06.02.2013 Views

Boundaries and Corridors as a Continuum of Ecological Flow Control

Boundaries and Corridors as a Continuum of Ecological Flow Control

Boundaries and Corridors as a Continuum of Ecological Flow Control

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Review<br />

<strong>Boundaries</strong> <strong>and</strong> <strong>Corridors</strong> <strong>as</strong> a <strong>Continuum</strong> <strong>of</strong><br />

<strong>Ecological</strong> <strong>Flow</strong> <strong>Control</strong>: Lessons from<br />

Rivers <strong>and</strong> Streams<br />

LINDA M. PUTH* AND KAREN A. WILSON†<br />

*Department <strong>of</strong> Botany, University <strong>of</strong> Wisconsin–Madison, 430 Lincoln Drive, Madison, WI 53706, U.S.A., email<br />

lmputh@students.wisc.edu<br />

†Center for Limnology, University <strong>of</strong> Wisconsin–Madison, 680 North Park Street, Madison, WI 53706, U.S.A.<br />

Abstract: L<strong>and</strong>scape boundaries <strong>and</strong> corridors are are<strong>as</strong> <strong>of</strong> small spatial extent relative to their large effects<br />

on ecological flows. The trend in ecological literature is to treat corridors <strong>and</strong> boundaries <strong>as</strong> separate phenomena<br />

on the l<strong>and</strong>scape. This approach, however, misses a fundamental <strong>as</strong>pect they have in common: their<br />

strong influence on ecological flows. <strong>Corridors</strong> <strong>and</strong> boundaries exist at opposite ends <strong>of</strong> a permeability gradient,<br />

differing in their effects on rates <strong>and</strong> direction <strong>of</strong> flow. The position <strong>of</strong> l<strong>and</strong>scape structures along this permeability<br />

gradient depends on attributes <strong>of</strong> both the flow <strong>and</strong> <strong>of</strong> the structure itself. We discuss boundaries<br />

<strong>and</strong> corridors in terms <strong>of</strong> mover specificity, scale, <strong>and</strong> effects on different levels <strong>of</strong> ecological organization, using<br />

rivers <strong>and</strong> streams to illustrate our points. We predict which structures will act <strong>as</strong> boundaries or corridors<br />

<strong>and</strong> at what spatial <strong>and</strong> temporal scales they are likely to be relevant. Considering the function <strong>of</strong> l<strong>and</strong>scape<br />

structures across the boundary-corridor continuum will provide researchers <strong>and</strong> managers with a more complete,<br />

holistic viewpoint <strong>and</strong> will allow better strategies to attain conservation goals.<br />

Linderos y Corredores Como un <strong>Control</strong> de Flujo Ecológico Continuo: Lecciones de Ríos y Arroyos<br />

Resumen: Los linderos y corredores de paisajes son áre<strong>as</strong> de extensión espacial pequeña con relación a la<br />

gran magnitud de sus efectos en los flujos ecológicos. En la literatura ecológica existe la tendencia de tratar a<br />

los corredores y a los linderos como un fenómeno separado en el paisaje. Sin embargo, esta estrategia pierde<br />

la característica común fundamental entre estos dos elementos: una fuerte influencia en los flujos ecológicos.<br />

Los corredores y los linderos existen a en extremos opuestos de un gradiente de permeabilidad, difieren en<br />

sus efectos en cuanto a l<strong>as</strong> t<strong>as</strong><strong>as</strong> y la dirección del flujo. La posición de estructur<strong>as</strong> del paisaje a lo largo de<br />

este gradiente de permeabilidad depende de los atributos tanto del flujo, como de la estructura en sí misma.<br />

Nosotros discutimos los linderos y los corredores en términos de especificidad del transportador, la escala y<br />

sus efectos en diferentes niveles de organización ecológica y utilizamos ríos y arroyos para ilustrar nuestros<br />

puntos. Predecimos cuales estructur<strong>as</strong> actuarían como linderos o corredores y a que escala espacial y temporal<br />

podrían ser relevantes. Consider<strong>and</strong>o que la función de l<strong>as</strong> estructur<strong>as</strong> del paisaje a lo largo de un continuo<br />

lindero-corredor proporcionará a los investigadores y manejadores un punto de vista m<strong>as</strong> completo e<br />

integral y dará cabida a mejores estrategi<strong>as</strong> para alcanzar l<strong>as</strong> met<strong>as</strong> de conservación.<br />

Introduction<br />

The spatial <strong>and</strong> temporal distribution <strong>of</strong> materials <strong>and</strong><br />

energy is a fundamental determinant <strong>of</strong> biological activity<br />

Paper submitted December 8, 1999; revised manuscript accepted<br />

August 9, 2000.<br />

across the l<strong>and</strong>scape. Materials <strong>and</strong> energy are rarely distributed<br />

homogeneously across a l<strong>and</strong>scape but are more<br />

<strong>of</strong>ten heterogeneous, with concentration in patches<br />

within a broader matrix (Forman 1995; Lidicker 1999).<br />

With the realization that ecological systems are rarely<br />

closed, the focus <strong>of</strong> much ecological research <strong>and</strong> management<br />

h<strong>as</strong> shifted from looking at patches <strong>as</strong> isolated<br />

Conservation Biology, Pages 21–30<br />

Volume 15, No. 1, February 2001<br />

21


22<br />

<strong>Boundaries</strong> <strong>and</strong> <strong>Corridors</strong> Puth & Wilson<br />

entities on the l<strong>and</strong>scape to examining the connections<br />

among such patches (Gosz 1991; Holl<strong>and</strong> & Risser 1991;<br />

Wiens 1992; Anderson & Danielson 1997; Polis et al.<br />

1997). Materials <strong>and</strong> energy are <strong>of</strong>ten packaged <strong>as</strong> organisms<br />

but may also flow across the l<strong>and</strong>scape <strong>as</strong> organic<br />

<strong>and</strong> inorganic matter (e.g., limiting nutrients). To underst<strong>and</strong><br />

the flow <strong>of</strong> materials <strong>and</strong> energy among patches<br />

on the l<strong>and</strong>scape, it is necessary to consider the boundaries<br />

that delimit ecological patches <strong>and</strong> the channelized<br />

routes, or corridors, by which materials <strong>of</strong>ten move.<br />

Here, we define a boundary <strong>as</strong> an area <strong>of</strong> sharp gradients<br />

in ecological flows that slows or redirects flows <strong>of</strong><br />

organisms, matter, or energy between patches (Wiens et<br />

al. 1985) <strong>and</strong> a corridor <strong>as</strong> a structure that channelizes<br />

<strong>and</strong> directs the flow <strong>of</strong> organisms, materials, or energy<br />

between patches. Corridor structures may be permanent<br />

or temporary, stationary or mobile, but all limit the<br />

possible paths a mover may take relative to those possible<br />

in adjacent patches. L<strong>and</strong>scape boundaries <strong>and</strong> corridors<br />

represent critical zones <strong>of</strong> interaction, mediating<br />

fluxes between l<strong>and</strong>scape patches by modifying or maintaining<br />

ecological flows.<br />

As interfaces between l<strong>and</strong>scape patches, <strong>and</strong> therefore<br />

places <strong>of</strong> strong biotic <strong>and</strong> abiotic interactions (di<br />

C<strong>as</strong>tri et al. 1988), boundaries <strong>and</strong> corridors have disproportionately<br />

large influences on l<strong>and</strong>scape functions<br />

(e.g., population, community, <strong>and</strong> ecosystem processes)<br />

beyond what their relative area on the l<strong>and</strong>scape would<br />

suggest. They are essential for ecosystem function <strong>and</strong>,<br />

by virtue <strong>of</strong> their small but critical area, are vulnerable to<br />

modification by humans (Naiman & Décamps 1997). With<br />

accelerated human alteration <strong>of</strong> the l<strong>and</strong>scape, boundaries<br />

<strong>and</strong> corridors have been lost, modified, or created<br />

in many ecosystems (Loney & Hobbs 1991; Forman<br />

1995). These transformations have disrupted natural<br />

flows that formerly occurred within ecosystems, communities,<br />

<strong>and</strong> populations (Harris & Scheck 1991) <strong>and</strong><br />

have created new ones (Bennett 1991). Forests have<br />

been subdivided into isolated woodlots set in a matrix <strong>of</strong><br />

agricultural l<strong>and</strong> (Burgess & Sharpe 1981), rivers have<br />

been blocked by hydroelectric dams (Magnuson 1978;<br />

Holmquist et al. 1998; Jansson et al. 2000), <strong>and</strong> canal systems<br />

link previously isolated waterways (Mills et al.<br />

1993). Even in national parks <strong>and</strong> other protected are<strong>as</strong>,<br />

high-use trails <strong>and</strong> roads connect the exterior <strong>and</strong> interior<br />

portions <strong>of</strong> many remaining forests (Benninger-Truax et al.<br />

1992; Tyser & Worley 1992; Parendes & Jones 2000;<br />

Trombulak & Frissel 2000).<br />

Although both boundaries <strong>and</strong> corridors regulate the<br />

flow <strong>of</strong> matter, organisms, <strong>and</strong> energy between l<strong>and</strong>scape<br />

patches, researchers <strong>and</strong> managers treat boundaries <strong>and</strong><br />

corridors <strong>as</strong> separate <strong>and</strong> unrelated structures on the l<strong>and</strong>scape.<br />

This treatment misses the relationship <strong>of</strong> boundaries<br />

to corridors <strong>as</strong> opposite ends <strong>of</strong> a gradient <strong>of</strong> permeability<br />

to these flows. The position along this range <strong>of</strong><br />

permeability for a single structure is a function <strong>of</strong> char-<br />

Conservation Biology<br />

Volume 15, No. 1, February 2001<br />

acteristics <strong>of</strong> both the ecological flow <strong>and</strong> <strong>of</strong> the structure<br />

itself. The function <strong>of</strong> a structure on the l<strong>and</strong>scape<br />

depends on its regional context (Lidicker 1999), the gradients<br />

<strong>of</strong> ecological flows between patches, <strong>and</strong> the organisms,<br />

materials, <strong>and</strong> energy that interact with the<br />

l<strong>and</strong>scape structure (Naiman & Décamps 1997; Lidicker<br />

1999). Both boundaries <strong>and</strong> corridors modify ecological<br />

flows, boundaries by stopping <strong>and</strong> redirecting flows <strong>and</strong><br />

corridors by channelizing them, but a single structure<br />

can serve <strong>as</strong> both a corridor <strong>and</strong> a boundary, depending<br />

on the flow. Because a given l<strong>and</strong>scape structure can act<br />

<strong>as</strong> both a boundary <strong>and</strong> a corridor for ecological flows,<br />

managers <strong>and</strong> researchers need to account for a multiplicity<br />

