30.01.2013 Views

Advanced Organic Reactions Carmelo J. Rizzo

Advanced Organic Reactions Carmelo J. Rizzo

Advanced Organic Reactions Carmelo J. Rizzo

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Advanced</strong> <strong>Organic</strong> <strong>Reactions</strong><br />

(Lecture notes)<br />

<strong>Carmelo</strong> J. <strong>Rizzo</strong><br />

Associate Professor of Chemistry, Vanderbilt University<br />

Nashville, Tennessee, USA<br />

Source:<br />

http://www.vanderbilt.edu/AnS/Chemistry/<strong>Rizzo</strong>/chem223/chem223.htm


SELECTIVITY<br />

Science 1983, 219, 245<br />

Chemoselectivity<br />

preferential reactivity of one functional group (FG) over another<br />

- Chemoselective reduction of C=C over C=O:<br />

O<br />

H 2,<br />

Pd/C<br />

- Chemoselective reduction of C=O over C=C:<br />

O<br />

NaBH 4<br />

- Epoxidation:<br />

Regioselectivity<br />

- Hydration of C=C:<br />

O<br />

MCPBA<br />

NaBH 4, CeCl 3<br />

O<br />

OH O<br />

OH<br />

only<br />

+<br />

SELECTIVITY 1<br />

OH<br />

O<br />

OH<br />

O<br />

OH<br />

(2 : 1)<br />

OH<br />

- Friedel-Crafts Reaction:<br />

R<br />

SiMe 3<br />

VO(acac) 2 ,<br />

tBuOOH<br />

RCOCl,<br />

AlCl 3<br />

1) B 2H 6<br />

2) H 2O 2, NaOH<br />

1) Hg(OAc) 2, H 2O<br />

2) NaBH 4<br />

O<br />

O<br />

RCOCl,<br />

AlCl3 R<br />

R<br />

O<br />

R<br />

R<br />

+<br />

OH<br />

+<br />

OH<br />

OH<br />

exclusively<br />

O<br />

R


- Diels-Alder Reaction:<br />

R O<br />

O H<br />

O H<br />

O<br />

O<br />

+<br />

+<br />

R O<br />

+<br />

R<br />

major minor<br />

O<br />

R<br />

R R<br />

O<br />

O<br />

+<br />

+<br />

OAc<br />

SPh<br />

Change in mechanism:<br />

O H<br />

O<br />

O<br />

major<br />

OAc<br />

OAc O OAc<br />

R<br />

O H<br />

PhSH, H +<br />

O<br />

PhSH, (PhCO 2) 2<br />

SPh<br />

O<br />

+<br />

Raney Ni, H 2<br />

SELECTIVITY 2<br />

Stereochemistry:<br />

Relative stereochemistry: Stereochemical relationship between two or more stereogenic centers<br />

within a molecule<br />

HO<br />

H H<br />

cholesterol<br />

syn: on the same side ( cis)<br />

anti: on the opposite side (trans)<br />

enantiomers<br />

same relative stereochemistry<br />

- differences in relative stereochemistry lead to diastereomers.<br />

Diastereomers= stereoisomers which are not mirror images; usually have different physical<br />

properties<br />

R<br />

R<br />

SPh<br />

SPh<br />

H<br />

H<br />

O<br />

minor<br />

O<br />

O H<br />

OH<br />

O<br />

O<br />

OAc


SELECTIVITY 3<br />

Absolute Stereochemistry: Absolute stereochemical assignment of each stereocenter (R vs S)<br />

Cahn-Ingold-Prelog Convention (sequence rules)<br />

- differences in absolute stereochemistry (of all stereocenters within the molecule) leads to<br />

enantiomers.<br />

- <strong>Reactions</strong> can "create" stereocenters<br />

MeMgBr<br />

Ph<br />

O<br />

H<br />

MeMgBr<br />

O MeMgBr<br />

Ph H<br />

HO CH 3<br />

Ph H<br />

H 3C OH<br />

Ph H<br />

HO CH 3<br />

Ph H<br />

Diastereomeric transition states- not necessarily equal in energy<br />

Diastereoselectivity<br />

R<br />

Ph CHO<br />

Me Me<br />

N<br />

O Zn<br />

H 3C<br />

CH 3<br />

Zn<br />

HO CH 3<br />

Ph H<br />

O Ph<br />

CH 3<br />

H<br />

CH 3MgBr<br />

Cram Model (Cram's Rule): empirical<br />

O<br />

L<br />

M<br />

S<br />

M<br />

R<br />

O<br />

L<br />

S<br />

Nu<br />

Ph<br />

HO H<br />

syn<br />

CH 3<br />

Me Me<br />

N<br />

O Zn<br />

H 3C<br />

+<br />

CH3 CH3 Zn<br />

HO CH 3<br />

H Ph<br />

Ph<br />

Diastereomers<br />

enantiomers<br />

(racemic product)<br />

O H<br />

Ph<br />

CH 3<br />

H OH<br />

anti<br />

O<br />

H 3C H<br />

CH 3MgBr CH 3MgBr<br />

H<br />

Ph<br />

favored


Felkin-Ahn Model<br />

Chelation Control Mode<br />

R<br />

TBSO<br />

O<br />

S<br />

M<br />

OR<br />

H<br />

O<br />

OBn<br />

O<br />

L<br />

O M<br />

R<br />

S<br />

favored<br />

CH 3MgBr<br />

favored<br />

MgBr<br />

S<br />

Nu<br />

M<br />

O<br />

R<br />

OR<br />

TBSO<br />

M<br />

Nu<br />

H<br />

HO<br />

S<br />

O<br />

M R<br />

CH 3MgBr<br />

O<br />

OBn<br />

disfavored<br />

L<br />

SELECTIVITY 4<br />

HO<br />

Nu<br />

R<br />

M<br />

S<br />

OR<br />

relative stereochemical control<br />

Stereospecific<br />

Stereochemictry of the product is related to the reactant in a mechanistically defined manner; no<br />

other stereochemical outcome is mechanistically possible.<br />

i.e.; SN2 reaction- inversion of configuration is required<br />

Br 2<br />

Br 2<br />

H 3C<br />

Br<br />

H<br />

Br<br />

H<br />

CH 3<br />

Br<br />

H<br />

CH 3<br />

Br<br />

H<br />

CH 3<br />

meso<br />

Br<br />

H<br />

enantiomers (racemic)<br />

Stereoselective<br />

When more than one stereochemical outcome is possible, but one is formed in excess (even if that<br />

excess is 100:0).<br />

O<br />

N<br />

S<br />

O<br />

O<br />

α-pinene<br />

LDA, CH 3I<br />

H 2, Pd/C<br />

O<br />

N<br />

O<br />

CH 3<br />

H<br />

H<br />

H<br />

only isomer<br />

O<br />

+<br />

+<br />

+<br />

O<br />

CH 3<br />

H<br />

CH 3<br />

H<br />

Br<br />

H<br />

not observed<br />

S S<br />

(96 : 4)<br />

Diasteromers<br />

N<br />

O<br />

O<br />

CH 3<br />

H<br />

Diastereoselective<br />

Enantiospecific


OXIDATIONS 5<br />

Oxidations<br />

Carey & Sundberg: Chapter 12 problems: 1a,c,e,g,n,o,q; 2a,b,c,f,g,j,k; 5; 9 a,c,d,e,f,l,m,n; 13<br />

Smith: Chapter 3 March: Chapter 19<br />

I. Metal Based Reagents<br />

1. Chromium Reagents<br />

2. Manganese Rgts.<br />

3. Silver<br />

4. Ruthenium<br />

5. other metals<br />

II Non-Metal Based Reagents<br />

1. Activated DMSO<br />

2. Peroxides and Peracids<br />

3. Oxygen/ ozone<br />

4. others<br />

III. Epoxidations<br />

Metal Based Reagents<br />

Chromium Reagents<br />

- Cr(VI) based<br />

- exact stucture depends on solvent and pH<br />

- Mechanism: formation of chromate ester intermediate<br />

Westheimer et al. Chem Rev. 1949, 45, 419 JACS 1951, 73, 65.<br />

R 2CH-OH<br />

HCrO 4 -<br />

R<br />

C<br />

R<br />

H<br />

HO<br />

O Cr<br />

+ H 2O<br />

Jones Reagent (H2CrO4, H2Cr2O7, K2Cr2O7)<br />

J. Chem. Soc. 1946 39<br />

Org. Syn. Col. Vol. V, 1973, 310.<br />

- CrO3 + H2O → H2CrO4 (aqueous solution)<br />

K2Cr2O7 + K2SO4<br />

- Cr(VI) → Cr(III)<br />

(black) (green)<br />

H +<br />

- 2°- alcohols are oxidized to ketones<br />

R 2 CH-OH<br />

O -<br />

O -<br />

Jones<br />

reagent<br />

acetone<br />

- saturated 1° alcohols are oxidized to carboxylic acids.<br />

RCH 2-OH<br />

Jones<br />

reagent<br />

acetone<br />

O<br />

R H<br />

hydration<br />

R<br />

R<br />

HO OH<br />

R H<br />

R<br />

R<br />

O<br />

O<br />

Jones<br />

reagent<br />

acetone<br />

+ HCrO 3 - + H +<br />

O<br />

R OH<br />

- Acidic media!! Not a good method for H + sensitive groups and compounds


Me 3 Si<br />

H 17C 8<br />

O<br />

O<br />

SePh<br />

O<br />

OH<br />

OH<br />

Jones<br />

acetone<br />

1) Jones,<br />

acetone<br />

2) CH 2N 2<br />

Me 3Si<br />

H 17C 8<br />

O<br />

O<br />

O<br />

O<br />

SePh<br />

OXIDATIONS 6<br />

CO 2 CH 3<br />

JACS 1982, 104, 5558<br />

JACS 1975, 97, 2870<br />

Collins Oxidation (CrO3•2pyridine)<br />

TL 1969, 3363<br />

- CrO3 (anhydrous) + pyridine (anhydrous) → CrO3•2pyridine↓<br />

- 1° and 2° alcohols are oxidized to aldehydes and ketones in non-aqueous solution (CH2Cl2)<br />

without over-oxidation<br />

- Collins reagent can be prepared and isolated or generated in situ. Isolation of the reagent<br />

often leads to improved yields.<br />

- Useful for the oxidation of H + sensitive cmpds.<br />

- not particularly basic or acidic<br />

- must use a large excess of the rgt.<br />

ArO<br />

O<br />

O<br />

OH<br />

CrO 3•(C 5H 5N) 2<br />

CH 2Cl 2<br />

ArO<br />

O<br />

H<br />

O<br />

O<br />

JACS 1969, 91, 44318.<br />

CrO3 catalyzed (1-2 mol % oxidation with NaIO6 (2.5 equiv) as the reozidant in wet aceteonitrile.<br />

oxidized primary alcohols to carboxylic acids.<br />

Tetrahedron Lett. 1998, 39, 5323.<br />

Pyridinium Chlorochromate (PCC, Corey-Suggs Oxidation)<br />

TL 1975 2647<br />

Synthesis 1982, 245 (review)<br />

CrO3 + 6M HCl + pyridine → pyH + CrO3 Cl - ↓<br />

- Reagent can be used in close to stoichiometric amounts w/ substrate<br />

- PCC is slighly acidic but can be buffered w/ NaOAc<br />

HO<br />

O<br />

O<br />

OH<br />

PCC, CH 2 Cl 2<br />

PCC, CH 2 Cl 2<br />

OHC<br />

O<br />

O<br />

CHO<br />

JACS 1977, 99, 3864.<br />

TL, 1975, 2647


- Oxidative Rearrangements<br />

Me OH<br />

Me<br />

Me<br />

OH<br />

PCC, CH 2 Cl 2<br />

PCC, CH 2Cl 2<br />

- Oxidation of Active Methylene Groups<br />

PCC, CH 2Cl 2<br />

Me<br />

O O O<br />

PCC, CH2Cl2 O O<br />

- PCC/Pyrazole PCC/ 3,5-Dimethylpyrazole<br />

JOC 1984, 49, 550.<br />

- selective oxidation of allylic alcohols<br />

HO<br />

H H<br />

OH<br />

N NH<br />

PCC, CH 2 Cl 2<br />

3,5-dimethyl<br />

pyrazole<br />

O<br />

O<br />

N NH<br />

Pyridinium Dichromate (PDC, Corey-Schmidt Oxidation)<br />

TL 1979, 399<br />

- Na2Cr2O7•2H2O + HCl + pyridine → (C5H5N)2CrO7 ↓<br />

PDC<br />

CHO CH2Cl2 DMF<br />

OH<br />

1° alcohol<br />

O<br />

PDC<br />

-allylic alcohols are oxidized to α,β-unsaturated aldehydes<br />

O<br />

JOC 1977, 42, 682<br />

JOC 1976, 41, 380<br />

JOC 1984, 49, 1647<br />

H H<br />

OXIDATIONS 7<br />

CO 2H<br />

OH<br />

(87%)


- Supported Reagents Comprehensive <strong>Organic</strong> Synthesis 1991, 7, 839.<br />

PCC on alumina : Synthesis 1980, 223.<br />

- improved yields due to simplified work-up.<br />

PCC on polyvinylpyridine : JOC, 1978, 43, 2618.<br />

CH2 CH<br />

cross-link CrO3, HCl<br />

N N<br />

CH 2<br />

CH<br />

N<br />

Cr(VI)O3 •HCl<br />

R 2CH-OH<br />

to remove Cr(III)<br />

1) HCl wash<br />

2) KOH wash<br />

3) H2O wash<br />

R 2C=O<br />

OXIDATIONS 8<br />

CrO3/Et2O/CH2Cl2/Celite<br />

Synthesis 1979, 815.<br />

- CrO3 in non-aqueous media does not oxidized alcohols<br />

- CrO3 in 1:3 Et2O/CH2Cl2/celite will oxidized alcohols to ketone and aldehydes<br />

HO<br />

C 8H 17<br />

H2CrO7 on Silica<br />

- 10% CrO3 to SiO2<br />

- 2-3g H2CrO3/SiO2 to mole of R-OH<br />

- ether is the solvent of choice<br />

CrO 3<br />

Et 2O/CH 2Cl 2/celite<br />

(69%)<br />

Manganese Reagents<br />

Potassium Permanganate KMnO4/18-Crown-6 (purple benzene)<br />

JACS 1972 94, 4024.<br />

O<br />

O<br />

O O<br />

K +<br />

O<br />

O<br />

O<br />

MnO 4 -<br />

C 8H 17<br />

CH 2<br />

CH<br />

Synthesis 1979, 815<br />

N<br />

Cr(III)<br />

partially<br />

spent<br />

reagent<br />

- 1° alcohols and aldehydes are oxidized to carboxylic acids<br />

- 1:1 dicyclohexyl-18-C-6 and KMnO4 in benzene at 25°C gives a clear purple solution as high<br />

as 0.06M in KMnO4.<br />

O<br />

CHO<br />

CHO<br />

CO 2 H<br />

JACS 1972, 94, 4024<br />

Synthesis 1984, 43<br />

CL 1979, 443


OXIDATIONS 9<br />

Sodium Permanganate<br />

TL 1981, 1655<br />

- heterogeneous reaction in benzene<br />

- 1° alcohols are oxidized to acids<br />

- 2° alcohols are oxidized to ketones<br />

- multiple bonds are not oxidized<br />

Barium Permanganate (BaMnO4)<br />

TL 1978, 839.<br />

- Oxidation if 1° and 2° alcohols to aldehydes and ketones- No over oxidation<br />

- Multiple bonds are not oxidized<br />

- similar in reactivity to MnO2<br />

Barium Manganate<br />

BCSJ 1983, 56, 914<br />

Manganese Dioxide<br />

Review: Synthesis 1976, 65, 133<br />

- Selective oxidation of α,β-unsatutrated (allylic, benzylic, acetylenic) alcohols.<br />

- Activity of MnO2 depends on method of preparation and choice of solvent<br />

- cis & trans allylic alcohols are oxidized at the same rate without isomerization of the double<br />

bond.<br />

HO<br />

HO<br />

OH<br />

MnO 2, CHCl 3<br />

(62%)<br />

- oxidation of 1° allylic alcohols to α,β-unsaturated esters<br />

OH<br />

OH<br />

MnO 2,<br />

ROH, NaCN<br />

MnO 2, Hexanes<br />

MeOH, NaCN<br />

Manganese (III) Acetate α-hydroxylation of enones<br />

Synthesis 1990, 1119 TL 1984 25, 5839<br />

O<br />

O<br />

Mn(OAc) 3, AcOH<br />

CO 2R<br />

HO<br />

CO 2 Me<br />

AcO<br />

O<br />

OH<br />

J. Chem. Soc. 1953, 2189<br />

JACS 1955, 77, 4145.<br />

JACS1968, 90, 5616. 5618<br />

Ruthenium Reagents<br />

Ruthenium Tetroxide<br />

- effective for the conversion of 1° alcohols to RCO2H and 2° alcohols to ketones<br />

- oxidizes multiple bonds and 1,2-diols.


Ph OH<br />

O<br />

RuO 4, NaIO 4<br />

CCl 4, H 2O, CH 3CN<br />

Ph<br />

O<br />

CO 2H<br />

OH<br />

RuO4, NaIO4 Ph OH Ph CO2H CCl4, H2O, CH3CN H CH H<br />

3<br />

CH<br />

96% ee<br />

3 94%ee<br />

HO<br />

O<br />

O<br />

RuO 2, NaIO 4<br />

CCl 4, H 2O<br />

O<br />

O<br />

O<br />

OXIDATIONS 10<br />

JOC 1981, 46, 3936<br />

TL 1970, 4003<br />

Tetra-n-propylammonium Perruthenate (TPAP, nPr4N + RuO4 - )<br />

Aldrichimica Acta 1990, 23, 13.<br />

Synthesis 1994, 639<br />

- mild oxidation of alcohols to ketones and aldehydes without over oxidation<br />

MeO 2C<br />

OH<br />

OSiMe 2tBu<br />

TPAP<br />

O<br />

N +<br />

- O Me<br />

MeO 2C<br />

O<br />

OSiMe 2tBu<br />

TL 1989, 30, 433<br />

(Ph3P)4RuO2Cl3 RuO2(bipy)Cl2<br />

- oxidizes a wide range of 1°- and 2°-alcohols to aldehydes and ketones without oxidation of<br />

multiple bonds.<br />

H<br />

OH<br />

OH<br />

H<br />

CHO<br />

CHO<br />

Ba[Ru(OH)2O3]<br />

-oxidizes only the most reactive alcohols (benzylic and allylic)<br />

(Ph3P)3RuCl2 + Me3SiO-OSiMe3<br />

- oxidation of benzylic and allylic alcohols TL 1983, 24, 2185.<br />

JCS P1 1984, 681.<br />

Silver Reagents<br />

Ag2CO3 ( Fetizon Oxidation) also Ag2CO3/celite Synthesis 1979, 401<br />

- oxidation of only the most reactive hydroxyl<br />

O<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

OH<br />

Ag 2 CO 3<br />

Ag 2CO 3, C 6H 6<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

O<br />

O<br />

JACS 1981, 103, 1864.<br />

mechanism: TL 1972, 4445.


- Oxidation of 2° alcohol over a 1° alcohol<br />

OH<br />

OH Ag 2CO 3, Celite<br />

(80%) O<br />

Silver Oxide (AgO2)<br />

- mild oxidation of aldehyde to carboxylic acids<br />

AgO<br />

RCHO<br />

2 , NaOH RCO2H Ph<br />

CHO<br />

Prevost Reaction Ag(PhCO2)2, I2<br />

Other Metal Based Oxidations<br />

Osmium Tetroxide OsO4<br />

review: Chem. Rev. 1980, 80, 187.<br />

-cis hydroxylation of olefins<br />

old mechanism:<br />

OsO 4, NMO<br />

- use of R3N-O as a reoxidant<br />

TL 1976, 1973.<br />

O<br />

O<br />

Stereoselectivity:<br />

OH<br />

RO<br />

R 2<br />

AgO 2<br />

OsO 4, NMO<br />

H<br />

OsO 4<br />

R 3<br />

R 4<br />

Ag(PhCO 2) 2, I 2<br />

AcOH<br />

Ag(PhCO2) 2, I2 AcOH, H2O O O<br />

Os<br />

O O<br />

osmate ester<br />

intermediate<br />

O<br />

Ph<br />

O<br />

OsO 4, NMO<br />

AcO<br />

OH<br />

OH<br />

AcO<br />

OH<br />

RO<br />

CO 2H<br />

OAc<br />

OH<br />

R 2<br />

OXIDATIONS 11<br />

JCS,CC 1969, 1102<br />

JACS 1982, 104, 5557<br />

OH<br />

OH<br />

OH<br />

cis stereochemistry<br />

TL 1983, 24, 2943, 3947<br />

HO H<br />

H<br />

HO<br />

R3 R4


- new mechanism: reaction is accelerated in the presences of an 3° amine<br />

O<br />

O<br />

Os<br />

O<br />

O<br />

R 1<br />

[3+2]<br />

[2+2]<br />

R 2<br />

O<br />

O<br />

Os<br />

O<br />

R 1<br />

O<br />

O<br />

O<br />

Os O<br />

O<br />

O<br />

R 2<br />

R1 R2 R 3N<br />

[O]<br />

hydrolysis<br />

- Oxidative cleavage of olefins to carboxylic acids.<br />

JOC 1956, 21, 478.<br />

- Oxidative cleavage of olefins to ketones & aldehydes.<br />

O<br />

O<br />

OAc<br />

OsO4, NMO<br />

O<br />

O<br />

OAc<br />

OH<br />

OH<br />

NaIO 4<br />

CHO<br />

CHO<br />

Substrate directed hydroxylations: Chem. Rev. 1993, 93, 1307<br />

-by hydroxyl groups<br />

- by amides<br />

HO<br />

HO<br />

TMSO<br />

CH 3<br />

CH 3<br />

MeS<br />

O<br />

O<br />

AcO<br />

HN<br />

OsO 4,<br />

pyridine<br />

OsO 4,<br />

pyridine<br />

OsO 4, Et 2O<br />

O<br />

OAc<br />

HO<br />

HO<br />

HO<br />

HO<br />

HO<br />

TMSO<br />

OsO 4<br />

HO<br />

CH 3<br />

O<br />

OH<br />

CH 3<br />

O<br />

O<br />

O<br />

+<br />

3:1<br />

OAc<br />

OH +<br />

MeS<br />

OXIDATIONS 12<br />

R 1<br />

O<br />

O<br />

Os O<br />

O<br />

R 1<br />

HO<br />

NR 3<br />

H 2O<br />

R 2<br />

OH<br />

R 2<br />

+<br />

O<br />

JACS 1984, 105, 6755.<br />

(86 : 14)<br />

AcO<br />

HN<br />

HO<br />

HO<br />

HO<br />

O<br />

OAc<br />

HO<br />

OH<br />

OH<br />

CH 3<br />

O<br />

OH<br />

CH 3<br />

OsO 2<br />

OsO 4<br />

O<br />

OH<br />

[O]<br />

O<br />

O<br />

OH


- by sulfoxides<br />

- by sulfoximines<br />

Ph<br />

O<br />

S<br />

MeN<br />

- By nitro groups<br />

••<br />

O<br />

S<br />

HN O<br />

OH<br />

O<br />

S<br />

OMe<br />

••<br />

••<br />

O<br />

OsO4 S<br />

1) OsO 4<br />

2) Ac 2O<br />

AcO<br />

OAc<br />

HN<br />

OMe<br />

O<br />

S<br />

O<br />

OH<br />

OXIDATIONS 13<br />

OH<br />

••<br />

(2 : 1)<br />

(20 : 1)<br />

Ph<br />

O<br />

S OH<br />

O<br />

OsO4, R3NO MeN<br />

OH Δ OH<br />

OH<br />

OH<br />

H 3C<br />

CH 3<br />

Raney nickel<br />

OH<br />

OH<br />

OH<br />

PhO2S O2N N<br />

N<br />

NHR<br />

1) OsO4 2) acetone, H<br />

PhO2S O2N N<br />

N N<br />

O O<br />

+<br />

HO N<br />

N<br />

N<br />

N<br />

NHR<br />

CH 3<br />

- OsO4 bis-hydroxylation favors electon rich C=C.<br />

- Ligand effect:<br />

OH<br />

X<br />

OsO 4<br />

HO N<br />

O O<br />

+<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

NHR<br />

NHR<br />

X X<br />

OH OH<br />

OH OH<br />

X= OH 80 : 20 (directing effect ?)<br />

= OMe 98 : 2<br />

= OAc 99 : 1<br />

= NHSO2R 60 : 40 (directing effect ?)<br />

OsO 4<br />

K 3Fe(CN) 6, K 2CO 3<br />

MeSO 2NH 2, tBuOH/H 2O<br />

+<br />

X OH<br />

OH OH<br />

OH OH<br />

OsO4 (no ligand) 4 : 1<br />

Quinuclidine 9 : 1<br />

DHQD-PHAL > 49 : 1


Sharpless Asymmetric Dihydroxylation (AD) Chem. Rev. 1994, 94, 2483.<br />

- Ligand pair are really diastereomers!!<br />

R 1<br />

R 3<br />

Mechanism of AD:<br />

O<br />

dihydroquinidine ester<br />

"HO OH"<br />

"HO OH"<br />

dihydroquinine ester<br />

R 2<br />

Ar<br />

Ar<br />

H<br />

H<br />

First Cycle<br />

(high enantioselectivity)<br />

O<br />

O<br />

Os<br />

O<br />

L<br />

R 3 N<br />

HO<br />

OH<br />

N<br />

H<br />

OR'<br />

OR'<br />

N<br />

O<br />

O<br />

H2O<br />

O<br />

Os<br />

[O]<br />

O<br />

Os<br />

O<br />

L<br />

HO<br />

0.2-0.4% OsO 4<br />

acetone, H2O, MNO<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

MeO<br />

Ar =<br />

R'= p-chlorobenzoyl<br />

L<br />

R 1<br />

N<br />

OXIDATIONS 14<br />

R 3 OH<br />

OH<br />

Second Cycle<br />

(low enantioselectivity)<br />

H2O, L<br />

O<br />

O<br />

O<br />

O<br />

O<br />

Os<br />

O<br />

R 2<br />

O<br />

Os<br />

O<br />

O<br />

O<br />

O<br />

80-95 % yield<br />

20-80 % ee<br />

- K3Fe(CN)6 as a reoxidant gives higher ee's- eliminates second cycle<br />

TL 1990, 31, 2999.<br />

- Sulfonamide effect: addition of MeSO2NH2 enhances hydrolysis of Os(VI) glycolate<br />

(accelerates reaction)<br />

- New phthalazine (PHAL) ligand's give higher ee's<br />

MeO<br />

H<br />

N<br />

N<br />

O<br />

Et<br />

N<br />

N<br />

Et<br />

O<br />

(DHQD) 2-PHAL<br />

N<br />

N<br />

H<br />

OMe<br />

JOC 1992, 57, 2768.<br />

MeO<br />

Et<br />

H<br />

N<br />

N<br />

O<br />

N N<br />

(DHQ) 2-PHAL<br />

O<br />

N<br />

N<br />

H<br />

[O]<br />

Et<br />

OMe


O<br />

O<br />

N<br />

- Other second generation ligands<br />

MeO<br />

H<br />

N<br />

N<br />

Et<br />

Ph<br />

N N<br />

Et<br />

O O<br />

Ph<br />

PYR<br />

Proposed catalyst structure:<br />

O<br />

Os<br />

N<br />

O<br />

H<br />

O<br />

H<br />

OMe<br />

N N<br />

MeO<br />

Corey Model: JACS 1996, 118, 319<br />

Enzyme like binding pocket;<br />

[3+2] addition of OsO 4 to olefin.<br />

R L<br />

O<br />

H<br />

DHQL<br />

N<br />

N<br />

R s RM<br />

DHQ<br />

H<br />

N<br />

H<br />

N<br />

OMe<br />

OMe<br />

N<br />

Os<br />

O<br />

N<br />

O<br />

Et<br />

IND<br />

O<br />

OXIDATIONS 15<br />

N<br />

Asymmetric<br />

Binding<br />

Cleft<br />

O<br />

O<br />

Os<br />

O<br />

N<br />

O<br />

N<br />

N O<br />

N N<br />

O O<br />

N<br />

Phthalazine<br />

Floor<br />

OMe<br />

H<br />

H<br />

N<br />

OMe<br />

RL large and flat,<br />

i.e Aromatics work particularly well<br />

N<br />

"Bystander<br />

quinoline<br />

(side wall)


R 1<br />

R 1<br />

R 1<br />

R 1<br />

R 1<br />

R 1<br />

Olefin Preferred Ligand<br />

R 2<br />

R 2<br />

R 2<br />

H<br />

R 4<br />

R 2<br />

R 2<br />

R 3<br />

R 3<br />

PYR, PHAL<br />

PHAL<br />

IND<br />

PHAL<br />

PHAL<br />

PHAL, PYR<br />

+ MeSO 2NH 2<br />

ee's<br />

30 - 97 %<br />

70 - 97 %<br />

20 - 80 %<br />

90 - 99.8 %<br />

90 - 99 %<br />

20 - 97 %<br />

OXIDATIONS 16<br />

"AD-mixes" commercially available pre-mix solutions of Os, ligand and reoxidant<br />

AD-mix α (DHQ)2PHAL, K3Fe(CN)6, K2CO3, K2OsO4 (0.4 MOL % Os to C=C)<br />

AD-mix β (DHQD)2PHAL, K3Fe(CN)6, K2CO3, K2OsO4<br />

OMe<br />

N O<br />

AD<br />

(DHQD) 2PYR<br />

94 % ee<br />

N<br />

HO<br />

N<br />

OMe<br />

O<br />

O<br />

O<br />

N O<br />

OH<br />

OH<br />

Campthothecin<br />

OMe<br />

N O<br />

- Kinetic resolution (not as good as Sharpless asymmetric epoxidation)<br />

Ph<br />

tBu<br />

tBu<br />

H<br />

AD mix α<br />

30% conversion<br />

tBu<br />

H<br />

Ph<br />

OH<br />

tBu<br />

H<br />

OH<br />

Ph<br />

H tBu<br />

Ph<br />

H<br />

OH<br />

+ +<br />

(4 : 1)<br />

Ph<br />

H<br />

olefins with axial<br />

dissymmetry<br />

OH<br />

O<br />

OH<br />

Ph<br />

tBu<br />

enriched


OXIDATIONS 17<br />

Asymmetric Aminohydroxylation TL 1998, 39, 2507; ACIEE 1996, 25, 2818, 2813,<br />

preparation of α-aminoalcohols from olefin. Syn addition as with the dihydroxylation<br />

regiochemistry can be a problem<br />

Ph<br />

CO 2Me<br />

O<br />

Ph O N Cl<br />

Na<br />

K 2OsO 6H 4 (cat)<br />

Ligand<br />

Ph<br />

O<br />

O<br />

Ph<br />

NH<br />

OH<br />

CO 2Me<br />

Ligand= PHAL 4:1<br />

AQN 1:4<br />

Molybdenum Reagents<br />

MoOPH [MoO5•pyridine (HMPA)]<br />

JOC 1978, 43, 188.<br />

- α-hydroxylation of ketone, ester and lactone enolates.<br />

R<br />

O -<br />

R'<br />

+<br />

O<br />

O O<br />

Mo<br />

O O<br />

L L<br />

THF, -78°C<br />

Palladium Reagents<br />

Pd(0) catalyzed Dehydrogenation (oxidation) of Allyl Carbonates (Tsuji Oxidation)<br />

Tetrahedron 1986, 42, 4361<br />

R<br />

H<br />

R<br />

OH<br />

HO<br />

H<br />

O CO<br />

2<br />

Pd(OAc) 2,<br />

CH 3CN, 80° C<br />

H<br />

O<br />

OH<br />

OH<br />

R<br />

H<br />

R<br />

O<br />

O<br />

O<br />

O CO<br />

2<br />

Pd 2(DBA) 3•CHCl 3,<br />

CH 3CN, 80° C<br />

R<br />

+<br />

O<br />

Ph<br />

OH<br />

R'<br />

OH<br />

N<br />

CO 2Me<br />

Pd(0)<br />

- CO2 TL 1984, 25, 2791<br />

R<br />

H<br />

R<br />

O Pd<br />

-<br />

R<br />

R<br />

O<br />

Tetrahedron 1987, 43, 3903<br />

HO<br />

H<br />

H<br />

O<br />

OH<br />

O<br />

O<br />

O<br />

JACS 1989, 111, 8039.<br />

Oxidation of silylenol ethers and enol carbonates to enones<br />

O OTMS Pd(OAc) 2,<br />

CH3CN O<br />

Ph<br />

O<br />

O<br />

OTIPS<br />

O Pd(OAc) 2 ,<br />

O<br />

CH3CN (NH 4) 2Ce(NO 3) 6<br />

DMF, 0°C<br />

Ph<br />

O<br />

TL 1995, 36, 3985<br />

Ph


Oppenauer Oxidation Synthesis 1994, 1007 <strong>Organic</strong> reactions 1951, 6, 207<br />

OiPr<br />

O Al<br />

O<br />

+ Al<br />

OiPr<br />

OiPr<br />

R1R2CHOH H +<br />

(CH3) 2C=O<br />

R O<br />

1 OiPr<br />

R2 Nickel Peroxide<br />

Chem Rev. 1975, 75, 491<br />

Thallium Nitrate (TNN, Tl(NO3)3•3H2O<br />

R 1<br />

O<br />

R 2<br />

OXIDATIONS 18<br />

+ Al(OiPr) 3<br />

Pure Appl. Chem. 1875, 43, 463.<br />

Lead Tetraacetrate Pb(OAc)4 Oxidations in <strong>Organic</strong> Chemistry (D), 1982, pp 1-145.<br />

Non-Metal Based Reagents<br />

Activated DMSO Review: Synthesis 1981, 165; 1990, 857. <strong>Organic</strong> <strong>Reactions</strong> 1990, 39, 297<br />

S<br />

Me<br />

+<br />

Me<br />

S<br />

Me<br />

+<br />

O- + E<br />

Me<br />

E<br />

O<br />

Nu:<br />

S +<br />

Me<br />

Nu + E-O<br />

E= (CF3CO)2O, SOCl2, (COCl)2, Cl2, (CH3CO)2O, TsCl, MeCl, SO3/pyridine, F3CSO2H,<br />

PO5, H3PO4, Br2<br />

Nu:= R-OH, Ph-OH, R-NH2, RC=NOH, enols<br />

Swern Oxidation<br />

- trifluoroacetic anhydride can be used as the activating agent for DMSO<br />

S<br />

Me<br />

+<br />

Me<br />

O -<br />

R 2CH-OH<br />

O<br />

S<br />

Me<br />

+<br />

Me<br />

(COCl) 2<br />

CH 2Cl 2, -78°C<br />

OH<br />

O<br />

H<br />

R R<br />

S<br />

Me<br />

+<br />

Me<br />

B:<br />

O<br />

Et 3N:<br />

DMSO, (COCl) 2<br />

CH 2Cl 2, Et 3N<br />

Moffatt Oxidation (DMSO/DCC) JACS 1965, 87, 5661, 5670.<br />

S +<br />

Me<br />

O- Me<br />

C 6 H 11 N C N C 6 H 11<br />

O<br />

+<br />

CF 3 CO 2 H,<br />

Pyridine<br />

OH<br />

CO 2 Me<br />

S +<br />

Me<br />

Me<br />

SO3/Pyridine JACS 1967, 89, 5505.<br />

CO 2 Me<br />

HO H<br />

H<br />

OH<br />

OH<br />

S<br />

CONH 2<br />

NH<br />

O C<br />

N<br />

DCC/ DMSO<br />

CF 3 CO 2 H,<br />

Pyridine<br />

C 6 H 11<br />

C 6 H 11<br />

O<br />

O<br />

Cl<br />

Cl<br />

R 2 CH-OH<br />

O<br />

CO2Me HO H<br />

SO3, pyridine,<br />

DMSO, CH2Cl2 H<br />

HO<br />

O<br />

Cl -<br />

O<br />

R<br />

R<br />

S<br />

Me<br />

+<br />

Me<br />

CHO<br />

O<br />

-CO, -CO 2<br />

O<br />

O<br />

H<br />

CO 2 Me<br />

S<br />

CONH 2<br />

+<br />

R R<br />

Me<br />

S +<br />

Me<br />

Me<br />

Me<br />

S<br />

Me<br />

Cl<br />

TL 1988, 29, 49.<br />

B:<br />

R<br />

R<br />

JACS 1978, 100, 5565<br />

JACS 1989, 111, 8039.<br />

O


Corey-Kim Oxidation (DMS/NCS) JACS 1972, 94, 7586.<br />

Me<br />

S:<br />

Me<br />

+<br />

O<br />

N<br />

Cl<br />

O<br />

N-Chlorosuccinimide<br />

(NCS)<br />

S +<br />

Me<br />

Oxygen & Ozone<br />

Singlet Oxygen Acc. Chem. Res. 1980, 13, 419 Tetrahedron 1981, 37, 1825<br />

O<br />

H<br />

• •<br />

• O<br />

• •<br />

• •<br />

O •<br />

• •<br />

hν<br />

O O<br />

triplet singlet<br />

"ene" reaction<br />

O O O<br />

H<br />

1) O 2 , hν, Ph 2 CO<br />

2) reduction<br />

Ozone Comprehensive <strong>Organic</strong> Synthesis 1991, 7, 541<br />

O 3, CH 2Cl 2<br />

-78°C<br />

O<br />

O O<br />

Other Oxidations<br />

Mukaiyama Oxidation BCSJ 1977, 50, 2773<br />

MeO<br />

Cl<br />

CH 3<br />

NH<br />

R<br />

CH<br />

R<br />

OH<br />

MeO<br />

OH<br />

O<br />

PrMgBr<br />

THF<br />

O<br />

SEt<br />

SEt<br />

OEt<br />

R<br />

CH<br />

R<br />

O<br />

N<br />

O<br />

O O<br />

O MgBr<br />

O<br />

N N<br />

• •<br />

• •<br />

• •<br />

• •<br />

Ph 3P:<br />

Me<br />

Tetrahedron 1981, 1825<br />

Jones<br />

RCOOH<br />

O<br />

tBuMgBr, THF<br />

(70%)<br />

HO<br />

Ph 3P:<br />

NaBH 4<br />

O<br />

N N<br />

N N<br />

O<br />

N O<br />

MeO<br />

Cl<br />

H<br />

OXIDATIONS 19<br />

Cl<br />

OH<br />

R<br />

R<br />

OH<br />

O + O<br />

O<br />

OHC<br />

CH3 O<br />

NH<br />

MeO<br />

JACS 1979, 101, 7104<br />

SEt<br />

O<br />

SEt<br />

OEt


O<br />

OH<br />

tBuMgBr, THF<br />

O<br />

N<br />

N<br />

N<br />

N<br />

O O<br />

Dess-Martin Periodinane JOC 1983, 48, 4155. JACS 1992, 113, 7277.<br />

- oxidation conducted in CHCl3, CH3CN or CH2Cl2<br />

- excellent reagent for hindered alcohols<br />

- very mild<br />

RO<br />

AcO OAc<br />

HO<br />

I<br />

OAc<br />

O<br />

O<br />

• •<br />

R 2CH-OH<br />

Dess-Martin<br />

(99%)<br />

Chlorite Ion<br />

-oxidation of α,β-unsaturated aldehydes to α,β−unsaturated acids.<br />

Tetrahedron 1981, 37, 2091<br />

CHO<br />

OBn<br />

NaClO 2,<br />

NaH 2PO 4<br />

tBuOH, H 2O<br />

R<br />

R<br />

- O-Cl-O<br />

Selenium Dioxide<br />

- Similar to singlet oxygen (allylic oxidation)<br />

Phenyl Selenium Chloride<br />

OLi<br />

PhSeCl<br />

THF<br />

OAc<br />

O<br />

SePh<br />

RO<br />

1) SeO 2<br />

2) NaBH 4<br />

H 2O 2<br />

O<br />

OBn<br />

OH<br />

H<br />

+<br />

O<br />

- HClO 2<br />

O<br />

OH<br />

H<br />

Se<br />

OAc<br />

I<br />

O<br />

O<br />

OXIDATIONS 20<br />

O<br />

+ 2 AcOH<br />

JOC 1991, 56, 6264<br />

O -<br />

OAc<br />

OBn<br />

CO 2H<br />

Ph O<br />

- PhSeOH<br />

- PhS-SPh will do similar chemistry however a sulfoxide elimination is less facile than a<br />

selenoxide elinimation.<br />

Peroxides & Peracids<br />

- R3N: → R3N-O<br />

- sulfides → sulfoxides → sulfones<br />

-Baeyer-Villiger Oxidation- oxidation of ketones to esters and lactones via oxygen insertion<br />

<strong>Organic</strong> <strong>Reactions</strong> 1993, 43, 251 Comprehensive <strong>Organic</strong> Synthesis 1991, vol 7, 671.


