology of Barren County, <strong>Kentucky</strong>: Frankfort, Perry<br />

Publish<strong>in</strong>g Co., p. 63.<br />

-’ 1963, Geology of the area about Stanton, Kentccky: Frankfort,<br />

Roberts Pr<strong>in</strong>t<strong>in</strong>g Co., p. 18.<br />

-’ 1964, Geology of the area about Virden, Powell County,<br />

<strong>Kentucky</strong>: Frankfort, Roberts Pr<strong>in</strong>t<strong>in</strong>g Co., p. 17, 19.<br />

-’ 1965, The geology of Casey County, <strong>Kentucky</strong>: Frankfort,<br />

Roberts Pr<strong>in</strong>t<strong>in</strong>g Co., 108 pp.<br />

-’ 1969a, The geology of Clark County, <strong>Kentucky</strong>: Frankfort,<br />

Roberts Pr<strong>in</strong>t<strong>in</strong>g Co., p. 47.<br />

-’ 19698, The geologic history of <strong>Kentucky</strong>: Frankfort,<br />

Roberts Pr<strong>in</strong>t<strong>in</strong>g Co., p. 60-63.<br />

Johnson, J. G., 1970, Taghanic onlap and the end of North America<br />

Devonian prov<strong>in</strong>ciality: Geological Society of America Bullet<strong>in</strong>,<br />

v. 81, p. 2077-2105.<br />

-’ 1974, Ext<strong>in</strong>ction of perched faunas: Geology, v. 2, p. 479-<br />

482.<br />

-’ 1979, Devonian brachiopod biostratigraphy: <strong>in</strong> House, M. R.,<br />

Scrutton, C. T., and Bassett, M. G. (eds.), ThrDevonian<br />

System: Special Papers <strong>in</strong> Palaeontology, no. 23, p. 291-306.<br />

Johnson, J. G., and Boucot, A. J., 1973, Devonian brachiopods:<br />

- <strong>in</strong> Hallam, A. (ed.), Atlas of Paleobiogeography, Amsterdam,<br />

Elsevier, p. 89-96.<br />

Johnson, J. H., and Konishi, K., 1958, <strong>Studies</strong> of Devonian algae:<br />

Colorado School of<br />

+<br />

M<strong>in</strong>es, Quarterly, v. 53, 114 pp.<br />

Johnson, T., 1911, Is Archaeo teris a pteridosperm?: Scientific<br />

Proceed<strong>in</strong>gs of the Royal l<strong>in</strong> Society, v. 13, p. 114-136.*<br />

Jones, Michael, L., and Dennison, John M., 1970, Oriented fossils<br />

as paleocurrent <strong>in</strong>dicators <strong>in</strong> Paleozoic lutites of southern<br />

Appalachians: Journal of Sedimentary Petrology, v. 40,<br />

p. 642-649.<br />

Jones, Thomas Rupert, 1890, On some Devonian and Silurian Ostracoda<br />

from North America, France, and the Bosphorus: Quarterly<br />

Journal of the Geological Society of London: v. 46,<br />

p. 534-556.<br />

35


0599<br />

0600<br />

0601<br />

0602<br />

0603<br />

0604<br />

0605<br />

0606<br />

0607<br />

0608<br />

0609<br />

0610<br />

0611<br />

0612<br />

0613<br />

0614<br />

Kelley, James C., 1968, Geology of the Chattanooga Shale of the<br />

Elkmont quadrangle, Alabama (abstr.) : Alabama Academy of<br />

Science Journal, v. 39, p. 208- 209.<br />

Kepferle, Roy C., 1966, Geologic Map of the Howardstown quadrangle,<br />

Central <strong>Kentucky</strong>: U.S. Geological Survey Geologic<br />

Quadrangle Map GQ-50s.<br />

-, 1968, Geologic Map of the Shepherdsville quadrangle, Bullitt<br />

County, <strong>Kentucky</strong>: U.S. Geological Survey Geologic<br />

Map GQ-740.<br />

-’ 1972, Geologic k p of the Brooks quadrangle, Bullitt and<br />

Jefferson Counties, <strong>Kentucky</strong>: U.S. Geological Survey Geologic<br />

Quadrangle Map GQ-961.<br />

-’ 1973, Geologic Map of the Raywick quadrangle, <strong>Kentucky</strong>:<br />

U.S. Geological Survey Geologic Quadrangle Map GQ-1048.<br />

- , 1974, Geologic Map of the Louisville East quadrangle,<br />

Jefferson County, <strong>Kentucky</strong>: U.S. Geological Sumey Geologic<br />

Quadrangle Map GQ-1203.<br />

Kepferle, Roy C., Lundegard, Paul, Maynard, J. B., Potter, Paul<br />

Edw<strong>in</strong>, Pryor, W. A., Samuels, Neil, and Schauf, Frederick J.,<br />

1978, Paleocurrent systems <strong>in</strong> shaly bas<strong>in</strong>s: prelim<strong>in</strong>ary<br />

results for Appalachian Bas<strong>in</strong> (Upper Devonian): <strong>in</strong> Schott,<br />

Gary L., and others (eds.) , First Eastern Gas ShaEs Symposium,<br />

Proceed<strong>in</strong>gs, Morgantown, West Virg<strong>in</strong>ia, U.S. Department<br />

of <strong>Energy</strong>, Morgantown <strong>Energy</strong> Research Center, MEN/<br />

SP-77/5, p. 434-441.<br />

Kesl<strong>in</strong>g, R. V., and Ploch, R. A., 1960, New Upper Devonian<br />

cyprid<strong>in</strong>acean ostracod from southern Indiana: University<br />

of Michigan Museum Paleontology Contributions, v. 15, p. 281-<br />

292.<br />

Kesl<strong>in</strong>g, R. V., Segall, R. T., and Sorensen, H. D., 1974, Overly<strong>in</strong>g<br />

Upper Devonian shales: & Devonian Strata of Emmet and<br />

Charlevoix Counties, Michigan: Michigan University Museum<br />

Papers on Paleontology, no. 7, p. 116-120.<br />

Keyes, Charles Roll<strong>in</strong>, 1897, Relations of the Devonian and Carboniferous<br />

<strong>in</strong> the upper Mississippi Valley: Academy of<br />

Science of St. Louis Transactions, v. 7, p. 357-369.*<br />

- , 1902, Devonian <strong>in</strong>terval <strong>in</strong> Missouri: Geological Society<br />

of America Bullet<strong>in</strong>, v. 13, p. 267-292.<br />

- , 1913a, Marked unconformity between Carboniferous and<br />

Devonian strata <strong>in</strong> upper Mississippi Valley: American<br />

Journal of Science, 4th series, v. 36, p. 160-164.<br />

- , 1913b, Late Devonic sequence of Iowa region (synopsis):<br />

Iowa Academy of Science Proceed<strong>in</strong>gs: v. 20, p. 205-206.*<br />

-’ 1938, Age of the Chattanooga black shales: PanAmerican<br />

Geologist, v. 70, p. 364-366.<br />

Kidston, R. and Lang, W. H., 1924, On the presence of tetrads of<br />

resistant spores <strong>in</strong> the tissue of Sporocarpon furcatum<br />

Dawson from the Upper Devonian of America: Royal Society of<br />

Ed<strong>in</strong>burghTransactions,v. 53, p. 597-602.*<br />

K<strong>in</strong>dle, Edward M., 1898, A catalog of the fossils of Indiana,<br />

accompanied by a bibliography of the literature relat<strong>in</strong>g to<br />

them: Indiana Department of Geology and Natural Resources<br />

22 Annual <strong>Report</strong>, p. 407-514.<br />

36


0615<br />

0616<br />

061 7<br />

061 8<br />

0619<br />

0620<br />

0621<br />

0622<br />

0623<br />

0624<br />

0625<br />

0626<br />

0627<br />

0628<br />

0629<br />

0630<br />

K<strong>in</strong>dle, Edward M., 1899, The Devonian and Lower Carboniferous<br />

faunas of southern Indiana and central <strong>Kentucky</strong>: Bullet<strong>in</strong>s<br />

of American Paleontology, v. 12, p. 1-112.<br />

- , 1900, Devonian fossils and stratigraphy of Indiana:<br />

Indiana Department of Geology and Natural Resources 25th<br />

Annual <strong>Report</strong>, p. 529-759.<br />

- , 1906, Faunas of the Devonian section near Altoon, Pa.:<br />

Journal of Geology, v. 14,<br />

+<br />

p. 631-635.<br />

-’ 1911, The recurrence of Tro idole tus car<strong>in</strong>atus <strong>in</strong> the<br />

Chemung fauna of Virg<strong>in</strong>ia: Journal o Geology, v. 19,<br />

p. 346-357.<br />

-J 1912a, The unconformity at the base of the Chattanooga<br />

Shale <strong>in</strong> <strong>Kentucky</strong>: American Journal of Science, 4th series,<br />

v. 33, p. 120-136.<br />

- , 1912b, The stratigraphic relations of the Devonian shale<br />

of northern Ohio: American Journal of Science, 4th series,<br />

V. 34, p. 187-213.<br />

- , 1913, Systematic paleontology of the Middle Devonian<br />

deposits of Maryland; Vermes, Ostracoda: Maryland Geological<br />

Survey, Middle and Upper Devonian, v. 6, p. 122, 335-338.<br />

-9 1914, Notes on the Oriskany Sandstone and the Ohio Shale<br />

of the Ontario Pen<strong>in</strong>sula: Canada Geological Survey Summary<br />

<strong>Report</strong> 1912, p. 286-290.*<br />

Kirchgasser, W. T., 1974, Notes on the ammonoid and conodont<br />

zonations of the Upper Devonian of southwestern New York:<br />

- <strong>in</strong> Peterson, Donald M. (ed.), Geology of Western New York<br />

State, New York State Geological Association Field Trip<br />

Guidebook, 46th Annual Meet<strong>in</strong>g, p. B9-Bl3.<br />

, 1975, Revision of Probeloceras Clarke, 1898 and related<br />

ammonoids from the Upper Devonian of western New York:<br />

Journal of Paleontology, v. 49, p. 58-90.<br />

Klapper, G., 1966, Upper Devonian and Lower Mississippian<br />

conodont zones <strong>in</strong> Montana, Wyom<strong>in</strong>g, and South Dakota:<br />

University of Kansas Paleontology Contributions, Paper 3,<br />

Klapper, G., and Furnish, W. M., 1962a, Conodont zonation <strong>in</strong> the<br />

Upper Devonian of eastern Iowa: Iowa Academy of Science<br />

Proceed<strong>in</strong>gs, v. 69, p. 400-411.<br />

- , 1962b, Devonian-Mississippian Englewood Formation <strong>in</strong> <strong>Black</strong><br />

-<br />

p. 1-43.<br />

Hills, South Dakota: American Association of Petroleum Geologists<br />

Bullet<strong>in</strong>, v. 46, p. 2071-2078.<br />

Klapper, G., and Phillip, G. M., 1971, Devonian conodont apparatuses<br />

and their vicarious skeletal elements: Lethaia, v. 4,<br />

p. 429-452.<br />

Klapper, G., Phillip, G. M., and Jackson, J. H., 1970, Revision<br />

thus varcus group (Conodonta, Middle Devonian):<br />

Neues Of the Jahrbuche ==-I&<br />

Geologie und Palontologie Monatshefte,<br />

no. 11, p. 650-667.<br />

Klapper, Gilbert, and Ziegler, Willi, 1979, Devonian conodont<br />

biostratigraphy: <strong>in</strong> House, M. R., Scrutton, C. T., and<br />

Bassett, M. G. (edz), The Devonian System, Special Papers<br />

<strong>in</strong> Palaeontology, no. 23, p. 199-224.<br />

37


0631<br />

0632<br />

0633<br />

0634<br />

0635<br />

0636<br />

0637<br />

0638<br />

0639<br />

0640<br />

0641<br />

0642<br />

0643<br />

0644<br />

0645<br />

0646<br />

0647<br />

Kle<strong>in</strong>, G. deV., 1967, Comparison of recent and ancient tidal<br />

flat and estuar<strong>in</strong>e sediments: American Association for<br />

the Advancement of Science Publication 83, p. 207-218.*<br />

Klepser, H. J., 1936, Overlap relations of the Chattanooga Shale<br />

(abstr.): Geological Society of America Proceed<strong>in</strong>gs,<br />

p. 370.*<br />

-' 1973, The Lower Mississippian rocks of the eastern Highland<br />

Rim: Ph.D. thesis, Abstracts of Doctor's Dissertations,<br />

no. 24, Ohio State University Press.<br />

Knapp, Thomas S., and 'Ik<strong>in</strong>em, Joseph C., 1933, Geologic structure<br />

of a small area west of Mill Spr<strong>in</strong>gs, <strong>Kentucky</strong>: Papers of<br />

the Michigan Academy of Science, Arts, and Letters, v. 18,<br />

p. 413-420.<br />

Knechtel, M. M., and Hass, W. H., 1938, K<strong>in</strong>derhook conodonts<br />

from the Little Rocky Mounta<strong>in</strong>s, northern Montana: Journal<br />

of Paleontology, v. 12, p. 518 -519.<br />

Knowlton, F. H., 1889, A revision of the genus Araucarioxylon<br />

of Kraals, with compiled descriptions and partial synonomy of<br />

the species: U.S. <strong>National</strong> Museum Proceed<strong>in</strong>gs, v. 12,<br />

p. 601-634.<br />

Koenig, John W., 1961, Unassigned, Devonian or Mississippian<br />

formations: <strong>in</strong> Koenig, John W., The stratigraphic succession<br />

<strong>in</strong> Missouri, &somi Division of Geological Survey and Water<br />

Resources, 2d series, v. 40, p. 41-49.<br />

Kohout, D. L., and Malcuit, R. J., 1969, Environmental analysis<br />

of the Bedford Formation and associated strata <strong>in</strong> the<br />

vic<strong>in</strong>ity of Cleveland, Ohio: Compass, v. 46, p. 192-206.<br />

Konishi, K., 1958, Some Devonian calcareous algae from Alberta,<br />

Canada: <strong>in</strong> Johnson, J. H.,and Konishi, K., <strong>Studies</strong>-<strong>in</strong><br />

Devonian Algae, part 2, Colorado School of M<strong>in</strong>es Quarterly,<br />

V. 53, p. 65-109.<br />

Krasilov, V. A., 1975, Paleoecology of terrestrial plants: New<br />

York, John Wiley and Sons, 283 pp.<br />

Krebs, Wolfgang, 1979, Devonian bas<strong>in</strong>al facies: <strong>in</strong> House, M. R.,<br />

Scrutton, C. T. , and Bassett, M. G. (eds.), Devonian<br />

System, Special Papers <strong>in</strong> Palaeontology, no. 23, p. 125-139.<br />

Kume, Jack, 1963, The Bakken and Englewood formations of North<br />

Dakota and northwestern South Dakota: North Dakota Geological<br />

Survey Bullet<strong>in</strong> 39, 87 pp.<br />

Kuanoel, Bernhard, 1948, Environmental significance of dwarfed<br />

cephalopods: Journal of Sedimentary Petrology, v. 18,<br />

p. 61-64.<br />

Ladd, H. S. (ed.), 1957, Treatise on Mar<strong>in</strong>e Ecology and Paleoecology:<br />

Geological Society of America Memoir 67, v. 2,<br />

1077 pp.<br />

Lalicker, C. G., 1948, Dwarfed protozoan faunas: Journal of<br />

Sedimentary Petrology, v. 18, p. 51-55.<br />

Lamar, J. E., Armon, W. J., and Simon, J. A., 1956, Ill<strong>in</strong>ois oil<br />

shales: Ill<strong>in</strong>ois State Geological Survey Circular 208,<br />

21 pp.*<br />

Lamborn, R. E., 1927, The Olentangy Shale <strong>in</strong> southern Ohio:<br />

Journal of Geology, v. 35, p. 708-722.<br />

38


064 8<br />

0649<br />

0650 '<br />

065 1<br />

0652<br />

0653<br />

0654<br />

0655<br />

0656<br />

0657<br />

0658<br />

0659<br />

0660<br />

0661<br />

0662<br />

0663<br />

0664<br />

Lamborn, R. E., 1929, Notes on the character and occurrence of<br />

of the Olentangy Shale <strong>in</strong> southern Ohio: Ohio Journal of<br />

Science, v. 29, p. 27-28.<br />

Lamey, S. C., and Childers, E. E., 1977, Organic composition<br />

of Devonian shale from Perry County, <strong>Kentucky</strong>: Morgantown,<br />

West Virg<strong>in</strong>ia, Morgantown <strong>Energy</strong> Research Center, MERC/TPR-<br />

77/3, 26 pp.<br />

Lang, W. H., 1945, The Hooker Lecture: Pachytheca and some<br />

anomalous early plants (Prototaxites, Nematothallus, - Parka,<br />

Foerstia, Orvillea n.g.): Journal of the L<strong>in</strong>neaen Society,<br />

Botany, V. 52, p. 535-552.*<br />

La Rocque, Aurele, and Marple, M. F., 1956, Ohio fossils: Ohio<br />

Geological Survey Bullet<strong>in</strong> 54, p. 19-21, 74-95.<br />

Leatherock, Constance, and Bass, N. W., 1936, Chattanooga Shale<br />

<strong>in</strong> Osage County, Oklahoma and adjacent areas: American<br />

Association of Petroleum Geologists Bullet<strong>in</strong>, v. 20, p. 91-<br />

101.<br />

Le Conte, Joseph, 1910, Devonian System and the age of fishes:<br />

<strong>in</strong> Elements of Geology: New York, D. Appleton and Co.,<br />

342-358.<br />

Leidy, Joseph, 1856, Descriptions of some rema<strong>in</strong>s of fishes from<br />

the Carboniferous and Devonian formations of the United<br />

States: Academy of Natural Sciences of Philadelphia Journal:<br />

2d series, v. 3, p. 159-165.*<br />

Lennox, T. H., 1886, The fossil sharks of the Devonian: Canadian<br />

Institute Proceed<strong>in</strong>gs, 3d series, v. 3, p. 120-121."<br />

Lesquereaux, L., 1876, Review of the'fossil flora of North<br />

America: U.S. Geological Survey Territorial Bullet<strong>in</strong><br />

(F. V. Hayden <strong>in</strong> charge), v. 1, no. 5, series 2, p. 233-248.<br />

Lewis, R. Q., Sr., 1967a, Geologic Map of the Frogue quadrangle,<br />

<strong>Kentucky</strong>-Tennessee: U.S. Geological Survey Geologic Quadrangle<br />

Map GQ-675.<br />

-' 1967b, Geologic Map of the Dubre quadrangle, southern<br />

<strong>Kentucky</strong>: U.S. Geological Survey Geologic Quadrangle Map<br />

GQ-676.<br />

Lewis, T. L., 1976, Late Devonian and Early Mississippian paleoenvironments,<br />

northern Ohio (abstr.): Geological Society of<br />

America Abstracts with Programs, v. 8, p. 220.<br />

Lewis, T. L., and Schwieter<strong>in</strong>g, J. F., 1971, Distribution of the<br />

Cleveland black shale <strong>in</strong> Ohio: Geological Society of America<br />

Bullet<strong>in</strong>, v. 82, p. 3477-3482.<br />

L<strong>in</strong>dstrom, M., 1974, The conodont apparatus as a food-gather<strong>in</strong>g<br />

mechanism: Palaeontology, v. 17, p. 729-744.<br />

L<strong>in</strong>eback, J. A., 1964, Stratigraphy of the New Albany Shale <strong>in</strong><br />

southeastern Indiana (abstr.): Geological Society of.<br />

America Special Paper 76, p. 102, 103.<br />

- , 1965, Stratigraphy and Depositional Environment of the New<br />

Albany Shale (Upper Devonian and Lower Mississippian) <strong>in</strong><br />

Indiana (abstr.): Dissertation Abstracts International,<br />

v. 25, no. 11, p. 6538B.<br />

-8 1968, Subdivisions and depositional environments of the<br />

New Albany Shale (Devonian-Mississippian) <strong>in</strong> Indiana: American<br />

Association of Petroleum Geologists Bullet<strong>in</strong>, v. 52,<br />

p. 1291-1303.<br />

39


0665<br />

0666<br />

0667<br />

0668<br />

0669<br />

0670<br />

0671<br />

0672<br />

0673<br />

0674<br />

0675<br />

0676<br />

0677<br />

0678<br />

0679<br />

0680<br />

068 1<br />

0682<br />

L<strong>in</strong>eback, J. A., 1970, Stratigraphy of the New Albany Shale <strong>in</strong><br />

Indiana: Indiana Geological Survey Bullet<strong>in</strong> 44, 73 pp.<br />

L<strong>in</strong>ney, W. M., 1882a, Geology of L<strong>in</strong>coln County: Geological<br />

Survey of <strong>Kentucky</strong>, series 2, v. 3, p. 20-22.<br />

-9 1882b, <strong>Report</strong> on the geology of Garrard County: <strong>Kentucky</strong><br />

Geological Survey, series 2, v. 3, 30 pp.<br />

-’ 1884a, <strong>Report</strong> on the geology of Spencer and Nelson<br />

Counties: Geological Survey of <strong>Kentucky</strong>, series 2, v. 5,<br />

part 1, p. 46-50.<br />

-<br />

, 1884b, <strong>Report</strong> on the Geology of Clark County:<br />

Geological<br />

Survey of <strong>Kentucky</strong>, series 2, v. 5, part 2, p. 33-37.<br />

L<strong>in</strong>sley, R. M., 1979, Gastropods of the Devonian: <strong>in</strong> House,<br />

M. R., Scrutton, C. T., and Bassett, M. G. (eds.), The<br />

Devonian System: Special Papers <strong>in</strong> Palaeontology, no. 23,<br />

p. 249-254.<br />

Logan, W. E.,and Hunt, T. S., 1854, On the chemical composition<br />

of recent and fossil l<strong>in</strong>gulae and some other shells: American<br />

Journal of Science, 2d series, v. 17, p. 235-239; Canadian<br />

Journal , v. 2, p. 264-265.<br />

Loomis, F. B., 1903, The dwarf fauna of the pyrite layer at the<br />

horizon of the Tully Limestone <strong>in</strong> western New York: New York<br />

State Museum Bullet<strong>in</strong> 69, p. 892-920.<br />

Loranger, D. M., 1954, Ireton microfossil zones of central and<br />

northeastern Alberta: <strong>in</strong> Clark, L. M. (ed.), Western Canada<br />

Sedimentary Bas<strong>in</strong> - A symposium: Ralph Leslie Rutherford<br />

Memorial Volume, Tulsa, American Association of Petroleum<br />

Geologists, p. 182-203.<br />

Lyon, S., and Casseday, S. A., 1859, Description of n<strong>in</strong>e species<br />

of Cr<strong>in</strong>oidea from the Subcarboniferous rocks of Indiana and<br />

<strong>Kentucky</strong>: American Journal of Science, 2d series, v. 28,<br />

p. 233-246.<br />

McAlester, A. L., 1962, Upper Devonian pelecypods of the New York<br />

Chemung Stage: Yale Peabody Museum of Natural History Bullet<strong>in</strong>,<br />

v. 16, 88 pp.<br />

- ,* 1963, Pelecypods as stratigraphic guides <strong>in</strong> the Appalachian<br />

Upper Devonian: Geological Society of America Bullet<strong>in</strong>, v. 74,<br />

p. 1209-1224.<br />

- , 1970, Animal ext<strong>in</strong>ctions, oxygen consumption, and atmosphere<br />

history: Journal of paleontology, v. 44, p. 405-409.<br />

McCave, I. N., 1969, Correlation us<strong>in</strong>g a sedimentological model<br />

of part of the Hamilton Group (Middle Devonian), New York<br />

state: American Journal of Science, v. 267, p. 567-591.<br />

McFarlan, A. C., 1943, Geology of <strong>Kentucky</strong>: Lex<strong>in</strong>gton, University<br />

of <strong>Kentucky</strong>, p. 50-56.<br />

McFarlan, A. C., and White, W. H., 1952, Boyle - Duff<strong>in</strong> - Ohio<br />

Shale relationships: <strong>Kentucky</strong> Geological Survey Bullet<strong>in</strong>,<br />

series 9, v. 10, 24 pp.<br />

McGhee, G. R., Jr., 1976, Late Devonian benthic mar<strong>in</strong>e communities<br />

of the central Appalachian Allegheny front: Lethaia, v. 9,<br />

p. 111-136.<br />

- , 1977a, Paleocomnnmity evolution: an exam<strong>in</strong>ation of the<br />

Frasnian (Late Devonian) of the eastern United States (abstr.):<br />

Geological Society of America Abstracts with Programs, V. 9,<br />

p. 299-300.<br />

40


0683<br />

0684<br />

0685<br />

0686<br />

068 7<br />

0688<br />

0689<br />

0690<br />

069 1<br />

069 2<br />

069 3<br />

0694<br />

0695<br />

0696<br />

0697<br />

0698<br />

0699<br />

McGhee, G. R., Jr., 1977b, The Frasnian-Famennian (Late Devonian)<br />

boundary with<strong>in</strong> the Foreknobs Formation, Maryland and West<br />

Virg<strong>in</strong>ia: Geological Society of America Bullet<strong>in</strong>, v. 88,<br />

p. 806-808.<br />

- , 1979, The benthic mar<strong>in</strong>e fauna of the Foreknobs Formation<br />

(Late Devonian) <strong>in</strong> Maryland, West Virg<strong>in</strong>ia, and Virg<strong>in</strong>ia:<br />

- <strong>in</strong> Avary, K. L. (ed.), Devonian Clastics <strong>in</strong> West Virg<strong>in</strong>ia<br />

and Maryland, Field Trip Guide, Morgantown, West Virg<strong>in</strong>ia,<br />

West Virg<strong>in</strong>ia Geological and Economic Survey, p. 93-100.<br />

-<br />

, 1980, Late Frasnian (Devonian) benthic mar<strong>in</strong>e communities<br />

of New York and the central Appalachians: Geological Society<br />

of America Abstracts with Programs, v. 12, p. 73.<br />

McGregor, D. J., 1954, Stratigraphic analysis of Upper Devonian<br />

and Mississippian rocks <strong>in</strong> Michigan Bas<strong>in</strong>:<br />

America Associa-<br />

tion of Petroleum Geologists Bullet<strong>in</strong>, v. 38, p. 2324-2356.<br />

-' 1960, Devonion spores from Melville Island, Canadian Arctic<br />

Archipelago: Palaeontology, v. 3, p. 26-44.<br />

McGregor, D. J., and Uyeno, T. T., 1972, Devonian spores and<br />

conodants of Melville and Bathurst Islands, District of Frank-<br />

l<strong>in</strong>e: Geological Survey of Canada Paper 71-13, 36 pp.<br />

McGregor, D. J., 1979a, Devonian miospores of North America:<br />

Palynology, v. 3, p. 31-52.<br />

-3 1979b, Spores <strong>in</strong> Devonian stratigraphical correlation: &<br />

House, M. R., Scrutton, C. T., and Bassett, M. G. (eds.),<br />

The Devonian System, Special Papers <strong>in</strong> Palaeontology, no. 23,<br />

p. 163-184.<br />

McIntosh, G. C., 1978, Psuedoplanktonic cr<strong>in</strong>oid colonies attached<br />

to Upper Devonian (Frasnian) logs (abstr.): Geological<br />

Society of America Abstracts with Programs, v. 10, p. 453.<br />

McKee, R. H., 1925, Shale oil: New York, Chemical Catalog Co.,<br />

326 pp.<br />

McKelvey, V. E., 1959, Relatien of upwell<strong>in</strong>g mar<strong>in</strong>e waters to<br />

phosphorite and oil (abstr.): Geological Society of America<br />

Bullet<strong>in</strong>, v. 70, p. 1783-1784.<br />

- , 1967, Phosphate deposits: U.S. Geological Survey Bullet<strong>in</strong><br />

1252-D, p. Dl-D20.<br />

McKerrow, W. S., and Ziegler, A. M., Paleozoic oceans: Nature,<br />

Physical Science, v. 240, p. 92-94.<br />

McLaren, D. J., 1954, Upper Devonian Rhynchonellid zones <strong>in</strong> the<br />

Canadian Rocky Mounta<strong>in</strong>s: - <strong>in</strong> Clark, L. M. led.), Western<br />

Canada Sedimentary Bas<strong>in</strong>: A symposium: Ralph Leslie Rutherford<br />

Memorial Volume, American Association of Petroleum<br />

Geologists, Tulsa, p. 159.<br />

McLaughl<strong>in</strong>, R. E., and Reaugh, A. B., 1974, Palynomorphs <strong>in</strong> the<br />

Chattanooga black shale <strong>in</strong> Tennessee (abstr.): Geological<br />

Society of America Abstracts with Programs, v. 6, p. 381.<br />

Ma, T. Y. H., 1956, A re<strong>in</strong>vestigation of climate and relative<br />

positions of cont<strong>in</strong>ents dur<strong>in</strong>g the Devonian: Research on<br />

the Past Climate and Cont<strong>in</strong>ental Drift, v. 9, 116 pp.*<br />

- , 1960, The cause of late Paleozoic glaciation <strong>in</strong> Australia<br />

and South America: International Geologic Congress, 21st<br />

Session <strong>Report</strong>, Copenhagen, Part 12, p. 111-117.<br />

41


0700<br />

0701<br />

0702<br />

0703<br />

0704<br />

0705<br />

0706<br />

0707<br />

0708<br />

0709<br />

0710<br />

0711<br />

0712<br />

0713<br />

0714<br />

0715<br />

Maack, R., 1960, Zur Palaogeographie des Gondwanalandes:<br />

International Geologic Congress, 21st Session <strong>Report</strong>,<br />

Copenhagen, part 12, p. 35-55.<br />

Macauley, G., Penner, D. G., Proctor, R. M., and Tisdall,<br />

W. H., 1964, Chapter 7, Carboniferous: <strong>in</strong> McCrossan, R. G.,<br />

and Glaister, R. P. (eds.), Geological hstory of western<br />

Canada, Calgary, Alberta, Alberta Society of Petroleum<br />

Geologists, p. 89-112.<br />

Maher, S. W., 1956, Sandy zones <strong>in</strong> the Chattanooga of the<br />

eastern Highland Rim, Tennessee: Journal of Sedimentary<br />

Petrology, v. 26, p. 338-342.<br />

Malmberg, G. T., and Down<strong>in</strong>g, H. T., 1957, Devonian System:<br />

Geology and Ground-water resources of Madison County, AlaF<br />

bama: Geological Survey of Alabama County <strong>Report</strong> 3, p. 30-<br />

33.<br />

Malzahn, E., 1957, Devonishces Glazial im Staate Piaui (Brasilien),<br />

e<strong>in</strong> neur Beitrag zur Eiszeit des Devons: Beih. Geol. Jahrb.,<br />

V. 25, p. - 1-31.*<br />

Maroney, D., and Om, R. W., 1974, Ctenocularia delhiensis, a<br />

new species of the Conulata from the New Albany Shale (Upper<br />

Devonian) at Delphi, Indiana: Indiana Geological Survey<br />

Occassional Paper, no. 7, 6 pp.<br />

Marsh, 0. C., 1869, Amphibian footpr<strong>in</strong>ts from the Devonian:<br />

American Journal of Science, 4th series, v. 2, p. 274-275.<br />

Mart<strong>in</strong>, S. J., and Ziel<strong>in</strong>ski, R. E., 1978, A biostratigraphic<br />

analysis of core samples from wells drilled <strong>in</strong> the Devonian<br />

shale <strong>in</strong>terval of the Appalachian and Ill<strong>in</strong>ois bas<strong>in</strong>s: U.S.<br />

Department of <strong>Energy</strong>, Eastern Gas <strong>Shales</strong> Project, Open File<br />

<strong>Report</strong> 113, p. 9-22.<br />

Mason, David, 1962, mitized microfossils from the Upper Devonian<br />

black shale of southwestern Ontario and southern Michigan<br />

[abstr.): Canadian M<strong>in</strong><strong>in</strong>g Journal, v. 83, p. 95.<br />

Mather, K. F., 1920, Oil and gas resources of the northeastern<br />

part of Suarner County, Tennessee: Tennessee State Geological<br />

Survey Bullet<strong>in</strong> 24, Part 2-By 39 pp.*<br />

Mathew, G. F., 1906, New species and a new genus of Devonian<br />

plants: Natural History Society of New Bnmswick Bullet<strong>in</strong>,<br />

v. 24, (5 part 4), p. 393-398.*<br />

Mathews, G. B., 1940, New Lepidostrobi from central United States:<br />

Botanical Gazette, v. 102, p. 26-49.<br />

Matten, L. C., 1972, Callixylon from the Maury Formation (Lower<br />

Mississippian) of Tennessee: Journal of Paleontology, v. 46,<br />

p. 711-713.<br />

Maughn, E. K., 1976, Geologic Map of the Roxana quadrangle,<br />

Letcher and Harlan Counties, <strong>Kentucky</strong>: U.S. Geological<br />

Survey Geologic Quadrangle Map GQ-1299.<br />

Maxwell, C. H., 1965, Geologic Map of the Dunnville quadrangle,<br />

<strong>Kentucky</strong>: U.S. Geological Survey Geologic Quadrangle Map<br />

GQ-367.<br />

Meek, F. B., 1871, Description of new species of <strong>in</strong>vertebrate<br />

fossils from the Carboniferous and Devonian rocks of Ohio:<br />

Academy of Natural Science of Philadelphia Proceed<strong>in</strong>gs for<br />

1871, p. 57-93.*<br />

42<br />

<strong>in</strong>


0716<br />

0717<br />

Meek, F. B., 1875, A report on some of the <strong>in</strong>vertebrate fossils<br />

of the Waverly Group and Coal Measures of Ohio: Ohio Geological<br />

Survey <strong>Report</strong> 2, part 2, Paleontology, p. 269-347.<br />

Meek, F. B., and Worthen, A. H., 1861, Age of the Goniatite<br />

limestone at Rockford, Indiana, and its relation to the<br />

"black slate" of the western states, and to some of the<br />

succeed<strong>in</strong>g rocks above the latter: America Journal of<br />

Science, 2d series, v. 32, p. 167-177, 288.<br />

0718<br />

0719<br />

0720<br />

-'<br />

-'<br />

-'<br />

1865, Contributions to the paleontology of Ill<strong>in</strong>ois and<br />

other western states: Philadelphia Academy of Natural<br />

Science Proceed<strong>in</strong>gs, v. 13, p. 245-273.<br />

1866, Descriptions of Paleozoic fossils from the Silurian,<br />

Devonian, and Carboniferous rocks of Ill<strong>in</strong>ois, and other<br />

western states: Chicago Academy of Science Proceed<strong>in</strong>gs, v. 1,<br />

p. 11-23.'<br />

1868, Devonian species: <strong>in</strong> Part 11, Paleontology: Geological<br />

Survey of Ill<strong>in</strong>ois, voiiihe 111, p. 393-4149.<br />

0721 Mehl, M. G., 1960, The relationships of the base of the Missis-<br />

0722 -'<br />

sippian System <strong>in</strong> Missouri: Denison University Scientific<br />

Laboratories Journal, v. 45, p. 57-107.<br />

1961a, Basal relationships of the Mississippian <strong>in</strong> northeastern<br />

Missouri: Missouri Division of Geological Survey<br />

and Water Resources <strong>Report</strong> of Investigations 27, p. 89-91.<br />

0723 -' 1961b, Basal relationships of the Mississippian <strong>in</strong> northeastern<br />

Missouri: <strong>in</strong> Malone, Donald J. (ed.), Kansas Geological<br />

Society GuidebGk, 26th Annual Field Conference, p. 89-<br />

94.<br />

0724 Mehl, M. G., and Shaffer, B., 1961, S oran ites as 'horizon<br />

markers': <strong>in</strong> Malone Donald J. (ed. _ET;g, Kansas Geological<br />

0725<br />

0726<br />

Society Guizbook, 26th Annual Field Conference, p. 95-99.<br />

Melhorn, W.-N., 1958, Revision of the Mississippian-Devonian<br />

boundaries <strong>in</strong> White and Benton Counties, Indiana: Indiana<br />

Academy of Science Proceed<strong>in</strong>gs, v. 67, p. 194-198.<br />

Meyerhoff, A. A., 1970, Cont<strong>in</strong>ental drift: Implications of palaeo-<br />

0727<br />

0728<br />

0729<br />

magnetic studies, meterology, physical oceanography, and<br />

climatology: Journal of Geology, v. 78, p. 1-51.<br />

Miller, A. K., 1938, Devonian ammonoids of America: Geological<br />

Society of America Special Paper 14, 262 pp.<br />

Miller, A. K., and Canner, A. M., 1933, Devonian foram<strong>in</strong>ifera<br />

from Iowa: Journal of Paleontology, v. 7, p. 423-431.<br />

' Miller, A. K., and Furnish, W. M., 1937, Paleoecology of the<br />

Paleozoic cephalopods: <strong>National</strong> Research Council, Division<br />

of Geology and Geography, <strong>Report</strong> of the Committee on Paleo-<br />

0730<br />

ecology, 1936-1937, p. 54-63.<br />

Miller, A. K., and Warren, P. S., 1936, A Timanites from Upper<br />

Devonian beds of America: Journal of Paleontology, v. 10,<br />

p. 632-636.<br />

0731 Miller, A. K., and Youngquist, Walter, 1947, Conodonts from the<br />

type section of the Sweetland Creek Shale <strong>in</strong> Iowa: Journal<br />

of Paleontology, v. 21, p. 501-517.<br />

0732 Miller, A. M., 1916, Some historic fish rema<strong>in</strong>s from Vanceburg,<br />

<strong>Kentucky</strong> (abstr.): Science, new series, v. 44, p. 71-72.<br />

43


0733<br />

0734<br />

0735<br />

0736<br />

0737<br />

0738<br />

0739<br />

0740<br />

0741<br />

0742<br />

0743<br />

0744<br />

0745<br />

0746<br />

0747<br />

0748<br />

0 749<br />

0750<br />

0751<br />

Miller, A. M., 1919, Geology of <strong>Kentucky</strong>: <strong>Kentucky</strong> Department<br />

of Geology and Forestry, series 5, Bullet<strong>in</strong> 2, p. 84-87.<br />

Miller, M. L., 1978, A Petrographic Study of the Upper Devonian-<br />

Lower Mississippian <strong>Black</strong> <strong>Shales</strong> <strong>in</strong> Eastern <strong>Kentucky</strong>:<br />

lished Masters thesis, University of <strong>Kentucky</strong>, Lex<strong>in</strong>gton,<br />

