07.02.2013 Views

Topological defects and generalised orbifolds ... - Nils Carqueville

Topological defects and generalised orbifolds ... - Nils Carqueville

Topological defects and generalised orbifolds ... - Nils Carqueville

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Topological</strong> <strong>defects</strong> <strong>and</strong><br />

<strong>generalised</strong> <strong>orbifolds</strong><br />

based on arXiv:1208.1481 with Daniel Murfet, <strong>and</strong> arXiv:1210.6363 with Ingo Runkel<br />

<strong>Nils</strong> <strong>Carqueville</strong><br />

Hausdorff Institute & Simons Center


Bigger picture<br />

Calabi-Yau<br />

geometry<br />

singularity<br />

theory<br />

homological<br />

mirror<br />

symmetry<br />

matrix factorisations<br />

homological<br />

knot<br />

invariants<br />

L<strong>and</strong>au-<br />

Ginzburg<br />

models<br />

(topological)<br />

string<br />

theory<br />

tensor<br />

categories<br />

2d TFT<br />

2d CFT


Bigger picture<br />

Calabi-Yau<br />

geometry<br />

singularity<br />

theory<br />

homological<br />

mirror<br />

symmetry<br />

matrix factorisations<br />

homological<br />

knot<br />

invariants<br />

L<strong>and</strong>au-<br />

Ginzburg<br />

models<br />

(topological)<br />

string<br />

theory<br />

tensor<br />

categories<br />

2d TFT<br />

2d CFT


Bigger picture<br />

Calabi-Yau<br />

geometry<br />

singularity<br />

theory<br />

homological<br />

mirror<br />

symmetry<br />

matrix factorisations<br />

homological<br />

knot<br />

invariants<br />

L<strong>and</strong>au-<br />

Ginzburg<br />

models<br />

(topological)<br />

string<br />

theory<br />

tensor<br />

categories<br />

2d TFT<br />

2d CFT


Bigger picture<br />

Calabi-Yau<br />

geometry<br />

singularity<br />

theory<br />

homological<br />

mirror<br />

symmetry<br />

matrix factorisations<br />

homological<br />

knot<br />

invariants<br />

L<strong>and</strong>au-<br />

Ginzburg<br />

models<br />

(topological)<br />

string<br />

theory<br />

tensor<br />

categories<br />

2d TFT<br />

2d CFT


Bigger picture<br />

Calabi-Yau<br />

geometry<br />

singularity<br />

theory<br />

homological<br />

mirror<br />

symmetry<br />

matrix factorisations<br />

homological<br />

knot<br />

invariants<br />

L<strong>and</strong>au-<br />

Ginzburg<br />

models<br />

(topological)<br />

string<br />

theory<br />

tensor<br />

categories<br />

2d TFT<br />

2d CFT


Bigger picture<br />

Calabi-Yau<br />

geometry<br />

singularity<br />

theory<br />

homological<br />

mirror<br />

symmetry<br />

matrix factorisations<br />

homological<br />

knot<br />

invariants<br />

L<strong>and</strong>au-<br />

Ginzburg<br />

models<br />

(topological)<br />

string<br />

theory<br />

tensor<br />

categories<br />

2d TFT<br />

2d CFT


Bigger picture<br />

Calabi-Yau<br />

geometry<br />

singularity<br />

theory<br />

homological<br />

mirror<br />

symmetry<br />

matrix factorisations<br />

homological<br />

knot<br />

invariants<br />

L<strong>and</strong>au-<br />

Ginzburg<br />

models<br />

(topological)<br />

string<br />

theory<br />

tensor<br />

categories<br />

2d TFT<br />

2d CFT


Bigger picture<br />

Calabi-Yau<br />

geometry<br />

singularity<br />

theory<br />

homological<br />

mirror<br />

symmetry<br />

matrix factorisations<br />

homological<br />

knot<br />

invariants<br />

L<strong>and</strong>au-<br />

Ginzburg<br />

models<br />

(topological)<br />

string<br />

theory<br />

tensor<br />

categories<br />

2d TFT<br />

2d CFT


Bigger picture<br />

Calabi-Yau<br />

geometry<br />

singularity<br />

theory<br />

homological<br />

mirror<br />

symmetry<br />

matrix factorisations<br />

homological<br />

knot<br />

invariants<br />

L<strong>and</strong>au-<br />

Ginzburg<br />

models<br />

(topological)<br />

string<br />

theory<br />

tensor<br />

categories<br />

2d TFT<br />

2d CFT


Bigger picture<br />

Calabi-Yau<br />

geometry<br />

singularity<br />

theory<br />

homological<br />

mirror<br />

symmetry<br />

matrix factorisations<br />

homological<br />

knot<br />

invariants<br />

L<strong>and</strong>au-<br />

Ginzburg<br />

models<br />

(topological)<br />

string<br />

theory<br />

tensor<br />

categories<br />

2d TFT<br />

2d CFT


Bigger picture<br />

Calabi-Yau<br />

geometry<br />

singularity<br />

theory<br />

homological<br />

mirror<br />

symmetry<br />

matrix factorisations<br />

homological<br />

knot<br />

invariants<br />

L<strong>and</strong>au-<br />

Ginzburg<br />

models<br />

(topological)<br />

string<br />

theory<br />

tensor<br />

categories<br />

2d TFT<br />

2d CFT


Summary<br />

2d TFTs with <strong>defects</strong> are naturally described in terms of bicategories<br />

with extra structure.


Summary<br />

2d TFTs with <strong>defects</strong> are naturally described in terms of bicategories<br />

with extra structure.<br />

Theorem. The bicategory of L<strong>and</strong>au-Ginzburg models has adjoints.


Summary<br />

2d TFTs with <strong>defects</strong> are naturally described in terms of bicategories<br />

with extra structure.<br />

Theorem. The bicategory of L<strong>and</strong>au-Ginzburg models has adjoints.<br />

(conceptual construction, yet very “computable”)


Summary<br />

2d TFTs with <strong>defects</strong> are naturally described in terms of bicategories<br />

with extra structure.<br />

Theorem. The bicategory of L<strong>and</strong>au-Ginzburg models has adjoints.<br />

(conceptual construction, yet very “computable”)<br />

Applications.<br />

underst<strong>and</strong> open/closed TFT universally from within bicategory<br />

compute any correlator as a 2-morphism<br />

new proof of Cardy condition<br />

. . .