O<br />

m-Chloroperbenzoic Acid, Peracetic Acid, Hydrogen peroxide<br />

R 1<br />

O<br />

HO<br />

R 2<br />

O<br />

O<br />

Ar<br />

Cl<br />

O<br />

H<br />

O O<br />

R 1<br />

O<br />

O<br />

C<br />

H<br />

O<br />

O<br />

Ar<br />

R 2<br />

O 2N<br />

NO 2<br />

O H<br />

O O<br />

R 1<br />

O<br />

O<br />

R 2<br />

OXIDATIONS 21<br />

+ ArCO 2H<br />

- Concerted R-migration and O-O bond breaking. No loss of stereochemistry<br />

- Migratory aptitude roughly follows the ability of the group to stabilize positive charge:<br />

3° > 2° > benzyl = phenyl > 1° >> methyl<br />

JACS 1971, 93, 1491<br />

O<br />

O<br />

mCPBA O<br />

O<br />

O<br />

CH 3<br />

CH 3<br />

O O HO<br />

mCPBA<br />

(80 %)<br />

HO<br />

O<br />

O<br />

CH 3<br />

CO 2H<br />

Oxone (postassium peroxymonosulfate) Tetrahedron 1997, 54, 401<br />

RCHO<br />

oxone<br />

acetone (aq)<br />

RCOOH<br />

CH 3<br />

CHO<br />

Oxaziridines<br />

reviews: Tetrahedron 1989, 45, 5703; Chem. Rev. 1992, 92, 919<br />

R<br />

- hydroxylation of enolates<br />

O<br />

R'<br />

Base<br />

R<br />

O _<br />

R<br />

R'<br />

PhSO 2<br />

+<br />

O _<br />

R'<br />

O<br />

N<br />

Ph<br />

PhSO 2N=CHPh<br />

O<br />

R 3<br />

N C<br />

R R2 R<br />

O<br />

O<br />

Ph<br />

R'<br />

_<br />

NSO2Ph R<br />

Ph<br />

O<br />

HO<br />

Tetrahedron Lett. 1977, 2173<br />

Tetrahedron Lett. 1978, 1385<br />

O<br />

R'<br />

NHSO 2Ph<br />

R<br />

HO<br />

O<br />

R'<br />

+<br />

OH<br />

By-product<br />

supresed by using<br />

bulkier oxaziradine<br />

such as camphor<br />

oxaziradine<br />

PGE 1<br />

CO 2H<br />

PhSO 2N=CHPh


Asymmetric hydroxylations<br />

MeO<br />

MeO<br />

O<br />

MeO 2C<br />

CO 2Me<br />

O<br />

OMe<br />

KN(SiMe 3) 2<br />

SO 2<br />

N<br />

O<br />

NaN(SiMe 3) 2, THF<br />

Ar<br />

N<br />

SO2O MeO<br />

MeO<br />

O<br />

MeO 2C<br />

OH<br />

CO2Me (>95% ee)<br />

HO<br />

O<br />

(67% ee)<br />

OMe<br />

- hydroxylation of organometallics<br />

R-Li or R-Mg → R-OH JACS 1979, 101, 1044<br />

- Asymmetric oxidation of sulfides to chiral sulfoxides.<br />

JACS 1987, 109, 3370.<br />

Synlett, 1990, 643.<br />

OXIDATIONS 22<br />

Tetrahedron 1991, 47, 173<br />

MeO O<br />

O OH<br />

Remote Oxidation (functionalization) Comprehensive <strong>Organic</strong> Synthesis 1991, 7, 39.<br />

Barton Reaction<br />

•NO<br />

OH<br />

NOCl, CH 2Cl 2<br />

pyridine<br />

NO<br />

OH<br />

O NO<br />

ketone<br />

oxidation state<br />

hν<br />

- NO<br />

•<br />

N<br />

HO<br />

OH<br />

O<br />

•<br />

H<br />

N<br />

C 5H 11<br />

OH OH<br />

•<br />

OH<br />

O<br />

OH<br />

perhydrohistricotoxin<br />

OH<br />

JACS 1975, 97, 430<br />

Epoxidations<br />

Peroxides & Peracids<br />

- olefins → epoxides Tetrahedron 1976, 32, 2855<br />

- α,β-unsaturated ketones, aldehydes and ester → α,β-epoxy- ketones, aldehydes and esters<br />

(under basic conditions).<br />

(CH 2) n<br />

O<br />

tBuOOH<br />

triton B, C 6H 6<br />

(CH 2) n<br />

O<br />

O<br />

JACS 1958, 80, 3845


O<br />

O<br />

H<br />

CO 2Me<br />

mCPBA, NaHPO 3<br />

Henbest Epoxidation- epoxidation directed by a polar group<br />

Ph<br />

O<br />

OH<br />

OAc<br />

NH<br />

O<br />

H<br />

H<br />

O<br />

H<br />

mCPBA<br />

mCPBA<br />

mCPBA<br />

Ar<br />

O<br />

O<br />

Ph<br />

O<br />

OH<br />

OAc<br />

O<br />

O<br />

O<br />

O<br />

NH<br />

H<br />

+<br />

O<br />

CO 2Me<br />

OH<br />

OXIDATIONS 23<br />

TL 1988, 23, 2793<br />

O<br />

10:1 diastereoselection<br />

OH<br />

+<br />

O<br />

1:4 diastereoselection<br />

O<br />

proposed transition state:<br />

-OH directs the epoxidation<br />

"highly selective"<br />

- for acyclic systems, the Henbest epoxidation is often less selective<br />

Rubottom Oxidation: JOC 1978, 43, 1588<br />

O<br />

LDA, TMSCl<br />

OTMS<br />

mCPBA<br />

TMSO O<br />

Sharpless Epoxidation tBuOOH w/ VO(acac)2, Mo(CO)6 or Ti(OR)4<br />

Reviews: Comprehensive <strong>Organic</strong> Synthesis 1991, vol 7, 389-438<br />

Asymmetric Synthesis 1985, vol. 15, 247-308<br />

Synthesis, 1986, 89. Org. React. 1996, 48, 1-299.<br />

Aldrichimica Acta 1979, 12, 63<br />

review on transition mediated epoxidations: Chem. Rev. 1989, 89, 431.<br />

- Regioselective epoxidation of allylic and homo-allylic alcohols<br />

- will not epoxidize isolated double bonds<br />

- epoxidation occurs stereoselectively w/ respect to the alcohol.<br />

H 2O<br />

O<br />

OH


- Catalysts: VO(acac)2; Mo(CO)6; Ti(OiPr)4<br />

- Oxidant: tBuOOH; PhC(CH3)2OOH<br />

Acyclic Systems:<br />

(CH 2) n<br />

OH<br />

OH<br />

VO(acac) 2<br />

tBuOOH<br />

(CH 2) n<br />

OH<br />

O<br />

O<br />

OXIDATIONS 24<br />

ring size VO(acac)2 MoO2(acac)2 mCPBA<br />

5 >99% -- 84<br />

6 >99 98 95<br />

7 >99 95 61<br />

8 97 42


OH<br />

SiMe 3<br />

OH<br />

VO(acac) 2,<br />

tBuOOH<br />

VO(acac) 2,<br />

tBuOOH<br />

O<br />

L<br />

M<br />

L<br />

H3C O<br />

H<br />

CH 3<br />

OH<br />

tBu<br />

O<br />

O<br />

SiMe 3<br />

O<br />

OH<br />

H<br />

H<br />

+ O<br />

(19 : 1)<br />

H 3C<br />

H 3C<br />

L<br />

H<br />

O<br />

M<br />

OXIDATIONS 25<br />

OH<br />

+ O<br />

(> 99 : 1)<br />

- Careful conformational analysis of acyclic systems is needed.<br />

Homoallylic Systems<br />

Titanium Catalyst structure:<br />

RO<br />

O<br />

Ti<br />

O<br />

OR<br />

OR<br />

CO2R O<br />

O<br />

OH OH<br />

CO 2R<br />

O<br />

Ti<br />

O<br />

Disfavored<br />

tBu<br />

O<br />

RO<br />

O<br />

O<br />

CO 2R<br />

Ti<br />

O<br />

OR<br />

O<br />

OR<br />

CO2R O<br />

O<br />

RO 2C<br />

OR<br />

Ti<br />

O<br />

RO<br />

O<br />

O<br />

H<br />

H<br />

O<br />

L<br />

O<br />

tBu<br />

SiMe 3<br />

L<br />

O<br />

V<br />

L<br />

O<br />

OH<br />

OtBu<br />

dominent stereocontrol element<br />

OR<br />

OR<br />

Ti<br />

O<br />

OR<br />

OR<br />

CO2R O<br />

O<br />

Favored<br />

CO 2R<br />

O<br />

Ti O<br />

CO<br />

O 2R<br />

O<br />

tBu


Asymmetric Epoxidation<br />

tBuOOH, Ti(OiPr), (+) or (-) Diethyl Tartrate, 3Å molecular sieves<br />

Empirical Rule<br />

R 1<br />

R 2<br />

R 3 OH<br />

(+)- DET epoxidation from the bottom<br />

(-)- DET epoxidation from the top<br />

OXIDATIONS 26<br />

Catalytic system: addition of molecular sieves to "soak" up any water with 3A sieves, 5-10 mol %<br />

catalyst is used.<br />

Preparation of Allylic Alcohols:<br />

R CHO<br />

R<br />

R<br />

CO 2R'<br />

CO 2R'<br />

[(CH 3) 2CHCH 2] 2AlH<br />

(DIBAL)<br />

[(CH 3) 2CHCH 2] 2AlH<br />

R OH<br />

"In situ" derivatization of water soluble epoxy-alcohol<br />

O<br />

OH<br />

OH<br />

(-)-DIPT<br />

(+)-DIPT<br />

O<br />

R<br />

O<br />

OH<br />

O<br />

O<br />

OH<br />

(R)-glycidol<br />

OH<br />

(S)-glycidol<br />

O<br />

Alkoxide opening of epoxy-alcohol product<br />

reduced by use of Ti(OtBu)4 and catalytic conditions<br />

Stoicheometric vs Catalytic epoxidation:<br />

R<br />

O<br />

OH<br />

O -<br />

S<br />

O<br />

from<br />

Ti(OiPr) 4<br />

O<br />

R<br />

Na (MeOCH 2CH 2O) 2AlH 2<br />

NO 2<br />

(REDAL)<br />

H 2, Lindlar's Catalyst<br />

OH<br />

OH<br />

OH<br />

(+)-DET<br />

Ti(OiPr) 4<br />

tBuOOH<br />

O<br />

OH<br />

water soluble<br />

organic soluble<br />

stoicheometric: 85% ee<br />

catalytic (6-7 mol %) 47% yield >95% ee<br />

in situ deriv. with PNB 78% yield 92 % ee >98 %ee after 1 recrystallization<br />

(+)-DET<br />

R Ti(OiPr) 4 R<br />

tBuOOH<br />

O<br />

OH OH<br />

yields: 50 - 100 %<br />

ee: > 95%<br />

R C C CH 2OH


Ring Opening of Epoxy-Alcohols<br />

Two dimensional amplification<br />

AE<br />

O<br />

R OH R OH<br />

OH<br />

OH<br />

(+)-DIPT, Ti(OiPr) 4,<br />

tBuOOH, 3A sieves<br />

(90 % ee)<br />

Kinetic Resolution of Allylic Alcohols<br />

R<br />

OH<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

+<br />

REDAL<br />

DIBAL<br />

OXIDATIONS 27<br />

OH<br />

O<br />

OH<br />

95 : 5<br />

O<br />

OH<br />

major minor<br />

major minor<br />

major<br />

90 %<br />

(>99.5 % ee)<br />

(+)-DIPT, Ti(OiPr) 4,<br />

tBuOOH, 3A sieves<br />

RO<br />

O<br />

Ti<br />

O<br />

OR<br />

OR<br />

95 : 5<br />

CO2R O<br />

O<br />

R<br />

CO 2R<br />

O<br />

OH<br />

O<br />

OH<br />

R OH<br />

1,3-Diol<br />

R OH<br />

OH<br />

1,2-Diol<br />

OH<br />

minor<br />

95 : 5<br />

O<br />

OH<br />

O<br />

OH<br />

meso<br />

9.75%<br />

+<br />

Ti O<br />

CO<br />

O 2R<br />

O<br />

tBu<br />

H<br />

O<br />

R<br />

O<br />

0.25 %<br />

OH<br />

OH


R 3<br />

R 2<br />

R 4<br />

R 1<br />

OH<br />

kinetic resolution<br />

-20 °C, 0.5 - 6 days<br />

Reiterative Approach to the Synthesis of Carbohydrate<br />

OR<br />

OR<br />

OR<br />

O<br />

CHO<br />

O<br />

OH<br />

O<br />

SPh<br />

(MeO) 2 P(O)CH 2 CO 2 Me<br />

OAc<br />

NaH<br />

HO -<br />

PhS -<br />

DIBAL<br />

OR<br />

PhS -<br />

OH<br />

O<br />

OR<br />

O<br />

OR<br />

CO 2Me<br />

R 3<br />

R 2<br />

DIBAL<br />

OR<br />

HO<br />

R 4<br />

R 1<br />

OH<br />

40 - 50 % yield<br />

> 99 % ee<br />

OH<br />

SPh<br />

OR<br />

+<br />

acetone, H +<br />

Jacobsen Aysmmetric Epoxidation<br />

JACS 1990, 112, 2801; JACS 1991, 113, 7063; JOC 1991, 56, 2296.<br />

- Reaction works best for cis C=C conjugated to an aromatic ring<br />

H<br />

N<br />

N<br />

O Cl O<br />

H<br />

tBu tBu<br />

O<br />

Mn<br />

O<br />

CHO<br />

NaOCl<br />

5 mol % Cat. ,NaOCl,<br />

H 2O, CH 2Cl 2<br />

86% ee<br />

Methyltrioxoruthenium (MTO) Ru(VII)<br />

Sharpless et al. JACS 1997, 117, 7863, 11536.<br />

Ph<br />

OR<br />

O<br />

0.5 mol % MTO Ru (VII),<br />

pyridine, CH 2 Cl 2<br />

1.5 eq. 30% H 2O 2 (aq.)<br />

O<br />

O<br />

O<br />

O<br />

CHO<br />

OH<br />

H<br />

N<br />

R 3<br />

R 2<br />

OXIDATIONS 28<br />

R 4<br />

O<br />

R 1<br />

OH<br />

40 - 50 % yield<br />

high ee<br />

OR<br />

O<br />

(+)-DET, Ti(OiPr) 4,<br />

tBuOOH, 3A sieves<br />

N<br />

O O<br />

O<br />

H<br />

O<br />

tBu tBu<br />

O<br />

O<br />

Mn<br />

Ph<br />

O<br />

SPh<br />

(98% ee)<br />

HO<br />

HO<br />

mCPBA, Ac 2O<br />

Pummerer<br />

CHO<br />

H<br />

H<br />

HO H<br />

HO H<br />

CH 2OH<br />

L-glucose


Oxaziridines<br />

- Asymmetric epoxidation of olefins Tetrahedron 1989 45 5703<br />

Ph<br />

Ph<br />

CH 3<br />

*<br />

N<br />

O 2<br />

S<br />

N<br />

*<br />

O<br />

*<br />

C 6F 5<br />

OXIDATIONS 29<br />

Dioxiranes (Murray's Reagent) Reviews: Chem. Rev. 1989, 89, 1187; ACR 1989, 27, 205<br />

Org. Syn. 1996, 74, 91<br />

- epoxidation of olefins<br />

TBSO<br />

TBSO<br />

O<br />

OTBS<br />

O<br />

O<br />

O<br />

CH 2Cl 2, acetone<br />

(100%)<br />

KHSO 5<br />

"oxone"<br />

TBSO<br />

TBSO<br />

- Asymmetric epoxidation JACS 1996, 118, 491.<br />

- oxidation of sulfides to sulfoxides and sulfones<br />

- oxidation of amines to amine-N-oxides<br />

- oxidation of aldehydes to carboxylic acids<br />

- hydroxylation of enolates<br />

O<br />

1) LDA<br />

2) Cp 2TiCl 2<br />

- bis-trifluoromethyldioxirane, much more reactive<br />

JACS 1991, 113, 2205.<br />

3)<br />

O<br />

O<br />

F 3C O<br />

F 3C<br />

O<br />

O<br />

OH<br />

H<br />

O<br />

O<br />

O<br />

OTBS<br />

O<br />

JOC 1990, 55, 2411<br />

JOC 1994, 59, 2358<br />

- oxidation of alcohols to carbonyl compounds. 1° alcohols give a mixture of aldehydes and<br />

carboxylic acids.<br />

- Insertion into 3° C-H bonds to give R3C-OH<br />

DCC-H2O2 JOC 1998, 63, 2564<br />

R N C N R H2O2 , MeOH<br />

H<br />

R<br />

N<br />

C O<br />

N O<br />

R<br />

H R<br />

R<br />

O<br />

+<br />

H<br />

O<br />

C H<br />

N N<br />

R R


Carey & Sundberg Chapter 5 problems: 1a,b,c,d,f,h,j; 2; 3a-g, n,o; 4b,j,k,l; 9; 11;<br />

Smith: Chapter 4 March: Chapter 19<br />

Reductions<br />

1. Hydrogenation<br />

2. Boron Reagents<br />

3. Aluminium Reagents<br />

4. Tin Hydrides<br />

5. Silanes<br />

6. Dissolving Metal Reductions<br />

Hydrogenations<br />

Heterogeneous Catalytic Hydrogenation<br />

Transition metals absorbed onto a solid support<br />

metal: Pd, Pt, Ni, Rh<br />

support: Carbon, alumina, silica<br />

solvent: EtOH, EtOAc, Et2O, hexanes, etc.<br />

REDUCTIONS 30<br />

- Reduction of olefins & acetylenes to saturated hydrocarbons.<br />

- Sensitive to steric effects and choice of solvent<br />

- Polar functional groups, i.e. hydroxyls, can sometimes direct the delivery of H2.<br />

- Cis addition of H2.<br />

- Catalyst can be "poisoned"<br />

- Directed heterogeneous hydrogenation<br />

MeO<br />

MeO<br />

R 1<br />

R 2<br />

R 1<br />

R 2<br />

O<br />

O<br />

OH<br />

O<br />

O<br />

CO 2Me<br />

H 2 , Pd/C<br />

H 2, Pd/C<br />

H 2, Pd/C<br />

H<br />

R1 R2 MeO<br />

MeO<br />

H<br />

R1 R2 H<br />

H<br />

O<br />

O<br />

OH<br />

O<br />

O<br />

CO2M2 (86 : 14)<br />

Lindlar Catalyst ( Pd/ BaSO4/ quinoline)- partially poisoned to reduce activity; will only<br />

reduce the most reactive functional groups.<br />

acetylenes + H2, Pd/BaSO4/ quinoline → cis olefins (Lindlar Reduction)<br />

Acid Chlorides + H2, Pd/BaSO4 → Aldehydes (Rosemund Reduction)<br />

Org. Rxn. 1948, 4, 362<br />

R SiMe 3<br />

O<br />

CO 2 Me<br />

H 2 , Pd/BaSO 4 , Quinoline<br />

H 2 , Pd/BaSO 4 , pyridine<br />

O<br />

R<br />

CO 2 Me<br />

SiMe 3<br />

TL 1976, 1539<br />

JOC 1982, 47, 4254


HO<br />

8π e -<br />

conrotatory<br />

HO OH HO OH<br />

OH<br />

H 2, Lindlar Catalyst<br />

CH 2Cl 2: MeOH: Quinoline<br />

6π e -<br />

disrotatory<br />

(90:9.5:0.5)<br />

H<br />

H<br />

HO<br />

H OH<br />

REDUCTIONS 31<br />

JACS 1982, 104, 5555<br />

Ease of Reduction: (taken from H.O. House Modern Synthetic <strong>Reactions</strong>, 2nd edition)<br />

R COCl<br />

R NO 2<br />

R R'<br />

R CHO<br />

R CH CH R'<br />

O<br />

R R'<br />

Ar O<br />

R<br />

R C N<br />

O<br />

R OR'<br />

O<br />

R'<br />

R N<br />

R'<br />

R CO 2 - Na +<br />

R CHO<br />

R NH 2<br />

R<br />

R'<br />

R CH 2-OH<br />

R CH 2 CH 2 R'<br />

HO H<br />

R R'<br />

Ar CH3 + HO R<br />

R CH 2 NH 2<br />

R CH2-OH + HO R'<br />

R CH2 R'<br />

N<br />

R'<br />

no reaction<br />

requires high<br />

temperature & pressure<br />

Raney Nickel Desulfuriztion ,<br />

Reviews: Org. Rxn. 1962, 12, 356; Chem. Rev. 1962, 62, 347.<br />

R<br />

R S R H<br />

O<br />

(CH2) n<br />

R R S<br />

R H<br />

Raney Nickel


S<br />

HO<br />

S<br />

H<br />

O O O<br />

Raney Nickel<br />

EtOH<br />

(74%)<br />

HO<br />

H<br />

O O O<br />

Homogeneous Catalytic Hydrogenation<br />

- catalyst is soluble in the reaction medium<br />

- catalyst not "poisoned" by sulfur<br />

- very sensitive to steric effects<br />

- terminal olefins faster than internal; cis olefins faster than trans<br />

REDUCTIONS 32<br />

JOC 1987, 52, 3346<br />

R<br />

R<br />

R<br />

R<br />

R > ><br />

R R > R > R >> R<br />

R<br />

R<br />

R<br />

- (Ph3P)3RhCl (Wilkinson's Catalyst); [R3P Ir(COD)py] + PF6 - (Crabtree's Catalyst)<br />

OH (Ph3P) 3RhCl, H2 OH<br />

C 6 H 6<br />

(92%)<br />

R<br />

JOC 1992, 57, 2767<br />

Directed Hydrogenation<br />

Review: Angew. Chem. Int. Ed. Engl. 1987, 26 , 190<br />

- Diasterocontrolled hydrogenation of allylic alcohols directed by the -OH group<br />

MeO<br />

O - K +<br />

(Ph 3 P) 3 RhCl, H 2<br />

Rh +<br />

Ph Ph<br />

P<br />

P<br />

Ph Ph<br />

Brown's Catalyst<br />

BF4 -<br />

PPh3 O PPh3 Rh H<br />

H<br />

Ir +<br />

P(C6H11 ) 3<br />

N<br />

(Crabtree's Ctalyst)<br />

JACS 1983, 105 , 1072<br />

Regioselective Hydrogenation- allylic and homoallylic alcohols are hydrogenated faster than<br />

isolated double bonds<br />

MeO 2 C<br />

OH<br />

MeO 2C<br />

OH<br />

PF 6 -<br />

MeO<br />

H<br />

O - K +


mechanism:<br />

L +<br />

H2 M<br />

L<br />

lose<br />

H<br />

H<br />

OH<br />

L<br />

L<br />

H<br />

M<br />

HO<br />

L<br />

M S<br />

+<br />

S<br />

L<br />

reductive<br />

elimination<br />

S<br />

OH<br />

migratory<br />

insertion<br />

L<br />

L<br />

H<br />

L<br />

REDUCTIONS 33<br />

M<br />

H<br />

M<br />

L<br />

O<br />

H<br />

H 2<br />

(oxidative<br />

addition)<br />

Diastereoselective Hydrogenation: since -OH directs the H2, there is a possibility for control of<br />

stereochemistry<br />

- sensitive to: H2 pressure<br />

catalyst conc.<br />

substrate conc.<br />

solvent.<br />

Regioselective Hydrogenation- allylic and homoallylic alcohols are hydrogenated faster than<br />

isolated double bonds<br />

OMe<br />

O<br />

HO<br />

O<br />

"Ir"<br />

(20 mol %)<br />

HO<br />

OH H2 (640 psi), CH2Cl2 OH<br />

H<br />

OMe<br />

Me<br />

OH<br />

Brown's Catalyst<br />

Brown's Catalyst<br />

H 2 (1000 psi)<br />

OMe<br />

O<br />

H<br />

OMe<br />

H<br />

Me<br />

Selectivity is often higher with lower catalyst concentration:<br />

OH OH<br />

OH OH<br />

OH<br />

20 mol %<br />

Catalyst<br />

O<br />

(24 : 1)<br />

O<br />

H<br />

+<br />

+<br />

JACS 1984, 106, 3866<br />

TL 1987, 28 , 3659<br />

2.5 mol %<br />

Catalyst<br />

50 : 1 150 : 1<br />

33 : 1 52 : 1


Olefin Isomerization:<br />

OH<br />

olefin<br />

isomerization<br />

OH<br />

CH 3<br />

OH<br />

O<br />

REDUCTIONS 34<br />

(3 : 1)<br />

major<br />

product<br />

- Conducting the hydrogenation at high H2 pressures supresses olefin isomerization and often<br />

gives higher diastereoselectivity.<br />

Other Lewis basic groups can direct the hydrogenation. (Ir seems to be superior to Rh for<br />

these cases)<br />

O<br />

OMe<br />

O<br />

O<br />

Ir +<br />

Acyclic Examples<br />

Me<br />

OH<br />

L<br />

OMe<br />

O<br />

O<br />

O<br />

99 : 1<br />

CO 2Me<br />

CO 2H<br />

N O<br />

CO 2Me<br />

CO 2H<br />

> 99 : 1 Ir + 7 : 1<br />

Rh + 1 : 1<br />

1 : 1<br />

Rh + (2 mol %)<br />

H 2 (15 psi)<br />

H<br />

Ph<br />

H<br />

H3C H<br />

H<br />

H<br />

L<br />

L<br />

M<br />

H<br />

M<br />

L<br />

H<br />

O<br />

O<br />

H<br />

CH 3<br />

Ph<br />

1,2-strain<br />

Me<br />

Ph<br />

Ph<br />

OH<br />

CH 3<br />

OH<br />

OH<br />

(97:3)<br />

N O<br />

Ir + > 99 : 1<br />

Rh + 32 : 1<br />

130 : 1<br />

JCSCC 1982, 348<br />

anti<br />

syn


R 3<br />

R 2<br />

OH<br />

R 1<br />

L<br />

R3 H<br />

R3 H<br />

L<br />

L<br />

M<br />

R 1<br />

H<br />

M<br />

L<br />

H<br />

O<br />

O<br />

H<br />

H<br />

R 2<br />

R1 R2 favored<br />

disfavored<br />

1,2-strain<br />

- Supression of olefin isomerization is critical for acyclic stereocontrol !<br />

R 2<br />

R 2<br />

CH 3<br />

OH<br />

R 1<br />

olefin<br />

isomerization<br />

OH<br />

R 1<br />

L<br />

L<br />

M<br />

R2 CH3 H<br />

H<br />

R 1<br />

R 1<br />

H<br />

O<br />

CH2R2 H<br />

- Rh + catalyst is more selective than Ir + for acyclic stereoselection.<br />

Acyclic homoallylic systems:<br />

E<br />

R 2<br />

A<br />

O<br />

H<br />

M<br />

R 3<br />

L<br />

L<br />

L<br />

H<br />

H<br />

L<br />

M<br />

R 1<br />

H<br />

O<br />

HO<br />

R 2<br />

R 3<br />

relative<br />

stereochemistry<br />

is critical<br />

E<br />

1,2-strain<br />

R 2<br />

A<br />

R 2<br />

R 2<br />

REDUCTIONS 35<br />

R 3<br />

R 3<br />

1,3-strain<br />

O<br />

H<br />

R 3<br />

R 2<br />

M<br />

R 2<br />

R 2<br />

R 2<br />

OH<br />

OH<br />

R 1<br />

OH<br />

L<br />

L<br />

R 1<br />

OH<br />

R 1<br />

R 1<br />

anti<br />

syn<br />

syn<br />

anti


TBSO<br />

OH<br />

TBSO<br />

OH<br />

OBz<br />

OBz<br />

Rh + (20 mol %)<br />

H 2 (15 psi)<br />

Rh + (20 mol %)<br />

H 2 (15 psi)<br />

TBSO<br />

OH<br />

TBSO<br />

Asymmetric Homogeneous Hydrogenation<br />

- Chiral ligands for homogeneous hydrogenation of olefins and ketones<br />

MeO<br />

PPh 2<br />

NORPHOS<br />

P<br />

P<br />

DUPHOS<br />

P<br />

P<br />

DIPAMP<br />

PPh 2<br />

O<br />

OMe<br />

Ph<br />

O<br />

HN<br />

O<br />

CAMPHOS<br />

CO 2H<br />

O<br />

Ph<br />

NHAc<br />

H<br />

O<br />

H<br />

DIOP<br />

PPh2 PPh2 DIPHEMP<br />

CO 2Me<br />

PPh 2<br />

PPh 2<br />

PPh2 PPh2 X<br />

OH<br />

PPh 2<br />

PPh 2<br />

CHIRAPHOS<br />

PPh 2<br />

PPh 2<br />

X= CH 2 DPCP<br />

X= N-R PYRPHOS<br />

Rh (I) L*, H 2<br />

DIOP 85% ee<br />

DIPAMP 96% ee<br />

PPPFA 93% ee<br />

BINAP 100% ee<br />

NORPHOS 95% ee<br />

BPPM 91% ee<br />

HO<br />

BINAP<br />

Ph<br />

(95% ee)<br />

OH<br />

OBz<br />

32 : 1<br />

OBz<br />

8 : 1<br />

PPh 2<br />

PPh 2<br />

R= -CH 3 PROPHOS<br />

= -Ph PHENPHOS<br />

= -C 6H 11 CYCPHOS<br />

Ph 2P<br />

PPh2 PPh2 HN<br />

N<br />

CO2tBu BPPM<br />

CO 2H<br />

O<br />

NH 2<br />

L-DOPA<br />

Ph<br />

CO 2H<br />

REDUCTIONS 36<br />

Tetrahedron Lett. 1985, 26, 6005<br />

PPh 2<br />

DBPP<br />

Fe<br />

PPPFA<br />

PPh 2<br />

PPh 2<br />

ACR 1983, 16, 106.<br />

PPh 2<br />

PPh 2<br />

NMe 2


REDUCTIONS 37<br />

General Mechanism: J. Halpern Science 1982, 217, 401 Asymmetric Synthesis 1985, vol 5, 41.<br />

Detailed Mechanism:<br />

Ph<br />

P<br />

*<br />

P<br />

H<br />

P<br />

*<br />

CO 2 Me<br />

NHAc<br />

MeO 2 C<br />

Rh<br />

O<br />

P<br />

P<br />

P<br />

P<br />

Ph<br />

H 2<br />

(slow)<br />

Rh<br />

NH<br />

major complex<br />

MeO2C H<br />

Rh<br />

P<br />

O<br />

Ph<br />

NH<br />

H<br />

Rh<br />

S<br />

S<br />

S<br />

Ph<br />

P<br />

*<br />

P<br />

O<br />

CH 3<br />

CH 3<br />

P<br />

*<br />

H<br />

O<br />

Rh<br />

P<br />

S<br />

NH<br />

CO2Me Ph<br />

H 3 C<br />

O<br />

CH 3<br />

H<br />

N CO 2 Me<br />

Ph<br />

(R)<br />

Minor product<br />

Rh<br />

Ph<br />

CO 2 Me<br />

NH<br />

CH 3<br />

S<br />

S<br />

CO 2 Me<br />

NHAc<br />

(fast equilibrium)<br />

+<br />

Ph<br />

S<br />

(fast)<br />

P<br />

P<br />

CO 2 Me<br />

NHAc<br />

H 3 C<br />

H 3 C<br />

Rh<br />

rate<br />

limiting<br />

P<br />

P<br />

HN<br />

Ph<br />

H<br />

Rh<br />

O<br />

O<br />

Ph<br />

CO2Me NH<br />

O<br />

CH3 H 2<br />

(slow)<br />

Ph<br />

H<br />

Rh<br />

NH<br />

CH 3<br />

CO 2 Me<br />

minor complex<br />

NH<br />

Ph<br />

O<br />

H 2<br />

(slow)<br />

CO2Me H<br />

S S<br />

HN<br />

MeO 2 C<br />

Ph<br />

Ph<br />

S<br />

CH 3<br />

O<br />

Rh<br />

P<br />

P<br />

CO 2 Me<br />

P<br />

*<br />

P<br />

Rh H<br />

P<br />

*<br />

P<br />

*<br />

H<br />

H<br />

N<br />

MeO 2 C CH 3<br />

O<br />

(S)<br />

Major product


MeO<br />

MeO<br />

O<br />

O<br />

Free Energy<br />

H3C<br />

Rh<br />

P<br />

P<br />

HN CO2Me<br />

Ph<br />

O<br />

*<br />

MeO2C<br />

minor complex<br />

NH<br />

P<br />

*<br />

P<br />

Rh<br />

O<br />

Ph<br />

major complex<br />

(BINAP)RuAc 2 ,<br />

H 2 (100 atm)<br />

50 °C, CH 2 Cl 2<br />

MeO<br />

NAc<br />

OMe<br />

OMe<br />

CH3<br />

+<br />

+<br />

BINAP<br />

CO 2 H<br />

(BINAP)RuAc 2 ,<br />

H 2 (4 atm)<br />

Directed Asymmetric Hydrogenation<br />

OH<br />

HO<br />

O<br />

O<br />

(94 % ee)<br />

(BINAP)Ru (II), H2<br />

(96 - 99 % ee)<br />

O<br />

Ph Ph<br />

O<br />

P O<br />

Ru<br />

P O<br />

O<br />

Ph Ph<br />

Ru(AcO) 2 (BINAP),<br />

H 2 (135 atm), MeOH<br />

(97% ee)<br />

MeO<br />

MeO<br />

(95 - 100 % ee)<br />

Reaction Coordinate<br />

O<br />

O<br />

ACR 1990, 23, 345.<br />

MeO<br />

NAc<br />

OH<br />

R<br />

(S)-naproxen<br />

OMe<br />

OMe<br />

REDUCTIONS 38<br />

MeO2C<br />

H NH<br />

H<br />

Rh Ph<br />

P<br />

* P<br />

O CH3<br />

H 3 C<br />

(BINAP)RuAc2,<br />

H 2 (100 atm)<br />

50 °C, CH 2 Cl 2<br />

CO 2 H<br />

MeO<br />

MeO<br />

Rh<br />

P<br />

H<br />

NH<br />

CO2Me H<br />

Ph<br />

O<br />

P<br />

*<br />

O<br />

O<br />

97 % ee<br />

+<br />

+<br />

R<br />

(95 - 98 % ee)<br />

NH<br />

Tetrahydropapaverine<br />

OH OH<br />

Vitamin E<br />

CHO<br />

J. Am. Chem. Soc. 1987, 109, 1596<br />

OMe<br />

OMe


Kinetic Resolution by Directed Hydrogenation<br />

MeO 2C<br />

Hydrogenation of Carbonyls<br />

1,3-diketones:<br />

MeO 2C<br />

R 1<br />

R 1<br />

O O<br />

O O<br />

MeO<br />

R<br />

Ph<br />

CO 2Me<br />

Rh +<br />

P P<br />

Ph<br />

OMe<br />

H 2 (15 psi), L*Rh +<br />

0 °C<br />

(~60% conversion)<br />

CF3SO3 -<br />

MeO 2C<br />

R = Et > 96 % ee<br />

Ph 82 %<br />

OMe 93 %<br />

R 2<br />

R 2<br />

Ru (II)<br />

H 2 (700 psi)<br />

R 1<br />

OH O<br />

R 1<br />

R 2<br />

OH OH<br />

anti<br />

R 2<br />

R<br />

R 1<br />

REDUCTIONS 39<br />

CO 2Me<br />

O<br />

OH<br />

OH OH<br />

R 2<br />

+ R1 R 2<br />

R1= -CH3 R2= -CH3 anti : syn= 99 : 1<br />

-CH3 -CH2CH3 16 : 1 (90 % ee)<br />

-CH2CH3 -iPr 32 : 1<br />

-CH2CH3 -CH2CH3 49 : 1<br />

R 1<br />

Decarbonylations<br />

O<br />

O O<br />

O<br />

R H<br />

R 2<br />

M<br />

O<br />

R 2<br />

H 2<br />

H<br />

O<br />

anti<br />

H<br />

R 1<br />

Ru 2Cl 4(BINAP)<br />

Et 3N, H 2 (100 atm)<br />

(98% ee)<br />

R 1<br />

O OH<br />

MeO 2C<br />

R 2<br />

H<br />

O<br />

M<br />

OH<br />

Directed<br />

Reduction<br />

O<br />

H<br />

syn<br />

R2 R1 (Ph3P) 3RhCl<br />

R H<br />

O (Ph3P) 3RhCl<br />

- CO R Cl - CO<br />

syn<br />

R 1<br />

OH OH<br />

R 2<br />

JACS 1988, 110 , 6210<br />

R Cl


OHC<br />

Fe Fe<br />

(Ph 3 P) 3 RhCl<br />

PhCH3, Δ<br />

Diimide HN=NH<br />

Review: <strong>Organic</strong> <strong>Reactions</strong> 1991, 40J. Chem. Ed. 1965, 254<br />

- Only reduces double bonds<br />

- Syn addition of H2<br />

- will selectivley reduce the more strained double bond<br />

- Unstable reagent which is generated in situ<br />

K + O2C-N=N-CO2K + + AcOH → H-N=N-H<br />

H2N-NH2 + Cu 2+ + H2O2 → H-N=N-H<br />

O<br />

CO2MeK + - - +<br />

O2C N N CO2 K<br />

NO 2<br />

HN<br />

HN<br />

O<br />

O<br />

S<br />

HN=NH<br />

(76%)<br />

AcOH, MeOH<br />

(95%)<br />

O<br />

hν (254 nm) NH<br />

S<br />

O O<br />

N<br />

H N H<br />

hν, 16 hr<br />

(96%)<br />

NH<br />

Fe<br />

NO 2<br />

CO 2 Me<br />

Fe<br />

+ COS + CO<br />

REDUCTIONS 40<br />

JOC 1990, 55, 3688<br />

ACIEE 1965, 271<br />

JACS 1986, 108 , 5908<br />

TL 1993, 34, 4137<br />

Metal Hydrides<br />

Review on Metal Hydride Selectivity: Chem Soc Rev. 1976, 5 , 23<br />

Comprehensive <strong>Organic</strong> Synthesis 1991, vol 8, 1.<br />

Boron Hydrides Review: Chem. Rev. 1986, 86 , 763.<br />

NaBH4<br />

reduces ketones and aldehydes<br />

LiBH4<br />

reduces ketones, aldehydes, esters and epoxides. THF soluble<br />

LiBH4/TMSCl stronger reducing agent. ACIEE 1989, 28, 218.<br />

Zn(BH4)2 reduces ketones and aldehydes<br />

R4N BH4<br />

organic soluble (CH2Cl2) borohydrides. Synth Commun. 1990, 20, 907<br />

LiEt3BH reduces ketones, aldehydes, esters, epoxides and R-X<br />

Li s-Bu3BH reduces ketones, aldehydes, esters and epoxides (hindered borohydride)<br />

Na(CN)NH3 reduces iminium ions, ketones and aldehydes<br />

Na(AcO)3BH reduces ketones and aldehydes (less reactive)<br />

NaBH2S3 reduces ketones and aldehydes


Sodium Borohydride NaBH4<br />

- reduces aldehydes and ketones to alcohols<br />

- does not react with acids, esters, lactones, epoxides or nitriles.<br />

- Additives can increase reactivity.<br />

REDUCTIONS 41<br />

Sodium Cyanoborohydride Na (CN)BH3<br />

Reviews: Synthesis 1975, 136; OPPI 1979, 11 , 201<br />

- less reactive than NaBH4<br />

- used in reductive aminations (Borch Reduction)<br />

Na(CN)BH3 reduces iminium ions much more quickly than ketones or aldehydes<br />

R<br />

R<br />

N<br />

O<br />

R"- 2 NH, MeOH,<br />

AcO - NH 4 + , pH~ 8<br />

O<br />

CHO<br />

R<br />

R<br />

N +<br />

R'<br />

R'<br />

R"- 2 NH, MeOH,<br />

AcO - NH 4 +<br />

Na(CN)BH 3<br />

- Related to Eschweiler-Clark Reaction<br />

R NH 2<br />

H 2CO, HCO 2H<br />

H 2CO, H 2/Pd<br />

Na(CN)BH 3<br />

N<br />

R<br />

N<br />

H<br />

H<br />

R N<br />

R NH<br />

- Reduction of tosylhydrazones gives saturated hydrocarbon<br />

H<br />

O<br />

H<br />

1) TsNHNH 2, H +<br />

2) Na(CN)BH 3<br />

(90%)<br />

HO<br />

1) TsNHNH2, H<br />

HO<br />

O<br />

+<br />

2) Na(CN)BH3 (100%)<br />

- migration of the olefin occurs w/ α,β-unsaturated ketones<br />

- Epoxide opening<br />

O<br />

O<br />

OH<br />

(75%)<br />

or<br />

NaBH 3CN,<br />

BF 3•OEt 2, THF OH<br />

H<br />

HO<br />

H<br />

R'<br />

R'<br />

Me<br />

JACS 1971, 93 , 2897<br />

TL 1978, 1991<br />

JOC 1977, 42 , 3157<br />

JACS 1978, 100 , 7352<br />

JOC 1994, 59, 4004


REDUCTIONS 42<br />

NaBH2S3 Lalancette Reduction Synthesis 1972, 526 Can. J. Chem. 1970, 48 , 735.<br />

NaBH4/ NiCl2<br />

Chem. Pharm. Bull. 1981, 29 , 1159; Chem. Ber. 1984, 117 , 856.<br />

Ar-NO2 → Ar-NH2<br />

Ar-NO → Ar- NH2<br />

R2C=N-OH → R2CH-NH2<br />

NaBH4 / TiCl4<br />

Synthesis 1980, 695.<br />

R-COOH → R-CH2-OH<br />

R-COOR' → R-CH2-OH<br />

R-CN → R-CH2-NH2<br />

R-CONH2 → R-CH2-NH2<br />

R2C=N-OH → R2CH-NH2<br />

R-SO2-R' → R-S-R'<br />

NaBH4 / CeCl3 Luche Reduction<br />

reduced α,β-unsaturated ketones in a 1,2-fashion<br />

R<br />

O<br />

OH<br />

R<br />

R<br />

NaBH 4/ CeCl 3<br />

OH<br />

C 5H 11<br />

R<br />

CO 2Me<br />

O<br />

R<br />

R<br />

NaBH 4<br />

NaBH 4/ CeCl 3<br />

MeOH<br />

- selective reduction of ketones in the presence of aldehydes.<br />

O<br />

CHO<br />

CeCl 3<br />

H 2O<br />

CO 2Me<br />

NaBH4/ CeCl3 EtOH, H2O O<br />

R<br />

OH<br />

OH<br />

R<br />

OH<br />

R<br />

OH<br />

R<br />

OH<br />

+<br />

R<br />

OH<br />

CHO<br />

O<br />

R<br />

C 5 H 11<br />

1) NaBH 4 , CeCl 3<br />

2) work-up<br />

R<br />

H<br />

O CHO OH CHO<br />

NaBH4/ CeCl3 EtOH, H2O (78%)<br />

JCSCC 1978, 601<br />

JACS 1978, 100 , 2226<br />

CO 2Me<br />

CO 2Me<br />

JACS 1979, 101 , 5848


Zinc Borohydride Zn(BH4)2 Synlett 1993, 885.<br />

ZnCl2 (ether) + NaBH4 → Zn(BH4)2<br />

- Ether solution of Zn(BH4)2 is neutral- good for base sensitive compounds<br />

- Chelation contol model<br />

R 1<br />

O<br />

O<br />

R 2<br />

OR<br />

OH<br />

H<br />

Me<br />

R<br />

H -<br />

R 1<br />

Zn(BH 4) 2,<br />

Et 2O, 0°C<br />

RO<br />

O<br />

O<br />

O<br />

Zn<br />

R 2<br />

Zn<br />

H<br />

H B<br />

H H<br />

H<br />

OH<br />

OH<br />

REDUCTIONS 43<br />

R 1<br />

OH<br />

R 2<br />

OR<br />

TL 1983, 24 , 2653, 2657, 2661<br />

Na + (AcO)3BH , Me4N + (AcO)3BH<br />

Review: OPPI 1985, 17 , 317<br />

- used in Borch reductive amination TL 1990, 31 , 5595; Synlett 1990, 537<br />

- selective reduction of aldehydes in the presence of ketones<br />

Ph<br />

O<br />

O<br />

CHO<br />

Bu4N (AcO) 3BH<br />

C6H6, ↑↓<br />

(77%)<br />

O<br />

CHO<br />

Bu 4N (AcO) 3BH<br />

C 6H 6, ↑↓<br />

Ph<br />

AcO OAc<br />

B<br />

H<br />

O O<br />

-hydroxyl-directed reduction of ketones<br />

TL 1983, 24 , 273; TL 1984, 25 , 5449<br />

OH<br />

Me<br />

O<br />

Me<br />

O<br />

O<br />

N<br />

R<br />

Me<br />

O<br />

Ph<br />

H OAc<br />

O<br />

O<br />

B<br />

OAc<br />

H<br />

R<br />

major<br />

OH O<br />

Me 4 N (AcO) 3 BH,<br />

CH 3 CN, AcOH, −40°C<br />

R<br />

Na + BH(OAc) 3<br />

OH<br />

Me<br />

OH<br />

Me<br />

H OAc<br />

R<br />

O<br />

B<br />

OAc<br />

H<br />

O<br />

minor<br />

(98:2)<br />

OH<br />

OH<br />

OH<br />

Ph OH<br />

O<br />

O<br />

N<br />

OH<br />

Me<br />

O<br />

Ph<br />

50 : 1<br />

TL 1983, 24 , 4287<br />

TL 1986, 27 , 5939<br />

JACS 1988, 110 , 3560


MeO<br />

OH<br />

O<br />

O<br />

O<br />

BnO<br />

Me OH<br />

O<br />

Me<br />

CO 2 R<br />

OBn<br />

Na + BH(OAc) 3<br />

OBn<br />

Me 4 N (AcO) 3 BH,<br />

CH 3 CN, AcOH, −40°C<br />

MeO<br />

OH<br />

O<br />

OH<br />

BnO<br />

Me OH<br />

O<br />

CO 2R<br />

Na + BH(OAc) 3<br />

(Ph3P)2Cu BH4<br />

reduction of acid chlorides to aldehydes JOC 1989, 45, 3449<br />

reduction of alkyl and aryl azides to amines J. Chem. Res. (S) 1981, 17<br />

R4N BH4 organic soluble borohydride (CH2Cl2)<br />

R4N= BnEt3N or Bu4N Heterocylces 1980, 14, 1437, 1441<br />

reduction of amides to amines<br />

reduction of nitriles to amines<br />

OH<br />

Me<br />

OBn<br />

OBn<br />

HO<br />

MeO<br />

REDUCTIONS 44<br />

N<br />

O<br />

HO<br />

O<br />

OH<br />

O<br />

O<br />

O<br />

Me<br />

OH<br />

OH<br />

Me OH<br />

FK-506<br />

TL 1989, 30 , 1037<br />

BnEt3N BH4 / Me3SiCl<br />

reduction of carbolxylic acids to alcohols Synth. Commun. 1990, 20, 907<br />

LiBH4/ Me3SiCl ACIEE 1989, 28, 218.<br />

Alkyl Borohydrides<br />

Selectrides<br />

Li + M<br />

HB<br />

+ HB M<br />

LS-selectride<br />

3<br />

+ = Li (L-selectride)<br />

K (K-selectride)<br />

3<br />

- hindered reducing agent<br />

increased selectivity based on steric considerations<br />

HO<br />

O<br />

OH<br />

R<br />

CO 2H<br />

L-selectride<br />

THF<br />

HO<br />

OH<br />

OH<br />

R<br />

CO 2H<br />

OH<br />

JACS 1971, 93, 1491<br />

OH<br />

Me<br />

O<br />

CO 2R


- selective 1,4-reductions of α,β-unsaturated carbonyl cmpds.<br />

JOC 1975, 40 , 146; JOC 1976, 41 , 2194<br />

O O<br />

K-selectride, THF<br />

(99%)<br />

- 1,4-reduction generates an enolate which can be subsequently alkylated.<br />

O<br />

a) K-selectride, THF<br />

b)<br />

Br<br />

O<br />

REDUCTIONS 45<br />

K + HBPh3<br />

Syn. Comm. 1988, 18 , 89.<br />

- even greater 1,4-selectivity<br />

Li + HBEt3 (Super Hydride)<br />

- very reactive hydride source<br />

- reduces ketones, aldehydes, esters, epoxides and C-X (alkyl halides and sulfonates)<br />

