09.02.2013 Views

kamafer-werkstoffe kamafer materials e- / pe- / er- / etd- / ep-kerne e ...

kamafer-werkstoffe kamafer materials e- / pe- / er- / etd- / ep-kerne e ...

kamafer-werkstoffe kamafer materials e- / pe- / er- / etd- / ep-kerne e ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

INHALTSVERZEICHNIS / BESTELLNUMMERNSYSTEM / MATERIAL- / SYMBOL-<br />

VERZEICHNIS<br />

TABLE OF CONTENTS / SYSTEM OF ORDER NUMBERS / MATERIALS / SYMBOLS<br />

KAMAFER-WERKSTOFFE<br />

KAMAFER MATERIALS<br />

E- / PE- / ER- / ETD- / EP-KERNE<br />

E / PE / ER / ETD / EP CORES<br />

UU-KERNE / UI-KERNE<br />

UU CORES / UI CORES<br />

RM-KERNE<br />

RM CORES<br />

SCHALENKERNE<br />

POT CORES<br />

RINGKERNE<br />

RING CORES<br />

STABKERNE / SONSTIGE KERNE<br />

ROD CORES / MISCELLANEOUS


Dieses Handbuch ist als unv<strong>er</strong>bindlich<strong>er</strong> Warenkatalog h<strong>er</strong>ausgegeben. Nachdruck - auch<br />

auszugsweise - und and<strong>er</strong>e V<strong>er</strong>vielfältigungen sind nur mit uns<strong>er</strong><strong>er</strong> ausdrücklichen Zustimmung<br />

gestattet. Wir bitten um Ihr V<strong>er</strong>ständnis, dass wir mit d<strong>er</strong> V<strong>er</strong>öffentlichung zu Gestaltungshinweisen<br />

für Bauelemente, Anwendungsbeispielen und V<strong>er</strong>fahren in diesem Katalog<br />

keine Garantie dafür üb<strong>er</strong>nehmen können, dass diese frei von Rechten Dritt<strong>er</strong> sind. Mit den<br />

Angaben w<strong>er</strong>den die Bauelemente s<strong>pe</strong>zifizi<strong>er</strong>t, nicht Eigenschaften zugesich<strong>er</strong>t. V<strong>er</strong>änd<strong>er</strong>ungen<br />

im Int<strong>er</strong>esse des technischen Fortschritts behalten wir uns vor. Die Üb<strong>er</strong>tragung<br />

d<strong>er</strong> in den Tabellen und grafischen Darstellungen angegebenen W<strong>er</strong>kstoffeigenschaften<br />

auf von d<strong>er</strong> Ringk<strong>er</strong>nform abweichende Bauelementegeometrien sollte grundsätzlich nur<br />

in Rücksprache mit dem H<strong>er</strong>stell<strong>er</strong> <strong>er</strong>folgen. K<strong>er</strong>n- und Spulenkör<strong>pe</strong>rzeichnungen sind nur<br />

schematisch aufgeführt und können Abweichungen zu den Konstruktionszeichnungen aufweisen.<br />

Als „Applikationsbeispiel“ ausgewiesene Spulenkör<strong>pe</strong>r sind keine Standardty<strong>pe</strong>n und dienen<br />

nur als Beispiel für eine Designauslegung.<br />

This handbook is issued as a product catalogue without any obligation attached. R<strong>ep</strong>rinting<br />

- including extracts - and oth<strong>er</strong> forms of r<strong>ep</strong>roduction are not <strong>pe</strong>rmitted without our explicit<br />

consent. Please und<strong>er</strong>stand that we cannot guarantee that the components, applications<br />

and procedures shown and described in this catalogue are free of rights of third parties. The<br />

information provided s<strong>pe</strong>cifies the components, but does not guarantee pro<strong>pe</strong>rties. We res<strong>er</strong>ve<br />

the right to make changes in the int<strong>er</strong>est of technical progress. Application of the mat<strong>er</strong>ial<br />

pro<strong>pe</strong>rties listed in the tables and diagrams to component geometries that deviate from<br />

the ring core should only be und<strong>er</strong>taken aft<strong>er</strong> consulting with the manufactur<strong>er</strong>. Drawings of<br />

cores and coilform<strong>er</strong>s are only schematic and can diff<strong>er</strong> from the design drawing.<br />

Coilform<strong>er</strong>s ref<strong>er</strong>red to as „application example“ are no standard ty<strong>pe</strong>s, and exemplify only<br />

for design purpose.<br />

Kaschke Components GmbH<br />

Fabrik für weichmagnetische W<strong>er</strong>kstoffe und elektronische Bauteile<br />

Postfach 25 42 Rudolf-Winkel-Str. 6<br />

D - 37015 Göttingen D - 37079 Göttingen<br />

Telefon / Tel<strong>ep</strong>hone: +49 (0) 551/ 50 58-6<br />

Telefax: +49 (0) 551/ 6 57 56<br />

eMail: info@kaschke.de<br />

Int<strong>er</strong>net: http://www.kaschke.de<br />

Ausgabe / Issue: 2008, 9. Auflage / 9th Edition<br />

Schutzgebühr / Cov<strong>er</strong> charge: 10.00 €<br />

Copyright by Kaschke Components GmbH


Das Lief<strong>er</strong>programm d<strong>er</strong> Kaschke Components<br />

GmbH umfasst F<strong>er</strong>ritk<strong>er</strong>ne für die Elektrotechnik<br />

und Elektronik, Spulenkör<strong>pe</strong>r,<br />

Filt<strong>er</strong>bausätze, komplette, vorabgeglichene<br />

Spulen, Hochfrequenztransformatoren,<br />

Stromwandl<strong>er</strong>, Richtkoppl<strong>er</strong> für die Antennentechnik<br />

sowie Drosseln und Induktivitäten<br />

v<strong>er</strong>schiedenst<strong>er</strong> Bauformen.<br />

Die von uns h<strong>er</strong>gestellten K<strong>er</strong>ne auf d<strong>er</strong> Basis<br />

weichmagnetisch<strong>er</strong> W<strong>er</strong>kstoffe w<strong>er</strong>den<br />

unt<strong>er</strong> d<strong>er</strong> geschützten Bezeichnung KAMA-<br />

FER ® v<strong>er</strong>trieben. Das abgebildete Firmenlogo<br />

ist eingetragenes Warenzeichen uns<strong>er</strong>es<br />

Unt<strong>er</strong>nehmens.<br />

Entsprechend den umfangreichen Applikationsmöglichkeiten<br />

sind KAMAFER-K<strong>er</strong>ne<br />

aus Standard- und Sond<strong>er</strong><strong>w<strong>er</strong>kstoffe</strong>n lief<strong>er</strong>bar,<br />

die je nach den vorliegenden technischen<br />

Ford<strong>er</strong>ungen zur Erreichung optimal<strong>er</strong><br />

elektrisch<strong>er</strong> Daten auszuwählen sind. Die<br />

F<strong>er</strong>rit<strong>w<strong>er</strong>kstoffe</strong> bestehen hauptsächlich aus<br />

Mischkristallen vom Spinelltyp, die aus ein<strong>er</strong><br />

od<strong>er</strong> mehr<strong>er</strong>en chemischen V<strong>er</strong>bindungen<br />

von Eisenoxid, wenigstens einem and<strong>er</strong>en<br />

Metalloxid d<strong>er</strong> Üb<strong>er</strong>gangselemente und<br />

Sau<strong>er</strong>stoff aufgebaut sind.<br />

The product range of Kaschke Components<br />

GmbH cov<strong>er</strong>s f<strong>er</strong>rite cores for electrical and<br />

electronic applications, coilform<strong>er</strong>s, filt<strong>er</strong><br />

assemblies, complete preadjusted coils,<br />

high frequency transform<strong>er</strong>s, current transform<strong>er</strong>s,<br />

directional coupl<strong>er</strong>s for antenna<br />

technology, as well as chokes and inductors<br />

in a wide variety of forms.<br />

The cores which we manufacture are based<br />

an soft magnetic <strong>mat<strong>er</strong>ials</strong> and sold und<strong>er</strong><br />

the protected trade name KAMAFER ® . The<br />

company logo d<strong>ep</strong>icted is our company‘s<br />

regist<strong>er</strong>ed trademark.<br />

To meet s<strong>pe</strong>cific applications, KAMAFER<br />

cores are produced from standard and s<strong>pe</strong>cial<br />

<strong>mat<strong>er</strong>ials</strong> which can be selected according<br />

to the prevailing technical requirements<br />

to achieve optimal electrical data. The f<strong>er</strong>rite<br />

<strong>mat<strong>er</strong>ials</strong> consist mainly of spinel-ty<strong>pe</strong> polycrystals<br />

which are based on one or more<br />

chemical compounds of iron oxide, at least<br />

one oth<strong>er</strong> metal oxide of the transition elements<br />

and oxygen.


INHALTSVERZEICHNIS / BESTELLNUMMERNSYSTEM / MATERIAL- / SYMBOL-<br />

VERZEICHNIS<br />

TABLE OF CONTENT / SYSTEM OF ORDER NUMBERS / MATERIALS / SYMBOLS<br />

5


6<br />

Inhaltsv<strong>er</strong>zeichnis<br />

Table of content<br />

Seite / page<br />

Inhaltsv<strong>er</strong>zeichnis / Bestellnumm<strong>er</strong>nsystem / Mat<strong>er</strong>ial- / Symbolv<strong>er</strong>zeichnis<br />

Table of content / system of ord<strong>er</strong> numb<strong>er</strong>s / <strong>mat<strong>er</strong>ials</strong> / symbols ............................... 5<br />

Inhaltsv<strong>er</strong>zeichnis / Table of content .............................................................................. 6<br />

Mat<strong>er</strong>ialkennziff<strong>er</strong>n / Mat<strong>er</strong>ial codes............................................................................... 8<br />

Bestellnumm<strong>er</strong>nsystem / System of ord<strong>er</strong> numb<strong>er</strong>s....................................................... 9<br />

Symbolv<strong>er</strong>zeichnis / List of symbols............................................................................. 11<br />

KAMAFER-W<strong>er</strong>kstoffe<br />

KAMAFER <strong>mat<strong>er</strong>ials</strong>......................................................................................................... 15<br />

Magnetische Kenngrößen / Magnetic paramet<strong>er</strong>s ....................................................... 16<br />

Messbedingungen / Measuring conditions ................................................................... 20<br />

KAMAFER-W<strong>er</strong>kstoffe / KAMAFER <strong>mat<strong>er</strong>ials</strong>.............................................................. 22<br />

F<strong>er</strong>rit<strong>w<strong>er</strong>kstoffe</strong> / F<strong>er</strong>rite <strong>mat<strong>er</strong>ials</strong>................................................................................ 24<br />

Sond<strong>er</strong><strong>w<strong>er</strong>kstoffe</strong> / S<strong>pe</strong>cial f<strong>er</strong>rites............................................................................... 26<br />

W<strong>er</strong>kstofftabellen - Nickel-Zink-F<strong>er</strong>rite / Mat<strong>er</strong>ial tables - nickel zinc f<strong>er</strong>rites............... 27<br />

W<strong>er</strong>kstofftabellen - Mangan-Zink-F<strong>er</strong>rite / Mat<strong>er</strong>ial tables - manganese zinc f<strong>er</strong>rites .. 30<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te Nickel-Zink-F<strong>er</strong>rite / Mat<strong>er</strong>ial data nickel zinc f<strong>er</strong>rites .................... 36<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te Mangan-Zink-F<strong>er</strong>rite / Mat<strong>er</strong>ial data manganese zinc f<strong>er</strong>rites ....... 44<br />

Qualitätsmanagement / Quality management .............................................................. 64<br />

Üb<strong>er</strong>sicht zu Normen / Ov<strong>er</strong>view of standards............................................................. 71<br />

E--K<strong>er</strong>ne<br />

E cores .............................................................................................................................. 73<br />

E-K<strong>er</strong>ne / E cores ......................................................................................................... 74<br />

Planar-E-K<strong>er</strong>ne / Planar E cores ................................................................................ 123<br />

ER-K<strong>er</strong>ne / ER cores.................................................................................................. 134<br />

ETD-K<strong>er</strong>ne / ETD cores ............................................................................................. 139<br />

EP-K<strong>er</strong>ne / EP cores .................................................................................................. 155<br />

U- und I-K<strong>er</strong>ne<br />

U and I cores................................................................................................................... 163<br />

U-K<strong>er</strong>ne / U cores....................................................................................................... 166<br />

UI-K<strong>er</strong>ne / UI cores..................................................................................................... 179<br />

RM-K<strong>er</strong>ne<br />

RM cores ......................................................................................................................... 191<br />

RM-K<strong>er</strong>ne ohne Mittelloch / RM cores without cent<strong>er</strong> hole ........................................ 194<br />

RM-K<strong>er</strong>ne - low profile / RM cores - low profile.......................................................... 195<br />

RM-K<strong>er</strong>ne mit Mittelloch / RM cores with cent<strong>er</strong> hole ................................................ 196


Inhaltsv<strong>er</strong>zeichnis<br />

Table of content<br />

Seite/page<br />

Schalenk<strong>er</strong>ne nach IEC 60133 / Schalenk<strong>er</strong>ne für Näh<strong>er</strong>ungsschalt<strong>er</strong><br />

Pot cores according IEC 60133 / pot cores for proximity switches .......................... 219<br />

Schalenk<strong>er</strong>ne nach IEC 60133 / Pot cores acc. IEC 60133....................................... 220<br />

Schalenk<strong>er</strong>ne für Näh<strong>er</strong>ungsschalt<strong>er</strong> / Pot cores for proximity switches ................... 230<br />

Ringk<strong>er</strong>ne<br />

Ring cores....................................................................................................................... 239<br />

Ringk<strong>er</strong>ne / Ring cores............................................................................................... 243<br />

Spulenkör<strong>pe</strong>r und Grundplatten / Coilform<strong>er</strong>s and base plates ................................. 274<br />

V<strong>er</strong>gussgehäuse / Potting boxes................................................................................ 286<br />

Stabk<strong>er</strong>ne, sonstige K<strong>er</strong>ne<br />

Rod cores, miscellaneous ............................................................................................. 303<br />

Im<strong>pe</strong>d<strong>er</strong>k<strong>er</strong>ne / Im<strong>pe</strong>d<strong>er</strong> cores ................................................................................... 304<br />

Zylind<strong>er</strong>k<strong>er</strong>ne / Rod cores .......................................................................................... 311<br />

Stabk<strong>er</strong>ne und Flachstäbe / Rods and flatsided rods................................................. 314<br />

Rohrk<strong>er</strong>ne / Sleeves................................................................................................... 316<br />

Dämpfungs<strong>pe</strong>rlen / Beads.......................................................................................... 318<br />

Dop<strong>pe</strong>l- und Mehrlochk<strong>er</strong>ne / Double and multi a<strong>pe</strong>rture cores................................. 320<br />

Segmente für induktive Erwärmung / Segments for inductive heating....................... 323<br />

Absorb<strong>er</strong>kacheln / Absorb<strong>er</strong> tiles ............................................................................... 324<br />

7


8<br />

Mat<strong>er</strong>ialkennziff<strong>er</strong>n<br />

Mat<strong>er</strong>ial codes<br />

Standardw<strong>er</strong>kstoff<br />

standard mat<strong>er</strong>ial<br />

Sond<strong>er</strong>w<strong>er</strong>kstoff 1)<br />

s<strong>pe</strong>cial mat<strong>er</strong>ial<br />

Auslaufw<strong>er</strong>kstoff 2)<br />

discontinued mat<strong>er</strong>ial<br />

3-stellige Kennziff<strong>er</strong><br />

3 digit code<br />

K 10 010<br />

K 14 014<br />

K 40 040<br />

K 41 041<br />

K 80 080<br />

K 250 250<br />

K 251 251<br />

K 300 300<br />

K 600 600<br />

K 800 800<br />

K 801 801<br />

K 1500 151<br />

K 2001 221<br />

K 2004 024<br />

K 2005 025<br />

K 2006 026<br />

K 2008 028<br />

K 2024 224<br />

K 2500 052<br />

K 4000 004<br />

K 5500 055<br />

K 6000 006<br />

K 6001 061<br />

K 8000 008<br />

K 10000 100<br />

K 15000 315<br />

K 20000 320<br />

1) Dies<strong>er</strong> W<strong>er</strong>kstoff ist nicht für alle K<strong>er</strong>nformen und -größen <strong>er</strong>hältlich. Zur V<strong>er</strong>fügbarkeit nehmen Sie bitte<br />

Kontakt zu uns<strong>er</strong>em V<strong>er</strong>trieb auf.<br />

This mat<strong>er</strong>ial is not available for all core sha<strong>pe</strong>s and sizes. For the avaliability, please contact our sales<br />

office.<br />

2) Dies<strong>er</strong> W<strong>er</strong>kstoff ist nicht mehr für Neuentwicklungen <strong>er</strong>hältlich.<br />

This mat<strong>er</strong>ial is not available for new designs.


Erläut<strong>er</strong>ung zum Bestellnumm<strong>er</strong>nv<strong>er</strong>zeichnis<br />

Die Kaschke Components GmbH v<strong>er</strong>wendet<br />

für K<strong>er</strong>nformen, Bausätze und Zubehörteile<br />

des Lief<strong>er</strong>programmes ein 12-stelliges Codenumm<strong>er</strong>nsystem.<br />

Folgend<strong>er</strong> Codenumm<strong>er</strong>nschlüssel<br />

ist zur Bauteilidentifikation zu<br />

v<strong>er</strong>wenden:<br />

Beispiel / example<br />

R 25/15/10 L - K 5500 DA / O.D. 25 mm<br />

DI / I.D. 15 mm<br />

H / Ht. 10 mm<br />

3<br />

Bestellnumm<strong>er</strong>nsystem<br />

System of ord<strong>er</strong> numb<strong>er</strong>s<br />

Explanation of the list of ord<strong>er</strong><br />

numb<strong>er</strong>s<br />

Kaschke Components GmbH uses a 12 digit<br />

code numb<strong>er</strong>ing system for core ty<strong>pe</strong>s,<br />

kits and accessories. The following code<br />

numb<strong>er</strong> key should be used for identifying<br />

components:<br />

1 7 2 5 1 5 1 0 0 5 5<br />

Baugrup<strong>pe</strong><br />

s<strong>er</strong>ies<br />

Von dies<strong>er</strong> Bestellnumm<strong>er</strong>nregelung ausgenommen<br />

sind DIN-Schalenk<strong>er</strong>ne-, RM- und<br />

EP-K<strong>er</strong>ne. Für diese geschlossenen Bauformen<br />

ist die nachstehende Codenumm<strong>er</strong>nzuordnung<br />

zu beachten:<br />

Beispiel / example<br />

RM 8 o. ML - K 2006<br />

3<br />

Bestellnumm<strong>er</strong> / Code numb<strong>er</strong><br />

Abmessungen<br />

dimensions<br />

W<strong>er</strong>kstoff<br />

mat<strong>er</strong>ial<br />

Excluded from this ord<strong>er</strong> numb<strong>er</strong> rule are<br />

DIN pot cores, RM and EP cores. The following<br />

code numb<strong>er</strong> classification must be<br />

adh<strong>er</strong>ed to for these closed ty<strong>pe</strong>s:<br />

AL = 250 nH<br />

Bestellnumm<strong>er</strong> / Code numb<strong>er</strong><br />

7 4 0 8 0 2 5 0 0 2 6<br />

Baugrup<strong>pe</strong><br />

s<strong>er</strong>ies<br />

K<strong>er</strong>ntyp<br />

core ty<strong>pe</strong><br />

Für K<strong>er</strong>ne ohne eingeschliffenen Luftspalt<br />

w<strong>er</strong>den die Ziff<strong>er</strong>n 6-9 durch den Vi<strong>er</strong>stell<strong>er</strong><br />

0000 codi<strong>er</strong>t.<br />

AL-W<strong>er</strong>t<br />

AL value<br />

W<strong>er</strong>kstoff<br />

mat<strong>er</strong>ial<br />

For cores without a ground air gap, digits 6-9<br />

are r<strong>ep</strong>laced with the 4-digit code 0000.<br />

9


10<br />

Bestellnumm<strong>er</strong>nv<strong>er</strong>zeichnis<br />

List of ord<strong>er</strong> numb<strong>er</strong>s<br />

Für K<strong>er</strong>nformen mit Luftspalt wird die Größe<br />

des Luftspaltes an den Stellen 8 und 9 angegeben.<br />

Beispiel / example<br />

ETD 29/16 - K 2006<br />

3<br />

For core ty<strong>pe</strong>s with airgap, the size of the<br />

airgap is s<strong>pe</strong>cified in digit 8 and 9.<br />

mit Luftspalt 0,5 mm<br />

with airgap 0.5 mm<br />

Bestellnumm<strong>er</strong> / Code numb<strong>er</strong><br />

4 7 2 9 1 6 5 0 0 2 6<br />

Baugrup<strong>pe</strong><br />

s<strong>er</strong>ies<br />

K<strong>er</strong>ntyp<br />

core ty<strong>pe</strong><br />

Luftspalt<br />

airgap<br />

W<strong>er</strong>kstoff<br />

mat<strong>er</strong>ial


Symbol<br />

symbol<br />

A e<br />

A L<br />

A min<br />

B<br />

B <strong>pe</strong>ak<br />

B r<br />

B s<br />

D F<br />

f<br />

H<br />

H <strong>pe</strong>ak<br />

H c<br />

I<br />

I <strong>pe</strong>ak<br />

L<br />

L 0<br />

l e<br />

N<br />

P v<br />

Q<br />

Bezeichnung<br />

description<br />

eff. magnetisch<strong>er</strong> Qu<strong>er</strong>schnitt<br />

eff. magnetic cross section<br />

Induktivitätsfaktor; A L = L/N²<br />

inductance factor; A L = L/N²<br />

minimal<strong>er</strong> K<strong>er</strong>nqu<strong>er</strong>schnitt<br />

minimum cross section<br />

Effektivw<strong>er</strong>t d<strong>er</strong> Flussdichte<br />

magnetic flux density<br />

Scheitelw<strong>er</strong>t d<strong>er</strong> Flussdichte<br />

<strong>pe</strong>ak flux density<br />

Remanenz<br />

remanence<br />

Sättigungsflussdichte<br />

saturation flux density<br />

Desakkommodationsfaktor<br />

disaccommodation factor<br />

Frequenz<br />

frequency<br />

magnetische Feldstärke<br />

magnetic field strength<br />

Scheitelw<strong>er</strong>t d<strong>er</strong> magn. Feldstärke<br />

<strong>pe</strong>ak magnetic field strength<br />

Ko<strong>er</strong>zitivfeldstärke<br />

co<strong>er</strong>cive force<br />

Strom<br />

current<br />

Scheitelw<strong>er</strong>t des Stromes<br />

<strong>pe</strong>ak current<br />

Induktivität<br />

inductance<br />

Induktivität ein<strong>er</strong> Spule ohne K<strong>er</strong>n<br />

inductance of a coil without core<br />

eff. magnetische Weglänge<br />

eff. magnetic path length<br />

Windungszahl<br />

numb<strong>er</strong> of turns<br />

s<strong>pe</strong>z. V<strong>er</strong>lustleistung<br />

s<strong>pe</strong>cific pow<strong>er</strong> loss<br />

Gütefaktor<br />

quality factor<br />

Symbolv<strong>er</strong>zeichnis<br />

List of symbols<br />

Einheit<br />

unit<br />

mm²<br />

nH<br />

mm²<br />

mT<br />

mT<br />

mT<br />

mT<br />

s -1 , Hz<br />

A/m<br />

A/m<br />

A/m<br />

A<br />

A<br />

Vs/A, H<br />

Vs/A, H<br />

mm<br />

W/m³<br />

11


Symbol<br />

symbol<br />

T<br />

∆T<br />

12<br />

Bezeichnung<br />

description<br />

Tem<strong>pe</strong>ratur<br />

tem<strong>pe</strong>rature<br />

Tem<strong>pe</strong>raturdiff<strong>er</strong>enz<br />

tem<strong>pe</strong>rature diff<strong>er</strong>ence<br />

T c Curietem<strong>pe</strong>ratur °C<br />

TK<br />

tanδ<br />

tanδ / µ i<br />

U<br />

U <strong>pe</strong>ak<br />

V e<br />

α<br />

α F<br />

α e<br />

η B<br />

µ<br />

µ 0<br />

µ a<br />

µ e<br />

µ i<br />

ρ<br />

Symbolv<strong>er</strong>zeichnis<br />

List of symbols<br />

Curie tem<strong>pe</strong>rature<br />

Tem<strong>pe</strong>raturkoeffizient<br />

tem<strong>pe</strong>rature coefficient<br />

V<strong>er</strong>lustfaktor<br />

loss angle<br />

bezogen<strong>er</strong> V<strong>er</strong>lustfaktor<br />

relative loss factor<br />

Spannung<br />

voltage<br />

Scheitelw<strong>er</strong>t d<strong>er</strong> Spannung<br />

<strong>pe</strong>ak voltage<br />

eff. magnetisches Volumen<br />

eff. magnetic volume<br />

Tem<strong>pe</strong>raturbeiw<strong>er</strong>t<br />

tem<strong>pe</strong>rature factor<br />

bez. Tem<strong>pe</strong>raturfaktor d<strong>er</strong> Anfangs<strong>pe</strong>rmeabilität<br />

rel. tem<strong>pe</strong>rature factor of the initial <strong>pe</strong>rmeability<br />

Tem<strong>pe</strong>raturbeiw<strong>er</strong>t d<strong>er</strong> eff. P<strong>er</strong>meabilität<br />

tem<strong>pe</strong>rature factor of the eff. <strong>pe</strong>rmeability<br />

Hyst<strong>er</strong>esebeiw<strong>er</strong>t<br />

hyst<strong>er</strong>esis mat<strong>er</strong>ial constant<br />

komplexe P<strong>er</strong>meabilität<br />

complex <strong>pe</strong>rmeability<br />

Vakkuum<strong>pe</strong>rmeabilität = 1,256 x 10 -6<br />

vacuum <strong>pe</strong>rmeability = 1.256 x 10 -6<br />

Amplituden<strong>pe</strong>rmeabilität<br />

amplitude <strong>pe</strong>rmeability<br />

effektive P<strong>er</strong>meabilität<br />

effective <strong>pe</strong>rmeability<br />

Anfangs<strong>pe</strong>rmeabilität<br />

initial <strong>pe</strong>rmeability<br />

elektrisch<strong>er</strong> Gleichstromwid<strong>er</strong>stand<br />

DC resisitivity<br />

Einheit<br />

unit<br />

°C<br />

K<br />

1/K<br />

V<br />

V<br />

mm³<br />

1/K<br />

1/K<br />

1/K<br />

mT -1<br />

Vs/Am<br />

Ωm


Symbol<br />

symbol<br />

∑ (l/A)<br />

ω<br />

Bezeichnung<br />

description<br />

magnetisch<strong>er</strong> Formfaktor C1 magnetic core factor C1 Kreisfrequenz, ω = 2πf<br />

angular frequency, ω = 2πf<br />

Symbolv<strong>er</strong>zeichnis<br />

List of symbols<br />

Einheit<br />

unit<br />

mm -1<br />

s -1 , Hz<br />

13


KAMAFER-WERKSTOFFE<br />

KAMAFER MATERIALS<br />

15


16<br />

Magnetische Kenngrößen<br />

Magnetic paramet<strong>er</strong>s<br />

Magnetische Kenngrößen / Begriffsbestimmungen<br />

Für die Ermittlung d<strong>er</strong> Windungszahlen N<br />

von Spulen wird d<strong>er</strong> magnetische Leitw<strong>er</strong>t<br />

h<strong>er</strong>angezogen.<br />

Er wird als Induktivitätsfaktor od<strong>er</strong> kurz A L -<br />

W<strong>er</strong>t bezeichnet.<br />

L µ 0 ⋅µ<br />

r<br />

( 1) AL<br />

= =<br />

/<br />

2<br />

N C<br />

D<strong>er</strong> A L -W<strong>er</strong>t gibt die auf die Windungszahl<br />

N = 1 bezogene Induktivität an.<br />

Bei dünnen Ringk<strong>er</strong>nen ( d i ≥ 0,8 • d a ) darf<br />

man mit einem konstanten magnetischen<br />

Fluss rechnen. Bei technischen K<strong>er</strong>nformen<br />

ist jedoch diese Voraussetzung nicht <strong>er</strong>füllt.<br />

Um die bis jetzt für Ringk<strong>er</strong>ne abgeleiteten<br />

Formeln auch auf and<strong>er</strong>e K<strong>er</strong>nformen anwenden<br />

zu können, führt man Formfaktoren<br />

ein:<br />

1<br />

Magnetic paramet<strong>er</strong>s / Definition of<br />

t<strong>er</strong>ms<br />

The inductance factor A L is used to det<strong>er</strong>mine<br />

the numb<strong>er</strong> of turns N of coils.<br />

C1 Formfaktor<br />

core factor<br />

L Induktivität<br />

inductance<br />

µ r relative P<strong>er</strong>meabilität µ = 1,256 • 10 0 -6 relative <strong>pe</strong>rmeability<br />

Vs/Am<br />

n li<br />

( 2) C1<br />

= ∑ /<br />

A<br />

i=<br />

1<br />

n li<br />

( 3 ) C2<br />

= ∑<br />

/<br />

2<br />

i=<br />

1 A<br />

i<br />

i<br />

Vs<br />

A<br />

The A L value gives the inductance related to<br />

the numb<strong>er</strong> of turns N = 1.<br />

In thin ring cores ( d i ≥ 0.8 • d a ) a constant<br />

magnetic flow can be ex<strong>pe</strong>cted. Howev<strong>er</strong>,<br />

this condition is not met for technical core<br />

ty<strong>pe</strong>s. Form factors are introduced in ord<strong>er</strong><br />

to be able to use the formulae d<strong>er</strong>ived so far<br />

for ring cores an oth<strong>er</strong> core ty<strong>pe</strong>s:<br />

mm<br />

le magnetische Weglänge<br />

magnetic path length<br />

Ae n<br />

magnetisch<strong>er</strong> eff. Qu<strong>er</strong>schnitt zur Weglänge le magnetic eff. cross section of the path length le Anzahl d<strong>er</strong> K<strong>er</strong>nsegmente konstanten eff. magnet. Qu<strong>er</strong>schnitts<br />

numb<strong>er</strong> of core segments of constant eff. magnetic cross section<br />

−1<br />

mm<br />

−3


Daraus lassen sich die folgenden Formkenngrößen<br />

<strong>er</strong>mitteln:<br />

Effektiv<strong>er</strong> magnetisch<strong>er</strong> Qu<strong>er</strong>schnitt:<br />

C1<br />

( 4 ) Ae<br />

/<br />

C<br />

=<br />

A min stellt den minimalen K<strong>er</strong>nqu<strong>er</strong>schnitt<br />

für von d<strong>er</strong> Ringform abweichende K<strong>er</strong>ne<br />

dar und bestimmt den maximal möglichen<br />

Fluss.<br />

Effektive magnetische Weglänge:<br />

C1<br />

( 5 ) le<br />

/<br />

C<br />

=<br />

Effektives magnetisches Volumen<br />

C1<br />

( 6 ) Ve<br />

/<br />

2<br />

C<br />

=<br />

Bei bekanntem effektiven Spulenstrom I<br />

beträgt d<strong>er</strong> Scheitelw<strong>er</strong>t d<strong>er</strong> magnetischen<br />

Feldstärke<br />

Aus dem Qu<strong>er</strong>schnitt A e , dem Effektivw<strong>er</strong>t<br />

d<strong>er</strong> Spannung U und d<strong>er</strong> Frequenz f des<br />

Wechselstromes <strong>er</strong>hält man für den Scheitelw<strong>er</strong>t<br />

d<strong>er</strong> Induktion<br />

Zur B<strong>er</strong>echnung d<strong>er</strong> Formkenngrößen wurde<br />

die P<strong>er</strong>meabilität als konstant vorausgesetzt,<br />

was nur für kleine Aussteu<strong>er</strong>ungen<br />

<strong>er</strong>füllt ist. Für höh<strong>er</strong>e Feldstärken muss bei<br />

d<strong>er</strong> Ermittlung d<strong>er</strong> Spitzeninduktion in GI.(8)<br />

d<strong>er</strong> geometrisch kleinste Qu<strong>er</strong>schnitt des<br />

K<strong>er</strong>ns eingesetzt w<strong>er</strong>den, d<strong>er</strong> meist klein<strong>er</strong><br />

als A e ist.<br />

2<br />

2<br />

2<br />

2<br />

3<br />

Magnetische Kenngrößen<br />

Magnetic paramet<strong>er</strong>s<br />

This can be used to det<strong>er</strong>mine the following<br />

core paramet<strong>er</strong>s:<br />

Effective magnetic cross-section:<br />

mm<br />

2<br />

A min r<strong>ep</strong>resents the minimum cross section<br />

for cores that deviate from the ring core sha<strong>pe</strong><br />

and det<strong>er</strong>mines the maximum possible<br />

flow.<br />

Effective magnetic path length:<br />

mm<br />

Effective magnetic volume:<br />

mm<br />

N⋅ I⋅<br />

2<br />

( 7 ) H<strong>pe</strong>ak<br />

=<br />

/ A / m<br />

l<br />

U⋅<br />

2<br />

( 8 ) B<strong>pe</strong>ak<br />

=<br />

/ Vs / m<br />

2π<br />

⋅ f ⋅N ⋅ A<br />

e<br />

3<br />

If the effective coil current I is known, the<br />

<strong>pe</strong>ak value of the magnetic field strength is<br />

The cross section A e , the effective value of<br />

the voltage U and the frequency f of the AC<br />

current can be used to obtain the <strong>pe</strong>ak value<br />

of induction<br />

e<br />

2<br />

For the calculation of the effective magnetic<br />

paramet<strong>er</strong>s, the <strong>pe</strong>rmeability was assumed<br />

to be constant, which only applies at small<br />

fields. For high<strong>er</strong> field strengths, when det<strong>er</strong>mining<br />

the <strong>pe</strong>ak induction in equation<br />

(8), the geometrically smallest cross section<br />

of the core must be used, which is usually<br />

small<strong>er</strong> than A e .<br />

17


18<br />

Magnetische Kenngrößen<br />

Magnetic paramet<strong>er</strong>s<br />

Für einen geschlossenen K<strong>er</strong>n ist d<strong>er</strong> Tem<strong>pe</strong>raturbeiw<strong>er</strong>t<br />

