07.02.2013 Views

DRAFT IMECE2007-43427 - Czech Technical University in Prague

DRAFT IMECE2007-43427 - Czech Technical University in Prague

DRAFT IMECE2007-43427 - Czech Technical University in Prague

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Proceed<strong>in</strong>gs of IMECE07<br />

2007 ASME International Mechanical Eng<strong>in</strong>eer<strong>in</strong>g Congress and Exposition<br />

November 10-16, 2007, Seattle, Wash<strong>in</strong>gton, USA<br />

<strong>DRAFT</strong> <strong>IMECE2007</strong>-<strong>43427</strong><br />

1-D MODEL AND EXPERIMENTAL TESTS OF PRESSURE WAVE SUPERCHARGER<br />

Luděk Pohořelský<br />

Josef Božek Research Center<br />

<strong>Czech</strong> <strong>Technical</strong> <strong>University</strong> <strong>in</strong> <strong>Prague</strong><br />

Technicka 4,CZ-166 07 Praha 6<br />

Phone +420 2 2435-2507<br />

Fax.+420 2 2435 2500<br />

Email :ludek.pohorelsky@fs.cvut.cz<br />

Jiří Vávra<br />

Josef Božek Research Center<br />

<strong>Czech</strong> <strong>Technical</strong> <strong>University</strong> <strong>in</strong><br />

<strong>Prague</strong><br />

Technicka 4,CZ-166 07 Praha<br />

6<br />

Phone +420 2 2435-1827<br />

Fax.+420 2 2435 2500<br />

Email :jiri.vavra@fs.cvut.cz<br />

ABSTRACT<br />

In this contribution an <strong>in</strong>terest<strong>in</strong>g boost<strong>in</strong>g device, called<br />

pressure wave supercharger (PWS) accord<strong>in</strong>g the wave<br />

phenomena <strong>in</strong>side it and tak<strong>in</strong>g advantage of speed of sound<br />

for air compression, is <strong>in</strong>vestigated both at diesel eng<strong>in</strong>e and at<br />

combustion chamber test bench us<strong>in</strong>g 1-D simulation and<br />

experimental measur<strong>in</strong>g. Moreover, combustion eng<strong>in</strong>e<br />

supercharged by PWS has been compared us<strong>in</strong>g 1-D simulation<br />

to turbocharged one at steady state and transient operations.<br />

Pressure wave supercharger is simulated us<strong>in</strong>g detailed model<br />

based on the partial differential equations captur<strong>in</strong>g non-l<strong>in</strong>ear<br />

effects of gas dynamics. The work has been performed us<strong>in</strong>g<br />

the commercial 1-D code GT-Power. Concept of model<strong>in</strong>g used<br />

enables to <strong>in</strong>tegrate the PWS model with all other models<br />

which are already created <strong>in</strong> the commercial codes (like more<br />

precise model of combustion, vehicle model, etc.)<br />

The PWS takes advantage of the direct pressure and enthalpy<br />

exchange between exhaust gases and fresh air <strong>in</strong> narrow<br />

channels to provide boost pressure. Due to the direct contact<br />

between exhaust gas and fresh air a mix<strong>in</strong>g occurs.<br />

Nevertheless, this <strong>in</strong>ternal recirculation of exhaust gas can be<br />

used for lower<strong>in</strong>g of NOx emissions, but <strong>in</strong> the same time it<br />

Philippe Obernesser<br />

RENAULT<br />

TCR GRA 085-1, avenue du Golf - 78288<br />

Guyancourt cedex, France<br />

tel: +33 1 76 85 30 70<br />

fax:+33 1 76 85 77 16<br />

Email : philippe.obernesser@renault.com<br />

Vojtěch Klír<br />

Josef Božek Research Center<br />

<strong>Czech</strong> <strong>Technical</strong> <strong>University</strong> <strong>in</strong><br />

<strong>Prague</strong><br />

Technicka 4,CZ-166 07 Praha<br />

6<br />

Phone +420 2 2435-1855<br />

Fax.+420 2 2435 2500<br />

Email :vojtech.klir@fs.cvut.cz<br />

Jan Macek<br />

Josef Božek Research Center<br />

<strong>Czech</strong> <strong>Technical</strong> <strong>University</strong> <strong>in</strong><br />

<strong>Prague</strong><br />

Technicka 4,CZ-166 07 Praha<br />

6<br />

Phone +420 2 2435-2504<br />

Fax.+420 2 2435 2500<br />

Email :jan.macek@fs.cvut.cz<br />

could deteriorate eng<strong>in</strong>e power as the result of a lack of<br />

oxygen. The <strong>in</strong>ternal mix<strong>in</strong>g has been <strong>in</strong>vestigated us<strong>in</strong>g 1-D<br />

simulation and different possibilities to avoid mix<strong>in</strong>g have been<br />

tested. The PWS has showed dur<strong>in</strong>g the simulation work<br />

behavior it could fulfill demand on a modern car propulsion<br />

system. F<strong>in</strong>ally PWS measurements with a combustion<br />

chamber have been undertaken and compared to the 1-D<br />

simulation results. Us<strong>in</strong>g the results of PWS measurement at<br />

the test bench and the 1-D simulation the usage of PWS <strong>in</strong> fuel<br />

cell applications is discussed, as well.<br />

This work is result<strong>in</strong>g from the collaboration between Josef<br />

Božek Research Center and Renault SA.<br />

Keywords: 1-D code simulation, pressure wave<br />

supercharger, diesel eng<strong>in</strong>e, test bench, flow characteristics,<br />

fuel cell<br />

INTRODUCTION<br />

Current research activities on new propulsion systems<br />

<strong>in</strong>sist on the <strong>in</strong>crease of their efficiency and power. On the<br />

other hand the stake consists <strong>in</strong> reduc<strong>in</strong>g the fuel consumption<br />

and the level of the pollutants produced by such new concepts.<br />

Lower<strong>in</strong>g of emission of the green house gas CO2 forces<br />

1 Copyright © 2007 by ASME


manufactures to develop more economical vehicle and<br />

therefore more efficient eng<strong>in</strong>es. Moreover, <strong>in</strong> case of car<br />

propulsion systems the satisfactory driveability to satisfy<br />

driver’s demands dur<strong>in</strong>g the accelerations has to be provided at<br />

the same time. An approach of utilization of downsized<br />

propulsion systems may lead successfully up to these aims. The<br />

ma<strong>in</strong> idea of downsiz<strong>in</strong>g is the reduction of the swept volume<br />

of the eng<strong>in</strong>e without lower<strong>in</strong>g the orig<strong>in</strong>al output power. The<br />

performance <strong>in</strong>crease of the downsized eng<strong>in</strong>e to the same<br />

power level of the orig<strong>in</strong>al one is achieved by boost<strong>in</strong>g devices.<br />

Eng<strong>in</strong>e researchers and developers are nowadays wonder<strong>in</strong>g,<br />

which boost<strong>in</strong>g devices are the most suitable and so are try<strong>in</strong>g<br />

to f<strong>in</strong>d compromises with regards to costs, packag<strong>in</strong>g, eng<strong>in</strong>e<br />

behavior and emission regulations. In addition to commonly<br />

utilized turbocharger mechanical superchargers as for <strong>in</strong>stance<br />

Roots-type supercharger are more and more placed on the<br />

market. In comparison with these boost<strong>in</strong>g devices the pressure<br />

wave supercharger (PWS) with usage of today’s control<br />

possibilities represents ma<strong>in</strong>ly <strong>in</strong> transient and low-end torque<br />

behavior an extraord<strong>in</strong>ary possibility. The PWS takes<br />

advantages of a unique pr<strong>in</strong>ciple of direct pressure energy<br />

exchange between the exhaust gas and the fresh air <strong>in</strong> a narrow<br />

channel us<strong>in</strong>g nearly 1-D unsteady flow with a dist<strong>in</strong>ctive<br />

contact surface between the both gases.<br />

The idea of the energy exchange between two mediums without<br />

any separation goes down to the beg<strong>in</strong>n<strong>in</strong>g of the 20 th century.<br />

Namely <strong>in</strong> its second decade, along the longitud<strong>in</strong>al axis<br />

perforated drum, a channeled rotor, has been patented by the<br />

German eng<strong>in</strong>eer Burghard - [24] - a mach<strong>in</strong>e deliver<strong>in</strong>g an<br />

un<strong>in</strong>terrupted mass flow of the pressurized air. As the unsteady<br />

flow theory, a necessity for the development of a usable<br />

mach<strong>in</strong>e has not been developed until the 1920’s and 1930’s,<br />

the Burghard’s <strong>in</strong>vention did not succeed to an available<br />

device.<br />

In the 1940’s, the Brown Boveri (BBC, today ABB)<br />

turbocharger eng<strong>in</strong>eer Seippel designed a pressure exchanger<br />

as an air compressor of a gas turb<strong>in</strong>e used as the propulsion of<br />

an experimental locomotive - [28]. He started to call this<br />

exchanger COMPREX accord<strong>in</strong>g to the processes <strong>in</strong> the rotor –<br />

“compression-expansion”.<br />

In the 1950’s took place first experimental attempts <strong>in</strong> us<strong>in</strong>g<br />

COMPREX for supercharg<strong>in</strong>g of truck diesel eng<strong>in</strong>es - [12],<br />

[26], <strong>in</strong> framework of partnership among the ETH Zürich, the<br />

I-T-E Circuit Breaker Company, the BBC and the Saurer<br />

Company.<br />

In the 1970‘s, first experiments of COMPREX supercharged<br />

car diesel eng<strong>in</strong>es followed (partnership between BBC and<br />

Mercedes-Benz) – [30]. In 1979 BBC developed a race version<br />

of PWS for supercharg<strong>in</strong>g of F1 eng<strong>in</strong>e [10], which has been<br />

used only for the practice runs. In 1995, the Swissauto Wenko<br />

Company, which is deal<strong>in</strong>g with development of pressure wave<br />

supercharger up to now - [19], designed for the environmental<br />

organization Greenpeace a so-called SmiLE car with SI eng<strong>in</strong>e<br />

with displacement of 360cm 3 and PWS supercharg<strong>in</strong>g – [20].<br />

Moreover, <strong>in</strong> 1980’s many companies tested the COMPREX -<br />

supercharged diesel eng<strong>in</strong>es, but only two started the serial<br />

production. The Opel Company sold <strong>in</strong> a special Opel Senator<br />

set of about 700 units with 2.3l diesel eng<strong>in</strong>e and pressure<br />

wave supercharg<strong>in</strong>g – [31] whereas Mazda sold about 150 000<br />