HO<br />

HO<br />

Boranes<br />

Hydroboration<br />

H<br />

R<br />

R<br />

H<br />

HO<br />

O<br />

R'<br />

H<br />

OH<br />

1) TsCl, pyridine<br />

2) Li Et 3BH, THF<br />

B 2 H 6<br />

B 2H 6<br />

B 2 H 6<br />

Li Et 3BH, THF<br />

R<br />

R<br />

H<br />

HO<br />

HO<br />

H<br />

H<br />

HO<br />

HO<br />

CH 3<br />

B H HO H<br />

B H<br />

R'<br />

B<br />

H 2O 2, NaOH<br />

H 3O +<br />

H 2O 2, NaOH<br />

R<br />

H<br />

HCA 1983, 66 , 760<br />

HCA 1988, 71 , 872<br />

R'<br />

H<br />

R-CH 2CHO<br />

- BH3 reduces carboxylic acids to 1° alcohols in the presence of esters, nitro and cyano groups.<br />

- BH3 reduces amides to amines<br />

HO 2C<br />

O<br />

O<br />

BH 3•SMe 2<br />

- Boranes also reduce ketones and aldehydes to the corresponding alcohols.<br />

THF<br />

HO<br />

O<br />

O


Hindered Boranes<br />

9-BNN<br />

Disiamyl Borane (Sia 2BH)<br />

Catecholborane<br />

Pinylborane<br />

Alpine Borane<br />

IPC 2BCl (DIP-Cl)<br />

Thexyl Borane<br />

Borolane<br />

Oxazaborolidine<br />

B<br />

H<br />

B<br />

H<br />

O<br />

BH<br />

O<br />

BH<br />

H<br />

B<br />

B<br />

H<br />

B<br />

H<br />

=<br />

REDUCTIONS 46<br />

B<br />

H<br />

2 2<br />

2<br />

BCl<br />

B<br />

H<br />

Ph Ph<br />

O<br />

N<br />

BH<br />

Asymmetric Reduction of Unsymmetrical Ketones Using Chiral Boron Reagents<br />

Review: Synthesis 1992, 605.<br />

Alpine Borane Midland Reduction<br />

JACS 1979, 111 , 2352; JACS 1980, 112 , 867<br />

review: Chem. Rev. 1989, 89 , 1553.<br />

O alpine-borane<br />

THF, 0°C<br />

OH<br />

(94% ee)<br />

B<br />

BH<br />

2<br />

BCl<br />

Tetrahedron 1984, 40 , 1371


α-pinene<br />

B<br />

H<br />

Mechanism:<br />

9-BBN<br />

B<br />

H<br />

9-BBN<br />

R s<br />

O<br />

RL - works best for aryl- and acetylenic ketones<br />

- because of steric hindrance, alpine-borane is fairly unreactive<br />

Chloro Diisopinylcamphenylborane (DIP-Cl, Ipc2BCl) H.C. Brown<br />

Review: ACR 1992, 25 , 16. Aldrichimica Acta 1994, 27 (2), 43<br />

=<br />

B<br />

B<br />

R s<br />

REDUCTIONS 47<br />

2<br />

- Cl increases the Lewis acidity of boron making it a more reactive reagent<br />

- saturated ketones are reduced to chiral alcohols with varying degrees of ee.<br />

I<br />

PrO<br />

OMe<br />

O<br />

CO 2tBu<br />

Ipc 2B-Cl,<br />

THF<br />

Borolane (Masamune's Reagent)<br />

JACS 1986, 108 , 7404; JACS 1985, 107, 4549<br />

Asymmetric Hydroboration:<br />

O<br />

a)<br />

B<br />

H<br />

I<br />

PrO<br />

B<br />

H<br />

MeSO 3H, pentane<br />

B<br />

H<br />

b) H 2O 2, NaOH<br />

BCl<br />

OMe<br />

OH<br />

OH<br />

(90 % ee)<br />

OH<br />

(99.5% ee)<br />

CO 2tBu<br />

OH<br />

(80% ee)<br />

R L<br />

B<br />

JOC 1992, 57, 7044<br />

(99.5% ee)


Oxazaborolidine (Corey)<br />

JACS 1987, 109 , 7925; TL 1990, 31, 611l ; TL 1992, 33 , 4141<br />

I<br />

Ph Ph<br />

O<br />

N<br />

BH<br />

O<br />

O<br />

O<br />

R<br />

O OH<br />

O O<br />

N OH<br />

BMe<br />

O<br />

BzO<br />

Ph Ph<br />

BH 3 •THF, -0°C<br />

Aluminium Hydrides<br />

1. LiAlH4<br />

2. AlH3<br />

3. Li (tBuO)3AlH<br />

4. (iBu)2AlH DIBAL-H<br />

5. Na (MeOCH2CH2O)2AlH2<br />

O<br />

Cl<br />

O<br />

O<br />

OH<br />

94 % ee<br />

REDAL<br />

I<br />

(90% ee)<br />

Cl<br />

BzO<br />

Ph Ph<br />

O<br />

N<br />

B<br />

CH 3<br />

Catalytic<br />

OH<br />

O<br />

R<br />

OH<br />

OH<br />

+ BH 3<br />

> 90 % ee<br />

REDUCTIONS 48<br />

92 % ee<br />

86 % ee<br />

93 % ee<br />

TL 1988, 29 , 6409<br />

O<br />

O<br />

N<br />

H<br />

Fluoxetine (Prozac)<br />

OH<br />

90 : 10<br />

CF 3<br />

CH 3<br />

• HCl


REDUCTIONS 49<br />

Lithium Aluminium Hydride LiAlH4 (LAH) Chem. Rev. 1986, 86, 763 Org. Rxn. 1951, 6, 469.<br />

- very powerful reducing agent<br />

- used as a suspension in ether or THF<br />

- Reduces carbonyl, carboxylic acids and esters to alcohols<br />

- Reduces nitrile, amides and aryl nitro groups to amines<br />

- opens epoxides<br />

- reduces C-X bonds to C-H<br />

- reduces acetylenic alcohols trans-allylic alcohols<br />

R<br />

OH<br />

H 2 N N H NH2<br />

O<br />

O<br />

H<br />

O CO2 Me<br />

LAH<br />

LAH, THF, ↑↓<br />

(100%)<br />

LAH, THF<br />

(62%)<br />

Lindlar/ H 2<br />

O<br />

O<br />

R OH<br />

H 2 N N H<br />

H 2 N<br />

H<br />

HO<br />

N<br />

H<br />

OH<br />

NH 2<br />

NH 2<br />

TL 1988, 29 , 2793.<br />

BINAL-H (Noyori)<br />

- Chiral aluminium hydride for the asymmetric reduction of prochiral ketones<br />

BINOL<br />

O O<br />

OH<br />

OH<br />

BINAL-H,THF<br />

-100 to -78°C<br />

1) LiAlH 4<br />

2) ROH<br />

R= Me, Et, CF 3CH 2-<br />

HO<br />

O<br />

(94% ee)<br />

O<br />

BINAL-H<br />

H<br />

O Al OR<br />

Li +<br />

Tetrahedron 1990, 46 , 4809<br />

Intermediate for 3-Component Coupling Strategy to Prostaglandins<br />

O<br />

RO Li + RCu<br />

O<br />

RO<br />

OTBS<br />

OTBS<br />

CO 2Me<br />

Li + O -<br />

RO<br />

I<br />

OTBS<br />

O<br />

HO<br />

OH<br />

CO 2Me<br />

CO 2H<br />

PGE 2


REDUCTIONS 50<br />

Alane AlH3<br />

LiAlH4 + AlCl3 → AlH3<br />

- superior to LAH for the 1,2-reduction of α,β-unsaturated carbonyls to allylic alcohols<br />

Ph<br />

OMe<br />

O<br />

O<br />

Me<br />

O<br />

O<br />

O<br />

1) AlH 3, ether, 0°C<br />

2) H 3O +<br />

Diisobutyl Aluminium Hydride DIBAL or DIBAL-H<br />

H<br />

- Reduces ketones and aldehydes to alcohols<br />

- reduces lactones to hemi-acetals<br />

O<br />

(CH 2) n<br />

O<br />

DIBAL<br />

O Al<br />

O<br />

(CH2) n<br />

(stable complex)<br />

Al<br />

work up<br />

HO<br />

Me<br />

O<br />

OH<br />

CHO<br />

OH<br />

(CH2) n<br />

JACS 1989, 111 , 6649<br />

OH<br />

O<br />

(CH2) n<br />

lactol<br />

- reduces esters to alcohols<br />

- under carefully controlled reactions conditions, will partially reduce an ester to an aldehyde<br />

Al<br />

O<br />

DIBAL<br />

R CO2Me R C OMe<br />

HO<br />

O<br />

HO<br />

O<br />

iPrO 2C<br />

O<br />

OH<br />

R OH<br />

OBn<br />

OBn<br />

O<br />

OBn O<br />

OBn<br />

CO 2iPr<br />

O<br />

TMS-Cl, Et 3N<br />

O<br />

H<br />

if complex<br />

is stable<br />

R CHO<br />

DIBAL, CH 2Cl 2<br />

CH 2Cl 2 R OSiMe 3<br />

Reduction of O-Methyl hydroxamic acids<br />

R<br />

O<br />

R'<br />

R'-M<br />

O<br />

O<br />

R N OMe<br />

Me<br />

DIBAL, CH 2 Cl 2<br />

if complex<br />

is unstable<br />

OHC<br />

DiBAl-H<br />

HO<br />

CH 2 Cl 2 , -78°C<br />

DIBAL or LAH<br />

fast<br />

R CHO R CH2 OH<br />

O<br />

OBn<br />

HO OH<br />

OBn<br />

OH<br />

OBn<br />

H OBn<br />

CHO<br />

O<br />

R H<br />

O<br />

R H<br />

JACS 1990, 112 , 9648<br />

TL 1998, 39, 909<br />

TL 1981, 22 , 3815


Sodium Bis(2-Methoxyethoxy)Aluminium Hydride REDAL<br />

<strong>Organic</strong> <strong>Reactions</strong> 1988, 36, 249 <strong>Organic</strong> <strong>Reactions</strong> 1985, 36, 1.<br />

MeO<br />

MeO<br />

Na +<br />

- "Chelation" directed opening fo allylic epoxides<br />

OH<br />

R OH<br />

O<br />

O<br />

Al<br />

H<br />

H<br />

REDUCTIONS 51<br />

REDAL O DIBAL-H R OH TL 1982, 23 , 2719<br />

R OH<br />

OH<br />

1,3-diol<br />

Sharpless<br />

epoxidation<br />

O<br />

Ph OH Ph OH<br />

HO<br />

Me<br />

Me<br />

O<br />

BnO<br />

O<br />

Me<br />

O<br />

O<br />

OH<br />

OH OH OH<br />

Amphotericin B<br />

OH<br />

REDAL<br />

DME<br />

OH<br />

+<br />

LiAlH 4 2 : 98<br />

AlH 3 95 : 5<br />

BnO<br />

OH<br />

REDAL 150 : 1<br />

DIBAL 1 : 13<br />

OH<br />

OH O<br />

O<br />

HO<br />

OH<br />

O Me<br />

OH<br />

NH 2<br />

1,2-diol<br />

OH<br />

Ph OH<br />

OH<br />

OH + BnO<br />

OH<br />

JOC 1988, 53 , 4081<br />

OH<br />

O<br />

Me<br />

HO OH<br />

Me<br />

OH<br />

Me<br />

O<br />

Me<br />

O sugar<br />

O O<br />

Me<br />

Erythromycin A<br />

Lithium Tri(t-Butoxy)aluminium Hydride Li + (tBuO)3AlH<br />

- hindered aluminium hydride, will only react with the most reactive FG's<br />

R-CO 2H<br />

Cl<br />

H<br />

N +<br />

Me<br />

Me<br />

pyridine, -30°C<br />

O<br />

R Cl<br />

O<br />

R O<br />

H<br />

Li(tBuO) 3AlH<br />

Me<br />

N +<br />

Me<br />

O<br />

R H<br />

Li(tBuO) 3AlH<br />

CuI (cat), -78°C<br />

Meerwein-Ponndorf-Verley Reduction: opposite of Oppenauer oxidation<br />

Synthesis 1994, 1007 <strong>Organic</strong> <strong>Reactions</strong> 1944, 2, 178<br />

O<br />

O<br />

O<br />

H<br />

O AcHN<br />

O<br />

Al(O-Pr) 3, iPrOH<br />

O<br />

O<br />

R H<br />

H<br />

O AcHN<br />

OH<br />

sugar<br />

TL 1983, 24 , 1543


Asymmetric M-P-V Reduction<br />

X O<br />

Ph<br />

O<br />

Bn<br />

N<br />

Sm<br />

I<br />

O<br />

iPrOH, THF<br />

Ph<br />

X OH<br />

X= H, Cl, OMe<br />

yield: 83-100 %<br />

96% ee<br />

JACS 1993, 115, 9800<br />

Dissolving Metal Reductions<br />

Birch Reductions reduction of aromatic rings <strong>Organic</strong> <strong>Reactions</strong> 1976, 23, 1.<br />

Tetrahedron 1986, 42, 6354. Comprehensice <strong>Organic</strong> Synthesis 1991, vol. 8, 107.<br />

- Li, Na or K metal in liquid ammonia<br />

M, NH 3<br />

R R R<br />

_•<br />

H H<br />

•<br />

H<br />

REDUCTIONS 52<br />

H H<br />

R<br />

H H<br />

- position of the double bond in the final product is dependent of the nature of the substituent<br />

R<br />

R R<br />

R= ERG<br />

R= EWG<br />

- ketones and nitro groups are also reduced but esters and nitrile are not.<br />

- α,β-unsaturated carbonyl cmpds are reduced in a 1,4-fashion to give an enolate which can be<br />

subsequently used to trap electrophiles<br />

Other Metals<br />

- Mg<br />

HO<br />

O<br />

Me<br />

EtO 2C<br />

O<br />

H<br />

O<br />

Me<br />

O O<br />

Me<br />

Me<br />

O<br />

K, NH 3,<br />

MeOH, -78°C<br />

(92%)<br />

a) Li, NH 3, tBuOH<br />

b) CH 2O<br />

Mg, MeOH<br />

X X<br />

Mg, MeOH<br />

(98%)<br />

- Zn reduction of α-halocarbonyls<br />

O<br />

Br<br />

Zn, PhH,<br />

DMSO, MeI<br />

HO<br />

O<br />

HO<br />

Me<br />

EtO 2C<br />

O<br />

H<br />

O<br />

Me<br />

O O<br />

Me<br />

Me<br />

OH<br />

X- CN, CO 2R, CONR' 2<br />

O<br />

Me<br />

JOC 1991, 56 , 6255<br />

JOC 1984, 59 , 3685<br />

TL 1987, 28 , 5287<br />

JACS 1967, 89, 5727


R O<br />

O<br />

Cl<br />

Zn<br />

R-OH<br />

X Y<br />

R<br />

R'<br />

Zn, AcOH<br />

X= Cl, Br, I<br />

Y= X, OH<br />

"Copper Hydrides"<br />

LAH or DIBAL-H + MeCu → "CuH"<br />

- selective 1,4-reduction of α,β-unsaturated ketones (even hindered enones)<br />

O<br />

O<br />

H<br />

H<br />

O<br />

1) MeCu, DIBAL,<br />

HMPA, THF, -50°C<br />

2) MeLi<br />

3)<br />

Br<br />

MeCu, DIBAL, HMPA<br />

THF, -50°C<br />

(85%)<br />

O<br />

O<br />

H<br />

H H<br />

O<br />

REDUCTIONS 53<br />

R<br />

CH<br />

JOC 1987,52 , 439<br />

CH R'<br />

JOC 1986,51 , 537<br />

[(Ph3P)CuH]6 Stryker Reagent<br />

JACS 1988, 110 , 291 ; TL 1988, 29 , 3749<br />

- 1,4-reduction of α,β-unsaturated ketones and esters; saturated ketones are not reduced<br />

- halides and sulfonates are not reduced<br />

- 1,4-reduction gives an intermediate enolate which can be trapped with electrophiles.<br />

O Br O<br />

[(Ph 3 P)CuH] 6 , THF<br />

TL 1990, 31 , 3237<br />

Silyl Hydrides<br />

- Hydrosilylation<br />

Et3SiH + (Ph3P)3RhCl (cat)<br />

- selective 1,4-reduction of enones, 1,2-reduction of saturated ketones to alchohols.<br />

O O SiEt3 H3O O<br />

+<br />

Et3SiH, (Ph3P) 3RhCl (cat)<br />

O<br />

O<br />

O<br />

iPr 3SiH, Et 2O<br />

Si O Pt<br />

2 2<br />

O<br />

O<br />

OSi(iPr) 3<br />

(87%)<br />

TL 1972, 5085<br />

J. Organomet. Chem. 1975, 94 , 449<br />

JOC 1994, 59, 2287<br />

- Buchwald Reduction<br />

JACS 1991, 113 , 5093<br />

- catalytic reagent prepared from Cp2TiCl2 + nBuLi and stoichometric (Et)3SiH in THF will<br />

reduce ester, ketones and aldehydes to alcohols under very mild conditions.<br />

- α,b− unsaturated esters are reduced to allylic alcohols<br />

- free hydroxyl groups, aliphatic halides and epoxides are not reduced


Clemmensen Reduction <strong>Organic</strong> <strong>Reactions</strong> 1975, 22, 401<br />

Comprehensive <strong>Organic</strong> Synthesis 1991, vol 8, 307.<br />

- reduction of ketones to saturated hydrocarbons<br />

O<br />

Zn(Hg), HCl<br />

Wolff-Kishner Reduction <strong>Organic</strong> <strong>Reactions</strong> 1948, 4, 378<br />

Comprehensive <strong>Organic</strong> Synthesis 1991, vol. 8, 327.<br />

- reduction of ketones to saturated hydrocarbons<br />

O<br />

H 2N-NH 2, KOH<br />

H<br />

H<br />

H<br />

H<br />

REDUCTIONS 54<br />

Radical Deoxygenation<br />

Review: Tetrahedron 1983, 39 , 2609 Chem. Rev. 1989, 89, 1413.<br />

Comprehensive <strong>Organic</strong> Synthesis 1991, vol. 8, 811<br />

Tetrahedron 1992, 48, 2529<br />

W. B. Motherwell, D. Crich Free Radical Chain <strong>Reactions</strong> in <strong>Organic</strong> Synthesis<br />

(Academic Press: 1992)<br />

- free radical reduction of halide, thio ethers, xanthates, thionocarbanates by a radical chain<br />

mechanism.<br />

R 3C-X<br />

X= -Cl, -Br, -I, -SPh,<br />

nBu 3Sn-H, AIBN<br />

Ph-CH 3 ↑↓<br />

S<br />

O Ph<br />

R 3C-H<br />

S<br />

S<br />

, O SMe , O N<br />

Barton-McCombie Reduction<br />

JCS P1 1975, 1574<br />

R3C-X → R3C-H X= -OC(=S)-SMe, -OC(=S)-Im, -OC(=S)Ph<br />

HO<br />

Ph<br />

O<br />

O<br />

HO<br />

O<br />

O<br />

O<br />

HO<br />

AcHN<br />

O<br />

O<br />

O<br />

OBn<br />

R<br />

NaH, imidazole,<br />

THF, CS2, MeI<br />

Cl<br />

a) Ph NMe2 , THF<br />

+<br />

b) H 2 S, pyridine<br />

N<br />

(90%)<br />

S<br />

N N<br />

(CH 2 Cl) 2<br />

59%<br />

N<br />

Ph<br />

S<br />

N<br />

O<br />

Ph<br />

O<br />

O<br />

N<br />

O<br />

S<br />

O<br />

O<br />

O<br />

O<br />

AcHN<br />

S<br />

O<br />

SMe<br />

Xanthate<br />

Thionobenzoates<br />

O<br />

O<br />

OBn<br />

Thiocarbonyl Imidazolides<br />

N<br />

nBu 3 SnH, AIBN<br />

PhCH 3 , reflux<br />

(85%)<br />

N<br />

N<br />

CN CN<br />

AIBN<br />

R R<br />

nBu 3 SnH, AIBN<br />

PhCH 3 , reflux<br />

(73%)<br />

nBu 3 SnH, AIBN<br />

PhCH 3 , reflux<br />

(57%)<br />

Ph<br />

O<br />

O<br />

O<br />

O<br />

O<br />

AcHN<br />

O<br />

O<br />

O<br />

OBn


- Cyclic Thionocarbonates: deoxygenation of 1,2- and 1,3-diols to alcohols<br />

HO<br />

MeO<br />

MeO<br />

OH<br />

O<br />

OMe<br />

S<br />

REDUCTIONS 55<br />

N N S<br />

nBu3SnH, AIBN<br />

O<br />

HO<br />

N N O O PhCH O<br />

3 , reflux<br />

JCS P1 1977, 1718<br />

MeO<br />

MeO<br />

MeO<br />

(61%)<br />

MeO<br />

OMe<br />

OMe<br />

- Thionocarbonate Modification (Robbins)<br />

JACS 1981, 103 , 932; JACS 1983, 105 , 4059.<br />

iPr O<br />

Si<br />

iPr<br />

O<br />

O<br />

B<br />

Si O OH<br />

iPr iPr<br />

HO<br />

O<br />

O<br />

O<br />

PhOC(S)Cl,<br />

pyridine, DMAP<br />

> 90%<br />

O<br />

S<br />

O<br />

O<br />

OAr<br />

nBu3SnH,<br />

AIBN, PhCH3 88-91%<br />

iPr O<br />

Si<br />

iPr<br />

O<br />

O<br />

B<br />

Si O O<br />

iPr iPr<br />

S<br />

Ar= 2,4,6-trichlorophenyl,<br />

4-fluorophenyl<br />

O<br />

O CH3<br />

O<br />

O<br />

O<br />

OPh<br />

- N-Phenyl Thionocarbamates Tetrahedron 1994, 34, 10193.<br />

iPr O<br />

Si<br />

iPr<br />

O<br />

Si O<br />

O<br />

U<br />

O<br />

S<br />

PhNCS<br />

NaH, THF<br />

(78%)<br />

iPr iPr NHPh<br />

- Methyl oxylates<br />

OC<br />

O<br />

CO 2 Me<br />

OAc<br />

MeO 2CCOCl<br />

THF<br />

iPr O<br />

Si<br />

iPr<br />

O<br />

O<br />

U<br />

Si O O<br />

iPr iPr<br />

O<br />

MeO 2C O<br />

OC<br />

Thiocarbamates<br />

O<br />

CO 2Me<br />

Methyl Oxylate Esters<br />

nBu 3SnH, AIBN<br />

PhCH 3, reflux<br />

(58-78%)<br />

Tetrahedron 1991, 47, 8969<br />

Best method for deoxygenation<br />

of primary alcohols<br />

S<br />

NHPh<br />

OAc<br />

(TMS) 3SiH, AIBN<br />

PhH, reflux<br />

(93%)<br />

nBu 3SnH, AIBN<br />

PhCH 3, reflux<br />

iPr O<br />

iPr<br />

Si<br />

O<br />

Si O<br />

iPr iPr<br />

O<br />

iPr O<br />

Si<br />

iPr<br />

O<br />

O<br />

U<br />

Si O<br />

iPr iPr<br />

OC<br />

O<br />

CO 2Me<br />

- Water Soluble Tin Hydride: [MeO(CH2)2O(CH2)3]3SnH / 4,4'-Azo(bis-4-cyanovaleric acid)<br />

TL 1990, 31 , 2957<br />

- Silyl Hydride Radical Reducing Agents<br />

- replacement for nBu3SnH<br />

(Me3Si)3SiH Chem Rev. 1995, 95, 1229.<br />

JOC 1991, 56 , 678; JOC 1988, 53 , 3641; JACS 1987, 109 , 5267<br />

Ph2SiH2 / Et3B / Air<br />

TL 1990, 31 , 4681; TL 1991, 32 , 2569<br />

- hypophosphorous acid as radical chain carrier<br />

JOC 1993, 58, 6838<br />

B<br />

OAc


REDUCTIONS 56<br />

- Photosensitized electron transfer deoxygenation of m-trifluoromethylbenzoates<br />

JACS 1986, 108, 3115, JOC 1996, 61, 6092, JOC 1997, 62, 8257<br />

iPr O<br />

Si<br />

iPr<br />

O<br />

O<br />

U<br />

Si O O<br />

iPr iPr<br />

O<br />

N-methylcarbazole,<br />

hν, iPrOH, H 2O<br />

CF 3<br />

Dissolving Metal : JACS 1972, 94, 5098<br />

O<br />

O<br />

H<br />

OH<br />

nBuLi,<br />

(Me 2N) 2P(O)Cl<br />

Radical Decarboxylation: Barton esters<br />

Aldrichimica Acta 1987, 20 (2), 35<br />

Radical Deamination<br />

N<br />

S R<br />

hn or Δ<br />

O<br />

O<br />

(85%)<br />

N<br />

O<br />

H<br />

S<br />

O<br />

P(NMe 2 ) 2<br />

O<br />

O<br />

R<br />

iPr O<br />

Si<br />

iPr<br />

O<br />

O U<br />

Si O<br />

iPr iPr<br />

Li, EtNH 2,<br />

THF, tBuOH<br />

nBu 3SnH, Δ<br />

- CO 2<br />

Comprehensive <strong>Organic</strong> Synthesis 1991, vol. 8, 811<br />

Reduction of Nitroalkanes JOC 1998, 63, 5296<br />

O<br />

O<br />

NO 2<br />

Bu 3SnH, PhSiH 3<br />

initiator, PhCH 3 (reflux)<br />

(75%)<br />

O<br />

O<br />

O<br />

O<br />

R H<br />

CH 3<br />

H


Carey & Sundberg Chapter 13.1 problems # 1; 2; 3a, b, c ;<br />

Smith: Chapter 7<br />

PROTECTING GROUPS 57<br />

Protecting Groups<br />

T.W. Greene & P.G.M. Wuts, Protective Groups in <strong>Organic</strong> Synthesis (2nd edition) J.<br />

Wiley & Sons, 1991.<br />

P. J. Kocienski, Protecting Groups, Georg Thieme Verlag, 1994<br />

1. Hydroxyl groups<br />

2 Ketones and aldehydes<br />

3. Amines<br />

4. Carboxylic Acids<br />

- Protect functional groups which may be incompatible with a set of reaction<br />

conditions<br />

- 2 step process- must be efficient<br />

- Selectivity a. selective protection<br />

b. selective deprotection<br />

Hydroxyl Protecting Groups<br />

Ethers<br />

Methyl ethers<br />

R-OH → R-OMe difficult to remove except for on phenols<br />

Formation: - CH2N2, silica or HBF4<br />

- NaH, MeI, THF<br />

Cleavage: - AlBr3, EtSH<br />

- PhSe -<br />

- Ph2P -<br />

- Me3SiI<br />

O<br />

O<br />

OMe<br />

OBz<br />

AlBr 3, EtSH<br />

Methoxymethyl ether MOM<br />

R-OH → R-OCH2OMe stable to base and mild acid<br />

Formation: - MeOCH2Cl, NaH, THF<br />

- MeOCH2Cl, CH2Cl2, iPr2EtN<br />

Cleavage - Me2BBr2 TL 1983, 24 , 3969<br />

O<br />

O<br />

OH<br />

OBz<br />

TL 1987, 28 , 3659


PROTECTING GROUPS 58<br />

Methoxyethoxymethyl ethers (MEM)<br />

R-OH → R-OCH2OCH2CH2OMe stable to base and mild acid<br />

Formation: - MeOCH2CH2OCH2Cl, NaH, THF<br />

- MeOCH2CH2OCH2Cl, CH2Cl2, iPr2EtN TL 1976, 809<br />

Cleavage - Lewis acids such as ZnBr2, TiCl4, Me2BBr2<br />

MEM-O<br />

C 5H 11<br />

O<br />

O-Si(Ph) 2tBu<br />

S<br />

B<br />

S<br />

Cl<br />

C 5H 11<br />

- can also be cleaved in the presence of THP ethers<br />

HO<br />

O<br />

O-Si(Ph) 2tBu<br />

Methyl Thiomethyl Ethers (MTM)<br />

R-OH → R-OCH2SMe Stable to base and mild acid<br />

Formation: - MeSCH2Cl, NaH, THF<br />

Cleavage: - HgCl2, CH3CN/H2O<br />

- AgNO3, THF, H2O, base<br />

Benzyloxymethyl Ethers (BOM)<br />

R-OH → R-OCH2OCH2Ph Stable to acid and base<br />

Formation: - PhOCH2CH2Cl, CH2Cl2, iPr2EtN<br />

Cleavage: - H2/ PtO2<br />

- Na/ NH3, EtOH<br />

Tetrahydropyranyl Ether (THP)<br />

R-OH<br />

O<br />

H + , PhH<br />

R<br />

O<br />

O<br />

Stable to base, acid labile<br />

Formation - DHP (dihydropyran), pTSA, PhH<br />

Cleavage: - AcOH, THF, H2O<br />

- Amberlyst H-15, MeOH<br />

Ethoxyethyl ethers (EE)<br />

JACS 1979, 101 , 7104; JACS 1974, 96 , 4745.<br />

R-OH<br />

O<br />

H +<br />

R<br />

O<br />

Benzyl Ethers (R-OBn)<br />

R-OH → R-OCH2Ph stable to acid and base<br />

O<br />

TL 1983, 24 , 3965, 3969<br />

(R-OEE) base stable, acid labile<br />

Formation: - KH, THF, PhCH2Cl<br />

- PhCH2OC(=NH)CCl3, F3CSO3H JCS P1 1985, 2247<br />

Cleavage: - H2 / PtO2<br />

- Li / NH3


2-Napthylmethyl Ethers (NAP) JOC 1998, 63, 4172<br />

formation: 2-chloromethylnapthalene, KH<br />

cleavage: hydrogenolysis<br />

BnO<br />

OH O ONAP H 2, Pd/C<br />

(86%)<br />

BnO<br />

PROTECTING GROUPS 59<br />

OH O OH<br />

p- Methoxybenzyl Ethers (PMB)<br />

Formation: - KH, THF, p-MeOPhCH2Cl<br />

- p-MeOPhCH2OC(=NH)CCl3, F3CSO3H TL 1988, 29 , 4139<br />

Cleavage: - H2 / PtO2<br />

- Li / NH3<br />

- DDQ<br />

- Ce(NH4)2(NO3)6 (CAN)<br />

- e -<br />

o-Nitrobenzyl ethers<br />

Review: Synthesis 1980, 1; <strong>Organic</strong> Photochemistry, 1987, 9 , 225<br />

R-OH<br />

NaH, THF<br />

NO 2<br />

Cl R O<br />

O 2N<br />

Cleavage: - photolysis at 320 nm<br />

HO<br />

O<br />

HO<br />

O<br />

HO<br />

OH<br />

NO 2<br />

hν, 320 nm,<br />

pyrex, H 2O<br />

HO<br />

O<br />

HO<br />

OH<br />

HO<br />

OH<br />

p-Nitrobenzyl Ether TL 1990, 31 , 389<br />

-selective removal with DDQ, hydrogenolysis or elctrochemically<br />

9-Phenylxanthyl- (pixyl, px) TL 1998, 39, 1653<br />

Formation:<br />

ROH +<br />

Removal:<br />

Ph OR<br />

Trityl Ethers -CPh3 = Tr<br />

R-OH → R-OCPh3<br />

O<br />

Ph Cl<br />

O<br />

hν (300 nm)<br />

CH 3CN,H 2O<br />

formation: - Ph3C-Cl, pyridine, DMAP<br />

- Ph3C + BF4 -<br />

Cleavage: - mild acid<br />

pyridine<br />

ROH +<br />

JOC 1972, 37 , 2281, 2282.<br />

Ph OR<br />

O<br />

O<br />

Ph OH<br />

- selective for 1° alcohols<br />

- removed with mild acid; base stable


Methoxytrityl Ethers<br />

JACS 1962, 84 , 430<br />

- methoxy group(s) make it easier to remove<br />

R 2<br />

R 1<br />

C O R<br />

R 3<br />

(p-Methoxyphenyl)diphenylmethyl ether<br />

4'-methoxytrityl MMTr-OR<br />

PROTECTING GROUPS 60<br />

Di-(p-methoxyphenyl)phenylmethyl ether<br />

4',4'-dimethoxytrityl DMTr-OR<br />

Tri-(p-methoxyphenyl)methyl ether<br />

4',4',4'-trimethoxytrityl TMTr-OR<br />

Tr-OR < MMTr-OR < DMTr-OR


PROTECTING GROUPS 61<br />

Silyl Ethers Synthesis 1985, 817 Synthesis 1993, 11 Synthesis 1996, 1031<br />

R-OH → R-O-SiR3<br />

formation: - R3Si-Cl, pyridine, DMAP<br />

- R3Si-Cl, CH2Cl2 (DMF, CH3CN), imidazole, DMAP<br />

- R3Si-OTf, iPr2EtN, CH2Cl2<br />

Trimethylsilyl ethers Me3Si-OR TMS-OR<br />

- very acid and water labile<br />

- useful for transiant protection<br />

Triethylsilyl ethers Et3Si-OR TES-OR<br />

- considerably more stable that TMS<br />

- can be selectively removed in the presence of more robust silyl ethers with with F- or<br />

mild acid<br />

TESO<br />

O<br />

OTBS<br />

H 2 O/ACOH/THF<br />

(3:5:11), 15 hr O<br />

(97%)<br />

Triisopropylsilyl ethers iPr3Si-OR TIPS-OR<br />

- more stabile to hydrolysis than TMS<br />

Phenyldimethylsilyl ethers<br />

J. Org. Chem. 1987, 52 , 165<br />

OH<br />

OTBS<br />

Liebigs Ann. Chem. 1986, 1281<br />

t-Butyldimethylsilyl Ether tBuMe2Si-OR TBS-OR TBDMS-OR<br />

JACS 1972, 94 , 6190<br />

- Stable to base and mild acid<br />

- under controlled condition is selective for 1° alcohols<br />

TBSO<br />

t-butyldimethylsilyl triflate tBuMe2Si-OTf TL 1981, 22 , 3455<br />

- very reactive silylating reagent, will silylate 2° alcohols<br />

cleavage:<br />

- acid<br />

- F- (HF, nBu4NF, CsF, KF)<br />

O<br />

OTBS<br />

CO 2Me<br />

HF, CH 3CN<br />

(70%)<br />

HO<br />

O<br />

HO<br />

CO 2Me<br />

JCS Perkin Trans. 1 1981, 2055<br />

t-Butyldiphenylsilyl Ether tBuPh2Si-OR TBDPS-OR ∑-OR<br />

- stable to acid and base<br />

- selective for 1° alcohols<br />

- Me3Si- and iPr3Si groups can be selectively removed in the presence of TBS or TBDPS<br />

groups.<br />

- TBS can be selectively removed in the presence of TBDPS by acid hydrolysis.<br />

TL 1989, 30 , 19


Esters<br />

PROTECTING GROUPS 62<br />

cleavage - F- - Fluoride sources: - nBu4NF (basic reagent)<br />

- HF / H2O /CH3CN TL 1979, 3981.<br />

- HF•pyridine Synthesis 1986, 453<br />

- SiF4. CH2Cl2<br />

TL 1992, 33 , 2289<br />

Me<br />

tBu<br />

Me<br />

O<br />

Si<br />

O<br />

Si<br />

O<br />

Ph<br />

tBu<br />

Ph<br />

OTHP<br />

Me<br />

Si tBu<br />

Me<br />

R-OH → R-O2CR'<br />

AcOH / THF/ H 2O<br />

PPTS / EtOH<br />

Me<br />

tBu<br />

Me<br />

O<br />

Si<br />

Si<br />

O<br />

OH<br />

Ph<br />

tBu<br />

Formation: - "activated acid", base, solvent, (DMAP)<br />

Ph<br />

OH<br />

JOC 1981, 46 ,1506<br />

TL 1989, 30 , 19.<br />

JACS 1984, 106 , 3748<br />

Activated Acids Chem. Soc. Rev. 1983, 12, 129 Angew. Chem. Int. Ed. Engl. 1978, 17, 569.<br />

RCO2H → "activated acid" → carboxylic acid derivative (ester, amide, etc.)<br />

Acid Chlorides<br />

O O<br />

N N<br />

R OH<br />

1. SOCl2<br />

2. PCl5<br />

3. (COCl)2<br />

Anhydrides<br />

R Cl<br />

Activating Agents:<br />

Carbonyl Diimidazole<br />

O<br />

R OH<br />

+<br />

2<br />

R OH<br />

O<br />

O<br />

N N<br />

N N<br />

P 2O 5<br />

O<br />

+<br />

R N<br />

N<br />

acyl pyridinium ion<br />

(more reactive)<br />

O<br />

R O<br />

O<br />

R N<br />

O<br />

R<br />

N<br />

Acyl Imidazole<br />

O<br />

R N<br />

+ CO +<br />

N<br />

N +<br />

NH


O<br />

R OH<br />

O<br />

Dicyclohexylcarbodiimide<br />

+<br />

R OH<br />

+<br />

N C N<br />

O<br />

R O<br />

C 6H 11<br />

NH<br />

C<br />

N<br />

C 6H 11<br />

PROTECTING GROUPS 63<br />

Nu:<br />

R<br />

O<br />

Nu<br />

+<br />

C 6 H 11 NH<br />

Ketene formation is a common side reaction- scambling of chiral centers<br />

R<br />

H<br />

O<br />

O<br />

C<br />

N<br />

C 6 H 11<br />

NH<br />

C 6H 11<br />

R<br />

C O<br />

"ketene"<br />

Hydroxybenzotriazole (HOBT) - reduces ketene formation<br />

O<br />

R O<br />

C 6H11 NH<br />

C<br />

N<br />

C 6H 11<br />

N-Hydroxysuccinimide (NHS)<br />

O<br />

R O<br />

C 6H 11<br />

NH<br />

C<br />

N<br />

C 6H 11<br />

+<br />

+<br />

HO<br />

N<br />

O<br />

O<br />

N<br />

N<br />

N<br />

OH<br />

O<br />

R O<br />

O<br />

R O<br />

2,2'-Dipyridyl Disulfide (Aldrithiol, Corey Reagent)<br />

Aldrichimica Acta 1971, 4 , 33<br />

Ph 3 P:<br />

N S S N R S<br />

O<br />

+<br />

N<br />

N N<br />

N<br />

O<br />

O<br />

N N SH<br />

Mukaiyama's Reagent (2-Chloro-1-methyl pyridinium Iodide or 2-Fluoro-1methyl<br />

pyridinium p-toulenesulfonate)<br />

Aldrichimica Acta 1987, 20 , 54<br />

Chem. Lett. 1975, 1045; 1159; 1976, 49; 1977, 575<br />

O<br />

R OH<br />

+<br />

O<br />

TsO<br />

F N<br />

R O<br />

-<br />

+<br />

Me<br />

+<br />

N<br />

Me<br />

I -<br />

+<br />

O<br />

N<br />

H<br />

Ph 3P=O<br />

Acetates<br />

R-OH → R-O2CCH3<br />

- stable to acid and mild base<br />

- not compatable with strong base or strong nucleophiles such as organometallic<br />

reagents<br />

Formation: - acetic anhydride, pyridine<br />

- acetyl chloride, pyridine<br />

C 6 H 11


Chloroacetates<br />

PROTECTING GROUPS 64<br />

Cleavage: - K2CO3, MeOH, reflux<br />

- KCN, EtOH, reflux<br />

- NH3, MeOH<br />

- LiOH, THF, H2O<br />

- enzymatic hydrolysis (Lipase) Org. Rxns. 1989, 37, 1.<br />

Cl<br />

Cl<br />

O<br />

OAc<br />

OAc<br />

Porcine Pancreatic<br />

Lipase<br />

OAc<br />

OH<br />

TL 1988, 30 , 6189<br />

(96% ee)<br />

- can be selectively cleaved with Zn dust or thiourea.<br />

O<br />

AcO<br />

O Me<br />

O<br />

O<br />

OAc<br />

O<br />

Me O<br />

O<br />

O<br />

OR<br />

Cl<br />

H 2NNHCOSH<br />

HO<br />

AcO<br />

Me<br />

HO<br />

O<br />

OAc<br />

O<br />

Me O<br />

OH<br />

OR<br />

JCS CC 1987, 1026<br />

Trifluoroacetates<br />

Formation: - with trifluoroacetic anhydride or trifluoroacetyl chloride<br />

Cleavage: - K2CO3, MeOH<br />

Pivaloate (t-butyl ester)<br />

- Fairly selective for primary alcohols<br />

Formation: - tbutylacetyl chloride or t-butylacetic anhydride<br />

Cleavage: - removed with mild base<br />

Benzoate (Bz)<br />

- more stable to hydrolysis than acetates.<br />

Formation: - benzoyl chloride, benzoic anhydride, benzoyl cyanide (TL 1971, 185) ,<br />

benzoyl tetrazole (TL 1997, 38, 8811)<br />

Cleavage: - mild base<br />

- KCN, MeOH, reflux<br />

1,2 and 1,3- Diols Synthesis 1981, 501 Chem. Rev. 1974, 74, 581<br />

R<br />

OH<br />

Isopropylidenes (acetonides)<br />

R<br />

OH<br />

OH<br />

OH<br />

R 1<br />

R 1<br />

R 2<br />

R 2<br />

R 3<br />

O<br />

R3 O O<br />

H<br />

R R1 + , -H2O H +<br />

acetone or<br />

MeO OMe<br />

or<br />

OMe<br />

Me Me<br />

O O<br />

R R 1<br />

- in competition between 1,2- and 1,3-diols, 1,2-acetonide formation is usually favored<br />

- cleaved with mild aqueous acid


Cycloalkylidene Ketals<br />

- Cyclopentylidene are slightly easier to cleave than acetonides<br />

- Cyclohexylidenes are slightly harder to cleave than acetonides<br />

Benzylidene Acetals<br />

R<br />

R<br />

OH<br />

OH<br />

OH<br />

OH<br />

R 1<br />

R 1<br />

O<br />

MeO OMe<br />

(CH2) n -or- (CH2) n<br />

H + , -H 2O<br />

PhCHO<br />

-or-<br />

PhCH(OMe) 2<br />

H + , -H 2O<br />

PROTECTING GROUPS 65<br />

(CH2) n<br />

O O<br />

R R 1<br />

Ph<br />

O O<br />

R R 1<br />

- in competition between 1,2- and 1,3-diols, 1,3-benzylidene formation for is usually<br />

favored<br />

- benzylidenes can be removed by acid hydrolysis or hydrogenolysis<br />

- benzylidene are usually hydrogenolyzed more slowly than benzyl ethers or olefins.<br />

p-Methoxybenzylidenes<br />

- hydrolyzed about 10X faster than regular benzylidenes<br />

- Can be oxidatively removed with Ce(NH4)2(NO3)6 (CAN)<br />

BnO<br />

MeO<br />

OBn<br />

O<br />

O<br />

O<br />

OMe<br />

Ce(NH 4) 2(NO 3) 6<br />

CH 3CN, H 2O<br />

(95%)<br />

Other <strong>Reactions</strong> of Benzylidenes<br />

- Reaction with NBS (Hanessian Reaction)<br />

MeO<br />

H<br />

Ph<br />

O<br />

HO<br />

O O<br />

HO OMe<br />

NBS, CCl 4<br />

Ph<br />

O<br />

Br<br />

O O<br />

HO<br />

HO<br />

OMe<br />

BnO<br />

MeO<br />

- if benzylidene of a 1° alcohol, then 1° bromide<br />

- Reductive Cleavage<br />

MeO 2C<br />

O<br />

O O<br />

O<br />

Ph<br />

O<br />

CO 2Me<br />

O<br />

Ph<br />

Na(CN)BH 3,<br />

TiCl 4,CH 3CN<br />

TMS-CN<br />

BF 3 •OEt 2<br />

MeO 2C<br />

MeO<br />

O<br />

O<br />

OH<br />

OBn<br />

OH<br />

CO 2 Me<br />

O<br />

Ph<br />

H CN<br />

OBn<br />

O<br />

OH<br />

OH<br />

Org. Syn. 1987, 65, 243<br />

Synthesis 1988, 373.<br />

Tetrahedron 1985, 41, 3867


Carbonates<br />

Ph<br />

O O<br />

O<br />

R<br />

OH<br />

OMe<br />

OH<br />

R 1<br />

DIBAL-H<br />

(Im) 2CO<br />

- stable to acid; removed with base<br />

- more difficult to hydrolyze than esters<br />

BnO OH<br />

PROTECTING GROUPS 66<br />

O<br />

O<br />

OMe<br />

O O<br />

R R 1<br />

TL 1988, 29 , 4085<br />

Di-t-Butylsilylene (DTBS) TL 1981, 22 , 4999<br />

- used for 1,3- and 1,4-diols; 1,2-diols are rapidly hydrolyzed<br />

- cleaved with fluoride (HF, CH3CN -or- Bu4NF -or- HF•pyridine)<br />

- will not fuctionalize a 3°-alcohol<br />

OH<br />

OH<br />

(t-Bu) 2SiCl 2, Et 3N<br />

CH 3CN, HOBT<br />

O tBu<br />

Si<br />

O tBu<br />

1,3-(1,1,3,3)-tetraisopropyldisiloxanylidene (TIPDS) TL 1988, 29 , 1561<br />

- specific for 1,3- and 1,4-diols<br />

- cleaved with fluoride or TMS-I<br />

HO<br />

HO<br />

O<br />

HN<br />

O<br />

OH<br />

O<br />

N<br />

iPr 2Si(Cl)-O-Si(Cl)iPr 2<br />

pyridine<br />

Ketones and Aldehydes<br />

- ketones and aldehydes are protected as cyclic and acyclic ketals and acetals<br />