α d<strong>er</strong> Anfangs<strong>pe</strong>rmeabilität µ i<br />

defini<strong>er</strong>t durch:<br />

( 9 )<br />

1 µ i ( T2 ) − µ i ( T1<br />

)<br />

α = ⋅<br />

µ ( T ) T − T<br />

wobei µ i (T 1 ) und µ i (T 2 ) die Anfangs<strong>pe</strong>rmeabilität<br />

bei den Tem<strong>pe</strong>raturen T 1 und T 2<br />

bedeuten.<br />

Um eine von d<strong>er</strong> Sch<strong>er</strong>ung unabhängige<br />

Aussage üb<strong>er</strong> den Tem<strong>pe</strong>raturbeiw<strong>er</strong>t zu<br />

<strong>er</strong>halten, gibt man den auf die Anfangs<strong>pe</strong>rmeabilität<br />

normi<strong>er</strong>ten Ausdruck von α an:<br />

( 10 )<br />

D<strong>er</strong> α F -W<strong>er</strong>t eines f<strong>er</strong>tigen Bauteils kann<br />

durch Wicklungsaufbau, Montage, Gleichstrom-Vormagnetisi<strong>er</strong>ung<br />

usw. gegenüb<strong>er</strong><br />

dem W<strong>er</strong>t des unbewickelten K<strong>er</strong>nes abweichen.<br />

In Zweifelsfällen sollte mit dem H<strong>er</strong>stell<strong>er</strong><br />

Rücksprache genommen w<strong>er</strong>den.<br />

Durch Einfügen eines Luftspaltes in den magnetischen<br />

Kreis v<strong>er</strong>ring<strong>er</strong>t α F sich auf<br />

( 11)<br />

µ e<br />

D<strong>er</strong> zeitliche Abfall d<strong>er</strong> P<strong>er</strong>meabilität unt<strong>er</strong><br />

konstanten Betriebsbedingungen, insbesond<strong>er</strong>e<br />

bei konstant<strong>er</strong> Tem<strong>pe</strong>ratur wird als<br />

Desakkommodation bezeichnet.<br />

D<strong>er</strong> Desakkommodationsfaktor D F ist die auf<br />

die Anfangs<strong>pe</strong>rmeabilität bezogene relative<br />

Änd<strong>er</strong>ung d<strong>er</strong> Anfangs<strong>pe</strong>rmeabilität für eine<br />

Zeitdekade.<br />

α<br />

α<br />

F<br />

e<br />

i<br />

1<br />

2 1<br />

1 µ i ( T2 ) − µ i ( T1<br />

)<br />

=<br />

⋅<br />

µ ( T ) ⋅ µ ( T ) T − T<br />

i 1 i 2<br />

2 1<br />

/<br />

K<br />

−1<br />

µ e ( T2<br />

)<br />

= ⋅ α = µ e ( T2 ) ⋅ αF<br />

/ K<br />

µ ( T )<br />

i<br />

2<br />

For a closed core, the tem<strong>pe</strong>rature factor α<br />

of the initial <strong>pe</strong>rmeability µ i is defined by:<br />

wh<strong>er</strong>e µ i (T 1 ) and µ i (T 2 ) signify the initial <strong>pe</strong>rmeability<br />

at tem<strong>pe</strong>ratures T 1 and T 2 .<br />

In ord<strong>er</strong> to obtain data about the tem<strong>pe</strong>rature<br />

factor inde<strong>pe</strong>ndent of the shearing, the<br />

expression α is normed to the initial <strong>pe</strong>rmeability:<br />

The α F value of a finished component can<br />

deviate from the value of the unwound core<br />

due to winding construction, assembly, direct<br />

current premagnetization, etc. In case<br />

of doubt, consult the manufactur<strong>er</strong>.<br />

When introducing an air gap into the magnetic<br />

circuit, α F is reduced to<br />

P<strong>er</strong>meabilität des magnetischen Kreises mit Luftspalt<br />

<strong>pe</strong>rmeability of the magnetic circuit with airgap<br />

The drop in <strong>pe</strong>rmeability ov<strong>er</strong> time und<strong>er</strong><br />

constant o<strong>pe</strong>rating conditions, es<strong>pe</strong>cially at<br />

constant tem<strong>pe</strong>rature, is defined as disaccommodation.<br />

The disaccommodation factor D F is the relative<br />

change in initial <strong>pe</strong>rmeability for a time<br />

<strong>pe</strong>riod related to the initial <strong>pe</strong>rmeability.<br />

/<br />

−1<br />

K<br />

−1


( 12)<br />

Dabei stellen µ i (t 1 ) und µ i (t 2 ) die Anfangs<strong>pe</strong>rmeabilitäten<br />

zum Zeitpunkt t 1 bzw. t 2 nach<br />

vollständig<strong>er</strong> Entmagnetisi<strong>er</strong>ung dar.<br />

Die maximale zeitliche Inkonstanz ein<strong>er</strong><br />

Spule mit Luftspalt pro Zeitdekade beträgt<br />

damit<br />

D<br />

F<br />

1 µ i ( t1 ) − µ i ( t2<br />

)<br />

= ⋅ 2<br />

µ ( t1<br />

) t<br />

i<br />

2 log( )<br />

t<br />

( 13 ) ∆L = D ⋅µ ⋅L<br />

/<br />

F e<br />

Magnetische Kenngrößen<br />

Magnetic paramet<strong>er</strong>s<br />

1<br />

wh<strong>er</strong>e µ i (t 1 ) and µ i (t 2 ) signify the initial <strong>pe</strong>rmeabilities<br />

at times t 1 and t 2 aft<strong>er</strong> complete<br />

demagnetization.<br />

The maximum time inconstancy of a coil with<br />

air gap <strong>pe</strong>r time <strong>pe</strong>riod is thus<br />

Vs<br />

A<br />

19


20<br />

Messbedingungen<br />

Measuring conditions<br />

Messbedingungen / Measuring conditions<br />

In den folgenden W<strong>er</strong>kstofftabellen sind<br />

Richtw<strong>er</strong>te aufgeführt, die an Ringk<strong>er</strong>nen<br />

<strong>er</strong>mittelt wurden. Sie können nicht uneingeschränkt<br />

auf beliebige Abmessungen und<br />

K<strong>er</strong>nformen üb<strong>er</strong>tragen w<strong>er</strong>den. Die Messv<strong>er</strong>fahren<br />

wurden in eng<strong>er</strong> Anlehnung an die<br />

DIN IEC 60401 festgelegt.<br />

The following mat<strong>er</strong>ial tables list typical values<br />

which w<strong>er</strong>e measured on ring cores.<br />

These values cannot be univ<strong>er</strong>sally applied<br />

to all dimensions and core ty<strong>pe</strong>s. The test<br />

methods w<strong>er</strong>e closely adapted to DIN IEC<br />

60401.<br />

1) Anfangs<strong>pe</strong>rmeabilität / Initial <strong>pe</strong>rmeability µ i<br />

Messfrequenz / measuring frequency 10 kHz<br />

Messinduktion / measuring induction ≤ 0.25 mT<br />

Messtem<strong>pe</strong>ratur / measuring tem<strong>pe</strong>rature 25°C<br />

2) Sättigungsinduktion B S bzw. maximale Induktion B max<br />

Saturation flux density B S or maximum flux density B max<br />

bei Feldstärke H S bzw. H max / at field strength H S or H max<br />

Messtem<strong>pe</strong>ratur / measuring tem<strong>pe</strong>rature 25°C<br />

3) Remanenz B r und Ko<strong>er</strong>zitivfeldstärke H c<br />

Remanence B r and co<strong>er</strong>civity H c<br />

Messtem<strong>pe</strong>ratur / measuring tem<strong>pe</strong>rature 25°C<br />

4) Curietem<strong>pe</strong>ratur / Curie tem<strong>pe</strong>rature T c<br />

Messfrequenz / measuring frequency 10 kHz<br />

Messinduktion / measuring induction ≤ 0.25 mT<br />

5) Bezogen<strong>er</strong> Tem<strong>pe</strong>raturbeiw<strong>er</strong>t α F<br />

Relative tem<strong>pe</strong>rature factor α F<br />

Messfrequenz / measuring frequency 10 kHz<br />

Messinduktion / measuring induction ≤ 0.25 mT<br />

6) Bezogen<strong>er</strong> V<strong>er</strong>lustfaktor / Relative loss factor tan δ / µ i<br />

Messfrequenz siehe W<strong>er</strong>kstofftabellen S. 24ff<br />

measuring frequency see mat<strong>er</strong>ial tables pp. 24<br />

Messinduktion / measuring induction ≤ 0.25 mT<br />

Messtem<strong>pe</strong>ratur / measuring tem<strong>pe</strong>rature 25°C<br />

7) Hyst<strong>er</strong>esebeiw<strong>er</strong>t / Hyst<strong>er</strong>esis loss coefficient η B<br />

Anfangs<strong>pe</strong>rmeabilität / initial <strong>pe</strong>rmeability >500<br />

Messfrequenz / measuring frequency 10 kHz<br />

Messinduktion / measuring induction 1.5 and 3 mT<br />

Messtem<strong>pe</strong>ratur / measuring tem<strong>pe</strong>rature 25°C


Messbedingungen<br />

Measuring conditions<br />

8) V<strong>er</strong>lustleistung / Pow<strong>er</strong> loss P V<br />

Messfrequenz / measuring frequency 16/25/100/400 kHz<br />

Messinduktion / measuring induction 10/50/100/200 mT<br />

Messtem<strong>pe</strong>ratur / measuring tem<strong>pe</strong>rature 25 und/and 100 °C<br />

9) Desakkommodationsfaktor / Disaccommodation factor D F<br />

Messfrequenz / measuring frequency 10 kHz<br />

Messinduktion / measuring induction ≤ 0.25 mT<br />

Messtem<strong>pe</strong>ratur / measuring tem<strong>pe</strong>rature 25 °C<br />

Messzeiten / test <strong>pe</strong>riod 10 min., 100 min.<br />

10) S<strong>pe</strong>zifisch<strong>er</strong> Wid<strong>er</strong>stand / Resistivity ρ<br />

Messtem<strong>pe</strong>ratur / measuring tem<strong>pe</strong>rature 25°C<br />

Auf Anfrage können auch Messdaten zu<br />

and<strong>er</strong>en Kenngrößen, wie P<strong>er</strong>meabilität,<br />

scheinbare P<strong>er</strong>meabilität, Üb<strong>er</strong>lag<strong>er</strong>ungs<strong>pe</strong>rmeabilität,<br />

Amplituden<strong>pe</strong>rmeabilität b<strong>er</strong>eitgestellt<br />

bzw. Empfehlungen zu geeigneten<br />

Messv<strong>er</strong>fahren ausgesprochen w<strong>er</strong>den.<br />

Bei Anwendungen von F<strong>er</strong>ritbauelementen,<br />

die abweichend von den Messvorschriften<br />

für die jeweilige Bauform entsprechend Katalog<br />

eingesetzt w<strong>er</strong>den, sollte eine Absprache<br />

mit dem H<strong>er</strong>stell<strong>er</strong> zum zweckmäßigen<br />

W<strong>er</strong>kstoffeinsatz vorgenommen w<strong>er</strong>den.<br />

Für den Fall von Gewährleistungsansprüchen<br />

sind die Messv<strong>er</strong>fahren des H<strong>er</strong>stell<strong>er</strong>s<br />

v<strong>er</strong>bindlich.<br />

Mit den jeweiligen Angaben w<strong>er</strong>den die Bauelemente<br />

s<strong>pe</strong>zifizi<strong>er</strong>t, jedoch Eigenschaften<br />

nicht zugesich<strong>er</strong>t.<br />

Measuring data and oth<strong>er</strong> paramet<strong>er</strong>s,<br />

such as <strong>pe</strong>rmeability, apparent <strong>pe</strong>rmeability,<br />

rev<strong>er</strong>sible <strong>pe</strong>rmeability, and amplitude<br />

<strong>pe</strong>rmeability, can be supplied on request<br />

and recommendations made regarding<br />

suitable test methods. If the f<strong>er</strong>rite components<br />

are used in an application deviating<br />

from the measuring s<strong>pe</strong>cifications given in<br />

this catalogue, the manufactur<strong>er</strong> should be<br />

consulted to ensure pro<strong>pe</strong>r use of the mat<strong>er</strong>ial.<br />

For claims against the guarantee, the<br />

manufactur<strong>er</strong>‘s test methods are binding.<br />

The information provided s<strong>pe</strong>cifies the components,<br />

but does not guarantee pro<strong>pe</strong>rties.<br />

21


22<br />

KAMAFER-W<strong>er</strong>kstoffe<br />

KAMAFER <strong>mat<strong>er</strong>ials</strong><br />

Bevorzugte Bauformen bzw. Applikationen<br />

Pref<strong>er</strong>red core ty<strong>pe</strong>s or applications<br />

Mat<strong>er</strong>ial bevorzugte K<strong>er</strong>nformen<br />

mat<strong>er</strong>ial pref<strong>er</strong>red core sha<strong>pe</strong>s<br />

K 14 Zylind<strong>er</strong>-, Rohrk<strong>er</strong>ne, Dämpfungs<strong>pe</strong>rlen<br />

rods, sleeves, f<strong>er</strong>rite beads<br />

K 40 Zylind<strong>er</strong>-, Rohr- und Ringk<strong>er</strong>ne, Drosselkör<strong>pe</strong>r, Dämpfungs<strong>pe</strong>rlen<br />

rods, sleeves, ring cores, chokes, f<strong>er</strong>rite beads<br />

K 41 Zylind<strong>er</strong>- und Rohrk<strong>er</strong>ne, Drosselkör<strong>pe</strong>r<br />

rods, sleeves, chokes<br />

K 80 Zylind<strong>er</strong>- und Dop<strong>pe</strong>llochk<strong>er</strong>ne<br />

rods, double a<strong>pe</strong>rture cores<br />

K 250 Zylind<strong>er</strong>-, Rohr-, Ring-, Dop<strong>pe</strong>l-, Mehrlochk<strong>er</strong>ne, Dämpfungs<strong>pe</strong>rlen<br />

rods, sleeves, ring cores, double and multi a<strong>pe</strong>rture cores, beads<br />

K 251 Zylind<strong>er</strong>-, Ring- und Transpond<strong>er</strong>k<strong>er</strong>ne<br />

rods, ring cores, transpond<strong>er</strong> cores<br />

K 300 Zylind<strong>er</strong>- und Stabk<strong>er</strong>ne, Rohrk<strong>er</strong>ne<br />

rods, sleeves<br />

K 600 Zylind<strong>er</strong>- und Stabk<strong>er</strong>ne, Rohrk<strong>er</strong>ne<br />

rods, sleeves<br />

K 800 Ringk<strong>er</strong>ne, Dop<strong>pe</strong>l- und Mehrlochk<strong>er</strong>ne, Dämpfungs<strong>pe</strong>rlen<br />

ring cores, double and multi a<strong>pe</strong>rture cores, beads<br />

K 801 Ringk<strong>er</strong>ne, Dop<strong>pe</strong>lloch-und Mehrlochk<strong>er</strong>ne, Dämpfungs<strong>pe</strong>rlen<br />

ring cores, double and multi a<strong>pe</strong>rture cores, f<strong>er</strong>rite beads<br />

K 2001 Planar-E-K<strong>er</strong>ne, Ringk<strong>er</strong>ne<br />

planar E cores, ring cores<br />

K 2004 E-, U-, RM-, Schalenk<strong>er</strong>ne, Ringk<strong>er</strong>ne, Stabk<strong>er</strong>ne<br />

E, U, RM cores, pot cores, ring cores, rods<br />

K 2005 Ring-, RM- und Schalenk<strong>er</strong>ne<br />

ring cores, RM and pot cores<br />

K 2006 E-, U- und Ringk<strong>er</strong>ne, Im<strong>pe</strong>d<strong>er</strong>k<strong>er</strong>ne, Dop<strong>pe</strong>llochk<strong>er</strong>ne<br />

E, U and ring cores, im<strong>pe</strong>d<strong>er</strong> cores, double a<strong>pe</strong>rture cores


Mat<strong>er</strong>ial bevorzugte K<strong>er</strong>nformen<br />

mat<strong>er</strong>ial pref<strong>er</strong>red core sha<strong>pe</strong>s<br />

K 2008 Planar-E-K<strong>er</strong>ne, Ringk<strong>er</strong>ne<br />

planar E cores, ring cores<br />

K 2024 E- und U-K<strong>er</strong>ne, Ringk<strong>er</strong>ne mit Luftspalt<br />

E and U cores, gap<strong>pe</strong>d ring cores<br />

K 2500 E-K<strong>er</strong>ne, Ringk<strong>er</strong>ne<br />

E cores, ring cores<br />

KAMAFER-W<strong>er</strong>kstoffe<br />

KAMAFER <strong>mat<strong>er</strong>ials</strong><br />

K 4000 E-, U-, RM-, Schalenk<strong>er</strong>ne, Ringk<strong>er</strong>ne, Dop<strong>pe</strong>llochk<strong>er</strong>ne<br />

E, U, RM cores, pot cores, ring cores, double a<strong>pe</strong>rture cores<br />

K 5500 E- und Ringk<strong>er</strong>ne<br />

E cores, ring cores<br />

K 6000 E-, U-, RM-, Schalenk<strong>er</strong>ne, Ringk<strong>er</strong>ne<br />

E, U, RM cores, pot cores, ring cores<br />

K 6001 E-, U-, RM-K<strong>er</strong>ne<br />

E, U, RM cores<br />

K 10000 Ringk<strong>er</strong>ne<br />

ring cores<br />

K 15000 Ringk<strong>er</strong>ne<br />

ring cores<br />

K 20000 Ringk<strong>er</strong>ne<br />

ring cores<br />

23


24<br />

F<strong>er</strong>rit<strong>w<strong>er</strong>kstoffe</strong><br />

F<strong>er</strong>rite <strong>mat<strong>er</strong>ials</strong><br />

Standard<strong>w<strong>er</strong>kstoffe</strong> / standard <strong>mat<strong>er</strong>ials</strong><br />

Nickel-Zink-F<strong>er</strong>rit / Nickel zinc f<strong>er</strong>rite<br />

K 40 Bevorzugte Anwendung in Oszillatorspulen im Frequenzb<strong>er</strong>eich bis 50 MHz,<br />

Antennenspulen, schmalbandigen Filt<strong>er</strong>n und Festinduktivitäten.<br />

Pref<strong>er</strong>ably applied in oscillator coils in a frequency range of up to 50 MHz, antenna<br />

coils, narrow-band filt<strong>er</strong>s and fixed inductors.<br />

K 250 Üb<strong>er</strong>trag<strong>er</strong>w<strong>er</strong>kstoff für Antennenspulen, schmalbandige Filt<strong>er</strong>, Festinduktivitäten<br />

Mat<strong>er</strong>ial for application in antenna coils, narrow-band filt<strong>er</strong>s, fixed inductors<br />

K 800 W<strong>er</strong>kstoff zur H<strong>er</strong>stellung von Dämpfungs<strong>pe</strong>rlen, Dop<strong>pe</strong>l- und Mehrlochk<strong>er</strong>nen<br />

zur Entstörung von Signal- und V<strong>er</strong>sorgungsleitungen, für schmalbandige Filt<strong>er</strong><br />

und Festinduktivitäten<br />

Mat<strong>er</strong>ial for the production of beads, single and multi a<strong>pe</strong>rture cores for int<strong>er</strong>f<strong>er</strong>ence<br />

suppression in signal and supply lines, for narrow-band filt<strong>er</strong>s and fixed<br />

inductors<br />

Mangan-Zink-F<strong>er</strong>rit / Manganese zinc f<strong>er</strong>rite<br />

K 300 W<strong>er</strong>kstoff für die H<strong>er</strong>stellung von Pilz- und Zylind<strong>er</strong>k<strong>er</strong>nen zum Aufbau von<br />

Festinduktivitäten<br />

Mat<strong>er</strong>ial for mushroom cores and rods for fixed inductors<br />

K 600 W<strong>er</strong>kstoff für den Aufbau breitbandig<strong>er</strong> Filt<strong>er</strong> und von Antennenspulen für<br />

den Frequenzb<strong>er</strong>eich bis 1 MHz, W<strong>er</strong>kstoff zum Aufbau von Im<strong>pe</strong>d<strong>er</strong>n für die<br />

Schweisstechnik<br />

Mat<strong>er</strong>ial for broadband filt<strong>er</strong>s and antenna coils for a frequency range up to<br />

1 MHz, and for im<strong>pe</strong>d<strong>er</strong> cores for HF welding<br />

K 2005 Filt<strong>er</strong>w<strong>er</strong>kstoff für Frequenzen bis 150 kHz<br />

Filt<strong>er</strong> mat<strong>er</strong>ial for frequencies up to 150 kHz<br />

Leistungsf<strong>er</strong>rit / pow<strong>er</strong> f<strong>er</strong>rite<br />

K 2001 Üb<strong>er</strong>trag<strong>er</strong>w<strong>er</strong>kstoff für hochfrequente Bussysteme und Anwendungsfrequenzen<br />

bis 1,5 MHz; K<strong>er</strong>nformen auf Anfrage<br />

Mat<strong>er</strong>ial for high frequency bus systems and application frequencies up to 1.5<br />

MHz; core sha<strong>pe</strong>s on request<br />

K 2004 Standardüb<strong>er</strong>trag<strong>er</strong>w<strong>er</strong>kstoff für den Aufbau von Transformatoren im Frequenzb<strong>er</strong>eich<br />

10 kHz bis 100 kHz; beliebige K<strong>er</strong>nformen auf Anfrage<br />

Standard mat<strong>er</strong>ial for transform<strong>er</strong>s in a frequency range of 10 kHz to 100 kHz;<br />

various core sha<strong>pe</strong>s on request<br />

K 2006 Standardüb<strong>er</strong>trag<strong>er</strong>w<strong>er</strong>kstoff für den Aufbau von Transformatoren für Schaltnetzteile<br />

und Konv<strong>er</strong>t<strong>er</strong> d<strong>er</strong> Lichttechnik im Frequenzb<strong>er</strong>eich von 25 kHz bis<br />

300 kHz; beliebige K<strong>er</strong>nformen auf Anfrage


Standard mat<strong>er</strong>ial for transform<strong>er</strong>s in SMPS and conv<strong>er</strong>t<strong>er</strong>s for lighting technology<br />

in a frequency range of 25 kHz to 300 kHz; various core sha<strong>pe</strong>s on<br />

request<br />

K 2008 S<strong>pe</strong>zialüb<strong>er</strong>trag<strong>er</strong>w<strong>er</strong>kstoff für den Aufbau von Transformatoren mit Arbeitsfrequenzen<br />

von 100 kHz bis 500 kHz; K<strong>er</strong>nformen auf Anfrage<br />

S<strong>pe</strong>cial mat<strong>er</strong>ial for transform<strong>er</strong>s with o<strong>pe</strong>rating frequencies of 100 kHz to 500<br />

kHz; core sha<strong>pe</strong>s on request<br />

K 2024 W<strong>er</strong>kstoff mit hoh<strong>er</strong> Sättigungsflussdichte und Curietem<strong>pe</strong>ratur zum Einsatz<br />

in Hochspannungsüb<strong>er</strong>trag<strong>er</strong>n und Leistungsdrosseln im Frequenzb<strong>er</strong>eich bis<br />

300 kHz.<br />

Mat<strong>er</strong>ial with high saturation flux density and Curie tem<strong>pe</strong>rature for the use in<br />

high voltage transform<strong>er</strong>s and pow<strong>er</strong> inductors at frequencies up to 300 kHz.<br />

K 2500 Standardüb<strong>er</strong>trag<strong>er</strong>w<strong>er</strong>kstoff mit extrem g<strong>er</strong>ing<strong>er</strong> Tem<strong>pe</strong>raturabhängigkeit d<strong>er</strong><br />

Anfangs- und Amplituden<strong>pe</strong>rmeabilität im Tem<strong>pe</strong>raturb<strong>er</strong>eich 20-85°C; beliebige<br />

K<strong>er</strong>nformen auf Anfrage<br />

Standard mat<strong>er</strong>ial with extremely low tem<strong>pe</strong>rature de<strong>pe</strong>ndence of initial <strong>pe</strong>rmeability<br />

and amplitude <strong>pe</strong>rmeability in a tem<strong>pe</strong>rature range of 20-85°C; various<br />

core sha<strong>pe</strong>s on request<br />

EMV-Mat<strong>er</strong>ial / EMC mat<strong>er</strong>ial<br />

F<strong>er</strong>rit<strong>w<strong>er</strong>kstoffe</strong><br />

F<strong>er</strong>rite <strong>mat<strong>er</strong>ials</strong><br />

K 4000 Mittel<strong>pe</strong>rmeabl<strong>er</strong> W<strong>er</strong>kstoff mit g<strong>er</strong>ing<strong>er</strong> Tem<strong>pe</strong>raturabhängigkeit d<strong>er</strong> Anfangs<strong>pe</strong>rmeabilität<br />

und Frequenzstabilität bis 400 kHz für den Aufbau von Stromwandl<strong>er</strong>n,<br />

Festinduktivitäten, stromkom<strong>pe</strong>nsi<strong>er</strong>ten Drosseln und Breitbandüb<strong>er</strong>trag<strong>er</strong>n;<br />

beliebige K<strong>er</strong>nformen<br />

Medium-<strong>pe</strong>rmeability mat<strong>er</strong>ial with a low tem<strong>pe</strong>rature de<strong>pe</strong>ndence of the initial<br />

<strong>pe</strong>rmeability and a frequency stability up to 400 kHz for current transform<strong>er</strong>s,<br />

fixed inductors, common mode chokes and broadband transform<strong>er</strong>s; various<br />

core sha<strong>pe</strong>s<br />

K 5500 Mittel<strong>pe</strong>rmeabl<strong>er</strong> W<strong>er</strong>kstoff mit hoh<strong>er</strong> Einfügungsdämpfung im Frequenzb<strong>er</strong>eich<br />

bis 10 MHz; s<strong>pe</strong>zifizi<strong>er</strong>t w<strong>er</strong>den A L -W<strong>er</strong>t und Einfügungsdämpfung abhängig<br />

von d<strong>er</strong> Frequenz<br />

Medium-<strong>pe</strong>rmeability mat<strong>er</strong>ial with high ins<strong>er</strong>tion loss in a frequency range up to<br />

10 MHz; A L value and ins<strong>er</strong>tion loss are s<strong>pe</strong>cified de<strong>pe</strong>nding on the frequency.<br />

Breitbandüb<strong>er</strong>trag<strong>er</strong>w<strong>er</strong>kstoff / Broadband transform<strong>er</strong> mat<strong>er</strong>ial<br />

K 6000 Mittel<strong>pe</strong>rmeabl<strong>er</strong> W<strong>er</strong>kstoff mit ein<strong>er</strong> Anfangs<strong>pe</strong>rmeabilität von 6000 und Frequenzstabilität<br />

bis 160 kHz für den Aufbau von Festinduktivitäten, Netzrückwirkungsdrosseln,<br />

Filt<strong>er</strong>n, Breitbandüb<strong>er</strong>trag<strong>er</strong>n und Stromwandl<strong>er</strong>n<br />

Medium-<strong>pe</strong>rmeability mat<strong>er</strong>ial with an initial <strong>pe</strong>rmeability of 6000 and a frequancy<br />

stability up to 160 kHz for fixed inductors, network chokes, filt<strong>er</strong>s, broadband<br />

transform<strong>er</strong>s and current transform<strong>er</strong>s<br />

25


26<br />

Sond<strong>er</strong><strong>w<strong>er</strong>kstoffe</strong><br />

S<strong>pe</strong>cial f<strong>er</strong>rites<br />

K 10000 Hoch<strong>pe</strong>rmeabl<strong>er</strong> W<strong>er</strong>kstoff für die Breitbandüb<strong>er</strong>tragung und stromkom<strong>pe</strong>nsi<strong>er</strong>te<br />

Drosseln (ISDN-Induktivitäten); nur Ringk<strong>er</strong>ne<br />

High-<strong>pe</strong>rmeability mat<strong>er</strong>ial for broadband transmission and common mode chokes<br />

(ISDN inductors); only ring cores<br />

Sond<strong>er</strong><strong>w<strong>er</strong>kstoffe</strong> / s<strong>pe</strong>cial <strong>mat<strong>er</strong>ials</strong><br />

Nickel-Zink-F<strong>er</strong>rit / Nickel zinc f<strong>er</strong>rite<br />

K 14 Bevorzugte Anwendung in Oszillatorspulen im Frequenzb<strong>er</strong>eich bis 100 MHz,<br />

schmalbandigen Filt<strong>er</strong>n und Festinduktivitäten<br />

Pref<strong>er</strong>ably applied in oscillator coils in a frequency range up to 100 MHz, narrow-band<br />

filt<strong>er</strong>s and fixed inductors<br />

K 41 Bevorzugte Anwendung in Oszillatorspulen im Frequenzb<strong>er</strong>eich bis 50 MHz,<br />

Antennenspulen, schmalbandigen Filt<strong>er</strong>n und Festinduktivitäten. K 41 besitzt<br />

gegenüb<strong>er</strong> K 40 eine g<strong>er</strong>ing<strong>er</strong>e Tem<strong>pe</strong>raturabhängigkeit µ i (T)<br />

Pref<strong>er</strong>ably applied in oscillator coils in a frequency range of up to 50 MHz, antenna<br />

coils, narrow-band filt<strong>er</strong>s and fixed inductors. Compared to K 40, K 41<br />

shows a low<strong>er</strong> tem<strong>pe</strong>rature de<strong>pe</strong>ndence µ i (T)<br />

K 80 Bevorzugte Anwendung in Schwingkreisen, schmalbandigen Filt<strong>er</strong>n, Festinduktivitäten<br />

und Antennenspulen im Frequenzb<strong>er</strong>eich bis 15 MHz<br />

Pref<strong>er</strong>ably applied in resonant circuits, narrow-band filt<strong>er</strong>s, fixed inductors and<br />

antenna coils in a frequency range up to 15 MHz<br />

K 251 Üb<strong>er</strong>trag<strong>er</strong>w<strong>er</strong>kstoff für Antennenspulen, schmalbandige Filt<strong>er</strong>, Festinduktivitäten<br />

mit g<strong>er</strong>ingem Tem<strong>pe</strong>raturkoeffizienten µ i (T)<br />

Mat<strong>er</strong>ial for application in antenna coils, narrow-band filt<strong>er</strong>s, fixed inductors with<br />

a low tem<strong>pe</strong>rature de<strong>pe</strong>ndence µ i (T)<br />

Mangan-Zink-F<strong>er</strong>rit / Manganese zinc f<strong>er</strong>rite<br />

K 6001 Mittel<strong>pe</strong>rmeabl<strong>er</strong> W<strong>er</strong>kstoff mit ein<strong>er</strong> Anfangs<strong>pe</strong>rmeabilität von 6000 und ein<strong>er</strong><br />

Curietem<strong>pe</strong>ratur > 170°C für den Aufbau von Festinduktivitäten, Netzrückwirkungsdrosseln,<br />

Filt<strong>er</strong>n und Breitbandüb<strong>er</strong>trag<strong>er</strong>n<br />

Medium-<strong>pe</strong>rmeability mat<strong>er</strong>ial with an initial <strong>pe</strong>rmeability of 6000 and a Curie<br />

tem<strong>pe</strong>rature > 170°C for fixed inductors, network chokes, filt<strong>er</strong>s and broadband<br />

transform<strong>er</strong>s<br />

K 15000,<br />

K 20000<br />

Höchst<strong>pe</strong>rmeabl<strong>er</strong> W<strong>er</strong>kstoff für die Breitbandüb<strong>er</strong>tragungstechnikund Miniaturinduktivitäten<br />

mit hohem Induktivitätsw<strong>er</strong>t; nur Ringe mit einem Außendurchmess<strong>er</strong><br />

von 2 - 10 mm<br />

Highest <strong>pe</strong>rmeability mat<strong>er</strong>ial for broadband transmission technology and miniature<br />

inductors with high inductance values; only ring cores with out<strong>er</strong> diamet<strong>er</strong>s<br />

of 2 - 10 mm


W<strong>er</strong>kstoffbezeichnung<br />

mat<strong>er</strong>ial grade<br />

Mat<strong>er</strong>ialkennziff<strong>er</strong><br />

mat<strong>er</strong>ial code<br />

Anfangs<strong>pe</strong>rmeabilität<br />

initial <strong>pe</strong>rmeability µ i<br />

Flussdichte<br />

flux density B max<br />

bei Feldstärke<br />

at field strength H max<br />

Remanenz<br />

remanence B r<br />

Ko<strong>er</strong>zitivfeldstärke<br />

co<strong>er</strong>cive force H c<br />

Curie-Tem<strong>pe</strong>ratur<br />

Curie tem<strong>pe</strong>rature T C<br />

W<strong>er</strong>kstofftabellen - Nickel-Zink-F<strong>er</strong>rite<br />

Mat<strong>er</strong>ial tables - nickel zinc f<strong>er</strong>rites<br />

Einheit<br />

unit<br />

K 14 K 40 K 41<br />

014 040 041<br />

- 14 ± 25% 40 ± 25% 45 ± 25%<br />

mT ≥ 360 ≥ 370 ≥ 370<br />

A/m 10000 10000 10000<br />

mT ≥ 150 ≥ 185 ≥ 185<br />

A/m ≤ 1500 ≤ 700 ≤ 700<br />

°C ≥ 500 ≥ 450 ≥ 400<br />

Bez. Tem<strong>pe</strong>raturbeiw<strong>er</strong>t<br />

rel. tem<strong>pe</strong>rature coefficient αF 10-6 / K<br />

bei / at -25°C ... +25°C ≤ 85 ≤ 50 ≤ 30<br />

Bez. V<strong>er</strong>lustfaktor<br />

rel. loss facor tanδ/µ i<br />

bei / at 1 MHz<br />

+5°C ... +25°C ≤ 75 ≤ 65 ≤ 40<br />

+25°C ... +55°C ≤ 60 ≤ 70 ≤ 40<br />

+25°C ... +70°C ≤ 60 ≤ 70 ≤ 30<br />

2 MHz<br />

10 -6<br />

5 MHz ≤ 70 ≤ 65<br />

10 MHz ≤ 210 ≤ 75 ≤ 75<br />

20 MHz ≤ 220 ≤ 82 ≤ 100<br />

60 MHz ≤ 250 ≤ 170 ≤ 220<br />

100 MHz ≤ 360<br />

Hyst<strong>er</strong>esebeiw<strong>er</strong>t<br />

hyst<strong>er</strong>esis loss coeff. η B<br />

Desakkommodationsfaktor<br />

Disaccommodation factor D F<br />

Gleichstromwid<strong>er</strong>stand<br />

resistivity ρ<br />

Sint<strong>er</strong>rohdichte<br />

sint<strong>er</strong>ed density γ<br />

10 -6 / mT ≤ 2,5 ≤ 1 ≤ 1<br />

10 -6 ≤ 1 ≤ 1 ≤ 1<br />

Ωm ≥ 10 5 ≥ 10 5 ≥ 10 5<br />

g/cm³ ≈ 4,5 ≈ 4,5 ≈ 4,5<br />

grau unt<strong>er</strong>legt: Sond<strong>er</strong>mat<strong>er</strong>ial / grey highlighted: s<strong>pe</strong>cial mat<strong>er</strong>ial<br />

