02.02.2013 Views

Passive, Semi-Active and Active Vibration Control Systems for ...

Passive, Semi-Active and Active Vibration Control Systems for ...

Passive, Semi-Active and Active Vibration Control Systems for ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Passive</strong>, <strong>Semi</strong>-<strong>Active</strong> <strong>and</strong> <strong>Active</strong><br />

<strong>Vibration</strong> <strong>Control</strong> <strong>Systems</strong> <strong>for</strong> Offshore<br />

Plat<strong>for</strong>m Steel Jacket Structures<br />

OU Jinping<br />

WU Bin XIAO Yiqing DUAN Zhongdong et al<br />

Harbin Institute of Technology<br />

P.R. China


About HIT<br />

• Undergraduates: 21,000<br />

• Graduates: 10,000<br />

• Staffs: 6,700<br />

in which faculties: 2,700<br />

• Main Specialities in engineering:<br />

Aerospace<br />

E&E, Computer science<br />

Mechanical engineering<br />

Material<br />

Civil engineering, Architecture


• The research fee in 2001: 516 millions<br />

1/3 from Aerospace Bureau<br />

1/3 from government agencies<br />

1/3 from industry companies<br />

• The total sale of Hi-Tech products<br />

of the Science Park in 2001: 2110 millions<br />

• HIT is one of top 9 universities getting<br />

key financial support from the government


Background


�More than 5000 steel offshore<br />

structures in the world<br />

100 in China<br />

�Main dynamic excitations:<br />

wind, wave, ice <strong>and</strong> earthquake<br />

�<strong>Vibration</strong> amplitude reduced 15%<br />

the life of structure enhance double


�mail control loads in Bohai Ocean of<br />

China<br />

Ice <strong>for</strong>ce <strong>and</strong> Earthquake<br />

Seismic <strong>for</strong>tified intensity:8 degree<br />

�2 plat<strong>for</strong>ms collapsed by ice<br />

in China (1969,1977)<br />

2 collapsed in USA (1964)


•It is urgent to have an effective scheme to<br />

control ice-induced <strong>and</strong> earthquake-induced<br />

vibration of offshore structures<br />

<strong>for</strong> ocean oil development<br />

Some effective control schemes<br />

<strong>for</strong> buildings may not work <strong>for</strong><br />

offshore structures since<br />

underwater <strong>and</strong> corrosion


I. Damping brace control<br />

systems(DBS)<br />

II. <strong>Passive</strong> <strong>and</strong> semi-active<br />

damping isolation systems(DIS)<br />

III. AMD control systems


JZ20-2MUQ<br />

1:10 Model<br />

Placement of<br />

Damper<br />

Õ³ ÖÍ º ÄÄÜ<br />

Æ÷¼° б³ Å


• <strong>Passive</strong> <strong>Vibration</strong> <strong>Control</strong><br />