COMPREX diesel passenger cars – [4].<br />

Recently, several Universities (ETH Zürich, Indiana <strong>University</strong><br />

Purdue <strong>University</strong> Indianapolis, Michigan State <strong>University</strong>,<br />

<strong>University</strong> of Tokyo, Warsaw <strong>University</strong> and Beij<strong>in</strong>g<br />

<strong>University</strong> of Technology), companies (Swissauto Eng<strong>in</strong>eer<strong>in</strong>g<br />

S.A., Rolls Royce Alison) and governmental research centers<br />

(NASA) <strong>in</strong>vestigate pressure wave process <strong>in</strong>tensively for<br />

various thermal applications. In [4] a comprehensive review of<br />

past and current research <strong>in</strong> develop<strong>in</strong>g of wave rotor<br />

technology is expla<strong>in</strong>ed <strong>in</strong> more details and <strong>in</strong> a well arranged<br />

way.<br />

In framework of our study the PWS has been <strong>in</strong>vestigated and<br />

analyzed at first us<strong>in</strong>g 1-D diesel eng<strong>in</strong>e simulation. Then by<br />

means of experimental tests at the test bench to f<strong>in</strong>d out<br />

whether the pressure wave supercharg<strong>in</strong>g with regard to<br />

today’s state of art <strong>in</strong> control, actuation, materials and<br />

technology could fulfill requirements on a modern and<br />

perspective car propulsion system and become a serious<br />

competitor to current boost<strong>in</strong>g systems.<br />

1-D SIMULATION OF PWS SUPERCHARGED DIESEL<br />

ENGINE<br />

For the study the Renault 1.5 diesel eng<strong>in</strong>e has been used<br />

for 1-D <strong>in</strong>vestigations to compare PWS supercharged eng<strong>in</strong>e to<br />

the turbocharged one.<br />

Stroke 80.5 mm<br />

Bore 76 mm<br />

Total swept volume 1461 cm3<br />

Number of cyl<strong>in</strong>ders 4<br />

Compression ratio 16:1<br />

Combustion system 2valves/cyl<strong>in</strong>der<br />

Direct <strong>in</strong>jection<br />

Table 1: Diesel eng<strong>in</strong>e parameters<br />

1-D model of PWS used, whose qualitative reaction to changes<br />

<strong>in</strong> design are <strong>in</strong> good agreement with published sources [1],[2]<br />

and with a simple model based on the theory of adiabatic shock<br />

waves and on the l<strong>in</strong>ear gas dynamics pr<strong>in</strong>ciples, has been<br />

created <strong>in</strong> commercial code GT-Power and is <strong>in</strong>troduced and<br />

described <strong>in</strong> detail <strong>in</strong> [37].<br />

Simulation of Full Load of Eng<strong>in</strong>e with PWS<br />

Diagrams <strong>in</strong> Figure 1-Figure 7 po<strong>in</strong>t out comparisons of<br />

PWS supercharged eng<strong>in</strong>es with turbocharged one. PWSs with<br />

unity length-to-diameter ratio of rotor (quadratic design) have<br />

been simulated. The PWS sucks more air <strong>in</strong>to its channeled<br />

rotor than it compresses and delivers to the eng<strong>in</strong>e cyl<strong>in</strong>der<br />

[25]. This fresh air scavenges and cools down the rotor and<br />

2 Copyright © 2007 by ASME


flows direct to the low pressure part of exhaust manifold PWS<br />

downstream. Therefore, the diameter of fresh air pip<strong>in</strong>gs and<br />

diameter of exhaust pip<strong>in</strong>gs PWS downstream have been<br />

enlarged <strong>in</strong> comparison to turbocharged eng<strong>in</strong>e. (In this study<br />

the diameter of particular pip<strong>in</strong>gs equals to 75% of PWS rotor<br />

diameter.)<br />

Air fuel ratio for PWS supercharged eng<strong>in</strong>es has been kept the<br />

same as for turbocharged eng<strong>in</strong>e.<br />

Proper function of PWS depends on the control geometry (i.e.<br />

location of <strong>in</strong>let and outlet orifices at the air and exhaust<br />

flanges of PWS).Two different types of control geometry have<br />

been simulated: control geometry previously optimized by<br />

method of characteristics based on the l<strong>in</strong>ear gas dynamics [37]<br />

and patented geometry from Swissauto Eng<strong>in</strong>eer<strong>in</strong>g S.A. [7]<br />

The PWS speed has been optimized to reach maximum eng<strong>in</strong>e<br />

torque at each operation po<strong>in</strong>t.<br />

Boost pressure behavior is presented <strong>in</strong> Figure 1. The smaller<br />

the PWS the higher boost pressure can be achieved. The<br />

PWS70 (i.e. with rotor diameter and rotor length of 70 mm)<br />

achieves the highest boost pressure. The usage of the control<br />

geometry from Swissauto Company at PWS83 and PWS95<br />

<strong>in</strong>creased the boost pressure significantly.<br />

Boost pressure [bar]<br />

3.2<br />

3<br />

2.8<br />

2.6<br />

2.4<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

Boost pressure comparison<br />

PWS83<br />

PWS83_patented_Swissauto_geometry<br />

PWS70<br />

PWS95<br />

Turbo<br />

PWS95_patented_Swissauto_geometry<br />

1<br />

1000 1500 2000 2500 3000 3500 4000 4500<br />

Eng<strong>in</strong>e speed [1/m<strong>in</strong>]<br />

Figure 1: Comparison of PWS and turbocharger boost pressure<br />

In comparison to boost pressure, the eng<strong>in</strong>e torque (Figure 2)<br />

of PWS supercharged eng<strong>in</strong>es falls down at highest eng<strong>in</strong>e<br />

speeds. This is caused by <strong>in</strong>ternal exhaust gas recirculation<br />

(Figure 3) over the channeled rotor of PWS, which deteriorates<br />

the eng<strong>in</strong>e torque. Due to the direct contact of exhaust gas and<br />

fresh air, the exhaust gas can be delivered direct to the eng<strong>in</strong>e<br />

cyl<strong>in</strong>der together with the compressed air. The smaller PWS the<br />

higher <strong>in</strong>ternal exhaust gas recirculation.<br />

Torque [N.m]<br />

260<br />

240<br />

220<br />

200<br />

180<br />

160<br />

Eng<strong>in</strong>e torque comparison<br />

140<br />

PWS83<br />

PWS83_patented_Swissauto_geometry<br />

120<br />

PWS70<br />

PWS95<br />

100<br />

Turbo<br />

80<br />

PWS95_patented_Swissauto_geometry<br />

1000 1500 2000 2500 3000 3500 4000 4500<br />

Eng<strong>in</strong>e speed [1/m<strong>in</strong>]<br />

Figure 2: Comparison of eng<strong>in</strong>e torque<br />

Figure 4 presents the <strong>in</strong>dicated specific fuel consumption. As<br />

the computation model of combustion for PWS supercharged<br />

eng<strong>in</strong>es was the same as <strong>in</strong> case of turbocharged eng<strong>in</strong>e (i.e. it<br />

did not take <strong>in</strong>to account the <strong>in</strong>creased amount of exhaust gas<br />

<strong>in</strong> the eng<strong>in</strong>e cyl<strong>in</strong>der) the differences <strong>in</strong> <strong>in</strong>dicated specific fuel<br />

consumption are given only by pump<strong>in</strong>g work dur<strong>in</strong>g the<br />

cyl<strong>in</strong>der exchange. Figure 4 and Figure 5 demonstrate<br />

favorable behavior of the exhaust back pressure of the PWS<br />

supercharged eng<strong>in</strong>es. Up to the middle eng<strong>in</strong>e speed the boost<br />

pressure is dist<strong>in</strong>ctly higher than the back pressure.<br />

EGR [%]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Exhaust gas recirculation <strong>in</strong>to eng<strong>in</strong>e cyl<strong>in</strong>der<br />

PWS83<br />

PWS83_patented_Swissauto_geometry<br />

PWS70<br />

PWS95<br />

PWS95_patented_Swissauto_geometry<br />

0<br />

1000 1500 2000 2500 3000 3500 4000 4500<br />

Eng<strong>in</strong>e speed [1/m<strong>in</strong>]<br />

Figure 3: Exhaust gas recirculation <strong>in</strong>to eng<strong>in</strong>e cyl<strong>in</strong>der of<br />

PWS eng<strong>in</strong>es<br />

ISFC [g/kW/h]<br />

240<br />

230<br />

220<br />

210<br />

200<br />

190<br />

Idicated specific fuel consumption<br />

PWS83<br />

PWS83_patented_Swissauto_geometry<br />

PWS70<br />

PWS95<br />

Turbo<br />

PWS95_patented_Swissauto_geometry<br />

180<br />

1000 1500 2000 2500 3000 3500 4000 4500<br />

Eng<strong>in</strong>e speed [1/m<strong>in</strong>]<br />

Figure 4: Comparison of <strong>in</strong>dicated specific fuel consumption<br />