<strong>of</strong> l<strong>and</strong>scape functions for any one structure. As<br />

humans create new boundaries <strong>and</strong> corridors <strong>and</strong> modify<br />

“natural” ones, it becomes incre<strong>as</strong>ingly important that<br />

managers <strong>and</strong> researchers carefully consider the multiple<br />

roles <strong>of</strong> these l<strong>and</strong>scape structures in ecological flows<br />

<strong>and</strong> ecosystem functions.<br />

We review the differences <strong>and</strong> similarities between<br />

corridors <strong>and</strong> boundaries, concentrating on their permeability<br />

to ecological flows <strong>and</strong> their effects on the direction<br />

<strong>of</strong> these flows. We use streams to illustrate many <strong>of</strong><br />

our points, with occ<strong>as</strong>ional examples from terrestrial or<br />

other aquatic systems. Because we discuss flows including<br />

but not limited to those <strong>of</strong> organisms, we use the<br />

term mover to denote biotic or abiotic matter or energy<br />

that moves across the l<strong>and</strong>scape under its own power or<br />

is carried by vectors. We define a vector <strong>as</strong> biotic or abiotic<br />

matter that actively transports a mover (Forman &<br />

Godron 1981). Vectors are distinguished by the ability to<br />

move materials or energy against gradients (Wiens et al.<br />

1985) or accelerate material <strong>and</strong> energy along gradients.<br />

Traditional Views <strong>of</strong> L<strong>and</strong>scape <strong>Corridors</strong><br />

<strong>and</strong> <strong>Boundaries</strong><br />

<strong>Corridors</strong><br />

Scientists <strong>and</strong> managers historically have viewed ecological<br />

corridors <strong>as</strong> structures that facilitate the movement<br />

<strong>of</strong> game between forested remnants in agricultural l<strong>and</strong>scapes<br />

(Edminster 1938; Lewis 1964). The archetypal<br />

corridor is linear (Saunders & Hobbs 1991; Hobbs 1992),<br />

spatially continuous (Bennett 1990; Loney & Hobbs 1991),<br />

terrestrial, <strong>and</strong> comprised <strong>of</strong> forest vegetation (Hobbs<br />

1992). Thus, corridors have been seen primarily <strong>as</strong> facilitators<br />

<strong>of</strong> vertebrate dispersal <strong>and</strong> gene exchange (Aars &<br />

Ims 1999). Operating under these <strong>as</strong>sumptions, scientists<br />

have mainly studied the use <strong>of</strong> corridors by birds (Anderson<br />

et al. 1977; Dmowski & Kozakiewicz 1990) <strong>and</strong> small<br />

mammals (Farhig & Merriam 1985; Bennett 1990; Merriam<br />

& Lanoue 1990; Hobbs 1992; Aars & Ims 1999), <strong>of</strong>ten<br />

in agricultural matrices. The characteristics <strong>of</strong> this<br />

type <strong>of</strong> corridor, however, are violated by other movers


Puth & Wilson <strong>Boundaries</strong> <strong>and</strong> <strong>Corridors</strong><br />

such <strong>as</strong> aquatic organisms (Fr<strong>as</strong>er et al 1999; Micheli &<br />

Peterson 1999), nutrients, or by migratory birds that<br />

jump over unsuitable habitat (Date et al. 1991; Forman<br />

1995). Thus, it is necessary to recognize the traditional<br />

definition <strong>as</strong> a special c<strong>as</strong>e <strong>of</strong> a more general concept <strong>of</strong><br />

corridor that allows for various configurations but stresses<br />

movement over form.<br />

<strong>Boundaries</strong><br />

Historically, scientists <strong>and</strong> managers have recognized<br />

l<strong>and</strong>scape boundaries more for their structural distinctions<br />

on the l<strong>and</strong>scape than for their role in l<strong>and</strong>scape<br />

function. Botanists noticed boundaries between plant <strong>as</strong>sociations,<br />

<strong>as</strong> described by the “tension zone” <strong>of</strong> Clements<br />

(1905), <strong>and</strong> vegetation structure continues to be<br />

the primary identifying attribute <strong>of</strong> l<strong>and</strong>scape boundaries<br />

(Risser 1995). Game managers such <strong>as</strong> Aldo Leopold<br />

(1933) recognized the use <strong>of</strong> forest-field edges by<br />

many game species, <strong>and</strong> edge creation w<strong>as</strong> st<strong>and</strong>ard<br />

wildlife management practice for many years (Alverson<br />

et al. 1988). The convergence <strong>of</strong> two or more distinct<br />

communities at l<strong>and</strong>scape boundaries is believed to incre<strong>as</strong>e<br />

the diversity <strong>of</strong> species. <strong>Boundaries</strong> may also augment<br />

the number <strong>of</strong> edge-specialized species by providing<br />

appropriate habitat (e.g., edge effects: Odum 1971;<br />

Harris 1988; Reese & Ratti 1988; Yahner 1988; Lidicker<br />

1999). With the exception <strong>of</strong> those directly interested in<br />

edge species, however, most researchers have found homogeneous<br />

patches on the l<strong>and</strong>scape much e<strong>as</strong>ier to<br />

study than the dynamic boundaries that separate them<br />

<strong>and</strong> have focused primarily on what occurred within<br />

boundaries, rather than on the effects <strong>of</strong> these structures<br />

on their l<strong>and</strong>scape matrix (Lidicker 1999).<br />

Functional Views <strong>of</strong> <strong>Corridors</strong> <strong>and</strong> <strong>Boundaries</strong><br />

<strong>Corridors</strong><br />

<strong>Corridors</strong> function to channel <strong>and</strong> incre<strong>as</strong>e the rate <strong>of</strong><br />

flow <strong>of</strong> whatever is moving along them relative to the<br />

diffuse flow <strong>of</strong> the same mover in the surrounding matrix<br />

(Haddad 1999). They link patches but in structurally<br />

diverse ways <strong>and</strong> at various scales, depending on the<br />

mover (Forman 1995). The key components <strong>of</strong> the definition<br />

<strong>of</strong> a corridor are channelization <strong>and</strong> movement.<br />

For a structure to operate <strong>as</strong> a corridor, something must<br />

travel along it (Lidicker 1999), but along a path more restricted<br />

than those available in a patch or the matrix. For<br />

an organism to perceive a stream <strong>as</strong> a corridor, it would<br />

need to travel along it (rather than merely utilize the<br />

stream <strong>as</strong> habitat) much more readily than through the<br />

surrounding l<strong>and</strong>scape. The movers may be organisms<br />

but also will <strong>of</strong>ten be disturbances, genetic information,<br />

nutrients, or water (Simberl<strong>of</strong>f & Cox 1987; Hobbs 1992;<br />

Simberl<strong>of</strong>f et al. 1992; Hess 1994; Haddad 1999). In addition<br />

to providing avenues for movement for a particular<br />

mover, corridors for a particular mover may function <strong>as</strong><br />

barriers, habitat, sources, or sinks for others (Forman<br />

1983, 1991, 1995; Fr<strong>as</strong>er et al. 1999). Historically, researchers<br />

have studied the use <strong>of</strong> corridors by mammals <strong>and</strong><br />

birds (Haddad 1999), although many c<strong>as</strong>es <strong>of</strong> corridor<br />

use by plants <strong>and</strong> invertebrates have been documented<br />

in recent years (Benninger-Truax et al. 1992; Covich et<br />

al. 1996; Johansson et al. 1996; Haddad 1999; Micheli &<br />

Peterson 1999; Parendes & Jones 2000).<br />

Linear, continuous corridors are e<strong>as</strong>y to conceptualize<br />

<strong>and</strong> are appropriate for the movement <strong>of</strong> some movers,<br />

but they do not encomp<strong>as</strong>s all possible corridor configurations.<br />

As defined above, corridors may take various<br />

configurations (Forman 1991, 1995; Soulé & Gilpin 1991),<br />

including those discontinuous in space or time for a particular<br />

mover (Forman 1983, 1991, 1995; Date et al.<br />

1991; Prevett 1991) <strong>and</strong> perform several ecological functions<br />

(Forman 1983, 1991, 1995). Movers such <strong>as</strong> frugivorous<br />

pigeons (Date et al. 1991) <strong>and</strong> koal<strong>as</strong> (Prevett 1991)<br />

need only stepping stones to move across a l<strong>and</strong>scape<br />

<strong>and</strong> are not concerned with the intervening matrix.<br />

Structures functioning <strong>as</strong> corridors may be temporally<br />

discontinuous if the mover only requires them at certain<br />

times or if they are replaced by other, newly occurring<br />

corridors. A fire, for example, may create a temporary corridor<br />

through a forest interior. A se<strong>as</strong>onal corridor might<br />

be high-water conditions in intermittent streams that allow<br />

the p<strong>as</strong>sage <strong>of</strong> fishes between deep, permanent pools<br />

(Karr 1989; Covich et al 1996). As with other structural<br />

characteristics, the degree <strong>of</strong> continuity <strong>of</strong> a corridor depends<br />

on the requirements <strong>of</strong> the mover (Forman 1995;<br />

Lidicker 1999). The causes <strong>of</strong> this spatial <strong>and</strong> temporal<br />

discontinuity may be abiotic, <strong>as</strong> in the c<strong>as</strong>e <strong>of</strong> ice bridges<br />

during the winter, or biotic, such <strong>as</strong> a newly fallen tree<br />

forming a bridge over a stream. These diverse corridor<br />

structural patterns <strong>and</strong> ecological functions match the<br />

modes <strong>of</strong> transport <strong>and</strong> travel capabilities <strong>of</strong> the various<br />

movers that travel along them (Henein & Merriam 1990;<br />

Forman 1991; Harris & Scheck 1991).<br />

<strong>Boundaries</strong><br />

Because boundaries are the points <strong>of</strong> interaction between<br />

l<strong>and</strong>scape patches, they regulate fluxes across the<br />

l<strong>and</strong>scape <strong>and</strong> are therefore important l<strong>and</strong>scape features<br />

(di C<strong>as</strong>tri et al. 1988; Holl<strong>and</strong> et al. 1991; Hansen &<br />

di C<strong>as</strong>tri 1992; Risser 1995; Lidicker 1999). <strong>Boundaries</strong><br />

are characterized by “the strength <strong>of</strong> the interactions between<br />

ecological systems” [e.g., l<strong>and</strong>scape patches] (Holl<strong>and</strong><br />