107 pp.<br />

Miller, R. C., 1970, Analysis of sandstones <strong>in</strong> the Dowelltown<br />

Member of the Chattanooga Shale, Macon County, Tennessee,<br />

and vic<strong>in</strong>ity: Compass, v. 47, no. 2, p. 84-89.<br />

Miller, S. A., 1877, The American Palaeozoic Fossils: A Catalogue,<br />

C<strong>in</strong>c<strong>in</strong>nati, C<strong>in</strong>c<strong>in</strong>nati Times Co., 334 pp.<br />

-<br />

, 1889, North American Geology and Paleontology:<br />

Unpub-<br />

C<strong>in</strong>c<strong>in</strong>nati,<br />

Western Methodist Book Concern, 718 pp.<br />

Miller, S. A., and Gurley, W. F. E., 1894, Upper Devonian and<br />

Niagara Cr<strong>in</strong>oids: Ill<strong>in</strong>ois State Museum of Natural History<br />

Bullet<strong>in</strong>, v. 4, 37 pp.<br />

Milner, H. B., 1940, Oil Shale: Sedimentary Petrology, 3d edition,<br />

London, Thomas Murby and Co., p. 413-414.<br />

Miser, H. D., 1944, The Devonian System <strong>in</strong> Arkansas and Oklahoma:<br />

<strong>in</strong> Ill<strong>in</strong>ois State Geological Survey Bullet<strong>in</strong> 68, p. 132-138.<br />

Mitsll, J. L., and Bagby, Robert, 1969, The sedimentary environment<br />

of conodonts <strong>in</strong> the Chattanooga Shale, Catoosa<br />

County, Georgia (abstr.): Georgia Academy of Science Bullet<strong>in</strong>,<br />

u. 27, p. 91-92.<br />

Mixer, F. K., 1896, The discovery of a new fish fauna from the<br />

Devonian rocks of southwestern New York: American Geologist,<br />

v. 18, p. 223.<br />

Monroe, E., and Teller, E., 1899, The fauna of the Devonian formation<br />

at Milwaukee, Wis.: Journal of Geology, v. 7, p. 272-<br />

283.<br />

Moodie, R. L., 1931, The geologic succession of life <strong>in</strong> <strong>Kentucky</strong>;<br />

<strong>Kentucky</strong> Geological Survey, Series 6, v. 36, p. 15-21, 234-<br />

235.<br />

Moore, R. C., 1928, Early Mississippian formations <strong>in</strong> Missouri:<br />

Missouri Bureau of Geology and M<strong>in</strong>es, 2d series, v. 21,<br />

p. 34-42, 79-82, 110-118.<br />

Morel, P., and Irv<strong>in</strong>g, E., 1978, Tentative paleocont<strong>in</strong>ental maps<br />

for the early Phanerozoic and Proterozoic: Journal of Geology,<br />

V. 86, p. 535-561.<br />

Morris, R. H., 1965a, Geologic Map of the Charters quadrangle,<br />

<strong>Kentucky</strong>: U.S. Geological Survey Geologic Quadrangle Map<br />

GQ-293.<br />

- , 196!3, Geologic Map of the Burtonville quadrangle, <strong>Kentucky</strong>:<br />

U.S. Geological Survey Geologic Quadrangle Map GQ-396.<br />

- , 1965c, Geologic Map of the Stricklett quadrangle, Northeastern<br />

<strong>Kentucky</strong>: U.S. Geological Survey Geologic Quadrangle<br />

Map GQ-364.<br />

- , 1966a, Geologic Map of the Head of the Grassy quadrangle,<br />

Lewis County, <strong>Kentucky</strong>: U.S. Geological Survey Geologic<br />

Quadrangle Map GQ-484.<br />

-<br />

, 1966b, Geologic Map of parts of the Concord and Buena Vista<br />

quadrangles, Lewis County, <strong>Kentucky</strong>: U.S. Geological Survey<br />

Geologic Quadrangle Map GQ-525.<br />

44


0752<br />

0753<br />

0754<br />

0755<br />

0756<br />

0757<br />

0758<br />

0759<br />

0760<br />

0761<br />

0762<br />

0763<br />

0764<br />

0765<br />

0766<br />

0767<br />

0768<br />

Morris, R. H., and Pierce, IC L., 1967, Geologic Map of the<br />

Vanceburg quadrangle, <strong>Kentucky</strong>-Ohio: U.S. Geological Survey<br />

Geologic Quadrangle Map GQ-598.<br />

Morse, W. C., 1928, Paleozoic rocks of Mississippi: Journal of<br />

Geology, v. 36, p. 31-43.<br />

Morse, W. C., and Foerste, A. F., 1909, The Waverly formations<br />

of east-central <strong>Kentucky</strong>: Jounal of Geology, v. 17, p. 164-<br />

177.<br />

- , 1912a, Prelim<strong>in</strong>ary report on the Waverlian formations of<br />

east central <strong>Kentucky</strong>: <strong>Kentucky</strong> Geological Survey Bullet<strong>in</strong><br />

16, 76 pp.<br />

-<br />

, 1912b, The Waverlian formations of east-central <strong>Kentucky</strong><br />

and their economic values: <strong>Kentucky</strong> Geological Survey Bullet<strong>in</strong>,<br />

no. 16, 76 pp.<br />

Mound, M. C., 1964, New names for condont homonyms: Journal of<br />

Paleontology, v. 38, p. 786.<br />

-’ 1967, Conodonts and biostratigraphic zones from the subsurface<br />

Upper Devonian of Alberta: <strong>in</strong> Oswald, D. H. (ed.)<br />

International Symposium on the Devonsn, 1967 Proceed<strong>in</strong>gs,<br />

Calgary, Alberta, Alberta Society of Petroleum Geologists,<br />

V. 2, p. 653-672.<br />

-’ 1968, Upper Devonian conodonts from southern Alberta:<br />

Journal of Paleontology, v. 42, p. 444-524.<br />

MUller, K. J., 1962, A conodont fauna from the Banff Formation,<br />

western Canada: Journal of Paleontology, v. 36, p. 1387-<br />

1391.<br />

Miller, K. J., and Muller, E. M., 1957, Early Upper Devonian<br />

(Independence) conodonts from Iowa: Journal of Paleontology,<br />

V. 31, p. 1069-1108.<br />

Murphy, J. L., 1973, Protosalv<strong>in</strong>ia (Foertia) zone <strong>in</strong> the Upper<br />

Devonian sequence of eastern Ohio, northwestern Pennsylvania,<br />

and western New York: Geological Society of America Bullet<strong>in</strong>,<br />

V. 84, p. 3405-3410.<br />

Ned, Don, 1977, Fossils from the Devonian shale: Mounta<strong>in</strong> State<br />

Geology, West Virg<strong>in</strong>ia Geological and Economic Survey, p. 23.<br />

Nelson, W. H., 1962, Geology, of the Holland quadrangle, <strong>Kentucky</strong>-<br />

Tennessee : U. S. Geological Survey Geologic Quadrangle Map<br />

GQ-174.<br />

Nelson, S. J., 1970, The face of time, the geological history of<br />

western Canada: Calgary, Alberta, Alberta Society of Petro-<br />

leum Geologists, 133 pp.<br />

Nettleroth, H., 1889, <strong>Kentucky</strong> fossil shells; a monograph of<br />

the fossil shells of the Silurian and Devonian rocks of<br />

<strong>Kentucky</strong>: <strong>Kentucky</strong> Geological Survey Miscellaneous Geological<br />

<strong>Report</strong>s, v. 12, 245 pp.<br />

Newberry, J. S., 1857, New Fossil fishes from the Devonian rocks<br />

of Ohio: American Journal of Science, 2d series, v. 24,<br />

p. 147-149.<br />

-’ 1868, On some remarkable fossil fishes discovered by Rev.<br />

H. Harzer, <strong>in</strong> the black shale (Devonian) at Delaware, Ohio:<br />

Proceed<strong>in</strong>gs of the American Association for the Advancement<br />

of Science, v. 16, p. 146-147.<br />

45


d<br />

0769<br />

0770<br />

..- - 0771<br />

0772<br />

0773<br />

0774<br />

0775<br />

0776<br />

0777<br />

0778<br />

0779<br />

0780<br />

0781<br />

0782<br />

0783<br />

0784<br />

0785<br />

0786<br />

0787<br />

Newberry, J. S., 1871a, Notes on some new genera and species of<br />

fossil fishes from the Devonian rocks of Ohio: Lyceum of<br />

Natural History of New York Proceed<strong>in</strong>gs, v. 1, p. 152-153.*<br />

7<br />

-<br />

, 1871b, <strong>Report</strong> of progress of the geological survey of Ohio<br />

<strong>in</strong> 1869: Columbus, Ohio, Nev<strong>in</strong>s and Meyers, State Pr<strong>in</strong>ters,<br />

176 pp.<br />

, 1873a, Devonian systemr<strong>in</strong> Geology and Paleontology, v. 1,<br />

part 1, Geological Survey orOhio, p. 140-167.<br />

-’ 1873b, Description of fossil fishes: Geology and Paleontology,<br />

v. 1, part 2, Geological Survey of Ohio, p. 247-355.<br />

-’ 1974a, <strong>Report</strong> of the Geological Swey of Ohio; Paleontology:<br />

Ohio Geological Survey, v. 2, part 2, 435 pp.<br />

-1 1874b, (On D<strong>in</strong>ichth s terrelli from the Huron Shale of<br />

Lora<strong>in</strong> Co., 0 . h e u m of Natural History of Mew York<br />

Proceed<strong>in</strong>gs, v. 2, no. 4, p. 149-151.*<br />

- , 1875, Descriptions of fossil fishes: Ohio Geological Survey,<br />

<strong>Report</strong> 2, part 2, Paleontology, p. 1-64.<br />

- , 1878, Descriptions of new Paleozoic fishes: New York Academy<br />

of Science Annals, v. 1, p. 188-192.<br />

-<br />

, 1883a, Fossil fishes from the Devonian rocks of Ohio:<br />

York Academy of Science Transactions, v. 2, p. 145.*<br />

-’ 1883b, On the orig<strong>in</strong> of carbonaceous matter <strong>in</strong> bitum<strong>in</strong>ous<br />

shales: New York Academy of Science Annals, v. 2, p. 357-<br />

369. *<br />

-<br />

, 1884, On the recent discovery of new and remarkable fossil<br />

fishes <strong>in</strong> the Carboniferous and Devonian rocks of Ohio and<br />

Indiana (abstr.): British Association for the Advancement<br />

of Science <strong>Report</strong>, v. 54, p. 724-725.*<br />

-’ 1885a, The relations of D<strong>in</strong>ichthys, as shown by complete<br />

crania recently discovered by Jay Terrell <strong>in</strong> the Huron Shale<br />

of Ohio: New York Academy of Science Transactions, v. 3,<br />

P. - 20.”<br />

-’ 1885b, Description of some gigantic placoderm fishes<br />

recently discovered <strong>in</strong> the Devonian of Ohio: New York<br />

Academy-of Science Transactions, v. 5, p. 25-28.*<br />

- , 1887, Description of a new species of Titanichthys (abstr.):<br />

New York Academy of Science Transactions, v. 6, p. 164-165.*<br />

- , 1888a, On the fossil fishes of the Erie Shale of Ohio<br />

(abstr.): New York Academy of Science Transactions, v. 7,<br />

p. 178-180.*<br />

- , 1888b, Sur les restes de grands poissons fossils rec6mment<br />

d6cowerts dans<br />

-!-+<br />

les roches devoniennes de l’Am6rique du Nord<br />

(D<strong>in</strong>ichthys, Titanichth s): International Geological Congress<br />

111, Berl<strong>in</strong> 1885 rocee <strong>in</strong>gs, Comptes Rendu, p. 11-14.*<br />

- , 1889, Devonian plants from Ohio: Journal of the C<strong>in</strong>c<strong>in</strong>nati<br />

Society of Natural History, v. 12, p. 53-56.<br />

-<br />

, 1889c, The Paleozoic fishes of North America:<br />

ical Survey Monograph 16, 340 pp.<br />

Newberry, J. S., and Worthen, A. H., 1870, Description of fossil<br />

vertebrates: Ill<strong>in</strong>ois Geological Survey, v. 4, p. 343-374.*<br />

46<br />

New<br />

U.S. Geolog-


0788<br />

0789<br />

0790<br />

0791<br />

0792<br />

0793<br />

0794<br />

0795<br />

0796<br />

0797<br />

0798<br />

0799<br />

0800<br />

0801<br />

Newton, C. R., 1979a, Aerobic, dysaerobic, and anaerobic facies<br />

with<strong>in</strong> the Needmore Shale (Lower and Middle Devonian): <strong>in</strong><br />

Dennison, John M., and others (eds.), Devonian <strong>Shales</strong> <strong>in</strong>-<br />

South-Central Pennsylvania and Maryland, 44th Annual Field<br />

Conference for Pennsylvania Geologists, Guidebook, Harris-<br />

burg, Pennsylvania, Bureau of Topographic and Geologic Sur-<br />

vey, p. 56-60.<br />

-<br />

, 1979b, Biofacies patterns <strong>in</strong> the Needmore Shale: Paleoenvironmental<br />

and paleobathymetric implications: Avary,<br />

K. L. (ed.), Devonian Clastics <strong>in</strong> West Virg<strong>in</strong>ia and Maryland,<br />

Field Trip Guide, brgantown, West Virg<strong>in</strong>ia Geological and<br />

Economic Survey, p. 77-82.<br />

Newton, E. J., 1875, On 'Tasmanite' and Australian 'white coal':<br />

Geological Magaz<strong>in</strong>e, series 2, v. 2, p. 337-342.<br />

Niklas, K. J., 1976a, Chemotaxonomy of Prototaxites and evidence<br />

for possible terrestrial adaptation: Review of Palaeobotany<br />

and Palynology, v. 22, p. 1-17.<br />

-' 1976b, Organic chemistry of Protosalv<strong>in</strong>ia (Foerstia) from<br />

the Chattanooga and New Albany shales: Review of Palaeobotany<br />

and Palynology, v. 22, p. 265-279.<br />

Niklas, K. J., and Carozzi, A. V., 1976, Morphology and palaeoecology<br />

of Protosalv<strong>in</strong>ia from the Upper Devonian (Famennian)<br />

of the Amazon Bas<strong>in</strong> of Brazil: Palaeontographica, Abt. B,<br />

-<br />

V. 155, p. 1-30.*<br />

Niklas, K. J., and Phillips, T. L., 1976, Morphology of Protosalv<strong>in</strong>ia<br />

from the Upper Devonian of Ohio and <strong>Kentucky</strong>:<br />

American Journal of Botany, v. 63, p. 9-29.<br />

Norris, A. W., 1979, Devonian <strong>in</strong> the western hemisphere: <strong>in</strong><br />

Robison, R. A., and Teichert, Curt (eds.), Treatise on <strong>in</strong>vertebrate<br />

paleontology, Part A, Introduction, Boulder,<br />

Geological Society of America, p. A218-A253.<br />

Norris, G., and Sargeant, W. A. S., 3965, A descriptive <strong>in</strong>dex of<br />

genera of fossil D<strong>in</strong>ophyceae and Acritarcha: Palaeontological<br />

Bullet<strong>in</strong> of Well<strong>in</strong>gton, v. 40, 72 pp.*<br />

Norwood, J. G., and Owen, D. D., 1846a, (On a fossil fish, - Macroetalichth<br />

s rapheidolabris, from southern Indiana: Boston<br />

Society o Natural History Proceed<strong>in</strong>gs, v. 2, p. 102, 116.*<br />

-' 1846b, Description of a new fossil fish from the Paleozoic<br />

rocks of Indiana: American Journal of Science, 2d series,<br />

V. 1, p. 367-371.<br />

NOSOW, Edrmmd, 1959, Stratigraphy of Nelson County and adjacent<br />

areas: Geological Society of <strong>Kentucky</strong>, Field Trip Guidebook,<br />

<strong>Kentucky</strong> Geological Survey, Figs. 8, 13, 14.<br />

Nye, 0. B., Brower, J. C., and Wilson, Steven E., 1975, Hitchhik<strong>in</strong>g<br />

clams <strong>in</strong> the Marcellw sea: Bullet<strong>in</strong>s of American<br />

Paleontology, v. 67, p. 287-298.<br />

Oliver, W. A., 1964, A new species of the rugose coral genus<br />

Nalivk<strong>in</strong>ella from the Middle Devonian of eastern Pennsyl-<br />

vania: Journal of Paleontology, v. 38, p. 866-876.<br />

47


0802<br />

0803<br />

0804<br />

0805<br />

0806<br />

0807<br />

0808<br />

0809<br />

0810<br />

0811<br />

0812<br />

0813<br />

0814<br />

0815<br />

0816<br />

0817<br />

0818<br />

0819<br />

Oliver, W. A., de Witt, Wallace, Jr., Dennison, J. M., Hosk<strong>in</strong>s,<br />

D. M., and Huddle, J. W., 1967, Devonian of the Appalachian<br />

-bas<strong>in</strong>, U.S.: <strong>in</strong>Oswald, D.H. fed.), International Symposiumon<br />

the Devonian, 1967 Proceed<strong>in</strong>gs, Calgary, Alberta, Alberta<br />

Society of Petroleum Geologists, v. 1, p. 1001-1040.<br />

Olsson, Axel, 1912, New and <strong>in</strong>terest<strong>in</strong>g fossils from the Devonian<br />

of New York: Bullet<strong>in</strong>sof American Paleontology, v. 5, no. 23,<br />

7 PP=*<br />

Om, W. R., and Klapper, Gilbert, 1968, Two new conodont species<br />

from Middle - Upper Devonian boundary beds of Indiana and<br />

New York: Journal of Paleontology, v. 42, p. 1066-1075.<br />

Ortmann, A. E., 1882, Source of bitum<strong>in</strong>ous matter <strong>in</strong> the Devonian<br />

and Subcarboniferous black shales of Ohio: American Journal<br />

of Science, 3d series-, v. 24, p. 171-174.<br />

+<br />

-’ 1897, The systematic position of Cran o sis vermiformis<br />

(Meek). from the subcarboniferous rocks o <strong>Kentucky</strong>: American<br />

Journal of Science, 4th series, v. 4, p. 283-289.<br />

Orton, Edward, 1882, A source of the bitum<strong>in</strong>ous matter <strong>in</strong> the<br />

Devonian and subcarboniferous black shales of Ohio: Anerican<br />

Journal of Science, 3d series-, v. 24, p. 171-175.<br />

-8 1883, A source of bitum<strong>in</strong>ous matter of the black shales of<br />

Ohio: Proceed<strong>in</strong>gs of the American Association for the Advancement<br />

of Science, 31st Meet<strong>in</strong>g, p. 373-384.<br />

-’ 1888, <strong>Report</strong> of the Geological Survey of Ohio; Economic<br />

geology: Ohio Geological Survey, v. 6, 831 pp.<br />

-9 1889, Discovery of sporocarps <strong>in</strong> the Ohio Shale (abstr.):<br />

Proceed<strong>in</strong>gs of the American Association for the Advancement<br />

of Science, v. 37, p. 179-181.<br />

-’ 1893, <strong>Report</strong> of the Geological Survey of Ohio: Economic<br />

geology, archaeology, botany, paleontology: Ohio Geological<br />

Survey, v. 7, 699 pp.<br />

- , 1896, The geography and geology of Ohio: <strong>in</strong> Howe,-Henry,<br />

Historical collections of Ohio : Norwalk, Ohz, Lan<strong>in</strong>g Pr<strong>in</strong>t<strong>in</strong>g<br />

Co., v. 1, 996 pp.<br />

Oswald, D. H. (ed.), 1968a, b, International Symposium on the<br />

Devonian System, 1967 Proceed<strong>in</strong>gs, Calgary, Alberta, Alberta<br />

Society of Petroleum Geologists, a) v. 1, 1055 pp., b) v. 2,<br />

1377 pp.<br />

Owen, D. D., 1856, <strong>Black</strong> L<strong>in</strong>gula shale: <strong>in</strong> <strong>Report</strong> of the Geological<br />

Survey of <strong>Kentucky</strong>, 1854, 1855, 1, p. 91-95.<br />

Pa<strong>in</strong>e, R. T., 1963, Ecology of the brachiopod Glottidia pyrimidata:<br />

Ecology Monographs, v. 33, p. 187-213.<br />

-’ 1970, The sediment occupied by recent l<strong>in</strong>gulid brachiopods<br />

and some paleoecological implications: Palaeogeography,<br />

Palaeoclimatology, and Palaeoecology, v. 7, p. 21-31.<br />

Palmer, E. L., 1971, Fossils: Chicago, D. C. Heath and Co.,<br />

p. 64-71.<br />

Pamenter, C. B., 1956, Imitoceras from the Exshaw Formation of<br />

Alberta: Journal of Paleontology, v. 30, p. 965-966.<br />

Park, D. E., and Croneis, C., 1969, Orig<strong>in</strong> of the Caballos and<br />

Arkansas novaculite formations: American Association of<br />

Petroleum Geologists Bullet<strong>in</strong>, v. 53, p. 94-111.<br />

48


0820<br />

0821<br />

0822<br />

0823<br />

0824<br />

0825<br />

0826<br />

0827<br />

0828<br />

0829<br />

0830<br />

0831<br />

0832<br />

0833<br />

08 34<br />

0835<br />

Parke, Mary, 1969, The genus Pachysphaera (Pras<strong>in</strong>ophyceae) :<br />

- <strong>in</strong> Barnes, Harold (ed.), Some contemporary studies <strong>in</strong><br />

mar<strong>in</strong>e science, London, George Allen and Unw<strong>in</strong>, Ltd..,<br />

p. 555-563.<br />

Patchen, D. G., and Dugol<strong>in</strong>sky, B. K., 1979, Guidebook, Middle<br />

and Upper Devonian Clastics, central and western New York<br />

state: U.S. Department of <strong>Energy</strong>, Eastern Gas <strong>Shales</strong> Project,<br />

Morgantown, West Virg<strong>in</strong>ia, 169 pp.<br />

Peck, J. H., 1967, Geologic map of the Tollesboro quadrangle,<br />

Lewis and Flem<strong>in</strong>g Counties, <strong>Kentucky</strong>: U.S. Geological<br />

Survey Geologic Quadrangle Map GQ-661.<br />

Peck, J. H., and Pierce, K. L., 1966, Geologic map of the Man-<br />

Chester Islands quadrangle, Lewis County, <strong>Kentucky</strong>: U.S.<br />

Geological Survey Geologic Quadrangle Map GQ-581.<br />

Peck, J. H., and Weir, G. W., 1968, Stops 1-6, <strong>Kentucky</strong><br />

itenerary, Saturday, May 18, 1968: <strong>in</strong> Geological Aspects<br />

of the Maysville-Portsmouth region, southern Ohio and northeastern<br />

<strong>Kentucky</strong>, Ohio Geological Society - Geological<br />

Society of <strong>Kentucky</strong> Jo<strong>in</strong>t Field Conference 1968, <strong>Kentucky</strong><br />

Geological Survey, p. 46-62.<br />

Pelzer, E. E., 1966, M<strong>in</strong>eralogy, geochemistry, and stratigraphy<br />

of the Besa River Shale, British Columbia: Bullet<strong>in</strong> of<br />

Canadian Petroleum Geology, v. 14, p. 273-321.<br />

Penhallow, D. P., 1889, On Nematophyton and allied forms from<br />

the Devonian (Erian) of Gasp6 and Baie des Chaleurs: Royal<br />

Society of Canada Proceed<strong>in</strong>gs and Transactions, v. 6, part<br />

iv, p. 27-47.*<br />

1890, Notes on Devonian plants: Royal Society of Canada<br />

-9<br />

Proceed<strong>in</strong>gs and Transactions, v. 7, part iv, p. 19-30.*<br />

-’ 1893a, Notes on Erian (Devonian) plants from New York and<br />

Pennsylvania: .U.S. <strong>National</strong> Museum Proceed<strong>in</strong>gs, v. 16,<br />

p. - 105-114.*<br />

-, 1893b, Notes on Nematophyton crassum: U.S. <strong>National</strong><br />

Museum Proceed<strong>in</strong>gs, v. 16, p. 115-118.*<br />

-’ 1896, Nematophyton ortoni n. sp.: Annals of Botany,<br />

V. 10, p. 41-49.*<br />

-’ 1900 ,- Notes on American species of Dadoxylon : Transactions<br />

of the Royal Society of Canada, 2d Series, v. 6, section 4,<br />

p. 51-97.<br />

Pepper, J. F., de Witt, Wallace, Jr., and Demarest, D. F., 1954,<br />

Geology of the Bedford Shale and Berea Sandstone <strong>in</strong> the<br />

Appalachian Bas<strong>in</strong>: U.S. Geological Survey Professional Paper<br />

259, 111 pp.<br />

Peppers, R. A., and Damberger, H. H., 1969, Palynology and petrography<br />

of a Middle Devonian coal <strong>in</strong> Ill<strong>in</strong>ois: Ill<strong>in</strong>ois State<br />

Geological Survey Circular 445, 36 pp.<br />

Percival, I. G., 1978, Inarticulate brachiopods from the Late<br />

Ordovician of New South Wales and their paleoecological significance:<br />

Alcher<strong>in</strong>ga, v. 2, p. 117-141.<br />

Peterson, D. M., 1974, Geology of western New York state: New<br />

York Geological Association Field Trip Guidebook, 46th Annual<br />

Meet<strong>in</strong>g.<br />

49


0836<br />

0837<br />

0838<br />

0839<br />

0840<br />

0841<br />

0842<br />

0843<br />

0844<br />

0845<br />

0846<br />

0847<br />

0848<br />

0849<br />

0850<br />

0851<br />

0852<br />

0853<br />

0854<br />

Peterson, W. L., 1966, Geologic map of the Nelsonville quadrangle,<br />

central <strong>Kentucky</strong>: U.S. Geological Survey Geologic Quadrangle<br />

Map GQ-564.<br />

-* 1967, Geologic map of the Lebanon Junction quadrangle, central<br />

<strong>Kentucky</strong>: U.S. Geological Survey Geologic Quadrangle<br />

Map GQ-603.<br />

-’ 1968, Geologic map of the Cravens quadrangle, Bullitt and<br />

Nelson Counties, <strong>Kentucky</strong>: U.S. Geological Survey Geologic<br />

Quadrangle Map GQ-737.<br />

-’ 1969, Geologic map of the Bardstown quadrangle, central<br />

kentucky: U.S. Geological Survey Geologic Quadrangle Map GQ-<br />

825.<br />

-’ 1972, Geologic map of the Loretto quadrangle, central <strong>Kentucky</strong>:<br />

U.S. Geological Survey Geologic Quadrangle Map GQ-1034.<br />

Pettijohn, F. J., 1957, <strong>Black</strong> shales: <strong>in</strong> Sedimentary Rocks: New<br />

York, Harper and Brothers, p. 361-3=,<br />

+<br />

622-626.<br />

Pettitt, J. M., and Beck, C. B., 1968, Archaeo enua arnoldii -<br />

a copulate seed from the Upper Devonian o North America:<br />

University of Michigan Museum Paleontology Contributions,<br />

V. 22, p. 139-154.<br />

Peyer, Bernhard, 1968, Placodermi and acanthodii: <strong>in</strong> Comparative<br />

Odontology: Chicago, University of Chicago Prez, p. 30-34.<br />

Philip, G. M., and McDonald, L., 1975, A provisional phylogeny for<br />

some reconstructed Late Devonian polygnathid conodont apparatuses:<br />

Alcher<strong>in</strong>ga, v. 1, p. 97-107.<br />

Philley, J. C., Hylbert, D. K., and Hoge, H. P., 1974, Geologic<br />

map of the Cranston quadrangle, northeastern <strong>Kentucky</strong>: U.S.<br />

Geologicad Survey Geologic Quadrangle Map GQ-1212.<br />

*Phillips, T. L., Andrews, H. N., and Gensel, P. G., 1972, Two<br />

heterosporous species of Archaeopteris from the Devonian of<br />

West Virg<strong>in</strong>ia: Palaeontographica, Abt. By v. 139, p. 47-71.*<br />

Phillips, T. L., Niklas, K. J., and Andrews, H. N., 1972, Morphology<br />

and vertical distribution of Protosalv<strong>in</strong>ia (Foerstia)<br />

from the New Albany Shale (Upper Devonian): Review of Palaeobotany<br />

d Palynology, v. 14, p. 171-196.<br />

Piper, D. Z., and Codispoti, L. A., 1975, Mar<strong>in</strong>e phosphorite<br />

deposits and the nitrogen cycle: Science, New York, v. 188,<br />

p. 15-18.<br />

Pohl, E. R., 1926, Paleontologic zones of the upper Hamilton<br />

Group <strong>in</strong> west-central New York: Unpublished Masters Essay,<br />

George Wash<strong>in</strong>gton University, Wash<strong>in</strong>gton, D.C.<br />

- , 1930a, The black shale series of central Tennessee (abstr.):<br />

American Journal of Science, 5th series, v. 20, p. 151-152.<br />

- , 1930b, Devonian formations of the Mississippi bas<strong>in</strong>: Tennessee<br />

Academy of Science Journal, v. 5, p. 54-63.<br />

Pollock, C. A., 1968, Lower Upper Devonian conodonts from Alberta,<br />

Canada: Journal of Paleontology, v. 42, p. 415-443.<br />

Potonie, R., and Rehnelt, K., 1971, Aspects of spor<strong>in</strong>: <strong>in</strong> Brooks,<br />

J., and others (eds.) , Sporopollen<strong>in</strong>: New York, Acazmic<br />

Press, p. 295-304.<br />

Potter, P. E., Maynard, J. B., Pryor, W. A., 1977, Geology of<br />

argil-laceous sediments: an annotated and illustrated bibliography:<br />

Morgantown, West Virg<strong>in</strong>ia, Morgantown <strong>Energy</strong> Research<br />

Center, MERC/CR-77/8, 134 pp.<br />

50


0855<br />

0856<br />

0857<br />

0858<br />

0859<br />

0860<br />

0861<br />

0862<br />

0863<br />

0864<br />

0865<br />

0866<br />

0867<br />

0868<br />

0869<br />

0870<br />

0871<br />

0872<br />

0873<br />

Potter, P. E., Maynard, J. B., andSryor, W. A., 1980, F<strong>in</strong>al<br />

report of special geological,geochemical, and petrological<br />

studies of the Devonian shales <strong>in</strong> the Appalachian bas<strong>in</strong><br />

(Eastern Gas <strong>Shales</strong> Project; U.S. Department of <strong>Energy</strong>) :<br />

C<strong>in</strong>c<strong>in</strong>nati, University of C<strong>in</strong>c<strong>in</strong>nati, 86 pp.<br />

Prosser, C. S., 1891, The geological position of the Catskill<br />

Group: American Geologist, v. 7, p. 351-366.<br />

- , 1892, The Devonian System of eastern Pennsylvania: American<br />

Journal of Science, 3d series, v. 44, p. 210-221.<br />

-9 1893, The upper Hamilton and Portage stages of central and<br />

eastern New York: American Journal of Science, 3d series,<br />

V. 46, p. 212-230.<br />

-’ 1894, The Devonian system of eastern Pennsylvania and New<br />

York: U.S. Geological Survey Bullet<strong>in</strong> 120, p. 1-81.<br />

-’ 1897, The classification and distribution of the Hamilton<br />

and Chemung series of central and eastern New York: New<br />

York State Geologist, 15th Annual <strong>Report</strong>, p. 12-13, 83-222;<br />

New York State Museum, 49th Annual <strong>Report</strong>, v. 2, p. 12-13,<br />

p. - 83-222.*<br />

-’ 1901, The classification of the Waverly series of central<br />

Ohio: Journal of Geology, v. 9, p. 205-231.<br />

-9 1902, The Sunbury Shale of Ohio: Journal of Geology, v. 10,<br />

p. - 262-312.<br />

-’ 1903, The nomenclature of the Ohio geological formations:<br />

Journal of Geology, v. 11, p. 519-546.<br />

-* 1904, Description and correlation of the Romney Formation<br />

of Maryland: Journal of Geology, v. 12, p. 361-372.<br />

-’ 1912a, The Devonian and Mississippian formations of northeastern<br />

Ohio: Ohio Geological Survey, 4th series, Bullet<strong>in</strong><br />

15, p. 509-548.<br />

-9 1912b, The disconformity between the Bedford and Berea<br />

formations <strong>in</strong> central Ohio: Journal of Geology, v. 20,<br />

p. 585-604.<br />

-’ 1913, ”he Huron and Cleveland shales of northern Ohio:<br />

Journal of Geology, v. 21, p. 323-362.<br />

- , 1915, The Middle and Upper Devonian of the Romney, W. Va.<br />

region: Journal of Geology, v. 23, p. 11-26.<br />

Prosser, C. S., and Cum<strong>in</strong>gs, E. R., 1904, The Waverly formations<br />

of central Ohio: American Geologist, v. 34, p. 335-361.<br />

Prosser, C. S., K<strong>in</strong>dle, E. M., and Swartz, C. K., 1913, The<br />

Middle Devonian deposits of Maryland: - <strong>in</strong> Middle and Upper<br />

Devonian, Maryland Geological Survey, v. 6, part 1, p. 23-335.<br />

Prosser, C. S., and Swartz, C. K., 1913, The Upper Devonian<br />

deposits of Maryland: <strong>in</strong> Middle and Upper Devonian, Maryland<br />

Geological Survey, v. 67part 1, p. 339-700.<br />

Provo, L. J., Kepferle, R. C., and Potter, P. E., 1977, Three-<br />

Lick Bed: Useful stratigraphic marker <strong>in</strong> Upper Devonian shale<br />

<strong>in</strong> eastern <strong>Kentucky</strong> and adjacent areas of Ohio, West Virg<strong>in</strong>ia,<br />

and Tennessee: Morgantown, West Virg<strong>in</strong>ia, Morgantown <strong>Energy</strong><br />

Research Center MERC/CR-77/2, 56 pp.<br />

Purdue, A. H., and Miser, H. D., 1916, Eureka Spr<strong>in</strong>gs-Harrison<br />

Folio, Arkansas-Missouri: U.S. Geological Survey Geologic<br />

Atlas of the United States, Folio 202, 22 pp.<br />

51


0874<br />

0875<br />

0876<br />

0877<br />

0878<br />

0879<br />

0880<br />

0881<br />

0882<br />

0883<br />

0884<br />

0885<br />

0886<br />

0887<br />

0888<br />

0889<br />

0890<br />

Rabien, Arnold, 1954, Zur Taxionomie und Chronologie der Oberdevonishcen<br />

Ostracoden: Abhandlungen des Hessischen Landesamtes<br />

fur Bodenforschung, v. 9, 268 pp.<br />

Raymond, P. E., 1904, The Tro idole tus fauna at Canadaigua Lake,<br />

N.Y., with the ontogeny ,p,P,<br />

o twenty species: Carnegie Museum<br />

Annals, v. 3, p. 79-177.*<br />

-1 1942, The pigment <strong>in</strong> black and red sediments: American<br />

Journal of Science, v. 240, p. 658-669.<br />

Read, C. B., 1935, An occurrence of the genus Cladoxylon Unger,<br />

<strong>in</strong> North America: Journal of the Wash<strong>in</strong>gton Academy of<br />

Science, v. 25, p. 493-497.<br />

-’ 1936a, A Devonian flora from <strong>Kentucky</strong>: Journal of Paleontolow,<br />

V. 10, p. 215-227.<br />

- , 1936b, The flora of the New Albany Shale: Part I, Diichnia<br />

kentuckiensis, a new representative of the Calamopityeae: U.S.<br />

Geological Survey Professional Paper 185-H, p. 149-161.<br />

- , 1937, The flora of the New Albany Shale: Part 2, The<br />

Calamopityeae and their relationships: U.S. Geological Survey<br />

Professional Paper 186-F, p. 81-104.<br />

Read, C. B., and Campbell, Guy, 1939, Prelim<strong>in</strong>ary account of the<br />

New Albany Shale flora: American Midland Naturalist, v. 21,<br />

p. 435-453.<br />

Read, C. B., and Mamay, S. R., 1964, Upper Paleozoic floral zones<br />

and floral prov<strong>in</strong>ces of the United States: U.S. Geological<br />

Survey Professional Paper 4544, 35 pp.<br />

Reaugh, A. B., and McLaughl<strong>in</strong>, R. E., 1975, Environment-related<br />

palynomorph groups <strong>in</strong> the Chattanooga black shale (abstr.):<br />

Geological Society of America Abstracts with Programs, v. 7,<br />

p. 1239.<br />

Reeves, J. R., 1922, Prelim<strong>in</strong>ary report on the oil shales of<br />

Indiana: Indiana Department of Conservation Publication 21,<br />

part 6, p. 1071-1074.<br />

- , 1923, A section through the New Albany Shale: Indiana<br />

Department of Conservation 4th Annual <strong>Report</strong>, p. 18-21.<br />

Reger, D. B., 1928, The Tygart Valley Devonian trees of West Virg<strong>in</strong>ia:<br />

American Journal of Science, 5th series, v. 15,<br />

p. 49-57.<br />

Rexroad, C. B., 1969, Conodonts from the Jacobs Chapel Bed (Mississippian)<br />

of the New Albany Shale <strong>in</strong> southern Indiana:<br />

Indiana Geological Survey Bullet<strong>in</strong> 41, 55 pp.<br />

Rexroad, C. B., and Scott, A. J., 1964, Conodont zones <strong>in</strong> the<br />