3 Copyright © 2007 by ASME


Pressure [bar]<br />

3.4<br />

3.2<br />

3<br />

2.8<br />

2.6<br />

2.4<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

Boost pressure and exhaust back pressure<br />

Turbo-boost pressure<br />

PWS95_patented_Swissauto_geometry-boost pressure<br />

Turbo-back pressure<br />

PWS95_patented_Swissauto_geometry-back pressure<br />

1<br />

1000 1500 2000 2500 3000 3500 4000 4500<br />

Eng<strong>in</strong>e speed [1/m<strong>in</strong>]<br />

Figure 5: Boost pressure and back pressure behavior<br />

PWS Speed<br />

Figure 6 shows the PWS speed characteristics. As the time<br />

of pressure wave propagation from exhaust to air side<br />

decreases with the reduction of the PWS size, the smallest<br />

PWS achieves the highest speeds.<br />

Diagrams on Figure 7 present dependences of the eng<strong>in</strong>e toque,<br />

boost pressure, <strong>in</strong>dicated specific fuel consumption and the<br />

exhaust gas recirculation on the PWS speed. Each observed<br />

quantity achieves its optimum at a certa<strong>in</strong> PWS speed. The<br />

<strong>in</strong>crease of the PWS speed contributes to the lower<strong>in</strong>g of the<br />

exhaust gas recirculation.<br />

PWS speed [1/m<strong>in</strong>]<br />

15000<br />

14000<br />

13000<br />

12000<br />

11000<br />

10000<br />

9000<br />

PWS speed optimized for maximum eng<strong>in</strong>e torque<br />

PWS83<br />

PWS70<br />

PWS95<br />

8000<br />

1000 1500 2000 2500 3000 3500 4000 4500<br />

Eng<strong>in</strong>e speed [1/m<strong>in</strong>]<br />

Figure 6: PWS speed characteristics<br />

Influence of PWS speed on eng<strong>in</strong>e parameters<br />

200<br />

1.9<br />

1.8<br />

1.7<br />

1.6<br />

1.5<br />

150<br />

1.4<br />

PWS83-eng<strong>in</strong>e torque<br />

1.3<br />

PWS83-boost pressure<br />

1.2<br />

1.1<br />

100<br />

1<br />

10000 11000 12000 13000 14000 15000 16000<br />

PWS speed [1/m<strong>in</strong>]<br />

Eng<strong>in</strong>e torque [N.m]<br />

Boost pressure [bar]<br />

ISFC [g/kW/h]<br />

230<br />

225<br />

220<br />

215<br />

Influence of PWS speed on eng<strong>in</strong>e parameters<br />

PWS83-ISFC<br />

PWS83-EGR<br />

10000 11000 12000 13000 14000 15000 16000<br />

PWS speed [1/m<strong>in</strong>]<br />

Figure 7: Dependence of eng<strong>in</strong>e parameters on PWS speed for<br />

eng<strong>in</strong>e speed of 1500rpm<br />

Variable Gas Pocket<br />

In order to extend the operat<strong>in</strong>g range of the PWS, so<br />

called pocket <strong>in</strong> the <strong>in</strong>ner face of air and exhaust flanges have<br />

been patented by BBC <strong>in</strong> the 1960’s. Compression pocket,<br />

expansion pocket and gas pocket (Figure 8) by pass the gas<br />

between the channels and the control orifices and thus improve<br />

13<br />

11<br />

9<br />

7<br />

5<br />

3<br />

1<br />

EGR [%]<br />

the operation of the supercharger away from the optimum<br />

(tuned) po<strong>in</strong>t. Moreover, the gas pocket can be used <strong>in</strong> function<br />

of the waste-gate for control of the boost pressure.<br />

Variable Gas Pocket<br />

Exhaust <strong>in</strong>let orifice<br />

Exhaust outlet orifice<br />

Exhaust<br />

Flange<br />

Channel<br />

Low-Pressure<br />

part<br />

Air <strong>in</strong>let orifice<br />

Expansion Pocket<br />

Air outlet orifice<br />

High-Pressure<br />

part<br />

Compression<br />

Pocket<br />

Air Flange<br />

Figure 8: Pressure wave diagram and variable gas pocket <strong>in</strong><br />

function of waste gate<br />

The variable gas pocket bypasses pressurized exhaust gas to the<br />

exhaust outlet via the rotor channel. The bypassed exhaust gas<br />

amplifies the expansion wave <strong>in</strong> the low-pressure part, which<br />

provides better fresh air suction <strong>in</strong>to channeled rotor.<br />

The function and efficiency of the variable gas pocket have<br />

been confirmed by means of the simulation. Simulation results<br />

presented <strong>in</strong> Figure 1-Figure 7 show turbocharger controlled by<br />

the variable turb<strong>in</strong>e geometry, whereas the boost pressure of<br />

PWS has not been controlled.<br />

Diagrams on Figure 9 show results of boost pressure control<br />

for PWS95 with the variable gas pocket at highest eng<strong>in</strong>e<br />

speeds (Figure 9 left). Moreover, utilization of the variable gas<br />

pocket for boost pressure control contributes to the lower<strong>in</strong>g of<br />

the <strong>in</strong>ternal exhaust gas recirculation (Figure 9 right).<br />

Boost pressure [bar]<br />

2.9<br />

2.8<br />

2.7<br />

2.6<br />

2.5<br />

Boost pressure control by variable gas pocket<br />

PWS95 w/o VGP control<br />

PWS with VGP<br />

2.4<br />

3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500<br />

Eng<strong>in</strong>e speed [1/m<strong>in</strong>]<br />

Influence of gas pocket control on the <strong>in</strong>ternal gas<br />

recirculation<br />

20<br />

19<br />

18<br />

17<br />

16<br />

PWS95 w/o VGP control<br />

15<br />

14<br />

13<br />

12<br />

PWS with VGP<br />

3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500<br />

EGR [%]<br />

Eng<strong>in</strong>e speed [1/m<strong>in</strong>]<br />

Figure 9: Influence of variable gas pocket control (VGP) on<br />

the boost pressure and <strong>in</strong>ternal exhaust gas recirculation<br />

Influence of Flow Losses<br />

Figure 10 describes <strong>in</strong>fluence of flow losses on the PWS<br />

behavior. Flow losses have been <strong>in</strong>creased by chang<strong>in</strong>g <strong>in</strong>let<br />

(Air <strong>in</strong>let orifice upstream -Figure 8) and outlet (Exhaust outlet<br />

orifice downstream -Figure 8) pip<strong>in</strong>gs diameters from 75% to<br />

40% of PWS rotor diameter.<br />

From the 1-D simulation follows that to throttle the air <strong>in</strong>let and<br />

exhaust outlet of PWS deteriorates scaveng<strong>in</strong>g of the PWS<br />

4 Copyright © 2007 by ASME


otor by <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>ternal exhaust gas recirculation, and<br />

consequently lowers eng<strong>in</strong>e torque considerably.<br />

Torque [N.m]<br />

230<br />

210<br />

190<br />

170<br />

150<br />

130<br />

110<br />

90<br />

Eng<strong>in</strong>e torque comparison<br />

70<br />

PWS83_pip<strong>in</strong>gs with diameter of 75% of PWS rotor diameter<br />

50 PWS83_pip<strong>in</strong>gs with diameter of 50% of PWS rotor diameter<br />

30<br />

PWS83_pip<strong>in</strong>gs with diameter of 40% of PWS rotor diameter<br />

1000 1500 2000 2500 3000 3500 4000 4500<br />

Eng<strong>in</strong>e speed [1/m<strong>in</strong>]<br />

Figure 10: Influence of flow losses on the PWS eng<strong>in</strong>e torque<br />

Transient Simulation of Eng<strong>in</strong>e with PWS<br />

To <strong>in</strong>vestigate the transient response of PWS<br />

supercharged eng<strong>in</strong>e the eng<strong>in</strong>e torque vary from the low load<br />

to full load at a constant eng<strong>in</strong>e speed. The load of eng<strong>in</strong>e was<br />

def<strong>in</strong>ed to be equal to the <strong>in</strong>stantaneous eng<strong>in</strong>e torque, which<br />

prevents speed changes. S<strong>in</strong>ce the eng<strong>in</strong>e torque rises dur<strong>in</strong>g<br />

the load step faster than the eng<strong>in</strong>e speed, this test of dynamic<br />

behavior corresponds to the first <strong>in</strong>stant of vehicle acceleration.<br />

Boost pressure [bar]<br />

1.8<br />

1.7<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

Boost pressure response<br />

PWS83<br />

Turbo<br />

1<br />

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0<br />

Time [sec]<br />

Figure 11: Boost pressure response for 1.5 diesel eng<strong>in</strong>e with<br />

PWS83 at eng<strong>in</strong>e speed of 1250 rpm<br />

The PWS boost pressure <strong>in</strong>creases steeper than the<br />

turbocharger one (Figure 11). Dur<strong>in</strong>g the load step an <strong>in</strong>creased<br />

<strong>in</strong>ternal exhaust gas recirculation appears (Figure 13), this is<br />

the reason of the decreas<strong>in</strong>g delay at the middle of the load step<br />

between the PWS supercharged and turbocharged eng<strong>in</strong>e<br />

(Figure 12).<br />

Eng<strong>in</strong>e torque [N.m]<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Eng<strong>in</strong>e torque response<br />

PWS83<br />

Turbo<br />

0<br />

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0<br />

Time [sec]<br />

Figure 12: Torque response for 1.5 diesel eng<strong>in</strong>e with PWS83<br />

at eng<strong>in</strong>e speed of 1250 rpm<br />

EGR [%]<br />

26<br />

21<br />

16<br />

11<br />

6<br />

Internal exhasut gas recirculation dur<strong>in</strong>g transient<br />

PWS83<br />

1<br />

1.5 2.0 2.5 3.0 3.5 4.0<br />

Time [sec]<br />

Figure 13: Internal exhaust gas recirculation <strong>in</strong> transient<br />

operation<br />

Dur<strong>in</strong>g the simulation of spark-ignited eng<strong>in</strong>e, presented <strong>in</strong><br />

[38], more considerable deterioration of eng<strong>in</strong>e torque appeared<br />

than <strong>in</strong> case of 1.5 diesel eng<strong>in</strong>e. Change of PWS speed<br />

(Figure 14 right) dur<strong>in</strong>g the transient operation was an efficient<br />

remedy to improve eng<strong>in</strong>e torque behavior (Figure 14 left) and<br />

to decrease the <strong>in</strong>ternal exhaust gas recirculation <strong>in</strong> transient<br />

operation.<br />

Eng<strong>in</strong>e torque [N.m]<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1.2 SI Eng<strong>in</strong>e torque response<br />

PWS83_constant_speed<br />

Turbo<br />

PWS83_with_speed_control<br />

1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Time [s]<br />

PWS speed [rpm]<br />

PWS speed control dur<strong>in</strong>g the load step<br />

19000<br />

18000<br />

17000<br />

16000<br />

15000<br />

14000<br />

13000<br />

12000<br />

1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Time [s]<br />

Figure 14: Eng<strong>in</strong>e torque and its remedy dur<strong>in</strong>g the load step<br />

of spark ignited 1.2l eng<strong>in</strong>e at eng<strong>in</strong>e speed of 2000rpm from<br />

[38]<br />

EXPERIMENTAL TESTS ON PWS<br />

For the eng<strong>in</strong>e 1-D simulation, presented <strong>in</strong> this paper, a<br />

PWS model has been used, whose physical behavior was<br />

representative enough. From the 1-D eng<strong>in</strong>e simulation a<br />

favorable PWS low end torque behavior and transient response<br />

arise. Moreover, the PWS could be with advantage used for<br />

control of quantity of recycled exhaust gas to combustion<br />

eng<strong>in</strong>e. However, the <strong>in</strong>ternal exhaust gas recirculation, boost<br />

pressure and mass flow value should be checked and settled to<br />

enable the model. Therefore, to keep develop<strong>in</strong>g 1-D model of<br />

supercharg<strong>in</strong>g system with PWS the PWS operat<strong>in</strong>g po<strong>in</strong>ts<br />

have been tested and measured at the combustion chamber test<br />

bench with open circuit (Figure 15). The specimen of tested<br />

PWS was model CX93 used by Mazda Company for<br />

supercharg<strong>in</strong>g of 2.0l diesel eng<strong>in</strong>e [27].<br />