1988; Risser 1995; Naiman & Décamps 1997) <strong>and</strong><br />

are locations where the rate or magnitude <strong>of</strong> ecological<br />

flows (nutrients, organisms, matter, energy, or information)<br />

change abruptly relative to those <strong>of</strong> the surrounding<br />

patches (Wiens et al. 1985; Allen & Hoekstra 1992;<br />

23<br />

Conservation Biology<br />

Volume 15, No. 1, February 2001


24<br />

<strong>Boundaries</strong> <strong>and</strong> <strong>Corridors</strong> Puth & Wilson<br />

Naiman & Décamps 1997). By modifying ecological flows<br />

<strong>as</strong> they move across the l<strong>and</strong>scape, boundaries function<br />

to delimit populations, communities, <strong>and</strong> ecosystems.<br />

The effect <strong>of</strong> a boundary depends on characteristics <strong>of</strong><br />

the mover <strong>and</strong> <strong>of</strong> the structure (Naiman & Décamps<br />

1997; Lidicker 1999). For example, because materials accumulate<br />

at them (Forman & Moore 1992), boundaries<br />

such <strong>as</strong> ocean fronts can be sinks for drifting plankton<br />

<strong>and</strong> other organisms (Magnuson et al. 1981; Carr 1987).<br />

<strong>Ecological</strong> boundaries include well-studied forest-field<br />

interfaces (Gates & Gysel 1978; Burgess & Sharpe 1981)<br />

<strong>and</strong> transitions between biomes (Gosz 1992), <strong>as</strong> well <strong>as</strong><br />

less recognized boundaries such <strong>as</strong> those between a decomposing<br />

log <strong>and</strong> the underlying soil or between are<strong>as</strong><br />

<strong>of</strong> high <strong>and</strong> low predation risk.<br />

Researchers have historically described boundaries in<br />

terms <strong>of</strong> their structural form. Structural characteristics<br />

<strong>of</strong> boundaries include size (length, width, <strong>and</strong> depth),<br />

shape (sinuosity, structural complexity), physical composition,<br />

<strong>and</strong> the degree to which they contr<strong>as</strong>t with the<br />

surrounding l<strong>and</strong>scapes (Forman & Moore 1992; Forman<br />

1995; Kol<strong>as</strong>a & Zalewski 1995; Risser 1995; Lidicker<br />

1999). Although researchers have <strong>as</strong>sumed that<br />

boundaries <strong>of</strong> similar structure have the same l<strong>and</strong>scape<br />

function, the evidence for this h<strong>as</strong> been inconclusive.<br />

For instance, researchers studying avian nest predation<br />

across forest-field boundaries found that nest-predation<br />

risk differed between freshly cut edge with no underbrush<br />

<strong>and</strong> old edge with extensive shrubs <strong>and</strong> small<br />

trees (Ratti & Reese 1988). Other researchers working<br />

with similar forest-field boundaries, however, found no<br />

such relationships between the form <strong>of</strong> an edge <strong>and</strong> predation<br />

risk (Yahner et al. 1989). Thus, like corridors,<br />

boundaries are best defined by observed changes in fluxes<br />

<strong>and</strong> processes they influence, rather than by form alone.<br />

The Boundary-Corridor <strong>Continuum</strong><br />

<strong>Boundaries</strong> <strong>and</strong> corridors are linked by their strong effects<br />

on ecological flows, but researchers <strong>and</strong> managers<br />

treat boundaries <strong>and</strong> corridors <strong>as</strong> separate l<strong>and</strong>scape<br />

components. We argue that their charactistics <strong>and</strong> effects<br />

are similar, including species specificity, scale, <strong>and</strong><br />

interactions with levels <strong>of</strong> ecological organizations. Consequently,<br />

their influence on the flow <strong>of</strong> ecological materials<br />

across the l<strong>and</strong>scape is also similar, differentiated<br />

only by their effects on the directionality <strong>and</strong> rates <strong>of</strong><br />

ecological flows.<br />

<strong>Boundaries</strong> <strong>and</strong> corridors constrain flows across the<br />

l<strong>and</strong>scape. They exist at opposite ends <strong>of</strong> a continuum<br />

<strong>of</strong> flow regulation, differing in their effect on rates <strong>and</strong><br />

direction <strong>of</strong> flow (Fig. 1a; Allen & Hoekstra 1992); their<br />

function is analogous to that <strong>of</strong> biological membranes <strong>as</strong><br />

they filter materials (Wiens et al. 1985; Allen & Hoekstra<br />

1992; Forman & Moore 1992; Forman 1995). At one end<br />

Conservation Biology<br />

Volume 15, No. 1, February 2001<br />

Figure 1. <strong>Boundaries</strong> <strong>and</strong> corridors are at the opposite<br />

ends <strong>of</strong> a permeability gradient. (a) <strong>Boundaries</strong><br />

stop <strong>and</strong> change the direction <strong>of</strong> flows, where<strong>as</strong> corridors<br />

channelize <strong>and</strong> change the speed <strong>of</strong> the flows. Permeability<br />

affects not only the rate <strong>of</strong> flow between<br />

patches but also the direction <strong>of</strong> the flow relative to the<br />

patch boundary. (b) For aquatic movers, l<strong>and</strong> between<br />

two lakes may serve <strong>as</strong> an impermeable boundary,<br />

an intermittent stream between the lakes provides<br />

a semipermeable structure, <strong>and</strong> a permanent stream<br />

acts <strong>as</strong> a corridor. (c) In the same system, terrestrial<br />

movers experience the opposite effect: a permanent<br />

stream is impermeable, an intermittent stream is<br />

semipermeable, <strong>and</strong> a strip <strong>of</strong> l<strong>and</strong> is permeable.<br />

<strong>of</strong> the continuum, an impermeable boundary changes the<br />

direction <strong>of</strong> flow by stopping, reflecting, or shuttling<br />

flows along the boundary rather than allowing movement<br />

through the boundary (this shuttling <strong>of</strong> flows transforms<br />

the boundary into a corridor; Forman & Moore 1992;<br />

Naiman <strong>and</strong> Décamps 1997; Haddad 1999). As with biological<br />

membranes, boundaries can have varying degrees <strong>of</strong><br />

permeability to l<strong>and</strong>scape fluxes (Forman 1995; Naiman<br />

& Décamps 1997). An impermeable membrane contains<br />

or redirects flows, where<strong>as</strong> a permeable one changes<br />

the rate <strong>of</strong> flow across the boundary (Forman 1995; Haddad<br />

1999). With incre<strong>as</strong>ing permeability, the change in


Puth & Wilson <strong>Boundaries</strong> <strong>and</strong> <strong>Corridors</strong><br />

flow rate is greater than the change in flow direction. At<br />

the other end <strong>of</strong> the continuum, corridors allow unimpeded<br />

movement across boundaries (or even incre<strong>as</strong>e<br />

the rate <strong>of</strong> flow; Haddad 1999); they are analogous to<br />

pores in a membrane <strong>and</strong> function <strong>as</strong> connectors <strong>of</strong><br />

l<strong>and</strong>scape patches (Allen & Hoekstra 1992). Like boundaries,<br />

corridors once again direct flows, in this c<strong>as</strong>e by<br />

funneling them across boundaries (Haddad 1999). Permeability<br />

<strong>and</strong> directionality are mover-specific characteristics<br />

<strong>of</strong> individual l<strong>and</strong>scape structures (Fig. 1b & 1c). A<br />

logging road, for example, might bar the movement <strong>of</strong><br />

interior forest birds, allow some sunlight to penetrate<br />

the edge <strong>of</strong> the woods, <strong>and</strong> facilitate the flow <strong>of</strong> humans<br />

across the forest. A cattail wetl<strong>and</strong> at the l<strong>and</strong>-water interface<br />

may act <strong>as</strong> an impermeable barrier to terrestrial<br />

animals <strong>and</strong> <strong>as</strong> a semipermeable filter for nutrients that<br />

would otherwise flow directly into the water.<br />

The position <strong>of</strong> a l<strong>and</strong>scape structure along the boundary-corridor<br />

continuum depends on the type <strong>of</strong> mover<br />

<strong>and</strong> its spatial <strong>and</strong> temporal scales <strong>of</strong> movement. We explore<br />

these ide<strong>as</strong> in the context <strong>of</strong> rivers <strong>and</strong> streams,<br />

with occ<strong>as</strong>ional examples from terrestrial systems.<br />

An Example: Streams <strong>and</strong> Rivers<br />

Viewing boundaries <strong>and</strong> corridors <strong>as</strong> a continuum <strong>of</strong><br />

permeability <strong>and</strong> directionality <strong>of</strong> ecological flows gives<br />

l<strong>and</strong>scape features multiple roles in regulating ecological<br />

flows. We examined the boundary-corridor continuum in<br />

the context <strong>of</strong> rivers <strong>and</strong> streams. Theory, such <strong>as</strong> the<br />

river-continuum concept (Vannote et al. 1980), considers<br />

flow along streams <strong>as</strong> unidirectional <strong>and</strong> longitudinal.<br />

Thus, streams operate <strong>as</strong> corridors for the p<strong>as</strong>sive<br />

movement <strong>of</strong> materials <strong>and</strong> nutrients downstream (Forman<br />

1995). But this view <strong>of</strong> streams <strong>and</strong> rivers functionally<br />

isolates streams from the l<strong>and</strong>scapes in which they<br />

occur. A more holistic view sees the stream <strong>as</strong> a dynamic<br />

l<strong>and</strong>scape corridor <strong>and</strong> boundary that strongly affects<br />

the l<strong>and</strong>scape along the boundary-corridor continuum<br />

(e.g., the flood-pulse concept: Junk et al. 1989; Naiman<br />

et al. 1988; Ward 1989; Naiman & Décamps 1997).<br />

Examining boundaries <strong>and</strong> corridors in the context <strong>of</strong><br />

streams <strong>and</strong> rivers <strong>of</strong>fers several advantages to studying<br />

terrestrial systems. Streams <strong>and</strong> rivers are e<strong>as</strong>y to visualize<br />

<strong>as</strong> traditional corridors because they exhibit obvious<br />

directional flow <strong>and</strong> strong linearity (Forman 1995).<br />

They also mirror traditional boundaries in their strong l<strong>and</strong>water<br />

gradients <strong>and</strong> long edges (Forman 1995; Naiman &<br />

Décamps 1997). L<strong>and</strong>-water <strong>and</strong> air-water interfaces tend<br />

to bound aquatic systems more discretely than do many<br />

l<strong>and</strong>-l<strong>and</strong> edges (Forman 1991), making aquatic systems<br />

conceptually e<strong>as</strong>ier to delineate <strong>and</strong> <strong>of</strong>ten e<strong>as</strong>ier to study<br />