Rockford Limestone and the lower part of the New Providence<br />

Shale (Mississippian) <strong>in</strong> Indiana: Indiana Geological Survey<br />

Bullet<strong>in</strong> 30, 54 pp.<br />

Rhoads, D. C., and Morse, J. W., 1971, Evolutionary and ecologic<br />

significance of oxygen-deficient mar<strong>in</strong>e bas<strong>in</strong>s: Lethaia,<br />

V. 4, p. 413-428.<br />

Rhodes, F. H. T., and Bloxam, T. W., 1971, Phosphatic organisms<br />

<strong>in</strong> the Paleozoic and their evolutionary significance: <strong>in</strong><br />

Yochelson, E. L. (ed.), Proceed<strong>in</strong>gs of the North American<br />

Paleontological Convention: Lawrence, Kansas, Allen Press,<br />

Inc., p. 1485-1513.<br />

52


0891<br />

0892<br />

0893<br />

0894<br />

0895<br />

0896<br />

0897<br />

0898<br />

0899<br />

0900<br />

0901<br />

0902<br />

0903<br />

0904<br />

0905<br />

0906<br />

0907<br />

0908<br />

Rice, C. L., and Wolcott, D. E., 1973, Geologic map of the<br />

Whitesburg quadrangle, <strong>Kentucky</strong>-Virg<strong>in</strong>ia, and part of the<br />

Flat Gap quadrangle, Letcher County, <strong>Kentucky</strong>: U.S. Geological<br />

Survey Geologic Quadrangle Map GQ-1119.<br />

Rich, J. L., 1948, Probable deep-water orig<strong>in</strong> of the Marcellus-<br />

Ohio-New Albany-Chattanooga black shales (abstr.): Geological<br />

Society of America Bullet<strong>in</strong>, v. 59, p. 1346-1347.<br />

- , 1951, Probable fondo orig<strong>in</strong> of Marcellus-Ohio-New Albany-<br />

Chattanooga bitum<strong>in</strong>ous shales: American Association of<br />

Petroleum Geologists Bullet<strong>in</strong>, v. 35, p. 2017-2040.<br />

Richards, F. A., and Vaccaro, R. F., 1976, The Cariaco Trench,<br />

an anaerobic bas<strong>in</strong> <strong>in</strong> the Caribbean Sea: Deep-sea Research,<br />

V. 3, p. 214-228.<br />

Richards, H. G., 1953, Record of the rocks, the geological story<br />

of eastern North America: New York, Ronald Press Co., 413 pp.<br />

Richardson, J. B., 1969, Devonian spores: <strong>in</strong> Tschudy, R. H.,<br />

and Scott, R. A. (eds.), Aspects of PalEology: New York,<br />

Wiley-Interscience, P. 193-222.<br />

R<strong>in</strong>gueberg, E. N. S., 1884, A new D<strong>in</strong>ichthys from the Portage<br />

Group of western New York: American Journal of Science,<br />

3d series, v. 27, p. 476-478.<br />

Riedel, W. R., and Foreman, H. P., 1961, Type specimens of North<br />

American Paleozoic radiolaria: Journal of Paleontology,<br />

V. 35, p. 628-632.<br />

Roe, L. M., 11, 1976, Sedimentary environments of the Java Group<br />

(Upper Devonian); a three-dimensional study (abstr.): Dissertation<br />

Abstracts International, v. 37, p. 129B.<br />

Roen, J. B., Miller, R. L., and Huddle, J. W., 1964, The Chattanooga<br />

Shale (Devonian and Mississippian) <strong>in</strong> the vic<strong>in</strong>ity<br />

of Big Stone Gap, Virg<strong>in</strong>ia: U.S. Geological Sunrey Professional<br />

Paper 501-B, p. 43-48.<br />

Rogers, A. F., 1924, M<strong>in</strong>eralogy and petrography of fossil bone:<br />

Geological Society of America Bullet<strong>in</strong>, v. 35, p. 535-556.<br />

Rolfe, W. D. I., 1962, A new phyllocarid crustacean from the<br />

Upper Devonian of Ohio: Breviora, no. 151, 7 pp.<br />

Rolfe, W. D. I., and Edwards, V. A., 1979, Devonian Arthropoda<br />

(Trilobita and Qstracoda excluded): <strong>in</strong> House, M. R., Scrutton,<br />

C. T., and Bassett, M. G. (eds.),The Devonian System,<br />

Special Papers <strong>in</strong> Palaeontology, no. 23, p. 325-329.<br />

Romenger, C., 1876a, <strong>Black</strong> shales of Ohio - Genesee shales of<br />

New York: Michigan Geological Survey, v. 3, part 1, p. 65-<br />

68.<br />

- , 1876b, <strong>Black</strong> shales of Michigan: Geological Survey of<br />

Michigan, v. 3, part 2, p. 63-67.<br />

Romer, A. S., 1933, Sharklike fishes - development of jaws and<br />

limbs: Man and the Vertebrates: 1, Baltimore!, Pengu<strong>in</strong><br />

Books, p. 22-35.<br />

-1 1946, Vertebrate Paleontology: Chicago, University of<br />

Chicago Press, p. 38-66.<br />

-’ 1949, Time series and trends <strong>in</strong> animal evolution: <strong>in</strong> Jepsen,<br />

G. L., Map, Ernst, and Simpson, G. G. (eds.), Gzetics,<br />

paleontology, and evolution: Pr<strong>in</strong>ceton, Pr<strong>in</strong>ceton University ‘-<br />

Press, p. 103-120.<br />

53


0909<br />

0910<br />

0911<br />

0912<br />

0913<br />

09 14<br />

09 1s<br />

0916<br />

0917<br />

0918<br />

0919<br />

0920<br />

0921<br />

0922<br />

0923<br />

0924<br />

09 25<br />

0926<br />

0927<br />

Rowley, R. R., 1895, Description of a new genus and five new<br />

species of fossils from the Devonian and Subcarboniferous<br />

rocks of Missouri: American Geologist, v. 16, p. 217-223.<br />

-9 1900, Description of new species of fossils from the<br />

Devonian and Subcazboniferous rocks of Missouri: American<br />

Geologist, v. 25, p. 261-273.<br />

Rubarts, W. E., 1959, The Boyle-Duff<strong>in</strong>-New Albany relationships<br />

<strong>in</strong> northern Casey and western L<strong>in</strong>coln Counties: Unpublished<br />

Masters thesis, University of <strong>Kentucky</strong>, Lex<strong>in</strong>gton, 53 pp.<br />

Rudwidc, M. J. S., 1965, Ecology and paleoecology: <strong>in</strong> Treatise<br />

on Invertebrate Paleontology, Part H, Brachiopodz Boulder ,<br />

Geological Society of America, v. 1, p. H199-H214.<br />

- , 1970, Liv<strong>in</strong>g and Fossil Brachiopods: London, Hutch<strong>in</strong>son,<br />

199 pp.*<br />

Ruedemann, R., 1916, Spathiocaris and Disc<strong>in</strong>ocar<strong>in</strong>a: New York<br />

State Museum Bullet<strong>in</strong> 189, p. 98-102.<br />

- , 1933, Paleozoic planktonic faunas of North America: <strong>National</strong><br />

Academy of Science, Proceed<strong>in</strong>gs, v. 19, p. 157-159.<br />

-<br />

, 1934, Paleozoic plankton of North America: Geological<br />

Society of America Memoir 2, p. 33-34, 41, 56-61.<br />

-' 1935, Ecology of black rrmd shales of eastern New York: Journal<br />

of Paleontology, v. 9, p. 79-91.<br />

Ruedemann, R., and Lochman, Christ<strong>in</strong>a, 1942, Graptolites from the<br />

Englewood Formation (Mississippian) of the <strong>Black</strong> Hills, South<br />

Dakota: Journal of Paleontology, v. 16, p. 657-659.<br />

Ryan, W. B. F., and Cita, M. B., 1977, Ignorance concern<strong>in</strong>g episodes<br />

of ocean-wide stagnation: Mar<strong>in</strong>e Geology, v. 23,<br />

p. 197-215.<br />

Sannemann, D., 1955, Beitray zur Untergliederung des Oberdevons<br />

nach Conodonten: Neues Jahrbuch fUr Geologie und PalXontologie,<br />

Abhandlungen, v. 100, p.' 324-331.<br />

+<br />

Sartenaer, P., 1961, Redescription of Leiorh chus quadracostatus:<br />

Journal of Paleontology, v. 35, p. 963-9 6.<br />

Sandberg, C. A., and Mapel, W. J., 1967, Devonian of the northern<br />

Rocky Mounta<strong>in</strong>s and pla<strong>in</strong>s: <strong>in</strong> Oswald, D. H. (ed.), International<br />

Symposium on the Devzian System, 1967 Proceed<strong>in</strong>gs,<br />

Calgary, Alberta, Alberta Society of Petroleum Geologists,<br />

V. 1 , p. 843-877.<br />

Sandberg, C. A., and Ziegler, W., 1979, Taxonomy and biofacies of<br />

important conodonts of Late Devonian styriacus-Zone, United<br />

States and Germany: Geologica et Palaeontologica, v. 13,<br />

p. 173-212.<br />

Savage, T. E., 1913, Some <strong>in</strong>terest<strong>in</strong>g new species of arthropods<br />

from Devonian strata of Ill<strong>in</strong>ois: American Journal of Science,<br />

-<br />

-<br />

-<br />

4th series, v. 35, p. 149-152.<br />

, 1920, The Devonian formations of Ill<strong>in</strong>ois: American Journal<br />

of Science, 4th series, v. 49, p. 169-182.<br />

, 1929, Tully fauna at the base of the black shale <strong>in</strong> eastcentral<br />

<strong>Kentucky</strong> (abstr.): Geological Society of America<br />

Bullet<strong>in</strong>, v. 1, p. 112, 249.<br />

, 1930, Devonian rock of <strong>Kentucky</strong>: <strong>Kentucky</strong> Geological Survey,<br />

series 6, v. 33, p. 14-163.<br />

54


0928<br />

0929<br />

0930<br />

0931<br />

0932<br />

0933<br />

0934<br />

0935<br />

.0936<br />

0937<br />

09 38<br />

0939<br />

0940<br />

0941<br />

0942<br />

0943<br />

0944<br />

0945<br />

0946<br />

Savage, T. E., 1931, The Devonian fauna of <strong>Kentucky</strong>: <strong>in</strong> The<br />

Paleontology of <strong>Kentucky</strong>, <strong>Kentucky</strong> Geological Survv, series<br />

6, v. 36, p. 218.<br />

Savage, T. E., and Sutton, A. H., 1931, Age of the black shale<br />

<strong>in</strong> south-central <strong>Kentucky</strong>: American Journal of Science, 5th<br />

series, v. 22, p. 441-448.<br />

Schaeffer, G. C., 1850, Fossil coniferous wood from the Lower<br />

Devonian strata, Marion County, <strong>Kentucky</strong>: Proceed<strong>in</strong>gs of the<br />

American Association for the Advancement of Science, 4th New<br />

Haven Meet<strong>in</strong>g, p. 193-194.<br />

Scheckler, S. E., and Banks, H. P., 1971, Anatomy and relationships<br />

of some Devonian progymnosperms from New York: American<br />

Journal of Botany, v. 58, p. 737-751.<br />

Scheele, W. E., 1965, Part 1, 1-71 fossil dig: Explorer, v. 7,<br />

no. 3, p. 5-8.*<br />

Scheele, W. E., and Hlav<strong>in</strong>, William, 1965, 1-71 Fossil dig - Part<br />

1, some comments on the dig: Explorer, v. 7, no. 5, p. 4-11.*<br />

Sch<strong>in</strong>dewolf, 0. H., 1959, Adolescent cephalopods from the Exshaw<br />

Formation of Alberta: Journal of Paleontology, v. 33, p. 971-<br />

976.<br />

Schmid, Rudolf, 1967, Electron *microscopy of wood of Callixylon<br />

and Cordaites: American Journal of Botany, v. 54, p. 720-729.<br />

-’ 1976, Septa1 pores <strong>in</strong> Prototaxites, an enigmatic Devonian<br />

plant: Science, v. 191, p. 287-288.<br />

Schopf, J. M., 1953, Organic matter of the Chattanooga Shale:<br />

U.S. Atomic <strong>Energy</strong> Commission, TEI-330, p. 146-152.<br />

-9 1957, Spores andproblematicplants commonly regarded as<br />

mar<strong>in</strong>e - annotated bibliography: <strong>in</strong> Ladd, H. S. (ed.), Treatise<br />

on Mar<strong>in</strong>e Ecology and Paleoecxogy: Geological Society<br />

of America, Memoir 67, v. 2, p. 709-718.<br />

-’ 1978, Foerstia and recent <strong>in</strong>terpretations of early, vascular<br />

land plants: Lethaia, v. 11, p. 139-143.<br />

Schopf, J. M., and Schwieter<strong>in</strong>g, J. F., 1970 ’ the Foerstia zone<br />

L<br />

of the Ohio and Chattanooga shales: U.S. Geological &rvey,<br />

Bullet<strong>in</strong> 1294-H, 15 pp.<br />

Schopf, J. M., Wilson, L. R., and Bentall, Ray, 1944, An amotated<br />

synopsis of Paleozoic fossil spores and the def<strong>in</strong>ition<br />

of generic groups: Ill<strong>in</strong>ois State Geological Survey <strong>Report</strong><br />

of Investigations 91, 74 pp.<br />

Schopf, T. J. M., 1980, Paleoceanography: Cambridge, Harvard<br />

University Press, 341 pp.<br />

Schott, G. L., Overbey, W. K., Jr., Hunt, A. E., and Komar, C. A.<br />

(eds.), 1978, First Eastern Gas <strong>Shales</strong> Symposium, Proceed<strong>in</strong>gs:<br />

Morgantown, West Virg<strong>in</strong>ia, U.S. Department of <strong>Energy</strong>, Morgantown<br />

<strong>Energy</strong> Research Center, MERC/SP-77/5, 783 pp.<br />

Schram, F. R., Feldman, R. M., and Copeland, M. J., 1978, The<br />

Late Devonian Palaeopalaemonidae and the earliest decapod<br />

crustaceans: Journal of Paleontology, v. 52, p. 1375-1387.<br />

Schuchert, Charles, 1905, Contributions to Devonian paleontology:<br />

American Journal of Science, 4th series, v. 19, p. 460-463.<br />

-’ 1910a, Paleogeography of North America: Geological Society<br />

of America Bullet<strong>in</strong>, v. 20, p. 420-606.<br />

55


0947<br />

0948<br />

0949<br />

0950<br />

0951<br />

0952<br />

0953<br />

0954<br />

0955<br />

0956<br />

0957<br />

0958<br />

0959<br />

0960<br />

0961<br />

0962<br />

0963<br />

Schuchert, Charles, 1910b, Biologic pr<strong>in</strong>ciples of paleogeography:<br />

Popular Science Monthly, p. 560-591.*<br />

- , 1915, The conditions of black shale deposition as illustrated<br />

by Kupferschiefer and Lias of Germany: American Philosophical<br />

Society Proceed<strong>in</strong>gs, v. 54, p. 259-269.*<br />

American Journal of<br />

-’ 1927a, W<strong>in</strong>ters <strong>in</strong> the Upper Devonian:<br />

Science, 5th series, v. 13, p. 123-132.<br />

-, 1927b, W<strong>in</strong>ters <strong>in</strong> the Upper Devonian:<br />

Science, 5th series, v. 14, p. 159.<br />

American Journal of<br />

-, 1943, Stratigraphy of the eastern and, central United States:<br />

New York, John Wiley and Sons, Inc., 1013 pp.<br />

-9 1955, Atlas of paleogeographic maps of North America: New<br />

York, John Wiley and Sons, Inc., p. 34-41.<br />

Schumacher, Dietmar, 1976, Conodont biofacies and paleoenvironments<br />

<strong>in</strong> Middle Devonian - Upper Devonian boundary beds, central<br />

Missouri: <strong>in</strong> Barnes, L. R. (ed.), Geological Association<br />

of Canada SEcial Paper 15, p. 159-169.<br />

Schwarzback, M., 1961, Paleoclimates <strong>in</strong> Europe and North America:<br />

- <strong>in</strong> Nairn, A. E. M. (ed.), Descriptive Paleoclimatology, New<br />

York, Interscience, p. 261 -262.<br />

Schwieter<strong>in</strong>g, J. F., 1970, Devonian <strong>Shales</strong> of Ohio and their<br />

Eastern Equivalents (abstr.): Dissertation Abstracts Inter-<br />

’ national, v. 31, p. 2067B.<br />

- , 1972, Olentangy Shale (Middle and Upper Devonian) and its<br />

equivalents <strong>in</strong> western parts of Pennsylvania and New York<br />

(abstr.): North-Central Section, 6th Annual Meet<strong>in</strong>g, Geological<br />

Society of America Abstracts with Programs, v. 4, p. 350.<br />

- , 1978, Prelim<strong>in</strong>ary model of Catskill Delta <strong>in</strong> West Virg<strong>in</strong>ia:<br />

- <strong>in</strong> Schott, G. L., and others (eds.), First Eastern Gas <strong>Shales</strong><br />

Symposium, Proceed<strong>in</strong>gs, Morgantown, West Virg<strong>in</strong>ia, U.S. Department<br />

of <strong>Energy</strong>, Morgantown <strong>Energy</strong> Research Center, MERC/<br />

SP-77/5, p. 195-20s.<br />

Schwieter<strong>in</strong>g, J. F., and Neal, D. W., 1978, Occurrence of Foerstia<br />

(Protosalv<strong>in</strong>ia) <strong>in</strong> L<strong>in</strong>coln County, West Virg<strong>in</strong>ia: Geology,<br />

v. 6, p. 493, 494.<br />

Scott, A. J., 1961, Three new conodonts from the Louisiana Limestone<br />

(Upper Devonian) of western Ill<strong>in</strong>ois: Journal of Paleon-<br />

tology, V. 35, p. 1223-1227.<br />

Scott, A. J., and Coll<strong>in</strong>son, C., 1961, Conodont faunas from the<br />

Louisiana and McCraney formations of Ill<strong>in</strong>ois, Iowa, and Mis-<br />

souri: <strong>in</strong> Kansas Geological Society Guidebook, 26th Annual<br />

Field Caerence, p. 110-141.<br />

Scott, D. H., 1902, On the primary structure of certa<strong>in</strong> Paleozoic<br />

stems with the Dadoxylon type of wood: Transactions of the<br />

Royal Society ofEd<strong>in</strong>burgh,v. 40, p. 331-373.<br />

- , 1915, Lepidostrobus kentuckiensis, nomen nov., formerly L.<br />

fischeri, Scott and Jeffrey: a correction: Proceed<strong>in</strong>gs of<br />

the Royal Society of London, v. 88B, p. 435-436.<br />

Scott, D. H., and Jeffrey, E. C., 1914, On fossil plants show<strong>in</strong>g<br />

structure from the base of the Waverly Shale of <strong>Kentucky</strong>:<br />

Philosophical Transactions of the Royal Society of London,<br />

V. 205B, p. 315-373.<br />

56


4<br />

0964<br />

0965<br />

0966<br />

0967<br />

0968<br />

0969<br />

0970<br />

0971<br />

0972<br />

0973<br />

09 74<br />

0975<br />

0976<br />

0977<br />

0978<br />

0979<br />

0980<br />

0981<br />

0982<br />

Scott, H. W., 1948, Significance of crustaceans <strong>in</strong> dwarfed faunas:<br />

Journal of Sedimentary Petrology, v. 18, p. 65-70.<br />

Sebby, W. S., and Matten, L. C., 1969, Kalymma m<strong>in</strong>uta (Read)<br />

comb. nov. from the New Albany Shale: Torrey Botany Club<br />

Bullet<strong>in</strong>, v. 96, p. 79-88.<br />

Sedden, George, 1970, Frasnian conodonts from the Sadler Ridge-<br />

Bugle Gap area, Cann<strong>in</strong>g Bas<strong>in</strong>, Western Australia: Journal<br />

of the Geological Society of Australia, v. 16, p. 723-753.<br />

, George, and Sweet, W. C., 1971, An ecologic model for<br />

Sedd? onodonts: Journal of Paleontology, v. 45, p. 869-880.<br />

Seilacher, A., Drodzewski, G., and Haude, R., 1968, Form and<br />

function of a stem <strong>in</strong> a psuedo-planktonic cr<strong>in</strong>oid (Seiro- -<br />

cr<strong>in</strong>us): Palaeontology, v. 11, p. 275-282.<br />

Seward, A. C., 1917, Fossil plants, a textbook for students of<br />

botany and geology: Cambridge, Cambridge University Press,<br />

V. 3, p. 291-293.<br />

-’ 1933, The Devonian Period: <strong>in</strong> Plant Life through the ages:<br />

Cambridge, Cambridge UniversitTPress, p. 139-154.<br />

Shaler, N. S., 1877, Notes on the <strong>in</strong>vestigations of the <strong>Kentucky</strong><br />

Geological Survey: - <strong>in</strong> Geological Survey of <strong>Kentucky</strong> <strong>Report</strong>s<br />

of Progress, v. 3, new series; p. 169-173.<br />

-’ 1879, Petroleum: <strong>in</strong> Bullet<strong>in</strong> of the <strong>Kentucky</strong> Geological<br />

Survey, no. 1, p. 5-12.<br />

Sharpe, Charles, and others, 1976, Economic potential of the<br />

Ohio black shales <strong>in</strong> northeastern <strong>Kentucky</strong>: NSF-SOS Grant<br />

no. 76-08113, p. 22-23.<br />

Sheldon, R. P., 1964, Paleolatitud<strong>in</strong>al and paleogeographic distribution<br />

of phosphorite: U.S. Geological Survey Professional<br />

Paper 501-C, p. C106-C113.<br />

Shepps, V..C. (ed.), 1963, Symposium on Middle and Upper Devonian<br />

Stratigraphy of Pennsylvania and Adjacent States: Pennsylvania<br />

Geological Survey, 4th series, General Geological<br />

<strong>Report</strong> 39, 301 pp.<br />

Shimer, H. W., 1908, Dwarf-faunas: American Naturalist, v. 42,<br />

p. 472-490.<br />

Smith, Burnett, 1909, On some D<strong>in</strong>ichthyid armor plates from the<br />

Marcellus Shale: American Naturalist, v. 43, p. 588-597.<br />

-’ 1910, Notes on some little-known fishes from the New York<br />

Devonian: Academy of Natural Science of Philadelphia Proceed<strong>in</strong>gs,<br />

v. 62, p. 656-663.<br />

Smith, G. A., Briden, J. C., and Drewery, G. E., 1973, Phanerozoic<br />

world maps: <strong>in</strong> Hughes, N. V. (ed.), Organisms and<br />

Cont<strong>in</strong>ents throughTime : Special Papers <strong>in</strong> Palaeontology ,<br />

no. 12, p. 1-42.<br />

Smith, G. O., and White, David, 1905, Geology of the Perry bas<strong>in</strong><br />

<strong>in</strong> southeastern Ma<strong>in</strong>e: U.S. Geological Survey Professional<br />

Paper 35, p. 35-84.<br />

Smith, J..P., 1903, The Carboniferous ammonoids<br />

-<br />

of America: U.S.<br />

Geological Survey Monograph 42, 211 pp.<br />

Sohn, I. G., 1960, Paleozoic species of Bairdia and related<br />

genera: U.S. Geological Survey Professional Paper 330-A,<br />

115 pp.<br />

57


0983 Soh, I. G., 1961, Aechm<strong>in</strong>ella, Amphissites, Kirkbyella, and<br />

related genera: U.S. Geologhal Survey Professional Paper<br />

0984<br />

0985<br />

0986<br />

0987<br />

0988<br />

0989<br />

0990<br />

0991<br />

0992<br />

330-B, 160 pp.<br />

SOmmer, F. W., 1951, 0 problem de Pmtosalv<strong>in</strong>ia brazilensis<br />

Dawson: Academy Brasileira, cien anais, v. 23, p. 415-419.<br />

Stach, E., and others, 1975, Coal Petrology: Berl<strong>in</strong>, Gegruder<br />

Borntraeger, p. 212.<br />

Sta<strong>in</strong>brook, M. A., 1935, A Devonian fauna from the Sacramento<br />

Mounta<strong>in</strong>s near Alamogordo, New Mexico: Journal of Paleon-<br />

tology, V. 9, p. 709-714.<br />

-’ 1947, Brachiopoda of the Percha Shale of New Mexico and<br />

Arizona: Journal of Paleontology, v. 21, p. 297-328.<br />

Stanley, S. M., 1970, Relation of shell form to life habits<br />

of the Bivalvia (bbllusca): Geological Society of America<br />

Memoir 125, 296 pp.<br />

Stanton, R. J., 1963, Upper Devonian calcispheres from Redwater<br />

and South Sturgeon Lake reefs, Alberta, Canada: Canadian<br />

Petroleum and Economics Bullet<strong>in</strong>, v. 11, p. 410-418.<br />

Stapl<strong>in</strong>, F. L., 1961, Reef-controlled distribution of Devonian<br />

microplankton <strong>in</strong> Alberta: Palaeontology, v. 4, p. 392-424.<br />

Stauffer, C. R., 1908, The Devonian section OR Ten Mile Creek,<br />

Lucas County, Ohio: Ohio Naturalist, v. 8, p. 271-276.<br />

-’ 1915a, The Devonian of southwestern Ontario: Geological<br />

Survey of Canada Memoir 34, 341 pp.<br />

-9 1915b, Olentangy Shale and associated deposits of northern<br />

0993<br />

Ohio (abstr.): Geological Society of America Bullet<strong>in</strong>, v. 26,<br />

0994<br />

0995<br />

0996<br />

-’<br />

-’<br />

-’<br />

p. 95-96.<br />

1916, The relationship of the Olentangy Shale and associated<br />

Devonian deposits of northern Ohio: Journal of Geology, v. 24,<br />

p. 476-487.<br />

1918, Descriptions of some new species of Devonian fossils:<br />

Journal of Geology, v. 26, p. 555-560.<br />

1938a, Conodonts of the Olentangy Shale: Journal of Paleon-<br />

0997<br />

0998<br />

0999<br />

1000<br />

1001<br />

1002<br />

tOlOm, V. 12, p. 411-443.<br />

-’ 1938b, The fauna of the typical Olentangy Shale: Journal<br />

of Geology, v. 46, p. 1075-1078.<br />

-’ 1940, Conodonts from the Devonian and associated clays of<br />

M<strong>in</strong>nesota: Journal of Paleontology, v. 14, p. 417-435.<br />

Stauffer, C. R., Hubbard, G. D., and Bownocker, J. A,, 1911, Geology<br />

of the Columbus quadrangle: Ohio Geological Survey Bullet<strong>in</strong><br />

14, p. 25-34, 50.<br />

Stearn, C. C., Carroll, R. L., and Clark, T. H., 1979, Geological<br />

evolution of North America, 3d edition: New York, John Wiley<br />

and Sons, 566 pp.<br />

Steele-Petmvic, H. M., and Thayer, C. W., 1971, Burrow<strong>in</strong>g of the<br />

l<strong>in</strong>gulid brachiopod Glottidia pyrimidata (abstr.) : Geological<br />

Society of America Abstracts with Programs, v. 3, p. 719.<br />

Stensio, E. A., 1925, On the head of Macropetalichthyids, with<br />

certa<strong>in</strong> remarks on the head of other Arthrodires: Field<br />

1003<br />

Museum Publication, v. 232, p. 89-197.<br />

- , 1937, Notes on the endocranium of a Devonian Cladodus:<br />

Upsala Bullet<strong>in</strong> of Geology, v. 27, p. 128-144.<br />

sa


1004<br />

1005<br />

1006<br />

1007<br />

1008<br />

1009<br />

1010<br />

1011<br />

1012<br />

1013<br />

1014<br />

1015<br />

1016<br />

1017<br />

1018<br />

1019<br />

Stensio, E. A,, 1968, The sp<strong>in</strong>al plate <strong>in</strong> Homostius and - Dunkleosteus<br />

- Discussion: <strong>in</strong> Orvik, Tor (ed.), Current<br />

Problems of Lower Vertebrate Phylogeny, 4th Nobel Symposium,<br />

Stockholm, 1967 Proceed<strong>in</strong>gs, New York, Interscience, p. 148-<br />

151.<br />

Stetson, H. C., 1930, Notes on the structure of D<strong>in</strong>ichthys and<br />

Macropetalichthys: Bullet<strong>in</strong> of the Harvard Museum of Comparative<br />

Zoology, v. 71, p. 19-39.*<br />

Stevenson, J. J., 1878, The Upper Devonian rocks southwest Pennsylvania:<br />

American Journal of Science, 3d series, v. 15,<br />

p. 423-430.<br />

-, 1892, The Chemung and Catskill (Upper Devonian) on the eastern<br />

side of the Appalachian bas<strong>in</strong>: Proceed<strong>in</strong>gs of the American<br />

Association for the Advancement of Science, v. 40, p. 219-<br />

247; American Geologist, v. 9, p. 6-33.<br />

Stewart, G. A., 1944, Ostracoda from Middle Devonian bone beds <strong>in</strong><br />

central Ohio: Journal of Paleontology, v. 24, p. 652-666.<br />

Stewart, G. A., and Hendrix, W. E., 1939, Ostracodes as a possible<br />

aid <strong>in</strong> the Olentangy Shale problem (abstr.): Geological<br />

Society of America Bullet<strong>in</strong>, v. 50, p. 1988, 1989.<br />

-' 194Sa, Ostracoda of the Plum Brook Shale, Erie County, Ohio:<br />

Journal of Paleontology, v. 19, p. 87-95.<br />

-9 194Sb, Ostracoda of the Olentangy Shale, Frankl<strong>in</strong> and Delaware<br />

County, Ohio: Journal of Paleontology, v. 19, p. 96-<br />

115.<br />

Stewart, G. A., and Lampe, Lois, 1947, Foram<strong>in</strong>ifera from the Middle<br />

Devonian bone beds of Ohio: Journal of Paleontology,<br />

V. 21, p. 529-536.<br />

Stockdale, P. B., 1939, Lower Mississippian rocks of the eastcentral<br />

Interior: Geological Society of America Special Paper<br />

22, p. 50, 75, 87-91.<br />

Stose, G. W., 1923, Pre-Pennsylvanian rocks: <strong>in</strong> Eby, J. B. (ed.),<br />

The geology and m<strong>in</strong>eral resources of Wise County and the coal.bear<strong>in</strong>g<br />

portion of Scott County, Virg<strong>in</strong>ia: Virg<strong>in</strong>ia Geological<br />

Survey Bullet<strong>in</strong> 24, p. 22-62.<br />

Stose, G. W., and Swartz, C. K., 1912, Pawpaw-Hancock Folio,<br />

Maryland-West Virg<strong>in</strong>ia-Pennsylvania: U.S. Geological Survey<br />

Geologic Atlas of the United States Folio 179, 24 pp.<br />

Straka, J. J., 1968, Conodont zonation of the K<strong>in</strong>derhookian Series,<br />

Wash<strong>in</strong>gton County, Iowa: Iowa University <strong>Studies</strong> <strong>in</strong> Natural<br />

History, V. 21, p. 1-71.*<br />

Stumm, E. C., Kellum, L. B., and Wright, J. D., 1956, Devonian<br />

strata of the London-Sarnia area, southwestern Ontario,<br />

Canada: Field Trip, Michigan Geological Society, Michigan<br />

Geological Survey, 21 pp.*<br />

Sturgeon, M. C., Hlav<strong>in</strong>, W. J., and Kesl<strong>in</strong>g, R. V., 1964,.Rare<br />

crustaceans from the Upper Devonian Chagr<strong>in</strong> Shale <strong>in</strong> northern<br />

Ohio: University of Michigan Museum Paleontology Contributions,<br />

v. 19, p. 47-64.<br />

Sutton, A. H., 1944, The Devonian System <strong>in</strong> Indiana: 5 Ill<strong>in</strong>ois<br />

State Geological Survey Bullet<strong>in</strong> 68, p. 162-173.<br />

59


1020<br />

1021<br />

1022<br />

1023<br />

1024<br />

102s<br />

1026<br />

1027<br />

1028 .<br />

1029<br />

1030<br />

1031<br />

1032<br />

1033<br />

1034<br />

1035<br />

Sutton, R. G., Bowen, Z. P., and McAlester, A. L., 1970, Mar<strong>in</strong>e<br />

shelf environments of the Upper Devonian Sonyea Group of<br />

New York: Geological Society of America Bullet<strong>in</strong>, v. 81,<br />

p. 2975-2992.<br />

Swager, D. R., 1978, Stratigraphy of the Upper Devonian-Lower<br />

Mississippian Shale Sequence <strong>in</strong> the Eastern <strong>Kentucky</strong> Outcrop<br />

Belts:<br />

Unpublished Masters thesis, University of <strong>Kentucky</strong>,<br />

Lex<strong>in</strong>gton, 116 pp.<br />

Swager, D. R., and Ettensohn, F. R., 1978, The stratigraphy of<br />

Mississippian black shales along the east-central <strong>Kentucky</strong><br />

outcrop belt (abstr.): Geological Society of America<br />

Abstracts with Programs, v. 10, p. 199.<br />

Swa<strong>in</strong>, F. M. (ed.), 1977a, Stratigraphic micropaleontology of<br />

Atlantic Bas<strong>in</strong> and borderlands: Developments <strong>in</strong> Palaeontology<br />

and Stratigraphy, no. 6, New York, Elsevier, 603 pp.<br />

-* 1977b, Notes on Paleozoic acritarchs from the Atlantic<br />

marg<strong>in</strong>: <strong>in</strong> Swa<strong>in</strong>, F. M. (ed.), Stratigraphic Micropaleontology<br />

ofTtlantic Bas<strong>in</strong> and borderlands : Developments <strong>in</strong><br />

Palaeontology and Stratigraphy, no. 6, New York, Elsevier,<br />

p. 137-150.<br />

-’ 1978, Organic materials of early Middle Devonian, Mt. Union<br />

area, Pennsylvania: American Association of Petroleum Geologists<br />

Bullet<strong>in</strong>, v. 42, p. 2858-2891.<br />

Swanson, V. E., 1960, Oil yield and uranium content of black<br />

shales: U.S. Geological Survey Professional Paper 356-A,<br />

p. 1-44.<br />

- , 1961, Geology and geochemistry of uranium <strong>in</strong> mar<strong>in</strong>e black<br />

shales - a review: U.S. Geological Survey Professional Paper<br />

3564, p. 67-112.<br />

Swanson, V. E., and Landis, E. R., 1962, Geology of a uraniumbear<strong>in</strong>g<br />

black shale of Late Devonian age <strong>in</strong> north-central<br />

Arkansas: Arkansas Geology and Conservation Commission Information<br />

Circular 22, 16 pp.<br />

Swartz, C. K., 1908, The succession of faunas <strong>in</strong> the Portage and<br />

Chexuung formations of Maryland: Journal of Geology, v. 16,<br />

p. - 328-346.<br />

- , 1910, Recurrence of Tropidoleptus fauna <strong>in</strong> the Chemung of<br />

Maryland: Geological - Society of America Bullet<strong>in</strong>, v. 20,<br />

679-686.<br />

- , 1913a, Systematic paleontology of the Upper Devonian<br />

deposits of Maryland; vertebrata: Maryland Geological Survey,<br />

Middle and Upper Devonian, v. 6, p. 700-701.<br />

- , 1913b, Correlation of the Upper Devonian; Local sections<br />

of the Upper Devonian (of Maryland): Maryland Geological<br />

Survey, Middle and Upper Devonian, v. 6, p. 410-534.<br />

Swartz, F. M., 1930, The Helderberg Group of parts of West Virg<strong>in</strong>ia<br />

and Virg<strong>in</strong>ia: U.S. Geological Survey Professional Paper<br />

1584, p. 27-75.<br />

Swartz, J. H., 1923, The age and stratigraphy of the Chattanooga<br />

Shale <strong>in</strong> northeastern Tennessee and <strong>in</strong> Virg<strong>in</strong>ia: American<br />

Journal of Science, 5th series, v. 17, p. 431-438.<br />

- , 1924, The age of the Chattanooga Shale of Tennessee: American<br />

Journal of Science, 5th series, v. 7, p. 24-30.<br />

60


1036<br />

1037<br />

1038<br />

1039<br />

1040<br />

1041<br />

1042<br />

1043<br />

1044<br />

1045<br />

1046<br />

1047<br />

1048<br />

1049<br />

1050<br />

1051<br />

1052<br />

Swartz, J. H., 1927, Chattanoogan age of the Big Stone Gap Shale:<br />

American Journal of Science, 5th series, v. 14, p. 485-499.<br />

- , 1929a, The age and stratigraphy of the Chattanoogan shale<br />

<strong>in</strong> northeastern Tennessee and Virg<strong>in</strong>ia: American Journal of<br />

Science, 5th series, v. 17, p. 431-448.<br />

- , 1929b, The Devonian-Mississippian boundary <strong>in</strong> southeast<br />

United States:. Science, v, 70, p. 609.<br />

Sweet, W. C., and Bergstrom, S. M., 1970-1971, Symposium on<br />

conodont biostratigraphy: Geological Society of America<br />

Memoir 127, 499 pp.<br />

Szmuc, E. J., 1970, The Devonian System: <strong>in</strong> Guide to the Geology<br />

of Northeastern Ohio, Northern Ohio Gexogical Society, Kent,<br />

p. 9-20.*<br />

Szmuc, E. J., Osgood, R. G., Jr., and Me<strong>in</strong>ke, D. W., 1976, L<strong>in</strong>gulichnites,<br />

a new trace fossil genus for l<strong>in</strong>gulid brachiopod<br />

burrows: Lethaia, v. 9, p. 163-167.<br />

Tam, W. A., 1927, Alternat<strong>in</strong>g deposition of pyrite, marcasite<br />

and possibly melnikovite: American M<strong>in</strong>eralogist, v. 12,<br />

p. 417-421.<br />

Tasch, Paul, 1967, The problem of primary production <strong>in</strong> the seas<br />

through geologic time: Review of Palaeobotany, v. 1, p. 283-<br />

* 290.<br />

Teichert, Curt, and Yochelson, E. L. (eds.), 1967, Essays <strong>in</strong><br />