Summary<br />

2d TFTs with <strong>defects</strong> are naturally described in terms of bicategories<br />

with extra structure.<br />

Theorem. The bicategory of L<strong>and</strong>au-Ginzburg models has adjoints.<br />

(conceptual construction, yet very “computable”)<br />

Applications.<br />

underst<strong>and</strong> open/closed TFT universally from within bicategory<br />

compute any correlator as a 2-morphism<br />

new proof of Cardy condition<br />

. . .<br />

Generalised <strong>orbifolds</strong>.<br />

conceptual, unified perspective on conventional <strong>orbifolds</strong><br />

new equivalences


2d TFTs with <strong>defects</strong><br />

Worldsheet, partitioned into domains:<br />

theories<br />

field insertions<br />

T1<br />

X2<br />

φ1<br />

T2<br />

X1<br />

X4<br />

X3<br />

X5<br />

T3<br />

φ6<br />

T4<br />

X7<br />

φ2 φ3 φ4<br />

Petkova/Zuber 2000, Bachas/Gaberdiel 2004, Fuchs/Runkel/Schweigert 2004, Davydov/Kong/Runkel 2010<br />

T5<br />

X8<br />

X6<br />

φ5<br />

defect lines


2d TFTs with <strong>defects</strong><br />

Worldsheet, partitioned into domains:<br />

theories<br />

field insertions<br />

T1<br />

X2<br />

φ1<br />

T2<br />

X1<br />

X4<br />

X3<br />

X5<br />

T3<br />

φ6<br />

T4<br />

X7<br />

φ2 φ3 φ4<br />

A TFT assigns a number 〈. . .〉, the correlator, to any worldsheet,<br />

depending only on isotopy class of defect lines:<br />

� �<br />

=<br />

T5<br />

X8<br />

X6<br />

φ5<br />

� �<br />

Petkova/Zuber 2000, Bachas/Gaberdiel 2004, Fuchs/Runkel/Schweigert 2004, Davydov/Kong/Runkel 2010<br />