(Carpenter et al. 1995). <strong>Flow</strong>ing waters integrate entire<br />

watersheds by combining both terrestrial <strong>and</strong> aquatic <strong>as</strong>pects<br />

<strong>of</strong> the l<strong>and</strong>scape. These characteristics make them<br />

ideal natural laboratories in which to test ecosystem properties<br />

(Allen & Hoekstra 1992; Carpenter et al. 1995).<br />

Mover Specificity<br />

The position <strong>of</strong> a l<strong>and</strong>scape structure on the boundarycorridor<br />

continuum—its function in the l<strong>and</strong>scape—<br />

depends on the movement characteristics <strong>of</strong> individual<br />

movers (Noss 1991; Naiman & Décamps 1997), such that<br />

a single l<strong>and</strong>scape structure may function <strong>as</strong> a boundary,<br />

corridor, or something intermediate (Allen & Hoekstra<br />

1992; Naiman & Décamps 1997). Movers possess a wide<br />

range <strong>of</strong> travel modes: they may walk, run, fly, swim,<br />

crawl, or be carried by vectors. They may be biotic or<br />

abiotic. They may move actively under their own power<br />

or p<strong>as</strong>sively by vectors. These traits combine to produce<br />

an enormous variety in movement characteristics, so<br />

that locating a single stream along the boundary-corridor<br />

continuum is impossible without first identifying the focus<br />

mover (Fig. 1b & 1c).<br />

Active movers, whether abiotic or biotic, may interact<br />

differently with the same l<strong>and</strong>scape structure. For biotic<br />

movers, the effect <strong>of</strong> a boundary or corridor depends on<br />

that organism’s dispersal rate <strong>and</strong> mode, home range, physical<br />

size, <strong>and</strong> the presence or absence <strong>of</strong> predators <strong>and</strong><br />

competitors (Wiens et al. 1985). For abiotic movers, the<br />

effect <strong>of</strong> a corridor or boundary varies with the structure’s<br />

medium (e.g., l<strong>and</strong> or air), the morphometry <strong>of</strong><br />

the boundary or corridor, <strong>and</strong> the rate at which the<br />

mover is traveling. In a similar manner, the p<strong>as</strong>sive transport<br />

<strong>of</strong> materials <strong>and</strong> energy across the l<strong>and</strong>scape by<br />

biotic <strong>and</strong> abiotic vectors depends on the interactions<br />

between the vector <strong>and</strong> the boundary or corridor. For<br />

example, riparian zones <strong>of</strong>ten reduce the water-borne flow<br />

<strong>of</strong> nutrients from terrestrial systems to wetl<strong>and</strong> are<strong>as</strong>,<br />

but overwintering Snow Geese (Chen caerulescens)<br />

<strong>and</strong> S<strong>and</strong>hill Cranes (Grus canadensis) in New Mexico<br />

move ecologically significant amounts <strong>of</strong> nitrogen <strong>and</strong><br />

phosphorus across riparian are<strong>as</strong> from agricultural fields<br />

to wetl<strong>and</strong> roosting are<strong>as</strong> (Post et al. 1998). As se<strong>as</strong>onally<br />

important vectors for the nutrients, the birds function <strong>as</strong><br />

a corridor connecting the two are<strong>as</strong>. Mover specificity is<br />

a function <strong>of</strong> the movement characteristics <strong>of</strong> whatever<br />

actively travels across the l<strong>and</strong>scape, whether this is a<br />

mover or a vector carrying the mover (Fig. 1b & 1c).<br />

Streams are well-defined corridors for the downstream<br />

movement <strong>of</strong> nutrients, energy, <strong>and</strong> matter; but they<br />

function in many other capacities on the l<strong>and</strong>scape, <strong>as</strong><br />

defined by the mover(s) <strong>of</strong> interest. Streams funnel nutrients<br />

<strong>and</strong> plant propagules ( Johansson et al. 1996;<br />

Parendes & Jones 2000) but tend to redirect the movement<br />

<strong>of</strong> terrestrial rodents, functioning <strong>as</strong> boundaries for<br />

terrestrial organisms (Fig. 1b & 1c; Storm et al. 1976;<br />

Knaapen et al. 1992) <strong>and</strong> flows, such <strong>as</strong> fire. In addition<br />

to their role in transporting flows downstream, streams<br />

<strong>and</strong> rivers also act <strong>as</strong> longitudinal corridors for a multi-<br />

25<br />

Conservation Biology<br />

Volume 15, No. 1, February 2001


26<br />

<strong>Boundaries</strong> <strong>and</strong> <strong>Corridors</strong> Puth & Wilson<br />

tide <strong>of</strong> upstream flows. Spawning salmon move nutrients<br />

upstream from the oceans <strong>and</strong> enrich both the<br />

headwaters <strong>and</strong> forest ecosystems (Donaldson 1967;<br />

Mathisen et al. 1988; Cederholm et al. 1989; Kline et al.<br />

1990; 1993; Schuldt 1995). Most adult airborne aquatic<br />

insects fly in an upstream direction (Müller 1982), <strong>and</strong><br />

many aquatic organisms regularly travel upstream to<br />

spawn or recolonize pools after floods or other local extinction<br />

events (Chapman & Kramer 1991; Meadow &<br />

Matthews 1992; Sheldon & Meffe 1995; Covich et al.<br />

1996). As boundaries, streams separate some terrestrial<br />

mammal populations but not others (Patton et al. 2000).<br />

Scale<br />

Movers <strong>and</strong> vectors interact with the l<strong>and</strong>scape at significantly<br />

different spatial <strong>and</strong> temporal grains <strong>and</strong> extents.<br />

The scale at which movers or vectors encounter the l<strong>and</strong><br />

defines the position <strong>of</strong> a l<strong>and</strong>scape structure along the<br />

boundary-corridor continuum (Wiens & Milne 1989; Noss<br />

1991; Allen & Hoekstra 1992; Holling 1992). For example,<br />

small mammals respond to river <strong>and</strong> canal boundaries<br />

at smaller grains <strong>and</strong> extents than do large mammals<br />

(Knaapen et al 1992). A stream that because <strong>of</strong> its<br />

width represents an insurmountable barrier to a mouse<br />

is mere steps to a deer. To the mouse, the stream is a<br />

boundary limiting its movements; to the deer, the stream<br />

is one <strong>of</strong> many water sources in the matrix <strong>of</strong> streams<br />

<strong>and</strong> forest in which it forages. In a similar manner, a<br />

stream corridor used by a hunting bat will represent a<br />

habitat patch for a stonefly larva that perceives its environment<br />

at the scale <strong>of</strong> meters (Wiens & Milne 1989).<br />

Conversely, the position <strong>of</strong> a l<strong>and</strong>scape structure on<br />

the boundary-corridor continuum changes the scaling <strong>of</strong><br />

a l<strong>and</strong>scape by linking some l<strong>and</strong>scape patches <strong>and</strong> dividing<br />

others. Processes occurring on a l<strong>and</strong>scape composed<br />

<strong>of</strong> patches connected by corridors operate at a<br />

larger scale than on a l<strong>and</strong>scape consisting <strong>of</strong> isolated<br />

patches. These same corridors, may concurrently function<br />

<strong>as</strong> boundaries, however, dividing other l<strong>and</strong>scape<br />

processes. For example, a canal dug between two otherwise<br />

isolated lakes allows the interlake transfer <strong>of</strong> nutrients<br />

<strong>and</strong> organisms; at the same time, it splits the local<br />

terrestrial ecosystem <strong>and</strong> populations (Fig. 1b & 1c).<br />

Through these effects on l<strong>and</strong>scape connectivity, boundaries<br />

<strong>and</strong> corridors delimit ecological systems.<br />

Streams <strong>as</strong> Terrestrial <strong>Boundaries</strong> <strong>and</strong> <strong>Corridors</strong><br />

Streams <strong>and</strong> rivers act <strong>as</strong> boundaries <strong>and</strong> corridors for<br />

terrestrial systems <strong>as</strong> well <strong>as</strong> for aquatic systems. Streams<br />

<strong>and</strong> rivers can partition terrestrial l<strong>and</strong>scapes by isolating<br />

or reducing flows between l<strong>and</strong>scape patches (Knaapen<br />

et al. 1992; Lamborot & Eaton 1997; Patton et al. 2000).<br />

Storm et al. (1976) found that midwestern rivers hindered<br />

the movement <strong>of</strong> red foxes ( Vulpes fulva)<br />

be-<br />

Conservation Biology<br />

Volume 15, No. 1, February 2001<br />

tween populations on opposite banks, with large rivers<br />

providing lower permeability than small ones. Peres et al.<br />

(1996) found that the function <strong>of</strong> rivers in the Amazon<br />

b<strong>as</strong>in <strong>as</strong> boundaries to gene flow for tamarins incre<strong>as</strong>ed<br />

with river size. Rivers may also stop terrestrial processes<br />

such <strong>as</strong> fire (Forman 1995). For nonswimmers, rivers become<br />

impermeable boundaries <strong>and</strong> direct movement<br />

along the river bank, or back into the surrounding matrix.<br />

Many terrestrial animals travel along riparian zones,<br />

using them <strong>as</strong> movement corridors (Forman & Godron<br />

1986), <strong>and</strong> flying organisms such <strong>as</strong> bats hunt above the<br />

river channel (Forman 1995).<br />

Leaky Stream <strong>Boundaries</strong> <strong>as</strong> Connections to<br />

Terrestrial Systems<br />

Streams <strong>and</strong> rivers do more than connect their sources<br />

<strong>and</strong> endpoints; they exhibit “leaky” l<strong>and</strong>-water boundaries,<br />

acting <strong>as</strong> semipermeable filters to lateral flows (Naiman<br />

et al. 1988; Junk et al. 1989; Forman 1995). Floods<br />

transfer nutrients <strong>and</strong> materials from water to l<strong>and</strong> ( Junk<br />

et al. 1989; Power 1995), or from l<strong>and</strong> to water ( Junk et<br />

al. 1989). Biotic movers such <strong>as</strong> beavers (Naiman et al.<br />

1994), emerging aquatic insects ( Jackson & Fisher 1986),<br />

waterfowl (Post et al. 1998), <strong>and</strong> reproducing amphibians<br />

(Seale 1980) connect terrestrial <strong>and</strong> aquatic ecosystems<br />

<strong>and</strong> incre<strong>as</strong>e the permeability <strong>of</strong> the l<strong>and</strong>-water interface<br />

by moving laterally between the terrestrial <strong>and</strong><br />

aquatic systems.<br />

Within-Stream <strong>Boundaries</strong> <strong>and</strong> <strong>Corridors</strong><br />