27


28<br />

W<strong>er</strong>kstofftabellen - Nickel-Zink-F<strong>er</strong>rite<br />

Mat<strong>er</strong>ial tables - nickel zinc f<strong>er</strong>rites<br />

W<strong>er</strong>kstoffbezeichnung<br />

mat<strong>er</strong>ial grade<br />

Mat<strong>er</strong>ialkennziff<strong>er</strong><br />

mat<strong>er</strong>ial code<br />

Anfangs<strong>pe</strong>rmeabilität<br />

initial <strong>pe</strong>rmeability µ i<br />

Flussdichte<br />

flux density B max<br />

bei Feldstärke<br />

at field strength H max<br />

Remanenz<br />

remanence B r<br />

Ko<strong>er</strong>zitivfeldstärke<br />

co<strong>er</strong>cive force H c<br />

Curie-Tem<strong>pe</strong>ratur<br />

Curie tem<strong>pe</strong>rature T C<br />

Einheit<br />

unit<br />

K 80 K 250 K 251<br />

080 250 251<br />

- 80 ± 25% 200 ± 25% 250 ± 25%<br />

mT ≥ 380 ≥ 340 ≥ 310<br />

A/m 5000 2000 2000<br />

mT ≥ 170 ≥ 200 ≥ 200<br />

A/m ≤ 375 ≤ 125 ≤ 125<br />

°C ≥ 400 ≥ 335 ≥ 335<br />

Bez. Tem<strong>pe</strong>raturbeiw<strong>er</strong>t<br />

rel. tem<strong>pe</strong>rature coefficient αF 10-6 / K<br />

bei / at -25°C ... +25°C ≤ 80 ≤ 15 ≤ 4<br />

+5°C ... +25°C ≤ 50 ≤ -5 ≤ 0<br />

+25°C ... +55°C ≤ 20 ≤ 5 ≤ 2<br />

+25°C ... +70°C ≤ 10 ≤ 5 ≤ 2<br />

Bez. V<strong>er</strong>lustfaktor<br />

rel. loss facor tanδ/µ i<br />

10-6 bei / at 0,05 MHz ≤ 95<br />

0,1 MHz ≤ 100<br />

0,3 MHz ≤ 120<br />

1 MHz ≤ 210 ≤ 32 ≤ 32<br />

2 MHz ≤ 35 ≤ 34<br />

5 MHz ≤ 60 ≤ 60<br />

10 MHz ≤ 300 ≤ 340<br />

Hyst<strong>er</strong>esebeiw<strong>er</strong>t<br />

hyst<strong>er</strong>esis loss coeff. η B<br />

Desakkommodationsfaktor<br />

Disaccommodation factor D F<br />

Gleichstromwid<strong>er</strong>stand<br />

resistivity ρ<br />

Sint<strong>er</strong>rohdichte<br />

sint<strong>er</strong>ed density γ<br />

10 -6 / mT ≤ 2 ≤ 2,5 ≤ 2,5<br />

10 -6 ≤ 1 ≤ 30 ≤ 30<br />

Ωm ≥ 10 5 ≥ 10 5 ≥ 10 5<br />

g/cm³ ≈ 4,5 ≈ 4,5 ≈ 4,5<br />

grau unt<strong>er</strong>legt: Sond<strong>er</strong>mat<strong>er</strong>ial / grey highlighted: s<strong>pe</strong>cial mat<strong>er</strong>ial


W<strong>er</strong>kstoffbezeichnung<br />

mat<strong>er</strong>ial grade<br />

Mat<strong>er</strong>ialkennziff<strong>er</strong><br />

mat<strong>er</strong>ial code<br />

Anfangs<strong>pe</strong>rmeabilität<br />

initial <strong>pe</strong>rmeability µ i<br />

Flussdichte<br />

flux density B max<br />

bei Feldstärke<br />

at field strength H max<br />

Remanenz<br />

remanence B r<br />

Ko<strong>er</strong>zitivfeldstärke<br />

co<strong>er</strong>cive force H c<br />

Curie-Tem<strong>pe</strong>ratur<br />

Curie tem<strong>pe</strong>rature T C<br />

W<strong>er</strong>kstofftabellen - Nickel-Zink-F<strong>er</strong>rite<br />

Mat<strong>er</strong>ial tables - nickel zinc f<strong>er</strong>rites<br />

Einheit<br />

unit<br />

K 800 K 801<br />

800 801<br />

- 800 ± 25% 800 ± 25%<br />

mT ≥ 370 ≥ 370<br />

A/m 2000 2000<br />

mT ≥ 170 ≥ 220<br />

A/m ≤ 18 ≤ 55<br />

°C ≥ 135 ≥ 170<br />

Bez. Tem<strong>pe</strong>raturbeiw<strong>er</strong>t<br />

rel. tem<strong>pe</strong>rature coefficient αF 10-6 / K<br />

bei / at -25°C ... +25°C ≤ 6 ≤ 10<br />

+5°C ... +25°C ≤ 7 ≤ 8<br />

+25°C ... +55°C ≤ 8 ≤ 7<br />

+25°C ... +70°C ≤ 10 ≤ 7<br />

Bez. V<strong>er</strong>lustfaktor<br />

rel. loss facor tanδ/µ i<br />

10-6 bei / at 0,05 MHz ≤ 30 ≤ 30<br />

0,1 MHz ≤ 55 ≤ 55<br />

0,3 MHz ≤ 100 ≤ 100<br />

1 MHz<br />

2 MHz<br />

5 MHz<br />

10 MHz<br />

Hyst<strong>er</strong>esebeiw<strong>er</strong>t<br />

hyst<strong>er</strong>esis loss coeff. η B<br />

Desakkommodationsfaktor<br />

Disaccommodation factor D F<br />

Gleichstromwid<strong>er</strong>stand<br />

resistivity ρ<br />

Sint<strong>er</strong>rohdichte<br />

sint<strong>er</strong>ed density γ<br />

10 -6 / mT ≤ 2 ≤ 2<br />

10 -6 ≤ 9<br />

Ωm ≥ 10 4 ≥ 10 4<br />

g/cm³ ≈ 4,5 ≈ 4,5<br />

grau unt<strong>er</strong>legt: Sond<strong>er</strong>mat<strong>er</strong>ial / grey highlighted: s<strong>pe</strong>cial mat<strong>er</strong>ial<br />

29


30<br />

W<strong>er</strong>kstofftabellen - Mangan-Zink-F<strong>er</strong>rite<br />

Mat<strong>er</strong>ial tables - manganese zinc f<strong>er</strong>rites<br />

W<strong>er</strong>kstoffbezeichnung<br />

mat<strong>er</strong>ial grade<br />

Mat<strong>er</strong>ialkennziff<strong>er</strong><br />

mat<strong>er</strong>ial code<br />

Anfangs<strong>pe</strong>rmeabilität<br />

initial <strong>pe</strong>rmeability µ i<br />

Flussdichte<br />

flux density B max<br />

bei Feldstärke<br />

at field strength H max<br />

Remanenz<br />

remanence B r<br />

Ko<strong>er</strong>zitivfeldstärke<br />

co<strong>er</strong>cive force H c<br />

Curie-Tem<strong>pe</strong>ratur<br />

Curie tem<strong>pe</strong>rature T C<br />

Einheit<br />

unit<br />

K 300 K 600 K 2001<br />

300 600 221<br />

- 300 ± 25% 600 ± 25% 1400 ± 25%<br />

mT ≥ 475 ≥ 475 ≥ 480<br />

A/m 1500 1500 800<br />

mT ≥ 180 ≥ 180 ≥ 100<br />

A/m ≤ 65 ≤ 65 ≤ 25<br />

°C ≥ 210 ≥ 210 ≥ 200<br />

Bez. Tem<strong>pe</strong>raturbeiw<strong>er</strong>t<br />

rel. tem<strong>pe</strong>rature coefficient αF 10-6 / K<br />

bei / at -25°C ... +25°C ≤ 7 ≤ 6 ≤ 3,5<br />

Bez. V<strong>er</strong>lustfaktor<br />

rel. loss facor tanδ/µ i<br />

bei / at 10 kHz<br />

+5°C ... +25°C ≤ 5 ≤ 6 ≤ 3<br />

+25°C ... +55°C ≤ 4 ≤ 7 ≤ 2<br />

+25°C ... +70°C ≤ 1 ≤ 6 ≤ 2,5<br />

50 kHz<br />

10 -6<br />

100 kHz ≤ 5<br />

200 kHz ≤ 25 ≤ 15 ≤ 6<br />

300 kHz ≤ 25 ≤ 15 ≤ 10<br />

500 kHz ≤ 26 ≤ 20 ≤ 15<br />

1000 kHz ≤ 35 ≤ 30 ≤ 60<br />

S<strong>pe</strong>z. V<strong>er</strong>lustleistung<br />

s<strong>pe</strong>c. pow<strong>er</strong> losses P V<br />

bei / at<br />

500kHz, 50mT,100°C<br />

500kHz, 100mT, 100°C<br />

1000kHz, 25mT, 100°C<br />

Gleichstromwid<strong>er</strong>stand<br />

resistivity ρ<br />

Sint<strong>er</strong>rohdichte<br />

sint<strong>er</strong>ed density γ<br />

mW/cm³<br />

≤ 150<br />

≤ 1000<br />

≤ 160<br />

Ωm ≥ 1 ≥ 1 ≥ 10<br />

g/cm³ ≈ 4,6 ≈ 4,8 ≈ 4,85


W<strong>er</strong>kstoffbezeichnung<br />

mat<strong>er</strong>ial grade<br />

Mat<strong>er</strong>ialkennziff<strong>er</strong><br />

mat<strong>er</strong>ial code<br />

Anfangs<strong>pe</strong>rmeabilität<br />

initial <strong>pe</strong>rmeability µ i<br />

Flussdichte<br />

flux density B max<br />

bei Feldstärke<br />

at field strength H max<br />

Remanenz<br />

remanence B r<br />

Ko<strong>er</strong>zitivfeldstärke<br />

co<strong>er</strong>cive force H c<br />

Curie-Tem<strong>pe</strong>ratur<br />

Curie tem<strong>pe</strong>rature T C<br />

W<strong>er</strong>kstofftabellen - Mangan-Zink-F<strong>er</strong>rite<br />

Mat<strong>er</strong>ial tables - manganese zinc f<strong>er</strong>rites<br />

Einheit<br />

unit<br />

K 2004 K 2005 K 2006<br />

024 025 026<br />

- 2000 ± 25% 2700 ± 25% 2100 ± 25%<br />

mT ≥ 455 ≥ 380 ≥ 490<br />

A/m 800 800 800<br />

mT ≥ 200 ≥ 100 ≥ 200<br />

A/m ≤ 25 ≤ 25 ≤ 25<br />

°C ≥ 200 ≥ 170 ≥ 200<br />

Bez. Tem<strong>pe</strong>raturbeiw<strong>er</strong>t<br />

rel. tem<strong>pe</strong>rature coefficient αF 10-6 / K<br />

bei / at -25°C ... +25°C ≤ 3,5 ≤ 1,5 ≤ 3,5<br />

+5°C ... +25°C ≤ 5 ≤ 1 ≤ 5<br />

+25°C ... +55°C ≤ 6,5 ≤ 1 ≤ 4,5<br />

+25°C ... +70°C ≤ 6,5 ≤ 1 ≤ 4<br />

Bez. V<strong>er</strong>lustfaktor<br />

rel. loss facor tanδ/µ i<br />

10-6 bei / at 10 kHz ≤ 3<br />

50 kHz ≤ 4<br />

100 kHz ≤ 5 ≤ 5 ≤ 3,7<br />

200 kHz ≤ 7 ≤ 4<br />

300 kHz ≤ 15 ≤ 8<br />

500 kHz ≤ 30 ≤ 15<br />

1000 kHz<br />

S<strong>pe</strong>z. V<strong>er</strong>lustleistung<br />

s<strong>pe</strong>c. pow<strong>er</strong> losses P V<br />

bei / at<br />

50kHz, 200mT,100°C<br />

100kHz, 200mT, 100°C<br />

200kHz, 100mT, 100°C<br />

Gleichstromwid<strong>er</strong>stand<br />

resistivity ρ<br />

Sint<strong>er</strong>rohdichte<br />

sint<strong>er</strong>ed density γ<br />

mW/cm³<br />

≤ 440 ≤ 270<br />

≤ 640<br />

≤ 380<br />

Ωm ≥ 1 ≥ 1 ≥ 1<br />

g/cm³ ≈ 4,8 ≈ 4,8 ≈ 4,8<br />

31


32<br />

W<strong>er</strong>kstofftabellen - Mangan-Zink-F<strong>er</strong>rite<br />

Mat<strong>er</strong>ial tables - manganese zinc f<strong>er</strong>rites<br />

W<strong>er</strong>kstoffbezeichnung<br />

mat<strong>er</strong>ial grade<br />

Mat<strong>er</strong>ialkennziff<strong>er</strong><br />

mat<strong>er</strong>ial code<br />

Anfangs<strong>pe</strong>rmeabilität<br />

initial <strong>pe</strong>rmeability µ i<br />

Flussdichte<br />

flux density B max<br />

bei Feldstärke<br />

at field strength H max<br />

Remanenz<br />

remanence B r<br />

Ko<strong>er</strong>zitivfeldstärke<br />

co<strong>er</strong>cive force H c<br />

Curie-Tem<strong>pe</strong>ratur<br />

Curie tem<strong>pe</strong>rature T C<br />

Einheit<br />

unit<br />

K 2008 K 2024 K 2500<br />

028 224 052<br />

- 2300 ± 25% 1700 ± 25% 2500 ± 25%<br />

mT ≥ 500 ≥ 550 ≥ 490<br />

A/m 800 1200 800<br />

mT ≥ 200 ≥ 220 ≥ 200<br />

A/m ≤ 25 ≤ 25 ≤ 25<br />

°C ≥ 200 ≥ 270 ≥ 220<br />

Bez. Tem<strong>pe</strong>raturbeiw<strong>er</strong>t<br />

rel. tem<strong>pe</strong>rature coefficient αF 10-6 / K<br />

bei / at -25°C ... +25°C ≤ 2,5 ≤ 2<br />

Bez. V<strong>er</strong>lustfaktor<br />

rel. loss facor tanδ/µ i<br />

bei / at 10 kHz<br />

+5°C ... +25°C ≤ 3 ≤ 2,5<br />

+25°C ... +55°C ≤ 6,5 ≤ 1,5<br />

+25°C ... +70°C ≤ 6,5 ≤ 1<br />

50 kHz<br />

10 -6<br />

100 kHz ≤ 2,5 ≤ 2,5<br />

200 kHz ≤ 3 ≤ 3,5<br />

300 kHz ≤ 6 ≤ 10<br />

500 kHz ≤ 10 ≤ 14<br />

1000 kHz ≤ 65 ≤ 90<br />

S<strong>pe</strong>z. V<strong>er</strong>lustleistung<br />

s<strong>pe</strong>c. pow<strong>er</strong> losses P V<br />

bei / at<br />

50kHz, 200mT,100°C<br />

100kHz, 200mT, 100°C<br />

200kHz, 100mT, 100°C<br />

Gleichstromwid<strong>er</strong>stand<br />

resistivity ρ<br />

Sint<strong>er</strong>rohdichte<br />

sint<strong>er</strong>ed density γ<br />

mW/cm³<br />

≤ 210<br />

≤ 500<br />

≤ 270<br />

≤ 220<br />

≤ 600<br />

≤ 350<br />

≤ 800<br />

≤ 300<br />

Ωm ≥ 1 ≥ 1 ≥ 1<br />

g/cm³ ≈ 4,8 ≈ 4,85 ≈ 4,7


W<strong>er</strong>kstoffbezeichnung<br />

mat<strong>er</strong>ial grade<br />

Mat<strong>er</strong>ialkennziff<strong>er</strong><br />

mat<strong>er</strong>ial code<br />

Anfangs<strong>pe</strong>rmeabilität<br />

initial <strong>pe</strong>rmeability µ i<br />

Flussdichte<br />

flux density B max<br />

bei Feldstärke<br />

at field strength H max<br />

Remanenz<br />

remanence B r<br />

Ko<strong>er</strong>zitivfeldstärke<br />

co<strong>er</strong>cive force H c<br />

Curie-Tem<strong>pe</strong>ratur<br />

Curie tem<strong>pe</strong>rature T C<br />

W<strong>er</strong>kstofftabellen - Mangan-Zink-F<strong>er</strong>rite<br />

Mat<strong>er</strong>ial tables - manganese zinc f<strong>er</strong>rites<br />

Einheit<br />

unit<br />

K 4000 K 5500 K 6000<br />

004 055 006<br />

- 4000 ± 25% 5000 ± 25% 6000 ± 25%<br />

mT ≥ 380 ≥ 350 ≥ 370<br />

A/m 800 800 800<br />

mT ≥ 120 ≥ 120 ≥ 150<br />

A/m ≤ 15 ≤ 15 ≤ 10<br />

°C ≥ 130 ≥ 130 ≥ 130<br />

Bez. Tem<strong>pe</strong>raturbeiw<strong>er</strong>t<br />

rel. tem<strong>pe</strong>rature coefficient αF 10-6 / K<br />

bei / at -25°C ... +25°C ≤ 2 ≤ 2 ≤ 2<br />

+5°C ... +25°C ≤ 1,5 ≤ 1,5 ≤ 1<br />

+25°C ... +55°C ≤ 1 ≤ 1 ≥1<br />

+25°C ... +70°C ≤ 1 ≤ 1 ≥ 1<br />

Bez. V<strong>er</strong>lustfaktor<br />

rel. loss facor tanδ/µ i<br />

10-6 bei / at 10 kHz ≤ 3 ≤ 4 ≤ 4<br />

50 kHz ≤ 6 ≤ 6 ≤ 8<br />

100 kHz ≤ 13 ≤ 15 ≤ 30<br />

200 kHz ≤ 40 ≤ 45 ≤ 100<br />

300 kHz<br />

500 kHz<br />

1000 kHz<br />

S<strong>pe</strong>z. V<strong>er</strong>lustleistung<br />

s<strong>pe</strong>c. pow<strong>er</strong> losses P V<br />

bei / at<br />

50kHz, 200mT,100°C<br />

100kHz, 200mT, 100°C<br />

200kHz, 100mT, 100°C<br />

Gleichstromwid<strong>er</strong>stand<br />

resistivity ρ<br />

Sint<strong>er</strong>rohdichte<br />

sint<strong>er</strong>ed density γ<br />

mW/cm³<br />

Ωm ≥ 0,1 ≥ 0,1 ≥ 0,1<br />

g/cm³ ≈ 4,8 ≈ 4,8 ≈ 4,85<br />

33


34<br />

W<strong>er</strong>kstofftabellen - Mangan-Zink-F<strong>er</strong>rite<br />

Mat<strong>er</strong>ial tables - manganese zinc f<strong>er</strong>rites<br />

W<strong>er</strong>kstoffbezeichnung<br />

mat<strong>er</strong>ial grade<br />

Mat<strong>er</strong>ialkennziff<strong>er</strong><br />

mat<strong>er</strong>ial code<br />

Anfangs<strong>pe</strong>rmeabilität<br />

initial <strong>pe</strong>rmeability µ i<br />

Flussdichte<br />

flux density B max<br />

bei Feldstärke<br />

at field strength H max<br />

Remanenz<br />

remanence B r<br />

Ko<strong>er</strong>zitivfeldstärke<br />

co<strong>er</strong>cive force H c<br />

Curie-Tem<strong>pe</strong>ratur<br />

Curie tem<strong>pe</strong>rature T C<br />

Einheit<br />

unit<br />

K 6001 K 10000 K 15000<br />

061 100 315<br />

- 6000 ± 25% 10000 ± 30% 15000 ± 30%<br />

mT ≥ 370 ≥ 350 ≥ 350<br />

A/m 800 800 800<br />

mT ≥ 150 ≥ 150 ≥ 150<br />

A/m ≤ 10 ≤ 8 ≤ 8<br />

°C ≥ 170 ≥ 125 ≥ 125<br />

Bez. Tem<strong>pe</strong>raturbeiw<strong>er</strong>t<br />

rel. tem<strong>pe</strong>rature coefficient αF 10-6 / K<br />

bei / at -25°C ... +25°C ≤ 6 ≤ 2 ≤ 1<br />

+5°C ... +25°C ≤ 5 ≤ 1 ≤ 2<br />

+25°C ... +55°C ≥ -1 ≤ 0,5 ≤ 2<br />

+25°C ... +70°C ≥ -1 ≤ 1 ≤ 1<br />

Bez. V<strong>er</strong>lustfaktor<br />

rel. loss facor tanδ/µ i<br />

10-6 bei / at 10 kHz ≤ 4 ≤ 8 ≤ 10<br />

50 kHz ≤ 8 ≤ 20 ≤ 50<br />

100 kHz ≤ 30 ≤ 55 ≤ 110<br />

200 kHz ≤ 100<br />

300 kHz<br />

500 kHz<br />

Gleichstromwid<strong>er</strong>stand<br />

resistivity ρ<br />

Sint<strong>er</strong>rohdichte<br />

sint<strong>er</strong>ed density γ<br />

Ωm ≥ 0,1 ≥ 0,05 ≥ 0,05<br />

g/cm³ ≈ 4,85 ≥ 4,85 ≥ 4,95<br />

grau unt<strong>er</strong>legt: Sond<strong>er</strong>mat<strong>er</strong>ial / grey highlighted: s<strong>pe</strong>cial mat<strong>er</strong>ial


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

36<br />

µ´, µ´´<br />

B / mT<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 14<br />

Mat<strong>er</strong>ial data K 14<br />

100<br />

10<br />

1<br />

0,1<br />

µ´<br />

µ´´<br />

0,01<br />

10 30 100 300 1000<br />

400<br />

300<br />

200<br />

100<br />

f / MHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-2000 0 2000 4000 6000 8000 10000<br />

H / A/m<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

tanδ/µ i x 10 6<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-50 0 50 100 150 200 250 300<br />

1000<br />

300<br />

100<br />

T / °C<br />

tanδ / µ i<br />

30<br />

10 30 100 300<br />

f / MHz


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

µ´, µ´´<br />

B / mT<br />

100<br />

10<br />

1<br />

µ´<br />

µ´´<br />

0,1<br />

10 30 100 300 1000<br />

400<br />

300<br />

200<br />

100<br />

f / MHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-2000 0 2000 4000 6000 8000 10000<br />

H / A/m<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 40<br />

Mat<strong>er</strong>ial data K 40<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

tanδ/µ i x 10 6<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-50 0 50 100 150 200 250<br />

1000<br />

300<br />

100<br />

30<br />

T / °C<br />

tanδ / µ i<br />

10<br />

1 3 10 30 100<br />

f / MHz<br />

37


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

38<br />

µ´, µ´´<br />

B / mT<br />

100<br />

10<br />

1<br />

µ´<br />

µ´´<br />

0,1<br />

1 10 100 1000<br />

400<br />

300<br />

200<br />

100<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 41<br />

Mat<strong>er</strong>ial data K 41<br />

f / MHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-2000 0 2000 4000 6000 8000 10000<br />

H / A/m<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

tanδ/µ i x 10 6<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-50 0 50 100 150 200 250<br />

1000<br />

300<br />

100<br />

30<br />

T / °C<br />

tanδ / µ i<br />

10<br />

1 3 10 30 100<br />

f / MHz


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

µ´, µ´´<br />

B / mT<br />

1000<br />

100<br />

10<br />

1<br />

µ´<br />

µ´´<br />

0,1<br />

1 3 10 30 100<br />

400<br />

300<br />

200<br />

100<br />

f / MHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-1000 0 1000 2000 3000 4000 5000<br />

H / A/m<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 80<br />

Mat<strong>er</strong>ial data K 80<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

tanδ/µ i x 10 6<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-50 0 50 100 150 200 250<br />

1000<br />

300<br />

100<br />

tanδ / µ i<br />

T / °C<br />

30<br />

1 3 10 30<br />

f / MHz<br />

39


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

40<br />

µ´, µ´´<br />

B / mT<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 250<br />

Mat<strong>er</strong>ial data K 250<br />

1000<br />

100<br />

400<br />

300<br />

200<br />

100<br />

10<br />

µ´<br />

µ´´<br />

1<br />

1 3 10 30 100<br />

f / MHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-500 0 500 1000 1500 2000<br />

H / A/m<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

tanδ/µ i x 10 6<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50 0 50 100 150 200 250<br />

1000<br />

300<br />

100<br />

tanδ / µ i<br />

T / °C<br />

30<br />

1 3 10 30<br />

f / MHz


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

µ´, µ´´<br />

B / mT<br />

1000<br />

100<br />

400<br />

300<br />

200<br />

100<br />

10<br />

µ´<br />

µ´´<br />

1<br />

1 3 10 30 100<br />

f / MHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-500 0 500 1000 1500 2000<br />

H / A/m<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 251<br />

Mat<strong>er</strong>ial data K 251<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

tanδ/µ i x 10 6<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-50 0 50 100 150 200 250<br />

1000<br />

300<br />

100<br />

30<br />

tanδ / µ i<br />

T / °C<br />

10<br />

0,3 1 3 10 30<br />

f / MHz<br />

41


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

42<br />

µ´, µ´´<br />

B / mT<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 800<br />

Mat<strong>er</strong>ial data K 800<br />

1000<br />

300<br />

100<br />

400<br />

300<br />

200<br />

100<br />

30<br />

µ´<br />

µ´´<br />

10<br />

0,1 0,3 1 3 10<br />

f / MHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-200 0 200 400 600 800 1000<br />

H / A/m<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

l Z l / Ω<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-50 0 50 100 150 200<br />

T / °C<br />

Im<strong>pe</strong>danz als Funktion d<strong>er</strong> Frequenz<br />

Im<strong>pe</strong>dance vs. frequency<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

0,1<br />

36µH<br />

0,4µH<br />

0,01<br />

0,01 0,1 1 10 100 1000<br />

f / MHz<br />

9,0µH


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

µ´, µ´´<br />

B / mT<br />

1000<br />

300<br />

100<br />

400<br />

300<br />

200<br />

100<br />

30<br />

µ´<br />

µ´´<br />

10<br />

10 100 1000 10000<br />

f / kHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-200 0 200 400 600 800 1000<br />

H / A/m<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 801<br />

Mat<strong>er</strong>ial data K 801<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

l Z l / Ω<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-50 0 50 100 150 200<br />

T / °C<br />

Im<strong>pe</strong>danz als Funktion d<strong>er</strong> Frequenz<br />

Im<strong>pe</strong>dance vs. frequency<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

0,1<br />

36µH<br />

0,4µH<br />

0,01<br />

0,01 0,1 1 10 100 1000<br />

f / MHz<br />

9,0µH<br />

43


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

44<br />

µ´, µ´´<br />

B / mT<br />

1000<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 300<br />

Mat<strong>er</strong>ial data K 300<br />

100<br />

500<br />

400<br />

300<br />

200<br />

100<br />

10<br />

0<br />

µ´<br />

µ´´<br />

1<br />

0,01 0,1 1 10 100<br />

f / MHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

0 500 1000 1500<br />

H / A/m<br />

T = 25°C<br />

f = 10kHz<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

B / mT<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-50 0 50 100 150 200 250<br />

T / °C<br />

Flussdichte als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Flux density vs. tem<strong>pe</strong>rature<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 25 50 75 100 125 150 175 200<br />

T / °C<br />

H = 1200 A/m


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

µ´, µ´´<br />

B / mT<br />

1000<br />

100<br />

500<br />

400<br />

300<br />

200<br />

100<br />

10<br />

0<br />

µ´<br />

µ´´<br />

1<br />

10 100 1000 10000<br />

f / kHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

0 500 1000 1500<br />

H / A/m<br />

T = 25°C<br />

f = 10kHz<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 600<br />

Mat<strong>er</strong>ial data K 600<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

B / mT<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-50 0 50 100 150 200 250<br />

T / °C<br />

Flussdichte als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Flux density vs. tem<strong>pe</strong>rature<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 25 50 75 100 125 150 175 200<br />

T / °C<br />

H = 1200 A/m<br />

45


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

46<br />

µ´, µ´´<br />

B / mT<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 2001<br />

Mat<strong>er</strong>ial data K 2001<br />

10000<br />

1000<br />

500<br />

400<br />

300<br />

200<br />

100<br />

100<br />

10<br />

µ´<br />

µ´´<br />

1<br />

10 100 1000 10000<br />

f / kHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-200 0 200 400 600 800<br />

H / A/m<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

B / mT<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

-50 0 50 100 150 200 250<br />

T / °C<br />

Flussdichte als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Flux density vs. tem<strong>pe</strong>rature<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 25 50 75 100 125 150 175 200<br />

T / °C<br />

H = 1200 A/m


P V / mW/cm 3<br />

S<strong>pe</strong>z. V<strong>er</strong>luste als Funktion d<strong>er</strong> Frequenz<br />

S<strong>pe</strong>c. losses vs. frequency<br />

3000<br />

1000<br />

300<br />

100<br />

30<br />

10<br />

100mT<br />

50mT<br />

3<br />

1<br />

25mT<br />

25°C<br />

100°C<br />

30 100 300 1000<br />

f / kHz<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 2001<br />

Mat<strong>er</strong>ial data K 2001<br />

P V / mW/cm 3<br />

S<strong>pe</strong>z. V<strong>er</strong>luste als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

S<strong>pe</strong>c. losses vs. tem<strong>pe</strong>rature<br />

3000<br />

1000<br />

300<br />

100<br />

30<br />

f=500kHz<br />

10<br />

0 40 80 120 160<br />

T / °C<br />

100mT<br />

50mT<br />

25mT<br />

47


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

48<br />

µ´, µ´´<br />

B / mT<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 2004<br />

Mat<strong>er</strong>ial data K 2004<br />

10000<br />

1000<br />

500<br />

400<br />

300<br />

200<br />

100<br />

100<br />

µ´<br />

µ´´<br />

10<br />

10 100 1000 10000<br />

f / kHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-200 0 200 400 600 800<br />

H / A/m<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

B / mT<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

-50 0 50 100 150 200 250<br />

T / °C<br />

Flussdichte als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Flux density vs. tem<strong>pe</strong>rature<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 25 50 75 100 125 150 175 200<br />

T / °C<br />

H = 1200 A/m


P V / mW/cm 3<br />

S<strong>pe</strong>z. V<strong>er</strong>luste als Funktion d<strong>er</strong> Frequenz<br />

S<strong>pe</strong>c. losses vs. frequency<br />

3000<br />

1000<br />

300<br />

100<br />

30<br />

10<br />

3<br />

1<br />

30 100 300<br />

f / kHz<br />

200mT<br />

100mT<br />

50mT<br />

25°C<br />

100°C<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 2004<br />

Mat<strong>er</strong>ial data K 2004<br />

P V / mW/cm 3<br />

S<strong>pe</strong>z. V<strong>er</strong>luste als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

S<strong>pe</strong>c. losses vs. tem<strong>pe</strong>rature<br />

1000<br />

300<br />

100<br />

30<br />

10<br />

3<br />

f = 25 kHz<br />

1<br />

0 40 80 120 160<br />

T / °C<br />

200mT<br />

100mT<br />

50mT<br />

49


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

50<br />

µ´, µ´´<br />

B / mT<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 2006<br />

Mat<strong>er</strong>ial data K 2006<br />

10000<br />

1000<br />

500<br />

400<br />

300<br />

200<br />

100<br />

100<br />

µ´<br />

µ´´<br />

10<br />

10 100 1000 10000<br />

f / kHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-200 0 200 400 600 800<br />

H / A/m<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

B / mT<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

-50 0 50 100 150 200 250<br />

T / °C<br />

Flussdichte als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Flux density vs. tem<strong>pe</strong>rature<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 25 50 75 100 125 150 175 200<br />

T / °C<br />

H = 1200 A/m


P V / mW/cm 3<br />

S<strong>pe</strong>z. V<strong>er</strong>luste als Funktion d<strong>er</strong> Frequenz<br />

S<strong>pe</strong>c. losses vs. frequency<br />

10000<br />

3000<br />

1000<br />

300<br />

100<br />

30<br />

10<br />

200mT<br />

3<br />

1<br />

25°C<br />

100°C<br />

10 30 100 300 1000<br />

f / kHz<br />

100mT<br />

50mT<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 2006<br />

Mat<strong>er</strong>ial data K 2006<br />

P V / mW/cm 3<br />

S<strong>pe</strong>z. V<strong>er</strong>luste als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

S<strong>pe</strong>c. losses vs. tem<strong>pe</strong>rature<br />

1000<br />

300<br />

100<br />

30<br />

10<br />

3<br />

1<br />

0 40 80 120 160<br />

T / °C<br />

200mT<br />

100mT<br />

50mT<br />

f = 25 kHz<br />

51


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

52<br />

µ´, µ´´<br />

B / mT<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 2008<br />

Mat<strong>er</strong>ial data K 2008<br />

10000<br />

1000<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

100<br />

µ´<br />

µ´´<br />

10<br />

10 100 1000 10000<br />

f / kHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

0<br />

-200 0 200 400 600 800<br />

H / A/m<br />

T = 25°C<br />

f = 10kHz<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

B / mT<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

-50 0 50 100 150 200 250<br />

T / °C<br />

Flussdichte als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Flux density vs. tem<strong>pe</strong>rature<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 25 50 75 100 125 150 175 200<br />

T / °C<br />

H = 1200 A/m


P V / mW/cm 3<br />

S<strong>pe</strong>z. V<strong>er</strong>luste als Funktion d<strong>er</strong> Frequenz<br />