defect lines


2d TFTs with <strong>defects</strong><br />

Defect fusion gives product, unit = “invisible” defect I<br />

�<br />

X Y<br />

�<br />

=<br />

�<br />

X ⊗ Y<br />

� �<br />

I X<br />

�<br />

=<br />

�<br />

X<br />


2d TFTs with <strong>defects</strong><br />

Defect fusion gives product, unit = “invisible” defect I<br />

�<br />

X Y<br />

�<br />

=<br />

�<br />

X ⊗ Y<br />

� �<br />

I X<br />

operator product of fields, unit = identity field<br />

�<br />

ψ<br />

ϕ<br />

�<br />

=<br />

�<br />

ψϕ<br />

�<br />

=<br />

�<br />

�<br />

=<br />

�<br />

1<br />

ψϕ<br />

X<br />

�<br />


2d TFTs with <strong>defects</strong><br />

Defect fusion gives product, unit = “invisible” defect I<br />

�<br />

X Y<br />

�<br />

=<br />

�<br />

X ⊗ Y<br />

� �<br />

I X<br />

operator product of fields, unit = identity field<br />

�<br />

ψ<br />

ϕ<br />

�<br />

=<br />

�<br />

ψϕ<br />

Fact. 2d TFTs with <strong>defects</strong> give bicategory:<br />

objects (domains) = theories<br />

1-morphisms (lines) = <strong>defects</strong><br />

2-morphisms (points) = fields<br />

Davydov/Kong/Runkel 2010<br />

�<br />

=<br />

�<br />

�<br />

=<br />

�<br />

1<br />

ψϕ<br />

X<br />

�<br />


Diagrammatics in bicategories<br />

X<br />

X<br />

= 1X


Diagrammatics in bicategories<br />

X<br />

X<br />

= 1X<br />

ϕ<br />

Y<br />

X<br />

= ϕ : X −→ Y


Diagrammatics in bicategories<br />

X<br />

X<br />

= 1X<br />

ϕ<br />

Y<br />

X<br />

= ϕ : X −→ Y<br />

ψ<br />

ϕ<br />

Z<br />

X<br />

= ψϕ


Diagrammatics in bicategories<br />

X<br />

X<br />

= 1X<br />

ϕ<br />

Y<br />

X<br />

= ϕ : X −→ Y<br />

ψ<br />

ϕ<br />

Z<br />

X<br />

= ψϕ<br />

X<br />

X<br />

Y<br />

φ ′ φ = φ⊗φ′<br />

Y


Diagrammatics in bicategories<br />

X<br />

X<br />

= 1X<br />

φ<br />

Z<br />

X Y<br />

ϕ<br />

Y<br />

X<br />

= ϕ : X −→ Y<br />

= φ : X ⊗ Y −→ Z<br />

ψ<br />

ϕ<br />

Z<br />

X<br />

= ψϕ<br />

X<br />

X<br />

Y<br />

φ ′ φ = φ⊗φ′<br />

Y


Diagrammatics in bicategories<br />

X<br />

X<br />

= 1X<br />

φ<br />

Z<br />

X Y<br />

ϕ<br />

Y<br />

X<br />

= ϕ : X −→ Y<br />

= φ : X ⊗ Y −→ Z<br />

ψ<br />

ϕ<br />

Z<br />

X<br />

ρX<br />

= ψϕ<br />

X<br />

X I<br />

X<br />

X<br />

Y<br />

φ ′ φ = φ⊗φ′<br />

Y


Diagrammatics in bicategories<br />

X<br />

X<br />

= 1X<br />

φ<br />

Z<br />

X Y<br />

ϕ<br />

Y<br />

X<br />

= ϕ : X −→ Y<br />

= φ : X ⊗ Y −→ Z<br />

ψ<br />

ϕ<br />

Z<br />

X<br />

ρX<br />

= ψϕ<br />

X<br />

X I<br />

I<br />

X<br />

X<br />

Y<br />

φ ′ φ = φ⊗φ′<br />

X<br />

X<br />

Y<br />

λX


Diagrammatics in bicategories<br />

X<br />

X<br />

= 1X<br />

φ<br />

Z<br />

X Y<br />

ϕ<br />

Y<br />

X<br />

= ϕ : X −→ Y<br />

= φ : X ⊗ Y −→ Z<br />

Orientation matters:<br />

ψ<br />

ϕ<br />

T1<br />

Z<br />

X<br />

ρX<br />

= ψϕ<br />

X<br />

X I<br />

X<br />

X<br />

T2<br />

I<br />

X<br />

X<br />

Y<br />

φ ′ φ = φ⊗φ′<br />

X<br />

X<br />

Y<br />

λX


Diagrammatics in bicategories<br />

X<br />

X<br />

= 1X<br />

φ<br />

Z<br />

X Y<br />

ϕ<br />

Y<br />

X<br />

= ϕ : X −→ Y<br />

= φ : X ⊗ Y −→ Z<br />

Orientation matters:<br />

ψ<br />

ϕ<br />

T1<br />

Z<br />

X<br />

ρX<br />

= ψϕ<br />

X<br />

X I<br />

X<br />

X<br />

T2<br />

X †<br />

X †<br />

I<br />

X<br />

X<br />

Y<br />

φ ′ φ = φ⊗φ′<br />

X<br />

X<br />

T1<br />

Y<br />

λX


Orientation <strong>and</strong> adjoints<br />

I<br />

X † X<br />

= evX : X † ⊗X −→ I<br />

X<br />

I<br />

X †<br />

= coevX : I −→ X ⊗X †


Orientation <strong>and</strong> adjoints<br />

I<br />

X † X<br />

= evX : X † ⊗X −→ I<br />

Defects are topological:<br />

X<br />

X<br />

=<br />

X<br />

X<br />

X<br />

I<br />

X †<br />

= coevX : I −→ X ⊗X †<br />

X †<br />

X †<br />

=<br />

X †<br />

X †


Orientation <strong>and</strong> adjoints<br />

I<br />

X † X<br />

= evX : X † ⊗X −→ I<br />

Defects are topological:<br />

1X =<br />

X<br />

X<br />

=<br />

X<br />

X<br />

X<br />

I<br />

X †<br />

= ρ ◦ (1 ⊗ ev) ◦ (coev ⊗1) ◦ λ −1<br />

= coevX : I −→ X ⊗X †<br />

X †<br />

X †<br />

=<br />

X †<br />

X †


Orientation <strong>and</strong> adjoints<br />

I<br />

X † X<br />

= evX : X † ⊗X −→ I<br />

Defects are topological:<br />

1X =<br />

X<br />

X<br />

=<br />

X<br />

X<br />

X<br />

I<br />

X †<br />

= ρ ◦ (1 ⊗ ev) ◦ (coev ⊗1) ◦ λ −1<br />

= coevX : I −→ X ⊗X †<br />

Definition. A bicategory has adjoints if for each 1-morphism X there is<br />

a 1-morphism X † with 2-morphisms evX, coevX such that the above<br />

Zorro moves hold.<br />

X †<br />

X †<br />

=<br />

X †<br />

X †


Zorro


L<strong>and</strong>au-Ginzburg models<br />

theories: potentials W ∈ R = C[x1, . . . , xn], dim(R/(∂W )) < ∞


L<strong>and</strong>au-Ginzburg models<br />

theories: potentials W ∈ R = C[x1, . . . , xn], dim(R/(∂W )) < ∞<br />

<strong>defects</strong> between W ∈ R <strong>and</strong> V ∈ S: matrix factorisations of<br />

V − W , i. e. free Z2-graded (R ⊗ S)-modules X = X0 ⊕ X1 with<br />

�<br />

�<br />

0 d1 dX =<br />

X<br />

d0 X 0<br />

Kontsevich, Kapustin/Li 2002, Lazaroiu 2003, Brunner/Roggenkamp 2007<br />

∈ End 1 R⊗S(X) , d 2 X = (V − W ) · 1X


L<strong>and</strong>au-Ginzburg models<br />

theories: potentials W ∈ R = C[x1, . . . , xn], dim(R/(∂W )) < ∞<br />

<strong>defects</strong> between W ∈ R <strong>and</strong> V ∈ S: matrix factorisations of<br />