A continuum <strong>of</strong> boundaries <strong>and</strong> corridors exists within<br />

streams <strong>and</strong> rivers, changing the direction <strong>and</strong> permeability<br />

to flows within the stream or river channel itself<br />

(Naiman et al. 1988; Forman 1995). Dams, culverts, <strong>and</strong><br />

waterfalls (Magnuson 1978; Holmquist et al. 1998; Jansson<br />

et al. 2000), <strong>as</strong> well <strong>as</strong> riffles during periods <strong>of</strong> low water<br />

(Power et al. 1985, Covich et al. 1996) physically<br />

block within-stream movements. Biotic conditions <strong>of</strong> the<br />

stream, such <strong>as</strong> the presence <strong>of</strong> predators or competitors,<br />

limit movers (Bradford et al. 1993; Covich et al 1996;<br />

García-Ramos et al. 2000), <strong>as</strong> do physical factors, including<br />

water velocity, nutrient levels (Dent & Grimm<br />

1999), temperature, dissolved oxygen, <strong>and</strong> water levels.<br />

Reservoirs above dams, for example, tend to have<br />

warmer, slower moving water than that below the dam,<br />

<strong>and</strong> hence different community <strong>as</strong>semblages. In-stream<br />

boundaries may be selectively permeable, <strong>as</strong> in waterfalls<br />

that delimit adult goby populations but allow upstream<br />

movement <strong>of</strong> larval fishes (Radtke & Kinzie 1996), <strong>and</strong><br />

low water conditions that block the movement <strong>of</strong> fishes<br />

between deep pools. Interestingly, within-stream boundaries<br />

such <strong>as</strong> shallow riffles or beaver dams may incre<strong>as</strong>e<br />

the permeability <strong>of</strong> the stream boundary to terrestrial organisms<br />

by incre<strong>as</strong>ing crossing points.


Puth & Wilson <strong>Boundaries</strong> <strong>and</strong> <strong>Corridors</strong><br />

Temporal Variability<br />

Although the function <strong>of</strong> a stream or river along the<br />

boundary-corridor continuum may be relatively permanent,<br />

in other situations its role may be diurnal (tidal rivers),<br />

se<strong>as</strong>onal (floods, droughts, <strong>and</strong> ice), stoch<strong>as</strong>tic (storm<br />

events), ephemeral (temporary log jams), or related to<br />

the life history <strong>of</strong> both movers <strong>and</strong> structures (size-refugia,<br />

successional changes). Water levels in tidal rivers<br />

may fluctuate several meters twice daily. In larger streams<br />

<strong>and</strong> rivers, se<strong>as</strong>onal floods predictably deliver materials<br />

<strong>and</strong> nutrients to lowl<strong>and</strong> are<strong>as</strong> ( Junk et al. 1989). Sensitivity<br />

to fluctuating lotic flow regimes can determine the<br />

inv<strong>as</strong>ion success <strong>of</strong> exotic fish species (Brown & Moyle<br />

1997). Ice allows terrestrial animals to cross large bodies<br />

<strong>of</strong> water (Ferguson et al. 2000). Successional changes<br />

along a corridor may dictate which movers can use it. A<br />

stretch <strong>of</strong> seagr<strong>as</strong>s that functions <strong>as</strong> a corridor allowing<br />

the movement <strong>of</strong> crab predators (Micheli & Peterson<br />

1999) is unlikely to have the same effect when the<br />

shoots are young. A boundary defined by the presence<br />

<strong>of</strong> predators in an adjacent patch will lose its effectiveness<br />

if the mover obtains a size-refuge where it is too<br />

large to be consumed (Werner & Hall 1988).<br />

Interaction between Mover Specificity <strong>and</strong> Scale<br />

Mover specificity <strong>and</strong> scale do not operate in isolation;<br />

rather, they work together to determine the function <strong>of</strong><br />

a river or stream (Fig. 2). The scale <strong>of</strong> a river or stream is<br />

related to its length <strong>and</strong> depth for flows parallel to it <strong>and</strong><br />

to its width <strong>and</strong> depth for flows perpendicular to it. The<br />

scale <strong>of</strong> movers corresponds to their resolution <strong>of</strong> movement,<br />

such <strong>as</strong> step length for terrestrial mammals. If the<br />

width or length <strong>of</strong> a stream is smaller than that at which<br />

a particular mover travels (e.g, moose [ Alces alces]<br />

moving<br />

tens <strong>of</strong> kilometers a day), the mover will not use the<br />

stream <strong>as</strong> an independent l<strong>and</strong>scape structure. If the<br />

width <strong>of</strong> the stream matches the step or jump length <strong>of</strong><br />

the mover (e.g., bobcat [ Lynx rufus]<br />

moving a few kilometers<br />

a day) <strong>and</strong> the mover perceives the stream <strong>as</strong> inhospitable,<br />

then the structure will act <strong>as</strong> a boundary. If<br />

the scale <strong>of</strong> the stream matches that <strong>of</strong> the mover <strong>and</strong><br />

the mover (e.g., anadromous salmon moving a kilometer<br />

a day) recognizes the stream <strong>as</strong> hospitable, the stream<br />

will function <strong>as</strong> a corridor. When the width <strong>of</strong> the<br />

stream is greater than the step length <strong>of</strong> the mover (e.g.,<br />

mice moving tens <strong>of</strong> meters a day) <strong>and</strong> the mover perceives<br />

the structure <strong>as</strong> inhospitable, the structure will<br />

also operate <strong>as</strong> a boundary. If the width <strong>of</strong> the stream is<br />

greater than that moved by the mover in a short period<br />

<strong>of</strong> time <strong>and</strong> the mover recognizes the structure <strong>as</strong> hospitable,<br />

the structure will act <strong>as</strong> habitat (caddisfly moving<br />

tens <strong>of</strong> centimeters a day). This interaction reveals a fundamental<br />

inequity between boundaries <strong>and</strong> corridors:<br />

Figure 2. Scale <strong>and</strong> mover specificity interact to determine<br />

the function <strong>of</strong> a structure. Mover specificity relies<br />

on how well the mover can travel in a specific medium,<br />

such <strong>as</strong> forest or water. This interaction reveals<br />

a major inequity between the conditions that produce<br />

corridors <strong>and</strong> boundaries, which suggests there will be<br />

more boundaries than corridors on the l<strong>and</strong>scape.<br />

more l<strong>and</strong>scape structures fall on the boundary side <strong>of</strong><br />

the boundary-corridor continuum, because more combinations<br />

<strong>of</strong> scale <strong>and</strong> mover specificity lead to a structure<br />

functioning <strong>as</strong> a boundary than <strong>as</strong> a corridor.<br />

Levels <strong>of</strong> <strong>Ecological</strong> Organization<br />

Because streams <strong>and</strong> rivers play numerous roles along<br />

the boundary-corridor continuum, they have effects on<br />

many types <strong>of</strong> ecological entities, including traditional<br />

ecological levels <strong>of</strong> organization. For example, <strong>as</strong> a corridor,<br />

a stream may allow the movement <strong>of</strong> breeding<br />

aquatic organisms or the dispersal <strong>of</strong> juveniles, influencing<br />

populations (Schlosser 1995). If the fish are predatory,<br />

their movement along the stream corridor may<br />

strongly affect stream communities (Covich et al. 1996).<br />

The p<strong>as</strong>sage <strong>of</strong> sediments downstream <strong>and</strong> death <strong>of</strong><br />

anadromous fish upstream influence ecosystem processes<br />

(Mathisen et al. 1988; Schuldt 1995). The pattern<br />

<strong>of</strong> fish movement <strong>and</strong> energy flow up <strong>and</strong> down the<br />

stream is a l<strong>and</strong>scape consideration. Alternatively, the<br />

same stream may separate terrestrial rodent populations<br />

on either stream bank (populations), disconnect competitive<br />

interactions between organisms (communities),<br />

direct the flow <strong>of</strong> nutrients from eroded terrestrial sediments<br />

(ecosystems), <strong>and</strong> prevent fires from crossing<br />

from one bank to the other (l<strong>and</strong>scapes). Changes in the<br />

direction <strong>and</strong> permeability <strong>of</strong> streams <strong>and</strong> rivers will consequently<br />

affect ecological flows important to all levels<br />

<strong>of</strong> ecological organization.<br />

27<br />

Conservation Biology<br />

Volume 15, No. 1, February 2001


28<br />

<strong>Boundaries</strong> <strong>and</strong> <strong>Corridors</strong> Puth & Wilson<br />

Conclusions<br />

<strong>Boundaries</strong> <strong>and</strong> corridors have traditionally been studied<br />

<strong>as</strong> independent l<strong>and</strong>scape structures. B<strong>as</strong>ed on the strong<br />

similarities in l<strong>and</strong>scape function, however, we argue<br />

that boundaries <strong>and</strong> corridors are at polar ends <strong>of</strong> a continuum<br />

b<strong>as</strong>ed on permeability <strong>and</strong> directionality <strong>of</strong> ecological<br />

flows. This viewpoint unites the <strong>of</strong>ten parallel<br />

treatment <strong>of</strong> boundaries <strong>and</strong> corridors <strong>and</strong> emph<strong>as</strong>izes<br />

the fact that a structure on the l<strong>and</strong>scape may act <strong>as</strong> a<br />

boundary or a corridor or may play an intermediate role,<br />

depending on mover specificity <strong>and</strong> temporal <strong>and</strong> spatial<br />

dynamics.<br />

Researchers <strong>and</strong> managers should recognize that these<br />

structures can be ephemeral features on the l<strong>and</strong>scape,<br />

<strong>and</strong>, conversely, that some l<strong>and</strong>scape structures may<br />

not always act <strong>as</strong> boundaries <strong>and</strong> corridors, although they<br />

may look like boundaries <strong>and</strong> corridors. Moreover, the<br />

movers that interact with boundaries <strong>and</strong> corridors may<br />

also be ephemeral, depending on characteristics such <strong>as</strong><br />

life history <strong>and</strong> se<strong>as</strong>onality. The mover-specific qualities<br />

<strong>of</strong> the boundary-corridor continuum underscore the dangers<br />

<strong>of</strong> single-species management in which a structure’s<br />

influence on one mover is emph<strong>as</strong>ized over all others.<br />

Underst<strong>and</strong>ing the similarities between corridors <strong>and</strong><br />

boundaries may help us interpret the movement <strong>of</strong> organisms<br />

across the l<strong>and</strong>scape <strong>and</strong> determine points <strong>of</strong><br />

vulnerability to the spread <strong>of</strong> exotics. A knowledge <strong>of</strong><br />

boundary <strong>and</strong> corridor function may also further the prediction<br />

