04.02.2013 Views

Infrared signature studies of aerospace vehicles - DSpace at IIT ...

Infrared signature studies of aerospace vehicles - DSpace at IIT ...

Infrared signature studies of aerospace vehicles - DSpace at IIT ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

[33] Reynolds RF, Kinsell MJ. Thermal and visual camouflage<br />

system. US P<strong>at</strong>ent no. 6338292 B1, January 15, 2002.<br />

[34] DeSteese JG, Antoniak ZI, White M, Peters TJ. Structure<br />

and method for controlling the thermal emissivity <strong>of</strong> a<br />

radi<strong>at</strong>ing object. US P<strong>at</strong>ent no. 6713774 B2, March 30,<br />

2004.<br />

[35] Vickery CA, Mason JN, Kruse WD, Olmos M. Rocket<br />

exhaust plume <strong>sign<strong>at</strong>ure</strong> tailoring. US P<strong>at</strong>ent no. 6684622<br />

B2, February 3, 2004.<br />

[36] Czarnecki GJ. Aircraft missile-hit survivability using<br />

infrared lamp and sacrificial support structure. US P<strong>at</strong>ent<br />

no. 6267039 B1, July 31, 2001.<br />

[37] Beier K. <strong>Infrared</strong> radi<strong>at</strong>ion model for aircraft and re-entry<br />

vehicle. In: Proceedings <strong>of</strong> SPIE—The Intern<strong>at</strong>ional<br />

Society for Optical Engineering: infrared technology—<br />

XIV, vol. 972. Bellingham, WA, USA: SPIE (Society<br />

<strong>of</strong> Photo-Optical Instrument<strong>at</strong>ion Engineers); 1988.<br />

p. 363–74.<br />

[38] Burch DE, Gryvnak DA. Labor<strong>at</strong>ory measurement <strong>of</strong> the<br />

infrared absorption by H 2O and CO 2 in regions <strong>of</strong> weak<br />

absorption. In: Proceedings <strong>of</strong> SPIE—The Intern<strong>at</strong>ional<br />

Society for Optical Engineering: optical properties <strong>of</strong> the<br />

<strong>at</strong>mosphere, vol. 142. Bellingham, WA, USA: SPIE; 1978.<br />

p. 16–24.<br />

[39] Regelson E. Impact <strong>of</strong> IR devices on aircraft design trends.<br />

Astronaut Aeronaut 1967;5:60–4.<br />

[40] Mahulikar SP, Sane SK, Gaitonde UN, Mar<strong>at</strong>he AG.<br />

Numerical <strong>studies</strong> <strong>of</strong> infrared <strong>sign<strong>at</strong>ure</strong> levels <strong>of</strong> complete<br />

aircraft. Aeronaut J 2001;105(1046):185–92.<br />

[41] Sizov FF. <strong>Infrared</strong> detectors: outlook and means. Semicond<br />

Phys Quant Electron Optoelectron 2000;3(1):52–8.<br />

[42] Sully PR, VanDam D, Bird J, Luisi D. Development <strong>of</strong> a<br />

tactical helicopter infrared <strong>sign<strong>at</strong>ure</strong> suppression (IRSS)<br />

system. In: Proceedings <strong>of</strong> AGARD-FVP conference, 9605-<br />

4-001. Paper no. 12, 1996.<br />

[43] Choi KK. QWIP technology: advances and prospects. In:<br />

Blood P, Osinski M, Arakawa Y, editors. Proceedings <strong>of</strong><br />

SPIE—The Intern<strong>at</strong>ional Society for Optical Engineering:<br />

physics and simul<strong>at</strong>ion <strong>of</strong> optoelectronic devices—X, vol.<br />

4646. Bellingham, WA, USA: SPIE; 2002. p. 79–93.<br />

[44] Choi KK. Corrug<strong>at</strong>ed quantum well infrared photodetectors<br />

and arrays. Int J High Speed Electron Systems<br />

2002;12(3):715–59.<br />

[45] Chen CJ, Choi KK, Chang WH, Tsui DC. Two-color<br />

corrug<strong>at</strong>ed quantum-well infrared photodetector for<br />

remote temper<strong>at</strong>ure sensing. Appl Phys Lett 1998;72(1):<br />

7–9.<br />

[46] Bell WA, Glasgow BB. Impact <strong>of</strong> advances in imaging<br />

infrared detectors on anti-aircraft missile performance. In:<br />

Holst GC, editor. Proceedings <strong>of</strong> SPIE—The Intern<strong>at</strong>ional<br />

Society for Optical Engineering, <strong>Infrared</strong> imaging systems:<br />

design, analysis, modelling, and testing—X, vol. 3701.<br />

Bellingham, WA, USA: SPIE; 1999. p. 244–53.<br />

[47] Glasgow BB, Bell WA. Future <strong>of</strong> anti-aircraft imaging<br />

infrared seeker missile thre<strong>at</strong>s. In: IEEE proceedings <strong>of</strong><br />

<strong>aerospace</strong> applic<strong>at</strong>ions conference (C<strong>at</strong>. no.99TH8403),<br />

vol. 4. Pisc<strong>at</strong>away, NJ, USA: IEEE; 1999. p. 457–65.<br />

[48] Eisner L, Bell EE, Young J, Oetjen RA. Spectral radiance<br />

<strong>of</strong> sky and terrain <strong>at</strong> wavelengths between 1 and 20 mm III.<br />