S<strong>pe</strong>c. losses vs. frequency<br />

3000<br />

1000<br />

300<br />

100<br />

30<br />

10<br />

3<br />

1<br />

25°C<br />

100°C<br />

10 30 100 300 1000<br />

f / kHz<br />

200mT<br />

100mT<br />

50mT<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 2008<br />

Mat<strong>er</strong>ial data K 2008<br />

P V / mW/cm 3<br />

S<strong>pe</strong>z. V<strong>er</strong>luste als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

S<strong>pe</strong>c. losses vs. tem<strong>pe</strong>rature<br />

1000<br />

300<br />

100<br />

30<br />

10<br />

0 40 80 120 160<br />

T / °C<br />

200mT<br />

100mT<br />

50mT<br />

f = 25 kHz<br />

53


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

µ´, µ´´<br />

54<br />

B / mT<br />

10000<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 2024<br />

Mat<strong>er</strong>ial data K 2024<br />

1000<br />

100<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

µ´<br />

µ´´<br />

10<br />

10 30 100 300 1000 3000<br />

f / kHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

0<br />

-100 300 700 1100 1500<br />

H / A/m<br />

T = 25°C<br />

f = 10kHz<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

µ rev<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

10000<br />

0<br />

-50 0 50 100 150 200 250 300<br />

3000<br />

1000<br />

300<br />

100<br />

30<br />

T / °C<br />

µ rev als Funktion d<strong>er</strong> Feldstärke H<br />

µ rev vs. field strength H<br />

10<br />

10 100 1000<br />

H / A/m


P V / mW/cm 3<br />

S<strong>pe</strong>z. V<strong>er</strong>luste als Funktion d<strong>er</strong> Frequenz<br />

S<strong>pe</strong>c. losses vs. frequency<br />

10000<br />

3000<br />

1000<br />

300<br />

100<br />

30<br />

10<br />

25°C<br />

100°C<br />

10 30 100 300 1000<br />

f / kHz<br />

B=200mT<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 2024<br />

Mat<strong>er</strong>ial data K 2024<br />

P V / mW/cm 3<br />

S<strong>pe</strong>z. V<strong>er</strong>luste als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

S<strong>pe</strong>c. losses vs. tem<strong>pe</strong>rature<br />

300<br />

100<br />

30<br />

10<br />

3<br />

1<br />

0,3<br />

0 25 50 75 100 125 150<br />

T / °C<br />

B=200mT<br />

B=100mT<br />

B=50mT<br />

f=25kHz<br />

55


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

56<br />

µ´, µ´´<br />

B / mT<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 2005<br />

Mat<strong>er</strong>ial data K 2005<br />

10000<br />

1000<br />

400<br />

300<br />

200<br />

100<br />

100<br />

µ´<br />

µ´´<br />

10<br />

10 100 1000 10000<br />

f / kHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-200 0 200 400 600 800<br />

H / A/m<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

tanδ/µ i x 10 6<br />

4000<br />

3000<br />

2000<br />

1000<br />

1000<br />

0<br />

-50 0 50 100 150 200<br />

300<br />

100<br />

30<br />

10<br />

3<br />

tanδ / µ i<br />

T / °C<br />

1<br />

10 30 100 300 1000 3000<br />

f / kHz


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

µ´, µ´´<br />

B / mT<br />

10000<br />

1000<br />

500<br />

400<br />

300<br />

200<br />

100<br />

100<br />

µ´<br />

µ´´<br />

10<br />

10 100 1000 10000<br />

f / kHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-200 0 200 400 600 800<br />

H / A/m<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 2500<br />

Mat<strong>er</strong>ial data K 2500<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

P V / mW/cm 3<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

-50 0 50 100 150 200 250<br />

T / °C<br />

S<strong>pe</strong>z. V<strong>er</strong>luste als Funktion d<strong>er</strong> Frequenz<br />

S<strong>pe</strong>c. losses vs. frequency<br />

10000<br />

3000<br />

1000<br />

300<br />

100<br />

30<br />

10<br />

200mT<br />

100mT<br />

3<br />

1<br />

50mT<br />

25°C<br />

100°C<br />

10 30 100 300 1000<br />

f / kHz<br />

57


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

58<br />

µ´, µ´´<br />

B / mT<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 4000<br />

Mat<strong>er</strong>ial data K 4000<br />

10000<br />

1000<br />

400<br />

300<br />

200<br />

100<br />

100<br />

µ´<br />

µ´´<br />

10<br />

10 30 100 300 1000 3000<br />

f / kHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-200 0 200 400 600 800 1000<br />

H / A/m<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

-50 0 50 100 150<br />

T / °C<br />

Einfügungsdämpfung als Funktion d<strong>er</strong> Frequenz<br />

Ins<strong>er</strong>tion losses vs. frequency<br />

a e / dB<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

0,1 1 10 100 1000<br />

f / MHz<br />

L = 500 µH


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

µ´, µ´´<br />

B / mT<br />

10000<br />

1000<br />

400<br />

300<br />

200<br />

100<br />

100<br />

µ´<br />

µ´´<br />

10<br />

10 30 100 300 1000 3000<br />

f / kHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-200 0 200 400 600 800<br />

H / A/m<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 5500<br />

Mat<strong>er</strong>ial data K 5500<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

a e / dB<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

-50 0 50 100 150<br />

T / °C<br />

Dämpfung als Funktion d<strong>er</strong> Frequenz<br />

Ins<strong>er</strong>tion losses vs. frequency<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

0,1 1 10 100 1000<br />

f / MHz<br />

500µH<br />

59


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

60<br />

µ´, µ´´<br />

B / mT<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 6000<br />

Mat<strong>er</strong>ial data K 6000<br />

10000<br />

1000<br />

400<br />

300<br />

200<br />

100<br />

100<br />

µ´<br />

µ´´<br />

10<br />

10 100 1000 10000<br />

f / kHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-200 0 200 400 600 800<br />

H / A/m<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

-50 0 50 100 150<br />

T / °C<br />

Einfügungsdämpfung als Funktion d<strong>er</strong> Frequenz<br />

Ins<strong>er</strong>tion losses vs. frequency<br />

a e / dB<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

0,1 1 10 100 1000<br />

f / MHz<br />

L = 500 µH


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

µ´, µ´´<br />

B / mT<br />

10000<br />

1000<br />

400<br />

300<br />

200<br />

100<br />

100<br />

µ´<br />

µ´´<br />

10<br />

10 100 1000 10000<br />

f / kHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-200 0 200 400 600 800<br />

H / A/m<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 6001<br />

Mat<strong>er</strong>ial data K 6001<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

-50 0 50 100 150 200<br />

T / °C<br />

Einfügungsdämpfung als Funktion d<strong>er</strong> Frequenz<br />

Ins<strong>er</strong>tion losses vs. frequency<br />

a e / dB<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

0,1 1 10 100<br />

f / MHz<br />

L=500µH<br />

61


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

62<br />

µ´, µ´´<br />

B / mT<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 10000<br />

Mat<strong>er</strong>ial data K 10000<br />

30000<br />

10000<br />

3000<br />

1000<br />

400<br />

300<br />

200<br />

100<br />

300<br />

µ´<br />

µ´´<br />

100<br />

10 30 100 300 1000<br />

f / kHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-200 0 200 400 600 800<br />

H / A/m<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

µ rev<br />

16000<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

-50 0 50 100 150<br />

T / °C<br />

DC Bias bei Ringk<strong>er</strong>nen (Richtw<strong>er</strong>t)<br />

DC Bias for ring cores (guide value)<br />

30000<br />

10000<br />

3000<br />

1000<br />

300<br />

0,1 1 10 100<br />

H / A/m


Komplexe P<strong>er</strong>meabilität als Funktion d<strong>er</strong> Frequenz<br />

Complex <strong>pe</strong>rmeability vs. frequency<br />

µ´, µ´´<br />

B / mT<br />

30000<br />

10000<br />

3000<br />

1000<br />

400<br />

300<br />

200<br />

100<br />

300<br />

µ´<br />

µ´´<br />

100<br />

10 30 100 300 1000<br />

f / kHz<br />

Hyst<strong>er</strong>esekurve<br />

Hyst<strong>er</strong>esis curve<br />

T = 25°C<br />

f = 10kHz<br />

0<br />

-200 0 200 400 600 800 1000<br />

H / A/m<br />

Mat<strong>er</strong>ialkennw<strong>er</strong>te K 15000<br />

Mat<strong>er</strong>ial data K 15000<br />

Anfangs<strong>pe</strong>rmeabilität als Funktion d<strong>er</strong> Tem<strong>pe</strong>ratur<br />

Initial <strong>pe</strong>rmeability vs. tem<strong>pe</strong>rature<br />

µ i<br />

µ rev<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

-50 0 50 100 150<br />

T / °C<br />

DC Bias bei Ringk<strong>er</strong>nen (Richtw<strong>er</strong>t)<br />

DC Bias for ring cores (guide value)<br />

30000<br />

10000<br />

3000<br />

1000<br />

300<br />

0,1 1 10 100<br />

H / A/m<br />

63


Qualitätssich<strong>er</strong>ung und Prüfv<strong>er</strong>fahren<br />

1. Allgemeines<br />

Um die hohen technischen Anford<strong>er</strong>ungen<br />

des Marktes für weichmagnetische W<strong>er</strong>kstoffe<br />

und Wickelgüt<strong>er</strong> sich<strong>er</strong> zu <strong>er</strong>füllen,<br />

haben wir uns<strong>er</strong> Qualitätsmanagementsystem<br />

entsprechend d<strong>er</strong> ISO/TS 16949, den<br />

einschlägigen IEC-Empfehlungen, DGQ-<br />

Empfehlungen und relevanten DIN-Normen<br />

eing<strong>er</strong>ichtet. Das System wird mit Hilfe int<strong>er</strong>n<strong>er</strong><br />

Audits kontinui<strong>er</strong>lich bew<strong>er</strong>tet und optimi<strong>er</strong>t.<br />

Zum bess<strong>er</strong>en V<strong>er</strong>ständnis haben wir<br />

den Qualitätssich<strong>er</strong>ungsablauf uns<strong>er</strong><strong>er</strong> F<strong>er</strong>ritproduktion<br />

in den nachstehenden beiden<br />

Abbildungen dargestellt. Die Qualität d<strong>er</strong><br />

Produkte wird nach jedem F<strong>er</strong>tigungsschritt<br />

bew<strong>er</strong>tet, und am Ende d<strong>er</strong> jeweiligen QS-<br />

Prüfstufe <strong>er</strong>folgt die Freigabe zum nächsten<br />

F<strong>er</strong>tigungsschritt bzw. zum Einlag<strong>er</strong>n.<br />

Das QM-System nach ISO/TS 16949:2002<br />

wurde 05/2003 durch den TÜV NORD C<strong>er</strong>t<br />

z<strong>er</strong>tifizi<strong>er</strong>t.<br />

2. Wareneingangsprüfung<br />

Die zur H<strong>er</strong>stellung uns<strong>er</strong><strong>er</strong> Produkte benötigten<br />

Rohstoffe und Mat<strong>er</strong>ialien w<strong>er</strong>den<br />

nach einem festgelegten V<strong>er</strong>fahren auf die<br />

v<strong>er</strong>einbarten M<strong>er</strong>kmale hin üb<strong>er</strong>prüft, die Ergebnisse<br />

w<strong>er</strong>den dokumenti<strong>er</strong>t und dienen<br />

nicht zuletzt auch zur Lief<strong>er</strong>antenbew<strong>er</strong>tung.<br />

3. Produktsich<strong>er</strong>ung<br />

D<strong>er</strong> Lief<strong>er</strong>ung von F<strong>er</strong>ritbauelementen w<strong>er</strong>den<br />

die allgemeinen Prüfbedingungen od<strong>er</strong><br />

zusätzliche die mit den Kunden v<strong>er</strong>einbarten<br />

Prüfvorschriften und S<strong>pe</strong>zifikationen zugrundegelegt.<br />

Die F<strong>er</strong>tigungsdokumentation<br />

ist durch Bauvorschriften, Prüfanweisungen<br />

und F<strong>er</strong>tigungstechnologien (FMEA-Methode)<br />

unt<strong>er</strong>setzt. Die Prüfungen w<strong>er</strong>den in<br />

Anlehnung an das int<strong>er</strong>national v<strong>er</strong>bindliche<br />

Normenw<strong>er</strong>k (ISO/TS 16949, IEC und relevante<br />

DIN-Normen) auf s<strong>pe</strong>ziellen Mess-<br />

64<br />

Qualitätsmanagement<br />

Quality management<br />

Quality assurance and test methods<br />

1. Gen<strong>er</strong>al<br />

In ord<strong>er</strong> to reliably meet the high technical<br />

demands of the market for soft magnetic<br />

<strong>mat<strong>er</strong>ials</strong> and wound components, we have<br />

set up our quality assurance system in compliance<br />

with ISO/TS 16949, the <strong>pe</strong>rtinent<br />

IEC recommendations, DGQ recommendations<br />

and relevant DIN standards. The System<br />

is constantly assessed and optimized by<br />

means of int<strong>er</strong>nal audits. To provide a bett<strong>er</strong><br />

und<strong>er</strong>standing, we have illustrated the quality<br />

assurance process for our f<strong>er</strong>rite production<br />

in the next two figures. The quality of the<br />

products is assessed aft<strong>er</strong> each production<br />

st<strong>ep</strong> and, at the end of each QA test stage,<br />

the product is released to the next production<br />

st<strong>ep</strong> or for storage. The QM system in<br />

compliance with ISO/TS 16949:2002 was<br />

c<strong>er</strong>tified by the Association for Technical Ins<strong>pe</strong>ction<br />

(TÜV) NORD C<strong>er</strong>t in May 2003.<br />

2. Incoming ins<strong>pe</strong>ction<br />

The raw <strong>mat<strong>er</strong>ials</strong> and components required<br />

for manufacturing our products are tested<br />

according to a set procedure for the agreed<br />

charact<strong>er</strong>istics. The results are documented,<br />

one of the major uses being suppli<strong>er</strong><br />

ratings.<br />

3. Product assurance<br />

The gen<strong>er</strong>al test conditions or additional test<br />

directions and s<strong>pe</strong>cifications agreed with the<br />

custom<strong>er</strong> are used as a basis for the deliv<strong>er</strong>y<br />

of f<strong>er</strong>rite components. The manufacturing<br />

documentation is supported by design regulations,<br />

test directions and manufacturing<br />

technologies (FMEA method). The tests<br />

are conducted on s<strong>pe</strong>cial test benches or<br />

measuring systems in compliance with the<br />

int<strong>er</strong>nationally binding standard s<strong>pe</strong>cifications<br />

(ISO/TS 16949, IEC and relevant DIN


plätzen bzw. Messsystemen durchgeführt.<br />

Im Produktionsablauf sind auß<strong>er</strong>dem f<strong>er</strong>tigungsbegleitende<br />

Prüfungen (SPC- bzw.<br />

Prozessregelkarten) integri<strong>er</strong>t, so dass alle<br />

wesentlichen, die Qualität bestimmenden<br />

Einflussfaktoren kontinui<strong>er</strong>lich üb<strong>er</strong>wacht<br />

w<strong>er</strong>den. Grundlage für die Freigabe d<strong>er</strong><br />

Produktion pro F<strong>er</strong>tigungsschritt bildet d<strong>er</strong><br />

Nachweis d<strong>er</strong> positiven Prüf<strong>er</strong>gebnisse<br />

entsprechend den Darstellungen d<strong>er</strong> nachfolgenden<br />

Abbildungen.<br />

Die Ergebnisse d<strong>er</strong> Freigab<strong>ep</strong>rüfungen w<strong>er</strong>den<br />

im it<strong>er</strong>ativen Prozess zur Beurteilung<br />

des Niveaus des F<strong>er</strong>tigungsprozesses und<br />

zu dessen stetig<strong>er</strong> V<strong>er</strong>bess<strong>er</strong>ung ein<strong>er</strong> betriebsint<strong>er</strong>nen<br />

Ausw<strong>er</strong>tung unt<strong>er</strong>zogen. Die<br />

Maßnahmen zur Produktsich<strong>er</strong>ung bilden<br />

damit die wichtigste Grundlage für die qualitätsdokumenti<strong>er</strong>te<br />

F<strong>er</strong>tigung.<br />

4. Endkontrolle<br />

Die Zwischen- und Endprodukte w<strong>er</strong>den<br />

in d<strong>er</strong> QS-Prüfstufe und Endkontrolle ein<strong>er</strong><br />

entsprechenden s<strong>pe</strong>zifikationsg<strong>er</strong>echten<br />

Prüfung unt<strong>er</strong>zogen. D<strong>er</strong> Umfang d<strong>er</strong> Stichproben<br />

wird durch die ISO 2859 (analog mit<br />

MIL-STD 105 D) bestimmt und gegen Null<br />

Fehl<strong>er</strong> g<strong>ep</strong>rüft. Die Ergebnisse d<strong>er</strong> Prüfung<br />

w<strong>er</strong>den dokumenti<strong>er</strong>t und uns<strong>er</strong>en Kunden<br />

durch ein Prüfprotokoll, das d<strong>er</strong> Ware beiliegt,<br />

bestätigt.<br />

5. Fehl<strong>er</strong>krit<strong>er</strong>ien<br />

Ein Fehl<strong>er</strong> wird angezeigt, wenn d<strong>er</strong> W<strong>er</strong>t eines<br />

Bauelementes von den Angaben in den<br />

Datenblätt<strong>er</strong>n bzw. von den v<strong>er</strong>einbarten<br />

S<strong>pe</strong>zifikationen abweicht. Wir unt<strong>er</strong>scheiden<br />

in Hauptfehl<strong>er</strong> und Nebenfehl<strong>er</strong> wobei<br />

Hauptfehl<strong>er</strong> die Brauchbarkeit für die vorgesehene<br />

V<strong>er</strong>wendung des Bauelements wesentlich<br />

und Nebenfehl<strong>er</strong> die Funktion nicht<br />

in Frage stellen.<br />

6. Eingangsprüfung beim Kunden<br />

Grundsätzlich ist d<strong>er</strong> Käuf<strong>er</strong> v<strong>er</strong>pflichtet,<br />

eine Wareneingangsprüfung durchzuführen.<br />

Im Falle von Abweichungen zur v<strong>er</strong>einbarten<br />

Qualitätsmanagement<br />

Quality management<br />

standards). In-process ins<strong>pe</strong>ctions (SPC or<br />

process control cards) are integrated into<br />

the production process, thus ensuring that<br />

all major factors which influence the quality<br />

are constantly monitored. The release of<br />

production <strong>pe</strong>r manufacturing st<strong>ep</strong> is based<br />

on the proof of positive test results as illustrated<br />

in the following figures.<br />

The results of the release tests are subject<br />

to in-house assessment in an it<strong>er</strong>ative process<br />

to judge the level of the manufacturing<br />

process and to constantly improve it. The<br />

quality assurance measures thus constitute<br />

the most important basis for quality-documented<br />

production.<br />

4. Final control<br />

The int<strong>er</strong>mediate and end products are subject<br />

to an appropriate test to ensure compliance<br />

with s<strong>pe</strong>cifications in the QA test stage<br />

and final control. The extent of the random<br />

samples is det<strong>er</strong>mined by ISO 2859 (analogous<br />

to MIL-STD 105 D) and tested against<br />

z<strong>er</strong>o defects. The results of testing are documented<br />

and confirmed to our custom<strong>er</strong>s<br />

by a test protocol which is enclosed with the<br />

product.<br />

5. Error crit<strong>er</strong>ia<br />

An <strong>er</strong>ror is displayed if the value of a component<br />

deviates from the data in the data<br />

sheets or from the agreed s<strong>pe</strong>cifications.<br />

We distinguish between primary <strong>er</strong>rors and<br />

secondary <strong>er</strong>rors, primary <strong>er</strong>rors putting<br />

into question the function of the component<br />

for the envisaged application, wh<strong>er</strong>eas secondary<br />

<strong>er</strong>rors do not.<br />

6. Incoming ins<strong>pe</strong>ction on custom<strong>er</strong> side<br />

The purchas<strong>er</strong> is fundamentally obliged to<br />

conduct an incoming ins<strong>pe</strong>ction. with the<br />

In the event of deviations from the agreed<br />

65


Lief<strong>er</strong>qualität, die zur Reklamation führen,<br />

bitten wir um folgende Angaben an uns<strong>er</strong>e<br />

Abteilung Qualitätssich<strong>er</strong>ung: Bauteilenumm<strong>er</strong>,<br />

Lief<strong>er</strong>menge, Lief<strong>er</strong>scheinnumm<strong>er</strong>,<br />

Datum und Prüfcode.<br />

66<br />

Qualitätsmanagement<br />

Quality management<br />

supply quality which lead to complaint, we<br />

ask the custom<strong>er</strong> to supply the following<br />

data to our quality control d<strong>ep</strong>artment: component<br />

numb<strong>er</strong>, amount supplied, numb<strong>er</strong> of<br />

deliv<strong>er</strong>y note, date and test code.


Kugelmühle<br />

Kugelmühle<br />

Rohstoffe<br />

Einwaage<br />

Sprühturm<br />

Drehrohrofen<br />

Sprühturm<br />

Taumelmisch<strong>er</strong><br />

Presspulv<strong>er</strong>-Lag<strong>er</strong><br />

Qualitätsmanagement - Pulv<strong>er</strong>f<strong>er</strong>tigung<br />

Quality management - powd<strong>er</strong> production<br />

Dissolv<strong>er</strong><br />

Attritor<br />

Dissolv<strong>er</strong><br />

Attritor<br />

QS<br />

Rohstoffe<br />

QS<br />

Schlick<strong>er</strong><br />

QS<br />

Sprühpulv<strong>er</strong><br />

QS<br />

Vorsint<strong>er</strong>n<br />

QS<br />

Sprühpulv<strong>er</strong><br />

QS<br />

Presspulv<strong>er</strong><br />

phys. Analyse<br />

chem. Analyse<br />

Freigabe<br />

Durchsatz<br />

Lit<strong>er</strong>gewicht<br />

Viskosität<br />

Freigabe<br />

chem. Analyse<br />

Feuchte<br />

Schüttgewicht<br />

Freigabe<br />

Durchsatz<br />

Tem<strong>pe</strong>ratur<br />

Freigabe<br />

chem. Analyse<br />

Feuchte<br />

Schüttgewicht<br />

Freigabe<br />

Freigabe<br />

Dokumentat.<br />

Chargenringprüfung<br />

67


68<br />

Qualitätsmanagement - Pulv<strong>er</strong>f<strong>er</strong>tigung<br />

Quality management - powd<strong>er</strong> production<br />

Ball mill<br />

Ball mill<br />

Raw <strong>mat<strong>er</strong>ials</strong><br />

Weighing<br />

Spray dry<strong>er</strong><br />

Rotary kiln<br />

Spray dry<strong>er</strong><br />

Tumbling mix<strong>er</strong><br />

Stock for ready-topress<br />

powd<strong>er</strong><br />

Blending<br />

Attritor<br />

Dissolv<strong>er</strong><br />

Attritor<br />

QA<br />

Raw <strong>mat<strong>er</strong>ials</strong><br />

QA<br />

Slurry<br />

QA<br />

Sprayed powd<strong>er</strong><br />

QA<br />

Calcination<br />

QA<br />

Sprayed powd<strong>er</strong><br />

QA<br />

Pr<strong>ep</strong>ared powd<strong>er</strong><br />

phys. analysis<br />

chem.analysis<br />

release<br />

throughput<br />

solid content<br />

viscosity<br />

release<br />

chem. analysis<br />

humidity<br />

bulk density<br />

release<br />

throughput<br />

tem<strong>pe</strong>rature<br />

release<br />

chem. analysis<br />

humidity<br />

bulk density<br />

release<br />

release<br />

documentation<br />

ring core<br />

protocol


Strangpresse<br />

Schleifen<br />

Presspulv<strong>er</strong><br />

Sint<strong>er</strong>n<br />

Endkontrolle<br />

F<strong>er</strong>tigwarenlag<strong>er</strong><br />

Qualitätsmanagement - F<strong>er</strong>ritf<strong>er</strong>tigung<br />

Quality management - f<strong>er</strong>rite production<br />

Trockenpresse<br />

Entgraten von<br />

Ringk<strong>er</strong>nen<br />

Entgraten nichtrotationssymm.<br />

Teile<br />

Beschichten<br />

QS<br />

Presspulv<strong>er</strong><br />

QS<br />

Press<strong>er</strong>ei<br />

QS<br />

Sint<strong>er</strong>ei<br />

QS<br />

Schleif<strong>er</strong>ei<br />

QS<br />

Beschichtung<br />

QS<br />

Endkontrolle<br />

Pressfreigabe<br />

opt. Prüfung<br />

Gewicht,<br />

Abmessungen Dichte<br />

Sint<strong>er</strong>freigabe<br />

opt. Prüfung<br />

Abmessungen<br />

elektr. W<strong>er</strong>te<br />

Freig. Schleifen,<br />

Beschicht.<br />

opt. Prüfung<br />

Abmessungen<br />

elektr. W<strong>er</strong>te<br />

Freigabe zur<br />

Endkontrolle<br />

HS-Festigkeit<br />

Abmessungen<br />

Schichtdicke<br />

Freigabe zur<br />

Endkontrolle<br />

Stückzahl<br />

opt. Prüfung<br />

elektr. Prüfung<br />

Freigabe zum<br />

Einlag<strong>er</strong>n<br />

69


70<br />

Qualitätsmanagement - F<strong>er</strong>ritf<strong>er</strong>tigung<br />

Quality management - f<strong>er</strong>rite production<br />

Extrusion<br />

Grinding<br />

Pr<strong>ep</strong>ared powd<strong>er</strong><br />

Sint<strong>er</strong>ing<br />

Final ins<strong>pe</strong>ction<br />

Stock<br />

Dry pressing<br />

Deburring of<br />

ring cores<br />

Deburring of nontoroidal<br />

parts<br />

Coating<br />

QA<br />

Pr<strong>ep</strong>ared powd<strong>er</strong><br />

QA<br />

Pressing<br />

QA<br />

Sint<strong>er</strong>ing<br />

QA<br />

Grinding<br />

QA<br />

Coating<br />

QA<br />

Final ins<strong>pe</strong>ction<br />

release for<br />

pressing<br />

vis. ins<strong>pe</strong>ction<br />

weight, density<br />

dimensions<br />

release for<br />

sint<strong>er</strong>ing<br />

vis. ins<strong>pe</strong>ction<br />

dimensions<br />

elect. pro<strong>pe</strong>rt.<br />

rel. for grinding,<br />

coating<br />

vis. ins<strong>pe</strong>ction<br />

dimensions<br />

electr. pro<strong>pe</strong>rt.<br />

release for<br />

final ins<strong>pe</strong>c.<br />

ins. strength<br />

dimensions<br />

ins. thickness<br />

release for<br />

final ins<strong>pe</strong>c.<br />

quantity<br />

vis. ins<strong>pe</strong>ction<br />

electr. pro<strong>pe</strong>rt.<br />

release for<br />

storage


Üb<strong>er</strong>sicht üb<strong>er</strong> int<strong>er</strong>nationale Vorschriften<br />

Ov<strong>er</strong>view of int<strong>er</strong>national standards<br />

Üb<strong>er</strong>sicht zu Normen<br />

Ov<strong>er</strong>view of standards<br />

IEC 60050 Int<strong>er</strong>national Electrotechnical Vocabulary (including the Advanced Edition<br />

of Section 901 on magnetic <strong>mat<strong>er</strong>ials</strong>)<br />

IEC 60133 Dimensions for pot-cores made of magnetic oxides and associated parts<br />

IEC 60205 Calculation of the effective paramet<strong>er</strong>s of magnetic piece parts<br />

IEC 60401-1 T<strong>er</strong>ms and nomenclature for cores made of magnetically soft f<strong>er</strong>rites -<br />

T<strong>er</strong>ms used for physical irregularities<br />

IEC 60401-2 T<strong>er</strong>ms and nomenclature for cores made of magnetically soft f<strong>er</strong>rites - Ref<strong>er</strong>ence<br />

of dimensions<br />

IEC 60401-3 T<strong>er</strong>ms and nomenclature for cores made of magnetically soft f<strong>er</strong>rites - Guidelines<br />

on the format of data ap<strong>pe</strong>aring in manufactur<strong>er</strong>s´catalogues of<br />

transform<strong>er</strong> and inductor cores<br />

IEC 60424-1 Guide on the limit of surface irregularities - Gen<strong>er</strong>al s<strong>pe</strong>cification<br />

IEC 60424-2 Guide on the limit of surface irregularities - RM cores<br />

IEC 60424-3 Guide on the limit of surface irregularities - ETD cores<br />

IEC 60424-4 Guide on the limit of surface irregularities - Ring cores<br />

IEC 60431 Dimensions of square cores (RM-cores) made of magnetic oxides and associated<br />

parts<br />

IEC 60647 Dimensions for magnetic oxide cores intended for use in pow<strong>er</strong> supplies<br />

(EC-cores)<br />

IEC 60732 Measuring methods for cylind<strong>er</strong> cores, tube cores and screw cores of magnetic<br />

oxide<br />

IEC 61185 Magnetic oxide cores (ETD-cores) intended for use in pow<strong>er</strong> supply applications<br />

- Dimensions<br />

IEC 61246 Magnetic oxide cores (E-cores) of rectangular cross-section and associated<br />

parts - Dimensions.<br />

IEC 61247 PM-cores made of magnetic oxides and associated parts - Dimensions<br />

IEC 61332 Soft f<strong>er</strong>rite mat<strong>er</strong>ial classification<br />

IEC 61333 Marking on U and E f<strong>er</strong>rite cores<br />

IEC 61596 Magnetic oxide EP-cores and associated parts for use in inductors and<br />

transform<strong>er</strong>s - Dimensions<br />

IEC 61604 Dimensions of uncoated ring cores of magnetic oxides<br />

IEC 61631 Test method for the mechanical strength of cores made of magnetic oxides<br />

IEC 61860 Dimensions of low-profile cores made of magnetic oxides<br />

IEC 62313 F<strong>er</strong>rite cores - Sha<strong>pe</strong>s and dimensions for planar magnetics application<br />

IEC 62323 Dimensions of half pot cores made of magnetic oxides for inductive proximity<br />

switches<br />

IEC 62358 F<strong>er</strong>rite cores - Standard inductance factor (AL) and its tol<strong>er</strong>ance<br />

IEC 62398 F<strong>er</strong>rite cores - Technology approval schedule (TAS)<br />

EN 125500 Magnetic oxide ring cores for int<strong>er</strong>f<strong>er</strong>ence suppression and low level signal<br />

transform<strong>er</strong> applications<br />

71


E- / PE- / ER- / ETD- / EP-KERNE<br />

E / PE / ER / ETD / EP CORES<br />

73


III. E-K<strong>er</strong>ne<br />

Allgemeines<br />

E-K<strong>er</strong>ne w<strong>er</strong>den zum Aufbau von Transformatoren<br />

und Üb<strong>er</strong>trag<strong>er</strong>n klein<strong>er</strong> bis<br />

mittl<strong>er</strong><strong>er</strong> Leistungen für den Frequenzb<strong>er</strong>eich<br />

von 10 bis 500 kHz v<strong>er</strong>wendet. Diese<br />

Hochfrequenztransformatoren bestehen in<br />

d<strong>er</strong> Regel aus zwei maschinell gef<strong>er</strong>tigten<br />

Spulenwickeln jeweils für die Primär- bzw.<br />

Sekundär<strong>er</strong>regung, aus den E-K<strong>er</strong>npaaren<br />

und den s<strong>pe</strong>ziellen K<strong>er</strong>nhalt<strong>er</strong>ungen.<br />

Ein weit<strong>er</strong>es wichtiges Anwendungsgebiet<br />

für EE- und EI-K<strong>er</strong>ne stellen stromkom<strong>pe</strong>nsi<strong>er</strong>te<br />

Drosseln dar. Sie finden auch in d<strong>er</strong><br />

Kleinsignaltechnik Anwendung.<br />

E-K<strong>er</strong>ne w<strong>er</strong>den aus den W<strong>er</strong>kstoffen<br />

K2004, K2006, K2008, K4000, K6000 und<br />

K2500 h<strong>er</strong>gestellt. Für diese W<strong>er</strong>kstoffe sind<br />

folgende ob<strong>er</strong>e Frequenzgrenzen in Abhängigkeit<br />

von d<strong>er</strong> Aussteu<strong>er</strong>ung zu beachten<br />

Die maximal üb<strong>er</strong>tragbaren Leistungen für<br />

Transformatoren können bis 1 kW betragen<br />

und sind w<strong>er</strong>kstoff- und bauformabhängig.<br />

Weit<strong>er</strong>e Anwendungen im Üb<strong>er</strong>trag<strong>er</strong>b<strong>er</strong>eich<br />

betreffen die W<strong>er</strong>kstoffe K4000 und<br />

K6000.<br />

Das Lief<strong>er</strong>sortiment umfasst<br />

74<br />

E-K<strong>er</strong>ne<br />

E cores<br />

K2004 ≤ 100kHz<br />

K2006 ≤ 300kHz<br />

K2008 ≤ 500kHz<br />

K2001 ≤ 1.5 MHz<br />

K2500 ≤ 300 kHz<br />

III. E cores<br />

Gen<strong>er</strong>al<br />

E cores are used for low to medium pow<strong>er</strong><br />

transform<strong>er</strong>s and transduc<strong>er</strong>s for a frequency<br />

range from 10 to 500 kHz. These highfrequency<br />

transform<strong>er</strong>s gen<strong>er</strong>ally consist<br />

of two mechanically produced wire-wound<br />

coils for primary and secondary excitation,<br />

the E core pairs and s<strong>pe</strong>cial clamps.<br />

Common-mode chokes are anoth<strong>er</strong> important<br />

field of application for EE and EI cores.<br />

They are also used in small-signal technology.<br />

E cores are made of K2004, K2006,<br />

K2008, K4000, K6000 and K2500. For pow<strong>er</strong><br />

<strong>mat<strong>er</strong>ials</strong>, the following up<strong>pe</strong>r frequency<br />

limits can be obs<strong>er</strong>ved de<strong>pe</strong>nding upon<br />

excitation:<br />

Transform<strong>er</strong>s can transf<strong>er</strong> a maximum pow<strong>er</strong><br />

of up to 1 kW in de<strong>pe</strong>ndence of mat<strong>er</strong>ial<br />

and design. Furth<strong>er</strong> applications involve <strong>mat<strong>er</strong>ials</strong><br />