- Stable to base; removed with H3O +<br />

R<br />

R 1<br />

O<br />

MeOH, H +<br />

(CH 2OH) 2, H +<br />

PhH, -H2O<br />

-or-<br />

(CH 2OSiMe 3) 2,<br />

TMS-OTf, CH 2Cl 2<br />

CH 2(CH 2OH) 2,<br />

H + , PhH, -H 2O<br />

R<br />

R 1<br />

OMe<br />

OMe<br />

R<br />

R 1<br />

O<br />

O<br />

1,3-dioxolanes<br />

R<br />

O<br />

R1 O<br />

1,3-dioxanes<br />

Si<br />

O<br />

O<br />

Si<br />

O<br />

O<br />

HN<br />

O<br />

OH<br />

TL 1980, 21 , 1357<br />

O<br />

N


Cleavage rate of substituted 1,3-dioxanes:<br />

Chem. Rev. 1967, 67 , 427.<br />

R<br />

R 1<br />

O R O<br />

R<br />

><br />

>><br />

O<br />

O<br />

R 1<br />

PROTECTING GROUPS 67<br />

- Ketal formation of α,β-unsaturated carbonyls are usually slower than for the<br />

saturated case.<br />

Fluoride cleavable ketal:<br />

Me 3Si<br />

O<br />

Base cleavable ketal:<br />

R 1<br />

O<br />

R 2<br />

HO<br />

O<br />

OH<br />

pTSA, C 6H 6<br />

O<br />

SO 2Ph<br />

O<br />

O<br />

R 1<br />

O<br />

O<br />

O<br />

LiBF 4<br />

(88%)<br />

R 2<br />

CH 2 (CH 2 OH) 2 ,<br />

H + , PhH, -H 2O<br />

SO 2Ph<br />

O<br />

O<br />

DBU, CH 2Cl 2<br />

R 1<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

R 1<br />

TL 1997, 38, 1873<br />

Carboxylic Acids Tetrahedron 1980, 36, 2409. Tetrahedron 1993, 49, 3691<br />

Nucelophilic Ester Cleavage: <strong>Organic</strong> <strong>Reactions</strong> 1976, 24, 187.<br />

Esters<br />

Alkyl Esters<br />

formation: - Fisher esterification (RCOOH +R'OH + H + )<br />

- Acid Chloride + R-OH, pyridine<br />

- t-butyl esters: isobutylene and acid<br />

- methyl esters: diazomethane<br />

Cleavage: - LiOH, THF, H2O<br />

- enzymatic hydrolysis Org. Rxns. 1989, 37, 1.<br />

- t-butyl esters are cleaved with aqueous acid<br />

- Bu2SnO, PhH, reflux (TL 1991, 32, 4239)<br />

MeO 2C CO 2Me<br />

O<br />

R OR'<br />

OH<br />

Bu 2SnO, PhH, ↑↓<br />

R= Me, Et, tBu<br />

Pig Liver Esterase<br />

pH 6.8 buffer<br />

R OH<br />

9-Fluorenylmethyl Esters (Fm)<br />

TL 1983, 24 , 281<br />

- cleaved with mild base (Et2NH, piperidine)<br />

RCO 2H<br />

+<br />

OH<br />

O<br />

DCC<br />

OH<br />

O<br />

R 2<br />

MeO 2C CO 2H<br />

TL 1991, 32, 4239<br />

O<br />

R O<br />

TL 1998, 39, 2401


2-Trimethylsilyl)ethoxymethyl Ester (SEM)<br />

HCA 1977, 60 , 2711.<br />

- Cleaved with Bu4NF in DMF<br />

RCO 2H +<br />

HO O<br />

SiMe 3<br />

DCC<br />

- Cleaved with MgBr2•OEt2 TL 1991, 32, 3099.<br />

2-(Trimethylsilyl)ethyl Esters<br />

JACS 1984, 106 , 3030<br />

- cleaved with Fluoride ion<br />

Haloesters<br />

RCO 2H<br />

+<br />

HO<br />

SiMe 3<br />

DCC<br />

- cleaved with Zn(0) dust or electrochemically<br />

RCO 2H +<br />

Benzyl Esters<br />

RCO2H + PhCH2OH → RCO2Bn<br />

PROTECTING GROUPS 68<br />

R<br />

O<br />

R<br />

O O<br />

O<br />

O<br />

SiMe 3<br />

DCC<br />

HO CCl3 R O CCl3 Formation: - DCC<br />

- Acid chloride and benzyl alcohol<br />

Cleavage: - Hydrogenolysis<br />

- Na, NH3<br />

Diphenylmethyl Esters<br />

RCO 2H +<br />

Cleavage: - mild H3O +<br />

- H2, Pd/C<br />

- BF3•OEt2<br />

HO CHPh2<br />

DCC<br />

o-Nitrobenzyl Esters<br />

- selective removed by photolysis<br />

Orthoesters Synthesis 1974, 153 Chem. Soc. Rev. 1987, 75<br />

TL 1983, 24 , 5571<br />

RCOCl +<br />

O<br />

OH<br />

R O<br />

- Stable to base; cleaved with mild acid<br />

O<br />

O<br />

R<br />

O<br />

O<br />

BF 3•OEt 2<br />

O CHPh2<br />

R<br />

O<br />

SiMe 3<br />

O<br />

O


PROTECTING GROUPS 69<br />

Amines<br />

Carbamates<br />

9-Fluorenylmethyl Carbamate (Fmoc)<br />

Acc. Chem. Res. 1987, 20 , 401<br />

- Cleaved with mild base such as piperidine, morpholine or dicyclohexylamine<br />

R 2 NH<br />

2,2,2-Trichloroethyl Carbamate<br />

EtO 2C<br />

+<br />

O<br />

Cl O<br />

O<br />

Cl 3C O Cl<br />

NaHCO 3<br />

H 2O, dioxane<br />

R 2NH, pyridine<br />

- Cleaved with zinc dust or electrochemically.<br />

S<br />

N<br />

O<br />

O<br />

CCl 3<br />

2-Trimethylsilylethyl Carbamate (Teoc)<br />

- cleaved with fluoride ion.<br />

MeO<br />

Me 3Si<br />

O O<br />

Cl<br />

N CH3<br />

O<br />

O O<br />

SiMe 3<br />

t-Butyl Carbamate (BOC)<br />

O<br />

H<br />

N<br />

O<br />

O<br />

O<br />

SEt<br />

SEt<br />

R 2NH<br />

OTBS<br />

OEt<br />

tBuO<br />

S Te Te S<br />

+<br />

NaBH 4<br />

R 2 NH<br />

Bu 4NF, THF<br />

(100%)<br />

O OtBu<br />

O<br />

Cl 3C O N<br />

EtO 2C<br />

MeO<br />

Cl<br />

S<br />

O<br />

R 2N O<br />

R<br />

R<br />

NH<br />

Me 3Si<br />

H<br />

N CH3<br />

R 2N OtBu<br />

Cleavage: - with strong protic acid (3M HCl, CF3COOH)<br />

- TMS-I<br />

-<br />

O<br />

B<br />

O<br />

Cl<br />

O<br />

O<br />

TL 1985, 26 , 1411<br />

O<br />

O<br />

H<br />

TL 1986, 27 , 4687<br />

O<br />

OH<br />

O<br />

SEt<br />

SEt<br />

Allyl Carbamate (Alloc) TL 1986, 27 , 3753<br />

O<br />

N R<br />

R<br />

OEt<br />

JACS 1979, 101 7104


R 2NH<br />

O<br />

O O<br />

O<br />

O<br />

PROTECTING GROUPS 70<br />

O<br />

R 2N O<br />

- removed with Pd(0) and a reducing agent (Bu3SnH, Et3SiH, HCO2H)<br />

O<br />

HN O<br />

CO 2Me<br />

Benzyl Carbanate (Cbz)<br />

R 2NH<br />

Cleavage: - Hydrogenolysis<br />

- PdCl2, Et3SiH<br />

- TMS-I<br />

- BBr3<br />

- hν (254 nm)<br />

- Na/ NH3<br />

m-Nitrophenyl Carbamate<br />

JOC 1974, 39 , 192<br />

Amides<br />

Formamides<br />

Acetamides<br />

- removed by photolysis<br />

1) Pd(OAc) 2 , Et 3 N, Et 3 SiH<br />

2) H 3 O +<br />

O<br />

BnO Cl<br />

- removed with strong acid<br />

R 2NH<br />

- removed with strong acid<br />

R 2NH +<br />

+<br />

O<br />

R 2N O<br />

HCO 2Et<br />

Ac 2O<br />

Trifluoroacetamides<br />

Cleavage: - base (K2CO3, MeOH, reflux)<br />

- NH3, MeOH<br />

Sulfonamides<br />

p-Toluenesulfonyl (Ts)<br />

R 2NH +<br />

R 2NH<br />

pTsCl, pyridine<br />

(CF 3CO) 2O<br />

NO 2<br />

NH 2<br />

O<br />

R 2N O<br />

R 2N SO 2<br />

CO 2Me<br />

O<br />

Ph<br />

R 2N H<br />

O<br />

R 2N CH 3<br />

O<br />

R 2N CF 3<br />

TL 1986, 27 , 3753


Cleavage: - Strong acid<br />

- sodium Naphthalide<br />

- Na(Hg)<br />

Ts Ts<br />

N<br />

N<br />

N<br />

Ts<br />

Trifluoromethanesulfonyl<br />

Tf Tf<br />

N N<br />

Tf<br />

N<br />

N<br />

Tf<br />

Na(Hg), MeOH<br />

Na 2HPO 4<br />

(65%)<br />

Na, NH 3<br />

Trimethylsilylethanesulfonamide (SES)<br />

TL 1986, 54 , 2990; JOC 1988, 53, 4143<br />

- removed with CsF, DMF, 95°C<br />

R 2NH<br />

Me 3 Si<br />

Et 3N, DMF<br />

tert-Butylsulfonyl (Bus) JOC 1997, 62, 8604<br />

R-NH 2<br />

tBuSOCl,<br />

Et 3N, CH 2Cl 2<br />

R2N O<br />

S<br />

tBu<br />

H H<br />

N<br />

N<br />

SO 2Cl<br />

NH<br />

NH<br />

mCPBA<br />

-or-<br />

RuCl 3, NaIO 4<br />

N<br />

H<br />

HN<br />

HN<br />

R 2 N S<br />

PROTECTING GROUPS 71<br />

O O<br />

R 2N SO 2tBu<br />

JOC 1992, 33, 5505<br />

SiMe 3<br />

JOC 1989, 54 , 2992<br />

CF 3SO 3H,<br />

CH 2Cl 2, anisole<br />

R-NH 2


C-C BOND FORMATION 72<br />

Carbon- Carbon Bond Formation<br />

1. Alkylation of enolates, enamines and hydrazones<br />

C&S: Chapt. 1, 2.1, 2.2 problems Ch 1: 1; 2; 3, 7; 8a-d; 9; 14 Ch. 2: 1; 2; 4)<br />

Smith: Chapt. 9<br />

2. Alkylation of heteroatom stabilized anions C&S :Chapt. 2.4 - 2.6)<br />

3. Umpolung Smith: Chapt. 8.6<br />

4. Organometallic Reagents<br />

C&S: Chapt. 7, 8, 9 problems ch 7: 1; 2; 3, 6; 13 Ch. 8: 1; 2<br />

Smith: Chapt. 8<br />

5. Sigmatropic Rearrangements . C&S Chapt. 6.5, 6.6, 6.7 # 1e,f,h,op<br />

Smith Chapt. 11.12, 11.13<br />

Enolates Comprehensive <strong>Organic</strong> Synthesis 1991, vol. 2, 99.<br />

- α-deprotonation of a ketone, aldehyde or ester by treatment with a strong nonnucleophillic<br />

base.<br />

- carbonyl group stabilizes the resulting negative charge.<br />

H<br />

H H<br />

O<br />

R<br />

B:<br />

H<br />

H<br />

-<br />

O<br />

- Base is chosen so as to favor enolate formation. Acidity of C-H bond must be greater<br />

(lower pKa value) than that of the conjugate acid of the base (C&S table 1.1, pg 3)<br />

H 3 C CH 3<br />

O<br />

O<br />

H 3 C CH 2<br />

O<br />

OEt<br />

pK a = 20<br />

pK a = 10<br />

R<br />

MeO - pK a = 15<br />

tBuO - pK a = 19<br />

H<br />

H<br />

O -<br />

R<br />

unfavorable enolate<br />

concentration<br />

more favorable<br />

enolate concentration<br />

- Common bases: NaH, EtONa, tBuOK, NaNH2, LiNiPr2, M N(SiMe3)2,<br />

Na CH2S(O)CH3<br />

Enolate Formation:<br />

- H + Catalyzed (thermodynamic)<br />

O<br />

- Base induced (thermodynamic or kinetic)<br />

O<br />

H<br />

:B<br />

H +<br />

Regioselective Enolate Formation Tetrahedron 1976, 32, 2979.<br />

- Kinetic enolate- deprotonation of the most accessable proton (relative rates of<br />

deprotonation). Reaction done under essentially irreversible conditions.<br />

O<br />

LDA, THF, -78°C<br />

O -<br />

OH<br />

+ B:H<br />

O - Li +


C-C BOND FORMATION 73<br />

typical conditions: strong hindered (non-nucleophilic) base such as LDA<br />

R2NH pKa= ~30<br />

N Li<br />

Ester Enolates- Esters are susceptible to substitution by the base, even LDA can be<br />

problematic. Use very hindered non-nucleophillic base (Li isopropylcyclohexyl amide)<br />

R<br />

R<br />

O<br />

O<br />

OR'<br />

OR'<br />

LDA, THF, -78°C<br />

E +<br />

N<br />

Li<br />

THF, -78°C<br />

- Thermodynamic Enolate- Reversible deprotonation to give the most stable enolate:<br />

more highly substituted C=C of the enol form<br />

O - K +<br />

O<br />

R<br />

O<br />

R<br />

N<br />

tBuO - K + , tBuOH<br />

O - Li +<br />

OR'<br />

O - K +<br />

kinetic thermodynamic<br />

typical conditions: RO - M + in ROH , protic solvent allows reversible enolate<br />

formation. Enolate in small concentration (pKa of ROH= 15-18 range)<br />

- note: the kinetic and thermodynamic enolate in some cases may be the same<br />

- for α,β-unsaturated ketones<br />

Trapping of Kinetic Enolates<br />

- enol acetates<br />

Ph<br />

O<br />

thermodynamic<br />

site<br />

1) NaH, DME<br />

2) Ac 2O<br />

kinetic<br />

Regiochemically<br />

pure enolates<br />

Ph<br />

Ph<br />

O<br />

O<br />

O<br />

kinetic<br />

site<br />

+<br />

Ph<br />

isolatable<br />

separate & purify<br />

CH 3Li, THF CH 3Li, THF<br />

O - Li +<br />

Ph<br />

O<br />

O<br />

O - Li +


- silyl enolethers Synthesis 1977, 91. Acc. Chem. Res. 1985, 18, 181.<br />

Ph<br />

O<br />

1) LDA<br />

2) Me 3SiCl<br />

kinetic<br />

Geometrically<br />

pure enolates<br />

Ph<br />

Ph<br />

OTMS<br />

O - M +<br />

+<br />

C-C BOND FORMATION 74<br />

Ph<br />

isolatable<br />

separate & purify<br />

CH 3Li, THF<br />

-or-<br />

Bu 4 NF -or- TiCl 4<br />

Ph<br />

OTMS<br />

O - M +<br />

CH 3Li, THF<br />

- tetraalkylammonium enolates- "naked" enolates<br />

- TMS silyl enol ethers are labile: can also use Et3Si-, iPr3Si- etc.<br />

- Silyl enol ether formation with R3SiCl+ Et3N gives thermodyanamic silyl<br />

enol ether<br />

- From Enones<br />

O<br />

OSiMe 3<br />

1) Li, NH 3<br />

2) TMS-Cl<br />

- From conjugate (1,4-) additions<br />

O<br />

TMSO<br />

H<br />

O<br />

1) MeLi<br />

2) E +<br />

TMS-Cl, Et 3N TMS-OTf<br />

Et 3N<br />

O OSiMe3 Li, NH3, tBuOH<br />

(CH 3) 2CuLi<br />

TMS-Cl<br />

- From reduction of α-halo carbonyls<br />

O<br />

Br<br />

O - Li +<br />

Trap or use directly<br />

Zn or Mg<br />

E +<br />

O - M +<br />

O<br />

O<br />

E<br />

H<br />

OSiMe 3<br />

Alkylation of Enolates (condensation of enolates with alkyl halides and epoxides)<br />

Comprehensive <strong>Organic</strong> Synthesis 1991, vol. 3, 1.<br />

1° alkyl halides, allylic and benzylic halides work well<br />

2° alkyl halides can be troublesome<br />

3° alkyl halides don't work<br />

E


O<br />

a) LDA, THF, -78°C<br />

b) MeI<br />

O<br />

C-C BOND FORMATION 75<br />

- Rate of alkylation is increased in more polar solvents (or addition of additive)<br />

(Me 2N) 3P O<br />

HMPA<br />

O<br />

R NMe2 R= H DMF<br />

R-CH3 DMA<br />

O<br />

H3C S CH3 DMSO<br />

CH 3N<br />

O<br />

Me<br />

O<br />

CH 3N NCH 3<br />

Me 2N<br />

TMEDA<br />

Mechanism of Enolate Alkylation: SN2 reaction, inversion of electrophile stereochemistry<br />

M + - O<br />

Alkylation of 4-t-butylcyclohexanone:<br />

O<br />

equitorial anchor<br />

tBu<br />

R<br />

H<br />

E<br />

E<br />

A<br />

B<br />

O - M +<br />

R<br />

A<br />

favored<br />

B<br />

X<br />

C<br />

tBu<br />

tBu<br />

180 °<br />

H<br />

H<br />

O<br />

E<br />

E<br />

R<br />

E<br />

R<br />

O<br />

R<br />

O<br />

Chair<br />

Twist Boat<br />

on cyclohexanone enolates, the electrophile approaches from an "axial" trajectory. This<br />

approach leads directly into a chair-like product. "Equitorial apprach leads to a higher<br />

energy twist-boat conformation.<br />

Alkylation of α,β-unsaturated carbonyls<br />

R 1<br />

H<br />

O<br />

H<br />

R 2<br />

R 1<br />

R 1<br />

O - M +<br />

O - M +<br />

Kinetic<br />

H<br />

R 2<br />

H<br />

Thermodynamic<br />

R 2<br />

E<br />

E<br />

R 1<br />

R 1<br />

H<br />

E<br />

O<br />

O<br />

E<br />

NMe 2<br />

H<br />

R 2<br />

R 2


O<br />

Stork-Danheiser Enone Transposition:<br />

- overall γ-alkylation of an α,β-unsaturated ketone<br />

OMe<br />

LDA<br />

PhCH 2 OCH 2 Cl<br />

PhO<br />

O<br />

OMe<br />

CH 3 Li<br />

Chiral enolates- Chiral auxilaries.<br />

D.A. Evans JACS 1982, 104 , 1737; Aldrichimica Acta 1982,15 , 23.<br />

Asymmetric Synthesis 1984, 3, 1.<br />

- N-Acyl oxazolidinones<br />

R<br />

R<br />

O<br />

N<br />

O<br />

O<br />

Me Ph<br />

O<br />

O<br />

N O<br />

LDA, THF<br />

Et-I<br />

LDA, THF<br />

Et-I<br />

R<br />

R<br />

R<br />

R<br />

O<br />

N<br />

O<br />

O<br />

Me Ph<br />

O<br />

O<br />

N<br />

N<br />

O<br />

O<br />

O<br />

O<br />

Me Ph<br />

major product<br />

(96:4)<br />

O O<br />

N O<br />

major product<br />

(96:4)<br />

Enolate Oxidation Chem. Rev. 1992, 92, 919.<br />

R<br />

O<br />

N<br />

O<br />

O<br />

NaN(SiMe 3) 2,<br />

THF, -78°C<br />

O<br />

Ph<br />

N<br />

SO2Ph LDA, THF<br />

O<br />

N OtBu<br />

tBuO N<br />

O<br />

R<br />

Boc<br />

R<br />

PhO<br />

LiOH, H 2O, THF<br />

LiOH, H 2O, THF<br />

OH<br />

N<br />

HN<br />

Boc<br />

O<br />

O<br />

N<br />

N<br />

O<br />

O<br />

O<br />

O<br />

HO<br />

C-C BOND FORMATION 76<br />

CH 3<br />

OMe<br />

H 2 N OH<br />

Me Ph<br />

norephedrine<br />

H 2N OH<br />

valinol<br />

R<br />

R<br />

(88 - 98 % de)<br />

(94 - 98 % de)<br />

O<br />

O<br />

1) HO -<br />

OH<br />

OH<br />

2) CH 2N 2<br />

3) TFA<br />

4) Raney Ni<br />

H 3 O +<br />

PhO<br />

CH 3<br />

J. Org. Chem. 1995, 60, 7837.<br />

Complimentary Methods<br />

for enantiospecific alkylations<br />

Diastereoselectivity: 92 - 98 %<br />

for most alkyl halides<br />

R<br />

O<br />

NH 2<br />

OMe<br />

O


R<br />

R<br />

O<br />

N<br />

O<br />

Ph<br />

O<br />

N<br />

O<br />

O<br />

Ph<br />

R<br />

O<br />

N 3<br />

Bu 2BOTf, Et 3N<br />

O<br />

N<br />

O<br />

Ph<br />

O<br />

KN(SiMe 3) 2, THF<br />

SO 2N 3<br />

R<br />

1) LiOH<br />

2) H 2, Pd/C<br />

R<br />

Bu Bu<br />

B<br />

O O<br />

N 3<br />

N<br />

Ph<br />

O<br />

N<br />

O<br />

O<br />

Ph<br />

R<br />

NBS<br />

O<br />

NH 2<br />

OH<br />

D- amino acids<br />

Oppolzer Camphor based auxillaries Tetrahedron, 1987, 43, 1969.<br />

diastereoselectivities on the order of 50 : 1<br />

O<br />

O<br />

SO2N(C6H11) 2<br />

SO2Ph N<br />

O<br />

O<br />

Ar<br />

R<br />

Ar<br />

N<br />

SO2Ph<br />

O<br />

O<br />

Et 2Cu•BF 3<br />

Asymmetric Acetate Aldol<br />

O<br />

N<br />

S<br />

O<br />

1) Br<br />

R<br />

O<br />

O<br />

SO2N(C6H11) 2<br />

O<br />

H<br />

Sn(OTf) 2, CH 2Cl 2,<br />

R 3 N, -40°C<br />

2) TIPS-OTf, pyridine<br />

3) NH 3<br />

Chiral lithium amide basess<br />

MeO<br />

OMe<br />

CH 3<br />

CO 2Et<br />

H<br />

Br<br />

O<br />

LDA, NBS<br />

TIPSO<br />

O<br />

O<br />

R<br />

SO 2N(C 6H 11) 2<br />

O<br />

85 %, 19:1 de<br />

Ph N OMe<br />

Li<br />

THF, -78°C<br />

(CH 3) 2C=O<br />

NH 2<br />

MeO<br />

C-C BOND FORMATION 77<br />

O<br />

H<br />

R<br />

O<br />

SO 2N(C 6H 11) 2<br />

Br<br />

Br<br />

O<br />

N<br />

S<br />

O 2<br />

O<br />

Ph<br />

N<br />

O<br />

O<br />

R<br />

HO<br />

J. Am. Chem. Soc. 1998, 120, 591<br />

J. Org. Chem. 1986, 51, 2391<br />

CH 3<br />

O<br />

OMe O<br />

(72% ee)<br />

N 3 -<br />

H<br />

O<br />

NH 2


O<br />

tBu<br />

N<br />

N<br />

Ph<br />

N<br />

Li<br />

THF, HMPA<br />

TMSCl<br />

But<br />

H<br />

O<br />

H<br />

N<br />

Li<br />

N<br />

N<br />

Me<br />

Ph<br />

C-C BOND FORMATION 78<br />

OTMS<br />

Lewis Acid Mediated Alkylation of Silyl Enolethers- SN1 like alkylations<br />

OTMS tBu-Cl, TiCl 4,<br />

CH 2Cl 2, -40°C<br />

OTMS<br />

(79%)<br />

SPh<br />

R Cl<br />

TiCl 4, CH 2Cl 2, -40°C<br />

(78%)<br />

O CH3<br />

O<br />

C(CH 3) 3<br />

SPh<br />

R<br />

note: alkylation with a<br />

3° alkyl halide<br />

Raney Ni<br />

(95 %)<br />

O<br />

R<br />

tBu<br />

(97 % ee)<br />

ACIEE1978, 17, 48<br />

TL 1979, 1427<br />

Enamines Gilbert Stork Tetrahedron 1982, 38, 1975, 3363.<br />

- Advantages: mono-alkylation, usually gives product from kinetic enolization<br />

O<br />

O<br />

N<br />

H<br />

H + , (-H 2 O)<br />

-Chiral enamines<br />

O O<br />

N N<br />

"Kinetic"<br />

O<br />

••<br />

N<br />

enamine<br />

Imines Isoelectronic with ketones<br />

Ph<br />

N<br />

OMe<br />

LDA, THF, -20°C<br />

N<br />

Li<br />

Me<br />

O<br />

N<br />

R-I<br />

"Thermodynamic"<br />

Ph<br />

1) E<br />

2) H 3 O +<br />

can not become coplanar<br />

O<br />

+<br />

N<br />

O<br />

E<br />

R<br />

O<br />

H 2 O<br />

E<br />

O<br />

E<br />

E = -CH 3 , -Et, Pr,<br />

PhCH 2 -, allyl-<br />

ee 87 - 99 %


C-C BOND FORMATION 79<br />

Hydrazones isoelectronic with ketones Comprehensive <strong>Organic</strong> Synthesis 1991, 2, 503<br />

O<br />

Me 2 N-NH 2<br />

H + , (-H 2 O)<br />

N<br />

+ E N<br />

N N<br />

E<br />

hydrolysis<br />

LDA, THF<br />

- Hydrazone anions are more reactive than the corresponding ketone or aldehyde<br />

enolate.<br />

- Drawback: can be difficult to hydrolyze.<br />

- Chiral hydrazones for asymmetric alkylations (RAMP/SAMP hydrazones- D. Enders<br />

"Asymmetric Synthesis" vol 3, chapt 4, Academic Press; 1983)<br />

N<br />

N<br />

E (C,C)<br />

OMe<br />

N N<br />

N<br />

LDA<br />

NH 2<br />

OMe<br />

MeO<br />

O<br />

N<br />

H 2 N<br />

SAMP RAMP<br />

I OTBS<br />

OMe<br />

Li ••<br />

R1 N N<br />

R 2 H<br />

E<br />

Me<br />

O<br />

TBSO<br />

1) LDA<br />

2) Ts-CH 3 , THF<br />

-95 - -20 °C<br />

3) MeI, 2N HCl<br />

Z (C,N)<br />

N<br />

N<br />

(95 % de)<br />

O<br />

N N<br />

E<br />

OMe<br />

CH 3<br />

-<br />

O 3<br />

(100 % ee)<br />

R1 N N<br />

Aldol Condensation Comprehensive <strong>Organic</strong> Synthesis 1991, 2, 133, 181.<br />

H<br />

O<br />

R<br />

a) LDA, THF, -78°C<br />

b R'CHO<br />

H<br />

O<br />

R<br />

OH<br />

R'<br />

R 2<br />

E<br />

H<br />

MeO<br />

TBSO<br />

-<br />

β-hydroxyl aldehyde<br />

(aldol)<br />

- The effects of the counterion on the reactivity of the enolates can be important<br />

Reactivity Li + < Na + < K + < R4N + addition of crown ethers<br />

N N<br />

O<br />

H


C-C BOND FORMATION 80<br />

- The aldol reaction is an equilibrium which can be "driven" to completion.<br />

R<br />

O - M +<br />

R'<br />

+ RCHO H<br />

O<br />

M<br />

O<br />

R<br />

R'<br />

work-up<br />

In the case of hindered enolates, the equillibrium favors reactants. Mg 2+ and Zn 2+<br />

counterions will stabilize the intermediate β-alkoxycarbonyl and push the equillibrium<br />

towards products. (JACS 1973, 95, 3310)<br />

O - M +<br />

PhCHO, THF<br />

O<br />

OH<br />

Ph<br />

H<br />

O<br />

R<br />

OH<br />

M= Li 16% yield<br />

M= MgBr 93% yield<br />

- Dehydration of the intermediate β-alkoxy- or β-hydroxy ketone can also serve to drive<br />

the reaction to the right.<br />

O<br />

O<br />

H<br />

O<br />

tBuO - Na + , tBuOH<br />

Enolate Geometry<br />

- two possible enolate geometries<br />

O<br />

O<br />

LDA, THF, -78°C<br />

O<br />

O<br />

H<br />

O<br />

O - Li + O - Li +<br />

E - enolate<br />

- enolate geometry plays a major role in stereoselection.<br />

Z -enolate<br />

E -enolate<br />

R 1<br />

R 1<br />

OM<br />

OM<br />

R 2<br />

R 3 CHO<br />

H<br />

R 1<br />

+<br />

H R 2<br />

R 2<br />

H<br />

R 3 CHO<br />

- Zimmerman-Traxler Transition State : Ivanov condensation<br />

JACS 1957, 79 , 1920.<br />

O<br />

Ph H<br />

+<br />

-<br />

+<br />

MgBr<br />

+<br />

PHCHCO 2 MgBr<br />

-<br />

R 1<br />

Ph<br />

O<br />

O<br />

H<br />

R 2<br />

O<br />

OH<br />

Ph<br />

OH<br />

R 3<br />

R 3<br />

"pericyclic" T.S.<br />

R'<br />

JACS 1979, 101 , 1330<br />

H<br />

Z - enolate<br />

erythro<br />

(syn)<br />

threo<br />

(anti)<br />

H Br<br />

O<br />

Mg<br />

OMgBr


Analysis of Z-enolate stereoselectivity<br />

R 3<br />

H<br />

H<br />

O<br />

H<br />

O<br />

R 2<br />

R 2<br />

M<br />

M<br />

R 1<br />

H<br />

3<br />

R R1<br />

O<br />

R 3<br />

H<br />

R 2<br />

H<br />

R 2<br />

H O<br />

H R 3<br />

Analysis of E-enolate stereoselectivity<br />

H<br />

R 3<br />

H<br />

R 2<br />

O<br />

R 1<br />

R 2 H<br />

O M<br />

R 1<br />

R 1<br />

R 1<br />

M<br />

O<br />

O<br />

R 3<br />

H<br />

H<br />

R 3<br />

O<br />

H<br />

C-C BOND FORMATION 81<br />

R 2<br />

M<br />

R 1<br />

erythro (syn)<br />

favored<br />

O<br />

H<br />

R 2<br />

M<br />

threo (anti)<br />

disfavored<br />

R H 3 H<br />

H O M<br />

O<br />

O O<br />

R M<br />

M<br />

O<br />

3<br />

O<br />

H<br />

M<br />

R<br />

3<br />

R R1<br />

2<br />

O<br />

O M<br />

Analysis of Boat Transition State for Z-Enolates<br />

R 3<br />

H<br />

R 3<br />

O<br />

O<br />

H<br />

R 2<br />

R 2<br />

M<br />

H<br />

H<br />

Favored Chair<br />

M<br />

R 1<br />

R 1<br />

O<br />

Disfavored Chair<br />

O<br />

H<br />

R 2<br />

H<br />

R 3<br />

R 1<br />

R 1<br />

R 1<br />

O<br />

O<br />

O<br />

R 2<br />

R 2<br />

HO<br />

HO<br />

R 3<br />

R 3<br />

H<br />

H<br />

R 2<br />

R 1<br />

R 1<br />

threo (anti)<br />

favored<br />

O<br />

H<br />

M<br />

R<br />

R3 R1<br />

erthro (syn)<br />

disfavored<br />

2<br />

O<br />

O<br />

O<br />

O<br />

H<br />

staggered<br />

R 2<br />

R 3<br />

R3 R2 R 1<br />

O<br />

R 1 R 3<br />

O<br />

R 2<br />

R 2<br />

OH<br />

OH<br />

R 1 R 3<br />

R 1<br />

O<br />

O<br />

R 2<br />

R 2<br />

O<br />

O M<br />

H<br />

Boat<br />

H<br />

R 1<br />

OH<br />

OH<br />

O<br />

R 1<br />

R 3<br />

R 3<br />

O M<br />

H<br />

Boat: R1-R2 1,3-interaction is gone


Analysis of Boat Transition State for E-Enolates<br />

R 3<br />

H<br />

H<br />

R 3<br />

O<br />

O<br />

H<br />

R 2<br />

H<br />

R 2<br />

M<br />

Favored Chair<br />

M<br />

R 1<br />

R 1<br />

Disfavored Chair<br />

O<br />

O<br />

R 1<br />

R 1<br />

O<br />

O<br />

R 2<br />

R 2<br />

HO<br />

HO<br />

R 3<br />

R 3<br />

C-C BOND FORMATION 82<br />

H<br />

staggered<br />

H<br />

R 3<br />

R 3<br />

R2<br />

O<br />

O M<br />

Boat<br />

H<br />

H<br />

R2<br />

R 1<br />

O<br />

O M<br />

R 1<br />

Boat: R 1-R 2<br />

1,3-interaction is gone<br />

Summary of Aldol Transition State Analysis:<br />

1. Enolate geometry (E- or Z-) is an important stereochemical aspect. Z-Enolates<br />

usually give a higher degree of stereoselection than E-enolates.<br />

2. Li + , Mg 2+, Al3+ = enolates give comparable levels of diastereoselection for kinetic<br />

aldol reactions.<br />

3. Steric influences of enolate substituents (R1 & R2) play a dominent role in kinetic<br />

diastereoselection.<br />

R 1<br />

R 1<br />

O - M +<br />

H<br />

R 2<br />

O- M +<br />

H<br />

R 2<br />

Path A<br />

Path<br />

B<br />

Path A<br />

When R1 is the dominent steric influence, then path A proceeds. If R2 is the dominent<br />

steric influence then path B proceeds.<br />

4. The Zimmerman-Traxler like transition state model can involve either a chair or boat<br />

geometry.<br />

Noyori "Open" Transition State for non-Chelation Control Aldols<br />

Absence of a binding counterion. Typical counter ions: R4N + , K + /18-C-6, Cp2Zr 2+<br />

- Non-chelation aldol reactions proceed via an "open" transition state to give syn aldols<br />

regardless of enolate geometry.<br />

Z- Enolates:<br />

R 3<br />

R 1<br />

O<br />

R 1<br />

H<br />

H<br />

H<br />

H R3<br />

O<br />

O -<br />

R 2<br />

O -<br />

R 2<br />

Favored<br />

Disfavored<br />

R 1<br />

R H<br />

3 H R2 O<br />

R 1<br />

O<br />

O -<br />

O -<br />

H H<br />

R R<br />

3 2<br />

H<br />

R 3<br />

H<br />

R 1<br />

R 1<br />

R 1<br />

O<br />

O -<br />

O<br />

O<br />

H<br />

O -<br />

Favored<br />

R1 H<br />

O<br />

Disfavored<br />

R 3<br />

R 2<br />

R 2<br />

R 2<br />

R 2<br />

HO<br />

HO<br />

R 3<br />

R 3<br />

R 1<br />

R 1<br />

O<br />

R 2<br />

HO<br />

Syn Aldol<br />

O<br />

R 2<br />

HO<br />

Anti Aldol<br />

R 3<br />

R 3


E- Enolate:<br />

R 3<br />

- O<br />

- O<br />

H<br />

H<br />

O<br />

H<br />

H R3 O<br />

R 1<br />

R 2<br />

R 1<br />

R 2<br />

favored<br />

disfavored<br />

- O<br />

R1<br />

R3 H<br />

O<br />

H R2 - O R1<br />

H H<br />

O<br />

R R<br />

3 2<br />

R 3<br />

- O<br />

R 1<br />

H<br />

O<br />

favored<br />

H<br />

- O<br />

R 1<br />

H<br />

O<br />

disfavored<br />

R 3<br />

H<br />

R 2<br />

R 2<br />

C-C BOND FORMATION 83<br />

NMR Stereochemical Assignment.<br />

Coupling constants (J) are a weighted average of various conformations.<br />

O<br />

H<br />

O<br />

R 1<br />

O<br />

H<br />

O<br />

R 1<br />

H A<br />

R 3<br />

H A<br />

H B<br />

R 2<br />

60 °<br />

H B<br />

R 3<br />

R 2<br />

R 1<br />

R 1<br />

O<br />

O<br />

R 2<br />

H<br />

H<br />

R 1<br />

O<br />

H A<br />

60 °<br />

R 2 HA<br />

R 1<br />

H B<br />

HB R3 O<br />

H<br />

O HB<br />

R 3<br />

R 3<br />

O<br />

H<br />

H A<br />

O<br />

H A<br />

O<br />

R 3<br />

R 2<br />

Syn Aldol<br />

JAB = 2 - 6 Hz<br />

O<br />

R 3<br />

R 1<br />

Anti Aldol<br />

JAB = 1 - 10 Hz<br />

R 2<br />

60 ° 60 °<br />

H B<br />

O<br />

H A<br />

H B<br />

OH<br />

R 2<br />

non H-bonded<br />

H B<br />

R 1<br />

H A<br />

R 3<br />

R 2<br />

non H-bonded<br />

OH<br />

R 1<br />

R 1<br />

O<br />

O<br />

R 2<br />

HO<br />

Syn Aldol<br />

R 2<br />

HO<br />

Anti Aldol<br />

Boron Enolates: Comprehensive <strong>Organic</strong> Synthesis 1991, 2, 239. <strong>Organic</strong> <strong>Reactions</strong> 1995, 46, 1;<br />

<strong>Organic</strong> <strong>Reactions</strong> 1997, 51, 1. OPPI 1994, 26, 3.<br />

- Alkali & alkaline earth metal enolates tend to be aggregates- complicates<br />

stereoselection models.<br />

- Boron enolates are monomeric and homogeneous<br />

- B-O and B-C bonds are shorter and stronger than the corresponding Li-O abd Li-C<br />

bonds (more covalent character)- therefore tighter more organized transition state.<br />

Generation of Boron Enolates:<br />

O R 2 B-X OBR 2<br />

iPrEtN<br />

X= OTf, I<br />

R= Bu, 9-BBN<br />

R 3<br />

R 3


R<br />

R 3N:<br />

R 3N:<br />

O<br />

R 1<br />

H<br />

R1 R2 OSiMe 3<br />

O<br />

N 2<br />

H<br />

H<br />

+<br />

O<br />

R 2<br />

+<br />

O<br />

H<br />

R 3 B<br />

R 2 B-X<br />

R' 3B<br />

_<br />

BL 2OTf<br />

_<br />

BL 2OTf<br />

R<br />

R<br />

OBR 2<br />

OBR' 2<br />

OBR 2<br />

Diastereoselective Aldol Condensation with Boron Enolates<br />

Ph<br />

O<br />

R 1<br />

OBEt2 R2 Z-enolate<br />

R 1<br />

OBEt 2<br />

R 2<br />

E-enolate<br />

R 3 CHO<br />

OBEt 2<br />

Ph<br />

pure<br />

Z-enolate<br />

R 3CHO<br />

R 1<br />

R 1<br />

O<br />

O<br />

R 2<br />

R'<br />

RCHO<br />

R 2<br />

OH<br />

OH<br />

R 1<br />

C-C BOND FORMATION 84<br />

OBL2 R2 Z-enolate<br />

R 1<br />

OBEt 2<br />

R2 E-enolate<br />

+ Me 3Si-X<br />

Asymmetric Aldol Condansations with Chiral Auxilaries-<br />

D.A. Evans et al. Topics in Stereochemistry, 1982, 13 , 1-115.<br />

- Li + enolates give poor selectivity (1:1)<br />

- Boron and tin enolates give much improved selectivity<br />

Me<br />

Me<br />

1) Bu 2BOTf,<br />

EtNiPr 2, -78°<br />

2) RCHO<br />

Bu<br />

Bu<br />

R 3<br />

R 3<br />

Hooz Reaction<br />

O OBEt 2<br />

Ph R<br />

100% Syn Aldol<br />

generally<br />

> 95 : 5<br />

syn : anti<br />

generally<br />

~ 75 : 25<br />

anti : syn<br />

O O<br />

B<br />

OH O O<br />

Bu2BOTf, O - O +<br />

EtNiPr2, -78°<br />

RCHO<br />

N O<br />

R<br />

N O<br />

N O<br />

Me<br />

O<br />

O<br />

N O<br />

Ph<br />

R<br />

OH<br />

Me<br />

O<br />

X<br />

> 99:1 erythro


L<br />

O<br />

L<br />

B<br />

_ +<br />

_ _<br />

N<br />

O<br />

L<br />

O<br />

B<br />

L<br />

O<br />

Oppolzer Sultam<br />

1) LDA<br />

2) Bu 3SnCl<br />

O<br />

S<br />

O<br />

O<br />

O<br />

O<br />

N<br />

O<br />

RCHO<br />

H<br />

R 2<br />

O<br />

R<br />

R 3<br />

H<br />

H<br />

+<br />

L<br />

O<br />

H<br />

R O<br />

+<br />

L<br />

B<br />

L<br />

O<br />

O<br />

N O<br />

L<br />

L<br />

B<br />

_<br />

O<br />

O<br />

B<br />

_<br />

O<br />

N<br />

O<br />

preferred conformation<br />

C-C BOND FORMATION 85<br />

R<br />

R<br />

L<br />

O<br />

B<br />

O<br />

H<br />

L O R3 B<br />

Favored Disfavored<br />

S<br />

O 2<br />

R 3<br />

N<br />

Sn<br />

O<br />

N<br />

N<br />

O<br />

O<br />

R 2<br />

R 2<br />

R 2<br />

OH<br />

R 3<br />

R 3CHO<br />

L 2B<br />

N<br />

S<br />

O2 O<br />

N<br />

S<br />

O2 O<br />

R 2<br />

L<br />

O<br />

R 2<br />

O<br />

N<br />

R 3CHO<br />

OH<br />

R 3<br />

O<br />

R 3<br />

N<br />

O<br />

R 2<br />

R 2<br />

OH<br />

O<br />

R 3<br />

L<br />

O<br />

+<br />

L<br />

O<br />

S<br />

O 2<br />

O<br />

+<br />

O<br />

N O<br />

N<br />

N<br />

O<br />

R 2<br />

O<br />

OH<br />

R 3


Chiral Boron<br />

R<br />

O<br />

BOTf<br />

StBu<br />

iPrEt2N, PhCHO,-78°C<br />

when large,<br />

higher E-enolate<br />

selectivity<br />

Ph Ph<br />

O<br />

SPh<br />

Ph<br />

OH<br />

O<br />

StBu<br />

+<br />

1 : 33<br />

(> 99 % ee)<br />

C-C BOND FORMATION 86<br />

Ph<br />

ArO2SN NSO<br />

B<br />

2Ar OH O<br />

Br<br />

Ph<br />

SPh +<br />

Ph<br />

iPrEt2N, PhCHO,-78°C<br />

R<br />

> 95 : 5<br />

(> 95 % ee)<br />

• In general, syn aldol products are achievable with high selectivity, anti aldols are<br />

more difficult<br />

Mukaiyama-Aldol- Silyl Enol Ethers as an enolate precursors.<br />

Lewis acid promoted condensation of silyl ketene acetals (ester enolate equiv.) with<br />

aldehydes: proceeds via "open" transition state to give anti aldols starting from either<br />