V − W , i. e. free Z2-graded (R ⊗ S)-modules X = X0 ⊕ X1 with<br />

�<br />

�<br />

0 d1 dX =<br />

X<br />

d0 X 0<br />

∈ End 1 R⊗S(X) , d 2 X = (V − W ) · 1X<br />

fields between X <strong>and</strong> Y : (BRST) cohomology of<br />

Hom(X, Y ) ∋ ψ ↦−→ dY ψ − (−1) |ψ| ψdX<br />

Kontsevich, Kapustin/Li 2002, Lazaroiu 2003, Brunner/Roggenkamp 2007


L<strong>and</strong>au-Ginzburg models<br />

defect fusion: X ⊗ Y , dX⊗Y = dX ⊗ 1 + 1 ⊗ dY<br />

Brunner/Roggenkamp 2007


L<strong>and</strong>au-Ginzburg models<br />

defect fusion: X ⊗ Y , dX⊗Y = dX ⊗ 1 + 1 ⊗ dY<br />

invisible defect:<br />

IW = (R ⊗ R) ⊕2 , dIW =<br />

�<br />

0<br />

�<br />

x − y<br />

0<br />

Brunner/Roggenkamp 2007, Kapustin/Rozansky 2004<br />

W (x)−W (y)<br />

x−y


L<strong>and</strong>au-Ginzburg models<br />

defect fusion: X ⊗ Y , dX⊗Y = dX ⊗ 1 + 1 ⊗ dY<br />

invisible defect:<br />

IW = (R ⊗ R) ⊕2 , dIW =<br />

�<br />

0<br />

�<br />

x − y<br />

0<br />

for n = 1, in general:<br />

IW = � � �n<br />

�<br />

(R⊗R)·θi , dIW =<br />

i=1<br />

Brunner/Roggenkamp 2007, Kapustin/Rozansky 2004<br />

W (x)−W (y)<br />

x−y<br />

n�<br />

i=1<br />

�<br />

(xi −yi)·θ ∗ �<br />

i +∂ [i]W ·θi


L<strong>and</strong>au-Ginzburg models<br />

defect fusion: X ⊗ Y , dX⊗Y = dX ⊗ 1 + 1 ⊗ dY<br />

invisible defect:<br />

IW = (R ⊗ R) ⊕2 , dIW =<br />

�<br />

0<br />

�<br />

x − y<br />

0<br />

for n = 1, in general:<br />

IW = � � �n<br />

�<br />

(R⊗R)·θi , dIW =<br />

i=1<br />

Fact. End(IW ) ∼ = R/(∂W ) = bulk space<br />

Brunner/Roggenkamp 2007, Kapustin/Rozansky 2004<br />

W (x)−W (y)<br />

x−y<br />

n�<br />

i=1<br />

�<br />

(xi −yi)·θ ∗ �<br />

i +∂ [i]W ·θi


L<strong>and</strong>au-Ginzburg models<br />

I<br />

X<br />

X<br />

defect fusion: X ⊗ Y , dX⊗Y = dX ⊗ 1 + 1 ⊗ dY<br />

invisible defect:<br />

IW = (R ⊗ R) ⊕2 , dIW =<br />

�<br />

0<br />

�<br />

x − y<br />

0<br />

for n = 1, in general:<br />

IW = � � �n<br />

�<br />

(R⊗R)·θi , dIW =<br />

i=1<br />

Fact. End(IW ) ∼ = R/(∂W ) = bulk space<br />

λX<br />

: I ⊗ X<br />

�<br />

Brunner/Roggenkamp 2007, Kapustin/Rozansky 2004<br />

� ��<br />

(R ⊗ R) ⊗ X mult. ��<br />

X<br />

W (x)−W (y)<br />

x−y<br />

n�<br />

i=1<br />

�<br />

(xi −yi)·θ ∗ �<br />

i +∂ [i]W ·θi


L<strong>and</strong>au-Ginzburg models<br />

I<br />

X<br />

X<br />

defect fusion: X ⊗ Y , dX⊗Y = dX ⊗ 1 + 1 ⊗ dY<br />

invisible defect:<br />

IW = (R ⊗ R) ⊕2 , dIW =<br />

�<br />

0<br />

�<br />

x − y<br />

0<br />

for n = 1, in general:<br />

IW = � � �n<br />

�<br />

(R⊗R)·θi , dIW =<br />

i=1<br />

Fact. End(IW ) ∼ = R/(∂W ) = bulk space<br />

λX<br />

: I ⊗ X<br />

�<br />

Brunner/Roggenkamp 2007, Kapustin/Rozansky 2004<br />

� ��<br />

(R ⊗ R) ⊗ X mult. ��<br />

X ,<br />

W (x)−W (y)<br />

x−y<br />

n�<br />

i=1<br />

�<br />

(xi −yi)·θ ∗ �<br />

i +∂ [i]W ·θi<br />

X<br />

ρX : X ⊗ I ��<br />

X<br />

X I


L<strong>and</strong>au-Ginzburg models<br />

I<br />

X<br />

defect fusion: X ⊗ Y , dX⊗Y = dX ⊗ 1 + 1 ⊗ dY<br />

invisible defect:<br />

IW = (R ⊗ R) ⊕2 , dIW =<br />

�<br />

0<br />

�<br />

x − y<br />

0<br />

for n = 1, in general:<br />

IW = � � �n<br />

�<br />

(R⊗R)·θi , dIW =<br />

i=1<br />

Fact. End(IW ) ∼ = R/(∂W ) = bulk space<br />

λX<br />

: I ⊗ X<br />

�<br />

X<br />

operator product: matrix multiplication<br />

Brunner/Roggenkamp 2007, Kapustin/Rozansky 2004<br />

� ��<br />

(R ⊗ R) ⊗ X mult. ��<br />

X ,<br />

W (x)−W (y)<br />

x−y<br />

n�<br />

i=1<br />

�<br />

(xi −yi)·θ ∗ �<br />

i +∂ [i]W ·θi<br />

X<br />

ρX : X ⊗ I ��<br />

X<br />

X I


First main result<br />

Theorem. L<strong>and</strong>au-Ginzburg models give a bicategory, called LG.<br />

<strong>Carqueville</strong>/Runkel 2009


First main result<br />

Theorem. L<strong>and</strong>au-Ginzburg models give a bicategory, called LG.<br />

Theorem. LG has adjoints<br />

<strong>Carqueville</strong>/Runkel 2009, <strong>Carqueville</strong>/Murfet 2012


First main result<br />

Theorem. L<strong>and</strong>au-Ginzburg models give a bicategory, called LG.<br />

Theorem. LG has adjoints:<br />

Let W ∈ C[x1, . . . , xn], V ∈ C[z1, . . . , zm], X matrix fact. of V − W :<br />

V W<br />

X<br />

<strong>Carqueville</strong>/Runkel 2009, <strong>Carqueville</strong>/Murfet 2012


First main result<br />

Theorem. L<strong>and</strong>au-Ginzburg models give a bicategory, called LG.<br />

Theorem. LG has adjoints:<br />

Let W ∈ C[x1, . . . , xn], V ∈ C[z1, . . . , zm], X matrix fact. of V − W :<br />

V W<br />

X<br />

W V<br />

X †<br />

<strong>Carqueville</strong>/Runkel 2009, <strong>Carqueville</strong>/Murfet 2012


First main result<br />

Theorem. L<strong>and</strong>au-Ginzburg models give a bicategory, called LG.<br />

Theorem. LG has adjoints:<br />

Let W ∈ C[x1, . . . , xn], V ∈ C[z1, . . . , zm], X matrix fact. of V − W :<br />

V W<br />

X<br />

<strong>Carqueville</strong>/Runkel 2009, <strong>Carqueville</strong>/Murfet 2012<br />

X †<br />

W V X † = X ∨ �<br />

0 (d0 [m] dX † =<br />

X ) ∨<br />

−(d1 X )∨ 0<br />

�<br />

[m]


First main result<br />

Theorem. L<strong>and</strong>au-Ginzburg models give a bicategory, called LG.<br />

Theorem. LG has adjoints:<br />

Let W ∈ C[x1, . . . , xn], V ∈ C[z1, . . . , zm], X matrix fact. of V − W :<br />

V W<br />

X<br />

X<br />

I<br />

X †<br />

X †<br />

W V X † = X ∨ �<br />

0 (d0 [m] dX † =<br />

X ) ∨<br />

−(d1 X )∨ 0<br />

= coevX : 1 ↦−→ ∂ [1]dX . . . ∂ [m]dX ∈ X ⊗ X ∨<br />

�<br />

[m]<br />

<strong>Carqueville</strong>/Runkel 2009, <strong>Carqueville</strong>/Murfet 2012 (Note: we suppress various signs)


First main result<br />

Theorem. L<strong>and</strong>au-Ginzburg models give a bicategory, called LG.<br />

Theorem. LG has adjoints:<br />

Let W ∈ C[x1, . . . , xn], V ∈ C[z1, . . . , zm], X matrix fact. of V − W :<br />

V W<br />

X<br />

X<br />

X †<br />

X †<br />

W V X † = X ∨ �<br />

0 (d0 [m] dX † =<br />

X ) ∨<br />

−(d1 X )∨ 0<br />

= coevX : 1 ↦−→ ∂ [1]dX . . . ∂ [m]dX ∈ X ⊗ X ∨<br />

X<br />

I<br />

† I<br />

X<br />

� �<br />

str (−) ◦ ∂z1<br />

= evX = Res<br />

dX<br />

� �<br />

. . . ∂zmdX dz<br />

+ O(θ)<br />

∂z1V . . . ∂zmV<br />

�<br />

[m]<br />

<strong>Carqueville</strong>/Runkel 2009, <strong>Carqueville</strong>/Murfet 2012 (Note: we suppress various signs)


First main result<br />

Theorem. L<strong>and</strong>au-Ginzburg models give a bicategory, called LG.<br />

Theorem. LG has adjoints:<br />

Let W ∈ C[x1, . . . , xn], V ∈ C[z1, . . . , zm], X matrix fact. of V − W :<br />

V W<br />

X<br />

X<br />

X †<br />

X †<br />

W V X † = X ∨ �<br />

0 (d0 [m] dX † =<br />

X ) ∨<br />

−(d1 X )∨ 0<br />

= coevX : 1 ↦−→ ∂ [1]dX . . . ∂ [m]dX ∈ X ⊗ X ∨<br />

X<br />

I<br />

† I<br />

X<br />

� �<br />

str (−) ◦ ∂z1<br />

= evX = Res<br />

dX<br />

� �<br />

. . . ∂zmdX dz<br />

+ O(θ)<br />

∂z1V . . . ∂zmV<br />

�<br />

[m]<br />

Proof : homological perturbation, associative Atiyah classes<br />

<strong>Carqueville</strong>/Runkel 2009, <strong>Carqueville</strong>/Murfet 2012 (Note: we suppress various signs)


Applications<br />

Defect action on bulk fields for defect X between W (x) <strong>and</strong> V (z):<br />

X<br />

φ<br />

W<br />

V


Applications<br />

Defect action on bulk fields for defect X between W (x) <strong>and</strong> V (z):<br />

X<br />

φ<br />

W<br />

V<br />

=<br />

ρX<br />

ρ −1<br />

X<br />

X<br />

φ<br />

W<br />

V<br />

= Res<br />

� �<br />

φ str (Πi∂xidX)(Πj∂zj dX) � �<br />

dx<br />

∂x1W . . . ∂xnW


Applications<br />

Defect action on bulk fields for defect X between W (x) <strong>and</strong> V (z):<br />