Paleontology and Stratigraphy, R. C. Moore Commemorative Volume:<br />

Department of Geology, University of Kansas, Special<br />

Publication 2, Lawrence, University of Kansas Press, 626 pp.<br />

Tesmer, I. H., 1955, Restudy of Upper Devonian (Chautauquan)<br />

stratigraphy and paleontology <strong>in</strong> southwestern New York State:<br />

New York Museum Circular 42, 22 pp.<br />

-’ 1963, Geology of Chautauqua County, New York - Part 1,<br />

stratigraphy and paleontology (Upper Devonian) : New York<br />

State Museum and Science Service Bullet<strong>in</strong> 391, 65 pp.<br />

-’ 1968, Upper Devonian stratigraphy and paleontology of<br />

southwestern New York State: <strong>in</strong> Oswald, D. H. (ed.), International<br />

Symposium on the Devozan System, 1967 Proceed<strong>in</strong>gs,<br />

Calgary, Alberta, Alberta Society of Petrology Geologists,<br />

V. 2, p. 259-269.<br />

Thayer, C. W., 1974, Mar<strong>in</strong>e paleoecology <strong>in</strong> the Upper Devonian of<br />

New York: Lethaia, v. 7, p. 121-155.<br />

Thayer, C. W., and Steele-Petrovic, H. M., 1975, Burrow<strong>in</strong>g ofthe<br />

l<strong>in</strong>gulid brachiopod Glottidia pyrimidata: its ecologic and<br />

paleoecologic significance: Lethaia, v. 8, p. 209-221.<br />

Theede, H., Ponat, A., Hiroki, K., and Schlieper, C., 1969, <strong>Studies</strong><br />

on the resistance of mar<strong>in</strong>e bottom <strong>in</strong>vertebrates to oxygen<br />

deficiency and hydrogen sulfide: Mar<strong>in</strong>e Biology, v. 2, p. 325-<br />

337.<br />

Thiessen, R., 1921, Orig<strong>in</strong> and composition of certa<strong>in</strong> oil shales:<br />

Economic Geology, v. 16, p. 289-300.<br />

-’ 1925, Microscopic exam<strong>in</strong>ation of <strong>Kentucky</strong> oil shales: <strong>in</strong><br />

Thiessen, R., White, D., and Crouse, C. S., Oil shales of-<br />

<strong>Kentucky</strong>: <strong>Kentucky</strong> Geological Survey, series 6, v. 21, p. 1-<br />

47.<br />

61


1053<br />

1054<br />

1055<br />

1056<br />

1057<br />

1058<br />

1059<br />

1060<br />

1061<br />

1062<br />

1063<br />

1064<br />

1065<br />

1066<br />

1067<br />

1068<br />

1069<br />

Thomas, A. O., 1931, Late Devonian foram<strong>in</strong>ifera from Iowa: Journal<br />

of Paleontology, v. 5, p. 40, 41.<br />

Thomas, L. A., 1949, Devonian-Mississippian formations of southeast<br />

Iowa: Geological Society of America Bullet<strong>in</strong>, v. 60,<br />

p. 403-438.<br />

Thomson, K. S., 1975, The biology of cosm<strong>in</strong>e: Yale University<br />

Peabody Museum of Natural History Bullet<strong>in</strong>, v. 40, p. 1-57.<br />

-9 1976, The faunal relationships of rhipidistian fishes (Crossopterygii)<br />

from the Catskill (Upper Devonian) of Pennsylvania:<br />

Journal of Paleontology, v. 50, p. 1203-1208.<br />

Thompson, T. L., and Fellows, L. D., 1970, Stratigraphy and conodont<br />

biostratigraphy of K<strong>in</strong>derhookian and Osagian (Lower Mississippian)<br />

rocks of southwestern Missouri and the adjacent<br />

area: Missouri Division of Geological Survey and Water<br />

Resources <strong>Report</strong> of Investigations 45, 263 pp.<br />

Thorson, G., 1961, Length of pelagic larval life <strong>in</strong> mar<strong>in</strong>e bottom<br />

<strong>in</strong>vertebrates as related to larval transport by ocean currents:<br />

- <strong>in</strong> Sears, M. (ed.), Oceanography, American Association for the<br />

Advancement of Science.<br />

Tillman, J. R., 1969, On the age of the Olentangy Shale of central<br />

Ohio (abstr.): Geological Society of America Abstracts with<br />

’<br />

Programs, v. 1, p. 49.<br />

- , 1970, The age, stratigraphic relationships, and correlation<br />

of the lower part of the Olentangy Shale of central Ohio:<br />

Ohio Journal of Science, v. 70, p. 202-217.<br />

Toomey, D. F., Wet, B. L., 1979, Devonian protozoa: <strong>in</strong> House,<br />

M. R., Scrutton, C. T., and Bassett, M. G. (eds.), K e Devonian<br />

System: Special Papers <strong>in</strong> Palaeontology, no. 23, p. 189-<br />

192.<br />

Traquair, R. H., 1890, Notes on the Devonian fishes of Scaumenac<br />

Bay and Campbelltown <strong>in</strong> Canada: Geological Magaz<strong>in</strong>e, new<br />

d<br />

Series, v. 7, p. 15-22.<br />

- , 1893, Notes on the Devonian fishes of Campbelltown and Scaumenac<br />

Bay <strong>in</strong> Canada: Royal Physical Society of Ed<strong>in</strong>burgh<br />

Proceed<strong>in</strong>gs, v. 12, p. 111-125.*<br />

Triplett, J. C., and Trumbo, D. B., 1975, Bibliography of Upper<br />

Devonian shale sequence: U.S. Department of <strong>Energy</strong>, Eastern<br />

Gas <strong>Shales</strong> Project, Open File <strong>Report</strong> 006, 78 pp.<br />

Tschudy, R. H., and Scott, R. A. (eds.), 1969, Aspects of Palynology:<br />

An Introduction to Plant Microfossils <strong>in</strong> Time: New<br />

York, Wiley-Interscience, 510 pp.<br />

Twenhofel, W. H., 1915, Notes on black shale <strong>in</strong> the mak<strong>in</strong>g:<br />

American Journal of Science, 4th series, v. 40, p. 272-280.<br />

- , 1926, Treatise on Sedimentation: Baltimore, The Williams<br />

and Wilk<strong>in</strong>s Co., 661 pp.<br />

- , 1931, The build<strong>in</strong>g of <strong>Kentucky</strong>: <strong>Kentucky</strong> Geological Survey,<br />

series 6, v. 37, p. 1-230.<br />

- , 1939, Environments of orig<strong>in</strong> of black shales: American<br />

Association of petroleum Geologists Bullet<strong>in</strong>, v. 23, p. 1178-<br />

1198.<br />

62


1070<br />

1071<br />

1072<br />

1073<br />

1074<br />

1075<br />

1076<br />

1077<br />

1078<br />

1079<br />

1080<br />

1081<br />

1082<br />

1083<br />

1084<br />

1085<br />

1086<br />

Udden, A. D., 1897, A brief description of the section of Devonian<br />

rocks exposed <strong>in</strong> the vic<strong>in</strong>ity of Rock Island, Ill., with<br />

a statement of the nature of its fish rema<strong>in</strong>s: C<strong>in</strong>c<strong>in</strong>nati<br />

Society of Natural History Journal, v. 19, p. 93-95.<br />

Ulrich, E. O., 1911, Revision of the Paleozoic systems: Geological<br />

Society of America Bullet<strong>in</strong>, v. 22, p. 625-668.<br />

- , 1912, The Chattanooga Series with special reference to the<br />

Ohio Shale problem: American Journal of Science, 4th series,<br />

V. 34, p. 157-183.<br />

- , 1915, The K<strong>in</strong>derhookian age of the Chattanooga Series<br />

(abstr.): Geological Society of America Bullet<strong>in</strong>, v. 26,<br />

p. 96-99.<br />

Uzrich, E. O., and Bassler, R. S., 1926, A classification of the<br />

toothlike fossils, conodonts, with descriptions of American<br />

Devonian and Mississippian species: U.S. <strong>National</strong> Museum<br />

Proceed<strong>in</strong>gs, v. 68, p. 1-63.<br />

Ulrich, E. O., Clarke, J. M., Scofield, W. H., and W<strong>in</strong>chell, N.<br />

H., 1897, Paleontology: Geology of M<strong>in</strong>nesota, M<strong>in</strong>nesota<br />

Geological and Natural History Survey, v. 3, part 2, p. cv.<br />

Uyeno, T. T., 1967, Conodont zonation, Waterways Formation (Upper<br />

Devonian) northeastern and central Alberta: Geological<br />

. h e y of Canada Paper 67-36, p. 1-21.<br />

Van Horn, F. R., and Van Horn, K. R., 1933, X-ray study of pyrite<br />

or marcasite concretions <strong>in</strong> the rocks of the Cleveland, Ohio<br />

quadrangle: American M<strong>in</strong>eralogist, v. 18, p. 288-294.<br />

Verwiebe, W. A., 1916, The Berea Formation of Ohio and Pennsylvania:<br />

American Journal of Science; 4th series, v. 42,<br />

p. 43-58.<br />

- , 1917, Correlation of the Devonian <strong>Shales</strong> of Ohio and Pennsylvania:<br />

American Journal of Science, 4th series, v. 44,<br />

p. 33-47.<br />

Von Zittel, K. A., 1937, Pisces: - <strong>in</strong> Textbook of paleontology:<br />

London, MacMillan 6 Co. Ltd., v. 2, 464 pp.<br />

Wall, D., 1962, Evidence from recent plankton regard<strong>in</strong>g the biological<br />

aff<strong>in</strong>ities of Tasmanites Newton 1875 and Leosphaeri-<br />

- dia Eisenack 1958: Geological Magaz<strong>in</strong>e, v. 99, p. 353-362.<br />

Walls, R. A,, 1972, Sedimentology, paleontology, and paleogeography<br />

of Upper Devonian-Lower Mississippian silt and shale<br />

facies <strong>in</strong> southeastern Appalachian bas<strong>in</strong>: Geological Society<br />

of America Abstracts with Programs, v. 4, p. 111.<br />

-’ 1973, Late Devonian-Early Mississippian subaqueous deltaic<br />

facies <strong>in</strong> a portion of the southeastern Appalachian bas<strong>in</strong>:<br />

<strong>in</strong> Chuber, Stewart (ed.), Gulf Coast Association of Geology<br />

ical Societies Transactions, v. 24, p. 41-45.<br />

Ward, L. F., 1889, The geographical distribution of fossil plants:<br />

U.S. Geological Survey 8th Annual <strong>Report</strong>, part 2, p. 884-941.<br />

Warren, P. S., 1937, Age of the Exshaw Shale <strong>in</strong> the Canadian Rockies:<br />

American Journal of Science, 5th series, v. 33, p. 454-<br />

457.<br />

- , 1956, The Exshaw Shale: Alberta Society of Petroleum Geologists<br />

Journal, v. 4, p. 141-142.<br />

63


1087<br />

1088<br />

1089<br />

1090<br />

1091<br />

1092<br />

1093<br />

1094<br />

1095<br />

1096<br />

1097<br />

1098<br />

1099<br />

1100<br />

1101<br />

1102<br />

1103<br />

1104<br />

1105<br />

Warshauer, S. M., 1978, Ostracode biostratigraphy <strong>in</strong> the bottom<br />

395 feet of CGTC Well 20403, L<strong>in</strong>coln County, W. VA.: Eastern<br />

Gas <strong>Shales</strong> Project, Open File <strong>Report</strong> 109, 12 pp.<br />

Warth<strong>in</strong>, A. S., Jr., 1934, Common ostracoda from the Traverse<br />

Group: University of Michigan Museum Paleontology Contributions,<br />

v. 4, p. 205-226.<br />

Watt, A. D., 1970, Catalog of the illustrated Paleozoic plant<br />

specimens <strong>in</strong> the <strong>National</strong> Museum of Natural History: Smithsonian<br />

Contributions to Paleobiology, no. 5, 53 pp.<br />

Weddige, Karsten, and Ziegler, Willi, 1976, The significance of<br />

Icriodus: Polygnathus ratios <strong>in</strong> limestones from the type<br />

Eifelian, Germany: <strong>in</strong> Barnes, C. R. (ed.), Conodont Paleoecology,<br />

Geological Association of Canada Special Paper 15,<br />

p. 187-199.<br />

-3 1979, Evolutionary patterns <strong>in</strong> Middle Devonian conodont<br />

genera Polygnathus and Icriodus: Geologica et Palaeontologica,<br />

V. 13, p. 157-164.<br />

Weir, G. W., 1967, Geologic map of the Berea quadrangle, eastcentral<br />

<strong>Kentucky</strong>: U.S. Geological Survey Geologic Quadrangle<br />

Map GQ-649.<br />

Weir, Gas W., Lee, K. Y., and Cassity, P. E., 1971, Geologic map<br />

of the Bighill quadrangle east-central <strong>Kentucky</strong>: U.S. Geological<br />

Survey Geologic Quadrangle Map GQ-900.<br />

Weller, J. M., 1944, Devonian System <strong>in</strong> southern Ill<strong>in</strong>ois: - <strong>in</strong><br />

Ill<strong>in</strong>ois State Geological Survey Bullet<strong>in</strong> 68, p. 89-102.<br />

Weller, J. M., and Sutton, A. H., 1940a, Mississippian border<br />

of eastern <strong>in</strong>terior bas<strong>in</strong>: American Association of Petroleum<br />

Geologists Bullet<strong>in</strong>, v. 24, p. 765-858.<br />

-’ 1940b, Mississippian border of eastern <strong>in</strong>terior bas<strong>in</strong>:<br />

Ill<strong>in</strong>ois State Geological Survey <strong>Report</strong> of Investigations 62,<br />

p. 765-858.<br />

Weller, Stuart, 1895, A circum-<strong>in</strong>sular Paleozoic fauna: Journal<br />

of Geology, v. 3, p. 903-917.<br />

- , 1897, Correlation of the Devonian faunas <strong>in</strong> southern<br />

Ill<strong>in</strong>ois: Journal of Geology, v. 5, p. 625-635.<br />

- , 1899, A peculiar Devonian deposit <strong>in</strong> northeastern Ill<strong>in</strong>ois:<br />

Journal of Geology, v. 7, p. 483-488.<br />

- , 1909, Correlation of the Middle and Upper Devonian and the<br />

Mississippian faunas of North America: Journal of Geology,<br />

V. 17, p. 257-285.<br />

-’ 1914, The Mississippian brachiopods of the Mississippi<br />

Valley bas<strong>in</strong>: Ill<strong>in</strong>ois State Geological Survey Monograph 1,<br />

text and plates, 508 pp.<br />

- , 1920, Geology of Hard<strong>in</strong> County: Ill<strong>in</strong>ois State Geological<br />

Survey Bullet<strong>in</strong>, v. 41, p. 89.<br />

Wells, J. W., 1939, Association of cr<strong>in</strong>oids with Callixylon <strong>in</strong><br />

the lower Ohio Shale: Paleobiologica, v. 7, p. 105-110.*<br />

- , 1941, Cr<strong>in</strong>oids and Calfixylon: American Journal of Science,<br />

V. 239, p. 454-456.<br />

- , 1944, Middle Devonian bone beds of Ohio: Geological Society<br />

of America Bullet<strong>in</strong>, v. 55, p. 273-302.<br />

64


1106<br />

1107<br />

1108<br />

1109<br />

1110<br />

1111<br />

1112<br />

1113<br />

1114<br />

1115<br />

1116<br />

1117<br />

1118<br />

1119<br />

1120<br />

1121<br />

1122<br />

Wells, J. W., 1947, Provisional paleoecological analysis of the<br />

Devonian rocks of the Columbus region: Ohio Journal of Science,<br />

v. 47, p. 119-126.<br />

Westgate, L. G., 1926, Geology of Delaware County: Ohio Geological<br />

Survey, 4th series, Bullet<strong>in</strong> 30, p. 37-39, 42-43.<br />

Westoll, T. S., 1943, The orig<strong>in</strong> of the tetrapods: BiologicaJ<br />

Review, v. 18, p. 78-98.<br />

-’ 1979, Devonian fish biostratigraphy: <strong>in</strong> House, M. R.,<br />

Scrutton, C. T., and Bassett, M. G. (eds.), The Devonian<br />

System: Special Papers <strong>in</strong> Palaeontology, no. 23, p. 341-353.<br />

Wethered, E., 1886, On the occurrence of spores of plants <strong>in</strong> the<br />

lower limestone shales of the Forest of Dean Coalfield and<br />

<strong>in</strong> the black shales of Ohio, United States: Proceed<strong>in</strong>gs of<br />

the Cotteswold Nature Field Club, v. 8, p. 167-173.*<br />

White, C. A., 1883, On the Macrocheilus of Phillips, Plectostylus<br />

of Conrad, and Joleniscus of Meek and Worthen: U.S. <strong>National</strong><br />

Museum Proceed<strong>in</strong>gs, v. 6, p. 184-187.*<br />

White, C. D., 1902, Fossil alga from the Chemung of New York, with<br />

remarks on the genus Haliserites Sternberg: New York State<br />

Museum Bullet<strong>in</strong>, u, 52, p.-593-605.*<br />

-’ 1907a, A remarkable fossil tree trunk from the Middle Devonic<br />

of New York: New York State Museum Bullet<strong>in</strong>, v. 107, p. 327-<br />

360. *<br />

-’ 1907b, A composite lycopod type from the Devonian (abstr.):<br />

Science, new series, v. 25, p. 269.*<br />

-9 1909, The Upper Paleozoic flora: Journal of Geology, v. 17,<br />

p. 320-341.<br />

-’ 1911, Value of floral evidence <strong>in</strong> mar<strong>in</strong>e strata as <strong>in</strong>dicative<br />

of nearness of shores: - <strong>in</strong> Conference on Faunal Criteria<br />

<strong>in</strong> Paleozoic Paleogeography: Geological Society of America<br />

Bullet<strong>in</strong>, v. 22, p. 221-227.<br />

White, C. D., and Knowlton, F. H., 1910, Evidences of paleobotany<br />

as to geological climate (abstr.): Science, new series,<br />

v. 31, p. 760.*<br />

White, C. D., and Stadnichenko, T., 1923, Some mother plants of<br />

petroleum <strong>in</strong> the Devonian black shales: Economic Geology,<br />

V. 18, p. 238-252.<br />

White, I. C., 1881, The geology of Erie and Crawford Counties:<br />

Pennsylvania Geological Survey, 2d, 44, 406 pp.<br />

Whiteaves, J. F., 1880a, New species of Pterichthys, allied to<br />

Bothriolepis ornata: American Journal of Science, 3d series,<br />

V. 20, p. 132-136.<br />

-’ 1880b, Some new and remarkable fossil fishes from the<br />

Devonian rocks of the northern side of the Baie des Chaleurs<br />

(abstr.): Canadian Naturalist and Geologist and Proceed<strong>in</strong>gs<br />

-<br />

of the Natural History Society of Montreal, v. 9, p. 315.”<br />

, 1881a, On some remarkable fossil fishes from the Devonian<br />

rocks of Scaumenac Bay, P. Q. with descriptions of a new<br />

genus and three new species: Canadian Naturalist, new series,<br />

V. 10, p. 27-35.*<br />

65


1123<br />

- 1124<br />

1125<br />

1126<br />

1127<br />

1128<br />

1129<br />

1130<br />

1131<br />

1132<br />

1133<br />

1134<br />

1135<br />

1136<br />

Whiteaves, J. F., 1881b, On some fossil fishes, Crustacea, and<br />

Mollusca from the Devonian rocks at Campbelltown, N. B., with<br />

descriptions of five new species: Canadian Naturalist and<br />

Geologist and Proceed<strong>in</strong>gs of the Natural History Society of<br />

Montreal, v. 10, p. 93-101.*<br />

-’ 1883, Recent discoveries of fossil fishes <strong>in</strong> the Devonian<br />

rocks of Canada: American Naturalist, v. 17, p. 158-164;<br />

Proceed<strong>in</strong>gs of the American Association for the Advancement<br />

of Science, v. 31, p: 353-356.*<br />

-’ 1886, Illustrations of the fossil fishes of Canada: Transactions<br />

of the Royal Society of Canada, v. 4, section 4,<br />

p. 101-110.<br />

- , 1889, Illustrations of the fossil fishes of the Devonian<br />

rocks of Canada, Part 11: Transactions of the Royal Society<br />

of Canada, v. 6, section 4, p. 77-96.<br />

- , 1899, The Devonian System <strong>in</strong> Canada: Proceed<strong>in</strong>gs of the<br />

American Association for the Advancement of Science, v. 48,<br />

p. 193-223; American Geologist, v. 24, p. 210-240; Science,<br />

new series, v. 10, p. 402-412, 430-438; (abstr.):, Canadian<br />

Record of Science, v. 8, p. 195-198.<br />

- , 1908, Illustrations of the fossil fishes of the Devonian<br />

rocks of Canada: Transactions of the Royal Society of Canada,<br />

series 3, v. 1, section 4, p. 245-274.<br />

Whitfield, R. P., 1875, Fossils from the black slate formations<br />

of southern Indiana and adjacent portions of <strong>Kentucky</strong>: Indiana<br />

Geological Survey, 6th Annual <strong>Report</strong>, p. 179-182.<br />

- , 1880a, Notice of new forms of fossil crustaceans from the<br />

Upper Devonian rocks of Ohio, with descriptions of new<br />

genera and species: American Journal of Science, 3d series,<br />

V. 19, p. 33-42.<br />

-’ 1880b, Notice of the occurrence of rocks represent<strong>in</strong>g the<br />

Marcellus Shale of New York, <strong>in</strong> central Ohio: Proceed<strong>in</strong>gs<br />

of the American Association for the Advancement of Science,<br />

V. 28. P. 297-299.*<br />

- , 1889,-Description of a new form of fossil balanoid cirripeda<br />

from the Marcellus Shale of New York: American Museum of<br />

Natural History Bullet<strong>in</strong>, v. 2, p. 66-68.*<br />

- , 1892, Discovery of a second example of the macrouran decapod<br />

crustacean Palaeopalaeomon newberryi: American Geologist,<br />

V. 9, p. 237-238.<br />

- , 1893, Contributions to the paleontology of Ohio: <strong>in</strong> Orton,<br />

E., economic geology, archaeology, botany, paleontolow: Ohio<br />

Geological Survey <strong>Report</strong>s, v. VII, p. 407494.<br />

Whittlesey, Charles, 1851, On the equivalency of the rocks of<br />

northeastern Ohio and the Portage, Chemng, and Hamilton rocks<br />

of New York: Proceed<strong>in</strong>gs of the American Association for the<br />

Advancement of Science, v. 5, p. 207-221.*<br />

Wicander, E. Rz, 1973a, Phytoplankton abundance and diversity<br />

dur<strong>in</strong>g the Late Devonian and Early Mississippian of Ohio<br />

(Abstr.): American Association of Petroleum Geologists Bullet<strong>in</strong>,<br />

v. 57, p. 812.<br />

66


1137<br />

1138<br />

1139<br />

1140<br />

1141<br />

1142<br />

1143<br />

1144<br />

1145<br />

1146<br />

1147<br />

1148<br />

1149<br />

1150<br />

1151<br />

1152<br />

1153<br />

1154<br />

Wicander, E. R., 1973b, Mar<strong>in</strong>e primary productivity dur<strong>in</strong>g the<br />

Late Devonian-Early Mississippian of Ohio (abstr.): Cordilleran<br />

Section, 69th Annual Meet<strong>in</strong>g, Geological Society of<br />

America Abstracts with Programs, v. 5, p. 121-122.<br />

-’ 1974, Upper Devonian-Lower Mississippian acritarchs and<br />

pras<strong>in</strong>ophycean algae from Ohio, U.S.A,: Palaeontographica,<br />

Abt. B, V. 148, p. 9-43.*<br />

-’ 1975, Fluctuations <strong>in</strong> a Late Devonian-Early Mississippian<br />

phytoplankton flora of Ohio, U.S.A.: Palaeogeography, Palaeoclimatology,<br />

Palaeoecology, v. 17, p. 89-108.<br />

Wicander, E. R., and Loeblich, A. R., Jr., 1977, Organic-walled<br />

microphytoplankton and its stratigraphic significance from<br />

the Upper Devonian Antrim Shale, Indiana, U.S.A.: Palaeontographica,<br />

Abt. B, v. 160, p. 129-165.*<br />

Wickwire, G. T., 1936, Cr<strong>in</strong>oid stems on fossil wood: American<br />

Journal of Science, 5th series, v. 32, p. 145 146.<br />

Wigley, P. B., and Clayton, J. W., 1973, Conodont assemblages<br />

from the New Albany Shale of <strong>Kentucky</strong> (abstr.): North-Central<br />

Section, 7th Annual Meet<strong>in</strong>g, Geological Society of<br />

America Abstracts with Programs, v. 5, p. 365-366.<br />

Wigley, P. B., and Sergeant, R. E., 1970, Penecontemporaneous<br />

sedimentary structures <strong>in</strong> the Ravenna facies of the New<br />

Albany Shale (abstr.): Geological Society of America Abstracts<br />

with Programs, v. 2, p. 248-249.<br />

Willard, B., 1934, Early Chemung shorel<strong>in</strong>e <strong>in</strong> Pennsylvania:<br />

Geological Society of America Bullet<strong>in</strong>, v. 45, p. 897-907.<br />

Williams, A. J., 1977, Insight <strong>in</strong>to l<strong>in</strong>gulid evolution from the<br />

Late Devonian: Alcher<strong>in</strong>ga, v. 1, p. 401-406.<br />

Hilliams, G. L., 1978, D<strong>in</strong>oflagellates, Acritarchs and Tasmanitids:<br />

-<br />

<strong>in</strong> Haq, B. U., and Boersma, Anne (eds.), Introduction to<br />

br<strong>in</strong>e Micropaleontology: New York, Elsevier, p. 322-324.<br />

Williams, H. S., 1881, Channel fill<strong>in</strong>gs <strong>in</strong> Upper Devonian <strong>Shales</strong>:<br />

American Journal of Science, 3d series, v. 21, p. 318-320.<br />

-’ 1882a, New cr<strong>in</strong>oids from the rocks of the Chemmg period<br />

of New York: Proceed<strong>in</strong>gs of the Academy of Natural Science<br />

of Philadelphia, p. 17-34.<br />

-’ 1882b, Notes on some fish-rema<strong>in</strong>s from the Upper Devonian<br />

rocks of New York state: Proceed<strong>in</strong>gs of the American Association<br />

for the Advancement of Science, 30th Meet<strong>in</strong>g, p. 192- ‘<br />

193.<br />

-’ 1882c, Catalogue of the fossils of the Chemung period of<br />

North America: Ithaca, New York, 14 pp.*<br />

1882d, The recurrence of faunas <strong>in</strong> the Devonian rocks of<br />

-’<br />

-’<br />

New York:<br />

Proceed<strong>in</strong>gs of the American Association for the<br />

Advancement of Science, v. 30, p. 186-191.*<br />

1883a, On a remarkable fauna at the base of the Chemung<br />

Group <strong>in</strong> New York: American Jounal of Science, 3d series,<br />

V. 25, p. 97-104.<br />

-9 1883b, Comparative paleontology of the Devonian formation:<br />

Science, v. 2, p. 836-837.*<br />

- , 1884a, On the fossil faunas of the Upper Devonian ... : U.S.<br />

Geological Survey Bullet<strong>in</strong> 3, 36 pp;<br />

67


1155<br />

1156<br />

1157<br />

1158<br />

1159<br />

1160<br />

1161<br />

1162<br />

1163<br />

1164<br />

1165<br />

1166<br />

1167<br />

1168.<br />

1169<br />

1170<br />

1171<br />

1172<br />

1173<br />

1174<br />

Williams, H. S., 1884b, The spirifers of the Upper Devonian:<br />

Science, v. 3, p. 374-375.<br />

- , 1885, Notice of a new Limuloid crustacean from the Devonian:<br />

. American Journal of Science, 3d series, v. 30, p. 45.<br />

- , 1886a, Notes on the fossil fishes of the Genesee and Portage<br />

black shales: Buffalo Society of Natural Science Bullet<strong>in</strong>,<br />

V. 5, p. 81-84.*<br />

-3 1886b, On the classification of the Upper Devonian: Proceed<strong>in</strong>gs<br />

of the American Association for the Advancement of<br />

Science, v. 34, p. 222-234.*<br />

- , 1886c, Devonian Lmellibranchiata and species mak<strong>in</strong>g:<br />

American Journal of Science, 3d series, v. 32, p. 192-198.<br />

- , 1887, On the fossil faunas of the Upper Devonian, the Genesee<br />

section, New York: U.S. Geological Survey Bullet<strong>in</strong> 41, 104 pp.<br />

-9 1889, On the relation of the Devonian faunas of Iowa: American<br />

Geologist, v. 3, p. 230-233.<br />

-’ 1899, The Devonian <strong>in</strong>terval <strong>in</strong> northern Arkansas: American<br />

Journal of Science, 4th series, v. 8, p. 139-152.<br />

- , 1903, The correlation of geological faunas, a contribution<br />

to Devonian paleontology: U.S. Geological Survey Bullet<strong>in</strong><br />

210, 147 pp.<br />

- , 1910, Migration and shift<strong>in</strong>g of Devonian faunas: Geological<br />

Society of America Bullet<strong>in</strong>, v. 21, p. 285-294.<br />

-8 1913, Recurrent Tropidoleptus zones of the Upper Devonian<br />

of New York: U.S. Geological Survey Professional Paper 79,<br />

103 pp.<br />

Williams, H. S., and K<strong>in</strong>dle, E. M., 1905, Contributions to Devonian<br />

paleontology: U.S. Geological Survey Bullet<strong>in</strong> 244,<br />

p. 67-91.<br />

Williams, H. U., 1886, Notes on the fossil fishes of the Genesee<br />

and Portage black shales: Buffalo Society of Natural Science<br />

Bullet<strong>in</strong>, v. 5, p. 81-84.*<br />

Williams, S. G., 1887, The Tully Limestone, its distribution and<br />

its known fossils: New York State Geologist 6th Annual<br />

<strong>Report</strong>, p. 13-29.*<br />

Willis, Bailey, 1909, Paleogeographic maps of North America:<br />

Journal of Geology, v. 17, p. 286-288.<br />

William, H. B., Atherton, Elwood, Buschback, T. C., Coll<strong>in</strong>son,<br />

Charles, Frye, J. C., Hopk<strong>in</strong>s, M. E., L<strong>in</strong>eback, J. A., and<br />

Simon, J. A., 1975, Handbook of Ill<strong>in</strong>ois stratigraphy: Ill<strong>in</strong>ois<br />

State Geological Survey Bullet<strong>in</strong> 95, 261 pp.<br />

Wilson, J. L., and Majewske, 0. P., 1960, Conjectured middle<br />

Paleozoic history of central and west Texas: Texas University<br />

Publication 6017, p. 65-86.<br />

W<strong>in</strong>chell, Alexander, 1887, Terrible fishes and their companions:<br />

- <strong>in</strong> Walks and talks <strong>in</strong> the geological field, New York: Chautauqua<br />

Press, p. 183-184.<br />

W<strong>in</strong>chell, N. H., 1874, The geology of Delaware County: Ohio Geological<br />

Survey, v. 2, part 1, p. 272-313.<br />

W<strong>in</strong>der, C. G., 1962, Upper Devonian age of the Kettle Po<strong>in</strong>t Shale:<br />

Transactions of the Royal Society of Canada, 3d series, v. 56,<br />

p. 85-95.<br />

68


1175<br />

1176<br />

1177<br />

1178<br />

1179<br />

1180<br />

1181<br />

1182<br />

1183<br />

1184<br />

1185<br />

1186<br />

1187<br />

1188<br />

1189<br />

1190<br />

1191<br />

1192<br />

W<strong>in</strong>der, C. G., 1966, Conodont zones and stratigraphic variability<br />

<strong>in</strong> Upper Devonian rocks, Ontario: Journal of Paleontology,<br />

V. 40, p. 1275-1293.<br />

-<br />

, 1967, Micropaleontology of the Devonian <strong>in</strong> Ontario: <strong>in</strong><br />

Oswald, D. H. (en.), International Symposium on the Devzian<br />

System, 1967 Proceed<strong>in</strong>gs, Calgary, Alberta, Alberta Society<br />

of Petroleum Geologists, v. 2, p. 711-719.<br />

W<strong>in</strong>slow, M. R., 1962, Plant spores and other microfossils from<br />

Upper Devonian andLower Mississippian rocks of Ohio: U.S.<br />

Geological Survey Professional Paper 364, 93 pp.<br />

Woodrow, D. L., Fletcher, F. W., and Ahrnsbrak, W. F., 1973,<br />

Paleogeography and paleoclimate at the deposition sites of<br />

the Devonian Catskill and Old Red facies: Geological Society<br />

of America Bullet<strong>in</strong>, v. 84, p. 3051-3064.<br />

Woodward, A. S., 1900, On a new ostracoderm (Euphanerops longaevus)<br />

from the Upper Devonian of Scaumenac Bay, Prov<strong>in</strong>ce of Quebec,<br />

Canada: Annals and Magaz<strong>in</strong>e of Natural History, Series 7,<br />

V. 5, p. 416-419.*<br />

-<br />

, 1906, The relations of palaeontology to biology: Annals<br />

.and Magaz<strong>in</strong>e of Natural History, Series 7, v. 18, p. 315.*<br />

Woodward, H. P., 1943, Devonian System of West Virg<strong>in</strong>ia: West<br />

’ Virg<strong>in</strong>ia Geological Survey, v. XV, 655 pp.<br />

Wright, A. A., 1893, On the ventral armor of D<strong>in</strong>ichthys: Ohio<br />

Geological Survey, v. 7, p. 620-626.<br />

-’ 1894, The ventral armor of D<strong>in</strong>ichthys: American Geologist,<br />

V. 14, p. 313-320.<br />

-’ 1897, New evidence upon the structure of D<strong>in</strong>ichthys<br />

(abstr.): Ohio State Academy of Science 5th Annual <strong>Report</strong>,<br />

p. 59-60.*<br />

Wyrtki, K., 1961, The themhal<strong>in</strong>e circulation <strong>in</strong> relation to the<br />

general circulation <strong>in</strong> the oceans: Deep-sea Research, v. 8,<br />

p. 39-64.<br />

-* 1962, The oxygen m<strong>in</strong>imum <strong>in</strong> relation to ocean circulation:<br />