In framework of experimental test<strong>in</strong>g of PWS the mass flow<br />

range at PWS air <strong>in</strong>let (AI), air outlet (AO) and exhaust <strong>in</strong>let<br />

(EI), the PWS speed range and range of the PWS exhaust <strong>in</strong>let<br />

(EI) temperature have been largely explored.<br />

5 Copyright © 2007 by ASME


Electrical motor<br />

Mass flow control<br />

m2<br />

(0 to 200g/s)<br />

p2<br />

T2<br />

(RPMc from 0 to 20000)<br />

p1<br />

m2, C<br />

AO<br />

AI<br />

m1<br />

p1 pressure control (1 to 3b)<br />

Tatm<br />

Noise<br />

Figure 15: Scheme of the test bed<br />

p3 T3<br />

EI<br />

EO<br />

Mass flow control<br />

m3<br />

(0 to 200g/s)<br />

p4<br />

m3, C<br />

Backpressure<br />

floodgate<br />

p4 pressure control (1 to 3 b)<br />

The PWS test bench has been created us<strong>in</strong>g the exist<strong>in</strong>g<br />

turbocharger test bench (equipped with the combustion<br />

chamber and the external source of constant boost air pressure<br />

of 350 kPa and mass flow up to approximately 1000 kg/h) and<br />

its adopt<strong>in</strong>g for PWS tests at Josef Božek Research Center<br />

(JBRC) - Figure 16.<br />

AI<br />

Figure 16: PWS at the combustion chamber test bed<br />

Mass flow and temperature have been enforced at the exhaust<br />

<strong>in</strong>let (EI). EI mass flow was cont<strong>in</strong>uous and has been varied<br />

between 0-200 g/s. Air outlet (AO) and exhaust <strong>in</strong>let (EI) mass<br />

flows have been controlled separately by means of remotely<br />

controlled slide valves enabl<strong>in</strong>g precise tun<strong>in</strong>g of flows. Mass<br />

flow at air outlet (AO) has been controlled at the same value as<br />

that of exhaust <strong>in</strong>let (EI). The temperature has been scanned<br />

from 800K to 1050K at exhaust <strong>in</strong>let.<br />

Measur<strong>in</strong>g of EI and AO mass flows has been performed us<strong>in</strong>g<br />

meter<strong>in</strong>g orifices <strong>in</strong> pipel<strong>in</strong>es. AI mass flow has been measured<br />

us<strong>in</strong>g <strong>in</strong>take nozzle.<br />

EI<br />

AO<br />

EO<br />

All temperature measurements have been carried out by<br />

electrically isolated thermocouples. The most problematic<br />

temperature measurement was the temperature T3 at EI after the<br />

combustion chamber. Therefore, five thermocouples have been<br />

utilized to obta<strong>in</strong> the temperature distribution with<strong>in</strong> the<br />

manifold.<br />

To estimate the <strong>in</strong>ternal exhaust gas recirculation of PWS molar<br />

fractions of CO2 at EI and AO have been measured by means of<br />

exhaust gas analyzer.<br />

The PWS has been driven directly by electrical motor, whose<br />

speed has been controlled by frequency converter and could<br />

vary between 0-20000 rpm. The PWS speed has been measured<br />

us<strong>in</strong>g optical sensor. As the PWS had to be braked <strong>in</strong> specific<br />

operation regimes, the brake resistors had to be additionally<br />

connected to the frequency converter.<br />

In framework of this project a new automated data acquisition<br />

system has been developed under the Testpo<strong>in</strong>t development<br />

environment, which enabled to display all <strong>in</strong>stant measured<br />

values and control panel with diagrams show<strong>in</strong>g their trends<br />

(Figure 17).<br />

DAQ Control Panel<br />

with time history<br />

diagram for settl<strong>in</strong>g<br />

identification<br />

Gas analyzer<br />

display<br />

Figure 17: Displays of measured values and DAQ software<br />

control panel with time history diagrams.<br />

Performance maps of measured PWS<br />

Diagrams on Figure 18-Figure 23 show performance maps for<br />

exhaust <strong>in</strong>let temperature of 900K. The total PWS efficiency,<br />

AO temperature, <strong>in</strong>ternal exhaust gas recirculation, air <strong>in</strong>let<br />

mass flow and electrical <strong>in</strong>put to PWS are depicted legible <strong>in</strong><br />

form commonly used for turbochargers, so these maps can be<br />

with advantage used for direct comparison to turbochargers<br />

maps.<br />

From the flow characteristics diagram on Figure 18 the<br />

<strong>in</strong>fluence of PWS speed on boost pressure ratio is clearly<br />

visible. For PWS speed from 14000 rpm to 18000 rpm the<br />

highest PWS total efficiencies are achieved (Figure 19).<br />

Lower<strong>in</strong>g of the PWS speed decreases the PWS efficiency and<br />

<strong>in</strong>creases the boost pressure (Figure 18). From a certa<strong>in</strong> mass<br />

flow, here for mass flow higher than 550kg/h, the PWS boost<br />

pressure ratio falls abruptly down.<br />

6 Copyright © 2007 by ASME


Figure 18: PWS performance map of PWS speed for EI<br />

temperature of 900K<br />

Internal exhaust gas recirculation over the channeled rotor is<br />

presented <strong>in</strong> Figure 20. In the PWS speed range from<br />

10000rpm to 20000rpm no recirculation appears up to the mass<br />

flow of 400kg/h.<br />

The AO temperatures traces are shown <strong>in</strong> Figure 21. Up to the<br />

PWS speed of 16000 rpm the <strong>in</strong>crease of PWS speed decreases<br />

the AO temperature. AO temperature starts to rise significantly<br />

bellow the PWS speed of 10000 rpm.<br />

The PWS sucks <strong>in</strong> AI much more fresh air than it delivers to<br />

the air outlet. Amount of sucked fresh air <strong>in</strong>creases with the<br />

<strong>in</strong>crease of the AO mass flow (Figure 22) whereas for the EI<br />

mass flows from 400 to 650 kg/h there is no considerable<br />

difference between the sucked amounts of fresh air <strong>in</strong>to PWS.<br />

The diagram on Figure 23 presents power <strong>in</strong>put to the electrical<br />

motor, which drives the PWS. The negative sign of the power<br />

<strong>in</strong>put means that the PWS drives the el. motor.<br />

Figure 19: PWS performance map of PWS total efficiency for<br />

EI temperature of 900K<br />

Figure 20: PWS performance map of <strong>in</strong>ternal exhaust gas<br />

recirculation for EI temperature of 900K<br />

Figure 21: PWS performance map of air outlet (AO)<br />

temperature for EI temperature of 900K<br />

Figure 22: PWS performance map for air <strong>in</strong>let mass flow for<br />

EI temperature of 900K<br />

7 Copyright © 2007 by ASME


Figure 23: PWS performance map for electrical power<br />

<strong>in</strong>put/output of PWS for temperature of 900K<br />

Influence of the temperature at PWS exhaust <strong>in</strong>let<br />

Diagrams <strong>in</strong> Figure 24-Figure 27 present <strong>in</strong>fluence of the<br />

EI temperature for four different levels of EI pressure p3 (1.5,<br />

2, 2.5 and 3 bar - absolute). The PWS operation po<strong>in</strong>ts have<br />

been measured for EI temperature of 800K, 900K and 1050K.<br />

The <strong>in</strong>crease of the EI temperature <strong>in</strong>creases the boost pressure.<br />

The highest EI temperature of 1050K extended the range where<br />

the boost pressure is higher than the back pressure p3 (Figure<br />

24).<br />

p2 [kPa]<br />

200<br />

150<br />

100<br />

50<br />

Relative pressures<br />

0<br />

0 5000 10000 15000 20000 25000<br />

PWS speed [rpm]<br />

p3=50kPa T3=800K p3=100kPa T3=800K p3=150kPa T3=800K p3=200kPa T3=800K<br />

p3=50kPa T3=900K p3=100kPa T3=900K p3=150kPa T3=900K p3=200kPa T3=900K<br />

p3=50kPa T3=1050K p3=100kPa T3=1050K p3=150kPa T3=1050K p3=200kPa T3=1050K<br />

Figure 24: Boost pressure <strong>in</strong> dependence on the EI temperature<br />

m3 [kg/h]<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 5000 10000 15000 20000 25000<br />

PWS speed [rpm]<br />

p3=50kPa T3=800K p3=100kPa T3=800K p3=150kPa T3=800K p3=200kPa T3=800K<br />

p3=50kPa T3=900K p3=100kPa T3=900K p3=150kPa T3=900K p3=200kPa T3=900K<br />

p3=50kPa T3=1050K p3=100kPa T3=1050K p3=150kPa T3=1050K p3=200kPa T3=1050K<br />

Figure 25: EI mass flow <strong>in</strong> dependence on the EI temperature<br />

A lower EI mass flow is necessary with EI temperature <strong>in</strong>crease<br />

to achieve the same EI pressure (Figure 25). The <strong>in</strong>crease <strong>in</strong> EI<br />

temperature decreases the <strong>in</strong>ternal exhaust gas recirculation<br />

(Figure 26) and deteriorates the PWS efficiency (Figure 27).<br />

egr [1]<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 5000 10000 15000 20000 25000<br />

PWS speed [rpm]<br />

p3=50kPa T3=800K p3=100kPa T3=800K p3=150kPa T3=800K p3=200kPa T3=800K<br />

p3=50kPa T3=900K p3=100kPa T3=900K p3=150kPa T3=900K p3=200kPa T3=900K<br />

p3=50kPa T3=1050K p3=100kPa T3=1050K p3=150kPa T3=1050K p3=200kPa T3=1050K<br />

Figure 26: Internal exhaust gas recirculation <strong>in</strong> dependence on<br />

EI temperature<br />

etaPWS [1]<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0 5000 10000 15000 20000 25000<br />

PWS speed [rpm]<br />

p3=100kPa T3=800K p3=100kPa T3=900K p3=100kPa T3=1050K<br />

Figure 27: Total efficiency of PWS <strong>in</strong> dependence on EI<br />

temperature<br />

Influence of Flow Losses <strong>in</strong> Air Inlet<br />

The <strong>in</strong>fluence of the flow losses <strong>in</strong> AI has been<br />