K4000 and K6000.<br />

The product range comprises:<br />

E-K<strong>er</strong>ne nach IEC 61246<br />

E cores according to IEC 61246<br />

PE-K<strong>er</strong>ne / PE cores<br />

ETD-K<strong>er</strong>ne nach IEC 61185<br />

ETD cores according to IEC 61185<br />

ER-K<strong>er</strong>ne / ER cores<br />

EP-K<strong>er</strong>ne nach IEC 61596<br />

EP cores according to IEC 61596


Luftspalte in den Mittelschenkeln d<strong>er</strong> E-<br />

K<strong>er</strong>ne <strong>er</strong>möglichen eine wesentlich höh<strong>er</strong>e<br />

Aussteu<strong>er</strong>ung im V<strong>er</strong>gleich zu luftspaltlosen<br />

E-K<strong>er</strong>npaaren. Zum Lief<strong>er</strong>umfang komplett<strong>er</strong><br />

Bausätze sind Spulenkör<strong>pe</strong>r aus Polym<strong>er</strong><strong>w<strong>er</strong>kstoffe</strong>n,<br />

die UL 94 V-0 gelistet sind,<br />

und die K<strong>er</strong>nhalt<strong>er</strong>ungen zugehörig. Die<br />

entsprechenden Bestellnumm<strong>er</strong>n sind d<strong>er</strong><br />

Einzelty<strong>pe</strong>ndarstellung zu entnehmen.<br />

Die in den Datenblätt<strong>er</strong>n ausgewiesenen<br />

elektrischen Kennw<strong>er</strong>te d<strong>er</strong> F<strong>er</strong>ritk<strong>er</strong>ne<br />

gelten für die vom H<strong>er</strong>stell<strong>er</strong> vorgegebenen<br />

Prüfbedingungen.<br />

E-K<strong>er</strong>ne mit symmetrischem Luftspalt w<strong>er</strong>den<br />

satzweise gelief<strong>er</strong>t. Die V<strong>er</strong>packungseinheiten<br />

enthalten K<strong>er</strong>ne mit Kennzeichnung<br />

(W<strong>er</strong>kstoff, A L -W<strong>er</strong>t).<br />

Hinweise bezüglich d<strong>er</strong> Schutzklasseausführung<br />

sowie zur zweckmäßigen Applikation<br />

sind auf Anfrage möglich.<br />

E-K<strong>er</strong>ne<br />

E cores<br />

Air gaps in the cent<strong>er</strong> leg of E cores allow<br />

much high<strong>er</strong> excitations compared with E<br />

cores without air gap.<br />

The range of complete kits supplied includes<br />

coilform<strong>er</strong>s made of polym<strong>er</strong> <strong>mat<strong>er</strong>ials</strong> listed<br />

in UL94 V0 and the clamps. The corresponding<br />

ord<strong>er</strong> numb<strong>er</strong>s can be found in the description<br />

of the individual ty<strong>pe</strong>s.<br />

The effective electrical paramet<strong>er</strong>s listed in<br />

the data sheets for f<strong>er</strong>rite cores apply to the<br />

test conditions stated by the manufactur<strong>er</strong>.<br />

E cores with a symmetrical air gap are supplied<br />

in sets. The packing units contain marked<br />

cores (mat<strong>er</strong>ial, A L value).<br />

Information conc<strong>er</strong>ning protective class implementation<br />

and recommended applications<br />

can be supplied on request.<br />

75


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

76<br />

E-K<strong>er</strong>n E 6,3/2<br />

E core E 6.3/2<br />

3,67<br />

12,2<br />

3,3<br />

2,6<br />

40,6<br />

0,2<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

75 ± 30 % K 250 - ≈ 220 320 060200 250<br />

340 ± 30 % K 2006 - ≈ 1000 320 060200 026<br />

600 ± 30 % K 4000 - ≈ 1750 320 060200 004<br />

700 ± 30 % K 6000 - ≈ 2050 320 060200 006<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

197


Spulenkör<strong>pe</strong>r E 6,3/2<br />

Coilform<strong>er</strong> E 6.3/2<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP - E 6,3 - 1335 SMD SP - E 6,3 - 1336 SMD<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 1,62 0,9<br />

l N in mm 12,8 12,8<br />

max. Stiftzahl / max. no. of pins 6 6<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial LCP LCP<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 510 060210 12F 510 060220 12F<br />

77


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

78<br />

E-K<strong>er</strong>n E 8/2<br />

E core E 8/2<br />

3,37<br />

18,4<br />

5,4<br />

5,4<br />

100<br />

0,5<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

470 ± 30 % K 2006 - ≈ 1250 320 080200 026<br />

750 ± 30 % K 4000 - ≈ 2000 320 080200 004<br />

960 ± 30 % K 6000 - ≈ 2580 320 080200 006<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

199


Spulenkör<strong>pe</strong>r E 8/2<br />

Coilform<strong>er</strong> E 8/2<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP - E 8/2 - 1338 SMD<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 4,3<br />

l N in mm 17,6<br />

max. Stiftzahl / max. no. of pins 6<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyphenylensulfid / polyphenylenesulfide<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 510 080210 12D<br />

79


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

80<br />

E-K<strong>er</strong>n E 10/3<br />

E core E 10/3<br />

2,73<br />

22,9<br />

8,4<br />

8,1<br />

192<br />

1,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

680 ± 25 % K 2006 - ≈ 1480 320 100300 026<br />

1000 ± 25 % K 4000 - ≈ 2180 320 100300 004<br />

1400 ± 25 % K 6000 - ≈ 3050 320 100300 006<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

200


Spulenkör<strong>pe</strong>r E 10/3<br />

Coilform<strong>er</strong> E 10/3<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP-E10/3-1339 SMD SP-E10/3-1526 SMD<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 8,0 7,3<br />

l N in mm 21,4 21,4<br />

max. Stiftzahl / max. no. of pins 8 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyphenylensulfid / polyphenylenesulfide<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 510 100310 12D 510 100320 12D<br />

81


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

82<br />

E-K<strong>er</strong>n E 13/4 (EF 12,6/3,7)<br />

E core E 13/4 (EF 12.6/3.7)<br />

2,39<br />

29,7<br />

12,4<br />

12,2<br />

369<br />

2,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

800 ± 25 % K 2004 - ≈ 1520 320 120400 024<br />

850 ± 25 % K 2006 - ≈ 1620 320 120400 026<br />

1200 ± 25 % K 4000 - ≈ 2280 320 120400 004<br />

≈ 150 K 2004 0,10 ≈ 285 320 120410 024<br />

≈ 90 K 2004 0,20 ≈ 170 320 120420 024<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 0,078 W ≤ 0,068 W<br />

100 200 ≤ 0,067 W ≤ 0,045 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

201


Spulenkör<strong>pe</strong>r E 13/4 (EF 12,6/3,7)<br />

Coilform<strong>er</strong> E 13/4 (EF 12.6/3.7)<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP-E13/4-1723 SP-E13/4-1724<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 13,1 12,1<br />

l N in mm 26,8 26,8<br />

max. Stiftzahl / max. no. of pins 10 10<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 503 120410 127 503 120420 127<br />

Spulenkör<strong>pe</strong>r - stehend<br />

Coilform<strong>er</strong> - v<strong>er</strong>tical<br />

Bezeichnung / description<br />

SP-E13/4-1471 SP-E13/4-1472<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 13,5 12,4<br />

l N in mm 26,8 16,8<br />

max. Stiftzahl / max. no. of pins 6 6<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 503 120410 117 503 120420 117<br />

83


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

84<br />

E-K<strong>er</strong>n E 15/4<br />

E core E 15/4<br />

2,0<br />

35,7<br />

17,8<br />

16,5<br />

635<br />

3,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1000 ± 25 % K 2006 - ≈ 1600 320 150400 026<br />

1100 ± 25 % K 2008 - ≈ 1750 320 150400 028<br />

2800 ± 25 % K 6000 - ≈ 4460 320 150400 006<br />

≈ 220 K 2006 0,10 ≈ 350 320 150410 026<br />

≈ 135 K 2006 0,20 ≈ 215 320 150420 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2006 K 2008<br />

25 200 ≤ 0,10 W ≤ 0,09 W<br />

100 200 ≤ 0,07 W ≤ 0,06 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

506


Spulenkör<strong>pe</strong>r E 15/4<br />

Coilform<strong>er</strong> E 15/4<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP-E15/4-1545 SP-E15/4-1546<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 17,3 16,1<br />

l N in mm 31,1 31,1<br />

max. Stiftzahl / max. no. of pins 8 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 500 150410 127 500 150420 127<br />

85


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

86<br />

E-K<strong>er</strong>n E 16/5 (EF 16/4,7)<br />

E core E 16/5 (EF 16/4.7)<br />

1,87<br />

37,6<br />

20,1<br />

19,4<br />

750<br />

4,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1000 ± 25 % K 2004 - ≈ 1500 320 160500 024<br />

1050 ± 25 % K 2006 - ≈ 1550 320 160500 026<br />

1600 ± 25 % K 4000 - ≈ 2400 320 160500 004<br />

≈ 210 K 2006 0,10 ≈ 310 320 160510 026<br />

≈ 100 K 2006 0,30 ≈ 150 320 160530 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 0,09 W ≤ 0,12 W<br />

100 200 ≤ 0,075 W ≤ 0,09 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

202


Spulenkör<strong>pe</strong>r E 16/5 (EF 16/4,7)<br />

Coilform<strong>er</strong> E 16/5 (EF 16/4.7)<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP-E16/5-1419 SP-E16/5-1422<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 25,0 23,5<br />

l N in mm 33,3 33,3<br />

max. Stiftzahl / max. no. of pins 14 14<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 501 160510 127 501 160520 127<br />

Spulenkör<strong>pe</strong>r - stehend<br />

Coilform<strong>er</strong> - v<strong>er</strong>tical<br />

Bezeichnung / description<br />

SP-E16/5-1746 SP-E16/5-1747<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 25,0 23,3<br />

l N in mm 33,3 33,3<br />

max. Stiftzahl / max. no. of pins 6 6<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 501 160210 117 501 160220 117<br />

87


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

88<br />

E-K<strong>er</strong>n E 16/6/7,4<br />

E core E 16/6/7.4<br />

0,924<br />

28,8<br />

31,2<br />

29,3<br />

900<br />

4,3<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2100 ± 25 % K 2004 - ≈ 1550 320 160600 024<br />

2200 ± 25 % K 2006 - ≈ 1620 320 160600 026<br />

≈ 350 K 2006 0,1 ≈ 250 320 160610 026<br />

≈ 120 K 2006 0,3 ≈ 90 320 160610 026<br />

≈ 75 K 2006 0,5 ≈ 65 320 160650 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 0,19 W ≤ 0,14 W<br />

100 200 ≤ 0,16 W ≤ 0,10 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

509


Spulenkör<strong>pe</strong>r E 16/6/7,4<br />

Coilform<strong>er</strong> E 16/6/7.4<br />

Spulenkör<strong>pe</strong>r - stehend<br />

Coilform<strong>er</strong> - v<strong>er</strong>tical<br />

Bezeichnung / description<br />

SP-E16/6/7,4-1677 SP-E16/6/7,4-1678<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 14,5 12,3<br />

l N in mm 38,7 38,7<br />

max. Stiftzahl / max. no. of pins 8 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 501 160710 117 501 160120 117<br />

89


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

90<br />

E-K<strong>er</strong>n E 16/7,4<br />

E core E 16/7.4<br />

1,17<br />

37,6<br />

32,2<br />

30,5<br />

1210<br />

5,8<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1600 ± 25 % K 2004 - ≈ 1500 320 167400 024<br />

1700 ± 25 % K 2006 - ≈ 1600 320 167400 026<br />

≈ 350 K 2006 0,1 ≈ 300 320 167410 026<br />

≈ 130 K 2006 0,3 ≈ 120 320 167430 026<br />

≈ 75 K 2006 0,5 ≈ 70 320 167450 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 0,25 W ≤ 0,19 W<br />

100 200 ≤ 0,22 W ≤ 0,14 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

537


Spulenkör<strong>pe</strong>r E 16/7,4<br />

Coilform<strong>er</strong> E 16/7.4<br />

Spulenkör<strong>pe</strong>r - stehend<br />

Coilform<strong>er</strong> - v<strong>er</strong>tical<br />

Bezeichnung / description<br />

SP-E16/7,4-1688 SP-E16/7,4-1689<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 23,3 21,4<br />

l N in mm 39,8 39,8<br />

max. Stiftzahl / max. no. of pins 8 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 500 167410 117 500 167420 117<br />

91


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

92<br />

E-K<strong>er</strong>n EFS 16/7/12<br />

E core EFS 16/7/12<br />

1,88<br />

50,8<br />

27,0<br />

24,3<br />

1370<br />

6,6<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1000 ± 25 % K 2006 - ≈ 1500 389 161200 026<br />

1050 ± 25 % K 2008 - ≈ 1600 389 161200 028<br />

≈ 250 K 2006 0,1 ≈ 400 389 161210 026<br />

≈ 100 K 2006 0,3 ≈ 150 389 161230 026<br />

≈ 65 K 2006 0,5 ≈ 95 389 161250 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2006 K 2008<br />

25 200 ≤ 0,21 W ≤ 0,19 W<br />

100 200 ≤ 0,16 W ≤ 0,13 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

552


Spulenkör<strong>pe</strong>r EFS 16/7/12<br />

Coilform<strong>er</strong> E FS 16/7/12<br />

Bezeichnung / description<br />

SP - EFS 16 - 1706<br />

Kamm<strong>er</strong>zahl / no. of sections 4<br />

A N in mm² 21,4<br />

l N in mm 32,8<br />

max. Stiftzahl / max. no. of pins 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial LCP<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 546 1601F1 706<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

93


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

94<br />

E-K<strong>er</strong>n E 20/6 (EF 20/5,9)<br />

E core E 20/6 (EF 20/5.9)<br />

1,45<br />

46,0<br />

32,0<br />

31,6<br />

1490<br />

7,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1300 ± 25 % K 2004 - ≈ 1500 320 200600 024<br />

1350 ± 25 % K 2006 - ≈ 1560 320 200600 026<br />

2300 ± 25 % K 4000 - ≈ 2650 320 200600 004<br />

≈ 200 K 2004 0,2 ≈ 230 320 200620 024<br />

≈ 105 K 2004 0,5 ≈ 120 320 200650 024<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 0,31 W ≤ 0,27 W<br />

100 200 ≤ 0,27 W ≤ 0,18 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

204


Spulenkör<strong>pe</strong>r E 20/6 (EF 20/5.9)<br />

Coilform<strong>er</strong> E 20/6 (EF 20/5.9)<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP-E20/6-1424 SP-E20/6-1425<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 38,1 35,7<br />

l N in mm 41,9 41,9<br />

max. Stiftzahl / max. no. of pins 8 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 506 200610 127 506 200620 127<br />

Spulenkör<strong>pe</strong>r - stehend<br />

Coilform<strong>er</strong> - v<strong>er</strong>tical<br />

Bezeichnung / description<br />

SP-E20/6-1750 SP-E20/6-1751<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 35,7 33,3<br />

l N in mm 42,5 42,5<br />

max. Stiftzahl / max. no. of pins 6 6<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 506 200610 117 506 200620 117<br />

95


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

96<br />

E-K<strong>er</strong>n E 20/11<br />

E core E 20/11<br />

0,77<br />

46,0<br />

60,0<br />

58,5<br />

2750<br />

13,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2450 ± 25 % K 2004 - ≈ 1500 320 201100 024<br />

2600 ± 25 % K 2006 - ≈ 1600 320 201100 026<br />

≈ 380 K 2004 0,2 ≈ 230 320 201120 024<br />

≈ 180 K 2004 0,5 ≈ 110 320 201150 024<br />

≈ 105 K 2004 1,0 ≈ 65 320 201110 024<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 0,58 W ≤ 0,42 W<br />

100 200 ≤ 0,50 W ≤ 0,31 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

507


Spulenkör<strong>pe</strong>r E 20/11<br />

Coilform<strong>er</strong> E 20/11<br />

Spulenkör<strong>pe</strong>r - stehend<br />

Coilform<strong>er</strong> - v<strong>er</strong>tical<br />

Bezeichnung / description<br />

SP-E20/11-1447 SP-E20/11-1543<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 31,5 28,9<br />

l N in mm 49,3 49,3<br />

max. Stiftzahl / max. no. of pins 6 6<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 500 201110 117 500 201120 117<br />

97


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

98<br />

E-K<strong>er</strong>n E 20/9/11<br />

E core E 20/9/11<br />

0,72<br />

42,6<br />

59,1<br />

58,4<br />

2520<br />

12,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2500 ± 25 % K 2004 - ≈ 1450 320 209100 024<br />

2600 ± 25 % K 2006 - ≈ 1500 320 209100 026<br />

4900 ± 25 % K 4000 - ≈ 2800 320 209100 004<br />

≈ 350 0,2 ≈ 200 320 209120 026<br />

≈ 140 0,5 ≈ 80 320 209150 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 0,53 W ≤ 0,39 W<br />

100 200 ≤ 0,46 W ≤ 0,29 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

508


Spulenkör<strong>pe</strong>r E 20/9/11<br />

Coilform<strong>er</strong> E 20/9/11<br />

Spulenkör<strong>pe</strong>r - stehend<br />

Coilform<strong>er</strong> - v<strong>er</strong>tical<br />

Bezeichnung / description<br />

SP-E20/11-1611 SP-E20/11-1612<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 27,0 24,5<br />

l N in mm 49,3 49,3<br />

max. Stiftzahl / max. no. of pins 6 6<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 501 201110 117 501 201120 117<br />

99


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

100<br />

E-K<strong>er</strong>n E 25/7 (EF 25/7,5)<br />

E core E 25/7 (EF 25/7.5)<br />

1,11<br />

58,0<br />

52,0<br />

51,0<br />

2990<br />

14,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1800 ± 25 % K 2004 - ≈ 1600 320 250700 024<br />

1900 ± 25 % K 2006 - ≈ 1680 320 250700 026<br />

3200 ± 25 % K 4000 - ≈ 2820 320 250700 004<br />

≈ 305 K 2006 0,2 ≈ 270 320 250720 026<br />

≈ 155 K 2006 0,5 ≈ 135 320 250750 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 0,63 W ≤ 0,45 W<br />

100 200 ≤ 0,54 W ≤ 0,33 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

205


Spulenkör<strong>pe</strong>r E 25/7 (EF 25/7,5)<br />

Coilform<strong>er</strong> E 25/7 (EF 25/7.5)<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP-E25/7-1215 SP-E25/7-1711<br />

Kamm<strong>er</strong>zahl / no. of sections 1 4<br />

A N in mm² 62,5 37,9<br />

l N in mm 51,5 51,3 / 58,9<br />

max. Stiftzahl / max. no. of pins 8 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 506 250710 127 501 250740 127<br />

Spulenkör<strong>pe</strong>r - stehend<br />

Coilform<strong>er</strong> - v<strong>er</strong>tical<br />

Bezeichnung / description<br />

SP-E25/7-1287 SP-E25/7-1297<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 60,1 57,0<br />

l N in mm 50,9 50,9<br />

max. Stiftzahl / max. no. of pins 6 6<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 502 250710 117 502 250720 117<br />

101


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

102<br />

E-K<strong>er</strong>n E 25/11<br />

E core E 25/11<br />

0,74<br />

58,0<br />

76,5<br />

75,0<br />

4450<br />

21,5<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2650 ± 25 % K 2004 - ≈ 1550 320 251100 024<br />

2700 ± 25 % K 2006 - ≈ 1600 320 251100 026<br />

4600 ± 25 % K 4000 - ≈ 2700 320 251100 004<br />

≈ 415 K 2006 0,2 ≈ 245 320 251120 026<br />

≈ 220 K 2006 0,5 ≈ 130 320 251150 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 0,94 W ≤ 0,67 W<br />

100 200 ≤ 0,80 W ≤ 0,49 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

206


Spulenkör<strong>pe</strong>r E 25/11<br />

Coilform<strong>er</strong> E 25/11<br />

Spulenkör<strong>pe</strong>r - stehend<br />

Coilform<strong>er</strong> - v<strong>er</strong>tical<br />

Bezeichnung / description<br />

SP - E 25/11<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 58,1<br />

l N in mm 57,6<br />

max. Stiftzahl / max. no. of pins 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Phenolharz / phenolic resin<br />

Applikationsbeispiel / application example<br />

103


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

104<br />

E-K<strong>er</strong>n EFS 25/13/13<br />

E core EFS 25/13/13<br />

0,85<br />

62,0<br />

73,0<br />

64,0<br />

4520<br />

22,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2600 ± 25 % K 2006 - ≈ 1760 389 251300 026<br />

2800 ± 25 % K 2008 - ≈ 1900 389 251300 028<br />

≈ 210 K 2006 0,5 ≈ 145 389 251350 026<br />

≈ 130 K 2006 1,0 ≈ 88 390 251310 026<br />

≈ 78 K 2006 2,0 ≈ 53 390 251320 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2006 K 2008<br />

25 200 ≤ 0,70 W ≤ 0,61 W<br />

100 200 ≤ 0,52 W ≤ 0,41 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

553


Spulenkör<strong>pe</strong>r EFS 25/13/13<br />

Coilform<strong>er</strong> EFS 25/13/13<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP-EFS25/13-1686 SP-EFS25/13-1685<br />

Kamm<strong>er</strong>zahl / no. of sections 1 4<br />

A N in mm² 64,7 39,7<br />

l N in mm 56,1 56,1 / 64,1<br />

max. Stiftzahl / max. no. of pins 8 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 546 250171 686 546 250171 685<br />

105


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

106<br />

E-K<strong>er</strong>n E 30/7 (E 30/7,3)<br />

E core E 30/7 (E 30/7.3)<br />

1,12<br />

67,0<br />

60,0<br />

49,0<br />

4000<br />

21,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1800 ± 25 % K 2004 - ≈ 1600 320 300700 024<br />

1900 ± 25 % K 2006 - ≈ 1700 320 300700 026<br />

3300 ± 25 % K 4000 - ≈ 2950 320 300700 004<br />

≈ 285 K 2006 0,2 ≈ 255 320 300720 026<br />

≈ 150 K 2006 0,5 ≈ 135 320 300750 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 0,84 W ≤ 0,60 W<br />

100 200 ≤ 0,72 W ≤ 0,44 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

207


Spulenkör<strong>pe</strong>r E 30/7 (E 30/7,3)<br />

Coilform<strong>er</strong> E 30/7 (E 30/7.3)<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP-E30/7-1636 SP-E30/7-1638<br />

Kamm<strong>er</strong>zahl / no. of sections 1 3<br />

A N in mm² 83,5 64,1<br />

l N in mm 54,7 54,0 / 60,7<br />

max. Stiftzahl / max. no. of pins 12 12<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 510 309710 127 510 309730 127<br />

107


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

108<br />

E-K<strong>er</strong>n EFS 30/11/15<br />

E core EFS 30/11/15<br />

0,91<br />

75,0<br />

82,5<br />

70,7<br />

6190<br />

30,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2625 ± 25 % K 2006 - ≈ 1900 389 301500 026<br />

2700 ± 25 % K 2008 - ≈ 1950 389 301500 028<br />

≈ 450 K 2006 0,2 ≈ 300 389 301520 026<br />

≈ 190 K 2006 0,5 ≈ 140 389 301550 026<br />

≈ 120 K 2006 0,8 ≈ 90 389 301580 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2006 K 2008<br />

25 200 ≤ 0,95 W ≤ 0,84 W<br />

100 200 ≤ 0,69 W ≤ 0,56 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

555


Spulenkör<strong>pe</strong>r EFS 30/11/15<br />

Coilform<strong>er</strong> EFS 30/11/15<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP-EFS30/11/15-1662 SP-EFS30/11/15-1663<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 75,2 72,2<br />

l N in mm 60,8 60,8<br />

max. Stiftzahl / max. no. of pins 12 12<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 546 300171 662 546 300171 663<br />

109


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

110<br />

E-K<strong>er</strong>n E 32/9 (EF 32/9,5)<br />

E core E 32/9 (EF 32/9.5)<br />

0,89<br />

74,0<br />

83,0<br />

81,0<br />

6200<br />

32,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2200 ± 25 % K 2004 - ≈ 1560 320 320900 024<br />

2300 ± 25 % K 2006 - ≈ 1630 320 320900 026<br />

4200 ± 25 % K 4000 - ≈ 2980 320 320900 004<br />

≈ 230 K 2004 0,5 ≈ 165 320 320950 024<br />

≈ 150 K 2004 1,0 ≈ 105 322 320910 024<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 1,30 W ≤ 0,93 W<br />

100 200 ≤ 1,12 W ≤ 0,68 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

209


Spulenkör<strong>pe</strong>r E 32/9 (EF 32/9.5)<br />

Coilform<strong>er</strong> E 32/9 (EF 32/9.5)<br />

Bezeichnung / description<br />

SP-E32/9-1352<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 108,6<br />

l N in mm 65,5<br />

max. Stiftzahl / max. no. of pins 12<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 501 320910 12A<br />

Bezeichnung / description<br />

SP - E 32/9 - 1353<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 104,5<br />

l N in mm 65,4<br />

max. Stiftzahl / max. no. of pins 6<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 501 320910 11A<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Spulenkör<strong>pe</strong>r - stehend<br />

Coilform<strong>er</strong> - v<strong>er</strong>tical<br />

111


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

112<br />

E-K<strong>er</strong>n E 36/11 (E 36/11,5)<br />

E core E 36/11 (E 36/11.5)<br />

0,656<br />

80,6<br />

123<br />

112<br />

9900<br />

49,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

3100 ± 25 % K 2004 - ≈ 1620 320 361100 024<br />

3150 ± 25 % K 2006 - ≈ 1650 320 361100 026<br />

≈ 310 K 2004 0,5 ≈ 160 320 361150 024<br />

≈ 180 K 2004 1,0 ≈ 95 322 361110 024<br />

≈ 135 K 2004 1,5 ≈ 70 322 361115 024<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 2,1 W ≤ 1,5 W<br />

100 200 ≤ 1,8 W ≤ 1,1 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

210


Spulenkör<strong>pe</strong>r E 36/11 (E 36/11,5)<br />

Coilform<strong>er</strong> E 36/11 (E 36/11.5)<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP - E 36/11 - 1904<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 122,5<br />

l N in mm 76,4<br />

max. Stiftzahl / max. no. of pins 16<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polybutylent<strong>er</strong><strong>ep</strong>htalat / polybutylenet<strong>er</strong><strong>ep</strong>htalate<br />

Applikationsbeispiel / application example<br />

113


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

114<br />

E-K<strong>er</strong>n E 42/15<br />

E core E 42/15<br />

0,55<br />

97,0<br />

180<br />

180<br />

17000<br />

85,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

3500 ± 25 % K 2004 - ≈ 1530 320 421500 024<br />

3600 ± 25 % K 2006 - ≈ 1580 320 421500 026<br />

≈ 445 K 2004 0,5 ≈ 195 320 421550 024<br />

≈ 265 K 2004 1,0 ≈ 115 322 421510 024<br />

≈ 155 K 2004 2,0 ≈ 68 322 421520 024<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 3,6 W ≤ 2,6 W<br />

100 200 ≤ 3,1 W ≤ 1,9 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

211


Spulenkör<strong>pe</strong>r E 42/15<br />

Coilform<strong>er</strong> E 42/15<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP - E 42/15 - 1494<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 186,6<br />

l N in mm 90,7<br />

max. Stiftzahl / max. no. of pins 10<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF<br />

Applikationsbeispiel / application example<br />

115


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

116<br />

E-K<strong>er</strong>n E 42/20<br />

E core E 42/20<br />

0,42<br />

97,0<br />

233<br />

229<br />

22700<br />

114<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

5000 ± 25 % K 2004 - ≈ 1680 320 422000 024<br />

5100 ± 25 % K 2006 - ≈ 1710 320 422000 026<br />

≈ 550 K 2004 0,5 ≈ 185 320 422050 024<br />

≈ 335 K 2004 1,0 ≈ 110 322 422010 024<br />

≈ 205 K 2004 2,0 ≈ 70 322 422020 024<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 4,8 W ≤ 3,5 W<br />

100 200 ≤ 4,1 W ≤ 2,5 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

212


Spulenkör<strong>pe</strong>r E 42/20<br />

Coilform<strong>er</strong> E 42/20<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP-E42/20-1690 SP-E42/20-1692<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 184,6 176,8<br />

l N in mm 99,9 99,9<br />

max. Stiftzahl / max. no. of pins 14 14<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Applikationsbeispiel / application example<br />

117


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

118<br />

E-K<strong>er</strong>n E 55/21<br />

E core E 55/21<br />

0,35<br />

124<br />

350<br />

350<br />

44000<br />

216<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

5800 ± 25 % K 2004 - ≈ 1620 320 552100 024<br />

6550 ± 25 % K 2008 - ≈ 1830 320 552100 028<br />

≈ 840 K 2004 0,5 ≈ 235 320 552150 024<br />

≈ 495 K 2004 1,0 ≈ 140 322 552110 024<br />

≈ 290 K 2004 2,0 ≈ 80 322 552120 024<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 9,3 W ≤ 5,9 W<br />

100 200 ≤ 8,0 W ≤ 4,0 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

450


451<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht / weight G ≈<br />

E-K<strong>er</strong>n E 65/27<br />

E core E 65/27<br />

0,27<br />

147<br />

540<br />

530<br />

79000<br />

380<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

7200 ± 25 % K 2004 - ≈ 1550 320 652700 024<br />

7900 ± 25 % K 2008 - ≈ 1700 320 652700 028<br />

≈ 1215 K 2004 0,5 ≈ 260 320 652750 024<br />

≈ 715 K 2004 1,0 ≈ 155 322 652710 024<br />

≈ 420 K 2004 2,0 ≈ 90 322 652720 024<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 16,6 W ≤ 10,6 W<br />

100 200 ≤ 14,3 W ≤ 7,1 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

119


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

120<br />

E-K<strong>er</strong>n E 70/32<br />

E core E 70/32<br />

0,22<br />

150<br />

685<br />

675<br />

102750<br />

500<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

8600 ± 25 % K 2004 - ≈ 1500 320 703200 024<br />

9850 ± 25 % K 2008 - ≈ 1730 320 703200 028<br />

≈ 1450 K 2004 0,5 ≈ 250 320 703250 024<br />

≈ 780 K 2004 1,0 ≈ 140 322 703210 024<br />

≈ 410 K 2004 2,0 ≈ 70 322 703220 024<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 21,6 W ≤ 13,8 W<br />

100 200 ≤ 18,5 W ≤ 9,3 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

452


453<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht / weight G ≈<br />

E-K<strong>er</strong>n E 80/20<br />

E core E 80/20<br />

0,47<br />

185<br />

390<br />

385<br />

71150<br />

350<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

4150 ± 25 % K 2004 - ≈ 1550 320 802000 024<br />

4900 ± 25 % K 2008 - ≈ 1830 320 802000 028<br />

≈ 800 K 2004 0,5 ≈ 300 320 802050 024<br />

≈ 440 K 2004 1,0 ≈ 170 322 802010 024<br />

≈ 230 K 2004 2,0 ≈ 90 322 802020 024<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 15,0 W ≤ 9,6 W<br />

100 200 ≤ 12,8 W ≤ 6,4 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

121


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

122<br />

E-K<strong>er</strong>n E 100/28<br />

E core E 100/28<br />

0,34<br />

270<br />

785<br />

750<br />

212000<br />

1020<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

5500 ± 25 % K 2004 - ≈ 1500 320 002800 024<br />

6300 ± 25 % K 2008 - ≈ 1700 320 002800 028<br />

≈ 1380 K 2004 0,5 ≈ 375 320 002850 024<br />

≈ 800 K 2004 1,0 ≈ 215 322 002810 024<br />

≈ 460 K 2004 2,0 ≈ 125 322 002820 024<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 45,0 W ≤ 28,5 W<br />

100 200 ≤ 39,0 W ≤ 19,0 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

455


Allgemeine Informationen<br />

Die V<strong>er</strong>wendung von F<strong>er</strong>rit Planark<strong>er</strong>nen<br />

stellt eine ideale Möglichkeit zum Design<br />

von SMPS Transformatoren und S<strong>pe</strong>ich<strong>er</strong>drosseln<br />

dar. Erstmals ist es möglich, bei<br />

wesentlich reduzi<strong>er</strong>t<strong>er</strong> Bauhöhe eine hohe<br />

Leistungsdichte und Strombelastbarkeit zu<br />

realisi<strong>er</strong>en. Das günstige Ob<strong>er</strong>flächen/Volumen<br />

V<strong>er</strong>hältnis sorgt für h<strong>er</strong>vorragende<br />

elektrische Paramet<strong>er</strong>.<br />

Gleichzeitig steigt durch den V<strong>er</strong>zicht auf<br />

gewickelte Drähte die R<strong>ep</strong>roduzi<strong>er</strong>barkeit,<br />

Zuv<strong>er</strong>lässigkeit und Lebensdau<strong>er</strong> d<strong>er</strong> Bauteile.<br />

Diese Eigenschaften <strong>er</strong>lauben einen äuß<strong>er</strong>st<br />

flexiblen und vielseitigen Einsatz d<strong>er</strong><br />

Kaschke Planark<strong>er</strong>n Reihe beim Aufbau von<br />

SMPS Üb<strong>er</strong>trag<strong>er</strong>n.<br />

Durch Wahl des geeigneten F<strong>er</strong>rit<strong>mat<strong>er</strong>ials</strong><br />

läßt sich die optimale Lösung im Frequenzb<strong>er</strong>eich<br />

von 100-1000 kHz finden.<br />

Mat<strong>er</strong>ialien<br />

Für uns<strong>er</strong>e Planark<strong>er</strong>ns<strong>er</strong>ie nach IEC 62317<br />

empfehlen wir die Kaschke Leistungsmat<strong>er</strong>ialien<br />

K2008 und K2001. Das Mat<strong>er</strong>ial K2008<br />

eignet sich für den Frequenzb<strong>er</strong>eich von bis<br />

500 kHz, während K2001 ob<strong>er</strong>halb 500 kHz<br />

eingesetzt w<strong>er</strong>den sollte.<br />

Planar-E-K<strong>er</strong>ne können auf Wunsch sowohl<br />

mit Nut (analog RM-K<strong>er</strong>nen) als auch mit<br />

kundens<strong>pe</strong>zifischen Schenkellängen gelief<strong>er</strong>t<br />

w<strong>er</strong>den. Hi<strong>er</strong>bei gelten folgende Maximalw<strong>er</strong>te:<br />