Deep-sea Research, v. 9, p. 11-23.<br />

Yandell, L. P., and Shumard, B. F., 1847, Contributions to the<br />

geology of <strong>Kentucky</strong>: Louisville, 36 pp.*<br />

Younquist, W. L., 1945, Upper Devonian conodonts from the Independence<br />

Shale (?) of Iowa: Journal of Paleontology, v. 19,<br />

p. 355-367.<br />

-<br />

, 1947, A new Upper Devonian conodont fauna from Iowa:<br />

Jour-<br />

nal of Paleontology, v. 21, p. 95-112.<br />

Younquist, W. L., and Miller, A. K., 1948, Additional conodonts<br />

from the Sweetland Creek Shale of Iowa: Journal of Paleontolow,<br />

V. 22, p. 440-450.<br />

Ziegler, Willi, 1962, Taxionomie und Phylogenie Oberdevonishcer<br />

Conodonten und ihre stratigraphische Bedeutung: Abhandlungen<br />

des Hessicschen Landesamtes fur Bodenforschung, v. 38, 166 pp.<br />

-’ 1973a, b, c, Catalogue of Conodonts: Stuttgart, E. Schweizer-<br />

bart’sch Verlagsbuchhandlung, a) v. I, 504 pp., b) v. 11,<br />

404 pp., c) v. 111, 574 pp.<br />

69


1193 Ziel<strong>in</strong>kski, R. E., Dixon, J. A., MCIver, R. D., and Reaugh,<br />

A. B., 1979, Projection of favorable gas-produc<strong>in</strong>g areas<br />

from palemenvironmental data: <strong>in</strong> Third Eastern Gas Shale<br />

Symposium, October 1-3, 1979, b%d Facility, Miamisburg,<br />

Ohio, 18 pp.<br />

70


INDEX<br />

Acanthodes: 0361, 0533 Angulodus: 0553<br />

Acritarchs: 0077, 0324, 0325,<br />

0326, 0327, 0707, 0796, 1024,<br />

1043, 1136, 1137, 1138, 1139,<br />

1146<br />

Act<strong>in</strong>ophorus: 0204, 0533<br />

Act<strong>in</strong>opteria: 0248, 0675, 1166<br />

Angustidontus: 0136, 0248,<br />

0271, 0272, 0493<br />

annelid teeth: 0158<br />

Annularia: 0533<br />

Anoplotheca: 0870, 1166<br />

Aganides: 0269, 0477 anoxic ocean: 0026, 0072, 0120,<br />

Agoniatites: 0864, 0870, 1166<br />

0304, 0920<br />

algae: 0595, 0639, 0675, 0734,<br />

1112, 1138<br />

Araucarioxylon: 0636<br />

. Archaeocaris: 0391<br />

algae, pelagic: 0820, 1138 Archeopitys: 0136, 0878<br />

algal flotant theory: 0231, 0664,<br />

1107<br />

Allorhynchus : 0664<br />

Allorisma: 0269, 0533, 0929<br />

Alveolites: 0533<br />

Ambocoelia: 0032, 0136, 0477,<br />

0512, 0533, 0588, 0865. 0886.<br />

0926, 0927, 0929, 0986; 1106;<br />

1166<br />

Ammodiscus: 0238<br />

Amphissites: 0533, 0673, 0983,<br />

1011, 1087<br />

anaerobic bas<strong>in</strong>s: 0125, 0371,<br />

0894<br />

anaerobic conditions: 0125, 0788<br />

Anaptychus: 0032, 0533, 1011<br />

Ancyrodella: 0094, 0233, 0490<br />

Archaeopteris: 0050, 0052,<br />

0053, 0138, 0287, 0596, 0640,<br />

0842, 0846, 0980<br />

Archoceras: 0540<br />

Arnoldella: 0136<br />

Arthrodires: 0295, 0299, 0300,<br />

0359, 0337, 0339, 0340, 0341,<br />

0343, 0344, 0506, 0528, 0560,<br />

0563, 0564, 0566, 0567, 1002<br />

Arthropoda: 0062, 0902, 0903,<br />

0924<br />

Aspidichthys: 0032, 0084, 0206,<br />

0533, 0620, 0772, 0786, 0865<br />

Asterocalamites: 0019<br />

Asterolepis: 0927<br />

Asteroptychius: 0533<br />

Asteroxylon: 0069, 0136, 0271,<br />

0272, 0533<br />

Ancyrognathus: 0094, 0233, 0490 Athyris: 0446, 0533, 0675,<br />

0865, 1085<br />

Ancyrospora: 0707<br />

71


atmosphere history: 0677 0417, 0451, 0659, 0663, 0664,<br />

0741, 0800, 0917, 0948, 1066,<br />

Atrypa: 0259, 0533, 0886<br />

1069<br />

Aulopora: 0533, 0997, 1011 black-shale radioactivity:<br />

Aulospora: 0707<br />

0045, 0100, 0309, 0377, 0379,<br />

0400, 0414, 1021, 1022, 1026,<br />

Avicula: 0533, 0675<br />

Aviculopecten: 0533, 0675, 0870,<br />

0886<br />

1027, 1028<br />

black shales: 0330, 0557, 0582,<br />

0646, 0841, 0876, 0884, 1051,<br />

1052<br />

- B -<br />

Bactrites: 0727, 0871<br />

Bairdia: 0533, 0982, 1011, 1087<br />

bone beds: 0238, 0239, 0240,<br />

0241, 0244, 0245, 1012, 1105,<br />

1106<br />

see phosphatic debris<br />

Barroisella: 0136, 0233, 0259,<br />

0390, 0391, 0533, 0615, 1014,<br />

bor<strong>in</strong>gs: 0136, 0664<br />

Bothriolepis: 0361, 1120<br />

barnacles: 0154, 0165, 1132 Botryococcus: 0533<br />

Bellerophon: 0391, 0404, 0512,<br />

0533, 0669, 0927, 0929<br />

benthic communities: 0079, 0684,<br />

0685<br />

brachiopod biostratigraphy:<br />

0593<br />

brachiopods: 0263, 0458, 0593,<br />

0594, 0696, 0912, 0913, 1101<br />

Bertillonella: 0533, 1011, 1087 brachiopods, dim<strong>in</strong>uitive:<br />

0177, 0217<br />

Beyrichia: 0044<br />

biogenic structures : 0120, 0121,<br />

0122<br />

brachiopod ecology: 0262, 0267,<br />

0815, 0816, 0834, 0912, 0913,<br />

1001, 1049<br />

Bissaculus: 0533, 1011 brachiopods, l<strong>in</strong>gulid: 0046,<br />

bitumen, orig<strong>in</strong>: 0454, 0778,<br />

0805, 0807, 0808, 0810<br />

0267, 0422, 0815, 0816, 0872,<br />

1001, 1049, 1145<br />

brevicones: 0389<br />

bitum<strong>in</strong>ous rocks: 0037, 0105,<br />

0171, 0370, 0471 Brontichthys: 0198, 0206, 0533<br />

<strong>Black</strong> Sea: 0303 Bryantodus: 0414, 0490, 1028<br />

black-shale bibliography: 0386,<br />

0581, 0614, 1064<br />

black shale, modern: 0415, 1027,<br />

1066<br />

black-shale paleoenvironments:<br />

0099, 0103, 0171, 0230, 0231,<br />

72<br />

br.yo zoans : 0664<br />

Buchiola: 0675, 0871, 0886,<br />

see Avicula<br />

Bungartius : 0533


Burlella: 0533<br />

see Quasillites<br />

Bythocypris: 0533, 1010<br />

Bythocyproidea: 0533, 1010<br />

- c -<br />

Calamites: 0018, 0019, 0533,<br />

0638<br />

Calamophyton: 0075<br />

Calamopityeae: - 0879<br />

Cardiopsis: 0615, 0616<br />

Car<strong>in</strong>iferella: 0533<br />

Caulopteris: 0286<br />

Cephalopoda: 0032, 0389, 0413,<br />

0461, 0540, 0541, 0542, 0543,<br />

0544, 0547, 0548, 0549, 0623,<br />

0624, 0643, 0717, 0727, 0729,<br />

0730, 0818, 0934, 0981<br />

Ceratiocaridae: 0061<br />

Ceratiocaris: 0391, 0468<br />

Calamopitys: 0136, 0271, 0272,<br />

0878<br />

Ceratoikiscum: 0394<br />

Calamopteris: 0136, 0878<br />

Ceratopora: 0533<br />

Calamospora: 0533<br />

Chajzr<strong>in</strong>ichnites: 0383<br />

calcareous concretions: 0136,<br />

Chapelia: 0060<br />

0393, 0768 Chesapeake Bay.black shale:<br />

calcispheres: 0144, 0595, 0734,<br />

04 15<br />

0989 Chit<strong>in</strong>ozoa: 0228<br />

Calcisphaera: 0595 Chonetes: 0032, 0084, 0113,<br />

Callixylon: 0015, 0016, 0017,<br />

0018, 0019, 0020, 0048, 0050,<br />

0051, 0070, 0071, 0136, 0231,<br />

0271, 0272, 0366, 0451, 0493,<br />

0533, 0535, 0536, 0575, 0640,<br />

0664, 0872, 0935, 0969, 1028,<br />

0136, 0157, 0259, 0390, 0391,<br />

0477, 0490, 0511, 0512, 0533,<br />

0551, 0552, 0615, 0616, 0664,<br />

0857, 0865, 0870, 0926, 0977,<br />

0986, 0997, 1011, 1035, 1036,<br />

1037, 1106, 1166<br />

1103, 1104 cirriped crustaceans: 0154, 1132<br />

Callognathus: 0206, 0533, 0619,<br />

0620, 0786<br />

Camarotoechia: 0084, 0136, 0269,<br />

0477, 0533, 0551, 0581, 0664,<br />

0865, 0870, 0886, 0926, 0927,<br />

0929, 1035, 1037, 1085<br />

Carocalophyton: 0008<br />

Cardiocaris: 0174<br />

Cardiola: see Cardiopsis<br />

cladodont sharks: 0203, 0205<br />

Cladodus: 0136, 0191, 0192,<br />

0197, 0202, 0356, 0361, 0490,<br />

0498, 0523, 0533, 0552, 0775,<br />

0862, 1003<br />

Cladoselache: 0290, 0291,<br />

0298, 0361, 0482, 0525, 0533,<br />

065 1<br />

Cladox>ilon: 0136, 0271, 0272,<br />

0533, 0877<br />

Cardiomorpha: 0533, 0675 CleDsidroDsis: 0136<br />

73<br />

1<br />

i


Cl<strong>in</strong>opistha: 1166<br />

0162, 0533, 0771, 0785,<br />

1086<br />

coalified wood: 0100, 0233<br />

Coccosteus: 0110, 0192, 0193,<br />

0196, 0206, 0347, 0533, 0775,<br />

0865<br />

Coelonella: 0533, 1011, 1087<br />

Coleolus: 0084, 0157, 0533, 1166<br />

Colpocaris: 0136, 0271, 0272,<br />

0391, 0878<br />

Composita: 0929<br />

Concavicaris: see Ceratiocaris,<br />

Colpocaris<br />

Conchodus: 0086<br />

conodont color change: 0375,<br />

048 1<br />

conodont paleoecology: 0967<br />

conodonts: 0005, 0006, 0076,<br />

0092, 0093, 0094, 0095, 0109,<br />

0137, 0151, 0152, 0155, 0227,<br />

0229, 0230, 0233, 0247, 0249,<br />

0252, 0329, 0331, 0332, 0367,<br />

0375, 0402, 0442, 0481, 0485,<br />

0491, 0492, 0497, 0515, 0519,<br />

0532, 0552, 0553, 0554, 0623,<br />

0625, 0626, 0628, 0629, 0630,<br />

0635, 0661, 0688, 0721, 0731,<br />

0741, 0757, 0758, 0759, 0760,<br />

0761, 0804, 0805, 0852, 0872,<br />

0887, 0920, 0923, 0953, 0959,<br />

0960, 0966, 0967, 0996, 0998,<br />

1016, 1039, 1055, 1074, 1076,<br />

1142, 1175, 1188, 1189, 1191<br />

Conularia: 0136<br />

conulata: 0705<br />

Convolutispora: 0707<br />

corals: 0533, 0801<br />

74<br />

Cordaites: 0935<br />

Cornellites: see Pter<strong>in</strong>ea<br />

Corythoecia: 0394<br />

Cranaena: 1035, 1037<br />

Crangopsis : 0806<br />

Crania: 0032, 0533, 0986<br />

Craniella: 0870<br />

see Petrocrania<br />

cr<strong>in</strong>oids: 0470, 0664, 0674,<br />

0691, 0738, 0968, 1103, 1104,<br />

1141, 1148<br />

crustaceans: 0061, 0063, 0153,<br />

0154, 0163, 0166, 0173, 0184,<br />

0468, 0806, 0902, 0914, 0964,<br />

1018, 1123, 1130, 1132, 1133,<br />

1156<br />

Cryptostomata: 0533<br />

Ctenacanthus: ' 0185, 0350, 0361,<br />

0523, 0533, 0666, 0772, 0775<br />

Ctenoconularia: 0705<br />

Ctenodus: 0533, 0865<br />

Ctenolocul<strong>in</strong>a: 0533, 1011<br />

Cycloceras: 0269, 1088<br />

Cyclora: 0042, 0136<br />

Cymatiosphaera: 0707, 1139<br />

Cyperites: 0282<br />

Cypricardella: 0259, 0392, 0533,<br />

0669<br />

see Microdon<br />

Cypricard<strong>in</strong>ia: 0084, 0675, 1035<br />

Cyprid<strong>in</strong>a: 0533<br />

Cyprid<strong>in</strong>ella: 0136


Cyrtentact<strong>in</strong>ia: 0394<br />

Cyrtia: 0145, 0533, 0865<br />

Cyrt<strong>in</strong>a: 0533<br />

Cyrtospirifer: 0308, 0533<br />

see Cryptospirifer<br />

Cytherella: 0533<br />

see Cytherell<strong>in</strong>a<br />

Cytherell<strong>in</strong>a: 1087<br />

-D-<br />

Dadoxylon: 0018, 0533, 0666,<br />

0669, 0831, 0865<br />

Dalmanella: 0533, 0865, 0870<br />

deepwater orig<strong>in</strong>: 0892<br />

delta, Upper Devonian: 0034,<br />

0035, 0675<br />

Del thyris : 0533, 0551, 0552,<br />

0664<br />

depth <strong>in</strong>dicators: 0103, 0471,<br />

0789<br />

dermal plates: 0043<br />

Devonian<br />

0101,<br />

0529,<br />

0593,<br />

0758,<br />

Devonian<br />

Devonian<br />

0259,<br />

0690,<br />

biostratigraphy:<br />

0331, 0332, 0489,<br />

0540, 0542, 0547,<br />

0623, 0630, 0688,<br />

1039, 1087, 1109,<br />

coal: 0233, 0833<br />

0047,<br />

0527,<br />

0548,<br />

0707,<br />

1191<br />

correlations: 0246,<br />

0321, 0547, 0549, 0678,<br />

1100, 1163<br />

Devonian-Mississippian boundary:<br />

0112, 0218, 0225, 0233, 0237,<br />

0240, 0244, 0272, 0377, 0443,<br />

0477, 0493, 0533, 0537, 0608,<br />

0610, 0627, 0637, 0707, 0722,<br />

0723, 0725, 1034, 1038<br />

Diademodus: 0483<br />

75<br />

Dictyonema: 0114, 0918<br />

Dielasma : 0415<br />

Dielasmella: 0136<br />

DiexalloDhasis: 0707<br />

Diichnia: 0136, 0878, 0879<br />

D<strong>in</strong>ichthyids: 0083, 0346,<br />

0347, 0348, 0353, 0559, 0977<br />

D<strong>in</strong>ichthys: 0081, 0082, 0084,<br />

0086, 0136, 0189, 0195, 0199,<br />

0206, 0208, 0209, 0231, 0233,<br />

0289, 0292, 0293, 0302, 0356,<br />

0392, 0505, 0533, 0558, 0629,<br />

0669, 0742, 0772, 0774, 0775,<br />

0780, 0786, 0897, 0977, 0992,<br />

1005, 1182, 1183, 1184<br />

D<strong>in</strong>ognathus : 0533<br />

D<strong>in</strong>omylostoma: 0361<br />

D<strong>in</strong>ophyceae: 0796<br />

Diplododella: 0553<br />

Diplodus: 0355, 0361<br />

Diplognathus: 0206, 0342, 0533<br />

Dipterocaris: 0155<br />

Dipterus: 0086, 0356<br />

Disc<strong>in</strong>a: see Orbiculoidea<br />

Disc<strong>in</strong>ocar<strong>in</strong>a: 0174, 0914<br />

Dowill<strong>in</strong>a: 0446, 0886<br />

Duisbergia: 0233<br />

Dunkleosteus: 0507, 1004<br />

see D<strong>in</strong>ichthys<br />

dwarf faunas: 0643, 0645, 0672,<br />

0934, 0964, 0976<br />

dysaerobic bas<strong>in</strong>s: 0123, 0364,<br />

0788, 0889


-E-<br />

Ech<strong>in</strong>ocaris: 0533, 1018, 1130<br />

Ech<strong>in</strong>oderms: 0169, 0470, 0674,<br />

0738<br />

Edmondia: 0533, 0675<br />

Emanuella: 0136<br />

Endosporites: 0080, 0320<br />

Endothyra: 1053<br />

Entact<strong>in</strong>a: 0395<br />

Entact<strong>in</strong>osphaera: 0395<br />

Entomis: 0044<br />

Entomozoe: 1087<br />

see Entomis<br />

Eodevonaria: 0310<br />

- Eodon: 0206, 0675<br />

Eoorodus : 0086<br />

epiplankton: 0691, 0800, 0865,<br />

0912, 0968, 1103, 1104, 1141<br />

Eriella: 1087<br />

estuaries, ancient: 0631<br />

Erne tria : 0929<br />

Euomphalidae: see Euomphalus<br />

Euomphalus: 0084, 0533<br />

Euphanerops: 0361<br />

Euprioniod<strong>in</strong>a: 0515<br />

eurypterids: 0182, 0433, 0463,<br />

0464<br />

eux<strong>in</strong>ic bas<strong>in</strong>s: 0123<br />

Exochoderma: 1139<br />

76<br />

Exochops : 0415<br />

- F -<br />

Favosites: 0533<br />

Fenestella: 0533<br />

fish fossils: 0085, 0086,<br />

0155, 0183, 0187, 0192, 0196,<br />

0214, 0215, 0216, 0294, 0301,<br />

0338, 0352, 0354, 0356, 0360,<br />

0361, 0362, 0363, 0447, 0522,<br />

0525, 0561, 0562, 0565, 0568,<br />

0570, 0571, 0572, 0574, 0653,<br />

0654, 0732, 0742, 0767, 0768,<br />

0769, 0772, 0776, 0777, 0779,<br />

0783, 0786, 0798, 0872, 0906,<br />

0932, 0933, 0978, 1062, 1063,<br />

1080, 1109, 1121, 1122, 1123,<br />

1124, 1125, 1126, 1128, 1149,<br />

1157, 1167, 1172, 1179<br />

Foerstia: 0106, 0231, 0490,<br />

0533, 0650, 0734, 0762, 0763,<br />

0792, 0793, 0794, 0847, 0872,<br />

0939, 0940, 0958, 1021, 1027,<br />

1118<br />

see Protosalv<strong>in</strong>ia<br />

fondo orig<strong>in</strong>: 0893<br />

Foram<strong>in</strong>ifera: 0234,<br />

0237, 0242, 0279,<br />

1053, 1061<br />

0235, 0236,<br />

0728, 1012,<br />

Forbesiocr<strong>in</strong>us: 0533, 1148<br />

forests, Devonian: 0053, 0054,<br />

0181, 0420, o m, 0459, 0460,<br />

0886<br />

fossil bone petrography: 0901<br />

fossil wood: 0011, 0015, 0056,<br />

0100, 0181, 0186, 0288, 0366,<br />

0421, 0533, 0675, 0886, 0930,<br />

1113, 1191<br />

fossils, oriented: 0597<br />

Frankl<strong>in</strong>ella: 0533, 1011


Frasnian-Famennian mass ext<strong>in</strong>ction:<br />

0264<br />

fructifications: 0711, 0962<br />

- G -<br />

gastropods: 0461, 0670<br />

gastropods, pyritized: 0664<br />

germanium, <strong>in</strong> fossil wood: 0100<br />

Glottidia: 0815, 1001, 1049<br />

Glyptaspis : 0533, 0620<br />

Gnathodus: 0607<br />

Gonatodus: 0533<br />

Goniatites: 0084, 0161, 0391,<br />

0512, 0533, 0616, 0857, 1014<br />

Goniodus: 0206, 0786<br />

Gorgonichthys: 0192, 0196, 0206,<br />

0533<br />

Gorgonisphaeridium: 0707, 1139<br />

Grammysia: 0145, 0533, 0675<br />

graptolites: 0114, 0441, 0918<br />

grasshoppers: 0286<br />

gray/green shale environments:<br />

0638<br />

Guycampbella: 0533<br />

Gymnotrachelus: 0533<br />

Gypidula: 0927<br />

Gyracanthus: 0185, 0361<br />

-H-<br />

Hamburgia: 0136, 0415<br />

Haplentact<strong>in</strong>ia: 0395<br />

77<br />

Haploprimitia: 0533<br />

Hederella: 0032, 0533<br />

Helodus: 0086, 0772<br />

Hemipronites: 0316<br />

Heteracanthus: 0361<br />

Heterophrentis: 0533<br />

Hibbardella: 0515, 0553<br />

Hierogamma: 0136<br />

H<strong>in</strong>deodella: 0233, 0515, 0758,<br />

1028<br />

Holdenius : 0533<br />

Holeciscus: 0395<br />

Homacanthus : 0361<br />

Homostius: 0507, 1004<br />

Hoplonchus: 0361, 0533, 0865<br />

humic matter: 0322<br />

hydrogen sulfide: 1050<br />

Hymenozonotriletes: 0320, 0707<br />

Hyolithes: 1166<br />

Hypothyrid<strong>in</strong>a: 0136, 0253,<br />

0259, 0851, 0926, 0927, 0929<br />

Hmothvris: see Hmothvrid<strong>in</strong>a<br />

I I<br />

hystrichospheres: 0314, 0326<br />

- 1 -<br />

Icriodus: 0094, 0758, 1091<br />

Icriodus to Polygnathus ratios:<br />

1090<br />

Imitoceras: 0477, 0818<br />

see Aganides


- J - L<strong>in</strong> la: 0043, 0084, 0113,<br />

0142, 0145, 0231, 0233,<br />

0259, 0269, 0271, 0272, 0368,<br />

0391, 0392, 0413, 0446, 0490,<br />

- K -<br />

0511, 0512, 0517, 0518, 0533,<br />

0551, 0588, 0615, 0638, 0664,<br />

Kalymma: 0136, 0878, 0965<br />

0666, 0667, 0671, 0696, 0743,<br />

0753, 0755, 0786, 0802, 0814,<br />

Kentuckia: 0525<br />

0861, 0865, 0916, 0927, 0986,<br />

1021, 1026, 1035, 1036, 1041,<br />

kerogen: 0097, 0098<br />

1085, 1106, 1144, 1162, 1166<br />

K<strong>in</strong>derhookian: 0250, 0251, 0635,<br />

1016, 1055, 1073<br />

. +,<br />

L<strong>in</strong> la paleoecology: 0267,<br />

*, 1145<br />

Kirkbyella: 1087 L<strong>in</strong>gulichnites: 1041<br />

Kloedenella: 1011 L<strong>in</strong>gulipora: 0136, 0259, 0368,<br />

0392, 0405, 1021<br />

Kloedenia: 0044<br />

L<strong>in</strong>gulodisc<strong>in</strong>a: 0043, 0412,<br />

- L -<br />

0533<br />

leaves and leaf-rafts: 0068 Lituotuba: 0728<br />

- Leda: 0084, 0393, 0512, 0533,<br />

Lonchod<strong>in</strong>a : 0515, 0553, 1028<br />

0675<br />

Lopholasma: 0032, 0259, 0533<br />

Leiopteria: 0675, 0857, 0977<br />

Loxonema: 0084, 0512, 0533,<br />

Leiorhynchus: 0113, 0136, 0145,<br />

0870<br />

0259, 0310, 0392, 0405, 0490,<br />

0533, 0588, 0591, 0615, 0616,<br />

Lucasella: 0533<br />

0617, 0664, 0857, 0864, 0865,<br />

0870, 0921, 0926, 0927, 0977,<br />

Lunulicardium: 0157, 0533,<br />

0986, 1106, 1166<br />

0615, 0675, 0871<br />

Leiosphaeridia: 1081, 1139<br />

Lycopods : 11 14<br />

Le idodendron' 0136, 0159, 0206,<br />

Lycopogenia : 0136<br />

-+mm.; 0533, 0669<br />

Lyg<strong>in</strong>orachis: 0059, 0271, 0272<br />

Le idostrobus: 0010, 0136, 0271,<br />

--ET5---<br />

0 2, 0533, 0711, 0878, 0962, - M -<br />

0980<br />

Macrocheilus: 0533, 0620, 1111<br />

Leptocoelia: 0310<br />

Macrochil<strong>in</strong>a: 0616<br />

Leptodesma: 0533, 0675, 1166<br />

Macrodon: 0084, 0512, 0533,<br />

Ligonod<strong>in</strong>a: 0515, 0553, 0758<br />

0675, 0756<br />

limuloid crustacean: 1156 Macropetalichthys: 0206, 0261,<br />

78


0349, 0361, 0797, 1002, 1005<br />

Maharanites: 0707<br />

mioflora: 0073<br />

miospores: 0276, 0689<br />

mangrove swamps: 0640<br />

. Mississippian biostratigraphy:<br />

0221, 0225, 0229<br />

Manticoceras: 0032, 0136, 0533,<br />

0540, 0727, 1106 Modiella: 0533<br />

marcasite: 1042, 1077 Modiomorpha: 0136, 0259, 0675,<br />

0870, 1106<br />

marcasite faunas: 0386<br />

mar<strong>in</strong>e, shallow: 0113, 0177,<br />

0499, 1020<br />

Monocladodus: 0191, 0533<br />

Mourlonia: 0415<br />

mar<strong>in</strong>e primary production:<br />

1043, 1136, 1137, 1.138, 1139<br />

mar<strong>in</strong>e shelf environment: 0028,<br />

0029, 0101, 0419, 0957, 1020<br />

Multiplicisphaeridium: 0707<br />

MylOStOIIia: 0086, 0206, 0296,<br />

0361, 0528, 0533<br />

Mytilarca: 0675, 0886<br />

Mart<strong>in</strong>ia: 0926, 0927, 0929<br />

Mazodus: 0533<br />

megaspores: 0147<br />

Megistocr<strong>in</strong>us: 0533<br />

-<br />

- N -<br />

Nalivk<strong>in</strong>ella: - 0801<br />

Naples fauna: 0158, 0167, 0176<br />

Nehdentomis: 0533<br />

Melocr<strong>in</strong>ites: see Melocr<strong>in</strong>us<br />

Melocr<strong>in</strong>us: 0032, 0157, 0470,<br />

0533, 1011, 1106, 1148<br />

Nematophyton: 0826, 0829, 0830<br />

Neoprioniodus: 0553<br />

Meris te 11 a:<br />

Mesoneuron: 0136<br />

Mesothvra: 1018<br />

Michel<strong>in</strong>ia: 0533<br />

0136, 0405, 1085<br />

Michel<strong>in</strong>oceras: see Orthoceras<br />

Micrhystridium:’ 0707, 1139<br />

Microdon: 0393, 0512, 0675<br />

mi crop1 ank ton.: 03 23<br />

* Microzygia: 0136, 0271, 0272<br />

Mimagoniatites : 0801<br />

79<br />

Nucleospira: 0136, 0533, 0870<br />

Nucula: 0032, 0084, 0533, 0675,<br />

0870, 1166<br />

Nuculana: 0391, 0533, 0675<br />

see Leda<br />

-<br />

Nuculites: 0533, 0651, 0675,<br />

0870, 1166<br />

Nuculoidea: 0675<br />

see Nucula<br />

-0-<br />

ocean circulation: 0072, 0099,<br />

0304, 0675, 0892, 0894, 0919,<br />

1185, 1186<br />

f


Ohiocaris: 0902 .<br />

Onchus: 0361<br />

Onychodus: 0533, 0865<br />

Orbiculoidea: 0043, 0136, 0142,<br />

0231, 0233, 0238, 0269, 0271,<br />

0272, 0391, 0392, 0411, 0490,<br />

0512, 0533, 0551, 0615, 0651,<br />

0664, 0755, 0756, 0786, 0802,<br />

0807, 0861, 0862, 0865, 0870,<br />

0872, 0927, 1021, 1035, 1036,<br />

1106, 1166<br />

organic matter maturation:<br />

0038, 0039, 0098, 0099, 0675,<br />

1025<br />

organism-oxygen relationships:<br />

0372, 0889<br />

organism-sediment relationships:<br />

0372<br />

Orodus : 0523, 0533, 0772, 0865<br />

Orthis: 0393, 0533, 0859<br />

Orthoceras: 0032, 0084, 0136,<br />

. 0164, 0168, 0391. 0408. 0512.<br />

0533; 06161 0669; 0857; 0871;<br />

0977<br />

Orthothe tes :<br />

1166<br />

0533, 0551, 0552,<br />

ostracods: 0044, 0065, 0266,<br />

0318, 0332, 0424, 0425, 0598,<br />

0606, 0621, 0982, 0983, 1008,<br />

1009, 1010, 1011, 1087, 1088<br />

ostracod paleoecology: 0332,<br />

0606<br />

oxygen deficiency: 0072, 0451,<br />

0889, 0894, 0919, 1050<br />

Ozarkod<strong>in</strong>a: 0553<br />

- P -<br />

Pachvdomella: see Senescella<br />

80<br />

Pachysphaera: 0148, 0820<br />

Palaent<strong>in</strong>a: 0533<br />

Palaeoneilo: 0084, 0136, 0446,<br />

0512, 0533, 0616, 0620, 0638,<br />

0675, 0870<br />

Palaeopalaeomon: 0944, 1018,<br />

1130, 1133<br />

Palaeoscenidium: 0395<br />

Pal aeo so 1 en : 0084<br />

Paleobotany: 0010, 0012, 0013,<br />

0014, 0021, 0022, 0023, 0024,<br />

0058, 0069, 0149, 0264, 0271,<br />

0272, 0276, 0278, 0280, 0281,<br />

0287, 0305, 0381, 0389, 0450,<br />

0537, 0539, 0656, 0710, 0827,<br />

0828, 0878, 0881, 0882, 0969,<br />

0970, 1084, 1089, 1115, 1117<br />

Paleoclimatology: 0011, 0031,<br />

0036, 0180, 0328, 0457, 0677,<br />

0698, 0704, 0706, 0726, 0842,<br />

0949, 0950, 0954, 1117, 1178<br />

paleocurrents: 0597, 0605, 0942<br />

paleoecology: 0257<br />

paleogeography: 0099, 0264,<br />

0396, 0471, 0473, 0496, 0501,<br />

0545, 0546, 0556, 0569, 0578,<br />

0591, 0594, 0597, 0695, 0698,<br />

0699, 0700, 0726, 0746, 0943,<br />

0946, 0947, 0952, 0974, 0979,<br />

1097, 1116, 1144, 1169, 1178<br />

paleomagnetic reconstructions:<br />

0328, 0457, 0726, 0746<br />

Paleoniscus: 0155, 0523, 0553,<br />

0772, 0862<br />

Paleosabella: 0134<br />

Palmatodella: 0233, 0490<br />

Palmatolepis: 0094, 0151, 0233,<br />

0368, 0415, 0664, 0758, 1028


palynomorphs: 0697, 0883 Pietzschia: 0136, 0271, 0272 -<br />

Panderodella: 0553, 1028<br />

Panenka: 1166<br />

Paracardium: 0259<br />

Parallelodon: 0136, 0477, 0533,<br />

0865, 0929<br />

see Macrodon. Palaent<strong>in</strong>a<br />

Paramylostoma: 0533<br />

Paraparchites : 0533<br />

see Coelonella<br />

Parodiceras: 0870, 1166<br />

pelagic larvae: 1058<br />

pelecypods: 0125, 0462, 0465,<br />

“0664, 0675, 0676, 0800, 0988<br />

pelecypod paleoecology : 0988<br />

perched faunas: 0592<br />

Periastron: 0055, 0136, 0271,<br />

0272, 0878<br />

Petrocrania: 0533<br />

Phacops: 0136, 0533<br />

Phaebodus: 0361, 0533<br />

Pharetrella: 0871<br />

phosphate nodules: 0136, 0233,<br />

0451, 0508, 0664, 1021<br />

phosphates, mar<strong>in</strong>e: 0103, 0693,<br />

0694, 0848, 0974<br />

phosphatic lag deposits: 0451<br />

Phthonia: 0533<br />

Phytokneme: 0010<br />

0063, 0163, 0173,<br />

81<br />

P<strong>in</strong>acodus: 0094<br />

placoderms: 0190, 0194, 0198,<br />

0200, 0206, 0210, 0220, 0302,<br />

0781, 0843<br />

plankton, Paleozoic: 0915, 0916,<br />

0990, 1043, 1081, 1136, 1137,<br />

1138, 1139, 1140<br />

plankton, Recent: 1081<br />

plants, mar<strong>in</strong>e: 0938<br />

plants, terrestrial: 0008,<br />

0012, 0014, 0022, 0023, 0060,<br />

0069, 0070, 0073, 0271, 0272,<br />

0280, 0286, 0444, 0538, 0640,<br />

0712, 0879, 0963<br />

Platyceras: 0136, 0533, 0551,<br />

0552<br />

Platycr<strong>in</strong>ites: see Platycr<strong>in</strong>us<br />

Platycr<strong>in</strong>us: 0470, 0533, 1148<br />

Platyrachella: 0136, 0551, 0552,<br />

0664 *<br />

Platystrophia: 0702<br />

Plethospira: 0136, 0392, 0404,<br />

0616<br />

Pleuropterygian sharks : 0233<br />

Pleurotomaria: 0084, 0392, 0512,<br />

0533, 0616, 1166<br />

Plicoplasia: 0310<br />

Plicorachis: 0136<br />

Plumulites: 0154<br />

Polydryxium: 0707<br />

Polyentact<strong>in</strong>ia: 0395<br />

Polygnathellus: 0553


Polygnathids: 0554, 0844 Protokionoceras: 1085<br />

Pol;g;;hus: 0151, 0415, 0607,<br />

0992, 1028, 1091, 1176<br />

Polygnathus varcus Group: 0629<br />

Polylophodonta: 0094, 0233,<br />

0490, 0664, 1028<br />

Polyrhizodus: 0533, 0865<br />

Polyxylon: 0271, 0272<br />

Ponderodictya: 0533<br />

Pontocypris: 0533<br />

Poteriocr<strong>in</strong>ites: see Poteriocr<strong>in</strong>us<br />

Poteriocr<strong>in</strong>us: 0533, 1148<br />

Praecardium: 0136<br />

see Panenka, Paracardium<br />

. Pras<strong>in</strong>ophycean algae: 0074,<br />

0148,. 0820<br />

Prestwichia: 1156<br />

Prioniod<strong>in</strong>a: 0553<br />

Prioniodus: 0392, 0405, 0415,<br />

0490, 0515, 0607, 1028<br />

Probeloceras: 0624, 0871<br />

Productella: 0415, 0533, 0865,<br />

0886, 0997, 1011, 1085<br />

Productus: 0511, 0533, 0859<br />

Proetides: 0477<br />

Proetus: 0533, 0801<br />

pro gym osperms: 0056, 0057,<br />

0138, 0931<br />

Promacrus: 0533<br />

Prothyris: 0533<br />

Protocalamites: 0136, 0271, 0272<br />

82<br />

Protosalv<strong>in</strong>ia: 0106, 0148,<br />

0231, 0233, 0287, 0445, 0762,<br />

0792, 0793, 0794, 0840, 0847,<br />

0958, 0984<br />

Prototaxites: 0025, 0037, 0231,<br />

0233, 0650, 0791, 0936<br />

PseDhodus : 0086<br />

Psuedaviculopecten: 0675<br />

see Aviculopecten<br />

psuedoplankton, cr<strong>in</strong>oids: 0691,<br />

0968<br />

see epiplankton<br />

Psuedopolygnathus: 0094<br />

Pterichthys: 1120<br />

pteridosperms: 0596<br />

Pter<strong>in</strong>ea: 0533, 0675, 0886<br />

Pter<strong>in</strong>opecten: 0512, 0533,<br />

0675, 0857<br />

Pterochaenia: 0446, 0871<br />

Pteropods : 0461<br />

Ptychopteria: 0259<br />

Ptychtodas: 0094, 0361<br />

pyrite: 0067, 0672, 0675, 0708,<br />

1021, 1042, 1077<br />

pyrite fauna: 0386, 0672, 0708<br />

- Q -<br />

Quasillites: 0533, 1087<br />

see Burlella, Lucasella<br />

Quisquiletes: 0707<br />

- R -<br />

radiolarians: 0001, 0233, 0394,<br />

0395, 0451, 0508, 0521, 0531,


0708, 0898, 1061 6259, 0310, 0391, 0490, 0588<br />

0591, 0597, 0615, 0616, 0927,<br />

Reimania: 0136, 0272<br />

0929, 1036, 1037, 1166<br />

Reimanniopsis: 0272<br />

Schizodus: 0533, 0651, 0675<br />

Reptaria: 0032, 0533, 1011 Schizophoria: 0533, 0651, 0886<br />

Reticularia: 0145, 0533, 0865<br />

Rhacophyton: 0009, 0265<br />

Rhad<strong>in</strong>ichthys: 0084, 0136, 0231,<br />

0233, 0533, 0992<br />

Rh<strong>in</strong>ocaris: 0163<br />

rhipidistian fishes: 1057<br />

Rhipidomella: 0136, 0259, 0393,<br />

0533, 0551, 0552, 0664, 0870,<br />

0929, 1035, 1036, 1037<br />

rhizocarps: 0283, 0284<br />

- Rhomb<strong>in</strong>a: 0533<br />

Rhynchodus : 0361<br />

Rhynchonella: 0259, 0533, 0786<br />

rhynchonellids: 0696<br />

Rhynchopora: 0664, 0929<br />

Richter<strong>in</strong>a: 0533, 1011, 1087<br />

Roemerella: 0733<br />

Rom<strong>in</strong>geria: 0415, 0533<br />

Ropolenellus: 0533, 1011, 1087<br />

- s -<br />

Sangu<strong>in</strong>olites: see Sphenotus<br />

Sansabella: 0533, 1011, 1087<br />

sapropel: 0919, 1027<br />

scad fly: 0286<br />

Schizobolus: 0043, 0113, 0136,<br />

83<br />

Schuchertella: 0136, 0259,<br />

0393, 0533, 0664, 0865, 0886,<br />

1035<br />

scolecodonts: 0520, 0664<br />

Scolithus: 0157<br />

sealevel changes: 0313<br />

seed ferns: 0329<br />

Sernitextularia: 0728<br />

Senescella: 0533, 1011, 1087<br />

Senziella: 0707<br />

serpulid worms: 0133<br />

shale oil: 0027, 0692<br />

shallow water model: see mar<strong>in</strong>e,<br />

shallow<br />

sharks, fossil : 0191, 0201,<br />

0203, 0205, 0298, 0299, 0483,<br />

0526, 0567, 0655, 0906<br />

Siderella: 0136, 0271, 0272,<br />

0881<br />

Siphonodella: 0320, 0415, 0664<br />

Siphonognathus : 0094<br />

skates: 0351<br />

Soleniscus: 1111<br />

see Macrocheilus, Macrochil<strong>in</strong>a<br />

Solenocaris: 0136, 0878<br />

Solenognathus: 0094<br />

Spathiocaris: 0084, 0136, 0153,


0155, 0174, 0233, 0368, 0493,<br />

0533, 0616, 0664, 0878, 0914,<br />

0916, 1037, 1102<br />

Stereopteris: 0136, 0878<br />

Stethacanthus: 0533<br />

Spathodus: 0136 Strapamllus: 0032, 0533, 0616<br />

Spathognathodus: 0233, 0320<br />

Sphenotus: 0259, 0533, 0675, 0929<br />

Sp<strong>in</strong>ocyrtia: see Platyrachella<br />

S irifer: 0084, 0145, 0259, 0533,<br />

-5m- 0870, 0886, 0926, 1085<br />

Spirifer<strong>in</strong>a: 0533<br />

Spirophyton: 0136<br />

sponge spicules: 0110, 0445,<br />

1176<br />

Sporangites: 0032, 0043, 0113,<br />

stratified waters: 0304<br />

Streblotrypa: 0533<br />

*<br />

Streptelasma: 0032, 0533<br />

Stro halosia: 0533, 0612,<br />

6 7, 0927, 0997, 1011,<br />

*<br />

1166<br />

Stro heodonta: 0086, 0136,<br />

0, 0997<br />

Strophodonta: see Stmpheodonta<br />

Strophomena: 0512, 0533<br />

, 0136, 0285, 0405, 0588, 0607, Styliola: 0157, 0392, 0615,<br />

0616, 0786, 0857, 0927<br />

0692, 0724, 0805, 1011, 1014<br />

spores: 0147, 0156, 0276, 0282,<br />

0529, 0613, 0687, 0688, 0689,<br />

0690, 0707, 0833, 0853, 0896,<br />

0938, 0941, 1065, 1110, 1177<br />

Sporocarpon: 0613<br />

sporocarps: 0285, 0810<br />

spumellarian radiolarians: 0233,<br />

0394, 0395<br />

Styliol<strong>in</strong>a: 0113, 0136, 0253,<br />

0310, 0321; 0404, 0451, 0490,<br />

0533, 0591, 0597, 0617, 0651,<br />

0664, 0870, 0977, 1011, 1166<br />

Stylonurus: 0062<br />

Svnbrioniod<strong>in</strong>a: 0553<br />

Syr<strong>in</strong>gopora: 0533<br />

Syr<strong>in</strong>gospira: 0259<br />

stagnation, oceanic: 0233,<br />

09 19 Syr<strong>in</strong>gothyris: 0136, 0145,<br />

0259, 0533, 0865, 0929, 1035,<br />

Staurodruppa: 0395 1037<br />

Steloxylon: 0136, 0271, 0272 - T -<br />

Stenognathus : 0504 Taghanic onlap : 0591<br />

Stenokoleos: 0049, 0272<br />

Stenomelon: 0136, 0271, 0272,<br />

T<br />

Stenosteus: 0084, 0992<br />

a4<br />

Tamiobatis: 0351<br />

Taonurus: 0451, 0607, 0664,<br />

v<br />

Tasmanites: 0074, 0106, 0148,<br />

0231, 0233, 0271, 0272, 0326,


0368, 0451, 0493, 0664, 0708,<br />

Trichonodella: 0553<br />

0721, 0734, 0790, 0805, 0853,<br />

0872, 0985, 1021, 1028, 1081,<br />

Trigonoglossa: 0413<br />

1146, 1176<br />

see Sporangites trilobites: 0468<br />

Taxocr<strong>in</strong>us : 1148 Tripospira: 0533<br />

.<br />

Tegeolepis: 0345<br />

Tripododiscus: 0533<br />

Tentaculites: 0032, 0136, 0310,<br />

0490, 0533, 0597, 0615, 0616,<br />

0664, 0753, 0997, 1011, 1166<br />

TroDidocaris: 0136<br />

Tropidoleptus: 0618, 0675,<br />

0870, 0875, 1030, 1165, 1166<br />

Tetradella: 0533<br />

tuff-rework<strong>in</strong>g model: 0309<br />

tetrapods, Devonian: 0579, 0706,<br />

1108 Tylothyris : 0136, 0664<br />

Tetrentact<strong>in</strong>ia: -0395<br />

thermohal<strong>in</strong>e circulation: 1185 Ulrichia: 1087<br />

Thrallella: 0533, 1011, 1087<br />

Timanites : 0730<br />

Tioga bentonite: 0244, 0315,<br />

0316, 0317<br />

- u -<br />

Ungerella: 1087<br />

see Frank1 <strong>in</strong>el la<br />

Uniellum: 0707<br />

upwell<strong>in</strong>g currents: 0104, 0304,<br />

0500, 0661, 0675, 0693, 0734<br />

Titanichthys: 0188, 0192, 0194,<br />

0207, 0336, 0347, 0503, 0525, uranium: 0107<br />

0533, 0566, 0782, 0784, 0865<br />

uranium, <strong>in</strong> fossil wood: 0100<br />

Tolyparam<strong>in</strong>a: 0238<br />

uranium-lead dat<strong>in</strong>g: 0219<br />

Tornacea : 1139<br />

- v -<br />

Tornoceras : 0032, 0259, 0477,<br />

-27, 0997, 1011, 1085,<br />

1086, 1106<br />

see Parodiceras<br />

vertebrate paleontology: 0104, .<br />

0150, 0220, 0561, 0580, 0706,<br />

0787, 0843, 0907<br />

trace fossils: 0113, 0120, 0121,<br />

vertebrates, air-breath<strong>in</strong>g:<br />

0122, 0383, 0384, 0387, 0396,<br />

0036, 0579, 0706, 1108<br />

0416, 0451, 0475, 0664, 0675,<br />

0706, 0872, 1001, 1021, 1041 Veryhachium: 0707, 1139<br />

Trachosteus: 0300, 0533<br />

trade w<strong>in</strong>ds: 0328<br />

Tre 0s ira: 0651<br />

*ro tomaria, Tr ipo spira<br />

85<br />

Vitul<strong>in</strong>a: 0253, 0258<br />

- w -<br />

Werneroceras: 0136, 0727<br />

t<br />

4


worm bor<strong>in</strong>gs: 0134<br />

worm trails: 0136<br />

Xenodus: 0865<br />

- x -<br />

-Y-<br />

- z -<br />

Zaphrentis : 0533<br />

Zeacr<strong>in</strong>ites: see Zeacr<strong>in</strong>us<br />

Zeacr<strong>in</strong>us : 0533<br />

86


SECTION I1<br />

GEOCHEMICAL STUDIES<br />

W, H, DENNEN<br />

W, HI BLACKBURN<br />

PR I NC I PAL I NVEST I GATORS


CHAPTER 11. A.<br />

LOCAL CHEMICAL VARIABILITY OF BLACK SHALE<br />

E. Nunez and W. H. Dennen<br />

A sample may be def<strong>in</strong>ed as a small piece whose properties are<br />