<strong>in</strong>vestigated at EI temperature of 900K and PWS speed of<br />

15000 rpm for two orifice plates with diameters of 35 mm and<br />

50 mm (orig<strong>in</strong> AI manifold diameter of 100 mm).<br />

The orifice with diameter 35 mm deteriorates the boost<br />

pressure significantly above the mass flow of 400 kg/h. The<br />

throttl<strong>in</strong>g of the AI mass flow <strong>in</strong>creases the AO and EO<br />

temperatures and the <strong>in</strong>ternal exhaust gas recirculation. On the<br />

other hand, the reduction of the AI mass flow improves the<br />

PWS efficiency at low EI mass flow rates (Figure 29 left).<br />

All diagrams described <strong>in</strong> above paragraphs have been<br />

measured without boost pressure control us<strong>in</strong>g waste gate<br />

(WG). Diagrams <strong>in</strong> Figure 28 and Figure 29 show <strong>in</strong>fluence of<br />

waste gate control on PWS operation, as well. The waste gate<br />

trims the boost pressure and tries to keep it approx. constant<br />

(Figure 28 left). The waste gate does not <strong>in</strong>fluence the <strong>in</strong>ternal<br />

exhaust gas recirculation (Figure 29 right).<br />

8 Copyright © 2007 by ASME


πC [1]<br />

2.60<br />

2.40<br />

2.20<br />

2.00<br />

1.80<br />

1.60<br />

1.40<br />

1.20<br />

1.00<br />

dia 35 mm<br />

dia 50 mm<br />

WG<br />

w / o Loss<br />

0 100 200 300 400 500 600 700<br />

m 2red [kg/h]<br />

p1 [kPa]<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

dia 35 mm<br />

3<br />

2<br />

1<br />

dia 50 mm<br />

0 100 200 300 400<br />

m3 [kg/h]<br />

500 600 700<br />

Figure 28: Influence of pressure losses (right) and waste gate<br />

on pressure ratio <strong>in</strong> dependence on reduced AO mass flow<br />

etaPWS [1]<br />

0.50<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

dia 35 mm<br />

0.15<br />

dia 50 mm<br />

0.10<br />

0.05<br />

0.00<br />

WG<br />

w / o Loss<br />

0 100 200 300 400 500 600 700<br />

m2, m3 [kg/h]<br />

egr [1]<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

dia 35 mm<br />

dia 50 mm<br />

WG<br />

w / o Loss<br />

0 100 200 300 400 500 600 700<br />

m2, m3 [kg/h]<br />

Figure 29: Influence of pressure losses <strong>in</strong> AI manifold on PWS<br />

efficiency and <strong>in</strong>ternal egr<br />

Influence of Flow Losses <strong>in</strong> Exhaust Outlet<br />

The EO pressure has been <strong>in</strong>creased us<strong>in</strong>g throttle which has<br />

been controlled by stepper electric motor. A snail gear box has<br />

been placed between the throttle and the electrical motor to<br />

prevent throttle flapp<strong>in</strong>g by EO flow.<br />

PWS<br />

EO<br />

Flow losses<br />

Figure 30: EO throttle controlled by stepper electrical motor<br />

with snail box<br />

Diagrams <strong>in</strong> Figure 31 and Figure 32 present the sensitivity of<br />

the PWS on the EO pressure for EI mass flows of (100,300,400<br />

and 500) kg/h and for EI temperature of 900K. The PWS speed<br />

has been kept at 15 000rpm. The change <strong>in</strong> EO pressure by<br />

2kPa deteriorates the boost pressure significantly (Figure 31).<br />

The <strong>in</strong>creased EO pressure lowers the amount of sucked AI<br />

mass flow and <strong>in</strong>creases the <strong>in</strong>ternal exhaust gas recirculation<br />

rises (Figure 32).<br />

Moreover, <strong>in</strong>creased EO pressure may cause the back flow of<br />

the exhaust gas to the AI.<br />

Relative pressure p2 [kPa]<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

100kg/h 300kg/h 400kg/h 500kg/h<br />

0<br />

95.5 96 96.5 97 97.5 98 98.5 99 99.5<br />

Absolute pressure p4 [kPa]<br />

Figure 31: Influence of the EO pressure on the boost pressure<br />

egr [1]<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

100kg/h 300kg/h 400kg/h 500kg/h<br />

0<br />

95.5 96 96.5 97 97.5 98 98.5 99 99.5<br />

Absolute pressure p4 [kPa]<br />

Figure 32: Influence of the EO pressure on the AI mass flow<br />

Supercharg<strong>in</strong>g of the PWS<br />

In framework of the measurement the feasibility of the<br />

PWS for the two stage supercharg<strong>in</strong>g has been <strong>in</strong>vestigated.<br />

To enable pressure <strong>in</strong>crease <strong>in</strong> AI the test bench has been<br />

equipped with <strong>in</strong>let pipel<strong>in</strong>e of pressurized air (Figure 33).<br />

External source could deliver constant boost air pressure of<br />

350kPa and mass flow approx. of 1000kg/h <strong>in</strong>to AI. AI mass<br />

flow has been controlled us<strong>in</strong>g slide valve, which has been<br />

actuated by an electric stepper motor. Moreover, meter<strong>in</strong>g<br />

orifice has been placed <strong>in</strong>to the AI pipel<strong>in</strong>e.<br />

The measurement has been performed for EI mass flow of 300<br />

kg/h and for two different PWS speeds of 15000 rpm (Figure<br />

34) and 10000 rpm (Figure 35). As <strong>in</strong> the all previous<br />

paragraphs the mass flow at air outlet (AO) has been controlled<br />

at the same value as that of exhaust <strong>in</strong>let (EI). The EI<br />

temperature has been kept at 900K. For the fully opened EO<br />

throttle (Figure 30) the air <strong>in</strong>let mass flow has been set to be<br />

the same as the naturally aspirated mass flow for this PWS<br />

operation po<strong>in</strong>t. By adjust<strong>in</strong>g of the EO throttle the EO and AI<br />

pressures have been <strong>in</strong>creased.<br />

9 Copyright © 2007 by ASME


Figure 33: Supercharg<strong>in</strong>g of PWS<br />

The boost pressure and EI pressure rise with the AI pressure<br />

<strong>in</strong>crease both for 10000 rpm and 15000rpm (Figure 34 and<br />

Figure 35 left).The boost pressure <strong>in</strong>creases by the same value<br />

as that set at AI.<br />

The AI mass flow did not change with the AI pressure <strong>in</strong>crease<br />

(Figure 34 and Figure 35 right). No <strong>in</strong>ternal exhaust gas<br />

recirculation appeared at both cases.<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Relative pressures [kPa]<br />

PWS Supercharg<strong>in</strong>g<br />

15 000 rpm, m2=m3=300 kg/h, T3=900K<br />

p2_300<br />

p3_300<br />

p4_300<br />

0 10 20 30 40 50 60 70<br />

Relative pressure p1 [kPa]<br />

m1, m2, m3 [kg/h]<br />

580<br />

530<br />

480<br />

430<br />

380<br />

330<br />

280<br />

230<br />

180<br />

Mass flows<br />

m1<br />

m2<br />

m3<br />

0 10 20 30 40 50 60 70<br />

Relative pressure p1 [kPa]<br />

Figure 34: Influence of AI pressure on AO, EI and EO<br />

pressures and on AI mass flow for PWS speed of 15000 rpm<br />

Relative pressures [kPa]<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Pipel<strong>in</strong>e of pressurized<br />

air to PWS air <strong>in</strong>let<br />

PWS Supercharg<strong>in</strong>g<br />

10 000 rpm, m2=m3=300 kg/h, T3=900K<br />

p2_300<br />

p3_300<br />

p4_300<br />

0 20 40 60 80 100 120<br />

Relative pressure p1 [kPa]<br />

m1, m2, m3 [kg/h]<br />

580<br />

530<br />

480<br />

430<br />

380<br />

330<br />

280<br />

230<br />

180<br />

Mass flows<br />

m1<br />

m2<br />

m3<br />

0 20 40 60 80 100 120<br />

Relative pressure p1 [kPa]<br />

Figure 35: Influence of AI pressure on AO, EI and EO<br />

pressures and on AI mass flow for PWS speed of 10000 rpm<br />

COMPARISON OF 1-D MODEL SIMULATION TO<br />

MEASUREMENT<br />

To compare the simulation results to measurements a 1-D<br />

model of the tested PWS at the test bench has been developped<br />

<strong>in</strong> GT-Power, whereas the PWS without pockets has been<br />

simulated. Analogous to experiment the mass flow at air outlet<br />

(AO <strong>in</strong> Figure 15) has been controlled at the same value as that<br />

of exhaust <strong>in</strong>let (EI).<br />

Diagrams on Figure 36 and Figure 37 present comparison of<br />

boost pressure p2, back pressure p3, air <strong>in</strong>let mass flow and<br />

<strong>in</strong>ternal exhaust gas recirculation for constant exhaust <strong>in</strong>let<br />

mass flow of 300kg/h. (In Annex A the same comparison is<br />

shown for EI mass flows of 100kg/h, 400kg/h and 500kg/h.)<br />

The 1-D model predicts maximal boost pressure higher than the<br />

measured one (Figure 36). The simulated difference between<br />

boost pressure and back pressure is higher and <strong>in</strong> larger PWS<br />

speed range than measured one. 1-D PWS model recirculates<br />

more exhaust gas than the real PWS (Figure 37 right).<br />

Boost and back pressure comparison<br />

2.50<br />

2.40<br />

2.30<br />

2.20<br />

2.10<br />

2.00<br />

1.90<br />

1.80<br />

1.70<br />

1.60<br />

1.50<br />

1.40<br />

1.30<br />

1.20<br />

1.10<br />

1.00<br />

0 5000 10000 15000 20000<br />

PWS speed [rpm]<br />

p2-300kg/h-measured p3-300kg/h measured<br />

p2-300kg/h 1-D model without pockets p3-300kg/h 1-D model without pockets<br />

Absolute pressure [bar]<br />

Figure 36: Comparison of measured and computed pressures<br />

for EI mass flow of 300kg/h<br />

Mass flow comparison<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 5000 10000 15000 20000<br />

PWS speed [rpm]<br />

m1-300kg/h-measured m1-300kg/h 1-D model without pockets<br />

m2-300kg/h 1-D model without pockets m3-300kg/h 1-D model without pockets<br />

Mass flow [g/sec]<br />

EGR [1]<br />

Internal exhaust gas recirculation<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0 5000 10000 15000 20000<br />