E- or Z- enolates.<br />

OSiMe 3<br />

OEt<br />

OSiMe 3<br />

OEt<br />

RCHO, TiCl 4,<br />

CH 2Cl 2, -78°C<br />

RCHO, TiCl 4,<br />

CH 2Cl 2, -78°C<br />

Asymmetric Mukiayama Aldol:<br />

Ph<br />

H 3C<br />

O<br />

NMe 2<br />

OSiMe 3<br />

RCHO, TiCl 4,<br />

CH 2Cl 2, -78°C<br />

R<br />

OH<br />

CH 3<br />

CO 2Et<br />

+<br />

R<br />

OH<br />

OH<br />

R<br />

OH<br />

R= iPr (anti : syn) = 100 : 0<br />

C 6H 11 94 : 6<br />

Ph 75 : 25<br />

R<br />

OH<br />

CH 3<br />

CO 2Et<br />

R= iPr (anti : syn) = 52 : 48<br />

C 6H 11 63 : 37<br />

Ph 67 : 33<br />

OH O<br />

R R c<br />

(90-94% de)<br />

+<br />

+<br />

R<br />

OH<br />

O<br />

O<br />

CH 3<br />

CH 3<br />

OH O<br />

StBu<br />

SPh<br />

CO 2 Et<br />

CO 2Et<br />

R R c<br />

syn : anti = 85 : 15<br />

selectivity insenstivie to enolate geometry


Ph<br />

N SO2Ph O OSitBuMe 2<br />

O<br />

OSitBuMe 2<br />

SO 2 N(C 6 H 11 ) 2<br />

iPrCHO, TiCl 4,<br />

CH 2Cl 2, -78°C<br />

RCHO, TiCl 4,<br />

CH 2Cl 2, -78°C<br />

R c<br />

R c<br />

O<br />

O<br />

HO<br />

CH 3<br />

HO<br />

CH 3<br />

C-C BOND FORMATION 87<br />

96 % de<br />

anti : syn = 93 : 7<br />

+ Syn product<br />

E-Enolate<br />

R= Ph % de= 90 anti : syn = 91 : 19<br />

nPr 85 94 : 6<br />

iPr 85 98 : 2<br />

Z-Enolate<br />

R= iPr % de= 87 anti : syn = 97 : 7<br />

Mukaiyama-Johnson Aldol- Lewis acid promoted condensation of silyl enol ethers with acetals:<br />

O<br />

OSiMe 3<br />

O<br />

Cl 4Ti<br />

O<br />

O<br />

O +<br />

Ph<br />

TiCl 4 or SnCl 4<br />

RCHO or RCH(OR') 2<br />

CH 2Cl 2, -78°C<br />

O<br />

OTMS<br />

OTMS<br />

O<br />

TiCl 4, CHCl 2, -78 °C<br />

TiCl 4,<br />

(CH 3) 2C(OEt) 2<br />

(78 %)<br />

Cl 4Ti<br />

OH<br />

R<br />

HO<br />

+<br />

O<br />

Ph<br />

Mukaiyama-Johnson Aldol<br />

via Ti or Sn enolate<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O OEt<br />

OSiMe 3<br />

Fluoride promoted alkylation of silyl enol ethers Acc. Chem. Res. 1985, 18, 181<br />

OSiMe 3<br />

nBu 4NF, THF, MeI<br />

O


Meyer's Oxazolines:<br />

N<br />

O<br />

Ester<br />

equiv.<br />

(ipc) 2BOtf<br />

iPrEt 2N, Et 2O<br />

Anti-Aldols by Indirect Methods:<br />

PhSe C 6H 11<br />

1) TBS-Cl<br />

2) DiBAl-H<br />

O<br />

3) TsCl<br />

4) Ba(CN)BH 3<br />

MeO<br />

O<br />

N<br />

MeO<br />

O<br />

O<br />

OTBS<br />

chiral<br />

auxillary<br />

N<br />

R<br />

1) (C 5H 7) 2BOTf<br />

R 3N<br />

2) RCHO<br />

OTBS<br />

CO 2Me<br />

N<br />

(ipc) 2B R<br />

HO<br />

O<br />

SePh<br />

syn<br />

aldol<br />

CH 3 O 3<br />

1) LDA, THF,<br />

-78 °C<br />

2) RCOCl<br />

Syn Aldols by Indirect Methods:<br />

O<br />

O O<br />

N<br />

1) LDA, THF,<br />

-78 °C<br />

2) RCOCl<br />

1) LDA, THF,<br />

-78 °C<br />

2) RCHO<br />

MOMO<br />

O<br />

O O<br />

N<br />

N<br />

O<br />

O<br />

OMOM<br />

CH 3<br />

O<br />

N<br />

1) RCHO<br />

2) 3N H2SO4 3) CH2N2 (~ 30%)<br />

OTBS<br />

O<br />

CH 3<br />

R<br />

C 6H 11<br />

R<br />

C-C BOND FORMATION 88<br />

H 3C<br />

OH<br />

CO 2Me<br />

+<br />

R<br />

H 3C<br />

OH<br />

R= nPr %ee (anti) = 77 anti : syn = 91 : 9<br />

C 6H 11 84 95 : 5<br />

tBu 79 94 : 6<br />

1) HF<br />

2) [O]<br />

3) NaIO 4<br />

4) CH 2 N 2<br />

CH 3<br />

R<br />

CHO<br />

OTBS<br />

O<br />

O<br />

CH 3<br />

CH 3<br />

R<br />

KBEt 3H, Et 2O,<br />

-78 °C<br />

Zn(BH 4) 2<br />

Zn(BH 4) 2<br />

R<br />

HO<br />

Anti Aldol<br />

Product<br />

CO 2Me<br />

1) HIO 6<br />

2) CH 2N 2 MeO2C<br />

O<br />

MOMO<br />

MOMO<br />

O O<br />

N<br />

N<br />

CH 3<br />

O<br />

OMOM<br />

N<br />

OH<br />

O<br />

CH 3<br />

OH<br />

R<br />

Anti Aldol<br />

HO<br />

CH 3<br />

OMOM<br />

R<br />

HO<br />

CH 3<br />

CH 3<br />

CO 2Me<br />

R<br />

CH 3<br />

HO<br />

CO 2Me<br />

syn : anti<br />

1 : 99<br />

syn : anti<br />

97 : 3<br />

syn : anti = 100 : 1


Aldol Strategy to Erythromycin:<br />

O<br />

O<br />

O<br />

O<br />

15<br />

N<br />

O O<br />

N<br />

Ph<br />

O O<br />

N<br />

Ph<br />

EtMgBr<br />

86%<br />

11<br />

O<br />

9<br />

10<br />

12<br />

13 O<br />

14 1<br />

O 2<br />

8<br />

OH<br />

3<br />

7<br />

Erythromycin<br />

aglycone<br />

5<br />

4<br />

6<br />

OH<br />

O LDA,<br />

CH 3 CH 2 COCl<br />

Ph<br />

O O<br />

3<br />

83%, (96:4)<br />

OH<br />

syn<br />

aldol<br />

CHO<br />

O<br />

O Sn(OTf) 2 ,<br />

Et 3 N, CH 2 Cl 2<br />

8<br />

5<br />

CH 3 CH 2 CHO<br />

84% (> 96:4)<br />

O OH OTBS<br />

11<br />

N<br />

OH<br />

+<br />

O O<br />

Ph<br />

1) 9-BBN, THF<br />

2) Swern oxid.<br />

73% (85:15)<br />

13<br />

O<br />

1<br />

HO2C 1<br />

CHO<br />

4<br />

O O<br />

N<br />

CHO<br />

4 3 2 1<br />

OH OH O OH OH<br />

[O] [O]<br />

syn<br />

aldol 3<br />

O<br />

O TiCl 4 , iPr 2 EtN,<br />

CH 2 Cl 2<br />

9<br />

O<br />

OH<br />

O O<br />

N<br />

Ph<br />

CHO<br />

90% (> 99:1)<br />

O OH<br />

Ph<br />

1) PMBC(NH)CCl3 TfOH<br />

2) (PhMe2Si) 2NLi, TMS-Cl<br />

48 %<br />

OH<br />

O<br />

O O<br />

C-C BOND FORMATION 89<br />

O OH<br />

O<br />

syn<br />

aldol<br />

N<br />

CHO<br />

O O<br />

Ph<br />

CHO<br />

CO 2H<br />

O OH OH<br />

syn<br />

aldol 1<br />

+<br />

CHO<br />

2<br />

O OH<br />

1) Na BH(OAc) 3<br />

2) TBS-OTf, 2,6-lutidine<br />

3) AlMe 3 , (MeO)MeNH•HCl<br />

TMSO PMBO<br />

OH<br />

OH<br />

3 5 9 11 13<br />

11<br />

13<br />

72% (>99:1)<br />

OTBS<br />

5<br />

+<br />

CHO<br />

MeO<br />

N<br />

CH 3<br />

Erythromycin<br />

seco acid<br />

CO 2 H<br />

CO 2H<br />

1) Zn(BH 3 ) 2<br />

2) (H 3 C) 2 C(OMe) 2<br />

CSA<br />

(100%)<br />

O OH OTBS


O<br />

O O<br />

N<br />

Ph<br />

1) Zn(BH 3 ) 2<br />

2) DDQ<br />

O<br />

95%<br />

O O<br />

N<br />

Ph<br />

L<br />

Sn<br />

L O<br />

X<br />

H3C H O<br />

H<br />

O<br />

H<br />

CH3 CH3 X<br />

O<br />

H<br />

H L<br />

CH3 H Sn<br />

O<br />

O L<br />

H3C Disfavored<br />

CH3 O<br />

O<br />

OH<br />

X R<br />

CH3 CH3 O<br />

anti-syn<br />

O<br />

OH<br />

X R<br />

CH3 CH3 anti-syn<br />

C-C BOND FORMATION 90<br />

X<br />

H<br />

L O<br />

CH<br />

L<br />

3<br />

Ti H<br />

O<br />

L<br />

O<br />

Disfavored<br />

H<br />

CH3 CH3 X<br />

H3C J. Am. Chem. Soc.<br />

O L 1990,112, 866<br />

H<br />

H Ti L<br />

O<br />

O L<br />

H<br />

H3C CH3 O O<br />

TMSO<br />

CHO<br />

PMBO<br />

OTBS BF3•OEt2 ,<br />

O O O O O<br />

CH2Cl2 , -78 °C<br />

+<br />

O N<br />

PMBO<br />

OH<br />

OTBS<br />

3 5 7 11 13 83% (95:5)<br />

3 5 7 9 11 13<br />

8<br />

O<br />

O O<br />

N<br />

Ph<br />

p-MeOC6H 4<br />

O O O O OTBS<br />

p-MeOC 6 H 4<br />

13<br />

O<br />

11<br />

p-MeOC 6 H 4<br />

O O OH O O OTBS<br />

O<br />

10<br />

9<br />

12<br />

O<br />

1<br />

2<br />

O<br />

8<br />

3<br />

7<br />

5<br />

4<br />

O<br />

6<br />

O<br />

1) LiOOH<br />

2) TBAF<br />

Ph<br />

1) NaH, CS 2 , MeI<br />

2) nBu 3 SnH, AIBN<br />

70%<br />

p-MeOC 6 H 4<br />

O O O O O OH<br />

HO<br />

63% 13<br />

1) Pd(OH) 2 , iPrOH<br />

2) PCC<br />

3) 1M HCl, THF<br />

58 %<br />

O<br />

9<br />

11<br />

OH<br />

5<br />

13 O OH<br />

1 3<br />

O OH<br />

Cl 3 C 6 H 2 COCl<br />

iPr 2 EtN, DMAP<br />

Michael Addition<br />

- 1,4-addition of an enolate to an α,β-unsaturated carbonyl to give 1,5-dicarbonyl<br />

compounds<br />

Organometallic Reagents<br />

Grignard reagents:<br />

R-MgBr<br />

Ph<br />

O - M +<br />

R<br />

O<br />

Mg(0)<br />

R-Br R-MgBr<br />

THF<br />

O<br />

THF<br />

R<br />

OH<br />

+<br />

O<br />

Ph<br />

O<br />

O O<br />

R<br />

R<br />

R<br />

OH<br />

often a mixture of<br />

1,2- and 1,4-addition<br />

(86%


R-MgBr<br />

R-MgBr<br />

O<br />

THF, CeCl3 O<br />

CuI,THF, -78C<br />

R<br />

OH<br />

O<br />

R<br />

C-C BOND FORMATION 91<br />

1,2-addition<br />

1,4-addition<br />

Organolithium reagents<br />

- usually gives 1,2-addition products<br />

- alkyllithium are prepared from lithium metal and the corresponding alkyl halide<br />

- vinyl or aryl- lithium are prepared by metal-halogen exchange from the<br />

corresponding vinyl or aryl- haidide or trialkyl tin with n-butyl, sec-butyl or t-<br />

butyllithium.<br />

X= Br, I, Bu3Sn<br />

R-Br<br />

Li(0)<br />

Et2O R-Li<br />

X Li<br />

nBu-Li<br />

Organocuprates<br />

Reviews: Synthesis 1972, 63; Tetrahedron 1984, 40 , 641; <strong>Organic</strong> <strong>Reactions</strong> 1972, 19 , 1.<br />

- selective 1,4-addition to α,β-unsaturated carbonyls<br />

2 R-Li<br />

O<br />

CuI, THF<br />

R 2 CuLi<br />

Et 2 O<br />

O<br />

R 2CuLi<br />

- curprate "wastes" one R group- use non transferable ligand<br />

_<br />

R-Li<br />

MeO<br />

Cu<br />

MeO<br />

R<br />

Cu R<br />

non-transferable<br />

ligand<br />

Other non transferable ligands<br />

_<br />

Bu3P Cu R Li +<br />

_<br />

Me2S Cu R Li + _<br />

NC Cu R Li + _<br />

F3B Cu R Li +<br />

S<br />

Cu<br />

CN<br />

R<br />

2-<br />

2Li +<br />

Li +<br />

Mixed Higher Order Cuprate<br />

B. Lipshutz Tetrahedron 1984, 40 , 5005<br />

Synthesis 1987, 325.<br />

Addition to Acetals Tetrahedron Asymmtetry 1990, 1, 477.<br />

H 3 C<br />

O<br />

R<br />

R<br />

O<br />

R<br />

O O CH 3<br />

(n-C 6 H 13 ) 2 CuLi<br />

BF3•OEt2<br />

H CH3 Nu: H<br />

R<br />

n-C 6 H 13<br />

O O<br />

LA<br />

O<br />

CH 3<br />

OH<br />

R<br />

1) PCC<br />

2 NaOEt<br />

OH<br />

Chiral axulliary is destroyed 99 % ee<br />

LA<br />

O<br />

H<br />

O<br />

Nu<br />

n-C 6 H 13<br />

CH 3<br />

TL 1984, 25, 3087


O<br />

O<br />

TMS<br />

1) TiCl 4<br />

2) [O]<br />

3) TsOH<br />

OH<br />

98 % ee<br />

C-C BOND FORMATION 92<br />

JACS 1984, 106, 7588<br />

Stereoselective Addition to Aldehydes<br />

- Aldehydes are "prochiral", thus addition of an organometallic reagent to an aldehydes<br />

may be stereoselective.<br />

- Cram's Rule JACS 1952, 74 , 2748; JACS 1959, 84 , 5828.<br />

empirical rule<br />

R 1<br />

O<br />

*<br />

L<br />

M<br />

S<br />

-<br />

2) "H + 2 - "<br />

1) "R<br />

"<br />

R1 R2 OH<br />

L<br />

M<br />

S<br />

O<br />

OH<br />

M S<br />

M S<br />

L R 1<br />

2 -<br />

R<br />

- Felkin-Ahn TL 1968, 2199; Nouv. J. Chim. 1977, 1 , 61.<br />

based on ab initio calculations of preferred geometry of aldehyde which considers the<br />

trajectory of the in coming nucleophile (Dunitz-Burgi trajectory).<br />

L<br />

O<br />

R 1<br />

M<br />

S<br />

vs.<br />

R 2 - R<br />

2 -<br />

R 1<br />

L<br />

R 2<br />

better worse<br />

- Chelation Control Model- "Anti-Cram" selectivity<br />

- When L is a group capable of chelating a counterion such as alkoxide groups<br />

R 1<br />

O<br />

M +<br />

*<br />

M +<br />

S<br />

O OR'<br />

R 1<br />

M S<br />

OR'<br />

M<br />

2 -<br />

R<br />

R2 R 1<br />

OH<br />

OR'<br />

OR'<br />

HO R 2<br />

R1 M S<br />

S<br />

M<br />

S<br />

M<br />

O<br />

R 1<br />

L<br />

"Anti-Cram" Selectivity<br />

Umpolung - reversal of polarity Aldrichimica Acta 1981, 14, 73; ACIIE 1979, 18, 239.<br />

i.e: acyl anion equivalents are carbonyl nucleophiles (carbonyls are usually electophillic)<br />

PhCHO<br />

R<br />

O<br />

-<br />

usually<br />

Benzoin Condensation Comprehensive <strong>Organic</strong> Synthesis 1991, 1, 541.<br />

KCN<br />

Ph<br />

O -<br />

CN H<br />

Ph<br />

OH<br />

-<br />

Cyanohydrin anion<br />

PhCHO<br />

HO<br />

CN Ph<br />

R<br />

CN<br />

O<br />

+<br />

O -<br />

Ph Ph<br />

- O<br />

CN<br />

OH<br />

O OH<br />

Ph Ph Ph<br />

Benzoin


C-C BOND FORMATION 93<br />

Thiamin pyrophosphate- natures acyl anion equivalent for trans ketolization reactions<br />

H3C<br />

N<br />

NH 2<br />

+<br />

N S<br />

N<br />

H3C<br />

Thiamin pyrophosphate<br />

CHO<br />

H OH<br />

H OH<br />

H OH<br />

H2C<br />

OPO3<br />

D-ribose-5-P<br />

(C 5 aldose)<br />

Trimethylsilycyanohydrins<br />

OMs<br />

O O<br />

Dithianes<br />

CN<br />

R H<br />

OEE<br />

S S<br />

R H<br />

+<br />

H<br />

O TMS-CN<br />

NaHMDS,<br />

THF, -60°C<br />

(72%)<br />

Aldehyde Hydrazones<br />

N<br />

H<br />

R H<br />

N tBu<br />

B:, THF<br />

E +<br />

H 2 C<br />

OPO3PO3<br />

O<br />

H OH<br />

H OH<br />

H2C<br />

OH<br />

OPO3<br />

D-ribulose-5-P<br />

(C 5 ketose)<br />

TMSO CN<br />

R H<br />

O O<br />

NC<br />

S S<br />

R<br />

-<br />

thiamin-PP<br />

OEE<br />

H3C<br />

H<br />

LDA, THF<br />

R'-I<br />

N<br />

CHO<br />

NH2<br />

N<br />

OH<br />

H2C OPO3<br />

glyceraldehyde-3-P<br />

(C 3 aldose)<br />

CSA, tBuOH<br />

N<br />

R E<br />

H<br />

N tBu<br />

TMSO CN<br />

R<br />

_<br />

S S<br />

R R'<br />

Heteroatom Stabilized Anions (Dithiane anion is an example)<br />

Sulfones<br />

R S<br />

O O<br />

Ph<br />

Sulfoxides<br />

R S<br />

O<br />

Ph<br />

LDA, THF<br />

B:<br />

_<br />

R S<br />

O O<br />

LDA, THF R S<br />

_<br />

O<br />

Ph<br />

Ph<br />

O<br />

R' R'<br />

O<br />

R' R'<br />

R'<br />

R'<br />

R S<br />

R'<br />

R'<br />

OH<br />

O O<br />

OH<br />

R S<br />

O<br />

Ph<br />

H 3 C<br />

+<br />

Ph<br />

_<br />

+<br />

N S<br />

H2C<br />

OH<br />

O<br />

HO H<br />

H OH<br />

H OH<br />

H<br />

OH<br />

H2C OPO3<br />

sedohepulose-7-P<br />

(C 7 ketose)<br />

O O<br />

acyl anion<br />

equivalent<br />

Hg(II)<br />

O<br />

Al(Hg)<br />

O<br />

R E<br />

Raney Ni<br />

OPO3PO3<br />

Tetrahedron Lett. 1997, 38, 7471<br />

O<br />

R R'<br />

R'<br />

R'<br />

R'<br />

R<br />

R'<br />

R<br />

OH<br />

OH


Epoxide Opening Asymmetric Synthesis 1984, 5, 216.<br />

Ph<br />

BnO<br />

S<br />

O<br />

S<br />

_<br />

Basic (SN2) Condition<br />

R<br />

O<br />

Acid (SN1-like) Condition<br />

+<br />

OH<br />

R<br />

Nu<br />

O<br />

H<br />

O +<br />

Nu:<br />

BnO<br />

OH<br />

OH<br />

Nu<br />

R Nu<br />

HO<br />

R OH<br />

Me2CuLi 6 : 1<br />

AlMe3 1 : 5<br />

O<br />

Me3Al OH<br />

O<br />

1) TBS-Cl<br />

2) MeI, CaCO 3, H +<br />

S S<br />

_<br />

Ph<br />

O<br />

(69 %)<br />

OH<br />

+<br />

Ph<br />

OH<br />

BnO<br />

S<br />

S<br />

C-C BOND FORMATION 94<br />

Steric Approach Control<br />

Nu: attachs site that best<br />

stabilizes a carbocation<br />

Cyclic Sulfites and Sulfates (epoxide equivalents) Synthesis 1992, 1035.<br />

R 1<br />

OH<br />

OH<br />

O<br />

S<br />

O O<br />

R 1<br />

O O<br />

S<br />

O O<br />

R 1<br />

R 2<br />

R 2<br />

R 2<br />

SOCl2, Et3N O<br />

O<br />

S<br />

O<br />

Nu:<br />

Nu:<br />

O<br />

O<br />

O S<br />

O<br />

R 1<br />

R 1<br />

S<br />

O<br />

R 1<br />

O -<br />

sulfite<br />

O -<br />

H<br />

Nu<br />

H<br />

Nu<br />

R 2<br />

R 2<br />

R 2<br />

S<br />

S<br />

OH<br />

RuCl 3, NaIO 4<br />

H 2O<br />

H 2O<br />

Nu:<br />

OH<br />

OH<br />

JACS 1981, 103, 7520<br />

JOC 1974, 3645<br />

TL 1983, 24, 1377<br />

Tetrahedron Lett. 1992, 33, 931<br />

HO<br />

R 1<br />

H<br />

O O<br />

S<br />

O O<br />

R 1<br />

Nu2 R1 sulfate<br />

H<br />

Nu<br />

R 2<br />

H<br />

R 2<br />

R2 Nu1


O<br />

MeO<br />

O<br />

R 1<br />

O<br />

SO 2<br />

O<br />

R 2<br />

SO2 1) (CH OTBS<br />

3) 2CuLi<br />

CO2Me O<br />

OBn<br />

meso<br />

SO 2<br />

O<br />

MeO<br />

BnO<br />

2) TBS-Cl<br />

OBn<br />

OMe<br />

H3C HO<br />

H<br />

N<br />

NCH 3<br />

OAc<br />

Δ<br />

OMe<br />

OBn<br />

Irreversible Payne Rearrangement<br />

O<br />

O<br />

SO 2<br />

O<br />

OH<br />

OTBS<br />

CO 2Me<br />

CO 2Me<br />

NaH<br />

OMe<br />

CH 3<br />

OMe<br />

CO 2Me<br />

MeO<br />

Bu 4NF<br />

OBn<br />

MeO 2C<br />

R 1<br />

1) H 2, Rh<br />

2) HF<br />

MeO OMe<br />

NCH 3<br />

OH<br />

C-C BOND FORMATION 95<br />

CO 2Me<br />

OH<br />

R 2<br />

OBn<br />

MeO<br />

BnO<br />

OH<br />

O<br />

O<br />

O<br />

OMe<br />

O<br />

1) Ac 2O<br />

2) HCl<br />

NCH 3<br />

Payne Rearrangement of 2,3-epoxyalcohols Aldrichimica Acta 1983, 16, 60<br />

Sigmatropic Rearrangements Asymmetric Synthesis 1984, 3, 503.<br />

Nomenclature:<br />

σ bond<br />

that breaks<br />

1<br />

2 3<br />

R<br />

1 3 R<br />

1 3<br />

2<br />

2<br />

Δ<br />

1<br />

2 3<br />

3<br />

3<br />

2<br />

1<br />

R H<br />

1<br />

4<br />

5<br />

Δ<br />

2<br />

1<br />

R H<br />

1<br />

σ bond<br />

that breaks<br />

R<br />

R<br />

4<br />

5<br />

σ bond<br />

that forms<br />

σ bond<br />

that forms<br />

carpenter Bee<br />

pheromone<br />

OBn<br />

[3,3]-rearrangement<br />

[1,5]-Hydogen migration<br />

3,3-sigmatropic Rearrangements<br />

Cope Rearrangemets- requires high temperatures <strong>Organic</strong> Reaction 1975, 22, 1<br />

R<br />

Δ<br />

R<br />

OMe


Chair transition state:<br />

"Chirality Transfer"<br />

Ph<br />

H 3C<br />

R<br />

Ph<br />

H 3C<br />

CH 3<br />

Ph<br />

R<br />

R<br />

CH 3<br />

Ph<br />

R<br />

E<br />

H H<br />

3C<br />

H<br />

CH 3<br />

220 °C<br />

C-C BOND FORMATION 96<br />

H 3C<br />

E,Z (99.7 %) E,E (0.3 %) Z,Z (0 %)<br />

Z<br />

H3C H3C H 3C<br />

H 3 C<br />

H<br />

H<br />

E<br />

E<br />

HH<br />

H 3C<br />

CH 3<br />

E<br />

CH 3<br />

CH 3<br />

CH 3<br />

E,Z (0 %) E,E (90 %) Z,Z (10 %)<br />

Z<br />

E<br />

Ph<br />

H 3 C<br />

CH 3<br />

E<br />

Ph<br />

H 3C<br />

Ph<br />

Z<br />

CH 3<br />

Ph<br />

Z<br />

H<br />

S<br />

CH 3<br />

R<br />

H<br />

CH 3<br />

CH 3<br />

R<br />

H<br />

(87 %)<br />

(13 %)<br />

H<br />

S<br />

CH 3<br />

Z<br />

Z<br />

Z<br />

Diastereomers<br />

Diastereomers<br />

- anion accelerated (oxy-) Cope- proceeds under much milder conditions (lower<br />

temperature) JACS 1980, 102 , 774; Tetrahedron 1978, 34, 1877; <strong>Organic</strong> <strong>Reactions</strong> 1993, 43,<br />

93; Comprehensive <strong>Organic</strong> Synthesis 1991, 5, 795. Tetrahedron 1997, 53, 13971.


OH<br />

OH OMe<br />

KH<br />

Ring expansion to medium sized rings<br />

OH<br />

KH, DME, 110°C<br />

KH, Δ<br />

O -<br />

O<br />

C-C BOND FORMATION 97<br />

O<br />

OMe<br />

9-membered<br />

ring<br />

Claisen Rearrangements - allyl vinyl ether to an γ,δ-unsaturated carbonyl<br />

Chem. Rev. 1988, 88, 1081.; <strong>Organic</strong> <strong>Reactions</strong> 1944, 2, 1.; Comprehnsive <strong>Organic</strong> Synthesis<br />

1991, 5, 827.<br />

O<br />

O<br />

H<br />

OH<br />

O<br />

Hg(OAc) 2<br />

Chair Transition State for Claisen<br />

R O X<br />

old stereogenic<br />

center<br />

R<br />

H<br />

O<br />

O<br />

R<br />

H<br />

O<br />

H<br />

R<br />

O<br />

O<br />

H<br />

Δ<br />

X<br />

1,3-diaxial<br />

interaction<br />

X<br />

O<br />

X<br />

O<br />

O<br />

220 °C<br />

R<br />

O<br />

R<br />

O<br />

E-olefin<br />

O<br />

R<br />

O<br />

H<br />

X<br />

CHO<br />

O<br />

Z-olefin<br />

X<br />

O<br />

JACS 1979, 101 , 1330<br />

X=H E/Z = 90 : 10<br />

X= OEt, NMe 2, etc E/Z = > 99 : 1<br />

X<br />

new stereogenic<br />

centers


C-C BOND FORMATION 98<br />

- Chorismate Mutase catalyzed Claisen Rearrangement- 105 rate enhancement over<br />

non-enzymatic reaction<br />

CO2H OH<br />

Chorismate<br />

O CO 2H<br />

Chorismate<br />

mutase<br />

HO 2C<br />

OH<br />

O<br />

Prephenate<br />

CO 2H<br />

- Claisen rearrangement usually proceed by a chair-like T.S.<br />

HO 2C<br />

OH<br />

H<br />

O<br />

OH<br />

H<br />

H<br />

O CO2H H<br />

CO2H CO2H Chair<br />

T.S<br />

Boat<br />

T.S<br />

HO 2C<br />

O<br />

OH<br />

H<br />

OH<br />

H<br />

H<br />

H<br />

CO 2H<br />

O<br />

CO2H J. Knowles<br />

JACS 1987, 109, 5008, 5013<br />

Opposite<br />

stereochemistry<br />

OH OH<br />

OH<br />

J. Org. Chem. 1976, 41, 3497, 3512<br />

J. Org. Chem. 1978, 43, 3435<br />

CH 3<br />

O<br />

H<br />

CH 3<br />

CH 3<br />

R<br />

R<br />

H<br />

O<br />

O<br />

s<br />

O<br />

CH 3<br />

hydrophobically accelerated Claisen - JOC 1989, 54, 5849<br />

OH<br />

OH<br />

H<br />

CH3<br />

CH 3<br />

+<br />

+<br />

OH<br />

OH<br />

CH 3<br />

O<br />

R<br />

R<br />

H<br />

H<br />

O<br />

O<br />

O<br />

H<br />

s<br />

CH 3<br />

CH 3<br />

Tocopherol<br />

94 - 99 % ee<br />

CH 3<br />

CO 2 R


Johnson ortho-ester Claisen:<br />

OH<br />

H 3C-C(OEt) 3<br />

H +<br />

EtO OEt<br />

O<br />

Δ<br />

- EtOH<br />

Ireland ester-enolate Claisen. Aldrichimica Acta 1993, 26, 17.<br />

Eschenmoser<br />

O<br />

O<br />

O<br />

O<br />

Me Me<br />

OH<br />

"Chirality Transfer"<br />

R<br />

N<br />

O<br />

Ph<br />

R= Et, Bn, iPr, tBu<br />

OBn<br />

R<br />

EtO OEt<br />

BF 3<br />

LDA, THF<br />

TMS-Cl<br />

LDA, THF<br />

TMS-Cl<br />

NMe 2<br />

Ph<br />

O<br />

Me<br />

R<br />

OTMS<br />

O<br />

Me<br />

NMe 2<br />

O<br />

[3.3]<br />

OBn<br />

CO 2H<br />

Δ<br />

C-C BOND FORMATION 99<br />

OEt<br />

O<br />

[3.3]<br />

OH<br />

O<br />

JOC 1983, 48, 5221<br />

[2,3]-Sigmatropic Rearrangement Comprehensive <strong>Organic</strong> Synthesis 1991, 6, 873.<br />

H Z<br />

R<br />

:X Y<br />

R<br />

H<br />

H<br />

R<br />

X Y:<br />

X Y:<br />

R 1<br />

N<br />

O<br />

R<br />

H<br />

R<br />

N<br />

R<br />

O<br />

Ph<br />

O<br />

OEt<br />

NMe 2<br />

X Y: R R :X Y<br />

H<br />

aldehyde<br />

oxidation state<br />

(86 - 96 % de)<br />

-Wittig Rearrangement <strong>Organic</strong> <strong>Reactions</strong> 1995, 46, 105 Synthesis 1991, 594.<br />

O<br />

O<br />

_<br />

SnR 3<br />

base<br />

BuLi<br />

R 1<br />

O<br />

:X<br />

HO<br />

_<br />

Y<br />

R<br />

E


TBDPSO<br />

MeO<br />

O<br />

H<br />

OH<br />

KH, 18-C-6,<br />

Me 3 SnCH 2 I<br />

TBDPSO<br />

MeO<br />

H 3 C<br />

O<br />

(58%)<br />

H<br />

TBDPSO<br />

MeO<br />

O<br />

H<br />

CH 3<br />

Sulfoxide Rearrangement<br />

R<br />

H<br />

O -<br />

S<br />

O<br />

O<br />

O<br />

OH<br />

H<br />

+<br />

O<br />

SnMe 3<br />

nBuLi<br />

TBDPSO<br />

MeO<br />

O<br />

(42%)<br />

H<br />

TBDPSO<br />

MeO<br />

CH3 Ph<br />

_<br />

H3C CH3 Ph OH<br />

_<br />

Ph<br />

CH3 Ph<br />

CO2Et<br />

S<br />

O -<br />

R<br />

S<br />

O<br />

(MeO) 3 P<br />

H3C Ph<br />

(MeO) 3 P<br />

O<br />

O<br />

CH 3<br />

OH<br />

C-C BOND FORMATION 100<br />

H<br />

O<br />

HO<br />

CO 2 Et<br />

HO<br />

Li<br />

(87 %)<br />

(13 %)<br />

J. Am. Chem. Soc.<br />

1997, 119, 10935<br />

Ene Reaction Comprehensive <strong>Organic</strong> Synthesis 1991, 5, 1; Angew. Chem. Int. Ed. Engl. 1984, 23,<br />

876; ; Chem. Rev. 1992, 28, 1021.<br />

H H<br />

- Ene reaction with aldehydes is catalyzed by Lewis Acids (Et2AlCl)<br />

Ph<br />

O<br />

O<br />

CHO<br />

H<br />

O<br />

H<br />

R<br />

H<br />

O<br />

Et2AlCl<br />

CH 2 Cl 2 -78°C<br />

SnCl4<br />

SnCl 4<br />

R<br />

Ph<br />

O<br />

O<br />

H<br />

OH<br />

Ph<br />

O<br />

O<br />

H 3 C<br />

O<br />

OH<br />

JOC 1992, 57, 2766<br />

OH<br />

99.8 % de<br />

+ syn isomer<br />

(94 : 6)


PhS<br />

+<br />

O<br />

H CO 2 Me<br />

O<br />

O TiCl 2<br />

OH<br />

C-C BOND FORMATION 101<br />

CO 2 Me<br />

(97% ee)<br />

Tetrahedron Lett.<br />

1997, 38, 6513<br />

O<br />

OH<br />

OH<br />

R<br />

+<br />

H CO2Me PhS<br />

R<br />

CO2Me +<br />

(9 : 1)<br />

PhS<br />

R<br />

CO2Me anti (99 % ee) syn (90 % ee)<br />

- Metallo-ene Reaction Angew. Chem. Int. Ed. Engl. 1989, 28, 38<br />

Cl<br />

intramolecular<br />

CHO<br />

MgBr<br />

1)<br />

Li<br />

CH 3<br />

MgCl<br />

C 6 H 13<br />

2) SOCl 2 Cl<br />

O<br />

1) PCC<br />

2) MeLi<br />

3) O 3<br />

CH 3<br />

H<br />

MgCl<br />

CH 3<br />

CHO<br />

OH<br />

BrMg<br />

BrMg<br />

+<br />

H 3 C<br />

1) Mg(0), Et 2 )<br />

2) 60 °C<br />

4) KOH<br />

5) H 2<br />

6) Ph 3 P=CH 2<br />

SOCl 2<br />

CH 3<br />

H<br />

H 3 C<br />

CH 3<br />

ClMg<br />

ClMg<br />

MgCl<br />

O Capnellene<br />

H<br />

C 6 H 13<br />

C 6 H 13<br />

CH 3<br />

H 2 O<br />

H 2 O<br />

MgCl<br />

O 2<br />

+<br />

H 3 C<br />

CH 3<br />

H 3 C<br />

H 3 C<br />

(11 : 1)<br />

CH 3<br />

Cl 1) Mg(0), Et2)<br />

2) 60 °C<br />

CH 3<br />

H<br />

C 6 H 13<br />

C 6 H 13<br />

(10 %)<br />

(> 1%)<br />

MgCl<br />

OH


C-C BOND FORMATION 102<br />

Synthesis of Phyllanthocin A. B. Smith et al. J. Am. Chem. Soc. 1987, 109, 1269.<br />

O O<br />

O N<br />

Ph CH 3<br />

BnO<br />

1)<br />

-<br />

BnO<br />

O<br />

O<br />

2) H 3 O +<br />

3) Swern<br />

HO 2C<br />

BnO<br />

O<br />

O<br />

H<br />

BnO<br />

O<br />

O<br />

O<br />

O<br />

H<br />

O<br />

CH 3<br />

MEMO<br />

O<br />

O<br />

O<br />

CH 3<br />

O<br />

(Me 3Si) 2NLi<br />

O<br />

O<br />

Br<br />

BnO<br />

1) LDA, TMSCl<br />

2) BnMe 3NF, MeI<br />

O O<br />

O N<br />

Ph CH 3<br />

1) O 3<br />

2) H 2, Lindlar's BnO<br />

1) ZnCl 2<br />

2) H +<br />

OH<br />

BnO<br />

MeO 2C<br />

BnO<br />

O<br />

CHO<br />

1) MEM-Cl<br />

2) O 3 BnO<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

CH 3<br />

CH 3<br />

O<br />

1) LAH<br />

2) BnBr<br />

Ph<br />

MeAlCl<br />

CHO<br />

OMEM<br />

(CH 3) 2S(O)CH 2 -<br />

1) DBU<br />

2) H 2, Pd/C<br />

3) RuO 4<br />

Phyllanthocin


C=C Bond Formation C&S Chapt. 2 # 5,6,8,9,12<br />

C=C BOND FORMATION 103<br />

1. Aldol Condensation<br />

2. Wittig Reaction (Smith, Ch. 8.8.A)<br />

3. Peterson Olefination<br />

4. Julia-Lythgoe Olefination<br />

5. Carbonyl Coupling <strong>Reactions</strong> (McMurry Reaction) (Smith Ch. 13.7.F)<br />

6. Tebbe Reagent<br />

7. Shapiro and Related Reaction<br />

8. β−Elimination and Dehydration<br />

9. From Diols and Epoxides<br />

10 From Acetylenes<br />

11. From Other Alkenes-Transition Metal Catalyzed Cross-Coupling and Olefin<br />

Metathesis<br />

Aldol Condensation -Aldol condensation initially give β-hydroxy ketones which under<br />

certain conditions readily eliminated to give α,β-unsaturated carbonyls.<br />

OMe<br />

OMe OR<br />

O<br />

LDA, THF, -78°C<br />

O<br />

O<br />

-78C → RT<br />

CHO<br />

OMe<br />

OMe OR<br />

O<br />

O<br />

O<br />

Tetrahedron<br />

1984, 40, 4741<br />

Robinson Annulation : Sequential Michael addition/aldol condensation between<br />

a ketone enolate and an alkyl vinyl ketone (i.e. MVK) to give a cyclohex-2-en-1one<br />

JOC 1984, 49 , 3685 Synthesis 1976, 777.<br />

O<br />

O<br />

O<br />

L-proline<br />

O<br />

O<br />

Weiland-Mischeler Ketone<br />

(chiral starting material)<br />

Mannich Reaction - α,β-unsaturated carbonyls (α-methylene carbonyls)<br />

O<br />

H 2 C=O, Me 2 NH•HCl<br />

H2C N Me<br />

+ Me<br />

Mannich Reaction<br />

Cl -<br />

O


C=C BOND FORMATION 104<br />

Wittig Reaction review: Chem. Rev. 1989, 89, 863.<br />

mechanism and stereochemistry: Topic in Stereochemistry 1994, 21, 1<br />

- reaction of phosphonium ylide with aldehydes, ketones and lactols to give<br />

olefins<br />

R X<br />

R 1<br />

O<br />

R 2<br />

Ph 3P<br />

- Olefin Geometry<br />

+<br />

Ph3P R<br />

+<br />

R PPh3 O -<br />

betaine<br />

X -<br />

R 2<br />

R 1<br />

Ph 3P<br />

L<br />

Ph 3P<br />

S<br />

L S<br />

O<br />

O<br />

S<br />

L S<br />

L<br />

strong<br />

base<br />

Ph 3P<br />

R<br />

O<br />

_<br />

+<br />

R PPh3 ylide<br />

R 2<br />

R 1<br />

oxaphosphetane<br />

Z- olefin<br />

E- Olefin<br />

- Ph 3P=O<br />

R PPh3 phosphorane<br />

- With "non-stabilized" ylides the Wittig Reaction gives predominantly Z-olefins.<br />

Seebach et al JACS<br />

L<br />

O<br />

S<br />

S<br />

L<br />

PPh 3<br />

+<br />

O<br />

L S<br />

Ph3P L<br />

L<br />

L S<br />

S<br />

L<br />

O<br />

PPh 3<br />

+<br />

PPh 3<br />

S<br />

S<br />

- "Stabilized ylides" give predominantly E-olefins<br />

O<br />

+<br />

_<br />

L S<br />

Ph3P CO2Me O<br />

L<br />

S<br />

L<br />

- Ph 3P=O<br />

S<br />

CO 2Me<br />

R<br />

S<br />

S<br />

+<br />

R 1<br />

R 2<br />

- O<br />

L S<br />

L<br />

PPh 3<br />

S<br />

L L<br />

Z-olefins


C=C BOND FORMATION 105<br />

- Betaine formation is reversible and the reaction becomes under thermodynamic<br />

control to give the most stable product.<br />

- There is NO evidence for a betaine intermediate.<br />

- Vedejs Model:<br />

Ph<br />

Ph<br />

Ph<br />

Ph<br />

O<br />

P<br />

Ph<br />

P<br />

Ph<br />

H<br />

R<br />

H<br />

R<br />

O<br />

H<br />

R<br />

R<br />

H<br />

Cis<br />

Trans<br />

Phosphonate Modification (Horner-Wadsworth-Emmons)<br />

R X<br />

(EtO) 3P R P(OEt) 2<br />

Arbazov Reaction O<br />

Pukered (cis)<br />

oxaphosphetane<br />

(kinetically favored)<br />

Planar (trans)<br />

oxaphosphetane<br />

(thermodynamically favored)<br />

_<br />

R P(OEt) 2<br />

O<br />

- R is usually restricted to EWG such as CO2H, CO2Me, CN, SO2Ph etc. and the<br />

olefin geometry is usually E.<br />

- Still Modification TL 1983, 24, 4405.<br />

(CF 3CH 2O) 2P<br />

O<br />

CO 2Me<br />

- CF3CH2O- groups make the betaine less stable, giving more Z-olefin.<br />

Me CHO (CF CO<br />

3Si 3CH2O) 2P 2Me O<br />

(Me 3Si) 2N - K + , THF,<br />

18-C-6<br />

Me 3Si<br />

Z:E = 25:1<br />

CO 2Me<br />

JACS 1988,<br />

110, 2248<br />

Peterson Olefination review: Synthesis 1984, 384 <strong>Organic</strong> <strong>Reactions</strong> 1990, 38 1.<br />