with Viscous or Visoelastic Dampers


1.1 Design <strong>and</strong> Tests of Viscous Dampers<br />

1) Configurations of viscous dampers<br />

(a) With a gap<br />

(b) With holes


2) Tests of scale dampers with a gap<br />

i) Damping media:<br />

¼ôÓ¦Á¦(Pa)<br />

Fluid with<br />

power law<br />

20<br />

16<br />

12<br />

8<br />

4<br />

0<br />

0 1 2 3<br />

¼ôÓ¦±äËÙÂÊ(1/s)<br />

Silicon oil 7000<br />

τ = kγ&<br />

m<br />

Tested curves of the media<br />

under low shear velocity


Configuration Parameters of dampers<br />

Damper 1<br />

D = 40 mm 0 39.<br />

2 = D mm<br />

l = 39 mm d = 20 mm<br />

Damper 2<br />

D = 80 mm 0 79 = D mm<br />

l = 40 mm d = 45 mm


×èÄáÁ¦(KN)<br />

6<br />

3<br />

0<br />

-3<br />

-6<br />

Tested damping <strong>for</strong>ces<br />

•Damper 1<br />

-6 -4 -2 0 2 4 6<br />

λÒÆ(mm)<br />

×èÄáÁ¦(KN)<br />

9<br />

6<br />

3<br />

0<br />

-3<br />

-6<br />

-9<br />

-6 -4 -2 0 2 4 6<br />

λÒÆ(mm)<br />

Case a3 Case a4


×èÄáÁ¦(KN)<br />

12<br />

8<br />

4<br />

0<br />

-4<br />

-8<br />

•Damper 2<br />

-12<br />

-6 -4 -2 0 2 4 6<br />

λÒÆ(mm)<br />

×èÄáÁ¦(KN)<br />

-12 -8 -4 0 4 8 12<br />

Case b3 Case b4<br />

6<br />

3<br />

0<br />

-3<br />

-6<br />

λÒÆ(mm)


2) Damping<br />

media:<br />

Bingham<br />

fluid<br />

Configuration parameters of damper<br />

D =100 mm<br />

d =40 mm<br />

D0 =96 mm<br />

l =40 mm<br />

h =2 mm<br />

Bingham fluid<br />

τ τ = η & γ<br />

− 0<br />

p


×èÄáÁ¦(kN)<br />

×èÄáÁ¦(kN)<br />

Tested damping <strong>for</strong>ce<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-10 -5 0 5 10<br />

λÒÆ(mm)<br />

f=0.5Hz, A=10mm<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-10 -5 0 5 10<br />

λÒÆ(mm)<br />

f=1Hz, A=10mm<br />

×èÄáÁ¦(kN)<br />

×èÄáÁ¦(kN)<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-6 -4 -2 0 2 4 6<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

λÒÆ(mm)<br />

f=1Hz, A=5mm<br />

-6 -4 -2 0 2 4 6<br />

λÒÆ(mm)<br />

f=2Hz, A=5mm


3) Tests of full scale damper with Bingham fluid<br />

The configuration of damper<br />

Configuration parameters of damper<br />

D =200 mm<br />

d =100 mm<br />

D0 =196 mm<br />

l =200 mm<br />

h =2 mm


×èÄáÁ¦(kN)<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

-400<br />

Tested results f=1 Hz<br />

-9 -6 -3 0 3 6 9<br />

λÒÆ(mm)<br />

A=8.71mm<br />

×èÄáÁ¦(kN)<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

-400<br />

-12 -8 -4 0 4 8 12<br />

λÒÆ(mm)<br />

A=12.80mm


1.3 The Tested Responses of Offshore Structures<br />

with / without Viscous Dampers El Centro<br />

Maximum Displacement<br />

<strong>and</strong> Maximum Acceleration<br />

Reduction ratio: 42%


2. Smart <strong>Vibration</strong> <strong>Control</strong><br />

with MR Dampers


Type A (carrier fluid’s viscosity is 70 centistoke)<br />

Yi el d st r ess£¨ kPa£©<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1. Magnetorheological Fluid<br />

<strong>and</strong> Smart Damper<br />

1) Properties of MR fluid<br />

0 0.1 0.2 0.3 0.4<br />

Magnet i c i nduct i on£¨ T£©


Type B (carrier fluid’s viscosity is 2000<br />

centistoke)<br />

Yi el d st r ess£¨ kPa£©<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 0.1 0.2 0.3 0.4<br />

Magnet i c i nduct i on£¨ T£©


40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 0. 1 0. 2 0. 3 0. 4<br />

Yi el d st r ess£¨ kPa£© •Property comparison of MR fluid<br />

Magnet i c i nduct i on£¨ T£©<br />

Type A ( OU,et al, 1998) Lord Ltd. (1995)


2) MR damper<br />

Table 4 Parameters <strong>for</strong> MR damper<br />

h(mm) D(mm) d(mm) L(mm)<br />

2 100 40 40<br />

The schematic


3) Damping properties<br />

a Amplitude=1.5cm<br />

frequency=0.25Hz<br />

b Amplitude=1.5cm<br />

frequency=0.5Hz


a Amplitude=1.5cm<br />

frequency=0.25Hz<br />

b Amplitude=1.5cm<br />

frequency=0.5Hz


2. Numerical Analysis of Smart <strong>Vibration</strong><br />

<strong>Control</strong> of JZ20-2MUQ Plat<strong>for</strong>m Structures<br />

1) <strong>Passive</strong>-Off <strong>and</strong> <strong>Passive</strong>-On<br />