<strong>of</strong> likely consequences <strong>of</strong> natural disturbances,<br />

anthropogenic perturbations, <strong>and</strong> management actions.<br />

As are<strong>as</strong> <strong>of</strong> strong influence on ecological flows, boundaries<br />

<strong>and</strong> corridors present a challenge to researchers, in<br />

their detection <strong>and</strong> description <strong>and</strong> in their conservation.<br />

Literature Cited<br />

Aars, J., <strong>and</strong> R. A. Ims. 1999. The effect <strong>of</strong> habitat corridors on rates <strong>of</strong><br />

transfer <strong>and</strong> interbreeding between vole demes. Ecology 80: 1648–<br />

1655.<br />

Allen, T. F. H., <strong>and</strong> T. W. Hoekstra. 1992. Toward a unified ecology.<br />

Columbia University Press, New York.<br />

Alverson, W. S., D. M. Waller, <strong>and</strong> S. L. Solheim. 1988. Forests to deer:<br />

edge effects in Northern Wisconsin. Conservation Biology 2: 348–358.<br />

Anderson, G. S., <strong>and</strong> B. J. Danielson. 1997. The effects <strong>of</strong> l<strong>and</strong>scape<br />

composition <strong>and</strong> physiognomy on metapopulation size: the roles<br />

<strong>of</strong> corridors. L<strong>and</strong>scape Ecology 12: 261–271.<br />

Anderson, S. H., K. Mann, <strong>and</strong> H. H. Shugart Jr. 1977. The effect <strong>of</strong><br />

transmission-line corridors on bird populations. American Midl<strong>and</strong><br />

Naturalist 97: 216–221.<br />

Bennett, A. F. 1990. Habitat corridors <strong>and</strong> the conservation <strong>of</strong> small<br />

mammals in a fragmented forest environment. L<strong>and</strong>scape Ecology<br />

4: 109–122.<br />

Bennett, A. F. 1991. Roads, roadsides <strong>and</strong> wildlife conservation: a review.<br />

Pages 99–118 in D. A. Saunders <strong>and</strong> R. J. Hobbs, editors. Nature<br />

conservation 2: the role <strong>of</strong> corridors. Surrey Beatty & Sons,<br />

Chipping Norton, New South Wales, Australia.<br />

Benninger-Truax, M., J. L. Vankat, <strong>and</strong> R. L. Schaefer. 1992. Trail corridors<br />

<strong>as</strong> habitat <strong>and</strong> conduits for movement <strong>of</strong> plant species in<br />

Conservation Biology<br />

Volume 15, No. 1, February 2001<br />

Rocky Mountain National Park, Colorado, USA. L<strong>and</strong>scape Ecology<br />

6: 269–278.<br />

Bradford, D. F., F. Tabatabai, <strong>and</strong> D. M. Graber. 1993. Isolation <strong>of</strong> remaining<br />

populations <strong>of</strong> the native frog, Rana muscosa,<br />

by introduced<br />

fishes in Sequoia <strong>and</strong> Kings Canyon National Parks, California.<br />

Conservation Biology 7: 882–888.<br />

Brown, L. R., <strong>and</strong> P. B. Moyle. 1997. Invading species in the Eel River,<br />

California: successes, failures, <strong>and</strong> relationships with resident species.<br />

Environmental Biology <strong>of</strong> Fishes 49: 271–291.<br />

Burgess, R. L., <strong>and</strong> D. M. Sharpe, editors. 1981. Forest isl<strong>and</strong> dynamics<br />

in man-dominated l<strong>and</strong>scapes. Springer Verlag, New York.<br />

Carpenter, S. R., S. W. Chisholm, C. J. Krebs, D. W. Schindler, <strong>and</strong> R. F.<br />

Wright. 1995. Ecosystem experiments. Science 269: 324–327.<br />

Carr, A. 1987. New perspectives on the pelagic stage <strong>of</strong> sea turtle development.<br />

Conservation Biology 1: 103–121.<br />

Cederholm, C. J., D. B. Houston, D. L. Cole, <strong>and</strong> W. J. Scarlett. 1989. Fate <strong>of</strong><br />

coho salmon ( Oncorhynchus kisutch)<br />

carc<strong>as</strong>ses in spawning streams.<br />

Canadian Journal <strong>of</strong> Fisheries <strong>and</strong> Aquatic Sciences 426: 1347–1355.<br />

Chapman, L. J., <strong>and</strong> D. L. Kramer. 1991. The consequences <strong>of</strong> flooding<br />

for the dispersal <strong>and</strong> fate <strong>of</strong> poecilid fish in an intermittent tropical<br />

stream. Oecologia (Heidelberg) 87: 299–306.<br />

Clements, F. E. 1905. Research methods in ecology. University Publishing,<br />

Lincoln, Nebr<strong>as</strong>ka.<br />

Covich, A. P., T. A. Crowl, S. L. Johnson, <strong>and</strong> M. Pyron. 1996. Distribution<br />

<strong>and</strong> abundance <strong>of</strong> tropical freshwater shrimp along a stream<br />

corridor: responses to disturbance. Biotropica 28: 484–492.<br />

Date, E. M., H. A. Ford, <strong>and</strong> H. F. Recher. 1991. Frugivorous pigeons,<br />

stepping stones, <strong>and</strong> weeds in northern New South Wales. Pages<br />

241–245 in D. A. Saunders <strong>and</strong> R. J. Hobbs, editors. Nature conservation<br />

2: the role <strong>of</strong> corridors. Surrey Beatty & Sons, Chipping<br />

Norton, New South Wales, Australia.<br />

Dent, C. L., <strong>and</strong> N. B. Grimm. 1999. Spatial heterogeneity <strong>of</strong> stream<br />

water nutrient concentrations over successional time. Ecology 80:<br />

2283–2298.<br />

di C<strong>as</strong>tri, F., A. J. Hansen, <strong>and</strong> U. U. Holl<strong>and</strong>. 1988. A new look at ecotones:<br />

emerging international projects on l<strong>and</strong>scape boundaries. Biology<br />

International, special issue 17.<br />

Dmowski, K., <strong>and</strong> M. Kozakiewicz. 1990. Influence <strong>of</strong> a shrub corridor<br />

on movements <strong>of</strong> p<strong>as</strong>serine birds to a lake littoral zone. L<strong>and</strong>scape<br />

Ecology 4: 99–108.<br />

Donaldson, J. R. 1967. The phosphorus budget <strong>of</strong> Iliamna Lake, Al<strong>as</strong>ka<br />

<strong>as</strong> related to the cyclic abundance <strong>of</strong> sockeye salmon. University <strong>of</strong><br />

W<strong>as</strong>hington, Seattle.<br />

Edminster, F. C. 1938. The farm fence in wildlife management <strong>and</strong> erosion<br />

control. Transactions <strong>of</strong> the North American Wildlife Conference<br />

3: 583–591.<br />

Farhig, L., <strong>and</strong> G. Merriam. 1985. Habitat patch connectivity <strong>and</strong> population<br />

survival. Ecology 66: 1762–1768.<br />

Ferguson, S. H., M. K. Taylor, <strong>and</strong> F. Messier. 2000. Influence <strong>of</strong> sea ice<br />

dynamics on haitat selection by polar bears. Ecology 81: 761–772.<br />

Forman, R. T. T. 1983. <strong>Corridors</strong> in a l<strong>and</strong>scape: their ecological structure<br />

<strong>and</strong> function. Ekologia (CSSR) 2: 375–387.<br />

Forman, R. T. T. 1991. L<strong>and</strong>scape corridors: from theoretical foundations<br />

to public policy. Pages 71–84 in D. A. Saunders, <strong>and</strong> R. J.<br />

Hobbs, editors. Nature conservation 2: the role <strong>of</strong> corridors. Surrey<br />

Beatty & Sons, Chipping Norton, New South Wales, Australia.<br />

Forman, R. T. T. 1995. L<strong>and</strong> mosaics: the ecology <strong>of</strong> l<strong>and</strong>scapes <strong>and</strong> regions.<br />

Cambridge University Press, Cambridge, United Kingdom.<br />

Forman, R. T. T., <strong>and</strong> M. Godron. 1981. Patches <strong>and</strong> structural components<br />

for a l<strong>and</strong>scape ecology. BioScience 31: 733–740.<br />

Forman, R. T. T., <strong>and</strong> M. Godron. 1986. L<strong>and</strong>scape ecology. Wiley,<br />

New York.<br />

Forman, R. T. T., <strong>and</strong> P. N. Moore. 1992. Theoretical foundations for<br />

underst<strong>and</strong>ing boundaries in l<strong>and</strong>scape mosaics. Pages 236–258 in<br />

A. J. Hansen <strong>and</strong> F. di C<strong>as</strong>tri, editors. L<strong>and</strong>scape boundaries: consequences<br />

for biotic diversity <strong>and</strong> ecological flows. <strong>Ecological</strong> studies.<br />

Volume 92. Springer-Verlag, New York.