Gen<strong>er</strong>al<br />

Planar-E-K<strong>er</strong>ne<br />

Planar E cores<br />

For the design SMPS transform<strong>er</strong>s or storage<br />

chokes we highly recommend the use<br />

of f<strong>er</strong>rite planar cores. For the v<strong>er</strong>y first time<br />

it is possible to realize a high pow<strong>er</strong> density<br />

and current-carrying capacity and a substantially<br />

reduced height.<br />

The favourable surface to volume ratio provides<br />

outstanding electric pro<strong>pe</strong>rties.<br />

Simultaniously, r<strong>ep</strong>roducibility, reliability and<br />

lifetime of the components are ensured and<br />

improved since wound wire is not used.<br />

These charact<strong>er</strong>istics allow a v<strong>er</strong>y flexible<br />

and v<strong>er</strong>satile use of the range of Kaschke<br />

Planar Cores when constructing SMPS<br />

transform<strong>er</strong>s.<br />

By choosing the adequate f<strong>er</strong>rite mat<strong>er</strong>ial<br />

you will achieve the optimal solution in the<br />

frequency range of 100-1000 kHz.<br />

Mat<strong>er</strong>ials<br />

For our range of Planar Cores according<br />

IEC 62317 we recommend the Kaschke pow<strong>er</strong><br />

f<strong>er</strong>rite K2008 and K2001. The mat<strong>er</strong>ial<br />

K2008 is suitable for a frequency range up<br />

to 500 kHz while K2001 is designed for the<br />

use above 500 kHz.<br />

Planar E cores can also be supplied with<br />

grooves for clamps (see RM cores) and with<br />

diff<strong>er</strong>ent core heights on request. The following<br />

sizes are possible:<br />

K<strong>er</strong>ntyp Maximale Schenkellänge<br />

Core ty<strong>pe</strong> maximum length of leg<br />

PE 18/10/4 6 mm<br />

PE 22/16/6 6 mm<br />

PE 32/20/6 7 mm<br />

PE 38/25/8 7 mm<br />

PE 43/28/10 7 mm<br />

123


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G ≈<br />

124<br />

Planar-K<strong>er</strong>n PE 18/10/4<br />

Planar core PE 18/10/4<br />

*) gemessen an zwei PE-K<strong>er</strong>nen<br />

measured on a set of two PE cores<br />

0,607<br />

24,3<br />

40,0<br />

40,0<br />

971<br />

2,4<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2500 ± 25 % K 2001 - ≈ 1230 382 184001 021<br />

3500 ± 25 % K 2008 - ≈ 1720 382 184001 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Tem<strong>pe</strong>ratur / tem<strong>pe</strong>rature T = 100°C<br />

Frequenz Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

frequency flux density field strength pow<strong>er</strong> losses / set<br />

kHz mT A/m K 2008 K 2001<br />

100 200 ≤ 0,48 W<br />

500 50 ≤ 0,19 W ≤ 0,14 W<br />

1000 25 ≤ 0,15 W<br />

25 ≥ 330 250<br />

490


490<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G<br />

*) gemessen an einem PE- und einem PI-K<strong>er</strong>n<br />

measured on a set of one PE and one PI core<br />

Planar-K<strong>er</strong>n PI 18/10/2<br />

Planar core PI 18/10/2<br />

0,507<br />

20,3<br />

40,0<br />

40,0<br />

811<br />

1,7<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2750 ± 25 % K 2001 - ≈ 1120 382 182090 021<br />

3800 ± 25 % K 2008 - ≈ 1550 382 182090 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Tem<strong>pe</strong>ratur / tem<strong>pe</strong>rature T = 100°C<br />

Frequenz Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

frequency flux density field strength pow<strong>er</strong> losses / set<br />

kHz mT A/m K 2008 K 2001<br />

100 200 ≤ 0,40 W<br />

500 50 ≤ 0,16 W ≤ 0,12 W<br />

1000 25 ≤ 0,13 W<br />

25 ≥ 330 250<br />

125


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G ≈<br />

126<br />

Planar-K<strong>er</strong>n PE 22/16/6<br />

Planar core PE 22/16/6<br />

*) gemessen an zwei PE-K<strong>er</strong>nen<br />

measured on a set of two PE cores<br />

0,411<br />

32,5<br />

79,0<br />

79,0<br />

2560<br />

6,5<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

3850 ± 25 % K 2001 - ≈ 1270 382 226001 221<br />

5500 ± 25 % K 2008 - ≈ 1800 382 226001 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Tem<strong>pe</strong>ratur / tem<strong>pe</strong>rature T = 100°C<br />

Frequenz Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

frequency flux density field strength pow<strong>er</strong> losses / set<br />

kHz mT A/m K 2008 K 2001<br />

100 200 ≤ 1,30 W<br />

500 50 ≤ 0,51 W ≤ 0,38 W<br />

1000 25 ≤ 0,41 W<br />

25 ≥ 330 250<br />

491


491<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G<br />

*) gemessen an einem PE- und einem PI-K<strong>er</strong>n<br />

measured on a set of one PE and one PI core<br />

Planar-K<strong>er</strong>n PI 22/16/2,5<br />

Planar core PI 22/16/2,5<br />

0,330<br />

26,1<br />

79,0<br />

79,0<br />

2060<br />

4,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

4550 ± 25 % K 2001 - ≈ 1200 382 222590 221<br />

6350 ± 25 % K 2008 - ≈ 1680 382 222590 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Tem<strong>pe</strong>ratur / tem<strong>pe</strong>rature T = 100°C<br />

Frequenz Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

frequency flux density field strength pow<strong>er</strong> losses / set<br />

kHz mT A/m K 2008 K 2001<br />

100 200 ≤ 1,00 W<br />

500 50 ≤ 0,41 W ≤ 0,31 W<br />

1000 25 ≤ 0,33 W<br />

25 ≥ 330 250<br />

127


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G ≈<br />

128<br />

Planar-K<strong>er</strong>n PE 32/20/6<br />

Planar core PE 32/20/6<br />

*) gemessen an zwei PE-K<strong>er</strong>nen<br />

measured on a set of two PE cores<br />

0,325<br />

41,8<br />

129<br />

127<br />

5370<br />

13<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

5000 ± 25 % K 2001 - ≈ 1260 382 326501 221<br />

7150 ± 25 % K 2008 - ≈ 1810 382 326501 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Tem<strong>pe</strong>ratur / tem<strong>pe</strong>rature T = 100°C<br />

Frequenz Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

frequency flux density field strength pow<strong>er</strong> losses / set<br />

kHz mT A/m K 2008 K 2001<br />

100 200 ≤ 2,7 W<br />

500 50 ≤ 1,1 W ≤ 0,81 W<br />

1000 25 ≤ 0,86 W<br />

25 ≥ 330 250<br />

492


492<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G<br />

*) gemessen an einem PE- und einem PI-K<strong>er</strong>n<br />

measured on a set of one PE and one PI core<br />

Planar-K<strong>er</strong>n PI 32/20/3,2<br />

Planar core PI 32/20/3.2<br />

0,275<br />

35,4<br />

129<br />

127<br />

4560<br />

10<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

5850 ± 25 % K 2001 - ≈ 1250 382 323290 221<br />

8350 ± 25 % K 2008 - ≈ 1800 382 323290 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Tem<strong>pe</strong>ratur / tem<strong>pe</strong>rature T = 100°C<br />

Frequenz Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

frequency flux density field strength pow<strong>er</strong> losses / set<br />

kHz mT A/m K 2008 K 2001<br />

100 200 ≤ 2,30 W<br />

500 50 ≤ 0,91 W ≤ 0,68 W<br />

1000 25 ≤ 0,73 W<br />

25 ≥ 330 250<br />

129


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G ≈<br />

130<br />

Planar-K<strong>er</strong>n PE 38/25/8<br />

Planar core PE 38/25/8<br />

*) gemessen an zwei PE-K<strong>er</strong>nen<br />

measured on a set of two PE cores<br />

0,276<br />

52,8<br />

191<br />

185<br />

10100<br />

25<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

5950 ± 25 % K 2001 - ≈ 1280 382 388001 221<br />

8450 ± 25 % K 2008 - ≈ 1820 382 388001 028<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Tem<strong>pe</strong>ratur / tem<strong>pe</strong>rature T = 100°C<br />

Frequenz Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

frequency flux density field strength pow<strong>er</strong> losses / set<br />

kHz mT A/m K 2008 K 2001<br />

100 200 ≤ 5,1 W<br />

500 50 ≤ 2,1 W ≤ 1,5 W<br />

1000 25 ≤ 1,6 W<br />

25 ≥ 330 250<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

557


557<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G<br />

*) gemessen an einem PE- und einem PI-K<strong>er</strong>n<br />

measured on a set of one PE and one PI core<br />

Planar-K<strong>er</strong>n PI 38/25/4<br />

Planar core PI 38/25/4<br />

0,229<br />

43,9<br />

192<br />

185<br />

8420<br />

18<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

7050 ± 25 % K 2001 - ≈ 1260 382 383890 221<br />

11000 ± 25 % K 2008 - ≈ 1970 382 383890 028<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Tem<strong>pe</strong>ratur / tem<strong>pe</strong>rature T = 100°C<br />

Frequenz Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

frequency flux density field strength pow<strong>er</strong> losses / set<br />

kHz mT A/m K 2008 K 2001<br />

100 200 ≤ 4,2 W<br />

500 50 ≤ 1,7 W ≤ 1,3 W<br />

1000 25 ≤ 1,4 W<br />

25 ≥ 330 250<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

131


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G ≈<br />

132<br />

Planar-K<strong>er</strong>n PE 43/28/10<br />

Planar core PE 43/28/10<br />

*) gemessen an zwei PE-K<strong>er</strong>nen<br />

measured on a set of two PE cores<br />

0,274<br />

61,6<br />

225<br />

215<br />

13800<br />

35<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

6000 ± 25 % K 2001 - ≈ 1280 382 439501 221<br />

8550 ± 25 % K 2008 - ≈ 1820 382 439501 028<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Tem<strong>pe</strong>ratur / tem<strong>pe</strong>rature T = 100°C<br />

Frequenz Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

frequency flux density field strength pow<strong>er</strong> losses / set<br />

kHz mT A/m K 2008 K 2001<br />

100 200 ≤ 7,0 W<br />

500 50 ≤ 2,8 W ≤ 2,1 W<br />

1000 25 ≤ 2,3 W<br />

25 ≥ 330 250<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

558


558<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G<br />

*) gemessen an einem PE- und einem PI-K<strong>er</strong>n<br />

measured on a set of one PE and one PI core<br />

Planar-K<strong>er</strong>n PI 43/28/4<br />

Planar core PI 43/28/4<br />

0,225<br />

50,8<br />

226<br />

214<br />

11500<br />

24<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

7250 ± 25 % K 2001 - ≈ 1270 382 434190 221<br />

10300 ± 25 % K 2008 - ≈ 1800 382 434190 028<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Tem<strong>pe</strong>ratur / tem<strong>pe</strong>rature T = 100°C<br />

Frequenz Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

frequency flux density field strength pow<strong>er</strong> losses / set<br />

kHz mT A/m K 2008 K 2001<br />

100 200 ≤ 5,8 W<br />

500 50 ≤ 2,3 W ≤ 1,7 W<br />

1000 25 ≤ 1,9 W<br />

25 ≥ 330 250<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

133


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

134<br />

E-K<strong>er</strong>n ER 9,5/5<br />

E core ER 9.5/5<br />

1,67<br />

14,20<br />

8,47<br />

-<br />

120<br />

0,7<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

800 ± 25 % K 2004 - ≈ 1060 352 090500 024<br />

820 ± 25 % K 2006 - ≈ 1090 352 090500 026<br />

860 ± 25 % K 2008 - ≈ 1140 352 090500 028<br />

600 ± 25 % K 2001 - ≈ 800 352 090500 221<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2006 K 2008<br />

25 200 ≤ 0,020 W ≤ 0,016 W<br />

100 200 ≤ 0,015 W ≤ 0,011 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

219


220<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht / weight G ≈<br />

E-K<strong>er</strong>n ER 11/5<br />

E core ER 11/5<br />

1,1<br />

14,0<br />

12,7<br />

-<br />

174<br />

1,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1100 ± 25 % K 2004 - ≈ 960 352 110500 024<br />

1200 ± 25 % K 2006 - ≈ 1050 352 110500 026<br />

1250 ± 25 % K 2008 - ≈ 1100 352 110500 028<br />

900 ± 25 % K 2001 - ≈ 790 352 110500 221<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2006 K 2008<br />

25 200 ≤ 0,027 W ≤ 0,024 W<br />

100 200 ≤ 0,020 W ≤ 0,016 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

135


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

136<br />

E-K<strong>er</strong>n ER 20/12<br />

E core ER 20/12<br />

0,53<br />

32,4<br />

60,9<br />

54,8<br />

1980<br />

10,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

3500 ± 25 % K 2004 - ≈ 1480 352 201200 024<br />

3800 ± 25 % K 2006 - ≈ 1600 352 201200 026<br />

4000 ± 25 % K 2008 - ≈ 1690 352 201200 028<br />

2600 ± 25 % K 2001 - ≈ 1100 352 201200 221<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Tem<strong>pe</strong>ratur / tem<strong>pe</strong>rature T = 100°C<br />

Frequenz Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

frequency flux density field strength pow<strong>er</strong> losses / set<br />

kHz mT A/m K 2008 K 2001<br />

100 200 ≤ 1,0 W<br />

500 50 ≤ 0,40 W ≤ 0,33 W<br />

1000 25 ≤ 0,32 W<br />

25 ≥ 330 250<br />

676


137


138


ETD-K<strong>er</strong>ne<br />

Allgemeines<br />

Die Bausätze d<strong>er</strong> Baureihe ETD (Economic-Transform<strong>er</strong>-Design)<br />

wurden für Leistungswandl<strong>er</strong><br />

im B<strong>er</strong>eich bis 1000 W sowie<br />

Frequenzen bis 500 kHz entwickelt.<br />

Die Spulenkör<strong>pe</strong>r aus Kunststoff nach UL 94<br />

V-0 bieten neben einem großen Wickelraum<br />

auch die Möglichkeit zum einfachen H<strong>er</strong>ausführen<br />

dick<strong>er</strong> Wickeldrähte sowie Drahtdurchführungen<br />

für die automateng<strong>er</strong>echte<br />

Bewicklung.<br />

Zur Fixi<strong>er</strong>ung K<strong>er</strong>n / Spulenkör<strong>pe</strong>r sind Halteklamm<strong>er</strong>n<br />

lief<strong>er</strong>bar.<br />

Bezüglich Schutzklasseausführung <strong>er</strong>bitten<br />

wir Ihre Anfrage.<br />

ETD cores<br />

Gen<strong>er</strong>al<br />

ETD-K<strong>er</strong>ne<br />

ETD cores<br />

The core sets of the ETD (Economic Transform<strong>er</strong><br />

Design) s<strong>er</strong>ies w<strong>er</strong>e develo<strong>pe</strong>d for<br />

transform<strong>er</strong>s in the range up to 1000 W and<br />

frequencies up to 500 kHz.<br />

The coilform<strong>er</strong>s made of plastics in compliance<br />

with UL94 VO off<strong>er</strong> a large winding<br />

section as well as the possibility of simple<br />

extraction of thick winding wires and wire<br />

ducts for machine-suited winding.<br />

Retaining clamps can be supplied for fastening<br />

core/coilform<strong>er</strong>.<br />

Please contact us with regard to protective<br />

class implementation.<br />

139


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

140<br />

ETD-K<strong>er</strong>n ETD 19/14/8<br />

ETD core ETD 19/14/8<br />

1,25<br />

55,3<br />

44,1<br />

39,5<br />

2440<br />

13,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1500 ± 25 % K 2004 - ≈ 1490 347 191300 024<br />

1600 ± 25 % K 2006 - ≈ 1590 347 191300 026<br />

≈ 400 K 2006 0,1 ≈ 400 347 191310 026<br />

≈ 250 K 2006 0,2 ≈ 250 347 191320 026<br />

≈ 130 K 2006 0,5 ≈ 130 347 191350 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 0,52 W ≤ 0,38 W<br />

100 200 ≤ 0,44 W ≤ 0,28 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

224


225<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht / weight G ≈<br />

ETD-K<strong>er</strong>n ETD 24/15/9<br />

ETD core ETD 24/15/9<br />

1,05<br />

62,3<br />

59,2<br />

55,0<br />

3690<br />

19,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1800 ± 25 % K 2004 - ≈ 1510 347 241400 024<br />

1900 ± 25 % K 2006 - ≈ 1590 347 241400 026<br />

≈ 550 K 2006 0,1 ≈ 450 347 241410 026<br />

≈ 310 K 2006 0,2 ≈ 260 347 241420 026<br />

≈ 140 K 2006 0,5 ≈ 120 347 241450 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 0,78 W ≤ 0,58 W<br />

100 200 ≤ 0,67 W ≤ 0,43 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

141


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

142<br />

ETD-K<strong>er</strong>n ETD 29/16/10<br />

ETD core ETD 29/16/10<br />

0,93<br />

70,8<br />

76,4<br />

70,9<br />

5410<br />

27,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2100 ± 25 % K 2004 - ≈ 1550 347 291600 024<br />

2200 ± 25 % K 2006 - ≈ 1630 347 291600 026<br />

≈ 680 K 2006 0,1 ≈ 500 347 291610 026<br />

≈ 400 K 2006 0,2 ≈ 300 347 291620 026<br />

≈ 200 K 2006 0,5 ≈ 150 347 291650 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 1,14 W ≤ 0,84 W<br />

100 200 ≤ 0,98 W ≤ 0,63 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

226


Spulenkör<strong>pe</strong>r ETD 29<br />

Coilform<strong>er</strong> ETD 29<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP - ETD 29 - 1594<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 93,1<br />

l N in mm 53,4<br />

max. Stiftzahl / max. no. of pins 14<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyethylent<strong>er</strong><strong>ep</strong>htalat / polyethylenet<strong>er</strong><strong>ep</strong>htalate<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 540 2901C1 594<br />

Spulenkör<strong>pe</strong>r - stehend<br />

Coilform<strong>er</strong> - v<strong>er</strong>tical<br />

Bezeichnung / description<br />

SP - ETD 29 - 1444<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 89,3<br />

l N in mm 53,1<br />

max. Stiftzahl / max. no. of pins 12<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyethylent<strong>er</strong><strong>ep</strong>htalat / polyethylenet<strong>er</strong><strong>ep</strong>htalate<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 542 2901C1 444<br />

143


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

144<br />

ETD-K<strong>er</strong>n ETD 34/17/11<br />

ETD core ETD 34/17/11<br />

0,81<br />

79,0<br />

97,0<br />

92,0<br />

7700<br />

38,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2400 ± 25 % K 2004 - ≈ 1550 347 341700 024<br />

2500 ± 25 % K 2006 - ≈ 1610 347 341700 026<br />

≈ 480 K 2006 0,2 ≈ 310 347 341720 026<br />

≈ 250 K 2006 0,5 ≈ 160 347 341750 026<br />

≈ 150 K 2006 1,0 ≈ 100 351 341710 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 1,62 W ≤ 1,20 W<br />

100 200 ≤ 1,39 W ≤ 0,90 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

227


Spulenkör<strong>pe</strong>r ETD 34<br />

Coilform<strong>er</strong> ETD 34<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP - ETD 34 - 1448<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 126,0<br />

l N in mm 60,6<br />

max. Stiftzahl / max. no. of pins 14<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyethylent<strong>er</strong><strong>ep</strong>htalat / polyethylenet<strong>er</strong><strong>ep</strong>htalate<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 540 3401C1 448<br />

Spulenkör<strong>pe</strong>r - stehend<br />

Coilform<strong>er</strong> - v<strong>er</strong>tical<br />

Bezeichnung / description<br />

SP - ETD 34 - 1450<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 123,9<br />

l N in mm 60,9<br />

max. Stiftzahl / max. no. of pins 14<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyethylent<strong>er</strong><strong>ep</strong>htalat / polyethylenet<strong>er</strong><strong>ep</strong>htalate<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 542 3401C1 450<br />

145


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

146<br />

ETD-K<strong>er</strong>n ETD 39/20/13<br />

ETD core ETD 39/20/13<br />

0,74<br />

93,0<br />

125,0<br />

123,0<br />

11600<br />

56,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2700 ± 25 % K 2004 - ≈ 1590 347 392000 024<br />

2800 ± 25 % K 2006 - ≈ 1650 347 392000 026<br />

≈ 680 K 2006 0,2 ≈ 400 347 392020 026<br />

≈ 340 K 2006 0,5 ≈ 200 347 392050 026<br />

≈ 200 K 2006 1,0 ≈ 120 351 392010 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 2,44 W ≤ 1,80 W<br />

100 200 ≤ 2,10 W ≤ 1,34 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

228


Spulenkör<strong>pe</strong>r ETD 39<br />

Coilform<strong>er</strong> ETD 39<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP - ETD 39 - 1434<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 180,6<br />

l N in mm 69,1<br />

max. Stiftzahl / max. no. of pins 16<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyethylent<strong>er</strong><strong>ep</strong>htalat / polyethylenet<strong>er</strong><strong>ep</strong>htalate<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 540 3901C1 434<br />

Spulenkör<strong>pe</strong>r - stehend<br />

Coilform<strong>er</strong> - v<strong>er</strong>tical<br />

Bezeichnung / description<br />

SP - ETD 39 - 1433<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 176,7<br />

l N in mm 69,6<br />

max. Stiftzahl / max. no. of pins 16<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyethylent<strong>er</strong><strong>ep</strong>htalat / polyethylenet<strong>er</strong><strong>ep</strong>htalate<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 542 3901C1 433<br />

147


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

148<br />

ETD-K<strong>er</strong>n ETD 44/22/15<br />

ETD core ETD 44/22/15<br />

0,60<br />

104<br />

173<br />

172<br />

18000<br />

90,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

3300 ± 25 % K 2004 - ≈ 1580 347 442200 024<br />

3400 ± 25 % K 2006 - ≈ 1630 347 442200 026<br />

≈ 440 K 2006 0,5 ≈ 210 347 442210 026<br />

≈ 260 K 2006 1,0 ≈ 125 351 442220 026<br />

≈ 155 K 2006 2,0 ≈ 75 351 442250 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 3,78 W ≤ 2,80 W<br />

100 200 ≤ 3,24 W ≤ 2,08 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

230


Spulenkör<strong>pe</strong>r ETD 44<br />

Coilform<strong>er</strong> ETD 44<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP - ETD 44 - 1443<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 219,0<br />

l N in mm 77,0<br />

max. Stiftzahl / max. no. of pins 18<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyethylent<strong>er</strong><strong>ep</strong>htalat / polyethylenet<strong>er</strong><strong>ep</strong>htalate<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 540 4401C1 443<br />

Spulenkör<strong>pe</strong>r - stehend<br />

Coilform<strong>er</strong> - v<strong>er</strong>tical<br />

Bezeichnung / description<br />

SP - ETD 44 - 1435<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 213,1<br />

l N in mm 78,5<br />

max. Stiftzahl / max. no. of pins 18<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyethylent<strong>er</strong><strong>ep</strong>htalat / polyethylenet<strong>er</strong><strong>ep</strong>htalate<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 542 4401C1 435<br />

149


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

150<br />

ETD-K<strong>er</strong>n ETD 49/25/16<br />

ETD core ETD 49/25/16<br />

0,54<br />

115<br />

211<br />

209<br />

24200<br />

118<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

3700 ± 25 % K 2004 - ≈ 1590 347 492500 024<br />

3800 ± 25 % K 2006 - ≈ 1640 347 492500 026<br />

≈ 525 K 2006 0,5 ≈ 225 347 492550 026<br />

≈ 315 K 2006 1,0 ≈ 135 351 492510 026<br />

≈ 190 K 2006 2,0 ≈ 82 351 492520 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 5,08 W ≤ 3,75 W<br />

100 200 ≤ 4,36 W ≤ 2,78 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

229


Spulenkör<strong>pe</strong>r ETD 49<br />

Coilform<strong>er</strong> ETD 49<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP - ETD 49 - 1449<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 277,2<br />

l N in mm 85,9<br />

max. Stiftzahl / max. no. of pins 20<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyethylent<strong>er</strong><strong>ep</strong>htalat / polyethylenet<strong>er</strong><strong>ep</strong>htalate<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 540 4901C1 449<br />

Spulenkör<strong>pe</strong>r - stehend<br />

Coilform<strong>er</strong> - v<strong>er</strong>tical<br />

Bezeichnung / description<br />

SP - ETD 49 - 1451<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 270,6<br />

l N in mm 86,6<br />

max. Stiftzahl / max. no. of pins 20<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyethylent<strong>er</strong><strong>ep</strong>htalat / polyethylenet<strong>er</strong><strong>ep</strong>htalate<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 542 4901C1 451<br />

151


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

152<br />

ETD-K<strong>er</strong>n ETD 59/31/22<br />

ETD core ETD 59/31/22<br />

0,38<br />

139<br />

368<br />

368<br />

51200<br />

260<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

5400 ± 25 % K 2004 - ≈ 1630 347 593100 024<br />

5600 ± 25 % K 2006 - ≈ 1690 347 593100 026<br />

≈ 850 K 2006 0,5 ≈ 255 347 593150 026<br />

≈ 310 K 2006 2,0 ≈ 94 351 593120 026<br />

≈ 160 K 2006 5,0 ≈ 48 351 593150 026<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 10,8 W ≤ 7,8 W<br />

100 200 ≤ 9,2 W ≤ 5,8 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

680


Spulenkör<strong>pe</strong>r ETD 59<br />

Coilform<strong>er</strong> ETD 59<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP - ETD 59 - 1902<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 356,6<br />

l N in mm 106,1<br />

max. Stiftzahl / max. no. of pins 24<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyethylent<strong>er</strong><strong>ep</strong>htalat / polyethylenet<strong>er</strong><strong>ep</strong>htalate<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 542 5901C1 902<br />

153


154


EP-K<strong>er</strong>ne<br />

Allgemeines<br />

EP-K<strong>er</strong>ne gehören aufgrund ihres Designs<br />

zu den Filt<strong>er</strong>- od<strong>er</strong> Kleinsignalüb<strong>er</strong>trag<strong>er</strong>k<strong>er</strong>nen.<br />

Ihre Vorzüge sind eine kompakte<br />

Bauweise v<strong>er</strong>bunden mit ein<strong>er</strong> hohen Induktivität<br />

bei einem g<strong>er</strong>ingen Streufeld und<br />

einem günstigen CDF-W<strong>er</strong>t (Core Distortion<br />

Factor).<br />

Durch ihre kompakte Auslegung können sie<br />

auf ein<strong>er</strong> Leit<strong>er</strong>platte mit hoh<strong>er</strong> Packungsdichte<br />

angeordnet w<strong>er</strong>den.<br />

Zunehmend wird diese K<strong>er</strong>nform auch in d<strong>er</strong><br />

Leistungsüb<strong>er</strong>tragung eingesetzt. Mit geeigneten<br />

F<strong>er</strong>rit<strong>w<strong>er</strong>kstoffe</strong>n ist ihr Einsatz im<br />

Frequenzb<strong>er</strong>eich 100 - 500 kHz zu sehen.<br />

Als K<strong>er</strong>nmat<strong>er</strong>ial kommen dabei die W<strong>er</strong>kstoffe<br />

K 2004, K 4000 und K 6000 bevorzugt<br />

zur Anwendung.<br />

EP cores<br />

Gen<strong>er</strong>al<br />

EP-K<strong>er</strong>ne<br />

EP cores<br />

Due to its design, EP cores belong to the<br />

class of filt<strong>er</strong> or broadband tranform<strong>er</strong> cores.<br />

Their advantages are a compact construction<br />

in combination with a high inductance at<br />

low fringe fields and a favourable cdf value<br />

(core distortion factor).<br />

Due to the compact design, an advantageous<br />

packaging density on a pc board can be<br />

achieved.<br />

Increasingly, this core sha<strong>pe</strong> is also used for<br />

pow<strong>er</strong> applications. With appropriate f<strong>er</strong>rite<br />

<strong>mat<strong>er</strong>ials</strong> the area of applications cov<strong>er</strong>s the<br />

frequency range of 100 kHz up to 500 kHz.<br />

The pref<strong>er</strong>red magnetic <strong>mat<strong>er</strong>ials</strong> are the<br />

K 2004, K 4000 and the K 6000.<br />

155


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

156<br />

EP-K<strong>er</strong>n EP 7<br />

EP core EP 7<br />

1,45<br />

15,5<br />

10,7<br />

8,55<br />

165<br />

2,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1100 ± 25 % K 2004 - ≈ 1270 376 070000 024<br />

2100 ± 25 % K 4000 - ≈ 2430 376 070000 004<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

192


193<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht / weight G ≈<br />

EP-K<strong>er</strong>n EP 10<br />

EP core EP 10<br />

1,7<br />

19,1<br />

11,3<br />

8,55<br />

216<br />

3,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1050 ± 25 % K 2004 - ≈ 1420 376 100000 024<br />

2000 ± 25 % K 4000 - ≈ 2710 376 100000 004<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

157


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

158<br />

EP-K<strong>er</strong>n EP 13<br />

EP core EP 13<br />

1,23<br />

24,1<br />

19,5<br />

14,9<br />

469<br />

5,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1400 ± 25 % K 2004 - ≈ 1370 376 130000 024<br />

2800 ± 25 % K 4000 - ≈ 2750 376 130000 004<br />

3900 ± 30 % K 6000 - ≈ 3820 376 130000 006<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

194


109<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht / weight G ≈<br />

EP-K<strong>er</strong>n EP 17<br />

EP core EP 17<br />

0,84<br />

28,4<br />

33,8<br />

25,3<br />

958<br />

13,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2400 ± 25 % K 2004 - ≈ 1610 376 170000 024<br />

4300 ± 25 % K 4000 - ≈ 2880 376 170000 004<br />

6500 ± 30 % K 6000 - ≈ 4350 376 170000 006<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

159


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

160<br />

EP-K<strong>er</strong>n EP 20<br />

EP core EP 20<br />

0,51<br />

39,9<br />

78,6<br />

60,1<br />

3140<br />

28,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

4000 ± 25 % K 2004 - ≈ 1630 376 200000 024<br />

6700 ± 25 % K 4000 - ≈ 2720 376 200000 004<br />

10900 ± 30 % K 6000 - ≈ 4430 376 200000 006<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

195


Spulenkör<strong>pe</strong>r EP 20<br />

Coilform<strong>er</strong> EP 20<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP - EP 20 - 1567 SP - EP 20 - 1423<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 35,1 31,9<br />

l N in mm 41,0 41,0<br />

max. Stiftzahl / max. no. of pins 10 10<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6.6 35%GF Polyamid(e) 6.6 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 589 201010 127 589 201020 127<br />

161


162


U- UND I-KERNE<br />

U AND I CORES<br />

163


164<br />

UU- / UI-K<strong>er</strong>ne<br />

UU / UI cores<br />

IV. U- und I-K<strong>er</strong>ne<br />

Allgemeines<br />

K<strong>er</strong>ne aus den Kamaf<strong>er</strong> W<strong>er</strong>kstoffen<br />

K2004<br />

K2006<br />

K2008<br />

K4000<br />

w<strong>er</strong>den zum Aufbau von Üb<strong>er</strong>trag<strong>er</strong>n im Frequenzb<strong>er</strong>eich<br />

von 10 bis 500 kHz v<strong>er</strong>wendet.<br />

Die üb<strong>er</strong>tragbaren Leistungen sind von<br />

d<strong>er</strong> K<strong>er</strong>ngeometrie abhängig. Die möglichen<br />

ob<strong>er</strong>en Frequenzgrenzen w<strong>er</strong>den durch die<br />

W<strong>er</strong>kstoffauswahl vorgegeben.<br />

Neben d<strong>er</strong> Leistungsüb<strong>er</strong>tragung finden UU-<br />

und UI-Kombinationen auch in Zeilentransformatoren<br />

zur Erzeugung d<strong>er</strong> Hochspannung<br />

für die Elektronenstrahlablenkung in<br />

Bildröhren sowie in Drosseln V<strong>er</strong>wendung.<br />

Ein neues Anwendungsgebiet stellen Zündüb<strong>er</strong>trag<strong>er</strong><br />

für die Automobilindustrie dar.<br />

Die zur H<strong>er</strong>stellung d<strong>er</strong> Üb<strong>er</strong>trag<strong>er</strong>k<strong>er</strong>ne<br />

v<strong>er</strong>wendeten Leistungs<strong>w<strong>er</strong>kstoffe</strong> zeichnen<br />

sich durch hohe Sättigungsinduktionen,<br />

g<strong>er</strong>inge s<strong>pe</strong>zifische V<strong>er</strong>lustleistungen und<br />

die Abnahme d<strong>er</strong> V<strong>er</strong>luste mit steigend<strong>er</strong><br />

Tem<strong>pe</strong>ratur im Tem<strong>pe</strong>raturb<strong>er</strong>eich von 20<br />

bis 100°C, mit einem zusammensetzungsabhängigen<br />

Minimum bei ca. 80°C aus.<br />

Die Diagramme zur Tem<strong>pe</strong>raturabhängigkeit<br />

d<strong>er</strong> K<strong>er</strong>nv<strong>er</strong>luste als Funktion d<strong>er</strong> Frequenz<br />

sind im 2. Kapitel dargestellt.<br />

Grundlage für die Garantie d<strong>er</strong> magnetischen<br />

Kennw<strong>er</strong>te sind paarweise feingeschliffene<br />

K<strong>er</strong>nsätze. Die A L -W<strong>er</strong>tangaben<br />

und die ausgewiesenen V<strong>er</strong>luste gelten zudem<br />

nur für die ausgewiesenen Frequenzen,<br />

Aussteu<strong>er</strong>ungen und Messtem<strong>pe</strong>raturen.<br />

Die UU- bzw. UI-K<strong>er</strong>ngeometrie gestattet<br />

die maschinelle Bewicklung und Tränkung<br />

IV. U and I cores<br />

Gen<strong>er</strong>al<br />

Cores made of the Kamaf<strong>er</strong> <strong>mat<strong>er</strong>ials</strong><br />

K2004<br />

K2006<br />

K2008<br />

K4000<br />

are used for transform<strong>er</strong>s in the frequency<br />

range from 10 to 500 kHz. The transf<strong>er</strong>able<br />

pow<strong>er</strong>s are de<strong>pe</strong>ndent on the core geometry.<br />