representative of the larger body of which it is a part. In rock<br />

sampl<strong>in</strong>g for geochemical purposes, it is traditional to consider<br />

a fragment which is uniform <strong>in</strong> appearance and of a size that it<br />

conta<strong>in</strong>s at least 1000 <strong>in</strong>dividual m<strong>in</strong>eral gra<strong>in</strong>s to constitute a<br />

statistically satisfactory sample. The chemical properties of the<br />

rock unit from which the sample is taken are assumed to extend<br />

uniformly over a v-olume whose dimensions are fixed by the mid?<br />

po<strong>in</strong>t to the next sample.<br />

The observable variability of sedimentary rocks normal to the<br />

bedd<strong>in</strong>g obviously requires that rather closely spaced sampl<strong>in</strong>g be<br />

done <strong>in</strong> this direction. On the other hand, lateral cont<strong>in</strong>uity<br />

suggests geochemical uniformity along the beds and thus a wider<br />

spac<strong>in</strong>g of samples.<br />

Published and unpublished work on various metamorphic rocks by<br />

<strong>Black</strong>burn (1967) has shown that the ftlOOO gra<strong>in</strong> rule" does nat<br />

always hold because the rock is composed of chemical doma<strong>in</strong>s,<br />

often with volumes measured <strong>in</strong> centimeters. It appears likely<br />

that these doma<strong>in</strong>s may be <strong>in</strong>herited fram an Orig<strong>in</strong>ally non-<br />

uniform elemental distribution <strong>in</strong> the sedimentary precursor.<br />

11-1


11-2<br />

The black shale presents a very uniform overall appearance and<br />

s<strong>in</strong>gle samples with<strong>in</strong> identifiable beds or regular stratigraphic<br />

<strong>in</strong>tervals have been thought to provide adequate geochemical<br />

<strong>in</strong>formation for purposes of correlation, bas<strong>in</strong> analysis and<br />

concentration level for the elements studied. For academic<br />

reasons and because this rock may be used as a source of<br />

pyrolitic oil, natural gas or uranium, however, we have made a<br />

careful and detailed study of the shortyrange chemical<br />

variability at two separate locations. A t each site, three<br />

vertical columns of samples spaced at 1 m <strong>in</strong>tervals were<br />

collected. The sample spac<strong>in</strong>g with<strong>in</strong> each column was 10 cm.<br />

The particular sites sampled are described by Swager (1978) as<br />

follows :<br />

- RWyl. "The base of the section is on the south side of<br />

Interstate 75 2.3 km east of the BathyRowan County l<strong>in</strong>e. The<br />

upper section is on the north side of Interstate 75 5.0 km from<br />

the Bath ?Rowan County l<strong>in</strong>e. This section is <strong>in</strong> the Jarman<br />

Quadrangle, Ky. and the base of the Ohio Shale is 216.5 m."<br />

- CAtl !!This section is exposed on the west side of <strong>Kentucky</strong><br />

Highway 127 0.3 km north of Liberty <strong>in</strong> Casey County, Ky. The<br />

section is <strong>in</strong> the Liberty Quadrangle . . . . and the base of the<br />

New Albany Shale is 259.6 m."<br />

Samples from the RW71 section were collected at 11.8 m above<br />

the base and just above the uppermost of the Three Lick Beds.<br />

Samples from CAY1 section were obta<strong>in</strong>ed at 9.8 m above the base


11-3<br />

and just above the Three Lick Beds as at RW=.l. A t both locations<br />

the black shale was visually homogeneous.<br />

The thirtyythree samples taken at each locality were analyzed<br />

by Xyray fluorescence spectrometry. The results showed that<br />

although a few elements were present at essentially constant<br />

concentration over the 2m2 sampled area, most showed significant<br />

po<strong>in</strong>tytoypo<strong>in</strong>t variation. Figure II.A.l illustrates the nature<br />

of these changes graphically for a few arbitrarily chosen<br />

elements. Vertical differences by variation with<strong>in</strong> a particular<br />

column and horizonal variability by difference between columns.<br />

S<strong>in</strong>ce some variability <strong>in</strong> results is necessarily contributed<br />

by methodologic precision, the true values for variance were<br />

obta<strong>in</strong>ed by<br />

C(loca1) T C(methodo1ogic) = C(true)<br />

where C = coefficient of variation =<br />

+ (s/A) X 100<br />

where s is the standard deviation and A is the average.<br />

14 replicate determ<strong>in</strong>ations by Xtray fluorescent analysis were<br />

used to establish C(methodo1ogic). The results are given <strong>in</strong><br />

Table II.A.l.<br />

-


6<br />

V<br />

u<br />

z<br />

V<br />

A<br />

a<br />

U<br />

0<br />

4<br />

Fig. II.A.l<br />

11-4<br />

><br />

0<br />

L<br />

9)<br />

CI<br />

d<br />

U<br />

C


11-5<br />

Table II.A.l<br />

Local and methodologic variance Xyray fluorescence<br />

Element C (local C(meth.) C(true)<br />

Si<br />

A1<br />

Fe<br />

Ca<br />

P<br />

co<br />

Mo<br />

N i<br />

V<br />

Zr<br />

5.5<br />

13.4<br />

18.2<br />

116.<br />

37.8<br />

35.6<br />

41.1<br />

35.3<br />

31.1<br />

111.<br />

0.1<br />

0.3<br />

3.5<br />

0.0<br />

0.0<br />

1.1<br />

0.3<br />

0.5<br />

0.9<br />

6.6<br />

5.4<br />

13.1<br />

14.7<br />

116.<br />

37.8<br />

34.5<br />

40.8<br />

34.8<br />

30.2<br />

104.


11-6<br />

A two dimensional graphic view of the variation was obta<strong>in</strong>ed<br />

by plott<strong>in</strong>g the standard deviaton ,S, of each determ<strong>in</strong>ation from<br />

the average value of all samples, A, and contour<strong>in</strong>g the result.<br />

Figure II.A.2 is an example of these plots and shows, as do they<br />

all, the <strong>in</strong>timate and complex <strong>in</strong>terf<strong>in</strong>ger<strong>in</strong>g of chemical levels<br />

with<strong>in</strong> the visually homogeneous rock. It would seem that sample<br />

sizes on the order of 0.5 to 1 m3 are required to elim<strong>in</strong>ate the<br />

local variance between small samples.<br />

The analytic data for the samples measured <strong>in</strong> this study of<br />

local geochemical variance of the black shale will be found <strong>in</strong><br />

Appendix II7A.


0 r;!<br />

0 ** . ' Ix<br />

..<br />

..<br />

0 0<br />

b : L<br />

+. '<br />

11-7<br />

N . 4 . W<br />

H<br />

. m<br />

.d<br />

E


11-8<br />

TABLE II-A<br />

SMPLE SI02 AL2b3 FE203 CAO K S P<br />

% 4; x %<br />

% x %<br />

CA1-A0 56.87 15.26 4.73 0.04 4.56 3.39 0.12<br />

CA1-A10<br />

CA1-A20<br />

CAl-A30<br />

54.77 14.76 4.40 0.04 4.37 2.53 0.11<br />

57.55 13.98 4.85 0.03 4.48 3.03 0.12<br />

55.66 14.56 4.74 0.04 4.49 2.67 0.10<br />

CAl-A40 53.48 13.86 4.50 0.04 4.27 2.86 0.12<br />

CAl-A50 52.76 13.75 4.82 0.14 4.26 2.69 0.21<br />

CA1 -A60 53.97 14.38 4.64 0.04 4.35 4-10 0.12<br />

CAl-A7O 52.93 13.53 4.64 0.05 4.29 2.70 0.12<br />

CAl-A80<br />

CAl-A90<br />

--<br />

CA 1 -A1 00<br />

CA1 -BO<br />

48.87 13.41 4.77 0.31 3.93 3.44 0.11<br />

48.03 13.62 4.29 0.14 3.81 2.41 0.12<br />

50.96 14.27 4.92<br />

-----<br />

50.25 14.17 4.03<br />

0.06 4.10 2.42 0.13<br />

--.__----<br />

0.11 3.98 1.87<br />

0.12<br />

CA1-B10 58.59 15.96 5.45 0.06 4.71 2.70 - 0.11<br />

CA1-B20<br />

CA1 -B 3 0<br />

CAl-B40<br />

CA 1 -B5 0<br />

CAl-B60<br />

CA1 -B 7 0<br />

55.07 15.34 4.83 0.10 4.56 2.22 0.17<br />

55 -08 14.90 5.29 0.06 4.77 2.74 0.15<br />

52.62 14.26 5.37 0.07 4.34 2.48 0.17<br />

53.31 14.77 4.86 0.28 4.48 3.70 0.12<br />

53.08 14.16 5.23 0.14 4.47 3.15 0.13<br />

54.83 14.02 4.64 0.12 4.56 3.25 0.12


11-9<br />

TABLE 11-A (CONTINUED)<br />

SAMPLE SI02 AL203 FE203 CAO K S P<br />

x % x % % x %<br />

CAl-B80 57.47 14.84 5.94 0.06 4.73 3.98 0.14<br />

CA1- B 9 0 54.40 15.32 5.33 0.08 4.56 2.53 0.13<br />

---<br />

CAI -B 100 51.37 13.08 4.61 -----<br />

0.19 4.04 3.00 0.12<br />

CA1-CO 54.00 16.23 4.69 0.03 4.55 2-32 0.08<br />

CA1 -C 10 51.69 14.16 4.01 0.02 4.35 2.06 0.12<br />

CAl-C20 52.77 14.64 4.26 0.03 4.31 2.63 0.14<br />

CAl-C30 53.64 14.38 4.60 0.02 4.25 2-73 0.12<br />

CA1- C40<br />

55.77 14.61 4.81 0.03 4.42 2.86 0.14<br />

CAl-C50 56.05 15.37 4.71 0.03 4.34 2.35 0.13<br />

CAl-C60 57.15 15.70 5.26 0.03 4.61 2-89 0.14<br />

CA1 -C70 51.46 12.87 4.09 0.05 G.12 1-66 0.09<br />

CAl-C80 48.10 13.43 4.40 0.04 4.07 1.79 0.20<br />

CA1- C9 0 52.71 13.24 4.20 0.05 4.02 1-75 0.10<br />

CA1-C100 53.29 14.25 4.43 0.03 4.19 1.73 0.12<br />

RW 1 -A0 54.87 17.62 3.73 0.04 4.08 1-35 0.09<br />

RW 1-A1 0 56.77 18.37 3.47 0.02 4.15 0.87 0.08<br />

RWl-A20 58.26 19.00 3.56 0.02 4.28 0.98 0.09<br />

RW 1 -A30 56.82 18.02 3.31 0.03 4.17 0.58 0.06<br />

RW 1 -A40 56.07 17.63 4.19 0.02 4.11 1-00 0.07<br />

Rbl -A5 0 55.87 18.26 3.64 0.02 4.28 0.71 0.06


11-10<br />

TABLE I I -A( CONTINUED<br />

LOCAL KENTUCKY BLACK SHALE OUTCROP DATA<br />

SAMPLE SI02 AL203 FE203 CAO<br />

% % % %<br />

RWl-A60<br />

58.81 18.67 3.75 fl.fi2 4.24 0.70<br />

K<br />

x<br />

S<br />

x P<br />

0.06<br />

RW 1 -A70 56.77 17.43 3.24 0.02 1.03 0.55 0.07<br />

RW 1 -A80 57.78 18.37 3.65 0.02 4.49 1 .oo 0.07<br />

RW1-A90 59.52 18.70 3.73<br />

0.02 4.33 0.41<br />

0.05<br />

RWl-AlOO 58.44 19.42<br />

--- ------___--<br />

3.82 0.02 4.42 0.92 0.06 -<br />

RW1-BO 53.24 17.40 3.48 0.03 3.95 0.72 0.08<br />

RW1-B10 59.74 18.11 3.48 0.02 4.37 0.80 0.06<br />

RWl-B20 57.89 18.03 3.23 0.02 4.18 0.64 0.08<br />

RWl-B30 59.89 18.92 3.23 0.01 4.50 0.58 0.05<br />

RWl-B40 57.40 17.18 4.31 0.02 4.03 0.41 0.07<br />

. -<br />

RW1-B5O 60.83 18.89 3.29 0.01 4.38 0.59 0.05<br />

RWl-B60 56.09 19.43 3.34 0.02 4.25 0.60 0.06<br />

RWl-N70 57.19 18.72 3.85 0.02 4.25 0.88 0.06<br />

RWl-B80 59.43 18.75 4.48 0.02 4.64 0.33 0.06<br />

RW 1 -B 90 59.32 19.24 3.63 0.02 4.52 0.80 0.05<br />

RWl-BlOO 55.99 19.99 3.63 0.02 4.21 1.10<br />

- - - - - - --- -- -<br />

0.06<br />

RW1-CO 60.02 18.28 4.00 0.02 4.23 1.22 0.08<br />

Rw1-C 10 55.21 17.57 3.71 0.02 4.20 0.90 0.06<br />

-


11-11<br />

SAMPLE SI02 AL203 FEZ03 CAO K S P<br />

% % % % % % %<br />

RW1-C20<br />

RW1 -C3 0<br />

RWl-C40<br />

RW 1 -C5 0<br />

RWl-C60<br />

RW 1 -C7 0<br />

RW 1 - C8 0<br />

RWl-CgO<br />

RW1- C100<br />

56.28<br />

58.35<br />

59.27<br />

59.17<br />

60 64<br />

56.92<br />

57.44<br />

56.80<br />

57.37<br />

18.09<br />

18.73<br />

19.47<br />

18.98<br />

19.60<br />

19.26<br />

17.98<br />

19.18<br />

18.66<br />

3.69<br />

3.92<br />

3.85<br />

3.57<br />

3.78<br />

3.62<br />

3.58<br />

3.97<br />

1.00<br />

0.03<br />

0.03<br />

0.01<br />

0.02<br />

0.01<br />

0.02<br />

0.02<br />

0.02<br />

0.02<br />

4.33<br />

4.47<br />

4.61<br />

4.54<br />

4.73<br />

4.37<br />

4.34<br />

4.42<br />

4.46<br />

1.29<br />

0.94<br />

1.12<br />

0.79<br />

0.91<br />

0.97<br />

1.03<br />

0.91<br />

1 .oo<br />

0.09<br />

0.07<br />

0.06<br />

0.05<br />

0.06<br />

0.06<br />

0.08<br />

0.08<br />

0.08


11-12<br />

TABLE 11-A (CONTINUED)<br />

-<br />

SAMPLE RB co Y SR MO NI v. ZR<br />

PPm PPm ppm PPm PPm PPm Ppm Ppm<br />

CA1-A0<br />

CA1- A1 0<br />

CAl-MO<br />

CAl-A30<br />

CA1 -A40<br />

CAl-ASO<br />

CAl-A60<br />

CAl-A70<br />

CA1 -A8 0<br />

CA1 -A90<br />

CA1-A100<br />

CA1-BO<br />

CAI -B 10<br />

CAl-B20<br />

CAl-B30<br />

CAl-B40<br />

CA 1 -B 5 0<br />

CA1 -B 6 0<br />

CAl-B70<br />

166.<br />

153.<br />

163.<br />

166.<br />

92.<br />

162.<br />

21.<br />

143.<br />

0.<br />

144.<br />

147<br />

143.<br />

172.<br />

152.<br />

171.<br />

157.<br />

161.<br />

162.<br />

151.<br />

20.<br />

19.<br />

19.<br />

19.<br />

18.<br />

17.<br />

22.<br />

21.<br />

23.<br />

20.<br />

24.<br />

18.<br />

37.<br />

23.<br />

22.<br />

23.<br />

22.<br />

19.<br />

15.<br />

34.<br />

36.<br />

39.<br />

32.<br />

17.<br />

39.<br />

0.<br />

30.<br />

0.<br />

38.<br />

32.<br />

51.<br />

35.<br />

35.<br />

36.<br />

37.<br />

37.<br />

34.<br />

31.<br />

86.<br />

97.<br />

100.<br />

85.<br />

52.<br />

89.<br />

28.<br />

87.<br />

102.<br />

89.<br />

84.<br />

93.<br />

132.<br />

127.<br />

177.<br />

207.<br />

144.<br />

203.<br />

110.<br />

248. 65.<br />

336. 66.<br />

472. 52.<br />

314. 47.<br />

341. 48.<br />

365. 45.<br />

491. 52.<br />

286. 47.<br />

411. 52.<br />

396. 53.<br />

403. 52.<br />

412. 86.<br />

242. 54.<br />

385. 58.<br />

384. 40.<br />

501. 50.<br />

522. 50.<br />

497. 40.<br />

507. 46<br />

831. 32.<br />

949. 26.<br />

776. 42.<br />

774- 21.<br />

760. 0.<br />

615. 24.<br />

581. 0.<br />

417. 20.<br />

398. 35.<br />

424. 27.<br />

370. 18.<br />

787.<br />

765.<br />

696.<br />

672.<br />

546.<br />

448.<br />

451.<br />

537.<br />

19.<br />

63.<br />

62.<br />

90.<br />

101.<br />

91.<br />

125.<br />

31.


11-13<br />

TABLE 1 I -P( CONTINUED 1<br />

LOCAL KENTUCKY BLACK SH&E OUTCROP DATA<br />

SAMPLE m co Y SR MO NI V ZR<br />

PPm Ppm PPm PPm Ppm PPm PPm PPm<br />

---<br />

CAl-B80 179. 20. 33. 161. 417. 29. 431. 75.<br />

CAl-B90<br />

160. 18. 33. 147. 485. 48. 390. 2549.<br />

-<br />

-<br />

CAI -B 1 0 0 142. 18. 29. 136. 497. 58. 390. 77.<br />

--- -- --<br />

cA1-co 153. 19. 28. 102. 282. 73. 696. 66.<br />

CA1-C 10 1.36. 15. 30. 86. 392. 67. 769. 48.<br />

CA1 -C 2 0 143. 15. 26. 70. 424. 81. 1025. 16.<br />

CAl-C30 127, 17. 23. 77. 405. 49. 728. 20.<br />

CAI440 A30 17. 33. 111. 399. 46. 819.<br />

CA1- C5 0 140. 19. 23. 90. 429. 41. 660.<br />

CAl-C60 156. 22. 27. 101. 317. 59. 642.<br />

CAl-C70 101. 16. 19. 63. 459. 51. 426.<br />

CAl-C80 107. 15. 25. 59. 210. 57. 729.<br />

CA1- C9 0 132. 13. 31. 86. 480. 52. 403.<br />

--<br />

CA1-C100 156.<br />

---I__--<br />

14. 42. 92. 496. 57.<br />

--<br />

424.<br />

RW 1 -A0 214. 17. 46. 68. 283. 57. 354.<br />

RW1 -A1 0 232. 9. 48. 74. 234. 41. 519.<br />

RW 1 -A20 165. 9. 29. 74. .205. 33. 452.<br />

R~l-A30 127. 7. 16. 71. 215 28. 529.<br />

RWl-A40 110. 12. 13. 63. 234. 28. 464. 7.<br />

RWl-A50 147. 9. 18. 92. 136. 20. 451. 21.<br />

49.<br />

24.<br />

31.<br />

26.<br />

20.<br />

42.<br />

-<br />

61.<br />

9.<br />

13.<br />

17.<br />

6.


11-14<br />

TABLE I Ex CONTINUED)<br />

LOCAL KENTUCKY BLACK SHALE OUTCROP DATA<br />

SAMPLE RB co Y SR MO NI v ZR<br />

PPm PPm PPm Ppm PPm PPm Ppm PPm<br />

RW1-A60 170. 7. 33. 96. 171. 32. 426. 28.<br />

RWl-A70 152. 10. 25. 90. 256. 26 - 361. 24.<br />

RW1-A80 141. 9. 20. 88. 186. 36. 531. 9.<br />

RW1-A90 172. 9. 33. 80. 143. 16. 295. 26.<br />

--<br />

RYl-XlOO 184. 11. 36. -- --<br />

101. 161. 26. 435. 38. -<br />

RWl-BO 68. 18. 5. 36. 258. 49. 369. 0.<br />

RW 1 -B 10<br />

RW1 -B 20<br />

RWl-B30<br />

RWl-B40<br />

RW 1 -B 5 0<br />

RWl-B60<br />

RW1 -B7 0<br />

RW1 -B8 0<br />

RW 1 -B9 0<br />

RW 1-8 100<br />

-_I_<br />

F.14 1- GO<br />

RW 1 -c 1 0<br />

48.<br />

99.<br />

15.<br />

91.<br />

28.<br />

153.<br />

128.<br />

175.<br />

172.<br />

130.<br />

174.<br />

172.<br />

11. 0. 25. 197. 36. 508. 0.<br />

12. 10. 49. 209. 39. 439. 0.<br />

9. 0. 12. 199. 21. 557. 0.<br />

14. 22. 43. 214. 26. 381. 0.<br />

9. 0. 17. 190. 27. 407. 0.<br />

7. 33. 79. 200. 22. 513. 17.<br />

11. 29. 66. 234. 20. 363. 12.<br />

12. 36. 97. 87. 26. 375. 34.<br />

11. 39. 78. 172. 23. 422 - 19.<br />

13. 25. 72. 294. 35. 328. 6.<br />

-- - --- -<br />

14. 36. 80. 172. 41. 400. 28.<br />

14. 34. 87.. 114. 36. 433.<br />

_I-<br />

24.<br />

":.


11-15<br />

TABLE II-A( CONTINUED)<br />

SAMPLE RB co Y SR MO NI v ZR<br />

PPm PPm PPm PPm PPm PPm P P ~ ppm<br />

RW1- C 2 0 166. 15. 29. 71. 217. 54 * 538. 18.<br />

RWl-C30 159. 14. 29. 78. 158. 33. 450. 16.<br />

RW 1 -C40 18. 9. 0. 16. 198. 27. 556. 0.<br />

RW 1 -C 5 0 165. 12. 28. 72. 174. 29. 581. 20.<br />

RW 1 -C60 178. 8. 33. 89. 109. 21. 379. 26.<br />

RW1 -C 7 0 . 163. 12. 25. 79. 185. 37. 430. 14.<br />

RW1 -C8 0 121. 13. 18. 62. 241. 40. 385. 16.<br />

RW1-C90 156 16. 21. 72. 217. 36. 506. 14.<br />

RW 1 - C 1 00 165. 14. 28. 80. 240. 45. 428. 22.


INTRODUCTION<br />

CHAPTER 1I.B.<br />

AREAL AND STRATIGRAPHIC GEOCHEMISTRY<br />

WILLIAM H. BLACKBURN<br />

The chemical variance of the Upper Devonian-Lower Mississippian black<br />

shales was treated <strong>in</strong> a prelim<strong>in</strong>ary fashion by Dennen et al. (1978) em-<br />

ploy<strong>in</strong>g outcrop samples collected around the outcrop belt <strong>in</strong> <strong>Kentucky</strong>.<br />

This first attempt at geochemical characterization of the black-shale se-<br />

quence was made to determ<strong>in</strong>e which elements were act<strong>in</strong>g <strong>in</strong>dependently and<br />

hav<strong>in</strong>g a recognizable statistical variation. These elements might con-<br />

tribute to conclusions as to the depositional environment, the correlation<br />

of the <strong>in</strong>ternal stratigraphic units, and to the possibility of economic<br />

resources beyond the immediate goal of natural gas development. For ex-<br />

ample, the elements V, Co, Ni, Zn, Mo, Ca, S, Y, Sr and U were found to<br />

have wide variability or a bimodal distribution and were expected to be<br />

most useful <strong>in</strong> stratigraphic or areal analyses. From an economic stand-<br />

po<strong>in</strong>t, the black shales of <strong>Kentucky</strong> may be a source for uranium <strong>in</strong> the<br />

not so distant future: molybdenum and copper are locally enriched as well.<br />

The basic conclusions of the earlier work of Dennen et al. (1978) have<br />

not changed radically upon analysis of the considerable amount of data now<br />

available to us. S<strong>in</strong>ce the prelim<strong>in</strong>ary study, Markowitz (1979) completed<br />

over 400 whole rock analyses of the Ohio, New Albany and Chattanooga shales<br />

collected from complete or near complete sections on the eastern side of<br />

the C<strong>in</strong>c<strong>in</strong>nati Arch. His work was reported <strong>in</strong> total <strong>in</strong> a quarterly report<br />

of this contract.<br />

Data on the <strong>Kentucky</strong> black shales has been received from other con-<br />

tractors. Mound Laboratories supplied data for EGSP Drill Holes KY-2<br />

11-16


11-17<br />

(Mart<strong>in</strong> County). Data for KY-1 (Perry County) were obta<strong>in</strong>ed for DOE-<br />

METC and the chemical data for KY-3 (Christian County) were provided by<br />

the Ill<strong>in</strong>ois Geological Survey. As a subcontractee for the <strong>Kentucky</strong><br />

Geological Survey, the geochemical characterization group of the Ken-<br />

tucky Geological Research Group completed over 200 whole-rock analyses<br />

of materials from five cores taken on the western and southern sides of<br />

the C<strong>in</strong>c<strong>in</strong>nati Arch. The total accumulated data for the <strong>Kentucky</strong> black<br />

shales are now representative of stratigraphic as well as areal variance<br />

and it is on the analysis of the data that the present report as well as<br />

the paper by <strong>Black</strong>burn and Markowitz (1980) are based.<br />

It should be noted that due to the curtailment of the contract length<br />

and the drill<strong>in</strong>g program of the EGSP (twelve drill holes orig<strong>in</strong>ally planned<br />

<strong>in</strong> <strong>Kentucky</strong>), the regional coverage of material was not realized.<br />

data, however, does provide a reasonable estimate of the areal and strati-<br />

graphic variance of black-shale geochemistry.<br />

DATA PRESENTATION<br />

Available<br />

As first realized dur<strong>in</strong>g the study of Dennen et al. (19781, some chem-<br />

ical parameters do not afford <strong>in</strong>formation which is particularly useful. Some<br />

elements such as rubidium, albeit higher <strong>in</strong> these rocks than <strong>in</strong> the average<br />

shales, are strongly univariant and show little variance. Markowitz (1979)<br />

showed that those elements associated with the clastic fraction did, <strong>in</strong> fact,<br />

show an <strong>in</strong>terdependence and the analysis of the variance of one of these ele-<br />

ments leads to conclusions about the group as a whole.<br />

The thrust of this<br />

report is then with those elements which do act <strong>in</strong>dependently, do have econ-<br />

omic potential, do have a bear<strong>in</strong>g on a depositional model, or do have en-<br />

vironmental implications. With regard to the latter, it should be realized<br />

that the Ohio, New Albany and Chattanooga <strong>Shales</strong> will, <strong>in</strong> the long run, have


11-18<br />

more potential as oil shales than gas shales and that, as oil shales,<br />

will be produced by surface m<strong>in</strong><strong>in</strong>g methods.<br />

of their .chemistry may then be a most important factor.<br />

The environmental aspects<br />

All the data used <strong>in</strong> this report is available to ESP. The elements<br />

discussed <strong>in</strong> this report are those which have environmental, economic or<br />

extraction implications. The data are presented <strong>in</strong> two ways:<br />

Averaqe value maps <strong>in</strong> which po<strong>in</strong>t sources, sections, drill holes<br />

- or outcroe grab samples, are shown as s<strong>in</strong>gle values represent<strong>in</strong>g<br />

- the average for that locality. These data, although misrepresent<strong>in</strong>g<br />

the local variability, do show the overall, regional, geochemical<br />

trends.<br />

Fence diagrams <strong>in</strong> which the geochemical data is presented <strong>in</strong> terms<br />

- of stratigraphic variability as well as areal variability. The <strong>in</strong>-<br />

ternal stratigraphy used is that of Provo (1977) which was further<br />

developed by Swager (1978). Prior to this report, the Provo strat-<br />

igraphic units were used only on the eastern side of the C<strong>in</strong>c<strong>in</strong>nati<br />

Arch.<br />

---<br />

Careful exam<strong>in</strong>ation of gamma-ray logs for <strong>Kentucky</strong> Geological<br />

Survey drill holes on the western side and especially the gamma-ray<br />

log of the EGSP d rill hole KY-3 <strong>in</strong> Christian County have led this<br />

author to believe that the <strong>in</strong>ternal stratigraphy developed by Provo<br />

(1977) can be extended westward. In any case, the lithostratigraphic<br />

units and nomenclature used by the Indiana Geological Survey, the<br />

Ill<strong>in</strong>ois Geological Survey and the <strong>Kentucky</strong> Geological Survey do not<br />

match well enough €or regional analysis. The technique used here<br />

does have some statistical validity as shown <strong>in</strong> a later chapter.<br />

The data variances are presented <strong>in</strong> terms of deviation from the mean<br />

value for a particular element. Generally, the data are presented as symbols


11-19<br />

or patterns represent<strong>in</strong>g:<br />

. < two standard deviations (


11-20<br />

TABLE II.B.1<br />

Measured outcrop sections and cored drill holes discussed <strong>in</strong> this chapter.<br />

Those marked with an asterisk represent cored drill holes.<br />

Designation Carter Coord<strong>in</strong>ates<br />

LE 21-2-74, 200 FNL X 400 FWL<br />

FL 1-W-71, 3000 FNL X 1250 FEL<br />

PO 12-4-67, 1100 FSL X 1000 FWL<br />

ES 13-0-66, 1900 FSL X 100 FEL<br />

MA<br />

CA<br />

PU<br />

RU<br />

RW<br />

cu<br />

6-M-63, 1600 FNL X 2150 FEL<br />

25-K-56, 500 FSL X 2250 FWL<br />

19-H-58, 2850 FSL X 2400 FEL<br />

15-E-52, 1900 FNL X 2225 FEL<br />

1-T-71, 900 FNL X 1100 FWL<br />

21-0-50, 1250 FNL X 1400 FWL<br />

KY-1* 19-K-76, 1690 FNL X 325 FWL<br />

KY-2*<br />

KY-3*<br />

KY-4*<br />

N1*<br />

N2*<br />

N3 *<br />

N4*<br />

N5*<br />

16-P-85, 2750 FNL X 1650 FWL<br />

124-25, 650 FNL X 90 FEL<br />

12-R-79, 1780 FNL X 1320 FEL<br />

3-S-47, 3400 FSL X 700 FEL<br />

14-M-48, 3500 FSL X 1800 FEL<br />

17-0-59, 400 FSL X 1800 FEL<br />

21-P-46, 1400 FNL X 1600 FWL<br />

13-M-51, 1450 FSL X 950 FEL


11-21<br />

<strong>in</strong> resource evaluation with<strong>in</strong> <strong>Kentucky</strong>.<br />

The data shown are of two types:<br />

1.) Organic carbon determ<strong>in</strong>ed by the difference between total carbon<br />

and <strong>in</strong>organic or carbonate carbon.<br />

0<br />

2.) An estimation of organic carbon by ash<strong>in</strong>g of the sample at 500 C -<br />

a temperature which is below the thermal breakdown of the carbon-<br />

ates (Goldsmith, 1977). Data derived <strong>in</strong> this fashion has been used<br />

with success by Leventhal and Goldhaber (1978) and Dennen et al. (19-<br />

78).<br />

The average value map for organic carbon shows a general <strong>in</strong>crease away<br />

from the northeastern Appalachian clastic source.<br />

<strong>in</strong> the Christian County shales as <strong>in</strong>dicated by KY-3. This seems to be due to<br />

clastic dilution from a northwesterly source as <strong>in</strong>dicated by <strong>in</strong>creased silica<br />

values <strong>in</strong> this area.<br />

Carbon values decrease aga<strong>in</strong><br />

Exam<strong>in</strong>ation of the fence diagram for organic carbon shows the same gen-<br />

eral trends but also illustrates <strong>in</strong>creas<strong>in</strong>g values <strong>in</strong> the uppermost and lower-<br />

most stratigraphic units. Middle units tend to have lower contents of organic<br />

carbon but these units often show the effects of bioturbation, a process which<br />

will generally <strong>in</strong>crease oxidation and therefore lower the organic carbon content.<br />

CHROMIUM<br />

Chromium shows a general trend <strong>in</strong>verse to that of organic carbon. It<br />

has higher values <strong>in</strong> the eastern and western sample localities and most likely<br />

represents a clastic enrichment <strong>in</strong> these areas. The fence diagram shows no<br />

consistent variability with stratigraphy and, therefore, no obvious relation-<br />

ship with the depositional environment is observable.<br />

Markowitz (1979) states that Cr is rather closely associated with the<br />

group of elements normally tied up <strong>in</strong> sulfides. This relationship is not


11-22<br />

easily expla<strong>in</strong>ed as Cr generally does not show strong sulfophile tendencies.<br />