Puth & Wilson <strong>Boundaries</strong> <strong>and</strong> <strong>Corridors</strong><br />

Fr<strong>as</strong>er, D. F., J. F. Gillam, M. P. MacGowan, C. M. Arcaro, <strong>and</strong> P. H.<br />

Guillozet. 1999. Habitat quality in a hostile river corridor. Ecology<br />

80: 597–607.<br />

García-Ramos, G., F. Sánchez-Garduño, <strong>and</strong> P. K. Maini. 2000. Dispersal<br />

can sharpen parapatric boundaries on a spatially varying environment.<br />

Ecology 81: 749–760.<br />

Gates, J. E., <strong>and</strong> L. W. Gysel. 1978. Avian nest dispersion <strong>and</strong> fledging<br />

success in field-forest ecotones. Ecology 59: 871–883.<br />

Gosz, P. G. 1991. Fundamental ecological characteristics <strong>of</strong> l<strong>and</strong>scape<br />

boundaries. Pages 8–30 in M. M. Holl<strong>and</strong>, P. G. Risser <strong>and</strong> R. J.<br />

Naiman, editors. Ecotones: the role <strong>of</strong> l<strong>and</strong>scape boundaries in the<br />

management <strong>and</strong> restoration <strong>of</strong> changing environments. Chapman<br />

<strong>and</strong> Hall, New York.<br />

Gosz, J. R. 1992. <strong>Ecological</strong> functions in a biome transition zone: translating<br />

local responses to broad-scale dynamics. Pages 55–75 in A. J.<br />

Hansen <strong>and</strong> F. di C<strong>as</strong>tri, editors. L<strong>and</strong>scape boundaries: consequences<br />

for biotic diversity <strong>and</strong> ecological flows. <strong>Ecological</strong> studies.<br />

Volume 92. Springer-Verlag, New York.<br />

Haddad, N. M. 1999. Corridor use predicted from behaviors at habitat<br />

boundaries. The American Naturalist 153: 215–227.<br />

Hansen, A. J., <strong>and</strong> F. di C<strong>as</strong>tri, editors. 1992. L<strong>and</strong>scape boundaries:<br />

consequences for biotic diversity <strong>and</strong> ecological flows. <strong>Ecological</strong><br />

studies. Volume 92. Springer-Verlag, New York.<br />

Harris, L. D. 1988. Edge effects <strong>and</strong> conservaton <strong>of</strong> biotic diversity.<br />

Conservation Biology 2: 330–332.<br />

Harris, L. D., <strong>and</strong> J. Scheck. 1991. From implications to applications:<br />

the dispersal corridor principle applied to the conservation <strong>of</strong> biological<br />

diversity. Pages 189–220 in D. A. Saunders <strong>and</strong> R. J. Hobbs,<br />

editors. Nature conservation 2: the role <strong>of</strong> corridors. Surrey Beatty<br />

& Sons, Chipping Norton, New South Wales, Australia.<br />

Henein, K., <strong>and</strong> G. Merriam. 1990. The elements <strong>of</strong> connectivity<br />

where corridor quality is variable. L<strong>and</strong>scape Ecology 4: 157–170.<br />

Hess, G. R. 1994. Conservation corridors <strong>and</strong> contagious dise<strong>as</strong>e: a<br />

cautionary note. Conservation Biology 8: 256–262.<br />

Hobbs, R. J. 1992. The role <strong>of</strong> corridors in conservation: solution or<br />

b<strong>and</strong>wagon? Trends in Ecology <strong>and</strong> Evolution 7: 389–392.<br />

Holl<strong>and</strong>, M. M. 1988. SCOPE/MAB technical consultations on l<strong>and</strong>scape<br />

boundaries. Pages 47–106 in F. di C<strong>as</strong>tri, A. J. Hansen, <strong>and</strong> M. M.<br />

Holl<strong>and</strong>, editors. A new look at ecotones. Biology International,<br />

special issue 17.<br />

Holl<strong>and</strong>, M. M., <strong>and</strong> P. G. Risser, 1991. The role <strong>of</strong> l<strong>and</strong>scape boundaries<br />

in the management <strong>and</strong> restoration <strong>of</strong> changing environments:<br />

introduction. Pages 1–7 in M. M. Holl<strong>and</strong>, P. G. Risser, <strong>and</strong><br />

R. J. Naiman, editors. Ecotones: the role <strong>of</strong> l<strong>and</strong>scape boundaries in<br />

the management <strong>and</strong> restoration <strong>of</strong> changing environments. Chapman<br />

<strong>and</strong> Hall, New York.<br />

Holl<strong>and</strong>, M. M., P. G. Risser, <strong>and</strong> R. J. Naiman, editors. 1991. Ecotones:<br />

the role <strong>of</strong> l<strong>and</strong>scape boundaries in the management <strong>and</strong> restoration<br />

<strong>of</strong> changing environments. Chapman <strong>and</strong> Hall, New York.<br />

Holling, C. S. 1992. Cross scale morphology, geometry, <strong>and</strong> dynamics<br />

<strong>of</strong> ecosystems. <strong>Ecological</strong> Monographs 62: 447–502.<br />

Holmquist, J. G., J. M. Schmidt-Gengenbach, <strong>and</strong> B. B. Yoshioka. 1998.<br />

High dams <strong>and</strong> marine-freshwater linkages: effects on natives <strong>and</strong> introduced<br />

fauna in the Caribbean. Conservation Biology 12: 621–630.<br />

Jackson, J. K., <strong>and</strong> S. G. Fisher. 1986. Secondary production, emergence,<br />

<strong>and</strong> export <strong>of</strong> aquatic insects <strong>of</strong> a Sonoran desert stream.<br />

Ecology 67: 629–638.<br />

Jansson, R., C. Nilsson, <strong>and</strong> B. Renöfält. 2000. Fragmentation <strong>of</strong> riparian<br />

flor<strong>as</strong> in rivers with multiple dams. Ecology 81: 899–903.<br />

Johansson, M. E., C. Nilsson, <strong>and</strong> E. Nilsson. 1996. Do rivers function <strong>as</strong><br />

corridors for plant dispersal? Journal <strong>of</strong> Vegetation Science 7: 593–598.<br />

Junk, W. J., P. B. Bayley, <strong>and</strong> R. E. Sparks. 1989. The flood pulse concept<br />

in river-floodplain systems. Canadian Special Publications in<br />

Fisheries <strong>and</strong> Aquatic Sciences 106: 110–127.<br />

Karr, J. R. 1989. Kissimmee River: restoration <strong>of</strong> degraded resources.<br />

Proceedings <strong>of</strong> the Kissimmee River Restoration Symposium. South<br />

Florida Water Management District, West Palm Beach, Florida.<br />

Kline, T. C., Jr., J. J. Goering, O. A. Mathisen, P. H. Poe, <strong>and</strong> P. L.<br />

Parker. 1990. Recycling <strong>of</strong> elements transported upstream by runs<br />

15 13<br />

<strong>of</strong> Pacific salmon: I. d N <strong>and</strong> d C evidence in S<strong>as</strong>hin Creek, southe<strong>as</strong>tern<br />

Al<strong>as</strong>ka. Canadian Journal <strong>of</strong> Fisheries <strong>and</strong> Aquatic Sciences<br />

47: 136–144.<br />

Kline, T. C., Jr., J. J. Goering, O. A. Mathisen, P. H. Poe, P. L. Parker,<br />

<strong>and</strong> R. S. Scanlan. 1993. Recycling <strong>of</strong> elements transported up-<br />

15 13<br />

stream by runs <strong>of</strong> Pacific salmon: II. d N <strong>and</strong> d C evidence in the<br />

Kvichak River watershed, Bristol Bay, Southwestern Al<strong>as</strong>ka. Canadian<br />

Journal <strong>of</strong> Fisheries <strong>and</strong> Aquatic Sciences 50: 2350–2365.<br />

Knaapen, J. P., M. Scheffer, <strong>and</strong> B. Harms. 1992. Estimating habitat isolation<br />

in l<strong>and</strong>scapes. L<strong>and</strong>scape <strong>and</strong> Urban Planning 23: 1–16.<br />

Kol<strong>as</strong>a, J., <strong>and</strong> M. Zalewski. 1995. Notes on ecotone attributes <strong>and</strong><br />

functions. Hydrobiologia 303: 1–7.<br />

Lamborot, M., <strong>and</strong> L. Eaton. 1997. The Maipo River <strong>as</strong> a biogeographical<br />

barrier to Liolaemus monticola (Tropiduridae) in the mountain<br />

ranges. Journal <strong>of</strong> Zoological Systematics <strong>and</strong> Evolutionary Research<br />

35: 105–111.<br />

Leopold, A. 1933. Game management. Scribner’s, New York.<br />

Lewis, P. H., Jr. 1964. Quality corridors for Wisconsin. L<strong>and</strong>scape Architecture<br />

54: 100–107.<br />

Lidicker, W. Z., Jr. 1999. Responses <strong>of</strong> mammals to habitat edges: an<br />

overview. L<strong>and</strong>scape Ecology 14: 333–343.<br />

Loney, B., <strong>and</strong> R. J. Hobbs. 1991. Management <strong>of</strong> vegetation corridors:<br />

maintenance, rehabilitation <strong>and</strong> establishment. Pages 299–311 in<br />

D. A. Saunders <strong>and</strong> R. J. Hobbs, editors. Nature conservation 2: the<br />

role <strong>of</strong> corridors. Surrey Beatty & Sons, Chipping Norton, New<br />

South Wales, Australia.<br />

Magnuson, J. J. 1978. <strong>Ecological</strong> approaches to hydraulic structures.<br />

Pages 11–28 in International Symposium on the Environmental Effects<br />

<strong>of</strong> Hydraulic Engineering Works. Tennessee Valley Authority,<br />

Knoxville.<br />

Magnuson, J. J., C. L. Harrington, D. J. Stewart, <strong>and</strong> G. N. Herbst. 1981.<br />

Responses <strong>of</strong> macr<strong>of</strong>auna to short-term dynamics <strong>of</strong> a gulf stream<br />

front on the continental shelf. Co<strong>as</strong>tal Upwelling: Co<strong>as</strong>tal <strong>and</strong> Estuarine<br />

Sciences 1: 441–448.<br />

Mathisen, O. A., P. L. Parker, J. J. Goering, T. C. Kline, P. H. Poe, <strong>and</strong> R. S.<br />

Scalan. 1988. Recycling <strong>of</strong> marine elements transported into freshwater<br />

by anadromous salmon. Verh<strong>and</strong>lungen der Internationalen<br />

Vereinigung fur Theoretische und Angew<strong>and</strong>te Limnologie 23:<br />

2249–2258.<br />

Meadow, M. R., <strong>and</strong> W. J. Matthews. 1992. Spatial <strong>and</strong> temporal patterns<br />

in fish <strong>as</strong>semblage structure <strong>of</strong> an intermittent Tex<strong>as</strong> stream.<br />

The American Midl<strong>and</strong> Naturalist 127: 106–114.<br />

Merriam, F., <strong>and</strong> A. Lanoue. 1990. Corridor use by small mammals:<br />

field me<strong>as</strong>urements for three experimental types <strong>of</strong> Peromyscus<br />

leucopus. L<strong>and</strong>scape Ecology 4: 123–131.<br />

Micheli, F., <strong>and</strong> C. H. Peterson. 1999. Estuarine vegetated habitats <strong>as</strong><br />

corridors for predator movements. Conservation Biology 13: 869–881.<br />

Mills, E. L., J. H. Leach, J. T. Carlton, <strong>and</strong> C. L. Secor. 1993. Exotic species<br />

in the Great Lakes: a history <strong>of</strong> biotic crises <strong>and</strong> anthropogenic<br />

introductions. Journal <strong>of</strong> Great Lakes Research 19: 1–54.<br />

Müller, K. 1982. The colonization cycle <strong>of</strong> freshwater insects. Oecologia<br />

52: 202–207.<br />

Naiman, R. J., <strong>and</strong> H. Décamps. 1997. The ecology <strong>of</strong> interfaces: riparian<br />

zones. The Annual Review <strong>of</strong> Ecology <strong>and</strong> Systematics 28:<br />