LDA, THF<br />

Me3Si CO Me<br />

2Me 3Si CO2Me _<br />

MeO 2C<br />

Me 3Si<br />

R 1<br />

O<br />

H<br />

R 2<br />

Silicon can stabilize<br />

an α- negative charge<br />

- Me 3Si-O<br />

R 1<br />

R 2<br />

R 1<br />

O<br />

CO 2 Me<br />

R 2<br />

MeO 2C<br />

Me 3Si<br />

R 1<br />

usually a mixture<br />

of E and Z olefins<br />

- O<br />

H<br />

R 2


Julia-Lythgoe Olefination TL 1973, 4833 Tetrahedron 1987, 43, 1027<br />

O<br />

PhO 2 S<br />

O<br />

O<br />

SO 2Ph<br />

H<br />

O<br />

R<br />

HO<br />

O<br />

OBz<br />

+<br />

OR<br />

LDA, THF, -78°C<br />

OH<br />

TBSO<br />

O<br />

OSitBuPh 2<br />

SO 2Ph<br />

CHO<br />

PhO 2S<br />

OH<br />

1) tBuLi, THF,<br />

HMPA, -78°C<br />

2) Na(Hg) NaHPO 4<br />

THF, MeOH, -40°C<br />

OTBDPS<br />

Ramberg-Backlund Rearrangement<br />

Cl<br />

O<br />

S<br />

O<br />

Br<br />

Br<br />

OR<br />

OR<br />

OSiPh 2tBu<br />

OSiPh 2tBu<br />

MeLi, THF<br />

R<br />

SmI 2,<br />

HMPA/THF<br />

R= H, Ac<br />

1) Na 2S•Al 2O 3<br />

2) mCPBA<br />

O<br />

S<br />

O<br />

OTBS<br />

O<br />

HO<br />

O<br />

O<br />

O<br />

S<br />

O<br />

C=C BOND FORMATION 106<br />

1) MsCl, Et 3N<br />

2) Na(Hg), MeOH<br />

OH<br />

O<br />

OBz<br />

O<br />

OSitBuPh 2<br />

thiiarane dioxide<br />

OR<br />

OR<br />

OTBS<br />

R<br />

mixture<br />

of olefins<br />

Tetrahedron Lett. 1993, 34, 7479<br />

OTBDPS<br />

75 % yield<br />

E:Z = 3 : 1<br />

OSiPh 2 tBu<br />

OSiPh 2tBu<br />

- SO 2<br />

O<br />

O<br />

HO<br />

OH<br />

TL 1991,<br />

32, 495<br />

O<br />

O<br />

O<br />

Milbemycin α 1<br />

Synlett 1994, 859<br />

SOCl 2<br />

OR<br />

OR<br />

JACS 1992, 114, 7360<br />

Carbonyl Coupling <strong>Reactions</strong> (McMurry Reaction)<br />

Reviews: Chem. Rev. 1989, 89, 1513.<br />

- reductive coupling of carbonyls with low valent transition metals, Ti(0)<br />

or Ti(II), to give olefins<br />

R 1<br />

O<br />

R 2<br />

"low-valent Ti"<br />

R 1<br />

R 2<br />

R 1<br />

R 2<br />

+<br />

R 1<br />

R 2<br />

R 2<br />

R 1<br />

usually a mixture<br />

of E and Z olefins<br />

excellent method for the preparation of strained (highly substituted) olefins<br />

- Intramolecular coupling gives cyclic olefins


O<br />

OHC<br />

OMe<br />

OMe<br />

CHO<br />

"low-valent Ti"<br />

CHO<br />

TiCl 4 , Zn,<br />

pyridine<br />

(86 %)<br />

OH OH<br />

C=C BOND FORMATION 107<br />

OMe<br />

JACS 1984, 106, 723<br />

OMe<br />

Tetrahedron Lett. 1993, 34, 7005<br />

Tebbe Reagent Cp2Ti(CH2)ClAlMe2<br />

- methylenation of ketones and lactones. The later gives cyclic enol ethers.<br />

Cp<br />

H2 C<br />

O O Ti AlMe2 Cp Cl<br />

O<br />

200 °C<br />

- Cp2TiMe2 will also do the methylenation chemistry<br />

JACS 1990, 112, 6393.<br />

Shapiro and Related <strong>Reactions</strong> <strong>Organic</strong> <strong>Reactions</strong> 1990, 39, 1 : 1976, 23, 405<br />

- Reaction of a tosylhydrazone with a strong base to give an olefin.<br />

Et<br />

Me<br />

NNHTs<br />

2 eq. nBuLi<br />

THF<br />

Et<br />

Me<br />

_<br />

N N Ts<br />

_<br />

Et<br />

Me<br />

N<br />

N _<br />

O<br />

_<br />

- N Et 2 E Et +<br />

Bamford-Stevens Reaction- initial conversion of a tosylhydrazone to a diazo<br />

intermediate<br />

R1 R2 H<br />

R 3<br />

NNHTs<br />

base<br />

R1 R2 H<br />

N<br />

R 3<br />

N Ts<br />

_<br />

a: aprotic- decomposition of the diazo intermediate under aprotic conditions<br />

gives and olefin through a carbene intermediate.<br />

R1 R2 H<br />

+ N<br />

_<br />

N<br />

R 3<br />

- N 2<br />

R1 R2 H<br />

R3 ••<br />

Carbene<br />

b. protic- decomposition of the diazo intermediate under protic conditions an<br />

olefin through a carbonium ion intermediate.<br />

R1<br />

R2 H<br />

+ N<br />

_<br />

N<br />

R 3<br />

H + R R1<br />

2<br />

H<br />

R3 H<br />

+ N<br />

N<br />

- N 2<br />

R1 R2 H<br />

+<br />

R3<br />

H<br />

R1 R2 R 2<br />

Me<br />

H<br />

+ N<br />

_<br />

N<br />

R1<br />

- H +<br />

R 3<br />

R3<br />

R 2<br />

R 1<br />

R 3<br />

Me<br />

E


C=C BOND FORMATION 108<br />

β- Eliminations<br />

Anti Eliminations<br />

- elimination of HX from vicinal saturated carbon centers to give a olefin,<br />

usually base promoted.<br />

- base promoted E2- type elimination proceeds through an anti-periplanar<br />

transition state.<br />

B:<br />

R 3<br />

R 1<br />

X<br />

H<br />

R 4<br />

- typical bases: NaOMe, tBuOK, DBU, DBN, DABCO, etc.<br />

R 2<br />

N N N N<br />

DBN DBU DABCO<br />

- X: -Br, -I, -Cl, -OR, epoxides<br />

R<br />

O<br />

O<br />

R R'<br />

"unactivated"<br />

O<br />

B:<br />

R<br />

O<br />

R 1<br />

R 3<br />

N<br />

AlEt2 R OH<br />

- or -<br />

TMS-OTf, DBU<br />

R'<br />

Syn Elimination<br />

- often an intramolecular process<br />

R 1<br />

H<br />

R2 X<br />

R 3<br />

R 4<br />

R 1<br />

R 3<br />

R 2<br />

R 4<br />

N<br />

N<br />

R 2<br />

R 4<br />

OH<br />

BCSJ 1979, 52, 1705<br />

JACS 1979, 101, 2738<br />

O<br />

X= Se Ph<br />

O<br />

S Ph<br />

Cope Elimination- elimination of R2NOH from an amine oxide<br />

OLI<br />

+<br />

Me2N=CH2 THF, -78°C<br />

I -<br />

O<br />

NMe 2 mCPBA<br />

THF<br />

O O NMe2 1) Me2CuLi +<br />

2) Me2N=CH2 CF -<br />

3CO2 O<br />

JACS 1977,<br />

99 , 944<br />

Tetrahedron<br />

1977, 35 , 613<br />

O<br />

N<br />

Me2 - O<br />

- Me2NOH


R<br />

H 3CHN<br />

Selenoxide Elimination <strong>Organic</strong> <strong>Reactions</strong> 1993, 44, 1.<br />

OH<br />

R'<br />

N<br />

O<br />

N SePh<br />

Bu<br />

O<br />

3P: R<br />

- or -<br />

NO2 SeCN<br />

R'<br />

SeAr<br />

H3C O H3C O<br />

PhSeO2H, PhH, 60 °C<br />

O<br />

N<br />

Ph<br />

(82%)<br />

mCPBA<br />

H<br />

H 3CHN<br />

R<br />

C=C BOND FORMATION 109<br />

R'<br />

Se<br />

O SeAr<br />

H 3 C<br />

O<br />

O H3C N<br />

- ArSeOH<br />

N<br />

O<br />

R<br />

Ph<br />

R'<br />

JACS 1979,<br />

101, 3704<br />

JOC 1995, 60, 7224<br />

JCS P1 1985, 1865<br />

Dehydration of Alcohols<br />

- alcohols can be dehydrated with protic acid to give olefins via an E1<br />

mechanism.<br />

- other reactions dehydrate alcohols under milder conditions by first converting<br />

them into a better leaving group, i.e. POCl3/ pyridine, P2O5<br />

Martin sulfurane; Ph2S[OCPh(CF3)2]2 JACS, 1972, 94, 4997 dehydration<br />

occurs under very mild, neutral conditions, usually gives the most stable olefin<br />

BzO<br />

H<br />

OH<br />

MSDA, CH 2 Cl 2<br />

BzO<br />

H<br />

JACS 1989,<br />

111 , 278<br />

Burgess Reagent (inner salt) JOC, 1973, 38, 26 occurs vis a syn elimination<br />

H<br />

R1 R2 R 3<br />

R 4<br />

OH<br />

_ +<br />

MeO2CNSO2NEt3 PhH, reflux<br />

_ +<br />

MeO2CNSO2NEt3 MeO2C -N<br />

H<br />

Olefins from Vicinal Diols<br />

Corey-Winter Reaction JACS 1963, 85, 2677; TL 1982, 1979; TL 1978, 737<br />

R<br />

OH<br />

R'<br />

Im 2 C=S<br />

O<br />

R1 R2 OH R R'<br />

S<br />

O<br />

SO2 O<br />

R4 R3 R 3 P:<br />

R R'<br />

R 1<br />

R 2<br />

R 4<br />

R 3


C=C BOND FORMATION 110<br />

- vic-diols can be converted to olefins with K2WCl6 JCSCC 1972, 370; JACS<br />

1972, 94, 6538<br />

- This reaction worked best with more highly substituted diols and give<br />

predominantly syn elimination.<br />

- Low valent titanium; McMurry carbonyl coupling is believed to go through<br />

the vic-diol. vic-diols are smoothly converted to the corresponding olefins under<br />

these conditions. JOC 1976, 41 , 896<br />

Olefins from Epoxides<br />

R1 H<br />

O<br />

H<br />

R2 R1 H<br />

NCO<br />

R 1<br />

O<br />

NC-Se -<br />

H<br />

H<br />

H<br />

R2 R 1<br />

H<br />

Ph 2 P -<br />

HO<br />

PPh2Me R2 H<br />

Se -<br />

R 1<br />

R 2<br />

+<br />

- O<br />

H<br />

H<br />

R 1<br />

R 2<br />

SeCN<br />

HO<br />

H<br />

H<br />

R 2<br />

PPh 2<br />

-Ph 2 MeP=O<br />

R1<br />

R 1<br />

MeI<br />

R 1<br />

R2<br />

H H<br />

NCSe<br />

R2 - O<br />

From Acetylenes<br />

- Hydrogenation with Lindlar's catalyst gives cis-olefins<br />

R R' Co2 (CO) 8 R R'<br />

R 1<br />

Co 2(CO) 6<br />

H<br />

Bu 3SnH<br />

H SnBu 3<br />

R R'<br />

From Other Olefins<br />

Sigmatropic Rearrangements<br />

- transposition of double bonds<br />

Se<br />

R 2<br />

H<br />

H 2, Rh<br />

H<br />

HO<br />

H<br />

H<br />

H<br />

R 2<br />

PPh2Me +<br />

"inversion "<br />

of R groups<br />

R 1<br />

R R'<br />

H<br />

NCO<br />

R 1<br />

H R 2<br />

R 2<br />

H<br />

Se -<br />

H<br />

"retention"<br />

of R groups<br />

Tetrahedron Lett. 1998, 39, 2609<br />

Birch Reduction Tetrahedron 1989, 45, 1579<br />

OMe OMe O<br />

H 3O +


C=C BOND FORMATION 111<br />

Olefin Isomerization- a variety of transition metal (RhCl3•H2O) catalyst will<br />

isomerize doubles bonds to more thermodynamically favorable configurations<br />

(i.e. more substituted, trans, conjugated)<br />

Cl Cl<br />

Ti<br />

OH<br />

RhCl 3 •3H 2 O<br />

EtOH<br />

OH<br />

Olefin Inversion Tetrahedron 1980, 557<br />

- Conversion of cis to trans olefins<br />

- Conversion of trans to cis- olefins<br />

OH<br />

OH<br />

C5H11 OH<br />

CO 2 Me<br />

R R' hν, PhSSPh R<br />

I 2 , CH 2 Cl 2<br />

HO<br />

C 5 H 11<br />

+<br />

up to 80% ee<br />

R'<br />

JOC 1987,<br />

52 , 2875<br />

OH<br />

OH<br />

JACS 1992<br />

114 , 2276<br />

CO 2 Me<br />

JACS, 1984, 107, xxxx<br />

Transition Metal Catralyzed Cross-Coupling <strong>Reactions</strong><br />

Coupling of Vinyl Phosphonates and Triflates to Organometallic Reagents<br />

- vinyl phosphates review: Synthesis 1992, 333.<br />

O<br />

O<br />

O<br />

R 2 CuLi<br />

(EtO) 2 PCl<br />

O<br />

OP(OEt) 2<br />

R<br />

OP(OEt) 2<br />

Li, NH 3 ,<br />

tBuOH<br />

R 2 CuLi<br />

- preparation of enol triflates Synthesis 1997, 735<br />

O<br />

O<br />

LDA, THF, -78°C<br />

Tf 2 NPh<br />

Tf 2 O, CH 2 Cl 2<br />

N<br />

tBu tBu<br />

OTf<br />

OTf<br />

kinetic<br />

product<br />

O<br />

thermodynamic<br />

product<br />

R<br />

R


HO<br />

- reaction with cuprates. Acc. Chem. Res. 1988, 25, 47<br />

tBu<br />

OTf<br />

Ph 2CuLi<br />

tBu<br />

C=C BOND FORMATION 112<br />

Ph<br />

TL 1980,<br />

21 , 4313<br />

- palladium (0) catlyzed cross-coupling of vinyl or aryl halides or triflates with<br />

organostannanes (Stille Reaction)<br />

Angew. Chem. Int. Ed. Engl. 1986, 25, 508.; <strong>Organic</strong> <strong>Reactions</strong> 1997, 50, 1-652<br />

HO<br />

CHO<br />

1)<br />

OH<br />

TESO TESO<br />

Bu 3Sn<br />

O<br />

O<br />

O<br />

(-)-Macrolactin A<br />

2<br />

MgBr<br />

BOMe<br />

2) TESOTf, 2,6-lutidine<br />

(52%)<br />

PdCl 2(MeCN) 2<br />

TESO<br />

Bu 3SnH, AIBN<br />

(38%)<br />

OPiv<br />

O<br />

O<br />

O 3, NaBH 4<br />

(77%)<br />

TBSO<br />

OH<br />

TBSO<br />

TESO<br />

CHO Bu3SnCHBr2, CrCl2 (42%)<br />

Bu 3Sn<br />

TESO<br />

SnMe 3<br />

TBSO<br />

I<br />

TBSO<br />

1)LDA, Tf 2NPh<br />

2) Pd(PPh 3) 4<br />

Bu 3Sn<br />

TESO OTES<br />

TESO<br />

I<br />

OTBS<br />

Bu 3Sn<br />

1) O 3, Me 2S<br />

2) allyl bromide, Zn<br />

3) Dess-Martin<br />

Periodinane<br />

(70%)<br />

OPiv<br />

CO 2H<br />

OH<br />

O<br />

a) nBu3SnH, (Ph3P) 2PdCl2 b) I2 (83%<br />

O<br />

Bu 3Sn<br />

1) Dess-Martin<br />

Periodinane<br />

2) Ph 3P + CH 2I, I -<br />

NaHMDS<br />

3) DIBAL<br />

(50%)<br />

SnBu 3<br />

I<br />

I<br />

O<br />

OH<br />

TBSO OH<br />

I<br />

CO 2H<br />

TBSO<br />

PdCl 2(MeCN) 2<br />

(65%)<br />

I<br />

OH<br />

JOC 1986,<br />

51 , 3405<br />

TESO OTES<br />

I<br />

TBSO<br />

TESO<br />

J. Am. Chem. Soc.<br />

1998, 120, 3935<br />

1) HF, MeCN<br />

2) Me4NBH(OAc) 3<br />

3) TBSCl, imidazole<br />

(76%)<br />

OH<br />

OH<br />

CO 2H


Bu 3 Sn<br />

Bu 3Sn<br />

TESO<br />

I<br />

TESO<br />

TESO<br />

TESO<br />

O<br />

CO 2H<br />

O<br />

+<br />

TESO<br />

1) Pd 2(dba) 3<br />

iPr 2NEt<br />

2) TBAF<br />

(35%)<br />

I<br />

TESO<br />

C=C BOND FORMATION 113<br />

HO<br />

HO<br />

OH<br />

OH<br />

(-)-Macrolactin A<br />

Ph 3P, DEAD<br />

palladium (0) catalyzed carbonylations- coupling of a vinyl triflate with a<br />

organostanane to give α,b-unsaturated ketones.<br />

But<br />

OTf<br />

Me 3SnPh<br />

Pd(0), CO<br />

tBu<br />

O<br />

Ph<br />

JACS 1994,<br />

106 , 7500<br />

Nickel (II) Catalyzed Cross-Coupling with Grignard Reagents (Kumada<br />

Reaction): Pure Appl. Chem. 1980, 52, 669 Bull Chem. Soc. Jpn. 1976, 49, 1958<br />

AcO<br />

Br OMe<br />

N<br />

H<br />

X<br />

Aryl or vinyl halide or triflate<br />

OAc<br />

R-MgBr<br />

(dppp)NiCl 2<br />

Br<br />

1) Ni Ni<br />

Br<br />

(2 equiv), 65 °C<br />

2) LiAlH 4, Et 2O<br />

(72%)<br />

O<br />

R R= alkyl, vinyl or aryl<br />

N<br />

H<br />

HO<br />

(±)-Neocarazostatin B<br />

OMe<br />

OH<br />

(50%)<br />

O<br />

Tetrahedron Lett.<br />

1998, 39, 2537, 2947,<br />

Olefin Metathesis Tetrahedron 1998, 54, 4413, Acc. Chem. Res. 1995, 25, 446.<br />

R +<br />

1 R2<br />

(CH 2) n<br />

(CH 2) n<br />

catalyst<br />

catalyst<br />

olefin<br />

metathesis<br />

(CH 2) n<br />

catalyst<br />

(CH 2) n<br />

n<br />

R 1<br />

R 2<br />

Ring-Opening Metathesis<br />

Polymerization (ROMP)<br />

Ring-Closing Metathesis<br />

(RCM)


Metathesis Catalysts:<br />

H3C F3C F3C Mechanism:<br />

iPr<br />

F3C F3C N<br />

O Mo<br />

O<br />

CH 3<br />

iPr<br />

Schrock' s Catalyst<br />

R 1<br />

R 1<br />

R 2<br />

Ph<br />

(C 6H 11) 3P<br />

Cl<br />

Ru<br />

Cl<br />

(C6H11) 3P<br />

Grubbs' Catalyst<br />

C=C BOND FORMATION 114<br />

Ph<br />

Ph<br />

+ [M]<br />

R1 [M]<br />

[M]<br />

R 1<br />

R2 +<br />

[M]<br />

(C6H11) 3P<br />

Cl<br />

Ru<br />

Cl<br />

(C6H11) 3P<br />

R 2<br />

Ph


C≡C Bond Formation<br />

1. From other acetylenes<br />

2. From carbonyls<br />

3. From olefins<br />

4. From Strained Rings<br />

5. Eschenmosher Fragmentation<br />

6. Allenes<br />

C≡C BOND FORMATION 115<br />

From Other Acetylenes<br />

- The proton of terminal acetylenes is acidic (pKa= 25), thus they can be<br />

deprotonated to give acetylide anions which can undergo substitution reactions<br />

with alkyl halides, carbonyls, epoxides, etc. to give other acetylenes.<br />

R 1<br />

R H R<br />

_<br />

M +<br />

R 1-X<br />

O<br />

Et 2AlCl<br />

R 2<br />

O<br />

R R 1<br />

- Since the acetylenic proton is acidic, it often needs to be protected as a<br />

trialkylsilyl derivative. It is conveniently deprotected with fluoride ion.<br />

R 3<br />

R<br />

R<br />

OH<br />

OH<br />

R3 R2 F<br />

R H R SiR3 R H<br />

-<br />

B:, R3SiCl Acetylide anions and organoboranes<br />

_ Li +<br />

R 3B<br />

R 1<br />

Palladium Coupling <strong>Reactions</strong>:<br />

iPr 3Si SnBu 3<br />

O<br />

BR 3<br />

O<br />

_<br />

Cl Cl<br />

(Ph 3 P) 4 Pd<br />

Li +<br />

iPr 3Si<br />

I 2<br />

O<br />

O<br />

R 1 R<br />

SiiPr 3<br />

JOC 1974, 39 , 731<br />

JACS, 1973, 95 , 3080<br />

JACS 1990,<br />

112, 1607


TBSO<br />

HO<br />

OTBS<br />

OTBS<br />

HO<br />

CO 2Me<br />

Copper Coupling- 1,3-diynes<br />

R 1<br />

+<br />

R 2<br />

Br C 5 H 11<br />

OTBS<br />

Pd(Ph 3P) 4, CuI<br />

iPr 2NH, PhH<br />

Cu(OAc) 2<br />

R 1<br />

OH<br />

TBSO<br />

OH<br />

C≡C BOND FORMATION 116<br />

C 5H 11<br />

R 1<br />

OTBS<br />

OTBS<br />

CO 2H<br />

CO 2Me<br />

JACS 1985,<br />

107, 7515<br />

Adv. Org. Chem.<br />

1963,4 , 63<br />

Nicholas Reaction<br />

- acetylenes as their Co2(CO)8 complex can stabilize an α-positive charge,<br />

which can subsequently be trapped with nucleophiles.<br />

R 1<br />

N CO 2 Me<br />

Nu:<br />

Co 2 (CO) 6<br />

OR 4<br />

R2 R3 R 1<br />

Co 2(CO) 8<br />

(CO) 6Co 2<br />

Tf 2 O, CH 2 Cl 2 ,<br />

MeNO 2 , -10°C<br />

tBu N tBu<br />

Nu<br />

R2 R3 (OC)6Co2<br />

(CO) 6Co 2<br />

R 1<br />

O<br />

OR 4<br />

R2 R3 oxidative<br />

decomplexation<br />

N CO2Me<br />

Co2(CO)6-acetylene deocomplexation: JOC 1997, 62, 9380<br />

From Aldehydes and Ketones<br />

I 2<br />

R 1<br />

(CO) 6 Co 2<br />

R 1<br />

Nu<br />

R2 R3 O<br />

+<br />

N CO 2 Me<br />

R<br />

RCHO<br />

P3P, CBr4 R<br />

Br<br />

R<br />

Li R<br />

Br<br />

+<br />

R'-X<br />

2 eq. nBuLi<br />

_<br />

ClCO2Et H2O R<br />

R2 R3 JCSCC 1991, 544<br />

R'<br />

CO 2Et<br />

H


OHC<br />

OSitBuPh 2<br />

OHC OSitBuPh 2<br />

CBr 4 , Ph 3 P<br />

Br 2 C<br />

Br2C<br />

OSitBuPh2<br />

OSitBuPh 2<br />

C≡C BOND FORMATION 117<br />

a) nBuLi,<br />

THF, -78°C<br />

b) ClCO 2 Me<br />

MeO 2 C<br />

MeO2C<br />

- by conversion of ketones to gem-dihalides followed by elimination<br />

R<br />

O<br />

R'<br />

PCl 5<br />

Cl Cl tBuOK<br />

R'<br />

R<br />

- HCl<br />

R<br />

Cl<br />

R'<br />

tBuOK<br />

- HCl<br />

OSitBuPh 2<br />

OSitBuPh 2<br />

JACS 1992, 114 , 7360<br />

R R'<br />

- by conversion of ketones to enol phosphates followed by elimination<br />

R<br />

O<br />

R'<br />

LDA, (EtO) 2P(O)Cl<br />

R<br />

O P(O)(OEt) 2 LiNH 2, NH 3<br />

- Insertion reaction of a vinyl carbene (terminal acetylenes)<br />

O<br />

R R'<br />

N 2<br />

N2CHP(O)(OMe) 2<br />

C<br />

tBuOK R R'<br />

O<br />

Me3Si THF,<br />

_<br />

N2 -78°C → RT<br />

R'<br />

-N 2<br />

+<br />

C<br />

••<br />

R R'<br />

R R'<br />

R R'<br />

Via Elimination <strong>Reactions</strong> of Vinyl Halides<br />

- Treatment of vinyl halides with strong base gives acetylenes.<br />

R<br />

X<br />

H<br />

R'<br />

X= Cl, Br, I, OTf, O 3SR, OP(O)R 2<br />

Base<br />

- HX<br />

R R'<br />

Base= LDA; tBuOK; NaNH 2, DBU<br />

JOC 1987,<br />

52 , 4885<br />

JOC 1982,<br />

47 , 1837<br />

Synlett 1994, 107<br />

- Addition of Grignard reagents to 1,1-difluoroethylene yields an acetylide anion<br />

which can be subsequently trapped with electrophiles.<br />

R-MgX<br />

H 2 C=CF 2<br />

R<br />

_<br />

E +<br />

R E<br />

TL 1982, 23 , 4325<br />

JOC 1976, 41 , 1487<br />

Strained Rings Topics in Current Chemistry 1983, 109, 189.<br />

- Cyclopropenones and cyclobutendiones can be photolyzed or thermolyzed<br />

(FVP) to give acetylenes.<br />

O<br />

O<br />

hν (209 nm)<br />

8 °K<br />

C O<br />

C<br />

O<br />

- CO - CO JACS 1973,<br />

O<br />

95 , 6134<br />

Benzyne


R 2<br />

R 1<br />

Eschenmoser Fragmentation<br />

O<br />

O<br />

R'<br />

O<br />

1) 370 °C<br />

2) 12°K<br />

- CO<br />

FVP<br />

(retro- D-A)<br />

N<br />

N<br />

Ph<br />

R R<br />

tBuOOH,<br />

triton B, C 6 H 6<br />

Allenes Tetrahedron 1984, 40, 2805<br />

- from dihalocyclopropanes<br />

R<br />

R<br />

R'<br />

Br<br />

Br<br />

R<br />

R'<br />

- From SN2' <strong>Reactions</strong><br />

Nu:<br />

R<br />

O<br />

Br<br />

O<br />

O<br />

R'<br />

Ph<br />

R 1 R 2 +<br />

iPr<br />

Base<br />

-or-<br />

heat<br />

HN<br />

iPr<br />

NH2 iPr<br />

AcOH, CH 2Cl 2<br />

R<br />

_ ••<br />

X<br />

R'<br />

R'<br />

C≡C BOND FORMATION 118<br />

ACIEE 1988,27 , 398<br />

JACS 1991, 113 , 6943<br />

CL 1982, 1241<br />

O<br />

Nu<br />

R<br />

O<br />

R<br />

R'<br />

HCA 1972,<br />

55 , 1276<br />

H<br />

R'<br />

H<br />

R<br />

JOC 1992, 57, 7052<br />

- from sigmatropic rearrangements from propargyl sulfoxides and phosphine<br />

oxides.<br />

OH<br />

R'<br />

Ph 2PCl, Et 3N<br />

R<br />

Ph<br />

Ph<br />

:P<br />

O<br />

R'<br />

O<br />

Ph 2P<br />

R<br />

R'<br />

H<br />

R'<br />

H<br />

TL 1990, 31 , 2907<br />

JACS 1990, 112 , 7825


Functional Group Interconversions<br />

C&S Chapter 3 #1; 2; 4a,b, e; 5a, b, d; 6a,b,c,d; 8<br />

1 sulfonates<br />

2 halides<br />

3 nitriles<br />

4 azides<br />

5 amines<br />

6 esters and lactones<br />

7 amides and lactams<br />

FUNCTIONAL GROUP INTERCONVERSIONS 119<br />

Sulfonate Esters<br />

- reaction of an alcohols (1° or 2°) with a sulfonyl chloride<br />

R'SO<br />

O<br />

2Cl<br />

R OH R O S<br />

O<br />

R'<br />

sulfonate ester<br />

R'= mesylate<br />

CH 3<br />

CF 3<br />

CH 3<br />

triflate<br />

tosylate<br />

- sulfonate esters are very good leaving groups. Elimination is often a<br />

competing side reaction<br />

Halides<br />

- halides are good leaving groups with the order of reactivity in SN2 reactions<br />

being I>Br>Cl. Halides are less reactive than sulfonate esters, however<br />

elimination as a competing side reaction is also reduced.<br />

- sulfonate esters can be converted to halides with the sodium halide in acetone<br />

at reflux. Chlorides are also converted to either bromides or iodides in the same<br />

fashion (Finkelstein Reaction).<br />

O<br />

R O S<br />

O<br />

X<br />

R' R X<br />

-<br />

R Cl<br />

NaI, acetone<br />

reflux<br />

R I<br />

X= Cl, Br, I<br />

- conversion of hydroxyl groups to halides: <strong>Organic</strong> <strong>Reactions</strong> 1983, 29, 1<br />

- R-OH to R-Cl<br />

- SOCl2<br />

- Ph3P, CCl4<br />

- Ph3P, Cl2<br />

- Ph3P, Cl3CCOCCl3<br />

R OH R X


- R-OH to R-Br<br />

- PBr3, pyridine<br />

- Ph3P, CBr4<br />

- Ph3P, Br2<br />

- R-OH to R-I<br />

- Ph3P, DEAD, MeI<br />

FUNCTIONAL GROUP INTERCONVERSIONS 120<br />

Nitriles<br />

- displacement of halides or sulfonates with cyanide anion<br />

- dehydration of amides<br />

- POCl3, pyridine<br />

- TsCl, pyridine<br />

- P2O5<br />

- SOCl2<br />

R X<br />

O<br />

R NH 2<br />

KCN, 18-C-6<br />

DMSO<br />

R C N<br />

R C N<br />

- Reaction of esters and lactones with dimethylaluminium amide<br />

TL 1979, 4907<br />

O<br />

Me<br />

O Ar<br />

- Dehydration of oximes<br />

R CHO<br />

Me 2AlNH 2<br />

H 2NOH•HCl<br />

- Oxidation of hydrazones<br />

N<br />

NMe 2<br />

H 3C<br />

NC<br />

Ar<br />

N OH<br />

R H<br />

O<br />

O<br />

(97%)<br />

- Reduced to aldehydes with DIBAL.<br />

DIBAL<br />

RC≡N<br />

OH<br />

P 2O 5<br />

C<br />

N<br />

RCHO<br />

JOC 1987, 52, 1309<br />

R C N<br />

Tetrahedron Lett.<br />

1998, 39, 2009


FUNCTIONAL GROUP INTERCONVERSIONS 121<br />

Azides<br />

- displacement of halides and sulfonates with azide anion<br />

O<br />

O<br />

SO 2 N(C 6 H 11 ) 2<br />

LDA, THF<br />

NBS<br />

O<br />

O<br />

NH<br />

SO2N(C6H11 ) 2<br />

2<br />

- activation of the alcohol<br />

R OH<br />

JOC 1993, 58, 5886<br />

O<br />

HO<br />

+<br />

(99.6 % ee)<br />

+<br />

N F<br />

Me<br />

TsO -<br />

O<br />

O<br />

Br<br />

SO2N(C6H11)2<br />

R OH + EtO 2C N N CO 2Et<br />

R-OH<br />

(PhO) 2P(O)-N3 DBU, PhCH3 DEAD<br />

R O<br />

+<br />

PPh3 - Photolyzed to aldehydes<br />

Amines<br />

- Gabriel Synthesis<br />

O<br />

O<br />

N -<br />

Ar<br />

O<br />

K + R X<br />

- reduction of nitro groups<br />

H2, Pd/C<br />

Al(Hg), H2O<br />

NaBH4<br />

LiAlH4<br />

Zn, Sn or Fe and HCl<br />

H2NNH2<br />

sodium dithionite<br />

HO<br />

+<br />

N OR<br />

Me<br />

O P(OPh) 2<br />

O<br />

NaN 3<br />

NH 2<br />

Ph 3P, NaN 3<br />

+ DBU-H + + N 3 -<br />

O<br />

O<br />

N<br />

R<br />

O<br />

O<br />

SO2N(C6H11 ) N3 2<br />

TL 1986, 27, 831<br />

R N 3 +<br />

EtO2C +<br />

PPh3 N<br />

_<br />

N<br />

CO2Et<br />

activated alcohol<br />

R N 3 + Ph 3P=O<br />

H 2NNH 2<br />

R NO 2 R NH 2<br />

SN2<br />

(91 %)<br />

R NH 2<br />

O<br />

N O<br />

Me<br />

N 3<br />

(97.5 % ee)


- reduction of nitriles<br />

H2, PtO2/C<br />

B2H6<br />

NaBH4<br />

LiAlH4<br />

AlH3<br />

Li, NH3<br />

- reduction of azides<br />

H2, Pd/C<br />

B2H6<br />

NaBH4<br />

LiAlH4<br />

Zn, HCl<br />

(RO)3P<br />

Ph3P<br />

thiols<br />

FUNCTIONAL GROUP INTERCONVERSIONS 122<br />

R C N R CH2 NH2 R N 3 R NH 2<br />

- reduction of oximes (from aldehydes and ketones)<br />

H2, Pd/C<br />

Raney nickel<br />

NaBH4, TiCl4<br />

LiAlH4<br />

Na(Hg), AcOH<br />

- reduction of amides<br />

H2, Pd/C<br />

B2H6<br />

NaBH4, TiCl4<br />

LiBH4<br />

LiAlH4<br />

AlH3<br />

- Curtius rearrangement<br />

O<br />

R Cl<br />

N OH<br />

R R'<br />

O<br />

R N<br />

NaN 3<br />

R''<br />

R'<br />

R N O<br />

isocyanate<br />

O<br />

••<br />

R N N<br />

+<br />

N<br />

H 2O<br />

••••<br />

NH 2<br />

R R'<br />

R N R'<br />

Δ<br />

- N 2<br />

R''<br />

R NH 2<br />

O<br />

••••<br />

R N<br />

nitrene


Tf<br />

Tf<br />

- reductive aminations of aldehydes and ketones<br />

- Borsch Reaction<br />

- Eschweiler-Clark Reaction<br />

- alkylation of sulfonamides<br />

N<br />

N<br />

HN<br />

Tf<br />

HN Tf<br />

K 2 CO 3 , DMF<br />

110°C<br />

Br<br />

- transaminiation<br />

Br<br />

FUNCTIONAL GROUP INTERCONVERSIONS 123<br />

Tf Tf<br />

N N<br />

Tf<br />

O N Ph<br />

PhCH2NH2 H +<br />

N<br />

N<br />

tBuOK<br />

Tf<br />

Na, NH 3<br />

NH<br />

NH<br />

HN<br />

HN<br />

TL 1992, 33 , 5505<br />

cyclam<br />

N Ph NH 2<br />

H 3O +<br />

Esters and Lactones<br />

- Reaction of alcohols with "activated acids"<br />

- Baeyer-Villigar Reaction <strong>Organic</strong> <strong>Reactions</strong> 1993, 43, 251<br />

- Pd(0) catalyzed carboylation of enol triflates<br />

OTf CO, DMF<br />

Pd(0), ROH<br />

CO2R TL 1985, 26 , 1109<br />

Can. J. Chem.<br />

1970, 48, 570<br />

- Arndt-Eistert Reaction Angew. Chem. Int. Ed. Engl. 1975, 15, 32.<br />

O<br />

R Cl<br />

CH2N2 Et2O R<br />

O<br />

N2 diazo ketone<br />

Wolff R<br />

Rearrangement C O R'OH<br />

H<br />

ketene<br />

O TsN3, Et3N R<br />

CO2Me - Diazoalkanes: carbene precursors<br />

R-CHO<br />

1) NH 2NH 2<br />

2) Pb(OAc) 4, DMF<br />

H 2N<br />

N<br />

R 3N<br />

R R<br />

R-N 2<br />

hν<br />

ROH<br />

R<br />

O<br />

••<br />

R CH<br />

R<br />

O<br />

TsN 3 N2<br />

O<br />

N 2<br />

OR'<br />

JOC 1995, 60, 4725<br />

R R<br />

- Halo Lactonizations review: Tetrahedron 1990, 46 , 3321<br />

CO 2 H<br />

I 2 -KI<br />

H 2 O, NaHCO 3<br />

O<br />

H<br />

I<br />

+<br />

O<br />

I<br />

O<br />

O


CO 2H<br />

- Selenolactonization<br />

O<br />

OH<br />

PhSeCl, CH 2Cl 2<br />

FUNCTIONAL GROUP INTERCONVERSIONS 124<br />

Pd(OAc) 2<br />

(5 mol %)<br />

DMSO, air<br />

(86%)<br />

PhSe<br />

O<br />

O<br />

O<br />

H 2O 2<br />

O<br />

JOC 1993, 58, 5298<br />

O<br />

O<br />

JACS 1985,<br />

107 , 1148<br />

- Mitsunobu Reaction Synthesis 1981 , 1; <strong>Organic</strong> <strong>Reactions</strong>, 1991, 42, 335<br />

Mechanism: JACS 1988, 110 , 6487<br />

OH<br />

R R'<br />

DEAD, Ph 3 P<br />

O<br />

O R''<br />

R''CO 2 H R R'<br />

Inversion of alcohol<br />

stereochemistry<br />

Amides and Lactams<br />

- reaction of an "activated acid" with amines<br />

- Beckman Rearrangement <strong>Organic</strong> <strong>Reactions</strong> 1988, 35, 1<br />

O<br />

R R'<br />

- Schmidt rearrangement<br />

- others<br />

O<br />

OTf<br />

O<br />

OTHP<br />

O<br />

R R'<br />

CO, DMF<br />

Pd(0), R 2NH<br />

PhCH 2NH 2<br />

AlMe 3<br />

N OH<br />

R R'<br />

HN 3<br />

PCl 5<br />

O<br />

H + R NR'<br />

O NR 2<br />

OH<br />

O<br />

-Weinreb amide Tetrahedron Lett. 1981, 22, 3815<br />

O<br />

R OR'<br />

H 3CNH(OCH 3) •HCl<br />

AlMe 3<br />

O<br />

R N<br />

CH 3<br />

OCH 3<br />

N<br />

H<br />

OTHP<br />

O<br />

R NR'<br />

TL 1985, 26 , 1109<br />

Ph<br />

DIBAL<br />

R 1-M<br />

TL 1977, 4171<br />

O<br />

R H<br />

O<br />

R R 1


3 Membered Rings<br />

1. epoxides<br />

a. peracids, hydroperoxides and dioxiranes<br />

b. transition metal catalyzed epoxidations<br />

c. halohydrins<br />

d. Darzen's condensation<br />

e. sulfur ylides<br />

2. cyclopropanes<br />

a. Simmons-Smith reactions<br />

b. diazo compounds<br />

c. sulfur ylides<br />

d. SN2 displacements<br />

3. aziridines<br />

a. nitrenes<br />

b. SN2 displacements<br />

THREE-MEMBERED RING FORMATION 125<br />

Epoxides<br />

- peracid, hydroperoxide and dioxirane oxidation of alkenes<br />

- transition metal catalyzed epoxidation of alkenes<br />

- Sharpless epoxidation<br />

- Metal oxo reagents (Jacobsen's reagent)<br />

- from halohydrins<br />

- Darzen's Condensation<br />

BrCH 2 CO 2 Et<br />

B:<br />

NBS, H 2 O<br />

O<br />

_<br />

BrCHCO2Et R R'<br />

Br<br />

OH<br />

bromohydrin<br />

- sulfur ylides Chem. Rev. 1997,97, 2421.<br />

O<br />

Me S +<br />

+<br />

CH - Me<br />

Me<br />

2SCH -<br />

2<br />

2<br />

O<br />

Ph S<br />

NMe 2<br />

R<br />

R'<br />

CH 2 -<br />

Corey Johnson<br />

sulfoximine<br />

base<br />

O -<br />

Br<br />

CO 2Et<br />

O<br />

_<br />

+<br />

SPh 2<br />

Trost<br />

R<br />

R'<br />

O<br />

CO 2Et


THREE-MEMBERED RING FORMATION 126<br />

- dimethylsulfoxonium methylide and dimethylsulfonium methylide<br />

(Corey's reagent) review: Tetrahedron 1987, 43 , 2609.<br />

O<br />

R R'<br />

O<br />

R R'<br />

DMSO, NaH<br />

- O SMe 2<br />

R R'<br />

O<br />

O<br />

R R'<br />

- cyclopropyldiphenylsulfonium ylide (Trost's reagent) ACR 1974, 7, 85.<br />

+<br />

_ SPh2 -<br />

O SPh2 O BF3<br />

R R'<br />

- sulfoximine ylides (Johnson's reagent) ACR 1973, 6 , 341<br />

O<br />

O<br />

-<br />

Ph S CH2 NMe2 O<br />

R R'<br />

R R'<br />

Cyclopropanes<br />

- Simmons-Smith Reaction Org. <strong>Reactions</strong> 1973, 20, 1.<br />

- sulfur ylides<br />

ZnCu + CH 2 I 2<br />

ICH 2 ZnI<br />

- polar groups (-OH, -NR2- CO2R) can direct the cyclopropanation<br />

OH OH<br />

Ph<br />

O<br />

ZnCu, CH 2I 2<br />

O<br />

Ph<br />

O<br />

Me 2S<br />

CH 2 -<br />

O _<br />

Ph S<br />

NMe2 O<br />

Ph<br />

R<br />

R'<br />

JACS 1979, 101 , 2139<br />

Tetrahedron<br />

1987, 43 , 2609<br />

O<br />

Ph<br />

R<br />

ACR 1973,<br />

6 , 341<br />

O<br />

R'


(MeO) 2 HC<br />

Ph<br />

THREE-MEMBERED RING FORMATION 127<br />

- diazo alkanes and diazo carbonyls Synthesis 1972, 351; 1985, 569<br />

- cyclopropanation with diazoalkanes; olefin requires at least on electron<br />

withdrawing group.<br />

MeO 2 C<br />

CO 2 Me<br />

CH 2 N 2<br />

MeO 2 C<br />

(MeO) 2 HC<br />

N<br />

N<br />

CO 2 Me<br />

hν<br />

(MeO) 2 HC<br />

CO 2 Me<br />

MeO 2 C JACS 1975,<br />

97 , 6075<br />

- diazoketones; photochemical or metal catalyzed decomposition of<br />

diazoketones to carbenes followed by cyclopropanation of olefins.<br />

Org. Rxns. 1979, 26, 361; Tetrahedron 1981, 37, 2407<br />

N 2<br />

O<br />

O<br />

O<br />

N 2 CuSO4 , Δ<br />

O<br />

O<br />

Rh 2(OAc) 2<br />

Ph<br />

Ph<br />

O<br />

Ph<br />

O<br />

JACS 1970, 92 , 3429<br />

JACS 1969, 91 , 4318<br />

O<br />

O<br />

91 % yield<br />

O<br />

89 % de<br />

JACS 1993, 115, 9468<br />

Asymmetric cyclopropanation: Doyle, Chem Rev. 1998, 98, 911<br />

Aldrichimica Acta 1997, 30, 107<br />

O<br />

O CO2Et<br />

- SN2 <strong>Reactions</strong><br />

CO 2Et TsN 3, Et 3N<br />

O<br />

O<br />

Br<br />

C 5H 11<br />

- SPh<br />

CO 2Et<br />

C 5H 11<br />

O<br />

O<br />

N 2<br />

CO 2Et<br />

O<br />

C 5H 11<br />

CO 2Et<br />

SPh<br />

DBU O<br />

O<br />

CO 2Et<br />

C 5H 11<br />

O<br />

JACS 1978,<br />

99 , 1940<br />

JACS 1977,<br />

99, 1940<br />

- Electrophillic Cyclopropanes review: ACR 1979, 12 , 66<br />

in many ways, cyclopropanes react silmilarly to double bonds<br />

- homo-1,4-addition<br />

Nu:<br />

CO 2R<br />

CO 2R<br />

Nu<br />

CO 2R<br />

CO 2R<br />

ACR 1979,12 , 66


Aziridines<br />

OMe<br />

THREE-MEMBERED RING FORMATION 128<br />

Nu:= malonate anion, amines, thiolate anion, enamines, cuprates<br />

(usually requires double activation of cyclopropane)<br />

H<br />

OH<br />

H<br />

MeO 2C<br />

R 2<br />

R 1<br />

O<br />

- hydrogenation<br />

CO2Me CH2I2, Zn-Cu<br />

H 2, PtO 2,<br />

AcOH<br />

- hydrolysis<br />

CH 2I 2, Zn-Cu<br />

R 3<br />

H<br />

MeO<br />

Cu(acac) 2<br />

PhN=ITs<br />

Me 2CuLi<br />

O<br />

H<br />

OH<br />

R2 R1 CO 2Me<br />

Ts<br />

N<br />

MeO 2C<br />

CO 2Me<br />

Me<br />

O<br />

H + , MeOH<br />

R 3<br />

ArCO 3H,<br />

Na 2 HPO 4<br />

TL 1982, 23 , 1871<br />

O<br />

TL 1976, 3875<br />

OH<br />

H<br />

J. Org. Chem. .1991, 56, 6744<br />

O<br />

CO 2Me<br />

JACS 1967<br />

89 , 2507


4 Membered Rings<br />

1. cyclobutanes & cyclobutenes<br />

2. oxatanes<br />

FOUR-MEMBERED RING FORMATION 129<br />

Cyclobutanes<br />

- [2+2] cycloadditions<br />

- photochemical cycloadditions (2πs +2πs)<br />

Acc. Chem. Res. 1968, 1, 50; Synthesis 1970, 287; Acc. Chem. Res. 1971, 4, 41;<br />

