04.02.2013 Views

Infrared signature studies of aerospace vehicles - DSpace at IIT ...

Infrared signature studies of aerospace vehicles - DSpace at IIT ...

Infrared signature studies of aerospace vehicles - DSpace at IIT ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.3. Atmospheric transmission <strong>of</strong> IR and estim<strong>at</strong>ion <strong>of</strong> <strong>at</strong>mospheric IR-radiance . . . . . . . . . . . . . . . . . . . 224<br />

3.3.1. Estim<strong>at</strong>ion <strong>of</strong> <strong>at</strong>mospheric transmission <strong>of</strong> IR using LOWTRAN code . . . . . . . . . . . . . . . . . . 225<br />

3.3.2. Estim<strong>at</strong>ion <strong>of</strong> <strong>at</strong>mospheric IR-radiance using Berger’s model . . . . . . . . . . . . . . . . . . . . . . . . . 225<br />

3.4. Role <strong>of</strong> earthshine in IRSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227<br />

4. Analysis and modeling <strong>of</strong> IR <strong>sign<strong>at</strong>ure</strong>s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228<br />

4.1. Analysis <strong>of</strong> powerplant and rear fuselage IR <strong>sign<strong>at</strong>ure</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228<br />

4.2. Analysis <strong>of</strong> plume IR <strong>sign<strong>at</strong>ure</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230<br />

4.3. Standard models for prediction <strong>of</strong> IR <strong>sign<strong>at</strong>ure</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232<br />

4.3.1. NIRATAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232<br />

4.3.2. SIRUS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232<br />

4.3.3. IRST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232<br />

4.4. Adequacy <strong>of</strong> analysis methods vis-a` -vis experimental measurements . . . . . . . . . . . . . . . . . . . . . . . . . 232<br />

4.5. Lock-on versus lethal envelope and target susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233<br />

5. IR countermeasures (IRCMs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234<br />

5.1. Passive countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235<br />

5.1.1. Exhaust system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235<br />

5.1.2. Fuselage IRSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237<br />

5.1.3. Limit<strong>at</strong>ions <strong>of</strong> IR suppressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238<br />

5.2. Active countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239<br />

5.3. Counter–countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240<br />

6. Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240<br />

6.1. Scope for future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241<br />

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242<br />

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242<br />

1. Introduction<br />

Wars are increasingly driven by technology, and<br />

the aim is to use airpower extensively to gain<br />

early superiority, as this ensures higher Mission<br />

Attainment Measure. Survivability is an important<br />

aspect in warfare, because aircraft/helicopters are<br />

crucial to mission objectives. Since they are a crucial<br />

force in tactical warfare, military forces are constantly<br />

engaged in upgrading their fleet, to establish<br />

control over the airspace. In this process, they strive<br />

for best target detection, and search and tracking<br />

systems, to counter their enemy oper<strong>at</strong>ions. Aircraft/helicopter<br />

designers are making them stealthier<br />

by reducing their <strong>sign<strong>at</strong>ure</strong>s; viz. visual, aural,<br />

infrared (IR), and radio detection and ranging<br />

(RADAR). But more sensitive <strong>sign<strong>at</strong>ure</strong> detection<br />

systems are also being concurrently developed,<br />

thereby making <strong>sign<strong>at</strong>ure</strong> suppression requirements<br />

ever more stringent.<br />

Majority <strong>of</strong> aircraft/helicopters lost in tactical<br />

warfare have been destroyed by he<strong>at</strong>-seeking missiles.<br />

Further, passive detection and tracking is<br />

tactically superior to active, for comparable detection<br />

range. With increasing sensitivities <strong>of</strong> IRdetectors,<br />

analysis <strong>of</strong> passively emitted IR <strong>sign<strong>at</strong>ure</strong>s<br />

has emerged as an important component <strong>of</strong><br />

ARTICLE IN PRESS<br />

stealth technology. Availability <strong>of</strong> portable IRguided<br />

missiles to terrorist organiz<strong>at</strong>ions has further<br />

aggrav<strong>at</strong>ed the problem [1]. Consequently, IR<br />

<strong>sign<strong>at</strong>ure</strong> analysis is important for assessing aircraft/helicopter<br />

susceptibility.<br />

1.1. Background and motiv<strong>at</strong>ion<br />

219<br />

The following st<strong>at</strong>istics have forced the <strong>aerospace</strong><br />

community to incorpor<strong>at</strong>e IR <strong>sign<strong>at</strong>ure</strong> consider<strong>at</strong>ions<br />

in design and oper<strong>at</strong>ion <strong>of</strong> <strong>aerospace</strong> <strong>vehicles</strong>:<br />

Since 1967, IR guidance has been effectively used<br />

by MAN Portable Air Defence Systems (MAN-<br />

PADS) in all major wars and conflicts. These<br />

wars include South East Asian conflict (1963–<br />

1973), Yom Kippur war (1973), Soviet-Afghanistan<br />

conflict (1986), and Gulf war (1991).<br />

Over 40 civilian aircraft have been hit by<br />

MANPADS since 1970, causing 25 unserviceable<br />

crashes [2].<br />

From 1967 to 1993, 89% <strong>of</strong> all helicopter and<br />

aircraft downed were due to IR-guided missiles<br />

[3,4]. Therefore, it was st<strong>at</strong>ed by Powell in<br />

Ref. [5]: ‘No thre<strong>at</strong> is more serious to avi<strong>at</strong>ion<br />

than MANPADS’.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!