<strong>Passive</strong> -Off<br />

Under ice <strong>for</strong>ce of 1 year return Under El Centro earthquake (190 gal)


2) Fuzzy <strong>Control</strong> Rules <strong>for</strong> Offshore Structure<br />

NB NM NS ZE PS PM PB<br />

NB PB PB NS NM NB NB NB<br />

NM PB PB ZE NS NM NB NB<br />

NS PB PB PS NS NS NB NB<br />

ZE PB PB PS ZE NS NB NB<br />

PS PB PB PS PS NS NB NB<br />

PM PB PB PM PS ZE NB NB<br />

PB PB PB PB PM PS NB NB<br />

⎧Fmin<br />

F ⋅ FMR<br />

≤ 0 or F < Fmin<br />

⎪<br />

Fcoul = ⎨Fmax<br />

F ⋅ FMR<br />

> 0 <strong>and</strong> F > Fmax<br />

⎪<br />

⎩F<br />

ÆäËûÇé¿ö


3) Numerical results<br />

�El-Centro earthquake


• Damping Force under Fuzzy <strong>Control</strong> Rules<br />

Damping <strong>for</strong>ce versus displacement Damping <strong>for</strong>ce versus velocity


• Displacement response under Ice Force<br />

Under the crushed ice <strong>for</strong>ce of 1 year return


Under the bended ice <strong>for</strong>ce of 1 year return


�<strong>Control</strong> effectiveness<br />

• Under earthquke<br />

– 23 30<br />

• Under ice <strong>for</strong>ce<br />

– 33 47 <strong>for</strong> light ice<br />

– 30 50 <strong>for</strong> heavy ice


3. Shaking Table Tests of Smart <strong>Vibration</strong><br />

<strong>Control</strong> of Scale Model Plat<strong>for</strong>m<br />

Structures<br />

<strong>Control</strong> strategy<br />

–<strong>Passive</strong>Off –<strong>Passive</strong>On – <strong>Semi</strong>-active fuzzy control


•<strong>Control</strong> rules<br />

¿ØÖÆÐźÅ(V)<br />

4<br />

2<br />

0<br />

15<br />

10<br />

ËÙÈ<br />

5<br />

0<br />

0<br />

5<br />

λ Ò Æ<br />

10<br />

15


Tested Results<br />

� <strong>Passive</strong> Off <strong>Passive</strong> On <strong>Semi</strong>-active<br />

fuzzy control have the same results:<br />

0.6 - 37


The reason:<br />

Damping <strong>for</strong>ce versus displacement <strong>and</strong><br />

velocity<br />

×èÄáÁ¦£ ¨ Ö£ ©<br />

1.5<br />

1<br />

0.5<br />

¼ÓÔØËÙ È 1cm/s<br />

0 A<br />

2 A<br />

0<br />

0 1 2 3 4 5<br />

Î »ÒÆ£¨cm£ ©


II. <strong>Passive</strong> <strong>and</strong> semi-active<br />

damping isolation systems(DIS)


<strong>Passive</strong> <strong>and</strong> semi-active damping<br />

isolation systems(DIS)<br />

¸ô Õð×èÄá Æ÷


Damping isolation mechanism<br />

� Traditional isolation increase or reduce the<br />

fundamental period <strong>and</strong> avoid the predominant<br />

period of excitation, <strong>and</strong> then suppress the<br />

vibration of structure.<br />

� Damping isolation lay a flexible layer to make<br />

the dampers dissipate vibration energy as much<br />

as possible, <strong>and</strong> then suppress the vibration of<br />

structure


� The local damping coefficient can be<br />

transferred into the damping ratio of<br />

whole structure, then suppress the<br />

vibration of structure<br />

m2<br />

m1<br />

MX&& + CX&+ KX = F() t<br />

m >><br />

2<br />

m<br />

⎡ c1 +c2 -c2 ⎢<br />

⎣ -c2 c2 1<br />

⎤<br />

⎥<br />

⎦<br />

c ξ<br />

2


Relationship of damping coefficient c 2 in isolation<br />

layer <strong>and</strong> damping ratio ξ 1 of structure<br />

ξ 1<br />

0. 5<br />

0. 4<br />

0. 3<br />

0. 2<br />

0. 1<br />

k 2 =0. 3k 1<br />

k 2 =0. 5k 1<br />

0. 0<br />

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000<br />

c 2 (kN s/m)