<strong>Organic</strong> Photochemistry 1981, 5, 123; Angew. Chem. Int. Ed. Engl. 1982, 21, 820;<br />

Acc. Chem. Res. 1982, 15, 135; <strong>Organic</strong> Photochemistry 1989, 10, 1<br />

<strong>Organic</strong> <strong>Reactions</strong> 1993, 44, 297<br />

- for synthetic purposes, cyclic α,β-unsaturated carbonyl are the most<br />

useful.<br />

O<br />

O<br />

+<br />

- symmetry requirements<br />

CH2 CH2 Hot Ground State?<br />

O<br />

H<br />

N<br />

+<br />

CH 3<br />

O<br />

hν<br />

CH 3<br />

E<br />

1 E*<br />

intersystem<br />

crossing<br />

hν<br />

2πs + 2πs O<br />

~ 340 nm<br />

HOMO<br />

- enones with olefins<br />

hν<br />

hν<br />

O<br />

H 2C=CH 2<br />

hν, CH 2Cl 2<br />

O<br />

Ph CH 3<br />

LUMO<br />

3 E*<br />

O O O<br />

O<br />

(90%)<br />

O<br />

+ +<br />

+<br />

Base<br />

H 2C=CH 2<br />

O H<br />

2πs + 2πa<br />

thermal cyclization<br />

H<br />

N<br />

CH 3<br />

O<br />

CH 3<br />

O H<br />

H<br />

HO<br />

O<br />

*<br />

O<br />

H<br />

Caryophellene<br />

isomerization<br />

JCSCC<br />

1966, 423<br />

E.J. Corey<br />

JACS 1963,<br />

85 , 362<br />

cis<br />

ring-fusion<br />

CH 3 grandisol<br />

JACS 1986,<br />

108 , 306


H 3 C<br />

O<br />

hν<br />

- enones with acetylenes<br />

O H<br />

H<br />

FOUR-MEMBERED RING FORMATION 130<br />

O H<br />

O hν O O<br />

O<br />

- DeMayo Reaction<br />

O<br />

O<br />

O<br />

CH 3<br />

O<br />

O<br />

O<br />

O<br />

R<br />

O<br />

hν, pyrex<br />

hν<br />

controls<br />

conformation O<br />

O<br />

CH3 controls<br />

addition<br />

O<br />

favored<br />

O<br />

O<br />

O<br />

disfavored<br />

O<br />

R<br />

H<br />

hν<br />

O<br />

+ JACS 1984<br />

106 , 4038<br />

2 : 1<br />

O<br />

H<br />

pTSA, MeOH<br />

reflux<br />

70-80 % de<br />

H 3 C<br />

O<br />

O<br />

O<br />

H 3 C<br />

H<br />

H<br />

H<br />

CH3 O<br />

O<br />

O<br />

MeO 2C<br />

- Photochemistry of Ketones (Norrish Type I and II reactions)<br />

HO<br />

O<br />

hν<br />

254, 307 nm<br />

Yang<br />

reaction<br />

H<br />

O•<br />

•<br />

OH<br />

•<br />

Norrish II<br />

cleavage<br />

•<br />

Norrish I<br />

cleavage<br />

H<br />

O<br />

H<br />

H<br />

O<br />

O<br />

H<br />

H 3 C<br />

O<br />

OH<br />

H<br />

• •<br />

H<br />

CO 2 Me<br />

+<br />

R<br />

H 3 C<br />

O<br />

JACS 1982<br />

104, 5070<br />

O<br />

O<br />

O<br />

JACS 1986,<br />

108 , 6425<br />

H<br />

H<br />

H<br />

CH3 TL 1993, 34, 1425


FOUR-MEMBERED RING FORMATION 131<br />

- filtering photchemical reaction to prevent Norrish reactions<br />

quartz 180 nm<br />

Vycor 200 nm<br />

Pyrex 280 nm<br />

Uranium glass 320 nm<br />

MOMO<br />

SEMO<br />

- Yang Reaction<br />

CH 3<br />

O<br />

hν (254 nm)<br />

C6H6 MOMO<br />

SEMO<br />

- thermal cycloadditons (2πa + 2πs)<br />

- symmetry requirements<br />

- ketenes<br />

2π a + 2π s<br />

R<br />

H<br />

Cl<br />

O<br />

O<br />

O<br />

O<br />

O<br />

Cl<br />

Cl<br />

N 2<br />

Δ<br />

Et 3N<br />

Zn<br />

hν<br />

R<br />

H<br />

H<br />

H<br />

CH 3<br />

O HOMO<br />

LUMO<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

JACS 1987,<br />

109 , 3017<br />

- thermal cyclization of ketene with olefins<br />

Tetrahedron 1986, 42, 2587; 1981, 37, 2949; <strong>Organic</strong> <strong>Reactions</strong> 1994, 45, 159.<br />

p z<br />

p y<br />

LUMO<br />

of ketene<br />

2πa<br />

O<br />

HOMO<br />

of olefin<br />

2πs


H 3C<br />

H 3C<br />

O<br />

O<br />

N<br />

Ph<br />

O<br />

N +<br />

Ph O<br />

CH 3<br />

OMe<br />

1)<br />

CH 3<br />

2) H 2O<br />

CCl 3<br />

O<br />

Cl<br />

Zn-Cu, Et 2O<br />

H3C H3C FOUR-MEMBERED RING FORMATION 132<br />

Cl<br />

Cl<br />

O<br />

O CH 3<br />

Ph<br />

N +<br />

-reaction of ketene with enamines<br />

NR 2<br />

H<br />

H<br />

O<br />

R'<br />

OMe<br />

O<br />

NR 2<br />

O<br />

O<br />

R'<br />

CH 3<br />

O<br />

NR 2<br />

CH 2N 2<br />

H<br />

H<br />

Cl<br />

Cl<br />

R*O<br />

O<br />

Ar<br />

JACS 1987,<br />

109 , 4753<br />

CH 3<br />

JACS 1982, 104, 2920<br />

- reaction of ketene with imines to give β-lactams (Staudinger Reaction)<br />

+<br />

R H<br />

N<br />

Bn<br />

R<br />

N<br />

CH 2Cl 2<br />

-78°C → 0°C<br />

H<br />

H<br />

Ph<br />

O<br />

O<br />

N<br />

O<br />

H<br />

H<br />

R<br />

O<br />

O<br />

N<br />

Bn<br />

- reaction of difluorodihaloethylene with olefins<br />

<strong>Organic</strong> <strong>Reactions</strong> 1962, 12, 1<br />

R<br />

F 2C=CX 2<br />

X= F, Cl<br />

F<br />

F X<br />

R<br />

NR<br />

Ph<br />

O<br />

N<br />

O<br />

O<br />

(90-96 % de)<br />

- reaction of difluorodihaloethylene with acetylenes- biradical mechanism<br />

R<br />

F 2C=CX 2<br />

X= F, Cl<br />

F<br />

X<br />

F X<br />

R<br />

X<br />

hydrolysis<br />

O<br />

R<br />

O<br />

R<br />

NBn


O<br />

- SN2 Reaction<br />

CN<br />

_<br />

OR<br />

O<br />

OTs<br />

KH, DMSO<br />

HO<br />

- acyloin reaction <strong>Organic</strong> <strong>Reactions</strong> 1976, 23, 259<br />

(CH 2) n<br />

CO 2Me<br />

CO 2Me<br />

R<br />

R<br />

Na, TMS-Cl<br />

CO 2Me<br />

CO 2Me<br />

FOUR-MEMBERED RING FORMATION 133<br />

CN<br />

(CH 2) n<br />

O<br />

OR<br />

OTMS<br />

OTMS<br />

JACS 1980,<br />

102 , 1404<br />

F -<br />

(CH 2) n<br />

OH<br />

Grandisol<br />

- benzocyclobutanes ACIEE 1984, 23, 539; Synthesis 1978, 793<br />

benzocyclobutane o-quinodimethane<br />

R<br />

R<br />

O<br />

O O<br />

- cyclotrimerization of 1,5-diyenes with an acetylenes<br />

- sulfur ylides<br />

O<br />

R R'<br />

SiMe 3<br />

CpCo(CO) 2<br />

+<br />

_ SPh2 SiMe 3<br />

O<br />

R R'<br />

Oxatanes <strong>Organic</strong> Photochemistry 1981, 5, 1<br />

- [2+2] cycloaddition (Paterno-Buchi Reaction)<br />

R R'<br />

O<br />

O<br />

R R'<br />

hν<br />

hν (254 nm)<br />

BF 3<br />

R<br />

Me 3Si<br />

Me 3Si<br />

R<br />

O<br />

R'<br />

O<br />

R'<br />

O<br />

OH<br />

R<br />

O<br />

R'<br />

O<br />

OH<br />

O<br />

O<br />

O<br />

JACS 1974, 96,<br />

5268, 5272


HO<br />

Br<br />

HO<br />

O<br />

- SN2 reaction<br />

OH<br />

OH<br />

O<br />

SiMe 3<br />

O<br />

O<br />

hν<br />

Me 2C CMe 2<br />

OH NBS O<br />

OTBS<br />

C 5H 11<br />

OH<br />

- sulfur ylides<br />

O<br />

β-Lactones<br />

R 2<br />

O<br />

R 1<br />

BnO N H<br />

H<br />

H<br />

O<br />

O<br />

SPh<br />

OH<br />

CO 2 H<br />

SiMe 3<br />

+<br />

C5H11<br />

H2C_ O<br />

S<br />

NTs<br />

CO 2Me<br />

CO2Me<br />

Me<br />

LDA, THF<br />

O<br />

R 3<br />

R 4<br />

DEAD, Ph 3P<br />

OBn O<br />

H<br />

FOUR-MEMBERED RING FORMATION 134<br />

Tf 2O, CH 2Cl 2<br />

(MeO) 3 P, DEAD<br />

O -<br />

- O<br />

O<br />

Br<br />

R4 SPh<br />

R3 R2 R1 BnO<br />

O<br />

N<br />

H<br />

O<br />

O<br />

O<br />

Br<br />

O<br />

O<br />

NTs<br />

S<br />

O<br />

CH3 O<br />

1) MgBr 2•OEt 2<br />

2) KF, H 2O, CH 3CN<br />

R 2CuLi<br />

O<br />

O<br />

SiMe 3<br />

OBn<br />

OH<br />

C 5H 11<br />

OH<br />

O<br />

TL 1975<br />

1001<br />

C 5 H 11<br />

O<br />

JCSCC 1979, 421<br />

CO 2Me<br />

O<br />

O<br />

R1 R4 R2 R3 R<br />

BnO<br />

O<br />

O<br />

96 % de<br />

NH<br />

CO 2 Me<br />

CO 2H<br />

TL 1980,21 , 445<br />

JACS 1984,<br />

107 , 6372<br />

JACS 1979,<br />

101 , 6135<br />

JOC 1991,<br />

56 , 1176<br />

TL 1995, 36, 4159<br />

JACS 1987,<br />

109 , 4649


Baldwin's Rules (Suggestions) for Ring Closure<br />

JOC 1977, 42 , 3846<br />

JCSCC 1976, 734, 736, 738<br />

BALDWIN'S RULES FOR RING CLOSURE 135<br />

Approach Vector Analysis<br />

- for an SN2 displacement at a tetrahedral center, the approach vector of the<br />

entering nucleophile is 180° from the departing leaving group<br />

Nu: L<br />

Nu L<br />

Nu :L<br />

- for the addition of a nucleophile to an Sp2 center, the nucleophile approaches<br />

perpendicular to the π-system.<br />

Nu<br />

Nomenclature<br />

1. indicate ring size being formed<br />

3 membered ring = 3<br />

4 membered ring = 4<br />

etc.<br />

2. indicate geometry of electrophilic atom<br />

if Y= Sp3 center; then Tet (tetrahedral)<br />

if Y= Sp2 center; then Trig (trigonal)<br />

if Y= Sp center; then Dig (digonal)<br />

Y<br />

X:<br />

3. indicate where displaced electrons end up<br />

- if the displaced electron pair ends up out side the ring being formed;<br />

then Exo<br />

- if the displaced electron pair ends up within the ring being formed;<br />

then Endo<br />

Exo<br />

Y<br />

X:<br />

Z<br />

Z<br />

Nu<br />

Z Y<br />

Endo<br />

X:


BALDWIN'S RULES FOR RING CLOSURE 136<br />

4. Ring forming reaction is designated as Favored or Disfavored<br />

disfavored does not imply the reaction can't or won't occur- it only means<br />

the reaction is more difficult than favored reactions.<br />

Rules (Suggestions) for Ring Closure<br />

- All Exo-Tet reactions are favored<br />

X: Y Z X: Y Z<br />

X: Y<br />

3- 4- 5- 6- 7-<br />

- - - - - - - - - - - - - - - - - - - - - - - - --Favored- - - - - - - - - - - - - - - - - - - - - - - - -<br />

- 5-Endo-Tet and 6-Endo-Tet are disfavored<br />

X:<br />

- All Exo-Trig reactions are favored<br />

X: Y Z X: Y Z<br />

Z<br />

Y<br />

Z<br />

X:<br />

5- 6-<br />

- - - - -Disfavored- - - - -<br />

X: Y<br />

3- 4- 5- 6- 7-<br />

- - - - - - - - - - - - - - - - - - - - - - - - --Favored- - - - - - - - - - - - - - - - - - - - - - - - -<br />

Z<br />

- 3-Endo-Trig, 4-Endo-Trig and 5-Endo-Trig are disfavored; 6-Endo-Trig, 7-<br />

Endo-Trig, etc. are favored<br />

Z<br />

Z<br />

Z<br />

Y<br />

X: Y X: Y<br />

X:<br />

3- 4- 5-<br />

- - - - - - - - - - - - -Disfavored- - - - - - - - - - - -<br />

X:<br />

Z<br />

Y<br />

X:<br />

Y<br />

Y<br />

Z<br />

Z<br />

Z<br />

X: Y<br />

6-<br />

X:<br />

X:<br />

Y<br />

Y<br />

Z<br />

X:<br />

Z<br />

Y<br />

7-<br />

Z<br />

- - - - - -Favored- - - - - -


BALDWIN'S RULES FOR RING CLOSURE 137<br />

- 3-Exo-Dig and 4-Exo-Dig are disfavored; 5-Exo-Dig, 6-Exo-Dig, 7-Exo-Dig, etc.<br />

are favored<br />

X: Y<br />

Z<br />

X: Y<br />

Z<br />

X: Y<br />

X:<br />

Z<br />

Y<br />

X:<br />

Y<br />

Z<br />

3- 4- 5- 6- 7-<br />

- - - - - -Disfavored- - - - - - - - - - - - - - - - - - -Favored- - - - - - - - - - - -<br />

- All Endo-Dig are favored<br />

Z<br />

X: Y<br />

Z<br />

X:<br />

Y<br />

3- 4-<br />

Z<br />

X:<br />

Y<br />

Z<br />

5- 6-<br />

Z<br />

X: Y<br />

- - - - - - - - - - - - - - - - - - - - - - - - - - --Favored- - - - - - - - - - - - - - - - - - - - - - - - - - - - -<br />

EXCEPTION:<br />

There are many !!! (see March p 212-214)<br />

X:<br />

7-<br />

Y<br />

Z


5 Membered Rings<br />

HO<br />

HO<br />

OH<br />

PGF 2α<br />

CO 2H<br />

Me<br />

H<br />

Me Me<br />

FIVE-MEMBERED RING FORMATION 138<br />

Me<br />

O<br />

HO<br />

OH<br />

PGE 2<br />

Hirsutene Isocumene<br />

Modhephane<br />

1. Intramolecular SN2 <strong>Reactions</strong><br />

2. Intramolecular Aldol Condensation and Michael Addition<br />

3. Intramolecular Wittig Olefination<br />

4. Ring Expansion and Contraction <strong>Reactions</strong><br />

a. 3 → 5<br />

b. 4 → 5<br />

c. 6 → 5<br />

5. 1,3-Dipolar additions<br />

6. Nazarov Cyclization<br />

7. Arene-Olefin Photocyclization<br />

8. Radical Cyclizations<br />

9. Others<br />

Synthesis 1973, 397; ACIEE 1982, 21 , 480;<br />

Intramolecular SN2 Reaction 5-exo-tet: favored<br />

O<br />

O<br />

Br<br />

Br<br />

CO 2Me<br />

O<br />

CN<br />

LDA<br />

O<br />

O<br />

CN OH<br />

CO 2 Me<br />

Me<br />

Me<br />

JCSCC 1973, 233<br />

O<br />

JACS 1974, 96 , 5268<br />

CO 2H<br />

Me<br />

Me


RO 2C CO2R<br />

TsO<br />

O<br />

O<br />

O Cl<br />

Cl<br />

NaH, DMSO<br />

Intramolecular Aldol Condensation 5-exo-trig: favored<br />

intramolecular aldol condensation of 1,4-diketones<br />

Br<br />

O<br />

O<br />

O<br />

O<br />

CH 3<br />

O<br />

O<br />

O<br />

R'<br />

CH 3<br />

CO 2Me<br />

O<br />

O<br />

R<br />

NaOMe, MeOH<br />

NaOH<br />

Intramolecular Michael Addition 5-exo-tet: favored<br />

<strong>Organic</strong> <strong>Reactions</strong> 1995, 47, 315-552<br />

O<br />

FIVE-MEMBERED RING FORMATION 139<br />

O<br />

O<br />

CH 3<br />

RO 2C CO 2R<br />

O<br />

CH 3<br />

Br<br />

R'<br />

R<br />

TL 1982,<br />

29, 2237<br />

O<br />

CO 2Me<br />

MeO 2C O O<br />

O<br />

O<br />

O<br />

JCSCC 1979, 817<br />

JACS 1979,<br />

101 , 5081<br />

JACS 1980,<br />

102 , 4262<br />

JOC 1983,<br />

48 , 1217<br />

JACS 1979,<br />

101 , 7107


Intramolecular Wittig Olefination Tetrahedron 1980, 36, 1717<br />

THPO<br />

O<br />

base<br />

O<br />

C 5H 11<br />

OTHP<br />

THPO<br />

1) (MeO) 2P(O)CH 2 -<br />

2) Collins<br />

O<br />

C 5H 11<br />

OTHP<br />

THPO<br />

O<br />

FIVE-MEMBERED RING FORMATION 140<br />

O<br />

O<br />

P(OMe) 2<br />

C 5H 11<br />

OTHP<br />

HO<br />

OH<br />

CO 2 H<br />

C 5H 11<br />

JOC 1981, 46 , 1954<br />

Ring Expansion <strong>Reactions</strong><br />

- 3 → 5: Vinyl Cyclopropane Rearrangement <strong>Organic</strong> <strong>Reactions</strong> 1985, 33, 247.<br />

O<br />

O<br />

H<br />

O<br />

O<br />

O<br />

_<br />

SPh 2<br />

TMSO<br />

H<br />

O<br />

O<br />

H<br />

O<br />

JACS 1979, 101 , 1328<br />

- 4 → 5: Reaction of cyclobutanones with Diazomethane<br />

Me<br />

Cl<br />

Cl<br />

Cl<br />

O<br />

Me<br />

O<br />

Cl<br />

Cl<br />

O<br />

O CH 3<br />

Ph<br />

CH 2 N 2<br />

CH 2 N 2<br />

CH 3<br />

Me Cl<br />

Me<br />

CH 2N 2<br />

O<br />

Cl Cl<br />

O<br />

Cl<br />

Cl<br />

O CH 3<br />

Ph<br />

O<br />

Me<br />

O<br />

O<br />

Me<br />

CH 3<br />

H<br />

OTMS<br />

TL 1980,<br />

21 , 3059<br />

JACS 1987,109 , 4752


FIVE-MEMBERED RING FORMATION 141<br />

Ring Contraction <strong>Reactions</strong><br />

- 6 → 5: Favorskii Reaction <strong>Organic</strong> <strong>Reactions</strong> 1960, 11 , 261<br />

Cl<br />

O<br />

_<br />

O<br />

_ OH - O OH<br />

CO 2H<br />

1,3-Dipolar Addition to Olefins 1,3-Dipolar Cycloaddition Chemistry , vol 1 & 2 (A.<br />

Padwa ed.) (Wiley, NY 1984); ACIEE 1977, 16 , 10. Chem Rev. 1998, 98, 863.<br />

a b +<br />

_<br />

c<br />

1,3-Dipole (4π)<br />

LUMO<br />

4πs + 2πs<br />

Alkene (2π)<br />

HOMO<br />

- trimethylenemethane (TMM) ACIEE 1986, 25 , 1. Synlett 1992, 107.<br />

N<br />

N<br />

CO 2Me<br />

Δ, MeCN<br />

-N 2<br />

high<br />

temperature<br />

MeO 2C<br />

•<br />

•<br />

•<br />

•<br />

TMM<br />

MeO 2C<br />

note: TMM usually reacts poorly w/ electron defficient olefins<br />

MeO 2C<br />

O<br />

- α,α'-dihaloketones<br />

O<br />

Br Br<br />

Me 3Si OAc<br />

O<br />

Me 3Si OAc<br />

Pd(0), 80°C<br />

Ni(COD) 2, 35 °C<br />

Fe(CO) 9<br />

CO 2Me<br />

OFeL n<br />

+<br />

Pd(0)<br />

Ar<br />

H<br />

CO 2Me<br />

•<br />

O<br />

•<br />

_<br />

PdLn<br />

O<br />

CO 2Me<br />

+<br />

TL 1986, 27 , 4137<br />

ACIEE 1985, 24 , 316<br />

TL 1983, 24 , 5847<br />

O<br />

Ar<br />

ACR 1979, 12 , 61<br />

H<br />

CO 2Me<br />

H<br />

CH 3<br />

JACS 1981,<br />

103 , 2744


O<br />

- nitrones ACR 1979, 12 , 396; <strong>Organic</strong> <strong>Reactions</strong>, 1988, 36 , 1<br />

O<br />

H<br />

- nitrile oxides<br />

O<br />

N<br />

O<br />

Ph<br />

N<br />

O<br />

OTHP<br />

O<br />

CO 2Et<br />

N<br />

OH<br />

1) TBS-Cl, DMF,<br />

imidazole<br />

2) nBuLi, THF<br />

Bu 3 Sn<br />

(80%)<br />

O<br />

MeO 2C<br />

ArNCO<br />

S<br />

- O<br />

Bu 2 BOTf, iPr 2 EtN,<br />

CH 2 Cl 2 , -78°C<br />

O<br />

H<br />

O<br />

N<br />

R 1<br />

+<br />

O -<br />

N R 2<br />

R 3<br />

Nitrone<br />

MeNHOH,<br />

EtONa<br />

NH<br />

NaOCl, H2O,<br />

CH2Cl2<br />

TBSO<br />

(88%)<br />

OTHP<br />

(99%)<br />

OH<br />

Bn<br />

N<br />

O -<br />

C 4H 9<br />

N O- +<br />

CO 2 Et<br />

THPO<br />

O<br />

O<br />

Me<br />

H<br />

OH<br />

CH 3<br />

N O<br />

Me<br />

O<br />

N<br />

H<br />

Ph<br />

O<br />

+ _<br />

N O<br />

FIVE-MEMBERED RING FORMATION 142<br />

MeO 2C<br />

O<br />

1) PPTS, EtOH, ↑↓<br />

2) (CH 3 ) 2 C(OMe) 2 ,<br />

PPTS<br />

3) Swern<br />

(48%)<br />

O<br />

N<br />

R 1<br />

1) MeI<br />

2) H 2, Pd/C<br />

N<br />

NH<br />

S<br />

O<br />

CO 2 Et<br />

1) DHP, PPTS<br />

CH 2 Cl 2 , ↑↓<br />

2) LAH<br />

TBSO<br />

O<br />

(60%)<br />

O<br />

N<br />

R 2<br />

Bn<br />

N<br />

O<br />

C 4H 9<br />

R 3<br />

JACS 1964,<br />

86 , 3756<br />

Me 2N<br />

H 2<br />

OTHP<br />

N<br />

O<br />

H<br />

OH<br />

Me<br />

H<br />

JACS 1983,<br />

104 , 6460<br />

O<br />

OTHP<br />

OH<br />

OH<br />

CO 2Et<br />

H 2 , Raney Ni, H 2 O,<br />

MeOH, B(OMe) 3<br />

(88%)<br />

HF•pyridine,<br />

CH 3 CN, pyridine<br />

O<br />

O<br />

(73%)<br />

JOC 1984,<br />

49 , 5021<br />

JACS 1992,<br />

104 , 4023<br />

1) Swern<br />

2) NH 2 OH•HCl<br />

AcONa, MeOH<br />

HO<br />

O<br />

(89%)<br />

OTHP<br />

O<br />

OH<br />

Cassiol<br />

TL 1996, 37, 9292<br />

OH<br />

OH


OTBS<br />

N +<br />

O _<br />

OTBS<br />

O N<br />

FIVE-MEMBERED RING FORMATION 143<br />

LAH<br />

OTBS<br />

Arene -Olefin Photocyclization <strong>Organic</strong> Photochemistry 1989, 10 , 357<br />

- the photochemistry of benzene is dominated by the singlet state<br />

OMe<br />

hν<br />

hν<br />

AcO hν<br />

*<br />

hν<br />

*<br />

AcO<br />

hν<br />

*<br />

OMe<br />

*<br />

+<br />

*<br />

*<br />

1<br />

*<br />

O<br />

*<br />

*<br />

*<br />

*<br />

*<br />

OAc<br />

Me 2 CuLi O<br />

Me<br />

OMe<br />

HO<br />

H<br />

+<br />

OH<br />

NH 2<br />

OAc<br />

JACS 1982,<br />

104 , 5805<br />

JCSCC, 1986 247<br />

1) FVP<br />

2) H 2, Pd/C<br />

H +<br />

cedrane<br />

TL 1993, 34, 3017<br />

isocume<br />

Tetrahedron<br />

1981,37 , 4445<br />

JACS 1981,<br />

103 , 688<br />

TL 1982, 23 , 3983<br />

TL 1983, 24 , 5325


Intramolecular Photochemical [2+2]<br />

"Rule of Five"<br />

O<br />

O<br />

O<br />

O<br />

hν<br />

hν<br />

FIVE-MEMBERED RING FORMATION 144<br />

O<br />

O<br />

O<br />

O<br />

JOC 1975, 40 , 2702<br />

JOC 1979, 44 , 1380<br />

Nazarov Cyclization review: Synthesis 1983, 429 <strong>Organic</strong> Reaction 1994, 45, 1<br />

- cyclization of allyl vinyl or divinyl ketones<br />

- 1,4-hydroxy-acetylenes<br />

HO<br />

OH<br />

H<br />

O<br />

O<br />

OH<br />

- Silicon-Directed Nazarov<br />

O<br />

Me<br />

SiMe 3<br />

H 3PO 4/HCO 2H<br />

H 3PO 4/HCO 2H<br />

H 2SO 4, MeOH<br />

FeCl 3<br />

- Tin -directed Nazarov TL 1986, 27 , 5947<br />

Me<br />

O<br />

O<br />

O<br />

O<br />

H<br />

OH<br />

Tetreahedron<br />

1986, 42 , 2821<br />

JOC 1989,<br />

54 , 3449<br />

Radical Cyclization<br />

B. Giese Radicals in <strong>Organic</strong> Synthesis: Formation of Carbon-Carbon Bonds<br />

(Pergamon Press; NY) 1986; Bull. Soc. Chim. Fr. 1990, 127 , 675; Tetrahedron 1981, 37 ,<br />

3073; Tetrahedron 1987, 43, 3541; Advances in Free Radical Chemistry 1990, 1, 121.<br />

<strong>Organic</strong> <strong>Reactions</strong> 1996, 48, 301-856.<br />

Radical Addition to multiple bonds:<br />

1. Free radical addition is a two stage process involving an addition step followed by an<br />

atom transfer step.<br />

2. In general, the preferred regioselectivity of the addition is in a manor to give the<br />

most stable radical (thermodynamic control)


FIVE-MEMBERED RING FORMATION 145<br />

Advantages of free radical reactions:<br />

1. non-polar, little or no solvent effect<br />

2. highly reactive- good for hindered or strained sysntems<br />

3. insensitive to acidic protons in the substrates (i.e. hydroxyl groups do not<br />

necessarily need to be protected<br />

Mechanism of radical chain reactions<br />

1. initiation<br />

2. propagation<br />

3. termination (bad)<br />

Formation of carbon centered radicals:<br />

tin hydride reduction of<br />

alkyl, vinyl and aryl halides,<br />

alcohol derivatives:<br />

xanthates, thionocarbonate, thiocarbonylimidazolides<br />

organosselenium & boron compounds<br />

carboxylic acid derivatives (Barton esters)<br />

reduction of organomercurials<br />

thermolysis of organolead compounds<br />

thermolysis or photolysis of azoalkanes.<br />

Radical Ring Closure<br />

For irreversible ring closure reaction, the kinetic product will predominate.<br />

Both the 5-exo-trig and 6-endo trip are favored reactions, with the 6 exo-trig mode<br />

producing the most stable radical. However, the 5-exo-trig is about 50 time faster<br />

•<br />

•<br />

•<br />

•<br />

•<br />

• •<br />

kinetically<br />

favored<br />

k 1,5<br />

•<br />

•<br />

•<br />

•<br />

•<br />

+<br />

k 1,6<br />

100 : 0<br />

• •<br />

+<br />

100 : 0<br />

+<br />

98:2<br />

+<br />

85:15<br />

+<br />

100 : 0<br />

thermodynamically<br />

favored<br />

•<br />

•<br />

•<br />

•<br />

3-exo-trig<br />

vs<br />

4-endo-trig<br />

4-exo-trig<br />

vs<br />

5-endo-trig<br />

5-exo-trig<br />

vs<br />

6-endo-trig<br />

6-exo-trig<br />

vs<br />

7-endo-trig<br />

7-exo-trig<br />

vs<br />

8-endo-trig


•<br />

and<br />

•<br />

FIVE-MEMBERED RING FORMATION 146<br />

radicals open up fast and are not synthetically useful;<br />

often used as probes for radical reaction<br />

Effects of substituent on the regiochemistry of the 5-hexenyl radical cyclization<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

+<br />

48:1<br />

+<br />

>200:1<br />

+<br />

2:3<br />

+<br />

< 1:100<br />

Stereochemistry of 5-hexenyl radical cyclization<br />

1-, or 3-substitued 5-hexenyl radicals give cis disubstituted cyclopentanes<br />

2-, or 4-substituted 5-hexenyl radicals give trans disubstitued cyclopentanes<br />

4<br />

R<br />

R<br />

3<br />

2<br />

R<br />

R<br />

1<br />

Br<br />

Br<br />

Br<br />

Br<br />

Bu 3 SnH<br />

Bu 3 SnH<br />

•<br />

•<br />

H<br />

H<br />

H<br />

R<br />

prefered transition state<br />

•<br />

R<br />

•<br />

H<br />

H<br />

H<br />

H<br />

R<br />

R<br />

•<br />

•<br />

•<br />

•<br />

R<br />

R<br />

+<br />

65 : 35<br />

+<br />

75 : 25<br />

83 : 17<br />

R R<br />

73 : 27<br />

R R<br />

+<br />

+<br />

R<br />

R


THPO<br />

OH<br />

CN<br />

Br<br />

CO 2Me Br<br />

Br<br />

Si<br />

O<br />

Bu 3SnH<br />

THPO<br />

nBuSnH,<br />

AIBN<br />

Bu 3SnH,<br />

AIBN<br />

FIVE-MEMBERED RING FORMATION 147<br />

OH CN<br />

CO 2Me<br />

H Si<br />

O<br />

JACS 1983,<br />

105 , 3720<br />

JACS 1990,<br />

112, 5601<br />

H 2O 2<br />

THPO<br />

multiple cyclizations: D. Curran Advances in Free Radical Chemistry 1990, 1, 121.<br />

O OAc<br />

1) NaBH4, CeCl3 2) Ac2O, Et3N PhSeCl, CH 2Cl 2<br />

THPO<br />

I<br />

O<br />

O<br />

O<br />

PhSe<br />

HO<br />

Bu 3SnH, AIBN<br />

PhH, reflux<br />

O<br />

CO 2H<br />

O<br />

O<br />

H 2O 2<br />

1) PPTS, EtOH<br />

2) LAH<br />

3) (CF 3SO 2) 2O<br />

pyridine<br />

4) Bu 4NI, PhH<br />

Bu 3SnH, AIBN<br />

PhH, reflux<br />

CH 3MgBr,<br />

CuBr•SMe 2<br />

O<br />

•<br />

1) LAH<br />

2) CH 3SO 2Cl<br />

3) NaI<br />

4) Li<br />

5) CrO3, H2SO4, H2O 1) LDA, THF<br />

2) TBSCl<br />

•<br />

HO<br />

I<br />

O<br />

CO 2Me<br />

O<br />

O<br />

1) I 2<br />

2) DBU<br />

H 3 C<br />

O<br />

OTBS<br />

H H<br />

THPO<br />

I<br />

70 °C<br />

CuSMe 2 Li +<br />

1) Me3Si Li<br />

(1.0 equiv)<br />

2) CsF<br />

1) CH 3 MgBr<br />

(excess)<br />

2) Me 3 SiBr<br />

H<br />

O<br />

Me<br />

H<br />

H H<br />

(±)-hirsutene<br />

O<br />

Br<br />

O<br />

O<br />

(±)-capnellene<br />

Tetrahedron Lett.<br />

1985, 41, 3943<br />

O<br />

OTBS<br />

JACS 1985,<br />

107 , 1148<br />

MgBr<br />

CuBr•SMe 2, THF<br />

OH<br />

H<br />

OH


adical trapping<br />

RO<br />

O<br />

RO<br />

O<br />

CHO<br />

OEt<br />

O<br />

I<br />

O<br />

Br<br />

O<br />

nBuSnH,<br />

AIBN<br />

nBuSnH,<br />

AIBN<br />

O SmI 2, THF<br />

RO<br />

O<br />

•<br />

FIVE-MEMBERED RING FORMATION 148<br />

OEt<br />

Me<br />

Me<br />

Me<br />

OH<br />

H<br />

H<br />

tBuNC<br />

can also be trapped with acrylate esters or acrylonitrile.<br />

OEt<br />

Pd(OAc) 2,<br />

CH 3CN<br />

I<br />

RO<br />

O<br />

nBuSnH,<br />

AIBN<br />

OEt<br />

O<br />

RO<br />

O<br />

C 5H 11<br />

OEt<br />

•<br />

Me 3Si<br />

1) (S)-BINAL-H<br />

2) HCl, H 2O, THF<br />

O<br />

HO<br />

C 5 H 11<br />

RO<br />

RO<br />

O<br />

OEt<br />

OH<br />

O<br />

C 5H 11<br />

O<br />

Me<br />

RO<br />

O<br />

O<br />

SiMe3 C5H11 O<br />

O<br />

1) Wittig<br />

2) deprotect<br />

JACS 1986,<br />

108, 1106<br />

CN<br />

JACS 1988,<br />

110 , 5064<br />

OEt<br />

140°<br />

Brook<br />

rearrangement<br />

HO<br />

HO<br />

JACS 1986,<br />

108 , 6384<br />

RO<br />

O<br />

OEt<br />

(+)-PGF 2α<br />

Paulson-Khand Reaction Tetrahedron 1985, 41 , 5855; <strong>Organic</strong> <strong>Reactions</strong> 1991, 40 , 1.<br />

R R'<br />

Co 2(CO) 6<br />

O<br />

O<br />

R''<br />

CHO<br />

O<br />

R R''<br />

R'<br />

Co 2(CO) 8, NMO<br />

O<br />

+<br />

O<br />

O<br />

R<br />

R'<br />

O<br />

R''<br />

Organometallics<br />

1982, 1 , 1560<br />

JOC 1992,<br />

57 , 5277<br />

C 5H 11<br />

OTMS<br />

CO 2H


EtO 2C CO 2Et<br />

Ph<br />

Cp 2TiCl 2,<br />

EtMgBr, CO<br />

FIVE-MEMBERED RING FORMATION 149<br />

O<br />

Ph<br />

CO 2Et<br />

CO 2Et<br />

JOC 1992,<br />

57 , 5803<br />

Ring-Closing Metathesis Tetrahedron 1998, 54, 4413, Acc. Chem. Res. 1995, 25, 446.<br />

OH<br />

O<br />

O<br />

N<br />

Ph<br />

N<br />

Ph<br />

O<br />

O<br />

O<br />

O<br />

Bu 2 BOTf,<br />

CH 2Cl 2, -78°C<br />

(82 %)<br />

CHO<br />

LiBH 4,<br />

THF, MeOH<br />

(78%)<br />

P(C6H11) 3<br />

OH O O<br />

Cl<br />

Cl<br />

Ru<br />

Ph<br />

N O P(C6H11) 3<br />

OH<br />

OH<br />

Ph<br />

(97%)<br />

J. Org. Chem. 1996, 61, 4192<br />

Diazoketones Tetrahedron 1981, 37 , 2407; <strong>Organic</strong> <strong>Reactions</strong> 1979, 26 , 361<br />

FVP of Acetylenic Ketones<br />

R 1<br />

R 2<br />

O<br />

H<br />

R 1<br />

R 2<br />

R 3<br />

O<br />

FVP<br />

N 2<br />

R 1<br />

R 2<br />

BF 3<br />

O<br />

H<br />

••<br />

R 3<br />

R 1<br />

R 2<br />

O<br />

TL 1975, 4225<br />

R 1<br />

R 2<br />

O<br />

R 3<br />

TL 1986,<br />

27 , 19


Six Membered Rings<br />

1. Diels-Alder Reaction<br />

2. o-Quinodimethanes<br />

3. Intramolecular ene reaction<br />

4. Cation olefin cyclizations<br />

5. Robinson annulation<br />

6-MEMBERED RING FORMATION 150<br />

Diels-Alder Reaction<br />

ACIEE 1984, 23 , 876; ACIEE 1977, 16 , 10; <strong>Organic</strong> <strong>Reactions</strong> 1984, 32 , 1<br />

W. Carruthers Cycloadditions <strong>Reactions</strong> in <strong>Organic</strong> Synthesis (Pergamon Press, Oxford) 1990<br />

- reaction of a 1,3-diene with an olefin to give a cyclohexene.<br />

- thermal symmetry allowed pericyclic reaction<br />

- diene must reaction is an s-cis conformation<br />

- highly stereocontrolled process- geometry of starting material is preserved in the<br />

product<br />

- possible control of 4 contiguous stereocenters in one step<br />

B<br />

B<br />

A<br />

A<br />

+<br />

X<br />

X<br />

Y<br />

Y<br />

- Alder Endo Rule: In order to maximize secondary orbital interactions, the endo TS is<br />

favored in the D-A rxn. Tetrahedron 1983, 39, 2095<br />

Orientation Rules<br />

X<br />

O<br />

X Y<br />

X Y<br />

B<br />

A<br />

A<br />

O<br />

O<br />

+<br />

B<br />

O<br />

O<br />

O<br />

Y<br />

exo<br />

endo<br />

X<br />

B<br />

B<br />

A<br />

A<br />

B<br />

B<br />

H<br />

H<br />

Y<br />

X<br />

Y<br />

Y<br />

X<br />

O<br />

A<br />

A<br />

O<br />

X<br />

Y<br />

Y<br />

X<br />

O<br />

H H<br />

O O<br />

O<br />

+<br />

+<br />

X<br />

major minor<br />

minor<br />

major<br />

Y<br />

B<br />

B<br />

A<br />

A<br />

Y<br />

X<br />

X<br />

Y


X<br />

+<br />

Y<br />

X<br />

6-MEMBERED RING FORMATION 151<br />

Y<br />

+<br />

X<br />

major minor<br />

- when both the diene and dienophile are "unactivated" the D-A rxn is sluggish<br />

- D-A rxns with electron rich dienes and electron defficient dienophiles work the best.<br />

Some electron deficient dienophiles are quinones, maleic ahydride, nitroalkenes, α,βunsaturated<br />

ketones, esters and nitriles.<br />

- D-A rxns with electron deficient dienes and electron rich dienophiles also work well.<br />

These are refered to as reverse demand D-A rxns.<br />

- D-A rxns are sensitive to steric effects of the dienephiles, particularly at the 1- and 2postions.<br />

Steric bulk at the 1-position may prevent approach of the dienophile while steric<br />

bulk at the 2-position may prevent the diene from adopting the s-cis conformation.<br />

- The D-A rxn is promoted by Lewis acids (TiCl4, BF3 AlCl3, AlEt2Cl, SnCl4,...)<br />

- The D-A rxn is promoted by high pressure (1 kbar ~ 14200 psi) Synthesis 1985, 1.<br />

OMe<br />

+<br />

O<br />

OMe<br />

H<br />

O<br />

Me<br />

+<br />

NHBOC<br />

O<br />

5 Kbar<br />

20 kbars, 50°C<br />

Eu(fod) 3<br />

OMe<br />

O<br />

O<br />

NHBOC<br />

H<br />

O<br />

OMe<br />

Me<br />

+<br />

Y<br />

H<br />

O<br />

OMe<br />

JACS 1986,<br />

108 , 3040<br />

NHBOC<br />

Synthesis<br />

1986, 928<br />

- The D-A rxn is usually insenstive to solvent effects, except for water. ACR 1991, 24 , 159<br />

+<br />

CO 2 - Na +<br />

O<br />

H 2O<br />

CHO<br />

isooctane<br />

k rel=1<br />

H 2O<br />

k rel= 700<br />

OHC<br />

endo<br />

CO 2H<br />

H<br />

(70%)<br />

O<br />

+<br />

4 : 1<br />

20 : 1<br />

+<br />

OHC<br />

H<br />

exo<br />

CO 2H<br />

H<br />

(15%)<br />

O<br />

JACS 1980, 102 , 7816<br />

TL 1983, 24 , 1901<br />

TL 1984 , 25 , 1239<br />

JOC 1984, 49 , 5257<br />

JOC 1985, 50 , 1309<br />

Tetrahedron 1986, 42 , 2847


6-MEMBERED RING FORMATION 152<br />

- The mechanism of the D-A rxn is believed to be a one-step, concerted, non-synchronous<br />

process.<br />

- concerted- bond making and bond breaking processes take place in a single kinetic step<br />

(no dip in the transition state)<br />

- synchronous- bond making and bond breaking take place at the same time and to the<br />

same extent.<br />

+<br />

M.J.S. Dewar JACS<br />

1984, 104 , 203, 209.<br />

- study of secondary D-isotope effects have indicated a highly symmetrical T.S.<br />