Ψ<br />

X<br />

φ<br />

W<br />

V<br />

=<br />

ρX<br />

Ψ<br />

ρ −1<br />

X<br />

X<br />

φ<br />

W<br />

V<br />

= Res<br />

� �<br />

φ str Ψ(Πi∂xidX)(Πj∂zj dX) � �<br />

dx<br />

∂x1W . . . ∂xnW


Applications<br />

Defect action on bulk fields for defect X between W (x) <strong>and</strong> V (z):<br />

Ψ<br />

X<br />

φ<br />

W<br />

V<br />

Special cases:<br />

=<br />

ρX<br />

Ψ<br />

ρ −1<br />

X<br />

X<br />

φ<br />

W<br />

V<br />

= Res<br />

� �<br />

φ str Ψ(Πi∂xidX)(Πj∂zj dX) � �<br />

dx<br />

∂x1W . . . ∂xnW<br />

φ = 1, Ψ = 1 gives the quantum dimension dim(X)


Applications<br />

Defect action on bulk fields for defect X between W (x) <strong>and</strong> V (z):<br />

Ψ<br />

X<br />

φ<br />

W<br />

V<br />

Special cases:<br />

=<br />

ρX<br />

Ψ<br />

ρ −1<br />

X<br />

X<br />

φ<br />

W<br />

V<br />

= Res<br />

� �<br />

φ str Ψ(Πi∂xidX)(Πj∂zj dX) � �<br />

dx<br />

∂x1W . . . ∂xnW<br />

φ = 1, Ψ = 1 gives the quantum dimension dim(X)<br />

V = 0 gives Kapustin-Li disk correlator


Applications<br />

Defect action on bulk fields for defect X between W (x) <strong>and</strong> V (z):<br />

Ψ<br />

X<br />

φ<br />

W<br />

V<br />

Special cases:<br />

=<br />

ρX<br />

Ψ<br />

ρ −1<br />

X<br />

X<br />

φ<br />

W<br />

V<br />

= Res<br />

� �<br />

φ str Ψ(Πi∂xidX)(Πj∂zj dX) � �<br />

dx<br />

∂x1W . . . ∂xnW<br />

φ = 1, Ψ = 1 gives the quantum dimension dim(X)<br />

V = 0 gives Kapustin-Li disk correlator<br />

W = 0 gives boundary-bulk map<br />

β X (Ψ) = str � Ψ ∂z1dX �<br />

. . . ∂zmdX


Applications<br />

Defect action on bulk fields for defect X between W (x) <strong>and</strong> V (z):<br />

Ψ<br />

X<br />

φ<br />

W<br />

V<br />

Special cases:<br />

=<br />

ρX<br />

Ψ<br />

ρ −1<br />

X<br />

X<br />

φ<br />

W<br />

V<br />

= Res<br />

� �<br />

φ str Ψ(Πi∂xidX)(Πj∂zj dX) � �<br />

dx<br />

∂x1W . . . ∂xnW<br />

φ = 1, Ψ = 1 gives the quantum dimension dim(X)<br />

V = 0 gives Kapustin-Li disk correlator<br />

W = 0 gives boundary-bulk map<br />

β X (Ψ) = str � Ψ ∂z1dX �<br />

. . . ∂zmdX<br />

ch(X) := β X (1) is the Chern character


Open/closed topological field theory<br />

2d open/closed TFT via “generators <strong>and</strong> relations”<br />

Moore 2000, Lazaroiu 2000, Moore/Segal 2006


Open/closed topological field theory<br />

2d open/closed TFT via “generators <strong>and</strong> relations”:<br />

commutative Frobenius algebra C,<br />

Calabi-Yau category O,<br />

bulk-boundary maps <strong>and</strong> boundary-bulk maps for all X ∈ O:<br />

Moore 2000, Lazaroiu 2000, Moore/Segal 2006<br />

βX : C −→ EndO(X) , β X : EndO(X) −→ C


Open/closed topological field theory<br />

2d open/closed TFT via “generators <strong>and</strong> relations”:<br />

commutative Frobenius algebra C,<br />

Calabi-Yau category O,<br />

bulk-boundary maps <strong>and</strong> boundary-bulk maps for all X ∈ O:<br />

βX : C −→ EndO(X) , β X : EndO(X) −→ C<br />

The βX are morphisms of unital algebras that map into the centre of<br />

EndO(X).<br />

� βX(φ), Ψ �<br />

X = � φ, β X (Ψ) �<br />

Cardy condition:<br />

str(ΨmΦ) = � β X (Φ), β Y (Ψ) �<br />

for all Φ : X −→ X, Ψ : Y −→ Y where ΨmΦ(α) = Ψ ◦ α ◦ Φ<br />

Moore 2000, Lazaroiu 2000, Moore/Segal 2006


Open/closed TFT from L<strong>and</strong>au-Ginzburg models<br />

βX(φ) =<br />

W<br />

φ<br />

X<br />

β X (Ψ) =<br />

Ψ<br />

W<br />

X<br />

IW<br />

IW


Open/closed TFT from L<strong>and</strong>au-Ginzburg models<br />

βX(φ) =<br />

� �<br />

Ψ1, Ψ2 X =<br />

W<br />

W<br />

φ<br />

X<br />

X<br />

Ψ1<br />

Ψ2<br />

β X (Ψ) =<br />

Ψ<br />

W<br />

X<br />

IW<br />

IW<br />

� �<br />

φ1, φ2 W = φ1(x)<br />

W (x) − W (y)<br />

φ2(x)<br />

IW


Open/closed TFT from L<strong>and</strong>au-Ginzburg models<br />

βX(φ) =<br />

� �<br />

Ψ1, Ψ2 X =<br />

W<br />

W<br />

φ<br />

X<br />

X<br />

Ψ1<br />

Ψ2<br />

β X (Ψ) =<br />

Ψ<br />

W<br />

X<br />

IW<br />

IW<br />

� �<br />

φ1, φ2 W = φ1(x)<br />

W (x) − W (y)<br />

φ2(x)<br />

Theorem. Every W ∈ LG gives a 2d open/closed TFT with<br />

C = R/(∂W ) <strong>and</strong> O = LG(0, W ).<br />

Vafa 1990, Kapustin/Li 2003, Lazaroiu/Herbst 2004, Kapustin/Rozansky 2004, Murfet 2009, Polishchuk/Vaintrob 2010<br />