COPPER<br />

Copper distribution <strong>in</strong> these rocks is rather complicated. The lowest<br />

values are <strong>in</strong> Lewis and Flem<strong>in</strong>g Counties with a general <strong>in</strong>crease to the south,<br />

east and west. Anomalous highs are found <strong>in</strong> the basal units of the MA, PO,<br />

and ES sections of Madison, Powell and Estill Counties respectively. This is<br />

<strong>in</strong> the same region where Richers (1979) describes a zone of hydrothermal al-<br />

teration along with copper and uranium <strong>in</strong> Pennsylvanian rocks.<br />

that the high Cu values found here are related to the same event and have no<br />

relationship to the depositional scheme.<br />

It is possible<br />

The Christian County well, KY-3, has truly anomalous copper values, most<br />

of which are greater that two standard deviations from the average. An explan-<br />

ation of this is not presently available but one might speculate on an iron-<br />

copper zonation with<strong>in</strong> the depositional bas<strong>in</strong> similar to that described for the<br />

Zambrian Copper Belt or the Kupferschiefer.<br />

MOLYBDENUM<br />

Markowitz (1979) shows that Mo correlates best with uranium, carbon, and<br />

vanadium on the eastern side of the C<strong>in</strong>c<strong>in</strong>nati Arch. The diagrams for the<br />

whole state presented with this report and the data from which they were de-<br />

rived corroborate his conclusions. Molybdenum <strong>in</strong>creases westerly and south-<br />

erly and is generally directly related to the uranium and organic carbon contents.<br />

The fence diagram for molybdenum is <strong>in</strong>terest<strong>in</strong>g <strong>in</strong> that, outside of the<br />

clastic-rich areas <strong>in</strong> the northeast, its concentration tends to <strong>in</strong>crease upward<br />

<strong>in</strong> the section.<br />

NICKEL<br />

Nickel is generally rather low <strong>in</strong> these rocks but does show a strong


11-23<br />

easterly <strong>in</strong>crease toward the Appalachian clastic source and westerly to-<br />

ward the clastic source for the Ill<strong>in</strong>ois Bas<strong>in</strong>.<br />

Potter et al. (1980) show a relationship between the concentrations<br />

of nickel and vanadium and the sedimentation rate. They speculate that,<br />

at lower sedimentation rates, vanadium is taken up by organic matter be-<br />

cause of <strong>in</strong>creased contact time with the seawater. They imply that N i<br />

does not vary much and therefore the V/Ni ratio is <strong>in</strong>versely related to<br />

sedimentation rate. The data presented here shows <strong>in</strong>creased N i values <strong>in</strong><br />

<strong>in</strong> the proximal shales. Could the V/Ni ratio be related also to the actual<br />

type of organic material available for <strong>in</strong>teraction with the sea water?<br />

PHOSPHORUS<br />

The fence diagram for phosphorus shows this element to be highly var-<br />

iable both areally and stratigraphically. There seem to be no consistent<br />

trends which afford correlation of <strong>in</strong>ternal stratigraphic units. S<strong>in</strong>ce<br />

phosphorus is probably controlled by the presence of fossils with apatitic<br />

tests, one wonders if the conditions favorable to this life form were ever<br />

favorable over wide areas.<br />

A depositional mdel as described by Beckel (19-<br />

77) would have to take the local variability of phosphorus <strong>in</strong>to account.<br />

Markowitz (1979) showed that the elements Cd, Co, Cr, Pb, Y, and Zn<br />

were all strongly correlated with phosphorus.<br />

tam<strong>in</strong>ent of apatite so this association is expected. Other than Cr, all<br />

the rest of these elements would be expected to be sulfophile <strong>in</strong> this<br />

environment and they do correlate to some extent with sulfur. Their<br />

association with phosphorus is much stronger and these elements may be<br />

present as phosphates.<br />

Yttrium is a common con-


SULFUR<br />

11-24<br />

Sulfur like phosphorus tends to be highly variable both areally and<br />

stratigraphically. It does, however, generally occur <strong>in</strong> higher concen-<br />

trations <strong>in</strong> the middle stratigraphic units. There is no clear <strong>in</strong>dication<br />

of variance due to deposition with<strong>in</strong> a particular environment with<strong>in</strong> the<br />

bas<strong>in</strong>. Some areas with<strong>in</strong> the bas<strong>in</strong> show<strong>in</strong>g high organic carbon contents<br />

and high V/Ni ratios (probably <strong>in</strong>dicat<strong>in</strong>g slow sedimentation rates under<br />

reduc<strong>in</strong>g mar<strong>in</strong>e conditions) show low sulfur contents. A study of the<br />

forms of sulfide, especially pyrite, <strong>in</strong> these rocks would probably be re-<br />

veal <strong>in</strong>g .<br />

URANIUM<br />

One of the contract goals of the <strong>Kentucky</strong> project was to produce<br />

deliverable maps show<strong>in</strong>g the distribution of uranium with<strong>in</strong> the Devonian<br />

black shales of eastern <strong>Kentucky</strong>. These maps, actually <strong>in</strong>clud<strong>in</strong>g all avail-<br />

able data for <strong>Kentucky</strong> are presented along with this report.<br />

Uranium is strongly related to the concentrations of organic carbon,<br />

molybdenum and vanadium. As speculated by Potter et al. (1980), the uran-<br />

ium contents may be possibly expla<strong>in</strong>ed by sedimentation rates - a higher<br />

U value represent<strong>in</strong>g lower rate of sedimentation.<br />

VANADIUM<br />

Vanadium acts <strong>in</strong> a fashion <strong>in</strong>verse to nickel. Values of V <strong>in</strong>crease<br />

southerly and westerly but decrease aga<strong>in</strong> <strong>in</strong> the shales of Christian County<br />

(KY-3) where nickel values are higher. Vanadium <strong>in</strong>creases upward <strong>in</strong> the<br />

section and often the uppermost unit (PROW 1) has the highest vanadium<br />

content for a particular section. No such changes are observed for nickel<br />

and thus the V/Ni ratio <strong>in</strong>creases upward <strong>in</strong> the section as well. Does


11-25<br />

this represent a general mar<strong>in</strong>e encroachment to the present north (pro-<br />

bably Devonian east) with cont<strong>in</strong>ually decreas<strong>in</strong>g sedimentation rates?


11-26<br />

REFERENCES<br />

<strong>Black</strong>burn, W.H. and Markowitz, G. (1980): Geochemistry of the Devonian<br />

Gas <strong>Shales</strong> of <strong>Kentucky</strong>, U.S.A. Proceed<strong>in</strong>gs of the International<br />

Geological Congress, Paris, France.<br />

Dennen, W.H., <strong>Black</strong>burn, W.H. and Davis, P.A. (1978): Abundance and Dis- .<br />

tribution of some chemical elements <strong>in</strong> the Chattanooga, Ohio and New<br />

Aibany <strong>Shales</strong> <strong>in</strong> <strong>Kentucky</strong>. Proceed<strong>in</strong>gs of the First Eastern Gas<br />

<strong>Shales</strong> Symposium. U.S. Dept. of <strong>Energy</strong> MERC?SP-7715, 49-67.<br />

Goldsmith, R.H. (197g): Changes <strong>in</strong> the m<strong>in</strong>eralogy of oil shales heated<br />

from 400 to 900 C. Compass, 42-50.<br />

Heckel, P. (1977): Orig<strong>in</strong> of the phosphatic black shales facies <strong>in</strong> Pennsylvanian<br />

cyclothems of mid-cont<strong>in</strong>ent North America.<br />

61, 1045-1068.<br />

A.A.P.G. Bull.,<br />

-<br />

Leventhal, J.S. and Goldhaber, M.B. (1978): New data for uranium, thorium,<br />

carbon, and sulfur <strong>in</strong> Devonian <strong>Black</strong> Shale from West Virg<strong>in</strong>ia, <strong>Kentucky</strong><br />

and New York. First Eastern Gas <strong>Shales</strong> Symposium. U.S. Dept. of <strong>Energy</strong><br />

MERC/SP-77/5, 259-296.<br />

Markowitz, G. (1979) : A geochemical study of' the Upper Devonian - Lower<br />

Mississippian black shales <strong>in</strong> eastern <strong>Kentucky</strong>.<br />

of <strong>Kentucky</strong>.<br />

M.S. Thesis, University<br />

Potter, P.E., Maynard, J.B. and Pryor, W.A. (1980): F<strong>in</strong>al report of special<br />

geological, geochemical, and petrological studies of the Devonian shales<br />

<strong>in</strong> the Appalachian Bas<strong>in</strong>. Prepared for the U.S. Department of <strong>Energy</strong><br />

EGSP Contract DE-AC21-76 MCO 520 1.<br />

Pcovo, L.J. (1977): Stratigraphy and sedimentology of radioactive Devonian-<br />

Mississippian shales of the central Appalachian Bas<strong>in</strong>, Ph.D. Dissertation,<br />

University of C<strong>in</strong>c<strong>in</strong>nati.<br />

Swager, D.R. (1978): Stratigraphy of the Upper Devonian - Lower Mississippian<br />

shale sequence <strong>in</strong> the eastern <strong>Kentucky</strong> outcrop belts. M.S. Thesis, Univ-<br />

ersity of <strong>Kentucky</strong>.


CAVEAT<br />

CHAPTER 11. C.<br />

KEROGEN DISCRIMINATION<br />

W. H. DENNEN<br />

Our proposal to attempt the discrim<strong>in</strong>ation of terrestriallye<br />

derived and mar<strong>in</strong>e-derived kerogenous material <strong>in</strong> the black shale<br />

by spectrochemical means was considered important <strong>in</strong> that it<br />

seemed likely that kerogen of different provenance would have<br />

different gas-yield efficiency. If a relationship of yield and<br />

kerogen type could be established, optimization of targets with<strong>in</strong><br />

the depositional bas<strong>in</strong> would be possible.<br />

Phase one of the program was planned to identify elements<br />

whose concentration or ratio was <strong>in</strong>dicative of kerogen type.<br />

This <strong>in</strong>itial study was then to be followed by correlation of<br />

kerogen data with stratigraphic and bas<strong>in</strong> analysis results (from<br />

Ettensohn) and gas productivity <strong>in</strong>formation (from Wilson).<br />

Additionally, correlation of kerogen type and radioelement levels<br />

was planned. These data are only now com<strong>in</strong>g to hand and early<br />

term<strong>in</strong>ation of The contract has allowed only phase one studies to<br />

be carried forward.<br />

11-27


11-28<br />

INTRODUCTION<br />

It is assumed - a priori that kerogen <strong>in</strong> black shales is derived<br />

as Organic debris from terrestrial and mar<strong>in</strong>e plants and animals,<br />

that these materials are different both <strong>in</strong>itially and <strong>in</strong><br />

comm<strong>in</strong>uted form, and that they will, therefore, respond <strong>in</strong><br />

different degree to the natural crack<strong>in</strong>g processes which yield<br />

natural gas.<br />

The purpose of the study has been to establish criteria for<br />

the dist<strong>in</strong>ction of kerogenous material from different precursors<br />

on the basis of its <strong>in</strong>organic chemical content. It is presumed<br />

that the elements of <strong>in</strong>terest are orig<strong>in</strong>ally adsorbed on the<br />

kerogen and that a different suite or proportion of critical<br />

elements w i l l be present <strong>in</strong> the different kerogen types.<br />

If kerogen of different provenance does have differ<strong>in</strong>g<br />

sensitivity to crack<strong>in</strong>g or different gas yields, there should be<br />

a useful correlation of the kerogen type with uranium Content,<br />

position with<strong>in</strong> the depositional bas<strong>in</strong>, and historical<br />

production figures.<br />

D. C. arc spectrochemical analysis us<strong>in</strong>g all elements<br />

detectable over the spectral range 2400-10,OOOA and laser<br />

microprobe analysis of elements <strong>in</strong> the spectral range 2400-4500A<br />

has been employed <strong>in</strong> evaluat<strong>in</strong>g the chemical variance among<br />

s amp1 es .


11-29<br />

It has been recognized that sample process<strong>in</strong>g may remove or<br />

alter the concentrations of elements of <strong>in</strong>terest. Consequently,<br />

a number of preparation procedures and several analytic<br />

approaches have been used. These are presented as a series of<br />

studies follow<strong>in</strong>g.


11-30<br />

STUDY 1. COMPONENT ANALYSIS IN NEW ALBANY SHALE LABORATORY<br />

STANDARD<br />

Sample preparation.<br />

The flow sheet used for sample preparation is shown <strong>in</strong> Figure<br />

II.C.1. The boxed products are satisfactory for spectrochemical<br />

analysis and have been exam<strong>in</strong>ed <strong>in</strong> a New Albany Shale laboratory<br />

standard for detectable elements <strong>in</strong> the wavelength region<br />

240073600A as later described.<br />

Benzene extraction of soluble organic materials from samples<br />

ground to pass 100 mesh is accomplished us<strong>in</strong>g simple reflux<br />

apparatus <strong>in</strong> which solvent and sample are allowed to boil. The<br />

solvent is slightly discolored and all of the organic material is<br />

extracted <strong>in</strong> a period of 5 to 6 hours for a one gram sample.<br />

Silicate dissolution is accomplished as follows:<br />

1) Weigh <strong>in</strong>to an Oak Ridge centrifuge tube 0.125<br />

2)<br />

3)<br />

4)<br />

grams of the extracted sample, add 3.0 m l of<br />

48% HF and swirl.<br />

Place tube on a water bath at 100-C for one<br />

hour, swirl periodically.<br />

Remove tube from the water bath, cool to room<br />

temperature, open, add 25 m l distilled water<br />

and swirl.<br />

Add 2.8 grams of crystall<strong>in</strong>e boric acid.<br />

Close the tube and shake until all the boric


5)<br />

Component Determ<strong>in</strong>ation<br />

acid is dissolved.<br />

11-31<br />

Filter through a millipore filter. The<br />

residue is silica-free kerogen.<br />

Calculations of the percentages of the various components<br />

present <strong>in</strong> the New Albany Shale laboratory standard were made<br />

us<strong>in</strong>g both gravimetric and spectrographic data. The latter<br />

appears more dependable as <strong>in</strong>dicated <strong>in</strong> Table II.C.1.<br />

Fig. II.C.1<br />

~~


11-32<br />

TABLE 11. C. 1<br />

Component* Weight Percent<br />

bb~333737377b~37777~~77777~~~777777777~7~77779~7~7777~7~~<br />

Gravimetric Spectrographic<br />

E<br />

24.1 + 5.8 6.94 2 0.05<br />

I (yE+K+W) 25.4 2 9.3 26.26 - + 0.10<br />

W n. d. 6.0<br />

K by difference 20.1 13.32<br />

K by silica dissolution 20.1 n. d.<br />

S by difference n. d. 73.74<br />

S by silica dissolution 70.9 n. d.<br />

The particular spectrographic data used were:<br />

1) for E; average enhancement (of 19 elements) <strong>in</strong> the residual<br />

material after extraction, E/N<br />

2) for I; average enhancement <strong>in</strong> the residual material after<br />

ignition, I/N<br />

3) for W; a direct spectrographic measurement follow<strong>in</strong>g Dennen<br />

and Quesada, Applied Spectroscopy, v. 21, 1567156, 1967.<br />

-----------------*----------------------------~----------------------<br />

,~~,,,/~,,,~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,<br />

*N neat sample E benzeneyextractable portion<br />

I ignited sample K kerogen<br />

W water S silicate<br />

-


Spectrographic Analysis<br />

11-33<br />

Samples for analysis are -100 mesh powders mixed with equal<br />

parts by volume of specpure graphite powder and tamped <strong>in</strong>to 1.5 x<br />

3 mm craters <strong>in</strong> .I20 <strong>in</strong>ch diameter prearced specpure graphite<br />

electrodes. Samples are arced as the anode at 8 amperes to<br />

completion, about 70 seconds, us<strong>in</strong>g a .25 <strong>in</strong>ch diameter carbon<br />

counter~electrode and a 7 mm analytic gap.<br />

The spectrograph employed is a large quartzaglass, Littrow?<br />

mounted prism <strong>in</strong>strument manufactured by Adam Hilger, Ltd.<br />

Incident light is focused on the collimat<strong>in</strong>g lens after pass<strong>in</strong>g a<br />

rotat<strong>in</strong>g mechanical sector hav<strong>in</strong>g a 4x aperture ratio located at<br />

the entrance slit. Spectra are recorded on Kodak Spectrum<br />

Analysis a 1 glass plates, developed for 4 1/2 m<strong>in</strong>utes at 19 C<br />

with constant stirr<strong>in</strong>g <strong>in</strong> a temperatureycontrolled tank, fixed,<br />

washed, r<strong>in</strong>sed with distilled water, and air dried. Usually 10<br />

spectra per plate are recorded.<br />

Photometry is accomplished by use of a JarreltAsh Co.<br />

nonrecord<strong>in</strong>g digital microphotometerycomparator. L<strong>in</strong>e density<br />

and background are recorded and transformed to relative spectral<br />

<strong>in</strong>tensity us<strong>in</strong>g a stepTsector calibration procedure.


11-34<br />

S<strong>in</strong>ce relative spectral <strong>in</strong>tensity, I, is directly proportional<br />

to concentration, C<br />

n<br />

I=kC<br />

relative <strong>in</strong>tensities may be used directly for many geochemical<br />

purposes or may be transformed to concentration values through<br />

the use of appropriate standards.<br />

The precision of the spectrographic method is not high,<br />

usually be<strong>in</strong>g - +5 3 15% of the value reported, but is usually more<br />

than adequate for trace element comparisons whose natural<br />

variations are often large multiples.<br />

Results<br />

The relative concentrations of the follow<strong>in</strong>g elements have<br />

been exam<strong>in</strong>ea <strong>in</strong> the New Albany Shale laboratory standard for<br />

each of the boxed materials <strong>in</strong> Figure 1 as well as compared<br />

with a Paleozoic shale sample (APSC) taken along the Pennsylvania<br />

Turnpike and composited by bed thickness. Comparison of the<br />

content of these elements between APSC and New Albany shale (NA)<br />

is given <strong>in</strong> the table below and shows the black shale to be<br />

particularly depleted <strong>in</strong> calcium and sodium and enriched <strong>in</strong><br />

boron, cobalt, copper, nickel and molybdenum with respect to the<br />

lraveragelt Paleozoic shale. These enrichments may be ascribable<br />

to adsorption on kerogen <strong>in</strong> the black shale.


element<br />

A1<br />

B<br />

Ca<br />

co<br />

Cr<br />

cu<br />

Fe<br />

Ga<br />

Mg<br />

NA/APSC<br />

0.53<br />

1.43<br />

0.29<br />

1.75<br />

0.70<br />

2.07<br />

0.78<br />

0.69<br />

0.51<br />

11-35<br />

e 1 emen t<br />

Mn<br />

Mo<br />

Ma<br />

N i<br />

P<br />

Pb<br />

Si<br />

Ti<br />

v<br />

Zr<br />

NA/APSC<br />

The benzene extraction process removed approximately 7 percent<br />

by weight of soluble hydrocarbons from the shale, but had no<br />

appreciable effect on the concentration of the <strong>in</strong>organic<br />

constituents except for boron. This element was reduced to one?<br />

half of its orig<strong>in</strong>al content and, therefore, must be markedly<br />

concentrated <strong>in</strong> the extracted substances.<br />

The kerogen content of the New Albany sample amounts to<br />

approximately 13 percent by weight. The kerogen conta<strong>in</strong>s<br />

detectable quantities of chromium, copper, iron, lead, manganese,<br />

molybdenum, nickel, phosphorus, silicon, titanium and zirconium<br />

(boron could not be determ<strong>in</strong>ed because the use of boric acid <strong>in</strong><br />

the dissolution process contam<strong>in</strong>ates the product). The amounts<br />

of copper, iron, molybdenum, nickel, and zirconium are especially<br />

0.62<br />

4.67<br />

0.32<br />

1.91<br />

0.92<br />

0.68<br />

1.05<br />

0.74<br />

0.83<br />

0.81


high.<br />

11-36<br />

On consideration of the geochemical properties of these<br />

elements coupled with the probable effects of sample process<strong>in</strong>g,<br />

it is concluded that the likely elements for kerogen<br />

discrim<strong>in</strong>ation are:<br />

Good 7 Cr, Cu, Mo, Ni, Pb<br />

Possible 7 Fe, Mn, P, Ti<br />

Unlikely 7 Si, Zr


STUDY 2. ACID EXTRACTIONS<br />

11-37<br />

The partition of elements <strong>in</strong> black shale <strong>in</strong>to various fraction<br />

produced by ignition and acid extraction was exam<strong>in</strong>ed on the<br />

assumptions that:<br />

1) the black shale is truly a siltstone with a<br />

relatively modest clay m<strong>in</strong>eral content,<br />

2) adsorbed ions will be pr<strong>in</strong>cipally present on the<br />

large surface afforded by kerogen,<br />

3) adsorbed ions may be extracted by an acid wash.<br />

the conclusions of this study are:<br />

1.<br />

2.<br />

3.<br />

1:1 and 1:10 hot nitric acid extracts the same<br />

group of elements from both neat and ignited<br />

samples. The stronger acid is more effective <strong>in</strong><br />

the extraction of B, Fe, Mo, Zn and Pb while 1:10<br />

nitric is more effective <strong>in</strong> extract<strong>in</strong>g P, Al, Mn,<br />

Mg, Si, Ca and Cu.<br />

The mass of extracted material decreases with<br />

ignition and acid strength:<br />

neat sample, 1:l nitric acid 7 18% extracted<br />

neat sample, 1:lO nitric acid 7 8.8% extracted<br />

ignited sample, 1:1 nitric acid B 11% extracted<br />

ignited sample, 1:lO nitric acid B 4.5% extracted<br />

Assum<strong>in</strong>g the extractability is primarily due to<br />

adsorption on kerogen and not related to kerogen<br />

trashtr or other activation, the partition of


5.<br />

-1<br />

11-38<br />

elements between kerogen and silicate phases of<br />

the black shale is shown <strong>in</strong> Figure II.C.2 where<br />

preferences d et ermi ned by compar <strong>in</strong>g<br />

concentrations <strong>in</strong> dried extracts of neat and<br />

ignited shale are compared.<br />

R€fmG€N<br />

PREFERENCE


11-39<br />

STUDY 3. NONaTRADITIONAL ATTEMPTS TO SEPARATE PHASES PRESENT I N<br />

THE BLACK SHALE.<br />

The separation of kerogen, silicate and sulfide phases of<br />

black shale <strong>in</strong>to fractions suitable for chemical studies is very<br />

difficult. Typically, ignition or lowatemperature ash<strong>in</strong>g is used<br />

to destroy hydrocarbons and harsh chemical treatments to destroy<br />

silicates. None of the more usual methods have a "delicate<br />

touch", however, and the response of the sulfide phase to the<br />

various treatments is unknown. Consequently, reported chemistry<br />

of the various black shale fractions must always be treated with<br />

some suspicion.<br />

Two sets of experiments to ga<strong>in</strong> better <strong>in</strong>sight to the phase<br />

chemistry of the black shale were conducted. In one, bubble<br />

transport was used to beneficiate a kerogen (+ sulfide?) fraction<br />

and <strong>in</strong> the other selective volatilization of neat sample <strong>in</strong> a<br />

specially designed spectrographic electrode was employed.<br />

Experiments us<strong>in</strong>g bubble transport beneficiation <strong>in</strong>creased the<br />

kerogen content <strong>in</strong> the product by a factor of two as determ<strong>in</strong>ed<br />

by ignition loss.<br />

Selective volatilization is a characteristic of d.c. arc<br />

excitation and has been enhanced by us<strong>in</strong>g a boileratype electrode<br />

provided with a powdered graphite filter pad between the sample<br />

and po<strong>in</strong>t of excitation. Resistance heat<strong>in</strong>g of the electrode


11-40<br />

should first drive off kerogen, perhaps together with highly<br />

volative elements, from the silicate/sulfide phase and time<br />

studies on neat and ignited samples may then be used to relate a<br />

particular element with its phases. The follow<strong>in</strong>g associations<br />

appear to hold:<br />

Elements wholly or dom<strong>in</strong>antly associated - with kerogen<br />

(early vaporization, absent <strong>in</strong> ignited samples).<br />

silver z<strong>in</strong>c<br />

lead nickel<br />

Elements wholly or dom<strong>in</strong>antly associated --<br />

with the<br />

silicate phase.<br />

zircon titanium<br />

vanadium sodium<br />

boron<br />

copper<br />

magnesium<br />

Elements present - <strong>in</strong> - both kerogen - and silicate<br />

fractions.<br />

manganese<br />

iron


11-41<br />

STUDY 4. REVISED CHEMICAL SEPARATORY PROCEDURES.<br />

The shift <strong>in</strong> emphasis <strong>in</strong> kerogen discrim<strong>in</strong>aton studies from<br />

whole rock and fossil fragment sample materials to separated<br />

kerogen necessitated the development of a rapid means for<br />

separat<strong>in</strong>g kerogen from its silicate matrix. To this end, the<br />

follow<strong>in</strong>g procedure was developed.<br />

-<br />

Acid Mixture: Work<strong>in</strong>g under a fume hood, transfer the<br />

contents of a l..=pound bottle of HF (48%) to a lyliter<br />

polyethylene bottle. Chill the HF <strong>in</strong> a bath of cold water for<br />

one hour. Keep<strong>in</strong>g the polyethylene bottle <strong>in</strong> the cold water<br />

bath, add 165 m l of concentrated sulfuric acid, mix and allow to<br />

cool. Add 40 ml of concentrated nitric acid and mix.<br />

Procedure:<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

Transfer 1.00 gm of each sample to special Teflon<br />

beakers.<br />

Add 30 m l of the Acid Mixture to each Teflon beaker and<br />

swirl to wet the sample.<br />

Cover the Teflon beakers with Teflon covers and place<br />

the beakers on a steam bath so that most of the beaker<br />

is suspended <strong>in</strong> steam. Allow to heat for six hours.<br />

Remove the Teflon beakers from the steam bath and<br />

dilute the contents to approximately 1 liter with<br />

dem<strong>in</strong>eralized water us<strong>in</strong>g a polyethylene conta<strong>in</strong>er.<br />

Separate the solid and liquid fractions Us<strong>in</strong>g vacuum


11-42<br />

filtration. Wash filtrate with 0.2N NC1 and three<br />

times with dem<strong>in</strong>eralized water.<br />

6. Dry filtrate.


STUDY 5. ANALYTIC PRECISION.<br />

11-43<br />

Eight replicates of the same black shale sample were run to<br />

test <strong>in</strong>strumental/operator precision for the spectrochemical<br />

methods be<strong>in</strong>g employed. The elements determ<strong>in</strong>ed and their<br />

coefficients of variations (C> are:<br />

Element C%<br />

B 9.9<br />

P 11.5<br />

cu 12.9<br />

Pb 7.0<br />

Cr 13.8<br />

Ga 11.7<br />

Mo 14.4<br />

V 14.6<br />

co 19.3<br />

Ni 12.8<br />

Zr 15.4


11-44<br />

STUDY 6. LASER MICROPROBE (LMP) ANALYSIS.<br />

The laser microprobe is a spectrographic analytical system <strong>in</strong><br />

which a laser beam is directed to a sample through prefocussed<br />

microscope optics and the plume of vaporized and slightly ionized<br />

material breaks down a voltageybiased spark gap. The vapor <strong>in</strong><br />

the plume is excited by the spark and serves as a source for an<br />

optical spectrograph. The unit employed, A Mark I1 LMP<br />

manufactured by the JarrellyAsh Co., affords excellent<br />

sensitivity for laser?vaporized pits approximately 50 microns <strong>in</strong><br />

d i ame t er .<br />

Identifiable carbonized fossil fragments from the black shale<br />

and other sources were analyzed for a number of elements.<br />

Consider<strong>in</strong>g woody (coaly) fragments and mar<strong>in</strong>e algae (Foerstia)<br />

to represent two probably abundant precursors of kerogen, a<br />

number of samples of each was run and the resultant data is Shown<br />

graphically <strong>in</strong> Figure II,C.3. Foerstia is def<strong>in</strong>itely depleted <strong>in</strong><br />

lead and z<strong>in</strong>c and enriched <strong>in</strong> strontium, iron, alum<strong>in</strong>um and<br />

manganese compared with coaly material. Suggestively, the ratio<br />

of Pb or Zn to Sr, Fe, A1 or Mn should provide a means of<br />

dist<strong>in</strong>guish<strong>in</strong>g these k<strong>in</strong>ds of plant materials. However, S<strong>in</strong>ce a<br />

ratio <strong>in</strong>volv<strong>in</strong>g Zn or Fe Could be upset by the presence of<br />

sulfide phases (sphalerite or pyrite) <strong>in</strong> the rock and the A1<br />

content <strong>in</strong> samples is controlled by their clay content, only Pb,<br />

Sr, and Mn w i l l probably serve. Plott<strong>in</strong>g of various element<br />

comb<strong>in</strong>ations for a number of r9ck samples <strong>in</strong>dicates the best


100<br />

11-45<br />

F-7-77<br />

RELATIVE 5PECTRAL INTENSITY<br />

/<br />

f I0<br />

Alum <strong>in</strong>u rn<br />

Fig. II.C.3


selection to be Sr:Pb,<br />

11-46<br />

Figure II.C.4, shows the results of a number of analyses of<br />

Various carbonized fossils believed to be kerogen precursors and<br />

a few kerogenous rock samples. A good separation of woody<br />

plants and animals is achieved, the mar<strong>in</strong>e plant, Foerstia, lies<br />

<strong>in</strong> an <strong>in</strong>termediate position, and the rock kerogen appears to be<br />

derived from woody plant material.<br />

10<br />

t<br />

- Re tatrve spectral Iniensity<br />

for Carbonqed Fossils<br />

- 0 woody plants v kemqenousKxb -<br />

0 anmals @ Foatta imO?l!ls plant)<br />

I I 1 I I I I I I I I<br />

Fig. II.C.4


11-47<br />

STUDY 7. COMPARISON OF INORGANIC COMPOSITION OF KEROGEN FROM<br />

OUTCROP SAMPLES I N LEWIS AND CUMBERLAND COUNTIES, KY.<br />

Kerogen separation was accomplished by dissolution of the rock<br />

with hydrofluoric acid, admittedly harsh treatment and one apt to<br />

strip adsorbed ions from the kerogen. The results, however,<br />

were generally consistent with other measures of partition<br />

obta<strong>in</strong>ed us<strong>in</strong>g the laser microprobe to compare the composition of<br />

carbonaceous fossil fragments and their matrix, Separations<br />

utiliz<strong>in</strong>g boric acid flux<strong>in</strong>g followed by treatment with acids to<br />

dissolve the rock, and comparisons of whole and ashed samples.<br />

The pr<strong>in</strong>cipal rockyform<strong>in</strong>g elements measured (Ti, Fe, Al, Mg,<br />

Na and Mn) all show kerogenlrock partition ratios of less than<br />

0.5 and do not appear to contribute proportionately to the<br />

<strong>in</strong>organic composition of kerogen. M<strong>in</strong>or elements such as N i , Pb,<br />

P, Cu and Zn show greater enrichment <strong>in</strong> kerogen with partition<br />

ratios between 0.5 and 3 (See Figure II.C.5).<br />

Among the metals, the order of enrichment <strong>in</strong> kerogen from<br />

greatest to least is a high group of Cr, Cu, N i and Pb followed<br />

by a low group of Mo, V, Zn and Co.<br />

The enrichment of chromium <strong>in</strong> kerogen without concomitant<br />

<strong>in</strong>crease <strong>in</strong> such geochemical companions as N i , Mn, Mg, Fe and<br />

especially V is notable. Cr:X where X is one of these elements<br />

should be a sensitive measure of kerogen content <strong>in</strong> black shale.


5<br />

h<br />

Y<br />

E<br />

11-48<br />

Fig..II.C'.5<br />

CONTENT OF VAFUOUS EtEIVZENTS<br />

IN BLACK SHALE AND ITS CONTAINED<br />

KEROGEN<br />

Enriched <strong>in</strong> wholt ruck -


11-49<br />

The black shale section <strong>in</strong> Lewis Co. <strong>Kentucky</strong> is believed to<br />

represent deposition <strong>in</strong> shallow brackish water and that <strong>in</strong><br />

Cumberland Co. <strong>in</strong> a deeper openymar<strong>in</strong>e environment. Analysis<br />

shows Cr:V to decrease markedly from nearyshore to openawater<br />

conditions (assum<strong>in</strong>g the New Albany section is nearyshore).<br />

County<br />

Cr:V (kerogen)<br />

New Albany Lewis County Cumberland<br />

Cr:V (whole rock) 4.5 0.88 .26<br />

Strontium, alone among the trace elements, has a marked<br />

preference for the silicate phase (Figure II.C.5) and,<br />

additionally, apppears to be enriched <strong>in</strong> woody material (Study<br />

II.C.6). The ratio Cr:Sr should thus also decrease with distance<br />

from shore as the fraction of terrestriallyyderived kerogen<br />

decreases.<br />

County<br />

New Albany Lewis County Cumber land<br />

Cr : Sr (kerogen 3.12 53 .22<br />

Cr:Sr (whole rock) 2.95 .16 .10<br />

In summary, s<strong>in</strong>ce 1) the content of chromium <strong>in</strong> black shale<br />

depends strongly on its kerogen content and 2) chromium is<br />

enriched <strong>in</strong> neartshore brackish environments over deeptwater


11-50<br />

mar<strong>in</strong>e environments while the reverse is true for strontium,<br />

then:<br />

Cr:Sr <strong>in</strong>creases with kerogen content.<br />

Cr:Sr <strong>in</strong>creases shoreward.<br />

Other elements show<strong>in</strong>g landward or seaward concentration<br />

changes <strong>in</strong> kerogen are:<br />

SUMMARY<br />

Enriched landward 7 Al, Mg, Ti<br />

No enrichment 7 Pb, Cu<br />

Enriched seaward 7 Fe, P, Ca, Mn, Ni, Na<br />

A summary of the various studies reported is provided <strong>in</strong> the<br />

follow<strong>in</strong>g table which <strong>in</strong>dentifies the particular elements<br />

measured and <strong>in</strong>dicates their utility for various purposes.