D D<br />

H H<br />

D D<br />

D D<br />

Diels Alder <strong>Reactions</strong>:<br />

O<br />

HO 2C<br />

+<br />

NHCO 2 Bn<br />

O<br />

CHO<br />

trans<br />

k 1<br />

k 2<br />

PhH, reflux<br />

MeO<br />

H<br />

O<br />

BnO 2 CHN<br />

N<br />

H<br />

pumiliotoxin C<br />

O<br />

H<br />

H MeO2C O CO2H reserpine<br />

N<br />

H<br />

MeO 2 C<br />

JACS 1978,<br />

100 , 5179<br />

N<br />

+<br />

H<br />

+<br />

OMe<br />

H<br />

O<br />

D<br />

H<br />

D<br />

D<br />

O 2CAr<br />

H<br />

BnO 2 CHN<br />

CH3<br />

H<br />

H<br />

D<br />

H<br />

D<br />

D<br />

MeO 2C<br />

Tetrahedron<br />

1958, 2 , 1<br />

JACS 1972,<br />

94 , 1168<br />

CHO<br />

OMe<br />

OAc<br />

trans<br />

CHO<br />

NHCO 2 Bn


O<br />

Me 3SiO<br />

CO 2 Me<br />

Me 3 SiO<br />

MeO<br />

+<br />

OMe<br />

Danishefsky's<br />

Diene<br />

OMe<br />

SPh<br />

+<br />

O<br />

MeO 2C<br />

Hetero Diels-Alder <strong>Reactions</strong><br />

- Heterodienophiles<br />

Me 3 SiO<br />

CH(OMe) 2<br />

CH 3<br />

Me 3SiO<br />

+<br />

+<br />

+<br />

OMe<br />

N<br />

Ts<br />

+<br />

OMe<br />

R<br />

EtO 2C<br />

CO 2 Me<br />

O<br />

N<br />

CO2Bn<br />

O<br />

MeO OMe<br />

O<br />

Compactin<br />

CO2Bn N<br />

PhH, 5°C<br />

MeO2C<br />

PhS<br />

Me 3 Si-O<br />

O<br />

O<br />

R O<br />

OMe<br />

PhH, reflux<br />

O<br />

TsN<br />

CO 2 Me<br />

CH(OMe) 2<br />

O<br />

N<br />

CH 3<br />

6-MEMBERED RING FORMATION 153<br />

JACS 1986,<br />

108 , 5908<br />

R<br />

CO 2Bn<br />

CO 2 Me<br />

H<br />

MeO 2 C<br />

PhS<br />

N<br />

R<br />

O<br />

O CO 2Et<br />

O<br />

CO 2Bn<br />

HO<br />

HO<br />

AcO<br />

AcO<br />

O<br />

N<br />

H<br />

R<br />

O<br />

O<br />

MeO 2 C<br />

ACR 1981,<br />

14 , 400<br />

H<br />

O<br />

Vernolepin<br />

JACS 1982,<br />

102 , 1428<br />

OAc<br />

CH 3<br />

NAc<br />

OH<br />

OH<br />

R<br />

SPh<br />

OH<br />

H<br />

O<br />

TL 1987,<br />

28 , 813<br />

TL 1985<br />

27 , 4727


Me<br />

Me<br />

Me 3 SiO<br />

Me<br />

Me<br />

+<br />

Ph S<br />

O<br />

Me 3SiO<br />

OMe<br />

O<br />

S<br />

NTs<br />

S Ph<br />

+ H<br />

M<br />

- Heterodienes<br />

MeO 2 C<br />

O<br />

OMe<br />

O<br />

O<br />

Me<br />

+<br />

Ar<br />

M(fod) 3<br />

H O<br />

O<br />

OAc<br />

+<br />

Me O<br />

OEt<br />

PhS<br />

OAc<br />

+<br />

C 3F 7<br />

H<br />

O<br />

Me<br />

Me<br />

S<br />

Ph H<br />

OBn<br />

Yb(fod) 3<br />

3<br />

Me<br />

Me<br />

S<br />

O<br />

NTs<br />

Me 3 SiO<br />

MeO 2 C<br />

EtO<br />

endo:exo<br />

10 : 1<br />

1) MgBr 2<br />

2) H 3O +<br />

Me<br />

AcO<br />

O<br />

OAc<br />

OMe<br />

Me<br />

6-MEMBERED RING FORMATION 154<br />

O<br />

H<br />

O O<br />

H<br />

Me<br />

SPh<br />

Me<br />

O<br />

Ar<br />

Ph<br />

S<br />

Me<br />

O<br />

HF,<br />

Pyridine<br />

+<br />

endo: exo<br />

1:2<br />

O<br />

M(hfc) 3<br />

MeO 2 C<br />

OBn<br />

C 3F 7<br />

O<br />

HO<br />

Me<br />

Me<br />

O<br />

AcO<br />

Me<br />

3<br />

NHTs<br />

Me<br />

Tetrahedron,<br />

1983, 39 , 1487<br />

OMe<br />

Me<br />

M<br />

H<br />

O O<br />

H<br />

O<br />

OH<br />

JACS 1985,<br />

107 , 1256<br />

O<br />

Me<br />

Me<br />

OH<br />

Ar<br />

TL 1983,<br />

24 , 987<br />

JACS 1985,<br />

107 , 6647<br />

ACIEE 1983,<br />

22 , 887<br />

ACR 1986,<br />

19 , 250


O<br />

OR'<br />

N<br />

N<br />

OR'<br />

O<br />

+<br />

N<br />

RO<br />

AcO O<br />

RO<br />

O<br />

OR<br />

RO<br />

O<br />

RO N N<br />

Intramolecular Diels-Alder <strong>Reactions</strong> (IDA)<br />

- Type I IDA rxns<br />

Δ<br />

N<br />

O<br />

OR<br />

O<br />

CO 2 R'<br />

6-MEMBERED RING FORMATION 155<br />

OR' O<br />

RO<br />

RO NHAc<br />

H<br />

N<br />

O<br />

Fused bicyclc<br />

Bridged Bicyclic<br />

OR<br />

OMe JACS 1987,<br />

109 , 285<br />

JOC 1985,<br />

50 , 2719<br />

- Generally, for E-dienes, the fused product is observed unless the connecting chain is<br />

very long. For Z-dienes, either the fused or bicyclic products are possible.<br />

EtO 2C<br />

- Type II IDA rxns: gives bridgehead olefin<br />

O<br />

O<br />

O<br />

185°C<br />

155°C<br />

O<br />

EtO 2C<br />

O<br />

395°C<br />

O<br />

O<br />

Ph<br />

O<br />

NHBz O<br />

OH<br />

EtO 2C<br />

O<br />

JACS 1982,<br />

104 , 5708, 5715<br />

AcO<br />

O<br />

O<br />

OH<br />

H<br />

BzO AcO<br />

Taxol<br />

OH<br />

CO 2Et<br />

O<br />

JACS 1987,<br />

109 , 447<br />

ACIEE 1983,<br />

24 , 419


O<br />

6-MEMBERED RING FORMATION 156<br />

- IDA reactions to give fused 6•5 (hydroindene) and 6•6 (hydronaphthalene) ring<br />

systems are usually favorable reactions.<br />

R<br />

R'<br />

(CH 2) n<br />

n= 1 or 2<br />

R<br />

R'<br />

(CH 2) n<br />

- Intramolecular D-A rxns that give medium sized rings (7,8,9, 10) are much less<br />

favorable.<br />

- Intramolecular D-A rxn which form large rings are often favorable reactions with the<br />

diene and olefin portions act as if they were seperate molecules<br />

O<br />

O<br />

O<br />

O<br />

H<br />

O<br />

endo<br />

H<br />

O<br />

O<br />

+<br />

O<br />

H<br />

O<br />

exo<br />

H<br />

O<br />

O<br />

6.2 : 6.8 : 1 (77% combined yield)<br />

+<br />

H<br />

O<br />

H<br />

O<br />

O<br />

O<br />

JACS 1980,<br />

102 , 1390<br />

- Preference for endo or exo transition state depends on the substituition of the diene,<br />

dieneophile and connecting chain.<br />

- For intramolecular D-A rxns, geometric constraints can now reverse the normal<br />

regiochemistry of the addition as compared to the intermolecular rxn.<br />

R<br />

+<br />

CO 2R'<br />

CO 2R'<br />

- for intramolecular D-A reactions, we will use endo and exo to described the<br />

disposition of the connecting chain<br />

R<br />

R'<br />

(CH 2) n<br />

R'<br />

R<br />

(CH2) n<br />

endo<br />

R<br />

R'<br />

(CH2) n<br />

exo<br />

R<br />

R<br />

CO 2R'<br />

R<br />

CO 2R'<br />

R'<br />

H<br />

R'<br />

H<br />

H<br />

H<br />

(CH 2) n<br />

(CH 2) n


6-MEMBERED RING FORMATION 157<br />

- Lewis acids can greatly effect the endo/exo ratio of IDA reactions especially when the<br />

olefin portion is E. The effects for Z-olefins is much more subtle<br />

MeO 2 C<br />

CO 2Me<br />

150°C<br />

(RO) 2AlCl 2, rt<br />

180°C<br />

EtAlCl 2, rt<br />

MeO 2C<br />

H<br />

H<br />

+<br />

MeO 2C<br />

H<br />

H<br />

75 : 25 (75% combined yield)<br />

100 : 0 (72% combined yield)<br />

MeO 2C<br />

H<br />

H<br />

+<br />

MeO 2C<br />

H<br />

H<br />

75 : 25 (74% combined yield)<br />

63 : 37 (60% combined yield)<br />

JACS 1982,<br />

104 , 2269<br />

- the effect of substituents on the connectinng chain can influence the stereochemical<br />

course of the IDA reaction<br />

MeO 2C<br />

HN<br />

Intramolecular Diels-Alder <strong>Reactions</strong>:<br />

TBSO<br />

O<br />

CO 2 Me<br />

O<br />

O<br />

H<br />

O<br />

EtAlCl 2<br />

rt<br />

R<br />

150°C<br />

R<br />

130°C<br />

MeO 2C<br />

H<br />

TBSO<br />

O<br />

R R<br />

O<br />

MeO 2C H<br />

O<br />

H<br />

O<br />

HN<br />

H<br />

H<br />

TL 1973,<br />

4477<br />

JOC 1981,<br />

46 , 1506<br />

JOC 1981,<br />

46 , 1509


H<br />

H<br />

OTBS<br />

OTBS CO2Me<br />

CF 3CO 2H<br />

EtAlCl 2<br />

O<br />

6-MEMBERED RING FORMATION 158<br />

TBSO<br />

H<br />

H<br />

H<br />

H CO 2 Me<br />

OTBS<br />

JACS 1981,<br />

103 , 4948<br />

JOC 1982,<br />

47 , 180<br />

Asymmetric Diels-Alder <strong>Reactions</strong><br />

- Chiral Auxillaries Chem. Rev. 1992, 92 , 953; Tetrahedron 1987, 43 , 1969<br />

O<br />

H<br />

M<br />

O<br />

Ph O<br />

Ar O<br />

H O<br />

+<br />

O<br />

O<br />

O<br />

Me<br />

O<br />

OAc<br />

OAc<br />

O<br />

O<br />

O<br />

O<br />

O X<br />

+<br />

Ph<br />

BF 3 •OEt 2 , -40°C<br />

+<br />

O<br />

OTMS<br />

O<br />

+<br />

OTMS<br />

PhCHO<br />

Eu(hfc) 3<br />

OAc<br />

OAc<br />

Et 2AlCl<br />

O<br />

CH 2Cl 2, -80°C<br />

Ph<br />

H<br />

OH<br />

>98% d.e.<br />

TiCl 4, 0°C<br />

O<br />

O<br />

O<br />

O<br />

R*<br />

O<br />

Ph<br />

O<br />

w/ BF 3 •OEt 2<br />

R*<br />

O<br />

Me<br />

O<br />

OR* +<br />

8 : 92<br />

OR*<br />

Ph<br />

HO<br />

HO<br />

OH<br />

(-)- Shikimic Acid<br />

(97:3)<br />

CO 2R*<br />

CO 2R*<br />

+<br />

18 : 82<br />

92 : 8<br />

O<br />

O<br />

O<br />

O<br />

CO2H JOC 1983, 48, 1137<br />

JOC 1983, 43, 4441<br />

ACIEE 1985, 24, 1<br />

TL 1984,<br />

25 , 2191<br />

Δ = 4.5 %ee<br />

TiCl 4 = 78% ee<br />

iBu 2AlCl= 90% ee<br />

O<br />

OR*<br />

Ph<br />

d.e > 95%<br />

up to 70% d.e.<br />

Me<br />

OR*<br />

JOC 1989,<br />

54 , 2209<br />

Chem Lett. 1989, 2149<br />

JACS 1986, 108, 7060


O<br />

Ph O N<br />

O<br />

N<br />

O<br />

S<br />

O<br />

+<br />

CH 3<br />

R<br />

O<br />

SnCl4, -78C<br />

R*<br />

O N<br />

O<br />

O<br />

H O<br />

H<br />

O<br />

S<br />

R<br />

97% d.e.<br />

(iPrO) 2TiCl 2,<br />

CH 2Cl 2, 0°C<br />

O O<br />

SO2 N<br />

X<br />

EtAlCl2, -78°C<br />

Oppolzer Auxillary<br />

O<br />

Evan's auxillaries<br />

O<br />

N<br />

Me 2AlCl<br />

O<br />

O<br />

_<br />

Me 2ClAl<br />

R<br />

Me 2AlCl<br />

+<br />

O<br />

N<br />

O<br />

O<br />

6-MEMBERED RING FORMATION 159<br />

O<br />

PhMgBr<br />

R*<br />

O N<br />

H<br />

O S<br />

O<br />

N O<br />

Me Ph<br />

Ph<br />

H<br />

R<br />

CO 2R *<br />

endo/exo= 86:4<br />

98% de<br />

CO 2R*<br />

+<br />

R<br />

endo (major) endo<br />

exo<br />

CO 2R* +<br />

Tetrahedron<br />

1987, 43 , 1969<br />

exo<br />

O<br />

CO 2R*<br />

O<br />

R* OH<br />

O N<br />

TL 1989,<br />

30 , 6963<br />

O<br />

N O<br />

CO 2R*<br />

1 equiv Me 2AlCl 2 equiv. Me 2AlCl<br />

endo/exo 20:1 60:1<br />

endo A/ endoB 4:1 20:1<br />

k(rel) 1 100<br />

O<br />

Me 2AlCl<br />

_<br />

Me2AlCl2 + Al<br />

O O<br />

N<br />

O<br />

R<br />

JCSCC , 1985 , 1449<br />

TL 1986, 27 , 1853<br />

H<br />

N<br />

O Al<br />

O<br />

O


R<br />

Ph<br />

O<br />

Ph<br />

O N<br />

O<br />

O<br />

O N<br />

Me<br />

O<br />

O<br />

N O<br />

O<br />

Ph<br />

- Chiral Dienes<br />

O<br />

O<br />

O<br />

O<br />

OMe<br />

OMe<br />

Ph<br />

Ph<br />

+<br />

EtAlCl 2, -100°C<br />

Me 2AlCl<br />

Me 2AlCl<br />

CHO<br />

O<br />

O<br />

OH<br />

R*<br />

OHC<br />

O<br />

R*<br />

O<br />

H<br />

O<br />

H<br />

H<br />

O<br />

MeO<br />

O<br />

O<br />

6-MEMBERED RING FORMATION 160<br />

+<br />

R*<br />

15 : 85<br />

95 : 5<br />

Ph<br />

OH<br />

(R)-(+)-α-terpineol<br />

O<br />

H<br />

H<br />

OMe BF 3•OEt 2, -20°C 4:1<br />

BF 3•OEt 2, -78°C 94:6<br />

approach of<br />

dienophile<br />

π-stacking<br />

arrangement<br />

JACS 1984, 106, 4261<br />

JACS 1988, 110 , 1238<br />

TL 1984 , 25 , 4071<br />

JACS 1988, 110 , 1238<br />

Ph<br />

O<br />

OMe<br />

O<br />

H<br />

O<br />

OH<br />

H<br />

O<br />

only product<br />

- Chiral Catalysts Chem. Rev. 1992, 92 , 1007; Synthesis 1991, 1; OPPI 1994, 26, 129-<br />

158<br />

Me<br />

TMSO<br />

CHO +<br />

OtBu<br />

Me<br />

+ PhCHO<br />

OH<br />

EtAlCl 2, -78°C<br />

Eu(hfc) 3, -10°C O<br />

O<br />

Me<br />

CHO<br />

72% (ee)<br />

Ph<br />

JCSCC<br />

1979, 437<br />

TL 1983,<br />

24 , 3451


Br CHO<br />

CHO<br />

+<br />

+<br />

OTBS<br />

O<br />

O O<br />

O<br />

OH O<br />

N<br />

Br CHO<br />

Br<br />

Br<br />

O<br />

+<br />

O<br />

O<br />

O<br />

O<br />

O<br />

+<br />

+<br />

N<br />

O<br />

O<br />

OAc<br />

H<br />

N<br />

N<br />

Ts<br />

O<br />

Et<br />

O<br />

B<br />

Ph<br />

Me<br />

Ph<br />

Me<br />

O<br />

O<br />

Ph Ph<br />

OH<br />

OH<br />

Ph Ph<br />

(iPrO) 2TiCl 2<br />

Ph Ph<br />

O OH<br />

O OH<br />

Ph Ph<br />

(iPrO) 2TiCl 2<br />

(30 mol % catalyst)<br />

Ph<br />

OH<br />

OH<br />

Ph<br />

BH3, -78°C OH O<br />

Ts<br />

N<br />

B<br />

O<br />

O<br />

N<br />

H<br />

-78°C<br />

CH 2Cl 2, -78 °C,<br />

16 hrs<br />

H 3 C<br />

H<br />

O<br />

H<br />

N<br />

N<br />

Ts<br />

O<br />

B<br />

Bu<br />

HO<br />

O<br />

H<br />

CH 2 Cl 2 , PhCH 3<br />

-78 °C, 42 hrs<br />

OC<br />

6-MEMBERED RING FORMATION 161<br />

Br<br />

O<br />

CHO<br />

Br (81%, 99% ee)<br />

CO2H Gibberellic Acid<br />

OTBS<br />

CHO<br />

(83%, 97% ee)<br />

O<br />

O<br />

OH<br />

O<br />

O<br />

O<br />

Br<br />

O<br />

N<br />

O<br />

O N<br />

H<br />

H<br />

O<br />

OAc<br />

CHO<br />

1) NaBH 4<br />

2) DDQ<br />

3) F -<br />

4) HCl<br />

CL 1986, 1967<br />

O<br />

(> 99% ee)<br />

70% yield<br />

95% ee<br />

JACS 1986,<br />

108 , 3510<br />

(98%)<br />

JACS 1992,<br />

114 , 8290<br />

HO<br />

O<br />

O<br />

H<br />

N<br />

N<br />

Ts<br />

Cassiol<br />

O<br />

B<br />

H<br />

O<br />

Br<br />

approach of diene<br />

JACS 1994, 116, 3611<br />

OH<br />

OH


6-MEMBERED RING FORMATION 162<br />

Ketene Equivalents in the D-A reaction<br />

- ketenes undergo thermal [2+2] cycloaddition with dienes to give vinyl cyclobutanones.<br />

- 2-chloroacrylonitrile as a ketene equiv. for D-A rxns.<br />

AcO Cl CN<br />

+ AcO<br />

Cl<br />

CN<br />

KOH, tBuOH<br />

70 °C<br />

ortho-Quinodimathanes Synthesis 1978, 793; Tetrahedron 1987, 43 , 2873<br />

Me 3 Si<br />

Me 3 Si<br />

O<br />

1)<br />

benzocyclobutane<br />

MgBr<br />

CuI, TMS-Cl<br />

H<br />

1) CF 3 CO 2 H, CCl 4 , -30°C<br />

2) Pb(O 2 CCF 3 ) 4<br />

O<br />

O<br />

HO<br />

O<br />

HN<br />

O<br />

170 °C<br />

O<br />

Me<br />

N<br />

O<br />

Me<br />

N<br />

Me<br />

N<br />

N<br />

N<br />

OTMS<br />

H<br />

H H<br />

Estrone<br />

o-quinodimethane<br />

Me 3 Si<br />

Me 3 Si<br />

155 °C<br />

155 °C<br />

LiNH 2 , NH 3 , THF<br />

O<br />

155 °C<br />

O<br />

I<br />

O<br />

H<br />

HN<br />

N<br />

R<br />

O<br />

HO<br />

R<br />

ACIEE 1984, 23 , 539<br />

JACS 1977, 99 , 5483<br />

JACS 1979, 101 , 215<br />

JACS 1980, 102 , 241<br />

Me<br />

OMe<br />

N<br />

OMe<br />

O<br />

Me<br />

N<br />

180 °C<br />

O<br />

O<br />

Me<br />

N<br />

NH<br />

H<br />

O<br />

O<br />

Me 3 Si<br />

Me 3 Si<br />

JACS 1971,<br />

93 , 3836<br />

ACIEE 1971, 11 , 1031<br />

ACIEE 1971, 11 , 1031<br />

ACIEE 1971, 11 , 1031<br />

Nature (London) 1994, 367, 630<br />

ACIEE 1995, 34, 2079<br />

R<br />

R<br />

Me 3 Si SiMe 3<br />

CpCo(CO)2<br />

H<br />

H H<br />

O


Photoenolization Tetrahedron 1976, 22, 405<br />

R<br />

R<br />

O<br />

H<br />

R<br />

•<br />

hν O •<br />

R<br />

H<br />

6-MEMBERED RING FORMATION 163<br />

R<br />

R<br />

OH<br />

MeO 2 C CO 2 Me<br />

Intramolecular Ene <strong>Reactions</strong> ACIEE 1984, 23 , 876, Synthesis 1991, 1<br />

Polyene Cyclization<br />

BnO H<br />

CHO<br />

CHO<br />

CHO<br />

Binaphthol<br />

Me 2 Zn<br />

SnCl 4<br />

Me 2 AlCl<br />

R<br />

R<br />

OBn<br />

OH<br />

O<br />

OH<br />

H<br />

H<br />

90% ee)<br />

Terpene Biosynthesis<br />

terpenes C10 geraniol<br />

sesquiterpenes C15 farnesol<br />

diterpenes C20 geranylgeraniol<br />

steroids C30 squalene<br />

- isoprene- basic building block<br />

OPP<br />

geraniol-PP (C 10 )<br />

+<br />

OPP<br />

isopentyl-PP<br />

OPP<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

O<br />

OH<br />

JOC 1985,<br />

50, 4144<br />

JACS 1991,<br />

113 , 2071<br />

Tetrahedron Lett. 1985, 26, 5535<br />

+<br />

isoprene unit<br />

OPP<br />

Farnesyl-PP (C 15 ) geranylgeraniol-PP (C20)<br />

squalene (C 30 )<br />

R<br />

R<br />

R<br />

R<br />

OH<br />

CO2Me -H 2 O<br />

CO2Me<br />

CO 2 Me<br />

CO 2 Me


O<br />

Camphor α-Cedrane<br />

Biosynthesis of camphor:<br />

OPP<br />

Biosynthesis of cedrane:<br />

+<br />

OPP<br />

+<br />

+<br />

H<br />

H<br />

+<br />

6-MEMBERED RING FORMATION 164<br />

HO 2C<br />

+<br />

+<br />

Abietic Acid<br />

Stork-Eschenmoser Hypothesis- Olefin Geometry is preserved in the cyclization reaction, i.e.<br />

trans olefin leads to a trans fused ring jucntion<br />

A. Eschenmoser HCA 1955, 38, 1890; G. Stork JACS 1955, 77, 5068<br />

H +<br />

H<br />

Me<br />

R<br />

H<br />

Me<br />

Biosynthesis of Abietic acid:<br />

+<br />

H<br />

OPP<br />

H<br />

H<br />

Me<br />

+<br />

Me<br />

H<br />

H<br />

+<br />

H +<br />

H<br />

OPP<br />

R<br />

H<br />

Me<br />

Me<br />

H<br />

H<br />

Me<br />

Me<br />

H<br />

HO 2 C<br />

O<br />

OPP<br />

H


-Steroid Biosynthesis:<br />

squalene<br />

HO<br />

squalene<br />

epoxidase<br />

H<br />

H<br />

+ O<br />

H<br />

H<br />

+<br />

squalene oxide<br />

H<br />

HO<br />

squalene<br />

cyclase<br />

HO<br />

H<br />

H<br />

Lanosterol<br />

H<br />

H<br />

6-MEMBERED RING FORMATION 165<br />

H<br />

+<br />

HO<br />

HO<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

Protosterol<br />

Cholesterol<br />

- Polyene cyclization in synthesis ACR 1968, 1, 1; Bioorg. Chem. 1976, 5, 51; Asymmetric<br />

Synthesis 1984, 3, 341-409; ACIEE 1976, 15, 9<br />

O<br />

MeO<br />

O O<br />

H<br />

CO 2Me<br />

OPO(OEt) 2<br />

SnCl 4<br />

CH 3 NO 2 , 0°C<br />

(8%)<br />

CHO<br />

SnCl 4<br />

pentane<br />

(27%)<br />

HO<br />

SnCl 4<br />

PhH, rt<br />

(38%)<br />

HO<br />

1) Hg(O 2CCF 3) 2<br />

2) NaCl<br />

H<br />

MeO<br />

O<br />

H<br />

H<br />

H<br />

ClHg<br />

H<br />

δ- Amyrin<br />

H<br />

H<br />

H<br />

H<br />

OH<br />

CO 2Me<br />

O<br />

H +<br />

H<br />

H<br />

E.E. van Tamelen<br />

JACS 1972, 94 , 8229<br />

JACS 1974,<br />

96 , 3333<br />

W.S. Johnson<br />

JACS 1974, 96, 3979<br />

JACS 1980,<br />

102 , 7612


Robinson Annulation Synthesis 1976, 777; Tetrahedron 1976, 32, 3.<br />

O<br />

O<br />

O<br />

acid or base<br />

(thermodynamic<br />

conditions)<br />

6-MEMBERED RING FORMATION 166<br />

- unfavorable equillibium for the Michael addition under kinetic conditions<br />

- O<br />

O<br />

base<br />

(kinetic conditions)<br />

- stabilizing the resulting enolate of the Michael Addition product can shift the<br />

equilibrium as in the case of the vinyl silane shown below<br />

OR<br />

- O<br />

Me 3 Si<br />

O<br />

base<br />

(kinetic conditions)<br />

OR<br />

Me 3 Si<br />

Me3SiO H<br />

b)<br />

Me3Si - Methyl Vinyl Ketone equivalents<br />

O<br />

O<br />

Me 3 Si<br />

I<br />

+<br />

I<br />

- O<br />

+ -<br />

O<br />

O<br />

O<br />

Me3Si<br />

- O<br />

a) MeLi<br />

O<br />

c) MeONa<br />

Aldol<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

- O<br />

O<br />

O<br />

O<br />

mCPBA<br />

O<br />

O<br />

Me 3 Si<br />

O<br />

O<br />

O<br />

H<br />

OR<br />

JACS 1974,<br />

96 , 3862<br />

O<br />

H +<br />

JACS 1974,<br />

96 , 6181


Intramolecular Aldol Condensation of 1,5-Diketones<br />

6-exo-trig; favored process<br />

- DeMayo reaction to 1,5-diketones<br />

Intramolecular Alkylations (SN2 reaction)<br />

Radical Cyclizations<br />

Acyloin Reaction<br />

R<br />

O<br />

O<br />

R'<br />

base<br />

- H 2O<br />

Birch Reduction <strong>Organic</strong> <strong>Reactions</strong> 1992, 42, 1.<br />

O<br />

O<br />

O<br />

Aromatic Substitution (Carey & Sundberg, Chapter 11)<br />

Intramolecular Wittig Reaction<br />

Sigmatropic Rearrangements<br />

hν<br />

O<br />

O<br />

6-MEMBERED RING FORMATION 167<br />

O<br />

O<br />

R'<br />

R<br />

DIBAL-H<br />

H 3C<br />

O<br />

H<br />

O


Medium Sized Rings<br />

7-Membered Rings<br />

7-MEMBERED RING FORMATION 168<br />

[4+2] cycloadditions<br />

- [4+2] cycloadditions between dienes and allylcations leads to cycloheptadienes<br />

review: ACIEE 1984, 23 , 1; ACIEE 1973, 12 , 819<br />

F 3 CCO 2<br />

SiMe 3<br />

O O O<br />

mCPBA<br />

R<br />

OTMS<br />

+<br />

+<br />

ZnCl 2 , -30°C<br />

Br<br />

O<br />

O<br />

+ +<br />

+<br />

OMe<br />

+<br />

O<br />

ZnCl 2<br />

I<br />

+<br />

CF 3CO 2Ag<br />

SiMe3<br />

-78°C<br />

O<br />

O<br />

H<br />

Me<br />

O<br />

ACIEE 1973, 12, 819<br />

ACIEE 1984, 23, 1<br />

+<br />

+ JACS 1982,<br />

104 , 1330<br />

- Noyori [4+2] cycloaddition of α,α'-dibromoketones and dienes<br />

review: ACR 1979, 12 , 61<br />

O<br />

Br Br<br />

R<br />

Fe 2(CO) 9<br />

-or-<br />

Zn-Cu<br />

R<br />

OM<br />

+<br />

R<br />

HO<br />

O<br />

O<br />

O<br />

O<br />

O<br />

R R<br />

H<br />

JACS 1979, 101, 226<br />

ACIEE 1982,<br />

21, 442<br />

O<br />

O<br />

ACR 1979, 61<br />

<strong>Organic</strong> <strong>Reactions</strong><br />

1983, 29, 163


Me<br />

O<br />

HO<br />

O O O<br />

mCPBA<br />

O<br />

Br Br<br />

O<br />

Me<br />

Br<br />

Br<br />

+<br />

1)<br />

O<br />

Br Br<br />

O<br />

Br Br<br />

O<br />

Fe 2 (CO) 9<br />

O<br />

O<br />

Br<br />

O<br />

O<br />

Br<br />

1)<br />

OMe<br />

+<br />

O<br />

OBn<br />

Fe 2(CO) 9<br />

O<br />

CO2Me N<br />

Fe2(CO) 9<br />

2) Zn<br />

O<br />

O<br />

1) H2, Pd/C<br />

2) CF 3 CO 3 H<br />

7-MEMBERED RING FORMATION 169<br />

O<br />

Br Br<br />

MeO 2C<br />

O<br />

O<br />

N<br />

O<br />

HO<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

Zn<br />

O<br />

O<br />

O<br />

JACS 1978, 100 , 1786<br />

Tetrahedron 1985, 41, 5879<br />

OH<br />

JACS 1979, 101, 226<br />

O<br />

H H<br />

CO2H O<br />

O<br />

JACS 1972, 94, 3940<br />

JOC 1976, 41, 2075<br />

O<br />

Me Me Me<br />

1) CF3CO3H OH<br />

2) LDA, MeI<br />

O<br />

JCSCC 1985, 55<br />

Me OBn<br />

OH OH OBn<br />

- [4+2] cycloaddition between pentadienyl cations and olefins<br />

O<br />

O<br />

Δ<br />

O<br />

+ + +<br />

- O<br />

OH<br />

+<br />

O<br />

O<br />

O<br />

Tetrahedron 1966, 22, 2387<br />

JOC 1987, 52, 759


MeO OMe<br />

O<br />

OMe<br />

7-MEMBERED RING FORMATION 170<br />

O<br />

SnCl4 JACS 1977, 99, 8073<br />

JACS 1979, 101, 6767<br />

O<br />

OMe<br />

JACS 1981, 103, 2718<br />

Seven-Membered Rings from Funnctionalization of Tropone<br />

<strong>Organic</strong> <strong>Reactions</strong> 1997, 49, 331-425<br />

O<br />

Cl<br />

- [6+4] cycloadditions of tropones with dienes<br />

O<br />

O -<br />

[6+4]<br />

150°C<br />

R<br />

(88%)<br />

O<br />

O<br />

O<br />

HO HO<br />

HO OH<br />

Ingenol<br />

- [4+2] cycloaddition between tropone and olefins<br />

O<br />

Radical Ring Expansion <strong>Reactions</strong><br />

- one carbon ring expansions<br />

(CH 2 ) n<br />

• O<br />

O<br />

(CH 2 ) n<br />

CO 2 Me<br />

n = 1,2,3<br />

CO 2 Me<br />

NaH, CH 2 Br 2<br />

O<br />

(CH 2 ) n<br />

O<br />

(CH 2 ) n<br />

Br<br />

[4+2]<br />

150°C<br />

(81%)<br />

CO 2 Me<br />

nBu 3 SnH,<br />

AIBN<br />

O<br />

R<br />

O<br />

O<br />

(CH 2 ) n<br />

JOC 1988, 53, 4596<br />

JACS 1987, 109, 3147<br />

JACS 1986, 108, 4655<br />

JOC 1986, 51, 2400<br />

CO 2 Me<br />

O<br />

nBu3SnH JACS 1987,109, 3493<br />

JACS 1987,109 , 6548<br />

•<br />

CO2Me (CH2 ) n<br />

CO2Me •


O<br />

CH 3<br />

• O<br />

Bu 3 SnLi<br />

BrCH2SePh<br />

SnBu 3<br />

O<br />

SePh<br />

SnBu 3<br />

- more than one carbon expansion<br />

+<br />

O<br />

O R<br />

X<br />

(CH 2 ) n<br />

SnBu 3<br />

X= I, SePh<br />

n= 1,2<br />

Br<br />

O<br />

O<br />

7-MEMBERED RING FORMATION 171<br />

O<br />

Br<br />

+<br />

O<br />

(CH 2 ) n<br />

R<br />

•<br />

SnBu 3<br />

Bu 3 Sn•<br />

Bu 3 SnH, AIBN,<br />

C 6 H 6 , reflux<br />

Tetrahedron 1989, 45, 909<br />

Tetrahedron 1991, 47, 6795<br />

Tetrahedron 1989, 45, 909<br />

Tetrahedron 1991, 47, 6795<br />

Eight-Membered Rings review:Tetrahedron 1992, 48 , 5757.<br />

[4+4] Cycloaddition of Dienes<br />

O<br />

O<br />

MeO2C<br />

MeO 2 C<br />

Ni(COD) 2, Ph 3P<br />

60°C<br />

Carbonyl Coupling <strong>Reactions</strong><br />

- Acyloin Reaction CO2Me<br />

- McMurry Reaction<br />

R<br />

CO 2Me<br />

O<br />

Ni(COD) 2 , Ph 3 P<br />

60°C<br />

O<br />

O<br />

MeO 2 C<br />

MeO 2 C<br />

O<br />

O<br />

JACS 1986,<br />

108 , 4678<br />

O<br />

H<br />

H<br />

O<br />

Asteriscanolide<br />

Na O<br />

JACS 1971,<br />

93 , 1673<br />

CO 2Et<br />

Ti (0)<br />

R<br />

OH<br />

O<br />

JOC 1992, 57, 7163<br />

JACS 1988,<br />

110 , 5904


CHO OHC<br />

Aldol-like Condensations<br />

tBuPh 2 SiO<br />

O<br />

O<br />

OTMS<br />

(CH 2) n<br />

Me 3 Si Cl<br />

O<br />

OEt<br />

Pinocol Rearrangement<br />

Me 3SiO<br />

SiMe 3<br />

O<br />

OTs<br />

R<br />

TiCl 3, Zn-Cu<br />

H H<br />

TiCl 4<br />

O<br />

n= 1,2<br />

SnCl 4<br />

OMe<br />

tBuPh 2 SiO<br />

Me 3 Si<br />

7-MEMBERED RING FORMATION 172<br />

O<br />

Lewis Acid<br />

O SiMe 3 O<br />

OMe<br />

OMe<br />

SnCl 4<br />

Me 3SiO<br />

TiCl 4<br />

O<br />

O<br />

Cl<br />

(CH 2) n<br />

OTs<br />

OH<br />

SiMe 3<br />

O<br />

O<br />

R<br />

JACS 1986,<br />

108 , 3513<br />

JCSCC 1983, 703<br />

JACS 1986,<br />

108 , 3516<br />

O<br />

Cl<br />

Laurenyne<br />

JOC 1988,<br />

53 , 50<br />

JACS 1988,<br />

110 , 2248<br />

+<br />

OMe<br />

JACS 1989,<br />

111 , 1514<br />

OMe<br />

H<br />

Tiffeneu-Demyanov Ring Expansion<br />

- one carbon ring expansion for virtually any size ring<br />

O HO NH2 1) Me3SiCN 2) LAH<br />

HONO<br />

N2<br />

O H<br />

O<br />

JOC 1980,<br />

45 , 185<br />

- also see Beckman and Schmidt rearrangements as a one atom ring expansion<br />

for the conversion of cyclic ketones to lactams.


DeMayo Reaction<br />

O<br />

O<br />

O<br />

O<br />

OAc<br />

+<br />

hν, pyrex<br />

O<br />

O<br />

O<br />

O<br />

O<br />

7-MEMBERED RING FORMATION 173<br />

O<br />

hν<br />

O O<br />

Ring Expansion/Contraction via Sigmatropic Rearrangements<br />

- Cope Rearrangement<br />

O<br />

O<br />

SMe<br />

- Anion Accelerated Cope<br />

OH<br />

- Claisen Rearrangement<br />

O<br />

O<br />

O<br />

55°C<br />

O<br />

O<br />

AcO<br />

O<br />

O<br />

JCSCC 1984, 1695<br />

pTSA, MeOH<br />

H<br />

CO2Me reflux JACS 1986,<br />

O<br />

108 , 6425<br />

O<br />

O<br />

H<br />

O<br />

TL 1991,<br />

32 , 6969<br />

KH, 18-C-6<br />

115°C O<br />

JACS 1989,<br />

111, 8284<br />

Tebbe<br />

reagent<br />

O<br />

185°C<br />

O<br />

OCOCH 2OH<br />

Pleuromutilin<br />

O<br />

H<br />

TL 1990,<br />

31 , 6799


- Ester Enolate Claisen- 4 carbon ring contractions<br />

O<br />

O<br />

MOMO<br />

O<br />

O<br />

1) LDA, TBS-Cl<br />

2) 110°C<br />

H<br />

7-MEMBERED RING FORMATION 174<br />

CO 2H<br />

MOMO<br />

H<br />

H<br />

CO2TBS JACS 1982, 104 , 4030<br />

Tetrahedron 1986, 42 , 2831<br />

1) LDA, TBS-Cl<br />

2) 110°C JOC 1988, 53 , 4141


Exam 1


page 1 of 5<br />

1. Give the reagent(s) necessary to carry out the following transformations. The stereochemistry of<br />

the products and reactants is as shown. (20 pts)<br />

HO<br />

O<br />

O<br />

OH O<br />

O<br />

CO 2 H<br />

OH<br />

OH OH<br />

O<br />

OH<br />

O<br />

HO<br />

O<br />

O<br />

O<br />

OH OH<br />

OH<br />

N<br />

OH<br />

CO 2CH 3<br />

O


page 2 of 5<br />

2. Give the product of the following reactions. The stereochemistry of the reactant is as shown.<br />

Give the proper sterochemistry of the major steroisomer of the product. (20 pts)<br />

tBuMe 2 SiO<br />

Ph<br />

Ph<br />

O<br />

O<br />

OCH 3<br />

O<br />

N<br />

O<br />

O<br />

O<br />

O<br />

H<br />

O<br />

O<br />

H 3 C Ph<br />

2)<br />

OsO 4 , MNO<br />

(CH 3 ) 2 CuLi<br />

mCPBA<br />

1) LDA, THF<br />

Ph<br />

O SO2Ph N<br />

CH 3 MgBr


3. What are the following reagents used for. Please be specific. (8 pts each)<br />

Ir + P(C 6H 11) 3<br />

N<br />

H H<br />

N N<br />

O<br />

Mn<br />

O<br />

O<br />

tBu tBu<br />

PF 6 -<br />

Bu 2 BOTf, iPr 2 NEt<br />

PPh2 PPh2 page 3 of 5<br />

4. Give the reagent(s) needed to selectively deprotect the substrate below to the desired product.<br />

(16 pts)<br />

BnO O<br />

AcO<br />

OH<br />

OH<br />

OSitBuMe 2<br />

BnO O<br />

AcO<br />

O<br />

O<br />

OH<br />

BnO O<br />

AcO<br />

O<br />

O<br />

OSitBuMe 2<br />

OH O<br />

AcO<br />

O<br />

O<br />

BnO O<br />

OH<br />

O<br />

OSitBuMe 2<br />

O<br />

OSitBuMe 2


5. Provide the product and all intermediates for the following sequence of reactions. (20 pts)<br />

O<br />

O<br />

1) LiAlH 4<br />

2) MnO 2<br />

3) tBuMe 2 SiCl, pyridine<br />

4) pCH 3 C 6 H 3 SO 2 NHNH 2<br />

H + , C 6 H 6 (- H 2 O)<br />

5) NaCNBH 3<br />

page 4 of 5


page 5 of 5<br />

6. Starting from cyclohexanone, provide a feasible synthesis target shown. Give all reagents and<br />

intermediates. (16 pts)<br />

O<br />

~ 4 steps


Exam 2


1. Give the product of the following reactions. The stereochemistry of the reactant is as shown.<br />

Give the proper sterochemistry of the major stereoisomer of the product. (24 pts)<br />

Ph<br />

OH<br />

_ +<br />

Me MeO 2CNSO 2NEt 3<br />

H<br />

H<br />

O<br />

O<br />

O<br />

O<br />

NNHTs<br />

O<br />

OTf<br />

Cl<br />

Cp2Ti<br />

PhH, Δ<br />

CH 2<br />

Al(CH3)2<br />

Cl<br />

a) BuLi (2 equiv)<br />

b) CH 3 I<br />

1) LDA, TMS-Cl<br />

2) Δ<br />

Pd(0), CO, MeOH<br />

1) CH 2 N 2<br />

2) hν, MeOH<br />

page 1 of 5.


page 2 of 5.<br />

2. Give the reagent(s) necessary to carry out the following transformations. The stereochemistry of<br />

the products and reactants is as shown. (24 pts)<br />

H<br />

O<br />

H<br />

CHO<br />

O<br />

OH<br />

H<br />

O O<br />

H<br />

H<br />

O<br />

O<br />

H<br />

H<br />

H<br />

CO 2Me<br />

CO 2Me<br />

H<br />

O<br />

O<br />

H<br />

O Ph


page 3 of 5.<br />

3. Give the expected product from a thermal and photochemical [2+2] cycloaddition of<br />

cycloheptenone with ethylene. Using MO's, clearly show why the photochemical and thermal<br />

pathways give different stereochemical outcomes. (12 pts)<br />

O<br />

+


4. Provide the product and all intermediates for the following sequence of reactions. (20 pts)<br />

O<br />

O<br />

O<br />

1) cyclopentene, hν<br />

2) DIBAL<br />

3) tBuO - K +<br />

4a) (CH 3 ) 2 CuLi<br />

b) Tf2NPh<br />

5) Ph 2 CuLi<br />

page 4 of 5.


5. Complete the synthesis for the target shown. Give all reagents and intermediates. (20 pts).<br />

OH<br />

OH<br />

~5 steps<br />

O O<br />

page 5 of 5.


Exam 3


1. Give the product of the following reactions. The stereochemistry of the reactant is as shown.<br />

Give the proper sterochemistry of the major stereoisomer of the product. (20 pts)<br />

NHBn<br />

H<br />

H<br />

CO 2H<br />

O<br />

N<br />

CH 3<br />

O O<br />

N<br />

Ph<br />

O<br />

R<br />

CpCo(CO) 2<br />

CHO<br />

I 2<br />

R<br />

H 2 , Pd/C<br />

a) Bu 2 BOTf, Et 3 N<br />

b) PhCHO<br />

page 1 of 6.


page 2 of 6.<br />

2. Give the reagent(s) necessary to carry out the following transformations. The stereochemistry of<br />

the products and reactants is as shown. (20 pts)<br />

Ph<br />

O<br />

OBn OBn<br />

OMe OMe<br />

O<br />

CHO<br />

O<br />

O<br />

O<br />

OEt<br />

Me<br />

OH<br />

I<br />

Ph<br />

OBn<br />

O<br />

O<br />

OH<br />

O<br />

OH<br />

CO 2 H<br />

OEt<br />

CN<br />

CH 3<br />

OMe<br />

OH<br />

OBn


3. Short Answers. (5 points each, 20 points total)<br />

a. Define enantioselective and enantiospecific and give examples of each.<br />

b. What is the Stork-Eschenmoser hypothesis?<br />

page 3 of 6.


page 4 of 6.<br />

c. What are Baldwin's Rules (be general, do not give each specific rule)? Be sure to explain what are<br />

the basis of the rules and give one example each of a reaction that is favored and disfavored<br />

according to Baldwin's rule.<br />

d. Define umpolung and give an example.


4. Provide the product and all intermediates for the following sequence of reactions. (20 pts)<br />

OH<br />

OH<br />

OH<br />

1) (CH 3 ) 2 C(OCH 3 ) 2 , H +<br />

2) MnO 2<br />

3) (EtO) 2P(O)CH 2CO 2Me, base<br />

4) AcOH, THF, H 2 O<br />

5) tBuSiCl (1 equv), pyridine<br />

6) TsCl, pyridine<br />

7) Bu 4 NF<br />

page 5 of 6.


5. Complete the synthesis for the target shown. Give all reagents and intermediates. (20 pts).<br />

O<br />

OBn<br />

~ 6 steps<br />

O<br />

O<br />

page 6 of 6.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!