IW


Applications<br />

Theorem. The Cardy condition holds in LG<br />

Polishchuk/Vaintrob 2010, <strong>Carqueville</strong>/Murfet 2012


Applications<br />

Theorem. The Cardy condition holds in LG: for matrix factorisations<br />

X, Y of W <strong>and</strong> maps Φ : X −→ X, Ψ : Y −→ Y we have<br />

str � � �<br />

� βX (Φ) βY (Ψ) dx<br />

ΨmΦ = Res<br />

∂1W . . . ∂nW<br />

Polishchuk/Vaintrob 2010, <strong>Carqueville</strong>/Murfet 2012


Applications<br />

Theorem. The Cardy condition holds in LG: for matrix factorisations<br />

X, Y of W <strong>and</strong> maps Φ : X −→ X, Ψ : Y −→ Y we have<br />

str � � �<br />

� βX (Φ) βY (Ψ) dx<br />

ΨmΦ = Res<br />

∂1W . . . ∂nW<br />

Proof:<br />

Polishchuk/Vaintrob 2010, <strong>Carqueville</strong>/Murfet 2012<br />

Φ<br />

Y<br />

X Ψ<br />

W


Applications<br />

Theorem. The Cardy condition holds in LG: for matrix factorisations<br />

X, Y of W <strong>and</strong> maps Φ : X −→ X, Ψ : Y −→ Y we have<br />

str � � �<br />

� βX (Φ) βY (Ψ) dx<br />

ΨmΦ = Res<br />

∂1W . . . ∂nW<br />

Proof:<br />

Polishchuk/Vaintrob 2010, <strong>Carqueville</strong>/Murfet 2012<br />

Φ<br />

evY<br />

�evX<br />

coevX<br />

coevY �<br />

W<br />

Ψ


Applications<br />

Theorem. The Cardy condition holds in LG: for matrix factorisations<br />

X, Y of W <strong>and</strong> maps Φ : X −→ X, Ψ : Y −→ Y we have<br />

str � � �<br />

� βX (Φ) βY (Ψ) dx<br />

ΨmΦ = Res<br />

∂1W . . . ∂nW<br />

Proof:<br />

Polishchuk/Vaintrob 2010, <strong>Carqueville</strong>/Murfet 2012<br />

Φ<br />

evY<br />

�evX<br />

coevX<br />

coevY �<br />

W<br />

Ψ<br />

evY<br />

= W<br />

βX (Φ)<br />

coevY �<br />

Ψ


Applications<br />

Theorem. The Cardy condition holds in LG: for matrix factorisations<br />

X, Y of W <strong>and</strong> maps Φ : X −→ X, Ψ : Y −→ Y we have<br />

str � � �<br />

� βX (Φ) βY (Ψ) dx<br />

ΨmΦ = Res<br />

∂1W . . . ∂nW<br />

Proof:<br />

1 ⊗ Φ<br />

ev X † ⊗Y<br />

coev � X † ⊗Y<br />

1 ⊗ Ψ<br />

Polishchuk/Vaintrob 2010, <strong>Carqueville</strong>/Murfet 2012<br />

evY<br />

�evX Ψ<br />

=<br />

Φ<br />

W<br />

coevX<br />

coevY �<br />

evY<br />

= W<br />

βX (Φ)<br />

coevY �<br />

Ψ


Generalised <strong>orbifolds</strong><br />

Theorem. Let X ∈ LG(W, V ) have invertible quantum dimensions.<br />

<strong>Carqueville</strong>/Runkel 2012


Generalised <strong>orbifolds</strong><br />

Theorem. Let X ∈ LG(W, V ) have invertible quantum dimensions.<br />

A = X † ⊗ X is a special symmetric Frobenius algebra in LG(W, W ).<br />

Everything about theory V can be recovered from A<br />

<strong>Carqueville</strong>/Runkel 2012


Generalised <strong>orbifolds</strong><br />

Theorem. Let X ∈ LG(W, V ) have invertible quantum dimensions.<br />

A = X † ⊗ X is a special symmetric Frobenius algebra in LG(W, W ).<br />

Everything about theory V can be recovered from A:<br />

◮ LG(0, V ) ∼ = mod(A) (boundary sector)<br />

◮ LG(V, V ) ∼ = bimod(A) (defect sector)<br />

<strong>Carqueville</strong>/Runkel 2012


Generalised <strong>orbifolds</strong><br />

Theorem. Let X ∈ LG(W, V ) have invertible quantum dimensions.<br />

A = X † ⊗ X is a special symmetric Frobenius algebra in LG(W, W ).<br />

Everything about theory V can be recovered from A:<br />

◮ LG(0, V ) ∼ = mod(A) (boundary sector)<br />

◮ LG(V, V ) ∼ = bimod(A) (defect sector)<br />

Idea. Introducing X-bubbles in V -correlator is scaling by dim(X).<br />

Blowing up all X-bubbles produces W -correlator with A-defect network.<br />

�<br />

<strong>Carqueville</strong>/Runkel 2012<br />

V<br />


Generalised <strong>orbifolds</strong><br />

Theorem. Let X ∈ LG(W, V ) have invertible quantum dimensions.<br />

A = X † ⊗ X is a special symmetric Frobenius algebra in LG(W, W ).<br />

Everything about theory V can be recovered from A:<br />

◮ LG(0, V ) ∼ = mod(A) (boundary sector)<br />

◮ LG(V, V ) ∼ = bimod(A) (defect sector)<br />

Idea. Introducing X-bubbles in V -correlator is scaling by dim(X).<br />

Blowing up all X-bubbles produces W -correlator with A-defect network.<br />

�<br />

<strong>Carqueville</strong>/Runkel 2012<br />

V<br />

�<br />

∼<br />

�<br />

X<br />

W<br />

V<br />


Generalised <strong>orbifolds</strong><br />

Theorem. Let X ∈ LG(W, V ) have invertible quantum dimensions.<br />

A = X † ⊗ X is a special symmetric Frobenius algebra in LG(W, W ).<br />

Everything about theory V can be recovered from A:<br />

◮ LG(0, V ) ∼ = mod(A) (boundary sector)<br />

◮ LG(V, V ) ∼ = bimod(A) (defect sector)<br />

Idea. Introducing X-bubbles in V -correlator is scaling by dim(X).<br />

Blowing up all X-bubbles produces W -correlator with A-defect network.<br />

=<br />

�<br />

V<br />

�<br />

� �<br />

<strong>Carqueville</strong>/Runkel 2012<br />

∼<br />

�<br />

X<br />

W<br />

V<br />


Generalised <strong>orbifolds</strong><br />

Theorem. Let X ∈ LG(W, V ) have invertible quantum dimensions.<br />

A = X † ⊗ X is a special symmetric Frobenius algebra in LG(W, W ).<br />

Everything about theory V can be recovered from A:<br />

◮ LG(0, V ) ∼ = mod(A) (boundary sector)<br />

◮ LG(V, V ) ∼ = bimod(A) (defect sector)<br />

Idea. Introducing X-bubbles in V -correlator is scaling by dim(X).<br />

Blowing up all X-bubbles produces W -correlator with A-defect network.<br />

=<br />

�<br />

V<br />

�<br />

� �<br />

<strong>Carqueville</strong>/Runkel 2012<br />

∼<br />

=<br />

�<br />

�<br />

X<br />

W<br />

V<br />

A<br />

W<br />

�<br />


Generalised <strong>orbifolds</strong><br />

Let B be pivotal bicategory with adjoints.<br />

<strong>Carqueville</strong>/Runkel 2012, Fröhlich/Fuchs/Runkel/Schweigert 2009, (Fjelstad/Fröhlich/)Fuchs/Runkel/Schweigert 200x


Generalised <strong>orbifolds</strong><br />

Let B be pivotal bicategory with adjoints. Orbifold completion Borb:<br />

objects: pairs (W, A) with W ∈ B <strong>and</strong> A ∈ EndB(W ) special<br />

symmetric Frobenius algebra:<br />

: A⊗A −→ A : I −→ A<br />

<strong>Carqueville</strong>/Runkel 2012, Fröhlich/Fuchs/Runkel/Schweigert 2009, (Fjelstad/Fröhlich/)Fuchs/Runkel/Schweigert 200x