The possible up<strong>pe</strong>r frequency limits are predet<strong>er</strong>mined<br />

by the mat<strong>er</strong>ial selected.<br />

In addition to pow<strong>er</strong> transmission, UU and<br />

UI combinations are also used in line transform<strong>er</strong>s<br />

for producing the high voltage for<br />

electron beam deflection in picture tubes<br />

and in chokes. A new area of application is<br />

that of ignition transform<strong>er</strong>s in the automotive<br />

industry.<br />

The pow<strong>er</strong> <strong>mat<strong>er</strong>ials</strong> used for manufacturing<br />

the transform<strong>er</strong> cores are charact<strong>er</strong>ized by<br />

high saturation flux density, low s<strong>pe</strong>cific<br />

pow<strong>er</strong> losses and the decline in losses with<br />

increasing tem<strong>pe</strong>rature in the tem<strong>pe</strong>rature<br />

range from 20 to 100 °C, with a composition<br />

de<strong>pe</strong>ndent minimum at about 80 °C.<br />

The diagrams on the tem<strong>pe</strong>rature de<strong>pe</strong>ndence<br />

of core losses as a function of frequency<br />

are given in chapt<strong>er</strong> 2.<br />

The core sets are precision ground in pairs,<br />

thus providing a basis for the guarantee of<br />

the magnetic paramet<strong>er</strong>s. The A L values stated<br />

and the declared losses also only apply<br />

to the declared frequencies, excitations and<br />

test tem<strong>pe</strong>ratures.<br />

The UU and UI core geometry allows the<br />

machine winding and impregnation of high-


hochspannungsfest<strong>er</strong> Spulen. Auf Wunsch<br />

w<strong>er</strong>den Montagehinweise einschließlich d<strong>er</strong><br />

Fügev<strong>er</strong>fahren mitgeteilt.<br />

U- und I-K<strong>er</strong>ne w<strong>er</strong>den stückweise ( nicht<br />

satzweise ) gelief<strong>er</strong>t.<br />

Die W<strong>er</strong>kstoffbezeichnung ist auf dem K<strong>er</strong>nrücken<br />

aufgedruckt.<br />

UU- / UI-K<strong>er</strong>ne<br />

UU / UI cores<br />

voltage resistant coils. Assembly instructions<br />

including the joining procedure are supplied<br />

on request.<br />

U and I cores are supplied in units (not in<br />

sets).<br />

The mat<strong>er</strong>ial code is printed on the back of<br />

the core.<br />

165


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

166<br />

U-K<strong>er</strong>n U 10/3<br />

U core U 10/3<br />

4,5<br />

38,4<br />

8,6<br />

330<br />

2,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

400 ± 25% K 2004 - 1430 325 100300 024<br />

450 ± 25% K 2006 - 1600 325 100300 026<br />

800 ± 25% K 4000 - 2900 325 100300 004<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 0,07 W ≤ 0,05 W<br />

100 200 ≤ 0,06 W ≤ 0,04 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

176


Spulenkör<strong>pe</strong>r U 10/3<br />

Coilform<strong>er</strong> U 10/3<br />

Bezeichnung / description<br />

SP - U 10 - 1911<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Kamm<strong>er</strong>zahl / no. of sections 2<br />

A in mm² N 17,8<br />

l in mm N 41,8<br />

max. Stiftzahl / max. no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial<br />

Polyethylent<strong>er</strong><strong>ep</strong>htalat / polyethylenet<strong>er</strong><strong>ep</strong>htalate<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 550 111911 01C<br />

Nickel-Silb<strong>er</strong> / nickel silv<strong>er</strong> CuNi18Zn20<br />

Beschicht. / coating 1µm Ni, 5-7µm Sn100<br />

167


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

168<br />

U-K<strong>er</strong>n U 13/5<br />

U core U 13/5<br />

3,1<br />

49,4<br />

16,2<br />

800<br />

4,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

600 ± 25% K 2004 - 1450 325 130500 024<br />

650 ± 25% K 2006 - 1580 325 130500 026<br />

1050 ± 25% K 4000 - 2550 325 130500 004<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 0,17 W ≤ 0,13 W<br />

100 200 ≤ 0,15 W ≤ 0,10 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

065


Spulenkör<strong>pe</strong>r U 13/5<br />

Coilform<strong>er</strong> U 13/5<br />

Bezeichnung / description<br />

SP - U 13 - 1313<br />

Kamm<strong>er</strong>zahl / no. of sections 2<br />

A N in mm² 33,8<br />

l N in mm 39,4<br />

max. Stiftzahl / max. no. of pins 6<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid / polyamide<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 550 130520 627<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Nickel-Silb<strong>er</strong> / nickel silv<strong>er</strong> CuNi18Zn20<br />

Beschicht. / coating 1µm Ni, 5-7µm Sn100<br />

169


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

170<br />

U-K<strong>er</strong>n U 15/6,7<br />

U core U 15/6,7<br />

1,6<br />

48,0<br />

30,0<br />

1500<br />

9,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1250 ± 25% K 2004 - 1600 325 150600 024<br />

1300 ± 25% K 2006 - 1660 325 150600 026<br />

2800 ± 25% K 6000 - 3580 325 150600 006<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 0,32 W ≤ 0,23 W<br />

100 200 ≤ 0,27 W ≤ 0,17 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

167


Spulenkör<strong>pe</strong>r U 15/6,7<br />

Coilform<strong>er</strong> U 15/6.7<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Bezeichnung / description<br />

SP - U 15 - 809 SP - U 15 - 1303<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 37,0 34,0<br />

l N in mm 44,8 44,8<br />

max. Stiftzahl / max. no. of pins 4 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid / polyamide<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Nickel-Silb<strong>er</strong> / nickel silv<strong>er</strong> CuNi18Zn20<br />

Beschicht. / coating 1µm Ni, 5-7µm Sn100<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 550 150610 427 550 150620 427<br />

171


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

172<br />

U-K<strong>er</strong>n U 20/7,5<br />

U core U 20/7.5<br />

1,2<br />

68,0<br />

56,0<br />

3800<br />

19,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1750 ± 25% K 2004 - 1700 325 200700 024<br />

1800 ± 25% K 2006 - 1750 325 200700 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 0,80 W ≤ 0,59 W<br />

100 200 ≤ 0,69 W ≤ 0,44 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

168


Spulenkör<strong>pe</strong>r U 20/7,5<br />

Coilform<strong>er</strong> U 20/7.5<br />

Bezeichnung / description<br />

SP - U 20 - 899<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 72,0<br />

l N in mm 53,9<br />

max. Stiftzahl / max. no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid / polyamide<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 550 200710 427<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Nickel-Silb<strong>er</strong> / nickel silv<strong>er</strong> CuNi18Zn20<br />

Beschicht. / coating 1µm Ni, 5-7µm Sn100<br />

173


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

174<br />

U-K<strong>er</strong>n U 25/13<br />

U core U 25/13<br />

0,86<br />

86,0<br />

100<br />

8600<br />

47,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2350 ± 25% K 2004 - 1610 325 251300 024<br />

2400 ± 25% K 2006 - 1650 325 251300 026<br />

6200 ± 25% K 6000 - 4250 325 251300 006<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2006<br />

25 200 ≤ 1,81 W ≤ 1,33 W<br />

100 200 ≤ 1,55 W ≤ 0,99 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

170


Spulenkör<strong>pe</strong>r U 25/13<br />

Coilform<strong>er</strong> U 25/13<br />

Bezeichnung / description<br />

SP - U 25 - 867<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 110,2<br />

l N in mm 67,7<br />

max. Stiftzahl / max. no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid / polyamide<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 550 251310 427<br />

Spulenkör<strong>pe</strong>r - liegend<br />

Coilform<strong>er</strong> - horizontal<br />

Nickel-Silb<strong>er</strong> / nickel silv<strong>er</strong> CuNi18Zn20<br />

Beschicht. / coating 1µm Ni, 5-7µm Sn100<br />

175


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

176<br />

U-K<strong>er</strong>n U 46/28<br />

U core U 46/28<br />

0,46<br />

180<br />

390<br />

70000<br />

358<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

5600 ± 25% K 2004 - 2050 325 462800 024<br />

6000 ± 25% K 2008 - 2200 325 462800 028<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 14,7 W ≤ 9,4 W<br />

100 200 ≤ 12,6 W ≤ 6,3 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

424


173<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht / weight G ≈<br />

U-K<strong>er</strong>n U 80/25<br />

U core U 80/25<br />

0,3<br />

192,6<br />

645<br />

130450<br />

630<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

7500 ± 25% K 2004 - 1790 325 802500 024<br />

8650 ± 25% K 2008 - 2070 325 802500 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 27,4 W ≤ 17,5 W<br />

100 200 ≤ 23,5 W ≤ 11,7 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

177


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G ≈<br />

178<br />

U-K<strong>er</strong>n U 93/16/76<br />

U core U 93/16/76<br />

*) gemessen an zwei U-K<strong>er</strong>nen<br />

measured on a set of two U cores<br />

0,79<br />

355<br />

448<br />

159000<br />

380<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2850 ± 25% K 2004 - 1800 325 936600 024<br />

3250 ± 25% K 2008 - 2050 325 936600 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 33,4 W ≤ 21,3 W<br />

100 200 ≤ 28,6 W ≤ 14,2 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

538a


538b<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G ≈<br />

*) gemessen an einem U- und einem I-K<strong>er</strong>n<br />

measured on a set of one U and one I core<br />

I-K<strong>er</strong>n I 93/16/28<br />

I core I 93/16/28<br />

0,58<br />

258<br />

448<br />

115600<br />

180<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

3900 ± 25% K 2004 - 1800 381 932816 024<br />

4400 ± 25% K 2008 - 2050 381 932816 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 24,3 W ≤ 17,5 W<br />

100 200 ≤ 20,9 W ≤ 13,6 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

179


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G ≈<br />

180<br />

U-K<strong>er</strong>n U 93/20/76<br />

U core U 93/20/76<br />

*) gemessen an zwei U-K<strong>er</strong>nen<br />

measured on a set of two U cores<br />

0,63<br />

355<br />

560<br />

199000<br />

500<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

3550 ± 25% K 2004 - 1780 325 932600 024<br />

4100 ± 25% K 2008 - 2050 325 932600 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 41,8 W ≤ 26,7 W<br />

100 200 ≤ 35,9 W ≤ 17,8 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

057a


057b<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G ≈<br />

*) gemessen an einem U- und einem I-K<strong>er</strong>n<br />

measured on a set of one U and one I core<br />

I-K<strong>er</strong>n I 93/20/28<br />

I core I 93/20/28<br />

0,46<br />

257<br />

564<br />

145000<br />

200<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

4900 ± 25% K 2004 - 1800 381 932820 024<br />

5600 ± 25% K 2008 - 2050 381 932820 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 30,4 W ≤ 19,5 W<br />

100 200 ≤ 26,0 W ≤ 13,0 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

181


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G ≈<br />

182<br />

U-K<strong>er</strong>n U 93/30/76<br />

U core U 93/30/76<br />

*) gemessen an zwei U-K<strong>er</strong>nen<br />

measured on a set of two U cores<br />

0,42<br />

355<br />

840<br />

298000<br />

750<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

5300 ± 25% K 2004 - 1770 325 937600 024<br />

6000 ± 25% K 2008 - 2000 325 937600 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 62,6 W ≤ 45,0 W<br />

100 200 ≤ 53,2 W ≤ 35,0 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

058a


058b<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G ≈<br />

*) gemessen an einem U- und einem I-K<strong>er</strong>n<br />

measured on a set of one U and one I core<br />

I-K<strong>er</strong>n I 93/30/28<br />

I core I 93/30/28<br />

0,31<br />

258<br />

840<br />

217000<br />

300<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

7350 ± 25% K 2004 - 1820 381 932830 024<br />

8450 ± 25% K 2008 - 2090 381 932830 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 45,6 W ≤ 32,8 W<br />

100 200 ≤ 39,1 W ≤ 25,5 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

183


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G ≈<br />

184<br />

U-K<strong>er</strong>n U 100/25<br />

U core U 100/25<br />

*) gemessen an zwei U-K<strong>er</strong>nen<br />

measured on a set of two U cores<br />

0,48<br />

308<br />

645<br />

199000<br />

500<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

4750 ± 25% K 2004 - 1810 325 002500 024<br />

5200 ± 25% K 2008 - 1980 325 002500 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 41,8 W ≤ 26,6 W<br />

100 200 ≤ 35,6 W ≤ 17,7 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

175


694<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G ≈<br />

*) gemessen an einem U- und einem I-K<strong>er</strong>n<br />

measured on a set of one U and one I core<br />

I-K<strong>er</strong>n I 100/25<br />

I core I 100/25<br />

0,38<br />

245<br />

645<br />

158000<br />

260<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

6000 ± 25% K 2004 - 1810 381 002525 024<br />

7000 ± 25% K 2008 - 2120 381 002525 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 33,2 W ≤ 21,2 W<br />

100 200 ≤ 28,3 W ≤ 14,2 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

185


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G ≈<br />

186<br />

U-K<strong>er</strong>n U 126/20<br />

U core U 126/20<br />

*) gemessen an zwei U-K<strong>er</strong>nen<br />

measured on a set of two U cores<br />

0,86<br />

480<br />

560<br />

268800<br />

650<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

3000 ± 25% K 2004 - 2050 325 262000 024<br />

3200 ± 25% K 2008 - 2180 325 262000 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 56,5 W ≤ 36,0 W<br />

100 200 ≤ 48,5 W ≤ 24,0 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

663a


663b<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set *)<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht pro K<strong>er</strong>n / weight <strong>pe</strong>r core G ≈<br />

*) gemessen an einem U- und einem I-K<strong>er</strong>n<br />

measured on a set of one U and one I core<br />

I-K<strong>er</strong>n I 126/20<br />

I core I 126/20<br />

0,63<br />

354<br />

560<br />

198000<br />

300<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

4000 ± 25% K 2004 - 2010 381 262820 024<br />

4000 ± 25% K 2008 - 2010 381 262820 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 41,5 W ≤ 26,6 W<br />

100 200 ≤ 35,4 W ≤ 17,7 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

187


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

188<br />

U-K<strong>er</strong>n U 130/25<br />

U core U 130/25<br />

0,33<br />

315<br />

950<br />

299250<br />

1500<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

6500 ± 25% K 2004 - 1710 325 302500 024<br />

7500 ± 25% K 2008 - 1970 325 302500 028<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2004 K 2008<br />

25 200 ≤ 63,0 W ≤ 45,2 W<br />

100 200 ≤ 54,0 W ≤ 35,1 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

056


189


190


RM-KERNE<br />

RM CORES<br />

191


192<br />

RM-K<strong>er</strong>ne<br />

RM cores<br />

VI. RM-K<strong>er</strong>ne<br />

Allgemeines<br />

RM-K<strong>er</strong>ne (rectangular module) w<strong>er</strong>den<br />

zum Aufbau von streuarmen Induktivitäten<br />

v<strong>er</strong>wendet. RM-Spulen bestehen aus je 2<br />

RM-K<strong>er</strong>nen, d<strong>er</strong> Spule, unt<strong>er</strong> V<strong>er</strong>wendung<br />

ein- od<strong>er</strong> mehrkammrig<strong>er</strong> Spulenkör<strong>pe</strong>r, die<br />

gleichzeitig die Funktion des Lötstiftträg<strong>er</strong>s<br />

üb<strong>er</strong>nehmen, und zwei Halteklamm<strong>er</strong>n.<br />

Durch die V<strong>er</strong>wendung von RM-K<strong>er</strong>nen zum<br />

Aufbau von Induktivitäten entstehen dem<br />

Anwend<strong>er</strong> insbesond<strong>er</strong>e hinsichtlich d<strong>er</strong><br />

möglichen hohen Packungsdichte auf den<br />

Leit<strong>er</strong>karten Vorteile, die durch Streufeldarmut<br />

infolge d<strong>er</strong> geschlossenen Bauform,<br />

Frequenzselektivität und elektrische Stabilität<br />

<strong>er</strong>gänzt w<strong>er</strong>den.<br />

Die Abmessungen d<strong>er</strong> RM-K<strong>er</strong>ne sind auf<br />

das Rast<strong>er</strong> gedruckt<strong>er</strong> Schaltungen abgestimmt,<br />

das heißt auf die modulare Rast<strong>er</strong>länge<br />

von 2,54 mm. RM 6 bedeutet demnach,<br />

dass d<strong>er</strong> K<strong>er</strong>n mit Spulenkör<strong>pe</strong>r eine<br />

quadratische Grundfläche von 6 x 6 x 2,54<br />

mm 2 ausfüllt.<br />

Die K<strong>er</strong>ne ohne Mittelbohrung w<strong>er</strong>den für<br />

Anwendungen in d<strong>er</strong> Leistungselektronik,<br />

beispielsweise als Üb<strong>er</strong>trag<strong>er</strong> od<strong>er</strong> S<strong>pe</strong>rrwandl<strong>er</strong><br />

in Schaltnetzteilen empfohlen.<br />

Diese K<strong>er</strong>ne besitzen gegenüb<strong>er</strong> denen mit<br />

Mittelbohrung einen höh<strong>er</strong>en effektiven magnetischen<br />

Qu<strong>er</strong>schnitt und <strong>er</strong>möglichen bei<br />

höh<strong>er</strong>em A L -W<strong>er</strong>t die Üb<strong>er</strong>tragung größ<strong>er</strong><strong>er</strong><br />

Leistungen.<br />

Neben d<strong>er</strong> Anwendung d<strong>er</strong> RM-K<strong>er</strong>ne als<br />

Leistungsüb<strong>er</strong>trag<strong>er</strong> besteht das Hauptanwendungsfeld<br />

im Aufbau von frequenzselektiven<br />

Bauelementen, insbesond<strong>er</strong>e in Form<br />

von Filt<strong>er</strong>spulen hoh<strong>er</strong> Güte und klirrarm<strong>er</strong><br />

Breitbandüb<strong>er</strong>trag<strong>er</strong> für Anwendungen im<br />

B<strong>er</strong>eich klein<strong>er</strong> Aussteu<strong>er</strong>ungen. RM-K<strong>er</strong>ne<br />

VI. RM cores<br />

Gen<strong>er</strong>al<br />

RM cores (rectangular module) are used for<br />

the design of inductors with low stray fields.<br />

Each RM coil consists of 2 RM cores, the<br />

coil, using single or multi-section coilform<strong>er</strong>s<br />

which simultaneously adopt the function<br />

of sold<strong>er</strong>ing pin carri<strong>er</strong>s, and two retaining<br />

clamps.<br />

The use of RM cores in inductors is particularly<br />

advantageous to the us<strong>er</strong> with regard to<br />

the high packing density possible on the pc<br />

board, with the additional benefit of low stray<br />

field due to the closed desgin, frequency selectivity<br />

and electrical stability.<br />

The dimensions of RM cores are adjusted to<br />

the basic grid of pc boards, i.e. to the modular<br />

grid length of 2.54 mm. RM 6 thus means<br />

that the core with coilform<strong>er</strong> occupies a quadratic<br />

area of 6 x 6 x 2.54 mm 2 .<br />

The cores without a cent<strong>er</strong> hole are recommended<br />

for applications in pow<strong>er</strong> electronics,<br />

for example as transform<strong>er</strong>s or flyback<br />

transform<strong>er</strong>s in SMPS. Compared with those<br />

with a cent<strong>er</strong> hole, these cores have a high<strong>er</strong><br />

effective magnetic cross-section and allow<br />

high<strong>er</strong> pow<strong>er</strong> ratings at a high<strong>er</strong> A L value.<br />

In addition to the use of RM cores as pow<strong>er</strong><br />

transform<strong>er</strong>s, the main area of application<br />

is the design0 of frequency-selective components,<br />

es<strong>pe</strong>cially in the form of filt<strong>er</strong> coils<br />

with a high Q value and low noise wideband<br />

transform<strong>er</strong>s for applications in the range of<br />

small excitations. RM cores with dimensions


d<strong>er</strong> Abmessungen ≤ RM 6 sind d<strong>er</strong> Grup<strong>pe</strong><br />

d<strong>er</strong> SMD-Bauelemente (surface mounted<br />

devices) zugeordnet.<br />

Die lief<strong>er</strong>baren RM-K<strong>er</strong>ne entsprechen d<strong>er</strong><br />

IEC 60431.<br />

Für Anwendungen, bei denen Multilay<strong>er</strong><br />

v<strong>er</strong>wendet od<strong>er</strong> d<strong>er</strong> K<strong>er</strong>n direkt auf eine<br />

Leit<strong>er</strong>platte aufgesteckt w<strong>er</strong>den soll, sind<br />

Planar-RM-K<strong>er</strong>ne mit deutlich reduzi<strong>er</strong>t<strong>er</strong><br />

Bauhöhe („low profile“) gegenüb<strong>er</strong> den konventionellen<br />

RM-K<strong>er</strong>nen lief<strong>er</strong>bar.<br />

Kaschke bietet neben den Standardhöhen<br />

für low profile-K<strong>er</strong>ne auch reduzi<strong>er</strong>te Schenkellängen<br />

bis hin zur RM-Platte (analog Planar-I-K<strong>er</strong>nen)<br />

auf Kundenwunsch an.<br />

RM-K<strong>er</strong>ne<br />

RM cores<br />

≤ RM 6 are classified with the group of SMD<br />

components (surface mounted devices).<br />

The RM cores supplied are in compliance<br />

with IEC 60431.<br />

For applications wh<strong>er</strong>e multilay<strong>er</strong> coils are<br />

used or wh<strong>er</strong>e the core is mounted directly<br />

onto the pc board, planar RM cores with a<br />

drastically reduced height („low profile“) in<br />

comparison to conventional RM cores are<br />

available.<br />

In addition to the standard low profiles cores,<br />

Kaschke off<strong>er</strong>s furth<strong>er</strong> reduced core heights<br />

up to a RM plate (analogue to planar I cores)<br />

on request.<br />

193


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

194<br />

RM 5 ohne Mittelloch<br />

RM 5 without cent<strong>er</strong> hole<br />

0,94<br />

22,3<br />

23,8<br />

18,1<br />

530<br />

4,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1900 ± 25% K 2006 - ≈ 1420 374 050000 026<br />

2050 ± 25% K 2008 - ≈ 1530 374 050000 028<br />

3000 ± 25% K 4000 - ≈ 2250 374 050000 004<br />

315 ± 10% K 2006 ≈ 0,10 ≈ 235 374 050315 026<br />

250 ± 5% K 2006 ≈ 0,13 ≈ 185 374 050250 026<br />

160 ± 5% K 2006 ≈ 0,20 ≈ 120 374 050160 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2006 K 2008<br />

25 200 ≤ 0,08 W ≤ 0,07 W<br />

100 200 ≤ 0,06 W ≤ 0,05 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

156


665o<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht / weight G ≈<br />

RM 5 - low profile<br />

RM 5 - low profile<br />

0,71<br />

17,5<br />

24,5<br />

18,0<br />

430<br />

2,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2550 ± 25% K 2006 - ≈ 1440 373 050000 026<br />

2700 ± 25% K 2008 - ≈ 1530 373 050000 028<br />

1850 ± 25% K 2001 - ≈ 1050 373 050000 221<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Tem<strong>pe</strong>ratur / tem<strong>pe</strong>rature T = 100°C<br />

Frequenz Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

frequency flux density field strength pow<strong>er</strong> losses / set<br />

kHz mT A/m K 2006 K 2008<br />

50 200 ≤ 0,12 W<br />

100 100 ≤ 0,07 W ≤ 0,05 W<br />

300 50 ≤ 0,05 W<br />

25 ≥ 330 250<br />

195


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

196<br />

RM 5<br />

RM 5<br />

1,0<br />

20,8<br />

20,8<br />

-<br />

430<br />

2,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1800 ± 25% K 2005 - ≈ 1440 327 050000 025<br />

1770 ± 25% K 2006 - ≈ 1400 327 050000 026<br />

2700 ± 25% K 4000 - ≈ 2150 327 050000 004<br />

250 ± 10% K 2005 ≈ 0,08 ≈ 200 327 050250 025<br />

160 ± 5% K 2005 ≈ 0,13 ≈ 125 327 050160 025<br />

100 ± 3% K 2005 ≈ 0,23 ≈ 80 327 050100 025<br />

Zubehör<br />

accessory<br />

Typ<br />

ty<strong>pe</strong><br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

Halteklamm<strong>er</strong> (2 Stück <strong>er</strong>ford<strong>er</strong>lich) RM 5 700 400501 021<br />

clamp (2 pieces necessary) RM 5 low profile 298 000000 092<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

155


Spulenkör<strong>pe</strong>r RM 5<br />

Coilform<strong>er</strong> RM 5<br />

Spulenkör<strong>pe</strong>r - nicht-lineare Stiftanordnung<br />

Coilform<strong>er</strong> - non linear pin arrangement<br />

Bezeichnung / description<br />

SP - RM 5 - 1065 SP - RM 5 - 1486<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 10,3 9,8<br />

l N in mm 25,2 25,2<br />

max. Stiftzahl / max. no. of pins 6 6<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Phenolharz / phenolic resin<br />

Applikationsbeispiel / application example<br />

197


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

198<br />

RM 6 ohne Mittelloch<br />

RM 6 without cent<strong>er</strong> hole<br />

0,80<br />

28,5<br />

35,7<br />

30,7<br />

1020<br />

6,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2300 ± 25% K 2006 - ≈ 1460 374 060000 026<br />

2450 ± 25% K 2008 - ≈ 1560 374 060000 028<br />

4350 ± 25% K 4000 - ≈ 2770 374 060000 004<br />

400 ± 10% K 2006 ≈ 0,12 ≈ 250 374 060400 026<br />

250 ± 5% K 2006 ≈ 0,20 ≈ 160 374 060250 026<br />

160 ± 3% K 2006 ≈ 0,32 ≈ 100 374 060160 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2006 K 2008<br />

25 200 ≤ 0,16 W ≤ 0,14 W<br />

100 200 ≤ 0,12 W ≤ 0,09 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

158


6660<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht / weight G ≈<br />

RM 6 - low profile<br />

RM 6 - low profile<br />

0,58<br />

21,8<br />

37,5<br />

31,2<br />

820<br />

4,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

3150 ± 25% K 2006 - ≈ 1450 373 060000 026<br />

3350 ± 25% K 2008 - ≈ 1550 373 060000 028<br />

2250 ± 25% K 2001 - ≈ 1040 373 060000 221<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Tem<strong>pe</strong>ratur / tem<strong>pe</strong>rature T = 100°C<br />

Frequenz Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

frequency flux density field strength pow<strong>er</strong> losses / set<br />

kHz mT A/m K 2006 K 2008<br />

50 200 ≤ 0,22 W<br />

100 100 ≤ 0,13 W ≤ 0,10 W<br />

300 50 ≤ 0,09 W<br />

25 ≥ 330 250<br />

199


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

200<br />

RM 6<br />

RM 6<br />

0,86<br />

26,9<br />

31,3<br />

-<br />

840<br />

4,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2200 ± 25% K 2005 - ≈ 1510 327 060000 025<br />

2150 ± 25% K 2006 - ≈ 1470 327 060000 026<br />

4000 ± 25% K 4000 - ≈ 2740 327 060000 004<br />

400 ± 10% K 2005 ≈ 0,07 ≈ 275 327 060400 025<br />

315 ± 5% K 2005 ≈ 0,10 ≈ 215 327 060315 025<br />

250 ± 3% K 2005 ≈ 0,14 ≈ 170 327 060250 025<br />

Zubehör<br />

accessory<br />

Typ<br />

ty<strong>pe</strong><br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

Halteklamm<strong>er</strong> (2 Stück <strong>er</strong>ford<strong>er</strong>lich) RM 6 700 000601 034<br />

clamp (2 pieces necessary) RM 6 low profile 298 000000 375<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

157


Spulenkör<strong>pe</strong>r RM 6<br />

Coilform<strong>er</strong> RM 6<br />

Spulenkör<strong>pe</strong>r - nicht-lineare Stiftanordnung<br />

Coilform<strong>er</strong> - non linear pin arrangement<br />

Bezeichnung / description<br />

SP - RM 6 - 1070 SP - RM 6 - 1488<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 15,9 14,7<br />

l N in mm 31,0 31,0<br />

max. Stiftzahl / max. no. of pins 6 6<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Phenolharz / phenolic resin<br />

Applikationsbeispiel / application example<br />

Spulenkör<strong>pe</strong>r - lineare Stiftanordnung<br />

Coilform<strong>er</strong> - linear pin arrangement<br />

Bezeichnung / description<br />

SP - RM 6 - 1542<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 15,6<br />

l N in mm 31,2<br />

max. Stiftzahl / max. no. of pins 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polybutylent<strong>er</strong><strong>ep</strong>htalat / polybutylenet<strong>er</strong><strong>ep</strong>htalate<br />

Applikationsbeispiel / application example<br />

201


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

202<br />

RM 8 ohne Mittelloch<br />

RM 8 without cent<strong>er</strong> hole<br />

0,59<br />

38,0<br />

64,0<br />

55,0<br />

2400<br />

13,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

3000 ± 25% K 2006 - ≈ 1410 374 080000 026<br />

3450 ± 25% K 2008 - ≈ 1620 374 080000 028<br />

5250 ± 25% K 4000 - ≈ 2470 374 080000 004<br />

630 ± 10% K 2006 ≈ 0,10 ≈ 300 374 080630 026<br />

400 ± 5% K 2006 ≈ 0,17 ≈ 190 374 080400 026<br />

250 ± 3% K 2006 ≈ 0,27 ≈ 120 374 080250 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2006 K 2008<br />

25 200 ≤ 0,37 W ≤ 0,32 W<br />

100 200 ≤ 0,28 W ≤ 0,22 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

160


667o<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht / weight G ≈<br />

RM 8 - low profile<br />

RM 8 - low profile<br />

0,44<br />

28,7<br />

64,9<br />

55,4<br />

1860<br />

9,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

4150 ± 25% K 2006 - ≈ 1450 373 080000 026<br />

4700 ± 25% K 2008 - ≈ 1650 373 080000 028<br />

3000 ± 25% K 2001 - ≈ 1050 373 080000 221<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Tem<strong>pe</strong>ratur / tem<strong>pe</strong>rature T = 100°C<br />

Frequenz Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

frequency flux density field strength pow<strong>er</strong> losses / set<br />

kHz mT A/m K 2006 K 2008<br />

50 200 ≤ 0,50 W<br />

100 100 ≤ 0,30 W ≤ 0,22 W<br />

300 50 ≤ 0,20 W<br />

25 ≥ 330 250<br />

203


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

204<br />

RM 8<br />

RM 8<br />

0,67<br />

35,1<br />

52,0<br />

-<br />

1840<br />

4,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

3350 ± 25% K 2005 - ≈ 1790 327 080000 025<br />

3100 ± 25% K 2006 - ≈ 1650 327 080000 026<br />

5400 ± 25% K 4000 - ≈ 2880 327 080000 004<br />

630 ± 10% K 2005 ≈ 0,07 ≈ 335 327 080630 025<br />

315 ± 5% K 2005 ≈ 0,15 ≈ 170 327 080315 025<br />

250 ± 3% K 2005 ≈ 0,20 ≈ 135 327 080250 025<br />

Zubehör<br />

accessory<br />

Typ<br />

ty<strong>pe</strong><br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

Halteklamm<strong>er</strong> (2 Stück <strong>er</strong>ford<strong>er</strong>lich) RM 8 700 000801 035<br />

clamp (2 pieces necessary) RM 8 low profile 298 000000 369<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

159


Spulenkör<strong>pe</strong>r RM 8<br />

Coilform<strong>er</strong> RM 8<br />

Spulenkör<strong>pe</strong>r - nicht-lineare Stiftanordnung<br />

Coilform<strong>er</strong> - non linear pin arrangement<br />

Bezeichnung / description<br />

SP - RM 8 - 1071 SP - RM 8 - 1475<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 35,8 33,7<br />

l N in mm 43,6 43,6<br />

max. Stiftzahl / max. no. of pins 12 12<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Phenolharz / phenolic resin<br />

Applikationsbeispiel / application example<br />

Spulenkör<strong>pe</strong>r - lineare Stiftanordnung<br />

Coilform<strong>er</strong> - linear pin arrangement<br />

Bezeichnung / description<br />

SP - RM 8 - 1537<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 30,8<br />

l N in mm 42,2<br />

max. Stiftzahl / max. no. of pins 12<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polybutylent<strong>er</strong><strong>ep</strong>htalat / polybutylenet<strong>er</strong><strong>ep</strong>htalate<br />

Applikationsbeispiel / application example<br />

205


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

206<br />

RM 10 ohne Mittelloch<br />

RM 10 without cent<strong>er</strong> hole<br />

0,45<br />

45,0<br />

99,0<br />

90,0<br />

4500<br />

22,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

4650 ± 25% K 2006 - ≈ 1670 374 100000 026<br />

5050 ± 25% K 2008 - ≈ 1810 374 100000 028<br />

8100 ± 25% K 4000 - ≈ 2900 374 100000 004<br />

1000 ± 10% K 2006 ≈ 0,08 ≈ 360 374 101000 026<br />

630 ± 5% K 2006 ≈ 0,14 ≈ 225 374 100630 026<br />

400 ± 3% K 2006 ≈ 0,25 ≈ 145 374 100400 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2006 K 2008<br />

25 200 ≤ 0,70 W ≤ 0,60 W<br />

100 200 ≤ 0,52 W ≤ 0,40 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

162


668o<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht / weight G ≈<br />

RM 10 - low profile<br />

RM 10 - low profile<br />

0,34<br />

33,9<br />

99,1<br />

89,5<br />

3360<br />

17,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

6150 ± 25% K 2006 - ≈ 1670 373 100000 026<br />

6650 ± 25% K 2008 - ≈ 1800 373 100000 028<br />

4250 ± 25% K 2001 - ≈ 1150 373 100000 221<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Tem<strong>pe</strong>ratur / tem<strong>pe</strong>rature T = 100°C<br />