H<br />

I<br />

wl<br />

P<br />

I I I + I I + l + l l 1 1 + 1 + 1 + 1<br />

I I 1 + 1 + + I I + +<br />

I 1 0 1 1 + 1 1 + I + 1 + 1<br />

1 + 1 1 + + I I + 1 I + I I +<br />

+ I + + + + + +<br />

.<br />

~~ ~<br />

+ + I +<br />

8<br />

+ + + + + I + + +<br />

En<br />

of<br />

to<br />

Po<br />

di<br />

Ke<br />

(<br />

Ke<br />

(<br />

Pl<br />

(<br />

De<br />

(S


CHAPTER 1I.D.<br />

THE CHEMICAL ANALYSIS OF BLACK SHALE MATERIALS BY<br />

X-RAY FLUORESCENCE SPECTROMETRY<br />

W. H. <strong>Black</strong>burn, A. E. Bland, P. A. Davis, G. Markowitz, C. G. Hull<br />

INTRODUCTION<br />

One of the tasks of the Devonian shale contract awarded to the Ken-<br />

tucky Geological Group was that of compil<strong>in</strong>g all chemical data for this<br />

unit with<strong>in</strong> <strong>Kentucky</strong> <strong>in</strong> order to contribute to the overall characteriza-<br />

tion of the material. These data were to be used for a statistical<br />

evaluation of the geochemistry of the unit and, thus, good regional and<br />

stratigraphic coverage was deemed necessary.<br />

program of the DOE did not allow for the anticipated coverage s<strong>in</strong>ce only<br />

four cores were available for analysis.<br />

The protracted drill<strong>in</strong>g<br />

The <strong>Kentucky</strong> Research Group, thus,<br />

went ahead with a sampl<strong>in</strong>g program based for the most part on twelve com-<br />

plete outcrop sections. Further, the <strong>Kentucky</strong> Geological Survey, through<br />

another DOE contract, drilled five holes on the western and southern sides<br />

of the outcrop belt afford<strong>in</strong>g considerably better coverage.<br />

In all, over 300 complete <strong>in</strong>organic whole-rock analyses were to be<br />

made and it quickly became evident that a rapid analytic system which<br />

gave accurate and precise <strong>in</strong>formation was necessary.<br />

This chapter is a summary report of the analytic system used for<br />

major, m<strong>in</strong>or and trace element determ<strong>in</strong>ations.<br />

It should be noted that<br />

uranium and thorium were determ<strong>in</strong>ed by gamma-ray spectrometry and a report<br />

of the techniques used is given as an Appendix to this chapter.<br />

The <strong>in</strong>strument <strong>in</strong> use is a Philips PW1410/70 vacuum spectrometer<br />

coupled to a General Electric X-ray generator capable of 60 kv, 50 ma load<br />

11-52


11-53<br />

on the X-ray tube. The spectrometer is equipped with chromium-tungsten-<br />

and molybdenum-target tubes and five analyz<strong>in</strong>g crystals: LiF(200), LiF<br />

(220), PET, ADP and ThAP. The selection of the analyz<strong>in</strong>g crystal is made<br />

on the basis of best signal to background ratio for the element <strong>in</strong> question,<br />

good resolution of analytic l<strong>in</strong>e and l<strong>in</strong>earity of background <strong>in</strong> the wave-<br />

length region of <strong>in</strong>terest.<br />

The particular X-ray tube used is determ<strong>in</strong>ed by excitation response.<br />

The chromium tube is used for elements up to Cr <strong>in</strong> atomic number; a<br />

tungsten tube is used for Cr to Zn, and a molybdenum target from Zn to Y.<br />

Niobium is the only element heavier than Y determ<strong>in</strong>ed by X-ray fluorescence<br />

and W tube is used for its determ<strong>in</strong>ation.<br />

Both gas-flow proportional and sc<strong>in</strong>tillation counters are available.<br />

The choice of the counter and its applied voltage as well as amplifier<br />

ga<strong>in</strong>, pulse height descrim<strong>in</strong>ation and tube current and voltage is deter-<br />

m<strong>in</strong>ed by greatest peak to background ratio and thus to m<strong>in</strong>imize count<strong>in</strong>g<br />

times for a desired level of count<strong>in</strong>g error.<br />

The spectrometer scaler/timer is <strong>in</strong>tefaced to a teletype afford<strong>in</strong>g<br />

both immediate hard copy and punched paper tape.<br />

GENERAL METHOD AND CALIBRATION<br />

The ratio technique was used exclusively <strong>in</strong> order to obta<strong>in</strong> the<br />

highest possible precision.<br />

Long term variations <strong>in</strong> the performance of<br />

the spectrometer may be due to deterioration of the X-ray target-tube<br />

or electronic drift.<br />

be due to vary<strong>in</strong>g quality of the vacuum and thermal contraction and<br />

expansion of the analyz<strong>in</strong>g crystal although the latter are m<strong>in</strong>imized by<br />

the presence of a heater/blower <strong>in</strong> the spectrometer which holds the<br />

temperature to with<strong>in</strong> one degree of 3OoC.<br />

Short term variations which might be observed may


11-54<br />

The ratio technique elim<strong>in</strong>ates variations due to <strong>in</strong>stability on the<br />

order of five m<strong>in</strong>utes. Shorter term <strong>in</strong>stabilities are rare. The<br />

technique consists of ratio<strong>in</strong>g counts to a calibration pellet which is<br />

run a fixed cyclic <strong>in</strong>terval.<br />

Samples are scaled proportional to the counts<br />

on the control at the beg<strong>in</strong>n<strong>in</strong>g and end of the cycle.<br />

A further adjust-<br />

ment is made at the end of the batch by adjust<strong>in</strong>g all count<strong>in</strong>g data ac-<br />

cord<strong>in</strong>g to the value of the first and last control samples <strong>in</strong> the batch.<br />

Excellent count<strong>in</strong>g precision has resulted from the technique and count<strong>in</strong>g<br />

errors based on replicate counts on the same pellet over a ten-hour day<br />

were never greater than 1 percent.<br />

All determ<strong>in</strong>ations are made on neat pellets and although mass<br />

absorption corrections are imposed on the trace element determ<strong>in</strong>ations,<br />

no corrections are made for the <strong>in</strong>terelement effects of major elements.<br />

This seemed to pose no great problem dur<strong>in</strong>g the project but rout<strong>in</strong>es have<br />

recently been added to the computational scheme to correct the major element<br />

excitation for <strong>in</strong>terelement effects such as absorption and fluorescence.<br />

Interferences due to l<strong>in</strong>e overlap have been discussed <strong>in</strong> some detail<br />

by Webber and Newbury (1971). Those of importance <strong>in</strong> this work are the<br />

<strong>in</strong>terference of SrKB with ZrKa, RbKB on YKa, VkB on CrKa and CaKB on<br />

PKa. The commonly noted <strong>in</strong>terference of CrKB on MnKa was avoided by<br />

us<strong>in</strong>g the LiF(220) analyz<strong>in</strong>g crystal and a f<strong>in</strong>e coll<strong>in</strong>ator. Similarly,<br />

a f<strong>in</strong>e collimator coupled with very restrictive pulse height selection<br />

removed the effect of Ca on P. All other <strong>in</strong>terferences were corrected<br />

by the use of stripp<strong>in</strong>g techniques.<br />

Calibration of the various elemental determ<strong>in</strong>ation employed an assem-<br />

blage of <strong>in</strong>ternational rock standards and tt<strong>in</strong>-house” standards with which<br />

there was considerable confidence <strong>in</strong> the composition. Normally, the<br />

radical difference <strong>in</strong> matrix of organic-rich sedimentary materials and


11-55<br />

the <strong>in</strong>ternational standard rocks would generate considerable anomalies<br />

<strong>in</strong> the results. Ash<strong>in</strong>g of the shale materials prior to analysis, how-<br />

ever, afforded a similar matrix presented to the X-ray beam and no bias<br />

was evident <strong>in</strong> the determ<strong>in</strong>ations on samples such as SGR-1 (Green River<br />

Shale); SDO-1 (Ohio Shale) - standards prepared by the U.S.G.S. Further,<br />

an <strong>in</strong>-house standard, the Applachian Paleozoic Shale Composite, was al-<br />

ways <strong>in</strong> excellent agreement with values result<strong>in</strong>g from other chemical<br />

determ<strong>in</strong>ations.<br />

SAMPLE PREPARATION<br />

Samples received from the field were broken by hammer <strong>in</strong>to pieces of<br />

approximately 3 to 7 cm <strong>in</strong> diameter. These were passed throough a steel<br />

jaw crusher which had been previously contam<strong>in</strong>ated with "half a handful"<br />

of the sample.<br />

The sample was then reduced further <strong>in</strong> an adjustable disc-gr<strong>in</strong>der with<br />

ceramic plates.<br />

amount of the sample material previous to comm<strong>in</strong>ution of the rema<strong>in</strong>der.<br />

Disc gr<strong>in</strong>d<strong>in</strong>g reduced the sample to -100 mesh and at this po<strong>in</strong>t a splitter<br />

was used to provide material for gamma-ray spectrometry and X-ray fluores-<br />

cence analysis.<br />

Jaw crush<strong>in</strong>g reduced the material to approximately 0.5 cm.<br />

The disc-gr<strong>in</strong>der was precontam<strong>in</strong>ated with a small<br />

For X-ray fluorescence analysis, approximately 5 grams of sample were<br />

0<br />

dried <strong>in</strong> a ceramic concible for 24 hours at 110 C.<br />

Weigh<strong>in</strong>g before and<br />

after the dry<strong>in</strong>g afforded a moisture value. Thedriedsample was then<br />

ashed at 500°C <strong>in</strong> a muffle furnace for 8 hours. This temperature was<br />

selected as it removes all organic material but is below the level of<br />

thermal dissociation of the carbonates (Goldsmith, 1977). S<strong>in</strong>ce organic<br />

carbon is the pr<strong>in</strong>cipal component lost dur<strong>in</strong>g the ash<strong>in</strong>g, the value,<br />

100 - %ASH, is a good extimate of the organic carbon <strong>in</strong> the sample.


11-56<br />

This method has been shown to be useful by Leventhal et al. (1978) and<br />

Dennen et al. (1978).<br />

The ashed samples were then ground to -325 mesh <strong>in</strong> a tungsten carbide<br />

ball mill and pressed, neat, <strong>in</strong>to boric-acid backed pellets at 15 tons<br />

pressure.


11-57<br />

ANALYTIC PROCEDURES<br />

The theory and practice of elemental determ<strong>in</strong>ation by means of X-ray<br />

fluorescence spectrometry have been well developed and described by<br />

various authors (Jenk<strong>in</strong>s and DeVries, 1967; Miiller, 1972; Adler, 1966;<br />

Leake, 1969).<br />

For a more complete description of the X-ray fluorescence<br />

methods, the reader should refer to these authors.<br />

Major Element Analysis<br />

The count<strong>in</strong>g technique for major element determ<strong>in</strong>ations was based<br />

on count<strong>in</strong>g for a pre-set time, usually 20 to 40 seconds.<br />

Background<br />

was measured at an <strong>in</strong>teference-free wave length generally between one-<br />

half and two degrees two-theta on one side of the analytic position.<br />

In order to reduce (and generally elim<strong>in</strong>ate) <strong>in</strong>strumental drift,<br />

a "control" sample was run every eighth 'determ<strong>in</strong>ation.<br />

were counted every sixteenth determ<strong>in</strong>ation.<br />

count rates were corrected for drift and <strong>in</strong>tensities calculated from simple<br />

peak m<strong>in</strong>us background.<br />

this is probably desirable.<br />

Standard samples<br />

Both peak and background<br />

No <strong>in</strong>terelement corrections were made although<br />

Calibration curves employ<strong>in</strong>g the <strong>in</strong>ternational rock and m<strong>in</strong>eral stand-<br />

ards were constructed by l<strong>in</strong>ear regression of concentration on <strong>in</strong>tensity.<br />

Concentration values for the standards were taken from Flanagan (1973)<br />

and Abbey (1975).<br />

Instrumental sett<strong>in</strong>gs for the major element determ<strong>in</strong>ations are given<br />

<strong>in</strong> Table 1.<br />

Table 2.<br />

A summary of precision and accuracy estimates is given <strong>in</strong><br />

Standard rocks W-1 and GSO-1 were run <strong>in</strong> triplicate along with<br />

the Devonian Ohio Shale SDO-1.<br />

Although precision of determ<strong>in</strong>ations is<br />

generally quite good, accuracy is problematic <strong>in</strong> some cases. A1 0 tends<br />

2 3


11-58<br />

Table 1<br />

Instrumental Sett<strong>in</strong>gs for the X-ray Fluorescent<br />

Determ<strong>in</strong>ation of Major Elements<br />

Element - Peak Source(KVA/ma)<br />

Si<br />

Cr(45/35)<br />

Ti<br />

A1<br />

Fe<br />

Mn<br />

Mg<br />

Ca<br />

Na<br />

K<br />

P<br />

S<br />

Cr(45/40)<br />

Cr(45/40)<br />

Cr (45/35)<br />

W(50/40)<br />

Cr (50/40)<br />

Cr (45/40)<br />

Cr (S0/40)<br />

Cr (30/20)<br />

Cr (45/40)<br />

Cr (45/40)<br />

Crystal PHS(E/AE)<br />

PET 2.5/5*0<br />

LiF(200) 2-5/5-0<br />

ADP 2*5/5*0<br />

LiF(200) 3.0/7-5<br />

LiF(200) 2.0/4.4<br />

TAP 2.7/5*4<br />

LiF (200) 2.5/5.0<br />

TAP 2-5/6.0<br />

PET 2 * 5/5 -0<br />

PET 2 *8/2 - 0<br />

PET 2-5/5*0<br />

Counter<br />

FP<br />

FP<br />

FP<br />

sc<br />

FP<br />

FP<br />

FP<br />

FP<br />

FP<br />

FP<br />

FP<br />

Path<br />

Vacuum<br />

Air<br />

Vacuum<br />

Air<br />

Air<br />

Vacuum<br />

Air<br />

Vacuum<br />

Vacuum<br />

Vacuum<br />

Vacuum


11-59<br />

Table 1 cont<strong>in</strong>ued<br />

Instrumental Sett<strong>in</strong>gs for X-ray Fluorescent<br />

Determ<strong>in</strong>ation of Trace Elements<br />

Element Peak SourceFKVAlma)<br />

Ba<br />

W (50/40)<br />

Cd<br />

co<br />

Cr<br />

cu<br />

Ga<br />

Mo<br />

Nb<br />

Ni<br />

Pb<br />

Rb<br />

Sr<br />

v<br />

Y<br />

Zn<br />

Zr<br />

W (50/40)<br />

W (50/40)<br />

W(50/40)<br />

W(50/40)<br />

W (5 0/40)<br />

W (50/40)<br />

W (50/40)<br />

W (50/4 0)<br />

W(50/40)<br />

Mo(50/40)<br />

Mo (50/40)<br />

W (50/40)<br />

Mo (50/40)<br />

W (50/4 0)<br />

Mo (50/40)<br />

Crystal PHS(E/AE) Counter Path<br />

LiF (200) 2 - 0/4 04 FP Air<br />

PET<br />

LiF (200)<br />

LiF (200)<br />

LiF (200)<br />

LiF (220)<br />

LiF (220)<br />

LiF(220)<br />

LiF (200)<br />

LiF (220)<br />

LiF (220)<br />

LiF(220)<br />

LiF (200)<br />

LiF (220)<br />

LiF(220)<br />

LiF (220)<br />

2 * 5/ 5 -3<br />

2 0/4 - 5<br />

2 -0/4-5<br />

2.0/4 -5<br />

2 * 0/4 * 5<br />

2 -0/4 05<br />

2.0/4 -5<br />

2 * 0/4 - 5<br />

2*0/4-5<br />

2-0/4*7<br />

2-0/4.7<br />

2*0/4 -4<br />

2 0/4 - 7<br />

2.0/4 - 5<br />

2*0/4*7<br />

FP<br />

sc<br />

sc<br />

sc<br />

sc<br />

sc<br />

sc<br />

sc<br />

sc<br />

sc<br />

sc<br />

FP<br />

sc<br />

sc<br />

sc<br />

Vacuum<br />

Air<br />

Air<br />

Air<br />

Air<br />

Air<br />

Air<br />

Air<br />

Air<br />

Air<br />

Air<br />

Air<br />

Air<br />

Air<br />

Air


1<br />

2<br />

3<br />

w-1 -<br />

X<br />

S<br />

cv<br />

A<br />

1<br />

2<br />

3<br />

GSP- 1 -<br />

X<br />

S<br />

cv<br />

A<br />

sw-1<br />

1<br />

2<br />

3<br />

4<br />

-<br />

X<br />

S<br />

cv<br />

Si02 Ti02 2'3<br />

52.86<br />

51.69<br />

51.03<br />

51.32<br />

0.44<br />

1.78<br />

52.72<br />

68.03<br />

68.73<br />

68.94<br />

68.07<br />

0.48<br />

0.69<br />

67.31<br />

49.82<br />

49.54<br />

50.36<br />

50.30<br />

50.00<br />

0.30<br />

0.79<br />

1.00<br />

1 .oo<br />

1.06<br />

1.02<br />

0.03<br />

3.48<br />

1.07<br />

0.62<br />

0.64<br />

0.59<br />

0.62<br />

0.03<br />

0.66<br />

0.66<br />

0.84<br />

0.82<br />

0.81<br />

0.79<br />

0.82<br />

0.02<br />

2.60<br />

Table 2<br />

Precision and Accuracy of Chemical Analysis Major Elements<br />

15.80<br />

15.66<br />

15.69<br />

15.71<br />

0.07<br />

0.45<br />

14.87<br />

15.81<br />

16.02<br />

15.81<br />

15.88<br />

0.12<br />

0.76<br />

15.19<br />

14.16<br />

14.15<br />

14.08<br />

13.98<br />

14.09<br />

0.08<br />

0.59<br />

Fe203* MgO CaO Na20 K20 P205 M<br />

10.10<br />

10.07<br />

9.92<br />

10.03<br />

0.10<br />

0.96<br />

10.00<br />

3.66<br />

3.70<br />

3.64<br />

3.67<br />

0.03<br />

4.33<br />

4.33<br />

9.89<br />

9.96<br />

10.11<br />

9.81<br />

9.94<br />

0.13<br />

1.28<br />

6.54<br />

6.62<br />

6.56<br />

6.55<br />

0.07<br />

0.54<br />

6.63<br />

0.94<br />

0.99<br />

0.96<br />

0.96<br />

0.03<br />

0.96<br />

0.96<br />

1.73<br />

1.67<br />

1.65<br />

1.63<br />

1.67<br />

0.04<br />

2.58<br />

9.60<br />

9.62<br />

9.56<br />

9.59<br />

0.03<br />

0.32<br />

10.98<br />

1.83<br />

1.85<br />

1.82<br />

1.84<br />

0.02<br />

2.02<br />

2.02<br />

0.94<br />

0.90<br />

0.91<br />

0.92<br />

0.92<br />

0.02<br />

1.86<br />

2.17<br />

2.10<br />

2.11<br />

2.13<br />

0.04<br />

1.78<br />

2.15<br />

2.62<br />

2.69<br />

2.70<br />

2.67<br />

0.04<br />

2.80<br />

2.80<br />

0.33<br />

0.35<br />

0.35<br />

0.35<br />

0.35<br />

0.01<br />

2.89<br />

0.46<br />

A 49.81 0.73 12.62 9.21 1.61 1.04 .~<br />

-<br />

0.65<br />

0.66<br />

0.68<br />

0.66<br />

0.02<br />

2.30<br />

0.64<br />

5.46<br />

5.52<br />

5.50<br />

5.49<br />

0.03<br />

5.32<br />

5.53<br />

3.68<br />

3.62<br />

3.67<br />

3.73<br />

3.68<br />

0.05<br />

1.22<br />

3.32<br />

0.16<br />

0.16<br />

0.16<br />

0.16<br />

0.00<br />

0.14<br />

0.25<br />

0.26<br />

0.26<br />

0.25<br />

0.00<br />

0.28<br />

0.28<br />

X = arithmetic mean; s = standard deviation; CV = coefficient of variation (one standa<br />

tion); A = accepted value; * total iron calculated as Fez03<br />

----<br />

0.1<br />

0.1<br />

0.1<br />

0.1<br />

0.0<br />

--<br />

0.1<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0


w-1 -<br />

Table 2 cont<strong>in</strong>u'ed<br />

Precision and Accuracy of Chemical Analysis Trace Elements<br />

Ba Cd CO Cr cu Ga Mo Nb Ni Pb Rb Sr V<br />

1 333 0.21 21 98 108 17 0 17 8 6 14 214 246<br />

2 363 0.22 26 105 116 17 0 20 6 6 17 220 252<br />

3 34 7 0.22 19 109 117 18 0 15 7 6 16 219 243<br />

X 34 8 0.22 22 104 114 17 0 17 7 6 16 218 247<br />

S 15 0.01 4 5 5 0.6 - 3 1 0 2 3 5<br />

cv 4 3. 16 5 4 3 - 15 14 - 10 15 2<br />

A 160 0.15 50 120 110 16 0.6 15 9 8 21 190 240<br />

1 1300 0.61 5 33 15 17 61 46 246 233 65<br />

d 2 1260 0.52 4 30 18 20 54 44 246 237 72<br />

\D<br />

I 3 1240 0.58 4 28 19 21 55 49 251 236 67<br />

-<br />

H GSP-1<br />

X 1270 0.57 4 30 17 19 57 46 248 235 68<br />

S 31 5. 0.6 3 2 2 4 3 3 2 4<br />

cv 2 8 13 8 12 11 7 5 1 1 5<br />

A 1300 I--- 7.8 33 23 23? 78 64 250 240 54<br />

1<br />

2<br />

595<br />

588<br />

0.95<br />

0.95<br />

63<br />

59<br />

56<br />

54<br />

66<br />

62<br />

21<br />

20<br />

128<br />

120<br />

20<br />

17<br />

12<br />

12<br />

33<br />

32<br />

3 564 0.89 65 49 61 22 121 17 13 31<br />

SDO- 1 -<br />

X 582 0.93 62 53 63 21 123 18 12 32 169<br />

s<br />

cv<br />

16<br />

3<br />

0.03<br />

4.00<br />

3<br />

5<br />

4<br />

7<br />

3<br />

4<br />

1<br />

5<br />

4<br />

4 1<br />

2<br />

0<br />

0.6<br />

5<br />

1<br />

3<br />

3<br />

2<br />

-<br />

X = arithmetic mean; s - standard deviation; CV = coefficient of variation (one stand<br />

A = accepted value.<br />

173<br />

167<br />

168


11-62<br />

to be high whereas total Fe and CaO are lower than the recommended values<br />

<strong>in</strong> W-1 and GSP-1.<br />

thus, the problem is not obvious. However, these elements may be sus-<br />

ceptible to matrix absorption or fluorescence effects to which there<br />

were no corrections made.<br />

The results for other elements are quite good and,<br />

The results presented here for the shale standard SDO-1 are <strong>in</strong> fair<br />

agreement with the recommended values. The latter, however, are based<br />

on rather limited data and should be treated with caution.<br />

Trace Element Analysis<br />

In many applications, X-ray fluorescent <strong>in</strong>tensities are developed by<br />

count<strong>in</strong>g on a peak position and two adjacent, <strong>in</strong>terference-free background<br />

positions. The actual background count rate is <strong>in</strong>terpolated graphically<br />

or mathematically. Problems arise, however, due to the fact that there<br />

are few completely <strong>in</strong>terference-free positions <strong>in</strong> the normal rock spectra<br />

and the method is reliable over only a very limited wavelength range.<br />

The method is also very time-consum<strong>in</strong>g. Further, trace element <strong>in</strong>tensiti’es<br />

are considerably affected by the chemical and physical matrix of the<br />

sample.<br />

The correction for matrix effects is generally accomplished by<br />

the use of mass absorption coefficients which may be determ<strong>in</strong>ed from the<br />

major element chemistry (Jenk<strong>in</strong>s and DeVries, 1970). Reynolds (1963 1967),<br />

however, has shown that the mass absorption coefficient is <strong>in</strong>versely re-<br />

lated to the <strong>in</strong>tensity of the peak <strong>in</strong>tensity due to Compton scatter<strong>in</strong>g<br />

of the primary X-radiation.<br />

S<strong>in</strong>ce not only the characteristic l<strong>in</strong>e of the X-ray tube tzrget is<br />

scattered by the sample but also the cont<strong>in</strong>uum, any background may also<br />

be shown to be <strong>in</strong>versely related to the mass-absorption coefficient (Wil-<br />

brand, 1978; Feathers and Willis, 1976). Wilbrand (1975) developed a


11-63<br />

method whereby a sample's background <strong>in</strong>tensity at the K-alpha wavelength<br />

of the element can be obta<strong>in</strong>ed by reference to a calibration curve once<br />

the mass-absorption coefficient has been determ<strong>in</strong>ed by the Reynold's<br />

method. Feathers and Willis (1976) also noted that, between major element<br />

absorption edges, background <strong>in</strong>tensities at different wavelength positions<br />

were l<strong>in</strong>early related.<br />

In the present study, mass absorption coefficients were determ<strong>in</strong>ed<br />

as the <strong>in</strong>verse <strong>in</strong>tensity of the Compton scattered molybdenum target radia-<br />

tion. Backgrounds for each element were determ<strong>in</strong>ed by count<strong>in</strong>g at the<br />

analytic peak position on simple specpure oxide pellets which exhibited<br />

a range of mass absorption coefficients. Background calibration curves<br />

were then generated and the f<strong>in</strong>al <strong>in</strong>tensities were derived by correct<strong>in</strong>g<br />

for background and mass absorption.<br />

Instrumental sett<strong>in</strong>gs for the trace element determ<strong>in</strong>ations are given<br />

<strong>in</strong> Table 3 and an estimate of precision and accuracy is given <strong>in</strong> Table 4.<br />

Aga<strong>in</strong> W-1 and GSP-1 were run <strong>in</strong> triplicate over the course of the study<br />

and the result<strong>in</strong>g replicate determ<strong>in</strong>ations used to calculate precision.<br />

Precision is generally very good and accuracy is certa<strong>in</strong>ly adequate con-<br />

sider<strong>in</strong>g the wide range of reported values for trace elements <strong>in</strong> the stan-<br />

dard rocks.


11-64<br />

REFERENCES<br />

Abbey, S. (1975): Geol. Surv. Canada Paper 74-41, 23 p.<br />

Adler, I. (1966): X-ray emmision spectrography <strong>in</strong> geology, Elsevier,<br />

Amsterdam, 258 p.<br />

Dennen, W. H., <strong>Black</strong>burn, W. H. and Davis, P. A. (1978): Proceed<strong>in</strong>gs,<br />

First Eastern Gas <strong>Shales</strong> Symposium DOE MERC/SP-77/5, p. 49-67.<br />

Feathers, C. E., and Willis, J. P. (1976): X-ray Spectrom. v. 5, p. 41-<br />

48.<br />

Flanagan, F. J. (1973): Geochim. et Cosmochim. Acta, v. 77, p. 1189-<br />

1200.<br />

Goldsmith, R. H. (1976): Compos, p. 42-50.<br />

Jenk<strong>in</strong>s, R. and DeVries, J. L. (1964): Practical X-ray Spectrometry.<br />

Spr<strong>in</strong>ger-Verlag, New York, 181 p.<br />

Leake, B. E. and others (1969): Chemical Geology, v. 5, p. 7-86.<br />

Leventhal, J. S. and Goldhaber, M. B. (1978): Proceed<strong>in</strong>gs, First Eastern<br />

Gas <strong>Shales</strong> Symposium, DOE MERC/SP-77/5, p. 259-296.<br />

Loev<strong>in</strong>ger, R. and Besman, M. (1951): Nucleonics, v. 9, 26-39.<br />

Mhler, R. 0. (1972) : Spectrochemical analysis by X-ray fluorescnece.<br />

Spr<strong>in</strong>ger-Verlag, New York 181 p.<br />

Reynolds, R. J. (1963): her. M<strong>in</strong>eralogist, v. 48, p. 1133-1143.<br />

Reynolds, R. J. (1967): Amer. M<strong>in</strong>eralogist, v. 52, p. 1493-1502.<br />

Webber, G. R. and Newbury, M. L. (1971): Camad. Spectroscopy, v. 16,<br />

p. 3-7.<br />

Wilbrand, J. T. (1976): X-ray Spectrom., v. 5, p. 42-48.


11-65<br />

APPENDIX<br />

Gamma-ray Spectrometric Determ<strong>in</strong>ation<br />

of Uranium and Thorium<br />

All determ<strong>in</strong>ations of uranium and thorium were made by gamma-ray<br />

spectrometry.<br />

Samples were weighed and packed <strong>in</strong>to 2.5 cm x 7.7 cm<br />

t<strong>in</strong>ned, seamless alum<strong>in</strong>um cans which were subsequently labeledand sealed<br />

with plastic electrical tape. The samples were allowed to reequilibrate<br />

with radon and thoron for at least two weeks prior to count<strong>in</strong>g. Each of<br />

the conta<strong>in</strong>ers held 100 to 200 grams of mashed, crushed shale material.<br />

The sample preparation method was checked for contam<strong>in</strong>ation by prepar<strong>in</strong>g<br />

samples of quartz and dunite <strong>in</strong> the same mammer as normal samples:<br />

<strong>in</strong>crease <strong>in</strong> activity above normal background was noted.<br />

detector.<br />

U and Th were determ<strong>in</strong>ed us<strong>in</strong>g a 75 x 75 mm thallium activated NaI<br />

All count<strong>in</strong>g took place <strong>in</strong>side a lead brick castle with walls<br />

at least 50 nun thick on all sides.<br />

Northern TN1705 1024 channel pulse height analyzer. Count<strong>in</strong>g took place<br />

at two energy levels <strong>in</strong> order to solve for the two unknown count rates.<br />

The 1.76 MeV peak (Bi2I4 <strong>in</strong> the uranium series) was used for U and the 2.62<br />

MeV peak (ThZo8 <strong>in</strong> the thorium series) was used for Th.<br />

no<br />

The detector was compled to a Tracorl<br />

The gamma-ray spectrometric system was calibrated us<strong>in</strong>g standard<br />

radioactive samples acquired from the Canadian Certified Reference Materials<br />

Project and a U.S. Atomic <strong>Energy</strong> Commission standard consist<strong>in</strong>g of uran<strong>in</strong>ite<br />

diluted with dunite. Precision of the analyses was checked by replicate<br />

determ<strong>in</strong>ations on a Devonian shale sample and by the estimate of count<strong>in</strong>g<br />

precision us<strong>in</strong>g the method of Loev<strong>in</strong>ger and Berman (1961).<br />

Uranium deter-<br />

m<strong>in</strong>ations generally had a coefficient of variation of less than 2 percent<br />

and thorium generally had a coefficient of variation of about 5 percent.


IT-66<br />

These values were always less than the errors calculated us<strong>in</strong>g only count<strong>in</strong>g<br />

statistics.


CHAPTER 11. E<br />

STATISTICAL ANALYSIS OF THE<br />

GEOCHEMISTRY OF THE<br />

DEVONIAN SHALES I N KENTUCKY<br />

W. H. <strong>Black</strong>burn and G. Markowitz<br />

The first attempt at a statistical analysis of the<br />

geochemistry of the Devonian <strong>Black</strong> <strong>Shales</strong> was presented by<br />

Bialobok et al. (1978). Us<strong>in</strong>g an Rdmode cluster analysis of data<br />

obta<strong>in</strong>ed from two West Virg<strong>in</strong>ia wells, they were able to discern<br />

n<strong>in</strong>e groups and the results <strong>in</strong>dicated that specific gravity,<br />

moisture, organic sulfur, Cu, Ba, Fe and Na correlated negatively<br />

with depth. Boron and chlorite, however, were shown to be<br />

directly related to depth <strong>in</strong> the section.<br />

This work, although limited <strong>in</strong> regional scope and complicated<br />

by the fact that <strong>in</strong>ternal stratigraphy of the black shale was not<br />

considered, showed that a statistical analysis of the lithologic<br />

Unit had promise. Some regularity and predictability was noted&&<br />

an observation not often made <strong>in</strong> the geochemistry of clastic<br />

sediments.<br />

Markowitz (19791, <strong>in</strong> his extensive study of the geochemistry<br />

of the black shales <strong>in</strong> the eastern outcrop belt of <strong>Kentucky</strong>,<br />

performed a rather extensive statistical study on the data. His<br />

11-67


11-68<br />

data set was made up of 163 samples collected from ten outcrops<br />

along the eastern flank of the C<strong>in</strong>c<strong>in</strong>nati Arch. The samples were<br />

colllected dur<strong>in</strong>g the stratigraphic study by Swager (1978). The<br />

variables considered for each specimen <strong>in</strong>cluded the 11 major<br />

elements, 19 trace elements and 9 normative m<strong>in</strong>erals derived from<br />

the major element chemistry. S<strong>in</strong>ce the study of the <strong>in</strong>ternal<br />

stratigraphy by Swager was concurrent with that of Markowitz and<br />

fraught with uncerta<strong>in</strong>cies, stratigraphic position was not<br />

<strong>in</strong>cluded <strong>in</strong> the list of variables.<br />

Markowitz (1979) performed a complete correlation analysis<br />

and factor analysis on the data set at his disposal. The results<br />

of this study were submitted <strong>in</strong> full to METC <strong>in</strong> a quarterly<br />

technical report and only highlights w i l l be reviewed here.<br />

S<strong>in</strong>ce completion of his study, much more data has been added from<br />

this laboratory and from other contractors. A much greater areal<br />

coverage is now available and statistical <strong>in</strong>ferences will take on<br />

greater mean<strong>in</strong>g.<br />

SUMMARY STATISTICS<br />

The total data set available for <strong>Kentucky</strong> now conta<strong>in</strong>s 452<br />

<strong>in</strong>dividual samples. One problem still exists, however, <strong>in</strong> that<br />

not all contractors determ<strong>in</strong>e the same list of chemical<br />

variables. Thus , many statistical tests are limited to the data<br />

set with complete coverage. A selection of those variables is<br />

made by consider<strong>in</strong>g the potential of a particular element as a<br />

geochemical discrim<strong>in</strong>ator. Further, an attempt is made to have


11-69<br />

TABLE II.E.l<br />

Means and standard deviations of the variables selected<br />

for statistical analysis<br />

Variable<br />

Si<br />

Ti<br />

A1<br />

Fe<br />

Mg<br />

Ca<br />

Na<br />

K<br />

P<br />

S<br />

Ca<br />

cu<br />

co<br />

Cr<br />

Ni<br />

V<br />

Mo<br />

U<br />

Th<br />

Sr<br />

Zn<br />

Pb<br />

N<br />

452<br />

452<br />

452<br />

452<br />

425<br />

452<br />

426<br />

448<br />

438<br />

452<br />

452<br />

281<br />

214<br />

283<br />

303<br />

264<br />

216<br />

407<br />

390<br />

285<br />

216<br />

214<br />

Mean<br />

~-<br />

56.27<br />

0.07<br />

14.64<br />

5.68<br />

1.73<br />

1.43<br />

0.61<br />

3.86<br />

0.12<br />

2.49<br />

10.35<br />

68<br />

14<br />

40<br />

43<br />

185<br />

72<br />

23<br />

11<br />

127<br />

133<br />

23<br />

Std. Dev.<br />

5.20<br />

0.02<br />

2.59<br />

2.15<br />

1.56<br />

2.60<br />

0.93<br />

0.80<br />

0.25<br />

1.88<br />

6.92<br />

71<br />

32<br />

78<br />

53<br />

131<br />

65<br />

18<br />

4<br />

72<br />

3 50<br />

21


11-70<br />

each variable determ<strong>in</strong>ed <strong>in</strong> at least half the samples <strong>in</strong> the<br />

complete data set. The f<strong>in</strong>al list of variables <strong>in</strong>cludes 10 major<br />

elements, organic carbon, and 11 trace elements. Table II.E.l<br />

gives the means and standard deviations of each of the variables<br />

selected for further statistical analysis.<br />

CORRELATION ANALYSIS<br />

A correlation analysis was carried out by Markowitz on 132<br />

samples from the eastern outcrop belt. Recent results on the<br />

complete data set show no significant geochemical results and,<br />

thus, Markowitz's work serves as the basis of this review.<br />

Correlation .coefficients suggest that the major and trace<br />

elements may be grouped <strong>in</strong>to associations based upon high<br />

positive correlations between particular elements and low to<br />

negative correlations between these elements and those of other<br />

associations.<br />

-<br />

The Clastic Association<br />

Si, Ti, Al, K, Na, Rb<br />

The group clearly represents a elastic association. Based upon<br />

the correlation coefficients and geologic considerations (m<strong>in</strong>eral<br />

and element associations and habits) , this group can be<br />

subdivided as follows:<br />

a) detrital quartz<br />

b) clayafeldspar (K, Rb, Na, Al)<br />

c) accessory m<strong>in</strong>erals (Ti, Zr, Th)


-<br />

The Pyrite Association<br />

11-71<br />

In decreas<strong>in</strong>g order, the follow<strong>in</strong>g elements show a high positive<br />

correlation with Fe:<br />

Pb, Cd, Co, Cr, Nb, Ga, N i , Zn<br />

The group is characterized by the elements represent<strong>in</strong>g the<br />

sulfide fraction of the shale. The major elements Fe and S and<br />

the sulfophile trace elements Pb, Cd, Co, N i , and Zn are the ma<strong>in</strong><br />

constituents. Niobium, gallium and chromium are <strong>in</strong>cluded <strong>in</strong> the<br />

group although these elements generally show oxyphile tendencies.<br />

These elements have been noted before, however, <strong>in</strong> the<br />

carbonaceous fraction of bitum<strong>in</strong>ous rocks <strong>in</strong> association with Fe,<br />

Co, and Cu (Saxby, 1969).<br />

It is <strong>in</strong>terest<strong>in</strong>g to note that Cu does not correlate with Fe<br />

<strong>in</strong> these rocks but does correlate strongly with P and weakly with<br />

sulfur. Copper probably exists as a separate copper sulfide or as<br />

a phosphate.<br />

- The Carbonate Association<br />

Ca, Mg, Mn, Cu, Cd, and S<br />

The association of the typical carbonate elements Ca, Mg, Mn with<br />

sulfur, copper, and cadmium is unexpected. Was copper deposited<br />

by a secondary hydrothermal event which deposited carbonates and<br />

copper Sulfides? It should be noted that coals are generally more<br />

sulfur rich when associated with carbonate rocks.


- The Phosphate Association<br />

Pb, Co, Cu, Y, Zn<br />

11-72<br />

The group has a negative correlation with all the elements of the<br />

clastic association. The m<strong>in</strong>eralogy of the group is not Well<br />

known except for the apatitic tests of phosphatic fossils. The<br />

other elements may also be present as phosphates.<br />

- The Organic Association<br />

U, V, Mo<br />

The manner <strong>in</strong> which these elements are associated with the<br />

Organic fraction of the shales is complex and not well<br />

understood. Whether the elements are actually present as the<br />

result of metaldorganic bonds, physical and/or chemical<br />

adsorption, or precipitated as colloidal sulfides is not known.<br />

SUMMARY<br />

Due to the early term<strong>in</strong>ation of the EGSP, the statistical<br />

analysis of the complete data base is not complete. Results to<br />

date corroborate Markowitz's observations but a careful<br />

evaluation by factor and discrim<strong>in</strong>ant analyses is planned.<br />

Prelim<strong>in</strong>ary results show that the geochemical correlation of the<br />

<strong>in</strong>ternal statigraphy of Provo (1977) has some promise and that<br />

discrim<strong>in</strong>ant analysis w i l l also help develop a depositional model<br />

for the shale sequence.<br />

Data on shale chemistry, especially with regard to radioactive<br />

elements, and its relation to gas productivity is presently be<strong>in</strong>g


11-73<br />

evaluated but does not hold much promise. Well production<br />

records are generally free of <strong>in</strong>formation regard<strong>in</strong>g the relation<br />

between pay zones and stratigraphic level. A better aproach to<br />

the problem is us<strong>in</strong>g the results of laboratory outdgass<strong>in</strong>g tests<br />

conducted dur<strong>in</strong>g this project.


11-74<br />

REFERENCES<br />

Bialobok, S. J., Lamey, S. C. and Sumartojo, J. (1978):<br />

Geochemical characterization of the Devonian <strong>Black</strong> <strong>Shales</strong><br />

for Cottageville, West Virg<strong>in</strong>ia: A prelim<strong>in</strong>ary look at<br />

multivariate analysis. Proceed<strong>in</strong>gs, First Eastern Gas <strong>Shales</strong><br />

Symposium. U.S. Department of <strong>Energy</strong> MERC/SPd77/5.<br />

Markowitz, G. (1979): A geochemical study of the Upper<br />

DevoniandLower Mississippian <strong>Black</strong> <strong>Shales</strong> <strong>in</strong> eastern<br />

<strong>Kentucky</strong>. M.S. Thesis, University of <strong>Kentucky</strong>.<br />

PFOVO, L. J. (1977): Stratigraphy and sedimentology of<br />

radioactive DevoniandMississippian shales of the central<br />

Appalachian bas<strong>in</strong>. Ph.D. Dissertation, University of<br />

C<strong>in</strong>c<strong>in</strong>nati.<br />

Saxby, J. (1976): The significance of organic matter <strong>in</strong><br />

ore genesis. 2 Handbook of stratadbound and strata<br />

formed ore deposits. K. H. Wolf (ed.), v. 2, Elsevier,<br />

Amsterdam.<br />

Swager, D. R. (1978): Stratigraphy of the Upper Devonian<br />

tower Mississippian Shale sequence <strong>in</strong> the eastern <strong>Kentucky</strong><br />

outcrop belt. M.S. Thesis, University of <strong>Kentucky</strong>.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!