Terrain measurements. J Opt Soc Am 1962;52(2):201–9.<br />

[49] Berger XA. Simple model for computing the spectral<br />

radiance <strong>of</strong> clear skies. Solar Energy 1988;40(4):321–33.<br />

ARTICLE IN PRESS<br />

243<br />

[50] Kneizys F.X., Shettle E.P., Abreu L.W., Chetwynd J.H,<br />

Anderson G.P. Lowtran-7 computer code user’s manual.<br />

Air Force Geophysics Labor<strong>at</strong>ory Hanscom AFB MA,<br />

AFGL-TR-88-0177, 1988.<br />

[51] Rao GA, Mahulikar SP. Effect <strong>of</strong> <strong>at</strong>mospheric transmission<br />

and radiance on aircraft infrared <strong>sign<strong>at</strong>ure</strong>s. J Aircraft<br />

2005;42(4):1046–54.<br />

[52] McGlynn JD, Auerbach SP. IR <strong>sign<strong>at</strong>ure</strong> prediction errors<br />

for skin-he<strong>at</strong>ed aerial targets. In: Proceedings <strong>of</strong> SPIE—<br />

The Intern<strong>at</strong>ional Society for Optical Engineering, Targets<br />

and backgrounds: characteriz<strong>at</strong>ion and represent<strong>at</strong>ion—<br />

III, vol. 3062. Bellingham, WA, USA: SPIE; 1997.<br />

p. 22–30.<br />

[53] Berdahl P, Fromberg R. The thermal radiance <strong>of</strong> clear<br />

skies. Solar Energy 1982;29(4):299–314.<br />

[54] Berger X, B<strong>at</strong>hiebo J. From spectral clear sky emissivity to<br />

total clear sky emissivity. Solar Wind Technol 1989;6(5):<br />

551–6.<br />

[55] Bliss RW. Atmospheric radi<strong>at</strong>ion near the surface <strong>of</strong> the<br />

ground: a summary for engineers. Solar Energy 1961;5:<br />

103–20.<br />

[56] Bell EE, Eisner L, Young J, Oetjen RA. Spectral radiance<br />

<strong>of</strong> sky and terrain <strong>at</strong> wavelengths between 1 and 20 mm II.<br />

Sky measurements. J Opt Soc Am 1960;50(12):1313–20.<br />

[57] Mahulikar SP, Rao GA, Kolhe PS. <strong>Infrared</strong> <strong>sign<strong>at</strong>ure</strong>s <strong>of</strong><br />

low-flying aircraft and their rear fuselage skin’s emissivity<br />

optimiz<strong>at</strong>ion. J Aircraft 2006;43(1):226–32.<br />

[58] Jacobs P. Review <strong>of</strong> the technology and research in the area<br />

<strong>of</strong> infrared <strong>sign<strong>at</strong>ure</strong> <strong>of</strong> targets and backgrounds. In:<br />

Proceedings <strong>of</strong> SPIE—The Intern<strong>at</strong>ional Society for<br />

Optical Engineering: characteriz<strong>at</strong>ion, propag<strong>at</strong>ion, and<br />

simul<strong>at</strong>ion <strong>of</strong> infrared scenes, vol. 1311. Bellingham, WA,<br />

USA: SPIE; 1990. p. 80–94.<br />

[59] Hipps LE. The infrared emissivities <strong>of</strong> soil and Artemisia<br />

trident<strong>at</strong>a and subsequent temper<strong>at</strong>ure corrections in a<br />

shrub-steppe ecosystem. Remote Sensing Environ<br />

1989;27(3):337–42.<br />

[60] Foster WD, Register HI. Collection and simul<strong>at</strong>ion <strong>of</strong><br />

sp<strong>at</strong>ial infrared <strong>sign<strong>at</strong>ure</strong>s <strong>of</strong> military jet aircraft. AIAA<br />

paper no. 1981-2494. Reston, VA, USA: AIAA Inc.; 1981.<br />

[61] Heragu SS, Rao KVL, Raghunandan BN. Generalized<br />

model for infrared perception from an engine exhaust.<br />

J Thermophys He<strong>at</strong> Transfer 2002;16(1):68–76.<br />

[62] Varney GE. <strong>Infrared</strong> <strong>sign<strong>at</strong>ure</strong> measurement techniques<br />

and simul<strong>at</strong>ion methods for aircraft survivability. AIAA<br />

paper no. AIAA-79-1186. Reston, VA, USA: AIAA Inc.;<br />

1979.<br />

[63] Howe D. Introduction to the basic technology <strong>of</strong> stealth<br />

aircraft: Part 1—basic consider<strong>at</strong>ions and aircraft self<br />

emitted signals (passive consider<strong>at</strong>ions). ASME J Eng<br />

Gas Turbines Power 1991;113(75):75–9.<br />

[64] Mahulikar SP. Prediction <strong>of</strong> engine casing temper<strong>at</strong>ure <strong>of</strong><br />

fighter aircraft for infrared <strong>sign<strong>at</strong>ure</strong> <strong>studies</strong>. In: Proceedings<br />

<strong>of</strong> SAE’s <strong>aerospace</strong> Atlantic conference, SAE paper<br />

no. 920961. Warrendale, PA, USA: SAE Inc.; 1992. p.<br />

1–10.<br />

[65] Mahulikar SP, Kolhe PS, Rao GA. Skin temper<strong>at</strong>ure<br />

prediction <strong>of</strong> aircraft rear fuselage with multi-mode<br />

thermal model. J Thermophys He<strong>at</strong> Transfer 2005;19(1):<br />

114–24.<br />

[66] Mahulikar SP, Potnuru SK, Kolhe PS. Analytical estim<strong>at</strong>ion<br />

<strong>of</strong> solid angle subtended by complex well-resolved

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!