07.02.2013 Views

Kollat 2007 AGU ehBOA.pdf - Pennsylvania State University

Kollat 2007 AGU ehBOA.pdf - Pennsylvania State University

Kollat 2007 AGU ehBOA.pdf - Pennsylvania State University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Enhancing the Solution of Large Monitoring<br />

Network Design Problems<br />

Using a New Epsilon-Dominance<br />

Hierarchical Bayesian Optimization<br />

Algorithm<br />

Joshua B. <strong>Kollat</strong> and Patrick M. Reed<br />

Civil and Environmental Engineering<br />

The <strong>Pennsylvania</strong> <strong>State</strong> <strong>University</strong><br />

juk124@psu.edu<br />

Paper Number: H11K-08<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 1


Citation:<br />

Presentation Information<br />

<strong>Kollat</strong>, J.B., P.M. Reed. Enhancing the Solution of Large Monitoring Network Design Problems<br />

Using a New Epsilon Dominance Hierarchical Bayesian Optimization Algorithm. Paper<br />

#H11K-08. Proceedings of the <strong>AGU</strong> Fall Meeting, San Francisco, CA, (<strong>2007</strong>).<br />

For additional information, refer to:<br />

<strong>Kollat</strong>, J.B., P.M. Reed, J.R. Kasprzyk. A New Epsilon-Dominance Hierarchical Bayesian<br />

Optimization Algorithm for Large Multi-Objective Monitoring Network Design Problems.<br />

Advances in Water Resources. 31 (5) (2008) 828-845.<br />

Note:<br />

This presentation has been slightly modified from its original version in order to better suite the<br />

static nature of PDF format.<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 2


Intro to Multi-Objective Optimization<br />

� Two Objective<br />

Example:<br />

– Non-dominated<br />

– Pareto Set<br />

� Tradeoffs or Conflicts:<br />

– Improvements in<br />

performance in one<br />

objective result in a<br />

degradation of<br />

performance in<br />

another objective<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 3


Multi-Objective Evolutionary<br />

� Mimic Darwinian natural<br />

selection to optimize designs<br />

– Selection<br />

– Crossover<br />

– Mutation<br />

� Evolve entire tradeoff surfaces<br />

in a single run<br />

� Effective at optimizing:<br />

– highly-nonlinear<br />

– discrete<br />

– non-convex<br />

landscapes without<br />

differentiation<br />

Algorithms (MOEAs)<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 4


Motivation – Problem Size Scaling<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 5


Motivation – Objective Scaling<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 6


Motivation – Computational Scaling<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 7


Motivation – Computational Scaling<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 8


Motivation – Potential for Structure<br />

� Potential for complex<br />

spatial and/or<br />

temporal interdependencies<br />

� Hierarchical difficulty<br />

– Correlations within<br />

groups and across<br />

groups<br />

� Traditional MOEAs<br />

– Assume decisions are independent<br />

� Hierarchical Bayesian Optimization Algorithm<br />

– Models dependency structure of decisions using Bayesian networks<br />

– Uses chunking to model hierarchy<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 9


�-NSGAII<br />

to �-hBOA<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 10


LTM Test Cases:<br />

� Two Test Cases – PCE<br />

Contamination Plume<br />

– Small: 25 wells – 33-million<br />

designs<br />

– Large: 58 points – 2.88x10 17<br />

designs<br />

� Quantile Kriging<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 11


LTM Test Cases:<br />

� Two Test Cases – PCE<br />

Contamination Plume<br />

– Small: 25 wells – 33-million<br />

designs<br />

– Large: 58 points – 2.88x10 17<br />

designs<br />

� Quantile Kriging<br />

� Objectives:<br />

– Sampling Cost<br />

Cost = 16<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 12


LTM Test Cases:<br />

� Two Test Cases – PCE<br />

Contamination Plume<br />

– Small: 25 wells – 33-million<br />

designs<br />

– Large: 58 points – 2.88x10 17<br />

designs<br />

� Quantile Kriging<br />

� Objectives:<br />

– Sampling Cost<br />

– Concentration Error<br />

Cost = 16<br />

Concentration<br />

Concentration<br />

Error<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 13


LTM Test Cases:<br />

� Two Test Cases – PCE<br />

Contamination Plume<br />

– Small: 25 wells – 33-million<br />

designs<br />

– Large: 58 points – 2.88x10 17<br />

designs<br />

� Quantile Kriging<br />

� Objectives:<br />

– Sampling Cost<br />

– Concentration Error<br />

– Concentration Uncertainty<br />

– Mass Error<br />

Cost = 16<br />

Concentration<br />

Concentration<br />

Concentration<br />

Uncertainty<br />

Error<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 14


LTM Test Case Pareto Sets<br />

� 25 Well Test Case<br />

– True Pareto Set<br />

– 2,472 Solutions<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 15


LTM Test Case Pareto Sets<br />

� 25 Well Test Case<br />

– True Pareto Set<br />

– 2,472 Solutions<br />

� 58 Point Test Case<br />

– Generated by<br />

combining solutions<br />

from all algorithm<br />

runs<br />

– Represents best<br />

known Pareto<br />

approximation<br />

– 22,333 Solutions<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 16


Results: �-Performance and Convergence Dynamics<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 17


Results: �-Performance and Convergence Dynamics<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 18


Results: Pie Chart<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 19


Results: �-NSGAII, �-hBOA-Base, �-hBOA-Static<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 20


Results: �-NSGAII, �-hBOA-Base, �-hBOA-Static<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 21


Results: �-NSGAII, �-hBOA-Base, �-hBOA-Static<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 22


Results: �-NSGAII, �-hBOA-Base, �-hBOA-Static<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 23


Results: �-NSGAII, �-hBOA-Base, �-hBOA-Static<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 24


Conclusions<br />

� The �-hBOA was statistically superior to the �-NSGAII<br />

� The �-hBOA’s superiority on the 25 well test case indicates<br />

inter-related decisions and hierarchical problem difficulty<br />

� Choosing static versus dynamic population sizing for the �hBOA<br />

depends on computational resources and the user’s<br />

goals<br />

– Dynamic: rapid approximations and optimal population size<br />

– Static: high quality end result, high reliability<br />

� Still much work to be done…<br />

– Test cases represent lower bound complexity<br />

– Extension to space-time optimization<br />

– Parallelization<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 25


Thank You<br />

<strong>AGU</strong> Fall Meeting – December <strong>2007</strong> Slide 26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!