PWS speed [rpm]<br />

egr-300kg/h-measured egr-300kg/h 1-D model without pockets<br />

Figure 37: Comparison of measured and computed AI mass<br />

flow and <strong>in</strong>ternal exhaust gas recirculation for EI mass flow of<br />

300kg/h<br />

Diagrams on Figure 38 - Figure 41 compare 1-D simulation<br />

results for three different EI temperatures (800K, 900K and<br />

1050K) and for constant EI pressure of 2 barAbsolute. The<br />

qualitative reaction of the 1-D model on EI temperature change<br />

is <strong>in</strong> a good agreement with the measurement for every<br />

observed quantity. The boost pressure <strong>in</strong>creases with the EI<br />

temperature. The maximal simulated boost pressure is for every<br />

temperature higher than the EI pressure (Figure 38). An<br />

<strong>in</strong>crease of EI temperature <strong>in</strong>creases the amount of fresh air<br />

which is sucked <strong>in</strong>to the PWS (Figure 40) and decreases the<br />

<strong>in</strong>ternal exhaust gas recirculation (Figure 41).<br />

p2 [bar]<br />

2.40<br />

2.30<br />

2.20<br />

2.10<br />

2.00<br />

1.90<br />

1.80<br />

1.70<br />

1.60<br />

1.50<br />

Absolute boost pressure<br />

for absolute back pressure of p3=2bar<br />

0 5000 10000<br />

PWS speed [rpm]<br />

15000 20000<br />

p3=2bar T3=800K measured p3=2bar T3=900K measured<br />

p3=2bar T3=1050K measured p3=2bar T3=800K 1-D model w/o pockets<br />

p3=2bar T3=900K 1-D model w/o pockets p3=2bar T3=1050K 1-D model w/o pockets<br />

Figure 38: Comparison of measured and computed boost<br />

pressures for tree different EI temperatures and constant EI<br />

absolute pressure of 2bar<br />

10 Copyright © 2007 by ASME


m2 [g/s]<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Air outlet mass flow<br />

for absolute back pressure of p3=2bar<br />

p3=2bar T3=800K measured<br />

p3=2bar T3=900K measured<br />

p3=2bar T3=1050K measured<br />

p3=2bar T3=800K 1D model w/o pockets<br />

p3=2bar T3=900K 1D model w/o pockets<br />

p3=2bar T3=1050K 1D model w/o pockets<br />

0 5000 10000<br />

PWS speed [rpm]<br />

15000 20000<br />

Figure 39: Comparison of measured and computed air outlet<br />

mass flows for tree different EI temperatures and constant EI<br />

pressure of 2bar<br />

m1 [g/s]<br />

160<br />

140<br />

120<br />

100<br />

80<br />

Air <strong>in</strong>let mass flow<br />

for absolute back pressure of p3=2bar<br />

60<br />

0 5000 10000<br />

PWS speed [rpm]<br />

15000 20000<br />

p3=2bar T3=800K measured p3=2bar T3=900K measured<br />

p3=2bar T3=1050K measured p3=2bar T3=800K 1D model w/o pockets<br />

p3=2bar T3=900K 1D model w/o pockets p3=2bar T3=1050K 1D model w/o pocktes<br />

Figure 40: Comparison of measured and computed air <strong>in</strong>let<br />

mass flows for tree different EI temperatures and constant EI<br />

absolute pressure of 2bar<br />

EGR [%]<br />

0.30<br />

0.20<br />

0.10<br />

Internal exhaust gas recirculation<br />

for absolute back pressure of p3=2bar<br />

0.00<br />

0 5000 10000<br />

PWS speed [rpm]<br />

15000 20000<br />

p3=2bar T3=800K measured p3=2bar T3=900K measured<br />

p3=2bar T3=1050K measured p3=2bar T3=800K 1D model w/o pockets<br />

p3=2bar T3=900K 1D model w/o pockets p3=2bar T3=1050K 1D model w/o pockets<br />

Figure 41: Comparison of measured and computed <strong>in</strong>ternal<br />

exhaust gas recirculations for tree different EI temperatures and<br />

constant EI absolute pressure of 2bar<br />

PWS model with all pockets has been simulated, as well (see<br />

diagrams on Figure 42 and Figure 43). Pockets extended the<br />

work<strong>in</strong>g range of the PWS model. Nevertheless, the modeled<br />

pockets <strong>in</strong>creased the boost pressure <strong>in</strong> low PWS speed too<br />

much <strong>in</strong> comparison to measurement.<br />

Absolute pressure [bar]<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

Absolute pressure comparison<br />

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000<br />

PWS speed [rpm]<br />

p3-300kg/h with pockets p2-300kg/h with pockets<br />

p2-300kg/h-measured p3-300kg/h-measured<br />

p2-300kg/h without pockets p3-300kg/h without pockets<br />

Figure 42: Comparison of measured and computed pressures<br />

for EI mass flow of 300kg/h and 1-D PWS model with pockets<br />

Mass flow [g/sec]<br />

Mass flow comparison<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

m3-300kg/h with pockets m2-300kg/h with pockets<br />

20<br />

0<br />

m1-300kg/h with pockets<br />

m1-300kg/h without pockets<br />

m1-300kg/h-measured<br />

0 5000 10000<br />

PWS speed [rpm]<br />

15000 20000<br />

EGR [1]<br />

EGR comparison<br />

1<br />

0.9<br />

egr-300kg/h with pockets egr-300kg/h-measured<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

egr-300kg/h without pockets<br />

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000<br />

PWS speed [rpm]<br />

Figure 43: Comparison of measured and computed AI mass<br />

flow and <strong>in</strong>ternal exhaust gas recirculation for EI mass flow of<br />

300kg/h and 1-D PWS model with pockets<br />

Presented and described comparisons <strong>in</strong> diagrams above<br />

<strong>in</strong>dicate that the flow losses <strong>in</strong> the 1-D model of PWS rotor<br />

channel should be tuned with regard to pressure traces to come<br />

closer to the measurement. Follow<strong>in</strong>g paragraph discusses the<br />

problematic of <strong>in</strong>creased simulated exhaust gas recirculation <strong>in</strong><br />

comparison to measurement.<br />

In the channel of the PWS rotor the fresh air and exhaust gas<br />

are <strong>in</strong> direct contact. GT-Power is based on the f<strong>in</strong>ite volume<br />

method. Thus, the 1-D model is discretized <strong>in</strong>to many volumes<br />

and the solution is carried out by time <strong>in</strong>tegration of equations<br />

of cont<strong>in</strong>uity, energy and momentum. F<strong>in</strong>er discretization<br />

results <strong>in</strong> better accuracy and extends the computation time<br />

vice versa.<br />

Diagrams <strong>in</strong> Figure 44 and Figure 45 show <strong>in</strong>fluence of the<br />

discretization length on the simulated results. The <strong>in</strong>fluence has<br />

been <strong>in</strong>vestigated for constant mass flow of 300kg/h and EI<br />

temperature of 900K. By lower<strong>in</strong>g of the dicretization length<br />

by one third of the orig<strong>in</strong>al length (here to 5mm) the <strong>in</strong>ternal<br />

exhaust gas recirculation decreased by 10% (Figure 45) and the<br />

simulated boost pressure <strong>in</strong>creased by 5%. At the same time the<br />

computation time has been 1.8 times longer than the orig<strong>in</strong>al<br />

one.<br />

11 Copyright © 2007 by ASME


2.50<br />

2.40<br />

2.30<br />

2.20<br />

2.10<br />

2.00<br />

1.90<br />

1.80<br />

1.70<br />

1.60<br />

1.50<br />

1.40<br />

1.30<br />

1.20<br />

1.10<br />

1.00<br />

Absolute pressure [bar]<br />

Absolute pressure comparison<br />

p2-300kg/h-measured<br />

p3-300kg/h measured<br />

p2-300kg/h 1-D model without pockets<br />

p3-300kg/h 1-D model without pockets<br />

p2-300kg/h 1-D model without pockets with dx=5mm<br />

p3-300kg/h 1-D model without pockets with dx=5mm<br />

0 5000 10000 15000 20000<br />

PWS speed [rpm]<br />

Figure 44: Influence of discretization length of PWS rotor<br />

channel on pressure traces<br />

Mass flow [g/sec]<br />

Mass flow comparison<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

m1-300kg/h-measured<br />

40<br />

m1-300kg/h 1-D model without pockets<br />

m2-300kg/h 1-D model without pockets<br />

20<br />

m3-300kg/h 1-D model without pockets<br />

0<br />

m1-300kg/h 1-D model without pockets with dx=5mm<br />

0 5000 10000<br />

PWS speed [rpm]<br />

15000 20000<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

EGR [1]<br />

EGR comparison<br />

egr-300kg/h-measured<br />

egr-300kg/h 1-D model without pockets<br />

egr-300kg/h 1-D model without pockets with dx=5mm<br />

5000 7000 9000 11000 13000 15000 17000 19000<br />

PWS speed [rpm]<br />

Figure 45: Influence of discretization length of PWS rotor<br />

channel on computed mass flow and <strong>in</strong>ternal exhaust gas<br />

recirculation<br />

PWS IN FUEL CELL APPLICATIONS<br />

Fuel cells are among the most promis<strong>in</strong>g alternative<br />

energy sources of the future with regard to clean and efficient<br />

power generation [33]. Hydrogen reacts with oxygen produc<strong>in</strong>g<br />

water, electric current and heat. Runn<strong>in</strong>g of the fuel cell at<br />

higher pressure <strong>in</strong>creases the power due to the polarization<br />

curve improvement [32], [35] and reduces the cell dimensions.<br />

Therefore, the fuel cells of 10kW or more utilize boost<strong>in</strong>g<br />

device for air compression to <strong>in</strong>crease oxygen partial pressure<br />

[32]. As the flow through the fuel cell can be described as the<br />

flow through a throttle the boost pressure has to be higher than<br />

the back pressure. The proton exchange membrane (PEM) fuel<br />

cell, the most preferred fuel cell type for automotive systems,<br />

must have sufficient water content <strong>in</strong> the polymer electrolyte<br />

and the humidity of the air must be carefully controlled [32].<br />

From the combustion chamber measurement of the tested PWS<br />

model CX93 follows (Figure 24) that its boost pressure is<br />

higher than the back pressure for EI temperature higher than<br />

900K. This makes a burner PWS upstream necessary to have<br />

enough energy for air compression. Due to the direct contact of<br />

air and vapor <strong>in</strong> the rotor channel, the PWS could be of<br />

advantage if used for air humidification realized by throttl<strong>in</strong>g at<br />