621–658.<br />

Naiman, R. J., H. Décamps, J. P<strong>as</strong>tor, <strong>and</strong> C. A. Johnston. 1988. The potential<br />

importance <strong>of</strong> boundaries to fluvial ecosystems. Journal <strong>of</strong><br />

the North American Benthological Society 7: 289–306.<br />

Naiman, R. J., G. Pinay, C. A. Johnston, <strong>and</strong> J. P<strong>as</strong>tor. 1994. Beaver influences<br />

on the long-term biogeochemical characteristics <strong>of</strong> boreal<br />

forest drainage networks. Ecology 75: 905–921.<br />

Noss, R. F. 1991. L<strong>and</strong>scape connectivity: different functions at different<br />

scales. Pages 27–39 in W. E. Hudson, editor. L<strong>and</strong>scape linkages<br />

<strong>and</strong> biodiversity. Isl<strong>and</strong> Press, W<strong>as</strong>hington, D. C.<br />

Odum, E. P. 1971. Fundamentals <strong>of</strong> ecology. W. B. Saunders, Philadelphia.<br />

29<br />

Conservation Biology<br />

Volume 15, No. 1, February 2001


30<br />

<strong>Boundaries</strong> <strong>and</strong> <strong>Corridors</strong> Puth & Wilson<br />

Parendes, L. A., <strong>and</strong> J. A. Jones. 2000. Role <strong>of</strong> light availability <strong>and</strong> dispersal<br />

in exotic plant inv<strong>as</strong>ion along roads <strong>and</strong> streams in the H. J.<br />

Andrews Experimental Forest, Oregon. Conservation Biology 14:<br />

64–75.<br />

Patton, J. L., M. N. F. Da Silva, <strong>and</strong> J. R. Malcolm. 2000. Mammals <strong>of</strong> the<br />

Rio Jurua <strong>and</strong> the evolutionary <strong>and</strong> ecological diversification <strong>of</strong><br />

Amazonia. Bulletin <strong>of</strong> the American Museum <strong>of</strong> Natural History<br />

244: 1–306.<br />

Peres, C. A., J. L. Patton, <strong>and</strong> M. N. F. Da Silva. 1996. Riverine barriers<br />

<strong>and</strong> gene flow in Amazonian saddle-back tamarins. Folia Primatologica.<br />

67: 113–124.<br />

Polis, G. A., W. B. Anderson, <strong>and</strong> R. D. Holt. 1997. Toward an integration<br />

<strong>of</strong> l<strong>and</strong>scape <strong>and</strong> food web ecology: the dynamics <strong>of</strong> spatially<br />

subsidized food webs. Annual Review <strong>of</strong> Ecology <strong>and</strong> Systematics<br />

28: 289–316.<br />

Post, D. M., J. P. Taylor, J. F. Kitchell, M. H. Olson, D. E. Schindler, <strong>and</strong><br />

B. R. Herwig. 1998. The role <strong>of</strong> migratory waterfowl <strong>as</strong> nutrient<br />

vectors in a managed wetl<strong>and</strong>. Conservation Biology 12: 910–920.<br />

Power, M. E. 1995. Floods, food chains, <strong>and</strong> ecosystem processes in<br />

rivers. Pages 52–60 in C. G. Jones <strong>and</strong> J. H. Lawton, editors. Linking<br />

species <strong>and</strong> ecosystems. Chapman <strong>and</strong> Hall, New York.<br />

Power, M. E., W. J. Matthews, <strong>and</strong> A. J. Stewart. 1985. Grazing minnows,<br />

piscivorous b<strong>as</strong>s, <strong>and</strong> stream algae: dynamics <strong>of</strong> a strong interaction.<br />

Ecology 66: 1448–1456.<br />

Prevett, P. T. 1991. Movement paths <strong>of</strong> koal<strong>as</strong> in the urban-rural<br />

fringes <strong>of</strong> Ballarat, Victoria: implications for management. Pages<br />

259–272 in D. A. Saunders <strong>and</strong> R. J. Hobbs, editors. Nature conservation<br />

2: the role <strong>of</strong> corridors. Surrey Beatty & Sons, Chipping<br />

Norton, New South Wales, Australia.<br />

Radtke, R. L., <strong>and</strong> R. A. Kinzie. 1996. Evidence <strong>of</strong> a marine larval stage<br />

in endemic Hawaiian stream gobies from isolated high-elevation locations.<br />

Transactions <strong>of</strong> the American Fisheries Society 125: 613–621.<br />

Ratti, J. T., <strong>and</strong> K. P. Reese. 1988. Preliminary test <strong>of</strong> the ecological<br />

trap hypothesis. Journal <strong>of</strong> Wildlife Management 52: 484–491.<br />

Reese, K. P., <strong>and</strong> J. T. Ratti. 1988. Edge effect: a concept under scrutiny.<br />

Transactions <strong>of</strong> the North American Wildlife <strong>and</strong> Natural Resources<br />

Conference 53: 127–136.<br />

Risser, P. G. 1995. The status <strong>of</strong> the science examining ecotones. Bio-<br />

Science 45: 318–325.<br />

Saunders, D. A., <strong>and</strong> R. J. Hobbs. 1991. The role <strong>of</strong> corridors in conservation:<br />

what do we know <strong>and</strong> where do we go? Pages 421–427 in<br />

D. A. Saunders <strong>and</strong> R. J. Hobbs, editors. Nature conservation 2: the<br />

role <strong>of</strong> corridors. Surrey Beatty & Sons, Chipping Norton, New<br />

South Wales, Australia.<br />

Schlosser, I. J. 1995. Critical l<strong>and</strong>scape attributes that influence fish<br />

population dynamics in headwater streams. Hydrobiologia 303: 71–81.<br />

Schuldt, J. A. 1995. Effect <strong>of</strong> salmon carc<strong>as</strong>s decomposition on Lake Superior<br />

tributary streams. Journal <strong>of</strong> the North American Benthological<br />

Society 14: 259–268.<br />

Conservation Biology<br />

Volume 15, No. 1, February 2001<br />

Seale, D. 1980. Influence <strong>of</strong> amphibian larvae on primary production,<br />

nutrient flux, <strong>and</strong> competition in a pond ecosystem. Ecology 61:<br />

1531–1550.<br />

Sheldon, A. L., <strong>and</strong> G. K. Meffe. 1995. Short-term recolonization by<br />

fishes <strong>of</strong> experimentally defaunated pools <strong>of</strong> a co<strong>as</strong>tal plain stream.<br />

Copeia 1995:828–837.<br />

Simberl<strong>of</strong>f, D., <strong>and</strong> J. Cox. 1987. Consequences <strong>and</strong> costs <strong>of</strong> conservation<br />

corridors. Conservation Biology 1:63–71.<br />

Simberl<strong>of</strong>f, D., J. A. Farr, J. Cox, <strong>and</strong> D. W. Mehlman. 1992. Movement<br />

corridors: conservation bargains or poor investments? Conservation<br />

Biology 6:493–504.<br />

Soulé, M. E., <strong>and</strong> M. E. Gilpin. 1991. The theory <strong>of</strong> wildlife corridor capability.<br />

Pages 3–8 in D. A. Saunders <strong>and</strong> R. J. Hobbs, editors. Nature<br />

conservation 2: the role <strong>of</strong> corridors. Surrey Beatty & Sons,<br />

Chipping Norton, New South Wales, Australia.<br />

Storm, G. L., R. D. Andrews, R. L. Phillips, R. A. Bishop, D. B. Siniff,<br />

<strong>and</strong> J. R. Tester. 1976. Morphology, reproduction, dispersal <strong>and</strong><br />

mortality <strong>of</strong> midwestern red fox populations. Wildlife Monographs<br />

49:5–82.<br />

Trombulak, S. C., <strong>and</strong> C. A. Frissel. 2000. Review <strong>of</strong> ecological effects<br />

<strong>of</strong> roads on terrestrial <strong>and</strong> aquatic communities. Conservation Biology<br />

14:18–30.<br />

Tyser, R. W., <strong>and</strong> C. A. Worley. 1992. Alien flora in gr<strong>as</strong>sl<strong>and</strong>s adjacent<br />

to road <strong>and</strong> trail corridors in Glacier National Park, Montana<br />

(U.S.A.). Conservation Biology 6:253–261.<br />

Vannote, R. L., W. G. Minshall, K. W. Cummins, J. S. Sedell, <strong>and</strong> C. E.<br />

Cushing. 1980. The river continuum concept. Canadian Journal <strong>of</strong><br />

Fisheries <strong>and</strong> Aquatic Sciences 37:130–137.<br />

Ward, J. V. 1989. The four-dimensional nature <strong>of</strong> lotic ecosystems.<br />

Journal <strong>of</strong> the North American Benthological Society 8:2–8.<br />

Werner, E. E., <strong>and</strong> D. J. Hall. 1988. Ontogenetic habitat shifts in bluegill:<br />

the foraging rate-predation risk trade-<strong>of</strong>f. Ecology 69:1352–<br />

1366.<br />

Wiens, J. A. 1992. <strong>Ecological</strong> flows across l<strong>and</strong>scape boundaries: a conceptual<br />

overview. Pages 217–235 in A. J. Hansen <strong>and</strong> F. di C<strong>as</strong>tri,<br />

editors. L<strong>and</strong>scape boundaries: consequences for biotic diversity<br />

<strong>and</strong> ecological flow. <strong>Ecological</strong> studies. Volume 92. Springer-Verlag,<br />

New York.<br />

Wiens, J. A., <strong>and</strong> B. T. Milne. 1989. Scaling <strong>of</strong> ‘l<strong>and</strong>scapes’ in l<strong>and</strong>scape<br />

ecology, or, l<strong>and</strong>scape ecology from a beetle’s perspective. L<strong>and</strong>scape<br />

Ecology 3:87–96.<br />

Wiens, J. A., C. S. Crawford, <strong>and</strong> J. R. Gosz. 1985. Boundary dynamics:<br />

a conceptual framework for studying l<strong>and</strong>scape ecosystems. Oikos<br />

45:421–427.<br />

Yahner, R. H. 1988. Changes in wildlife communities near edges. Conservation<br />

Biology 2:333–339.<br />

Yahner, R. H., T. E. Morrell, <strong>and</strong> J. S. Rachael. 1989. Effects <strong>of</strong> edge<br />

contr<strong>as</strong>t on depredation <strong>of</strong> artificial avian nests. Journal <strong>of</strong> Wildlife<br />

Management 53:1135–1138.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!