Generalised <strong>orbifolds</strong><br />

Let B be pivotal bicategory with adjoints. Orbifold completion Borb:<br />

objects: pairs (W, A) with W ∈ B <strong>and</strong> A ∈ EndB(W ) special<br />

symmetric Frobenius algebra:<br />

: A⊗A −→ A : I −→ A = = =<br />

<strong>Carqueville</strong>/Runkel 2012, Fröhlich/Fuchs/Runkel/Schweigert 2009, (Fjelstad/Fröhlich/)Fuchs/Runkel/Schweigert 200x


Generalised <strong>orbifolds</strong><br />

Let B be pivotal bicategory with adjoints. Orbifold completion Borb:<br />

objects: pairs (W, A) with W ∈ B <strong>and</strong> A ∈ EndB(W ) special<br />

symmetric Frobenius algebra:<br />

: A⊗A −→ A : I −→ A = = =<br />

= = = =<br />

<strong>Carqueville</strong>/Runkel 2012, Fröhlich/Fuchs/Runkel/Schweigert 2009, (Fjelstad/Fröhlich/)Fuchs/Runkel/Schweigert 200x


Generalised <strong>orbifolds</strong><br />

Let B be pivotal bicategory with adjoints. Orbifold completion Borb:<br />

objects: pairs (W, A) with W ∈ B <strong>and</strong> A ∈ EndB(W ) special<br />

symmetric Frobenius algebra:<br />

: A⊗A −→ A : I −→ A = = =<br />

= = = =<br />

1-morphisms: X ∈ B(W, V ) that are bimodules<br />

X<br />

X<br />

<strong>Carqueville</strong>/Runkel 2012, Fröhlich/Fuchs/Runkel/Schweigert 2009, (Fjelstad/Fröhlich/)Fuchs/Runkel/Schweigert 200x


Generalised <strong>orbifolds</strong><br />

Let B be pivotal bicategory with adjoints. Orbifold completion Borb:<br />

objects: pairs (W, A) with W ∈ B <strong>and</strong> A ∈ EndB(W ) special<br />

symmetric Frobenius algebra:<br />

: A⊗A −→ A : I −→ A = = =<br />

= = = =<br />

1-morphisms: X ∈ B(W, V ) that are bimodules<br />

X<br />

X<br />

= =<br />

<strong>Carqueville</strong>/Runkel 2012, Fröhlich/Fuchs/Runkel/Schweigert 2009, (Fjelstad/Fröhlich/)Fuchs/Runkel/Schweigert 200x


Generalised <strong>orbifolds</strong><br />

Let B be pivotal bicategory with adjoints. Orbifold completion Borb:<br />

objects: pairs (W, A) with W ∈ B <strong>and</strong> A ∈ EndB(W ) special<br />

symmetric Frobenius algebra:<br />

: A⊗A −→ A : I −→ A = = =<br />

= = = =<br />

1-morphisms: X ∈ B(W, V ) that are bimodules<br />

X<br />

X<br />

= = =<br />

<strong>Carqueville</strong>/Runkel 2012, Fröhlich/Fuchs/Runkel/Schweigert 2009, (Fjelstad/Fröhlich/)Fuchs/Runkel/Schweigert 200x


Generalised <strong>orbifolds</strong><br />

Let B be pivotal bicategory with adjoints. Orbifold completion Borb:<br />

objects: pairs (W, A) with W ∈ B <strong>and</strong> A ∈ EndB(W ) special<br />

symmetric Frobenius algebra:<br />

: A⊗A −→ A : I −→ A = = =<br />

= = = =<br />

1-morphisms: X ∈ B(W, V ) that are bimodules<br />

X<br />

= = =<br />

X<br />

horizontal composition: tensor product over algebra<br />

<strong>Carqueville</strong>/Runkel 2012, Fröhlich/Fuchs/Runkel/Schweigert 2009, (Fjelstad/Fröhlich/)Fuchs/Runkel/Schweigert 200x


Generalised <strong>orbifolds</strong><br />

Let B be pivotal bicategory with adjoints. Orbifold completion Borb:<br />

objects: pairs (W, A) with W ∈ B <strong>and</strong> A ∈ EndB(W ) special<br />

symmetric Frobenius algebra:<br />

: A⊗A −→ A : I −→ A = = =<br />

= = = =<br />

1-morphisms: X ∈ B(W, V ) that are bimodules<br />

X<br />

= = =<br />

X<br />

horizontal composition: tensor product over algebra<br />

2-morphisms: φ ∈ Hom(X, Y ) that are bimodule maps<br />

<strong>Carqueville</strong>/Runkel 2012, Fröhlich/Fuchs/Runkel/Schweigert 2009, (Fjelstad/Fröhlich/)Fuchs/Runkel/Schweigert 200x