AI of PWS (Figure 29).<br />

Us<strong>in</strong>g the 1-D simulation the PWS93 with <strong>in</strong> [7] patented<br />

geometry, which provided significantly <strong>in</strong>creased boost<br />

pressure (Figure 1), has been computed at the test bench for<br />

back pressure of 2barAbsolute and EI temperatures of 150°C and<br />

500°C. From the diagrams (Figure 46 and Figure 47) is visible<br />

that at the lower temperature of 150°C the PWS is unsuitable<br />

for full cell applications. At the temperature of 500°C the boost<br />

pressure surpass the back pressure. Another way of us<strong>in</strong>g PWS<br />

for this purpose would be a comb<strong>in</strong>ation with serial connected,<br />

electric driven, compressor, which is necessary as a starter <strong>in</strong><br />

any case.<br />

Absolute boost pressure for absolute back pressure<br />

of 2bar<br />

2.2<br />

2.1<br />

2<br />

1.9<br />

1.8<br />

1.7<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

6000 6500 7000 7500 8000<br />

PWS speed [rpm]<br />

8500 9000 9500 10000<br />

Absolute pressure p2 [bar]<br />

p3=2bar T3=150degC 1-D model without pockets<br />

p3=2bar T3=500degC 1-D model without pockets<br />

Figure 46: Computed boost pressure for back pressure of 2bar<br />

and two different temperatures<br />

Air outlet mass flow for absolute back pressure of<br />

2bar<br />

131<br />

121<br />

111<br />

101<br />

91<br />

81<br />

71<br />

61<br />

51<br />

41<br />

31<br />

21<br />

11<br />

1<br />

6000 6500 7000 7500 8000<br />

PWS speed [rpm]<br />

8500 9000 9500 10000<br />

AO mass flow m2 [g/sec]<br />

p3=2bar T3=150degC 1-D model without pockets<br />

p3=2bar T3=500degC 1-D model without pockets<br />

Figure 47: Computed air outlet mass flow for back pressure of<br />

2bar and two different temperatures<br />

CONCLUSIONS<br />

In framework of the study presented <strong>in</strong> this paper the<br />

pressure wave supercharger (PWS) has been <strong>in</strong>vestigated us<strong>in</strong>g<br />

1-D eng<strong>in</strong>e simulation and experimental measurement at the<br />

combustion chamber test bench.<br />

1-D simulation of different PWS sizes contributed to<br />

understand<strong>in</strong>g of PWS behavior <strong>in</strong> eng<strong>in</strong>e application. The<br />

PWS has higher boost pressure at low eng<strong>in</strong>e speeds than the<br />

turbocharger. Us<strong>in</strong>g the variable transmission ratio between the<br />

PWS and the eng<strong>in</strong>e the boost pressure can be hold on high<br />

level over the whole eng<strong>in</strong>e speed range. Whereas the eng<strong>in</strong>e<br />

speed <strong>in</strong>creases the scaveng<strong>in</strong>g of the PWS rotor decreases. At<br />

the highest eng<strong>in</strong>e speeds the <strong>in</strong>ternal exhaust gas recirculation<br />

rises and deteriorates the eng<strong>in</strong>e power. The variable gas pocket<br />

improves the rotor scaveng<strong>in</strong>g and can be with advantage used<br />

for boost pressure control. Dur<strong>in</strong>g the transient operation the<br />

<strong>in</strong>creased <strong>in</strong>ternal exhaust gas recirculation appeared. Change<br />

of PWS speed dur<strong>in</strong>g the load step improved transient<br />

behavior.<br />

The PWS has been largely explored at the combustion chamber<br />

test bench and performance maps of measured PWS created.<br />

The measurement showed high sensitivity of PWS on flow<br />

losses ma<strong>in</strong>ly <strong>in</strong> exhaust outlet. Pressure <strong>in</strong>crease <strong>in</strong> air <strong>in</strong>let of<br />

PWS <strong>in</strong>creases the boost pressure by the same pressure.<br />

12 Copyright © 2007 by ASME


The 1-D model of PWS at the test bench has been created to<br />

compare simulation to experiment. The established database of<br />

measured data creates very good basis for further 1-D model<br />

calibration. The qualitative reaction of PWS model is <strong>in</strong> a very<br />

good agreement with the measurement. The 1-D model predicts<br />

higher difference between boost pressure and back pressure and<br />

<strong>in</strong> larger PWS speed range than measurements. In next steps<br />

ma<strong>in</strong>ly the flow losses <strong>in</strong> the model should be tuned to calibrate<br />

the model.<br />

Utilization of the PWS <strong>in</strong> the fuel cell application makes a<br />

burner PWS upstream necessary. 1-D model and measured<br />

database could be with advantage used for further<br />

<strong>in</strong>vestigations on this topic.<br />

NOMENCLATURE<br />

AI Air <strong>in</strong>let<br />

AO Air outlet<br />

C Molar fraction of CO2<br />

EI Exhaust <strong>in</strong>let<br />

EO Exhaust outlet<br />

etaPWS Total efficiency of PWS<br />

ISFC Indicated specific fuel consumption [g/kW/h]<br />

m1 Mass flow <strong>in</strong> AI [kg/h]<br />

m2 Mass flow <strong>in</strong> AO [kg/h]<br />

m2red Reduced air mass flow <strong>in</strong> AO [kg/h]<br />

m3 Air mass flow <strong>in</strong> EI [kg/h]<br />

p0 Ambient pressure [kPa]<br />

p2 Relative boost pressure [kPa]<br />

p3 Relative EI pressure [kPa]<br />

p4 Relative EO pressure [kPa]<br />

piC Pressure ratio [1]<br />

PWS Pressure wave supercharger<br />

t0 Ambient temperature<br />

t1 Inlet temperature [deg C]<br />

t2 AO temperature [deg C]<br />

t3 EI average temperature [deg C]<br />

t4 EO temperature [deg C]<br />

ACKNOWLEDGMENTS<br />

The authors would like to express their grateful thanks to<br />

<strong>Czech</strong> turbocharger maker ČZ a.s., division Turbo, namely to<br />

Mr. Stulík, Mr. Havelka, Mr. Mach and division director Mr.<br />

P<strong>in</strong>kas for fruitful cooperation and support throughout the<br />

project. Special thank belongs to prof. Takats from JBRC for<br />

his k<strong>in</strong>dly help with tak<strong>in</strong>g CO2 measurement <strong>in</strong>to operation.<br />

Additional thanks belong also to author’s colleges from JBRC<br />

prof. Uhlíř and prof. Novák for their k<strong>in</strong>d help with tak<strong>in</strong>g of<br />

PWS electric drive <strong>in</strong>to operation.<br />

.<br />

REFERENCES<br />

[1] Spr<strong>in</strong>g, P.: Model<strong>in</strong>g and Control of Pressure-Wave<br />

Supercharged Eng<strong>in</strong>e Systems. Dissertation ETH Zürich 2006,<br />

No.16490<br />

[2] Weber, F., Guzzella, L.: Control Oriented Model<strong>in</strong>g of a<br />

Pressure Wave Supercharger. SAE Paper 2000-01-0567, 2000,<br />

pp. 91-100<br />

[3] Spr<strong>in</strong>g, P., Guzzella, L., Onder, C.: Optimal Control<br />

Strategy for a Pressure-Wave Supercharged SI Eng<strong>in</strong>e.<br />

<strong>Technical</strong> Paper, ICES2003-645, Spr<strong>in</strong>g <strong>Technical</strong> Conference<br />

of the ASME International Combustion Eng<strong>in</strong>e Division,<br />

Salzburg, Austria, 2003<br />

[4] Akbari, P., Nalim R., Müller,N.: A Review of Wave Rotor<br />

Technology and its Applications. IMECE2004-60082, 2004<br />

ASME International Mechanical Eng<strong>in</strong>eer<strong>in</strong>g Congress,<br />

Anaheim, California USA<br />

[5] Akbari, P., Müller,N.: Wave Rotor Research Program at<br />

Michigan State <strong>University</strong>. AIAA 2005-3844, 41 st<br />

AIAA/ASME/SAE/ASEE Jo<strong>in</strong>t Propulsion Conference and<br />

Exhibit, Tucson, Arizona<br />

[6] Iancu, F.: Integration of a Wave Rotor to an Ultra-Micro<br />

Gas Turb<strong>in</strong>e. Dissertation Michigan State <strong>University</strong> 2005,<br />

[7] Wenger, U., Mart<strong>in</strong>, R., Swissauto Eng. S.A.: Gas-Dynamic<br />

Pressure Mach<strong>in</strong>e. International Patent No.: WO 99/11913<br />

[8] Mart<strong>in</strong>, R., Wenger, U., Swissauto Eng S.A.:<br />

Gasdynamische Druckwellenmasch<strong>in</strong>e. European Patent, EP<br />

0 899 434 A1<br />

[9] Wenger, U., Mart<strong>in</strong>, R., Swissauto Eng S.A.: Verfahren zur<br />

Regelung e<strong>in</strong>er Verbrennungsmasch<strong>in</strong>e mit e<strong>in</strong>er<br />

gasdynamischen Druckwellenmasch<strong>in</strong>e. European Patent, EP<br />

1 375 858 A1<br />

[10] Oguri, Y., Suzuki, T., Yoshida, M., Cho, M.: Research on<br />

Adaptation of Pressure Wave Supercharger (PWS) to Gasol<strong>in</strong>e<br />

Eng<strong>in</strong>e. SAE Paper 2001-01-0368, 2001, pp. 101-107<br />

[11] Jenny, E.: Berechnungen und Modellversuche über<br />

Druckwellen grosser Amplituden <strong>in</strong> Auspuff-Leitungen.<br />

Dissertation ETH Zürich, Ameba Druck Basel 1949<br />

[12] Berchtold, M.: Druckwellenaufladung für kle<strong>in</strong>e<br />

Fahrzeug-Dieselmotoren. Schweizerische Bauzeitung 79, No.<br />

46, Switzerland, 1961, pp. 801-808<br />

[13] Shapiro, A. H.: The Dynamics and Thermodynamics of<br />

Compressible Fluid Flow. The Ronald Press Comp., New York<br />

1953<br />

[14] Piechna, J., Lisewski, P.: Numerical Analysis of Unsteady<br />

Two–Dimensional Flow Effects <strong>in</strong> the Comprex Supercharger.<br />

The Archive of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Vol. XLV, No. 4,<br />