• <strong>Control</strong> Effectiveness with viscous dampers<br />

(Numerical results)<br />

• Under ice <strong>for</strong>ce<br />

Relative displacement of isolated layer: 30mm<br />

Reduction ratio:<br />

Displacement 30%<br />

Acceleration 50%<br />

2. Under earthquake (190gal)<br />

Relative displacement of isolated layer: 50mm<br />

Reduction ratio:<br />

Displacement 35%<br />

Acceleration 30%


•<strong>Control</strong> Effectiveness with MR dampers<br />

(Numerical results)<br />

Under Taft earthquake (190 gal)<br />

Case Relative<br />

displacement<br />

of damping<br />

layer (cm)<br />

Without<br />

control<br />

Max. displ. of<br />

jacket<br />

structure (cm)<br />

Max. accel. of<br />

jacket<br />

structure<br />

(cm/s 2 )<br />

6.63 198.90<br />

<strong>Passive</strong> off 3.32 1.11 64.20<br />

<strong>Passive</strong> on 1.72 1.32 129.98<br />

<strong>Semi</strong>-active 1.68 1.27 105.28


III. AMD control systems


3.1 Numerical Analysis<br />

• Main Parameters of AMD <strong>Systems</strong><br />

<strong>for</strong> the <strong>Vibration</strong> <strong>Control</strong> of JZ20-2MUQ<br />

Plat<strong>for</strong>m In Baihai Ocean<br />

Mass: 100 t mass ratio: 4%<br />

Maximum control <strong>for</strong>ce: 120 t<br />

Maximum displacement of the mass :0.8 m


EL+39.750<br />

EL+16.5000<br />

EL-23.500<br />

AMD Without<br />

control<br />

� Under earthquake<br />

– Elcentro with Max<br />

Acce. 220gal<br />

� <strong>Control</strong> effectiveness<br />

– Disp. 46.8%<br />

– Acce. 31.4%


EL+39.750<br />

EL+16.5000<br />

EL-23.500<br />

AMD Without<br />

control<br />

• Under ice <strong>for</strong>ce<br />

– Crushed ice <strong>for</strong>ce<br />

40cm<br />

• <strong>Control</strong><br />

effectiveness<br />

– Disp. 33%<br />

–Acce. 44%


3.2 Tests of 1:10 Model with AMD<br />

<strong>Control</strong> algorithm<br />

� LQG with acceleration feedback<br />

� <strong>Control</strong>ler<br />

� Single input acceleration of deck<br />

� Single output voltage of actuator


Acceleration gal<br />

Displacement mm<br />

Under Taft Earthquake (190 gal)<br />

5<br />

0<br />

-5<br />

0 2 4 6 8 10 12<br />

500<br />

0<br />

-500<br />

0 2 4 6 8 10 12<br />

(sec)


•<strong>Control</strong> effectiveness<br />

(Tested results)<br />

� Input earthquake<br />

� El Centro 300gal Taft 250gal<br />

Tianjing 120gal<br />

� Reduction ratio of disp. 17 47 45<br />

� Reduction ratio of accel. -6 52 38<br />

� Actuator<br />

� Max disp. 13.8mm 6.1mm 7.9mm<br />

� Max. <strong>for</strong>ce 1.93 kN 1.20kN 1.22kN


Conclusions<br />

Recommended control schemes<br />

<strong>for</strong> offshore structures:<br />

• <strong>Passive</strong> <strong>and</strong> semi-active damping<br />

isolation systems(DIS)<br />

•AMD control systems

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!