Generalised <strong>orbifolds</strong><br />

Theorem.<br />

A = X † ⊗ X is a symmetric Frobenius algebra for any 1-morphism X in B.<br />

<strong>Carqueville</strong>/Runkel 2012


Generalised <strong>orbifolds</strong><br />

Theorem.<br />

A = X † ⊗ X is a symmetric Frobenius algebra for any 1-morphism X in B.<br />

If dim(X) is invertible (easy to check for B = LG) then:<br />

A = X † ⊗ X is a special symmetric Frobenius algebra.<br />

X ⊗A X † ∼ = I.<br />

X <strong>and</strong> X † are mutually inverse in Borb.<br />

<strong>Carqueville</strong>/Runkel 2012


Generalised <strong>orbifolds</strong><br />

Theorem.<br />

A = X † ⊗ X is a symmetric Frobenius algebra for any 1-morphism X in B.<br />

If dim(X) is invertible (easy to check for B = LG) then:<br />

A = X † ⊗ X is a special symmetric Frobenius algebra.<br />

X ⊗A X † ∼ = I.<br />

X <strong>and</strong> X † are mutually inverse in Borb.<br />

“If B has nondegenerate pairings, so does Borb.”<br />

<strong>Carqueville</strong>/Runkel 2012


Generalised <strong>orbifolds</strong><br />

Theorem.<br />

A = X † ⊗ X is a symmetric Frobenius algebra for any 1-morphism X in B.<br />

If dim(X) is invertible (easy to check for B = LG) then:<br />

A = X † ⊗ X is a special symmetric Frobenius algebra.<br />

X ⊗A X † ∼ = I.<br />

X <strong>and</strong> X † are mutually inverse in Borb.<br />

“If B has nondegenerate pairings, so does Borb.”<br />

Theorem. Every (W, A) ∈ LGorb gives rise to 2d open/closed TFT:<br />

� �<br />

φ1, φ2 (W,A) =<br />

�<br />

<strong>Carqueville</strong>/Runkel 2012<br />

φ1<br />

φ2<br />

�<br />

β orb<br />

X (φ) =<br />

φ<br />

X<br />

X<br />

β X orb (Ψ) =<br />

Ψ<br />

X


Generalised <strong>orbifolds</strong><br />

Theorem.<br />

A = X † ⊗ X is a symmetric Frobenius algebra for any 1-morphism X in B.<br />

If dim(X) is invertible (easy to check for B = LG) then:<br />

A = X † ⊗ X is a special symmetric Frobenius algebra.<br />

X ⊗A X † ∼ = I.<br />

X <strong>and</strong> X † are mutually inverse in Borb.<br />

“If B has nondegenerate pairings, so does Borb.”<br />

Theorem. Every (W, A) ∈ LGorb gives rise to 2d open/closed TFT:<br />

� �<br />

φ1, φ2 (W,A) =<br />

�<br />

φ1<br />

φ2<br />

�<br />

β orb<br />

X (φ) = φ<br />

X<br />

X<br />

β X orb (Ψ) =<br />

Ψ<br />

X<br />

Corollary. Cardy condition holds for G-equivariant matrix factorisations.<br />

<strong>Carqueville</strong>/Runkel 2012


Generalised <strong>orbifolds</strong><br />

Examples.<br />

“ordinary” <strong>orbifolds</strong>: for discrete symmetry group G of W we have<br />

hmf(W ) G = LG(0, W ) G � � �<br />

∼ = mod<br />

<strong>Carqueville</strong>/Runkel 2012, see also Ashok/Dell’Aquila/Diaconescu 2004, Brunner/Roggenkamp 2007, Brunner/<strong>Carqueville</strong>/Plencner<br />

g∈G<br />

Ig


Generalised <strong>orbifolds</strong><br />

Examples.<br />

“ordinary” <strong>orbifolds</strong>: for discrete symmetry group G of W we have<br />

hmf(W ) G = LG(0, W ) G � �<br />

∼ = mod<br />

�<br />

(& Cardy condition)<br />

<strong>Carqueville</strong>/Runkel 2012<br />

g∈G<br />

Ig


Generalised <strong>orbifolds</strong><br />

Examples.<br />

“ordinary” <strong>orbifolds</strong>: for discrete symmetry group G of W we have<br />

hmf(W ) G = LG(0, W ) G � �<br />

∼ = mod<br />

�<br />

(& Cardy condition)<br />

Knörrer periodicity<br />

<strong>Carqueville</strong>/Runkel 2012<br />

g∈G<br />

Ig


Generalised <strong>orbifolds</strong><br />

Examples.<br />

“ordinary” <strong>orbifolds</strong>: for discrete symmetry group G of W we have<br />

hmf(W ) G = LG(0, W ) G � �<br />

∼ = mod<br />

�<br />

(& Cardy condition)<br />

g∈G<br />

Knörrer periodicity<br />

Z2-orbifold between A- <strong>and</strong> D-type minimal models<br />

<strong>Carqueville</strong>/Runkel 2012<br />

Ig


Generalised <strong>orbifolds</strong><br />

Examples.<br />

“ordinary” <strong>orbifolds</strong>: for discrete symmetry group G of W we have<br />

hmf(W ) G = LG(0, W ) G � �<br />

∼ = mod<br />

�<br />

(& Cardy condition)<br />

g∈G<br />

Knörrer periodicity<br />

Z2-orbifold between A- <strong>and</strong> D-type minimal models:<br />

�<br />

x 0<br />

X =<br />

d−u2d x−u2 − y2 x − u2 � �<br />

�<br />

0 z + uy<br />

⊗<br />

0<br />

z − uy 0<br />

is defect between WA = u 2d <strong>and</strong> WD = x d − xy 2 + z 2 , has invertible<br />

quantum dimensions ⇒ hmf(WD) ∼ = mod(X † ⊗ X)<br />

<strong>Carqueville</strong>/Runkel 2012<br />

Ig


Generalised <strong>orbifolds</strong><br />

Examples.<br />

“ordinary” <strong>orbifolds</strong>: for discrete symmetry group G of W we have<br />

hmf(W ) G = LG(0, W ) G � �<br />

∼ = mod<br />

�<br />

(& Cardy condition)<br />

g∈G<br />

Knörrer periodicity<br />

Z2-orbifold between A- <strong>and</strong> D-type minimal models:<br />

�<br />

x 0<br />

X =<br />

d−u2d x−u2 − y2 x − u2 � �<br />

�<br />

0 z + uy<br />

⊗<br />

0<br />

z − uy 0<br />

is defect between WA = u 2d <strong>and</strong> WD = x d − xy 2 + z 2 , has invertible<br />

quantum dimensions ⇒ hmf(WD) ∼ = mod(X † ⊗ X)<br />

similar equivalences expected e. g. between A- <strong>and</strong> E-type<br />

<strong>Carqueville</strong>/Runkel 2012<br />

Ig


Generalised <strong>orbifolds</strong><br />

Examples.<br />

“ordinary” <strong>orbifolds</strong>: for discrete symmetry group G of W we have<br />

hmf(W ) G = LG(0, W ) G � �<br />

∼ = mod<br />

�<br />

(& Cardy condition)<br />

g∈G<br />

Knörrer periodicity<br />

Z2-orbifold between A- <strong>and</strong> D-type minimal models:<br />

�<br />

x 0<br />

X =<br />

d−u2d x−u2 − y2 x − u2 � �<br />

�<br />

0 z + uy<br />

⊗<br />

0<br />

z − uy 0<br />

is defect between WA = u 2d <strong>and</strong> WD = x d − xy 2 + z 2 , has invertible<br />

quantum dimensions ⇒ hmf(WD) ∼ = mod(X † ⊗ X)<br />

similar equivalences expected e. g. between A- <strong>and</strong> E-type<br />

Task. Classify all <strong>defects</strong> with invertible quantum dimensions (<strong>and</strong> find<br />

new equivalences this way)!<br />

<strong>Carqueville</strong>/Runkel 2012<br />

Ig


Conclusions<br />

“2d TFT with <strong>defects</strong> = bicategory + x”


Conclusions<br />

“2d TFT with <strong>defects</strong> = bicategory + x”<br />

Theorem. The bicategory of L<strong>and</strong>au-Ginzburg models has adjoints.<br />

(conceptual construction, yet very “computable”)


Conclusions<br />

“2d TFT with <strong>defects</strong> = bicategory + x”<br />

Theorem. The bicategory of L<strong>and</strong>au-Ginzburg models has adjoints.<br />

(conceptual construction, yet very “computable”)<br />

Description naturally incorporates known structure:<br />

compute any correlator from defect picture<br />

encode all open/closed TFT data<br />

easy proof of Cardy condition<br />

defect action on bulk fields, quantum dimensions


Conclusions<br />

“2d TFT with <strong>defects</strong> = bicategory + x”<br />

Theorem. The bicategory of L<strong>and</strong>au-Ginzburg models has adjoints.<br />

(conceptual construction, yet very “computable”)<br />

Description naturally incorporates known structure:<br />

compute any correlator from defect picture<br />

encode all open/closed TFT data<br />

easy proof of Cardy condition<br />

defect action on bulk fields, quantum dimensions<br />

Generalised <strong>orbifolds</strong><br />

natural description of conventional <strong>orbifolds</strong><br />

give rise to new equivalences

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!