1998, pp. 341-351<br />

[15] Piechna, J.: Numerical Simulation of the Pressure Wave<br />

Supercharger – Effect of Pockets on the Comprex Supercharger<br />

Characteristics. The Archive of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Vol.<br />

XLV, No. 4, 1998, pp. 305-323<br />

[16] Selerowicz, W., Piechna, J.: Comprex Type Supercharger<br />

as a Pressure-Wave Transformer Flow Characteristics. The<br />

Archive of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Vol. XLVI, No. 1, 1999,<br />

pp. 57-77<br />

[17] Piechna, J.: Numerical Simulation of the Comprex Type of<br />

Supercharger: Comparison of Two Models of Boundary<br />

Condition. The Archive of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Vol. XLV,<br />

No. 3, 1998, pp. 233-250<br />

13 Copyright © 2007 by ASME


[18] Zehnder, G.: Berechnung von Druckwellen <strong>in</strong> der<br />

Aufladetechnik. Brown Boveri Mitteilung, 4/5, 1971<br />

[19] Flückiger, L., Tafel, S., Spr<strong>in</strong>g, P.: Hochaufladung mit<br />

Druckwellenlader für Ottomotoren. MTZ 12, 2006, pp. 946-<br />

954<br />

[20] Guzzella, L., Mart<strong>in</strong>, R.: Das SAVE-Motorkonzept. MTZ<br />

10, 1998, pp. 644-650<br />

[21] Mayer, A., Nashar, I. El., Perewusnyk, J.: Comprex with<br />

Gas Pocket Control. Institution of Mechanical Eng<strong>in</strong>eers,<br />

C405/032, 1990, pp. 289-294<br />

[22] Kollbrunner, T. A.: Comprex Supercharg<strong>in</strong>g for Passenger<br />

Diesel Car Eng<strong>in</strong>es. SAE Paper 800884, West Coast<br />

International Meet<strong>in</strong>g, Los Angeles 1980<br />

[23] Croes, N.: Die Wirkungsweise der Taschen des<br />

Druckwellenladers Comprex. Motortechnische Zeitschrift, Vol.<br />

40, No. 2, 1979, pp. 91-97<br />

[24] Mayer, A.: COMPREX-Aufladung von PKW-<br />

Dieselmotoren. Beitrag für die Tagung‚ Moderne PKW-<br />

Dieselmotoren’ im Haus der Technik, Essen am 17./18. März<br />

1988<br />

[25] Schruf, G.M., Kollbrunner, T. A.: Application and<br />

Match<strong>in</strong>g of the Comprex Pressure-Wave Supercharger to<br />

Automotive Diesel Eng<strong>in</strong>es. SAE Paper 840133, International<br />

Congress and Exposition, Detroit, 1984<br />

[26] Berchtold, M., Gull, H.P.: Road Performance of a<br />

Comprex Supercharged Diesel Truck. SAE Paper 00118U,<br />

SAE National Diesel Eng<strong>in</strong>e Meet<strong>in</strong>g, La Salle Hotel, Chicago,<br />

Ill<strong>in</strong>ois, 1959<br />

[27] Tatsutomi, Y., Yoshizu, K., Komagam<strong>in</strong>e, M.: Der<br />

Dieselmotor mit Comprex-Aufladung für den Mazda 626. MTZ<br />

51(1990), pp. 124-132<br />

[28] Jenny, E., Bulaty, T.: Die Druckwellen-Masch<strong>in</strong>e<br />

Comprex als Oberstufe e<strong>in</strong>er Gasturb<strong>in</strong>e. Teil 1 and 2, MTZ 34<br />

(1973) 10 and 12, pp. 329-335, 421-425<br />

[29] Endres, H.: Comprex-Aufladung schnellaufender<br />

direkte<strong>in</strong>spritzender Dieselmotoren. Dissertation RWTH<br />

Aachen, 1985<br />

[30] BBC Brown Boveri: Comprex bullet<strong>in</strong> 3. Ausgabe: Januar<br />

1978, Gedruckt <strong>in</strong> der Schweiz (7912-1250-1)<br />

[31] Gygax, J., Schneider G.: Betriebserfahrungen mit dem<br />

Druckwellenlader Comprex im Opel Senator. MTZ 49,1988,<br />

pp. 335-339<br />

[32] Larm<strong>in</strong>ie, J., Dicks, A.: Fuel Cell Systems Expla<strong>in</strong>ed. SAE<br />

International, 2nd edition (May 1, 2003), ISBN 0-7680-1259-7<br />

[33] Gruden, D., Borgmann, K., Hiemesch, O.: Power Units for<br />

Transporation. The Handbook of Environmental Chemistry<br />

Vol. 3. Part T, Spr<strong>in</strong>ger-Verlag Berl<strong>in</strong> Heidelberg 2003<br />

[34] Pisch<strong>in</strong>ger, S., Schönfelder, C., Bornscheuer, W., K<strong>in</strong>del,<br />

H., Wiartalla: Integrated Air Supply and Humidification<br />

Concepts for Fuel Cell Systems. SAE 2001-01-0233, SAE<br />

2001 World Congress Detroit, Michigan March 5-8,2001<br />

[35] Wiartalla, A., Pisch<strong>in</strong>ger S., Bornscheuer,W., Fieweger,<br />

K., Ogrzewalla, J.: Compressor Expander Units for Fuel Cell<br />

Systems. SAE 2000-01-0380, SAE 2000 World Congress<br />

Detroit, Michigan March 6-9,2000<br />

[36] Cantemir, C.-G,. Hubert, Ch., Rizzoni, G., Demetrescu,<br />

B.,: High Performance Fuel Cell Sedan. SAE 2004-01-1003,<br />

SAE 2000-01-0380, SAE 2004 World Congress Detroit,<br />

Michigan March 8-11,2004<br />

[37] Pohořelský, L., Macek,J., Polašek M., Vítek, O.:<br />

Simulation of a COMPREX © Pressure Exchanger <strong>in</strong> a 1-D<br />

Code.SAE Paper 2004-01-1000, SAE International Warrendale<br />

2004, 13 pp.<br />

[38] Pohořelský, L.: Simulation of a COMPREX Supercharger<br />

<strong>in</strong> Transient Operations. MECCA, September 2005, Volume<br />

III., ISSN 1214-0821, Extended issue 3/2005 “Transient<br />

Processes <strong>in</strong> International Combustion Eng<strong>in</strong>es and<br />

Automotive Powertra<strong>in</strong>s”<br />

14 Copyright © 2007 by ASME


Absolute pressure [bar]<br />

Absolute pressure comparison<br />

1.7<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

0 5000 10000 15000 20000<br />

PWS speed [rpm]<br />

p2-100kg/h-measured p3-100kg/h-measured<br />

p2-100kg/h 1-D model without pockets p3-100kg/h 1-D model without pockets<br />

Figure A1: 1-D simulation vs. measurement<br />

for constant EI mass flow of 100kg/h<br />

1.9<br />

1.8<br />

1.7<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

2<br />

2.9<br />

2.8<br />

2.7<br />

2.6<br />

2.5<br />

2.4<br />

2.3<br />

2.2<br />

2.1<br />

3<br />

3.1<br />

Absolute pressure [bar]<br />

Absolute pressure comparison<br />

6000 8000 10000 12000 14000 16000 18000 20000<br />

p3-400kg/h-measured<br />

PWS speed [rpm]<br />

p2-400kg/h-measured<br />

p2-400kg/h 1-D model without pockets p3-400kg/h 1-D model without pockets<br />

ANNEX A<br />

COMPARISON OF 1-D MODEL SIMULATION TO MEASUREMENT<br />

Figure A2: 1-D simulation vs. measurement for constant<br />

EI mass flow of 400kg/h<br />

1.9<br />

1.8<br />

1.7<br />

1.6<br />

1.5<br />

2<br />

2.9<br />

2.8<br />

2.7<br />

2.6<br />

2.5<br />

2.4<br />

2.3<br />

2.2<br />

2.1<br />

3<br />

3.5<br />

3.4<br />

3.3<br />

3.2<br />

3.1<br />

Absolute pressure [bar]<br />

Absolute pressure comparison<br />

6000 8000 10000 12000 14000 16000 18000 20000<br />

p2-500kg/h-measured<br />

PWS speed [rpm]<br />

p3-500kg/h-measured<br />

p2-500kg/h 1-D model without pockets p3-500kg/h 1-D model without pockets<br />

Figure A3: 1-D simulation vs. measurement for constant EI<br />

mass flow of 500kg/h<br />

Mass flow [g/sec]<br />

Mass flow comparison<br />

EGR comparison<br />

120<br />

0.2<br />

0.18<br />

100<br />

0.16<br />

80<br />

0.14<br />

0.12<br />

60<br />

0.1<br />

40<br />

0.08<br />

0.06<br />

20<br />

0.04<br />

0<br />

0.02<br />

0 5000 10000 15000 20000<br />

0<br />

PWS speed [rpm]<br />

0 5000 10000 15000 20000<br />

m1-100kg/h-measured m1-100kg/h 1-D model without pockets<br />

PWS speed [rpm]<br />

m2-100kg/h 1-D model without pockets m3-100kg/h 1-D model without pockets<br />

egr-100kg/h-measured egr-400kg/h 1-D model without pockets<br />

Mass flow comparison<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

6000 8000 10000 12000 14000 16000 18000 20000<br />

m1-400kg/h-measured<br />

PWS speed [rpm]<br />

m1-400kg/h 1-D model without pockets<br />

m2-400kg/h 1-D model without pockets m3-400kg/h 1-D model without pockets<br />

Mass flow [g/sec]<br />

Mass flow comparison<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

6000 8000 10000 12000 14000 16000 18000 20000<br />

m1-500kg/h-measured<br />

PWS speed [rpm]<br />

m1-500kg/h 1-D model without pockets<br />

m2-500kg/h 1-D model without pockets m3-500kg/h 1-D model without pockets<br />

Mass flow [g/sec]<br />

EGR [1]<br />

EGR comparison<br />

0.50<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

6000 8000 10000 12000 14000 16000 18000 20000<br />

PWS speed [rpm]<br />

egr-400kg/h-measured p2-400kg/h 1-D model without pockets<br />

EGR [1]<br />

EGR [1]<br />

EGR comparison<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

6000 8000 10000 12000 14000 16000 18000 20000<br />

PWS speed [rpm]<br />

500kg/h-measured 500kg/h 1-D model without pockets<br />

15 Copyright © 2007 by ASME

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!