Frequenz Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

frequency flux density field strength pow<strong>er</strong> losses / set<br />

kHz mT A/m K 2006 K 2008<br />

50 200 ≤ 0,90 W<br />

100 100 ≤ 0,54 W ≤ 0,39 W<br />

300 50 ≤ 0,35 W<br />

25 ≥ 330 250<br />

207


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

208<br />

RM 10<br />

RM 10<br />

0,50<br />

42,0<br />

83,0<br />

-<br />

3470<br />

18,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

5000 ± 25% K 2005 - ≈ 1990 327 100000 025<br />

4150 ± 25% K 2006 - ≈ 1650 327 100000 026<br />

7600 ± 25% K 4000 - ≈ 3030 327 100000 004<br />

1000 ± 10% K 2005 ≈ 0,08 ≈ 400 327 101000 025<br />

630 ± 5% K 2005 ≈ 0,13 ≈ 250 327 100630 025<br />

400 ± 3% K 2005 ≈ 0,20 ≈ 160 327 100400 025<br />

Zubehör<br />

accessory<br />

Typ<br />

ty<strong>pe</strong><br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

Halteklamm<strong>er</strong> (2 Stück <strong>er</strong>ford<strong>er</strong>lich) RM 10 700 001001 036<br />

clamp (2 pieces necessary)<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

161


Spulenkör<strong>pe</strong>r RM 10<br />

Coilform<strong>er</strong> RM 10<br />

Spulenkör<strong>pe</strong>r - nicht-lineare Stiftanordnung<br />

Coilform<strong>er</strong> - non linear pin arrangement<br />

Bezeichnung / description<br />

SP - RM 10 - 1072 SP - RM 10 - 1490<br />

Kamm<strong>er</strong>zahl / no. of sections 1 2<br />

A N in mm² 45,5 43,1<br />

l N in mm 52,6 52,6<br />

max. Stiftzahl / max. no. of pins 12 12<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Phenolharz / phenolic resin<br />

Applikationsbeispiel / application example<br />

Spulenkör<strong>pe</strong>r - lineare Stiftanordnung<br />

Coilform<strong>er</strong> - linear pin arrangement<br />

Bezeichnung / description<br />

SP - RM 10 - 1534<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 43,8<br />

l N in mm 52,6<br />

max. Stiftzahl / max. no. of pins 12<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polybutylent<strong>er</strong><strong>ep</strong>htalat / polybutylenet<strong>er</strong><strong>ep</strong>htalate<br />

Applikationsbeispiel / application example<br />

209


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

210<br />

RM 12 ohne Mittelloch<br />

RM 12 without cent<strong>er</strong> hole<br />

0,37<br />

56,0<br />

150<br />

125<br />

8400<br />

42,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

5400 ± 25% K 2006 - ≈ 1590 374 120000 026<br />

5900 ± 25% K 2008 - ≈ 1740 374 120000 028<br />

8500 ± 25% K 4000 - ≈ 2500 374 120000 004<br />

1000 ± 10% K 2006 ≈ 0,15 ≈ 295 374 121000 026<br />

630 ± 5% K 2006 ≈ 0,25 ≈ 185 374 120630 026<br />

400 ± 3% K 2006 ≈ 0,40 ≈ 115 374 120400 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2006 K 2008<br />

25 200 ≤ 1,30 W ≤ 1,13 W<br />

100 200 ≤ 0,97 W ≤ 0,76 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

164


669o<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht / weight G ≈<br />

RM 12 - low profile<br />

RM 12 - low profile<br />

0,28<br />

42,0<br />

147,5<br />

124,8<br />

6200<br />

32,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

7150 ± 25% K 2006 - ≈ 1590 373 120000 026<br />

7850 ± 25% K 2008 - ≈ 1750 373 120000 028<br />

4900 ± 25% K 2001 - ≈ 1090 373 120000 221<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Tem<strong>pe</strong>ratur / tem<strong>pe</strong>rature T = 100°C<br />

Frequenz Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

frequency flux density field strength pow<strong>er</strong> losses / set<br />

kHz mT A/m K 2006 K 2008<br />

50 200 ≤ 1,67 W<br />

100 100 ≤ 1,00 W ≤ 0,72 W<br />

300 50 ≤ 0,65 W<br />

25 ≥ 330 250<br />

211


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

212<br />

RM 12<br />

RM 12<br />

0,49<br />

56,0<br />

120,0<br />

-<br />

6700<br />

34,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

5000 ± 25% K 2005 - ≈ 1950 327 120000 025<br />

4200 ± 25% K 2006 - ≈ 1640 327 120000 026<br />

7650 ± 25% K 4000 - ≈ 2990 327 120000 004<br />

1000 ± 10% K 2005 ≈ 0,10 ≈ 390 327 121000 025<br />

630 ± 5% K 2005 ≈ 0,20 ≈ 245 327 120630 025<br />

400 ± 3% K 2005 ≈ 0,35 ≈ 155 327 120400 025<br />

Zubehör<br />

accessory<br />

Typ<br />

ty<strong>pe</strong><br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

Halteklamm<strong>er</strong> (2 Stück <strong>er</strong>ford<strong>er</strong>lich) RM 12 700 001201 308<br />

clamp (2 pieces necessary)<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

163


Spulenkör<strong>pe</strong>r RM 12<br />

Coilform<strong>er</strong> RM 12<br />

Spulenkör<strong>pe</strong>r - nicht-lineare Stiftanordnung<br />

Coilform<strong>er</strong> - non linear pin arrangement<br />

Bezeichnung / description<br />

SP - RM 12 - 1103<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 75,5<br />

l N in mm 61,6<br />

max. Stiftzahl / max. no. of pins 12<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Phenolharz / phenolic resin<br />

Applikationsbeispiel / application example<br />

Spulenkör<strong>pe</strong>r - lineare Stiftanordnung<br />

Coilform<strong>er</strong> - linear pin arrangement<br />

Bezeichnung / description<br />

SP - RM 12 - 1535<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 74,5<br />

l N in mm 61,6<br />

max. Stiftzahl / max. no. of pins 12<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polybutylent<strong>er</strong><strong>ep</strong>htalat / polybutylenet<strong>er</strong><strong>ep</strong>htalate<br />

Applikationsbeispiel / application example<br />

213


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

214<br />

RM 14 ohne Mittelloch<br />

RM 14 without cent<strong>er</strong> hole<br />

0,33<br />

69,0<br />

206<br />

170<br />

14100<br />

73,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

6100 ± 25% K 2006 - ≈ 1600 374 140000 026<br />

6650 ± 25% K 2008 - ≈ 1750 374 140000 028<br />

11400 ± 25% K 4000 - ≈ 3000 374 140000 004<br />

1000 ± 10% K 2006 ≈ 0,15 ≈ 265 374 141000 026<br />

630 ± 5% K 2006 ≈ 0,27 ≈ 165 374 140630 026<br />

400 ± 3% K 2006 ≈ 0,50 ≈ 105 374 140400 026<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Messfrequenz / test frequency f = 25 kHz<br />

Tem<strong>pe</strong>ratur Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

tem<strong>pe</strong>rature flux density field strength pow<strong>er</strong> losses / set<br />

°C mT A/m K 2006 K 2008<br />

25 200 ≤ 2,20 W ≤ 1,90 W<br />

100 200 ≤ 1,65 W ≤ 1,30 W<br />

100 ≥ 100 50<br />

100 ≥ 330 250<br />

166


670o<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht / weight G ≈<br />

RM 14 - low profile<br />

RM 14 - low profile<br />

0,25<br />

50,9<br />

201<br />

170<br />

10230<br />

52,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

8000 ± 25% K 2006 - ≈ 1590 373 140000 026<br />

8800 ± 25% K 2008 - ≈ 1750 373 140000 028<br />

5500 ± 25% K 2001 - ≈ 1100 373 140000 221<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

Bei Anwendung in Leistungsüb<strong>er</strong>trag<strong>er</strong>n / For application in pow<strong>er</strong> transform<strong>er</strong>s<br />

Tem<strong>pe</strong>ratur / tem<strong>pe</strong>rature T = 100°C<br />

Frequenz Flussdichte Feldstärke V<strong>er</strong>luste / Satz<br />

frequency flux density field strength pow<strong>er</strong> losses / set<br />

kHz mT A/m K 2006 K 2008<br />

50 200 ≤ 2,76 W<br />

100 100 ≤ 1,64 W ≤ 1,20 W<br />

300 50 ≤ 1,08 W<br />

25 ≥ 330 250<br />

215


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Min. K<strong>er</strong>nqu<strong>er</strong>schnitt / min. cross section A min =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

216<br />

RM 14<br />

RM 14<br />

0,40<br />

71,0<br />

178,0<br />

-<br />

12600<br />

61,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

6000 ± 25% K 2005 - ≈ 1910 327 140000 025<br />

5000 ± 25% K 2006 - ≈ 1590 327 140000 026<br />

9200 ± 25% K 4000 - ≈ 2930 327 140000 004<br />

1000 ± 10% K 2005 ≈ 0,12 ≈ 320 327 141000 025<br />

630 ± 5% K 2005 ≈ 0,23 ≈ 200 327 140630 025<br />

400 ± 3% K 2005 ≈ 0,45 ≈ 125 327 140400 025<br />

Zubehör<br />

accessory<br />

Typ<br />

ty<strong>pe</strong><br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

Halteklamm<strong>er</strong> (2 Stück <strong>er</strong>ford<strong>er</strong>lich) RM 14 700 001401 309<br />

clamp (2 pieces necessary)<br />

mm -1<br />

mm<br />

mm 2<br />

mm 2<br />

mm 3<br />

g<br />

165


Spulenkör<strong>pe</strong>r RM 14<br />

Coilform<strong>er</strong> RM 14<br />

Spulenkör<strong>pe</strong>r - nicht-lineare Stiftanordnung<br />

Coilform<strong>er</strong> - non linear pin arrangement<br />

Bezeichnung / description<br />

SP - RM 14 - 1074<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 112,2<br />

l N in mm 71,6<br />

max. Stiftzahl / max. no. of pins 12<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyest<strong>er</strong><br />

Applikationsbeispiel / application example<br />

Spulenkör<strong>pe</strong>r - lineare Stiftanordnung<br />

Coilform<strong>er</strong> - linear pin arrangement<br />

Bezeichnung / description<br />

SP - RM 14 - 1536<br />

Kamm<strong>er</strong>zahl / no. of sections 1<br />

A N in mm² 110,4<br />

l N in mm 71,6<br />

max. Stiftzahl / max. no. of pins 12<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polybutylent<strong>er</strong><strong>ep</strong>htalat / polybutylenet<strong>er</strong><strong>ep</strong>htalate<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 521 149110 11J<br />

217


218


SCHALENKERNE NACH IEC 60133<br />

SCHALENKERNE FÜR NÄHERUNGSSCHALTER<br />

POT CORES ACCORDING IEC 60133<br />

POT CORES FOR PROXIMITY SWITCHES<br />

219


220<br />

Schalenk<strong>er</strong>ne<br />

Pot cores<br />

VI. Schalenk<strong>er</strong>ne<br />

Allgemeines<br />

Schalenk<strong>er</strong>ne w<strong>er</strong>den zum Aufbau streuarm<strong>er</strong><br />

Induktivitäten v<strong>er</strong>wendet. Die Schalenk<strong>er</strong>nspule<br />

besteht in d<strong>er</strong> Regel aus dem<br />

Spulenwickel in ein- bzw. zweikammrig<strong>er</strong><br />

Ausführung, den Schalenk<strong>er</strong>nhälften aus<br />

weichmagnetischen, v<strong>er</strong>lustarmen und<br />

meist höh<strong>er</strong><strong>pe</strong>rmeablen Magnetmat<strong>er</strong>ialien,<br />

d<strong>er</strong> Grundplatte und dem Haltebügel.<br />

Schalenk<strong>er</strong>nspulen können mit defini<strong>er</strong>t<strong>er</strong><br />

Sch<strong>er</strong>ung b<strong>er</strong>eitgestellt w<strong>er</strong>den, wobei die<br />

für die einzelnen W<strong>er</strong>kstoffe und Schalenk<strong>er</strong>ngeometrien<br />

festgelegten A L -W<strong>er</strong>te<br />

durch das Einschleifen defini<strong>er</strong>t<strong>er</strong> Luftspalte<br />

im Mittelbutzen d<strong>er</strong> Schalenk<strong>er</strong>nhälften eingestellt<br />

w<strong>er</strong>den.<br />

Zum Aufbau frequenzselektiv<strong>er</strong> Bauelemente<br />

w<strong>er</strong>den W<strong>er</strong>kstoffe unt<strong>er</strong>schiedlich<strong>er</strong><br />

Anfangs<strong>pe</strong>rmeabilität, g<strong>er</strong>ing<strong>er</strong> V<strong>er</strong>luste<br />

sowie hoh<strong>er</strong> Tem<strong>pe</strong>ratur- und Zeitstabilität<br />

v<strong>er</strong>wendet.<br />

Zu empfehlende W<strong>er</strong>kstoffe für die unt<strong>er</strong>schiedlichen<br />

Frequenzb<strong>er</strong>eiche sind:<br />

Frequenzb<strong>er</strong>eich Mat<strong>er</strong>ial<br />

10 - 100 kHz K4000,<br />

K6000<br />

50 - 300 kHz K2005<br />

Für Leistungsüb<strong>er</strong>trag<strong>er</strong> stehen auß<strong>er</strong>dem<br />

die W<strong>er</strong>kstoffe K2004, K2006 und K2008<br />

zur V<strong>er</strong>fügung.<br />

Lief<strong>er</strong>form:<br />

Schalenk<strong>er</strong>ne w<strong>er</strong>den satzweise gelief<strong>er</strong>t.<br />

Bei luftspaltlosen K<strong>er</strong>nen ist eine Satzhälfte<br />

mit d<strong>er</strong> W<strong>er</strong>kstoffangabe und „o.L.“ beschriftet.<br />

Schalenk<strong>er</strong>ne mit dem Gesamtluftspalt in<br />

eine K<strong>er</strong>nhälfte sind mit d<strong>er</strong> W<strong>er</strong>kstoffanga-<br />

VI. Pot cores<br />

Gen<strong>er</strong>al<br />

Pot cores are used for inductors with low<br />

stray fields. The pot core coil gen<strong>er</strong>ally consists<br />

of a coilform<strong>er</strong> with one or two sections,<br />

the pot core halves made of soft magnetic,<br />

low-loss and usually high <strong>pe</strong>rm <strong>mat<strong>er</strong>ials</strong>,<br />

the mouting plate and the retaining clamps.<br />

Pot core coils can be supplied with defined<br />

shearing, the predet<strong>er</strong>mined A L values for<br />

the individual <strong>mat<strong>er</strong>ials</strong> and pot core geometries<br />

being achieved by grinding a defined<br />

air gap into the cent<strong>er</strong> leg of the pot core<br />

halves.<br />

For producing frequency-selective components,<br />

<strong>mat<strong>er</strong>ials</strong> of diff<strong>er</strong>ent initial <strong>pe</strong>rmeability,<br />

low losses and high th<strong>er</strong>mal and temporal<br />

stability are used.<br />

We recommend the following <strong>mat<strong>er</strong>ials</strong> in<br />

de<strong>pe</strong>ndence of the frequency ranges:<br />

Frequency range Mat<strong>er</strong>ial<br />

10 - 100 kHz K4000,<br />

K6000<br />

50 - 300 kHz K2005<br />

The <strong>mat<strong>er</strong>ials</strong> K2004, K2006 and K2008 can<br />

be supplied for pow<strong>er</strong> transform<strong>er</strong>s.<br />

How supplied:<br />

Pot cores are supplied in sets. In cores without<br />

an air gap, one half of the set is labeled<br />

with the mat<strong>er</strong>ial s<strong>pe</strong>cification and „o.L.“.<br />

Pot cores with the entire air gap in one core<br />

half are labeled with the mat<strong>er</strong>ial s<strong>pe</strong>cificati-


e und dem A L -W<strong>er</strong>t auf d<strong>er</strong> geschliffenen<br />

K<strong>er</strong>nhälfte gekennzeichnet.<br />

Bei K<strong>er</strong>nen mit symmetrischem Luftspalt ist<br />

eine Satzhälfte mit d<strong>er</strong> W<strong>er</strong>kstoffangabe und<br />

dem A L -W<strong>er</strong>t bestem<strong>pe</strong>lt.<br />

Hauptanwendungen:<br />

• Telekommunikation<br />

• Mess- und Steu<strong>er</strong>technik<br />

• Stromwandl<strong>er</strong>, Leistungsüb<strong>er</strong>trag<strong>er</strong> (große<br />

Schalenk<strong>er</strong>nspulen)<br />

• Automatisi<strong>er</strong>ungstechnik<br />

Ein weit<strong>er</strong>es wichtiges Anwendungsgebiet<br />

für Schalenk<strong>er</strong>ne stellen Näh<strong>er</strong>ungsschalt<strong>er</strong><br />

dar.<br />

Physikalisch wird bei induktiven Sensoren<br />

die defini<strong>er</strong>te V<strong>er</strong>stimmung von LC-Resonatoren<br />

für die Informationsgewinnung genutzt,<br />

um industrielle Prozesse steu<strong>er</strong>n zu<br />

können. Die V<strong>er</strong>stimmung lässt sich einfach<br />

durch das Einbringen von elektrisch leitend<strong>er</strong><br />

od<strong>er</strong> magnetisch<strong>er</strong> Mat<strong>er</strong>ie in ein elektrische<br />

Hochfrequenzfeld einstellen.<br />

Vorteile induktiv<strong>er</strong> Sensoren bestehen in:<br />

• ein<strong>er</strong> sehr hohen Betriebszuv<strong>er</strong>lässigkeit<br />

• ihr<strong>er</strong> Robustheit gegenüb<strong>er</strong> V<strong>er</strong>schmutzung<br />

• den hohen möglichen Arbeitsfrequenzen<br />

• dem großen Tem<strong>pe</strong>raturb<strong>er</strong>eich<br />

Die Firma Kaschke Components lief<strong>er</strong>t ein<br />

breites Sortiment von Schalenk<strong>er</strong>nen für<br />

Näh<strong>er</strong>ungsschalt<strong>er</strong>, teilweise auch mit zugehörigen<br />

Spulenkör<strong>pe</strong>rn.<br />

Schalenk<strong>er</strong>ne<br />

Pot cores<br />

on and the A L value an the ground core half.<br />

With regard to cores with a symmetrical air<br />

gap, one half of the set has the mat<strong>er</strong>ial s<strong>pe</strong>cification<br />

and the A L value stam<strong>pe</strong>d an it.<br />

Main applications:<br />

• Telecommunications<br />

• Measurement and control engine<strong>er</strong>ing<br />

• Current transform<strong>er</strong>s, pow<strong>er</strong> transform<strong>er</strong>s<br />

(large pot core coils)<br />

• Automation technology<br />

Anoth<strong>er</strong> important area of application for pot<br />

ores are proximity sensors.<br />

From a physical point of view, the defined<br />

mistuning of LC-resonators in inductive sensors<br />

is used to obtain information for controlling<br />

industrial processes. Mistuning can be<br />

achieved by ins<strong>er</strong>ting electrically conductive<br />

or magnetic mat<strong>er</strong>ial into a high-frequency<br />

electric field.<br />

The advantages of inductive sensors are:<br />

• v<strong>er</strong>y high o<strong>pe</strong>rating reliabiIity<br />

• their robustness against dirt<br />

• high o<strong>pe</strong>rating frequencies possible<br />

• large usable tem<strong>pe</strong>rature range<br />

Kaschke Components supplies a wide range<br />

of pot cores for proximity sensors, some of<br />

them including the corresponding coilform<strong>er</strong>s.<br />

221


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

222<br />

Schalenk<strong>er</strong>n SK 9 x 5<br />

Pot core SK 9 x 5<br />

1,25<br />

12,5<br />

10,0<br />

125<br />

1,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1225 ± 25% K 2006 - ≈ 1220 326 090000 026<br />

1250 ± 25% K 2005 - ≈ 1250 326 090000 025<br />

2000 ± 25% K 4000 - ≈ 2000 326 090000 004<br />

3000 ± 30% K 6000 - ≈ 3000 326 090000 006<br />

160 ± 10% K 2005 ≈ 0,06 ≈ 160 326 090160 025<br />

100 ± 5% K 2005 ≈ 0,10 ≈ 100 326 090100 025<br />

63 ± 5% K 2005 ≈ 0,15 ≈ 63 326 090063 025<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

124


125<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht / weight G ≈<br />

Schalenk<strong>er</strong>n SK 11 x 7<br />

Pot core SK 11 x 7<br />

1,0<br />

15,9<br />

15,9<br />

252<br />

2,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

1650 ± 25% K 2006 - ≈ 1300 326 110000 026<br />

1700 ± 25% K 2005 - ≈ 1350 326 110000 025<br />

2800 ± 25% K 4000 - ≈ 2230 326 110000 004<br />

4300 ± 30% K 6000 - ≈ 3420 326 110000 006<br />

250 ± 10% K 2005 ≈ 0,06 ≈ 200 326 110250 025<br />

160 ± 5% K 2005 ≈ 0,10 ≈ 125 326 110160 025<br />

100 ± 3% K 2005 ≈ 0,20 ≈ 80 326 110100 025<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

223


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

224<br />

Schalenk<strong>er</strong>n SK 14 x 8<br />

Pot core SK 14 x 8<br />

0,8<br />

20,0<br />

25,0<br />

500<br />

4,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2200 ± 25% K 2006 - ≈ 1400 326 140000 026<br />

2250 ± 25% K 2005 - ≈ 1430 326 140000 025<br />

3600 ± 25% K 4000 - ≈ 2300 326 140000 004<br />

5300 ± 30% K 6000 - ≈ 3380 326 140000 006<br />

315 ± 10% K 2005 ≈ 0,07 ≈ 200 326 140315 025<br />

250 ± 5% K 2005 ≈ 0,10 ≈ 160 326 140250 025<br />

160 ± 3% K 2005 ≈ 0,17 ≈ 100 326 140160 025<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

126


127<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht / weight G ≈<br />

Schalenk<strong>er</strong>n SK 18 x 11<br />

Pot core SK 18 x 11<br />

0,6<br />

25,9<br />

43,0<br />

1120<br />

7,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

2950 ± 25% K 2006 - ≈ 1400 326 180000 026<br />

3000 ± 25% K 2005 - ≈ 1430 326 180000 025<br />

5200 ± 25% K 4000 - ≈ 2500 326 180000 004<br />

7500 ± 25% K 6000 - ≈ 3580 326 180000 006<br />

400 ± 10% K 2005 ≈ 0,10 ≈ 190 326 180400 025<br />

315 ± 5% K 2005 ≈ 0,13 ≈ 150 326 180315 025<br />

250 ± 3% K 2005 ≈ 0,18 ≈ 120 326 180250 025<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

225


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

226<br />

Schalenk<strong>er</strong>n SK 22 x 13<br />

Pot core SK 22 x 13<br />

0,5<br />

31,6<br />

63,0<br />

2000<br />

14,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

3800 ± 25% K 2006 - ≈ 1500 326 220000 026<br />

3850 ± 25% K 2005 - ≈ 1530 326 220000 025<br />

6400 ± 25% K 4000 - ≈ 2550 326 220000 004<br />

9000 ± 25% K 6000 - ≈ 3580 326 220000 006<br />

630 ± 5% K 2005 ≈ 0,10 ≈ 250 326 220630 025<br />

400 ± 3% K 2005 ≈ 0,16 ≈ 160 326 220400 025<br />

250 ± 3% K 2005 ≈ 0,28 ≈ 100 326 220250 025<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

128


129<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht / weight G ≈<br />

Schalenk<strong>er</strong>n SK 26 x 16<br />

Pot core SK 26 x 16<br />

0,4<br />

37,2<br />

93,0<br />

3460<br />

23,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

4900 ± 25% K 2006 - ≈ 1550 326 260000 026<br />

5000 ± 25% K 2005 - ≈ 1600 326 260000 025<br />

8100 ± 25% K 4000 - ≈ 2580 326 260000 004<br />

11600 ± 25% K 6000 - ≈ 3700 326 260000 006<br />

800 ± 10% K 2005 ≈ 0,10 ≈ 250 326 260800 025<br />

630 ± 5% K 2005 ≈ 0,13 ≈ 200 326 260630 025<br />

400 ± 3% K 2005 ≈ 0,24 ≈ 125 326 260400 025<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

227


Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn.volume V e =<br />

Gewicht / weight G ≈<br />

228<br />

Schalenk<strong>er</strong>n SK 30 x 19<br />

Pot core SK 30 x 19<br />

0,33<br />

45,0<br />

136<br />

6100<br />

36,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

5900 ± 25% K 2006 - ≈ 1550 326 300000 026<br />

6000 ± 25% K 2005 - ≈ 1580 326 300000 025<br />

9750 ± 25% K 4000 - ≈ 2560 326 300000 004<br />

13700 ± 25% K 6000 - ≈ 3600 326 300000 006<br />

1000 ± 5% K 2005 ≈ 0,12 ≈ 260 326 301000 025<br />

630 ± 3% K 2005 ≈ 0,22 ≈ 165 326 300630 025<br />

250 ± 3% K 2005 ≈ 0,70 ≈ 65 326 300250 025<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

130


131<br />

Magn. Formkenngrößen/Satz / eff. magn. paramet<strong>er</strong>s/set<br />

Formfaktor / core factor C 1 =<br />

Eff. magn. Weglänge / eff. magn. path length l e =<br />

Eff. magn. Qu<strong>er</strong>schnitt / eff. magn. cross section A e =<br />

Eff. magn. Volumen / eff. magn. volume V e =<br />

Gewicht / weight G ≈<br />

Schalenk<strong>er</strong>n SK 36 x 22<br />

Pot core SK 36 x 22<br />

0,26<br />

52,0<br />

202<br />

10600<br />

60,0<br />

A L -W<strong>er</strong>t Tol<strong>er</strong>anz W<strong>er</strong>kstoff Luftspalt µ e Bestellnumm<strong>er</strong><br />

A L value tol<strong>er</strong>ance mat<strong>er</strong>ial airgap ord<strong>er</strong> numb<strong>er</strong><br />

nH mm<br />

9450 ± 25% K 2006 - ≈ 1530 326 360000 026<br />

11500 ± 25% K 2005 - ≈ 1550 326 360000 025<br />

15000 ± 25% K 4000 - ≈ 2500 326 360000 004<br />

18500 ±25% K 6000 - ≈ 3600 326 360000 006<br />

1250 ± 5% K 2005 ≈ 0,16 ≈ 260 326 361250 025<br />

800 ± 5% K 2005 ≈ 0,28 ≈ 165 326 360800 025<br />

400 ± 3% K 2005 ≈ 0,65 ≈ 83 326 360400 025<br />

mm -1<br />

mm<br />

mm 2<br />

mm 3<br />

g<br />

229


SKN 9/2,7<br />

SKN 9/4,6<br />

230<br />

Schalenk<strong>er</strong>ne für Näh<strong>er</strong>ungsschalt<strong>er</strong><br />

Pot cores for proximity switches<br />

W<strong>er</strong>kstoff Gewicht Bestellnumm<strong>er</strong><br />

mat<strong>er</strong>ial weight ord<strong>er</strong> numb<strong>er</strong><br />

g<br />

K 2004 ≈ 0,5 336 090300 024<br />

K 2005 ≈ 0,5 336 090300 025<br />

W<strong>er</strong>kstoff Gewicht Bestellnumm<strong>er</strong><br />

mat<strong>er</strong>ial weight ord<strong>er</strong> numb<strong>er</strong><br />

g<br />

K 2004 ≈ 0,7 336 094600 024<br />

138<br />

140


671<br />

Schalenk<strong>er</strong>ne für Näh<strong>er</strong>ungsschalt<strong>er</strong><br />

Pot cores for proximity switches<br />

W<strong>er</strong>kstoff Gewicht Bestellnumm<strong>er</strong><br />

mat<strong>er</strong>ial weight ord<strong>er</strong> numb<strong>er</strong><br />

g<br />

K 2004 ≈ 0,75 336 924612 024<br />

672<br />

W<strong>er</strong>kstoff Gewicht Bestellnumm<strong>er</strong><br />

mat<strong>er</strong>ial weight ord<strong>er</strong> numb<strong>er</strong><br />

g<br />

K 2005 ≈ 1,75 336 134200 025<br />

SKN 9,2/4,6<br />

SKN 13,4/4,2<br />

231


232<br />

Schalenk<strong>er</strong>ne für Näh<strong>er</strong>ungsschalt<strong>er</strong><br />

Pot cores for proximity switches<br />

SKN 13,4/7,5<br />

W<strong>er</strong>kstoff Gewicht Bestellnumm<strong>er</strong><br />

mat<strong>er</strong>ial weight ord<strong>er</strong> numb<strong>er</strong><br />

g<br />

K 2004 ≈ 2,5 336 130700 024<br />

K 2005 ≈ 2,5 336 130700 025<br />

SKN 14/4,5<br />

W<strong>er</strong>kstoff Gewicht Bestellnumm<strong>er</strong><br />

mat<strong>er</strong>ial weight ord<strong>er</strong> numb<strong>er</strong><br />

g<br />

K 2004 ≈ 1,7 336 144500 024<br />

K 2005 ≈ 1,7 336 144500 025<br />

K 4000 ≈ 1,7 336 144500 004<br />

143<br />

144


145<br />

Schalenk<strong>er</strong>ne für Näh<strong>er</strong>ungsschalt<strong>er</strong><br />

Pot cores for proximity switches<br />

W<strong>er</strong>kstoff Gewicht Bestellnumm<strong>er</strong><br />

mat<strong>er</strong>ial weight ord<strong>er</strong> numb<strong>er</strong><br />

g<br />

K 2004 ≈ 336 180500 024<br />

K 2005 ≈ 336 180500 025<br />

K 4000 ≈ 336 180500 004<br />

146<br />

W<strong>er</strong>kstoff Gewicht Bestellnumm<strong>er</strong><br />

mat<strong>er</strong>ial weight ord<strong>er</strong> numb<strong>er</strong><br />

g<br />

K 2004 ≈ 336 220600 024<br />

K 2005 ≈ 336 220600 025<br />

K 4000 ≈ 336 220600 004<br />

SKN 18/5,5<br />

SKN 22/6,5<br />

233


234<br />

Schalenk<strong>er</strong>ne für Näh<strong>er</strong>ungsschalt<strong>er</strong><br />

Pot cores for proximity switches<br />

SKN 25/8,9<br />

W<strong>er</strong>kstoff Gewicht Bestellnumm<strong>er</strong><br />

mat<strong>er</strong>ial weight ord<strong>er</strong> numb<strong>er</strong><br />

g<br />

K 2004 ≈ 10 336 250900 024<br />

SKN 35/11<br />

W<strong>er</strong>kstoff Gewicht Bestellnumm<strong>er</strong><br />

mat<strong>er</strong>ial weight ord<strong>er</strong> numb<strong>er</strong><br />

g<br />

K 2005 ≈ 30,0 336 351129 025<br />

147<br />

673


150<br />

Schalenk<strong>er</strong>ne für Näh<strong>er</strong>ungsschalt<strong>er</strong><br />

Pot cores for proximity switches<br />

W<strong>er</strong>kstoff Gewicht Bestellnumm<strong>er</strong><br />

mat<strong>er</strong>ial weight ord<strong>er</strong> numb<strong>er</strong><br />

g<br />

K 2004 ≈ 32 336 360130 024<br />

695<br />

W<strong>er</strong>kstoff Gewicht Bestellnumm<strong>er</strong><br />

mat<strong>er</strong>ial weight ord<strong>er</strong> numb<strong>er</strong><br />

g<br />

K 2004 ≈ 140 336 591849 024<br />

SKN 36/11-4FL<br />

SKN 59,3/17,8<br />

235


236<br />

Schalenk<strong>er</strong>ne für Näh<strong>er</strong>ungsschalt<strong>er</strong><br />

Pot cores for proximity switches<br />

SKN 70/12,5<br />

W<strong>er</strong>kstoff Gewicht Bestellnumm<strong>er</strong><br />

mat<strong>er</strong>ial weight ord<strong>er</strong> numb<strong>er</strong><br />

g<br />

K 4000 ≈ 140 336 701214 004<br />

SKN 70/14,5<br />

W<strong>er</strong>kstoff Gewicht Bestellnumm<strong>er</strong><br />

mat<strong>er</strong>ial weight ord<strong>er</strong> numb<strong>er</strong><br />

g<br />

K 2004 ≈ 155 336 701414 024<br />

K 2005 ≈ 155 336 701414 025<br />

K 4000 ≈ 155 336 701414 004<br />

674<br />

152


153<br />

Schalenk<strong>er</strong>ne für Näh<strong>er</strong>ungsschalt<strong>er</strong><br />

Pot cores for proximity switches<br />

W<strong>er</strong>kstoff Gewicht Bestellnumm<strong>er</strong><br />

mat<strong>er</strong>ial weight ord<strong>er</strong> numb<strong>er</strong><br />

g<br />

K 2004 ≈ 240 336 821615 024<br />

K 4000 ≈ 240 336 821615 004<br />

675<br />

W<strong>er</strong>kstoff Gewicht Bestellnumm<strong>er</strong><br />

mat<strong>er</strong>ial weight ord<strong>er</strong> numb<strong>er</strong><br />

g<br />

K 300 ≈ 250 336 851615 300<br />

SKN 82/16<br />

SKN 85/16<br />

237


238


RINGKERNE<br />

RING CORES<br />

239


240<br />

Ringk<strong>er</strong>ne<br />

Ring cores<br />

VII. Ringk<strong>er</strong>ne<br />

Allgemeines<br />

Ringk<strong>er</strong>ne finden vielfältig V<strong>er</strong>wendung für<br />

den Aufbau von Induktivitäten defini<strong>er</strong>ten<br />

L-W<strong>er</strong>tes, vorgegeben<strong>er</strong> Frequenzstabilität<br />

sowie th<strong>er</strong>misch<strong>er</strong> und zeitlich<strong>er</strong> Konstanz.<br />

Als W<strong>er</strong>kstoffe für Ringk<strong>er</strong>ne w<strong>er</strong>den mittel-<br />

und hoch<strong>pe</strong>rmeable Mangan-Zink-F<strong>er</strong>rite<br />

und mittel- bis nied<strong>er</strong><strong>pe</strong>rmeable Nickel-Zink-<br />

F<strong>er</strong>rite v<strong>er</strong>wendet.<br />

Zu empfehlende W<strong>er</strong>kstoffe sind:<br />

Für den Aufbau von Üb<strong>er</strong>trag<strong>er</strong>n hoh<strong>er</strong><br />

Symmetrie, für Impuls- und Breitbandüb<strong>er</strong>trag<strong>er</strong>,<br />

für stromkom<strong>pe</strong>nsi<strong>er</strong>te Drosseln zur<br />

Funkentstörung und nunmehr auch zunehmend<br />

zur Entwicklung von Leistungsüb<strong>er</strong>trag<strong>er</strong>n<br />

w<strong>er</strong>den vorwiegend Ringk<strong>er</strong>ne aus<br />

Leistungsf<strong>er</strong>rit v<strong>er</strong>wendet. Dabei sollten für<br />

die W<strong>er</strong>kstoffe K2001, K2004, K2006 und<br />

K2008 folgende Anwendungsfrequenzen<br />

gewählt w<strong>er</strong>den:<br />

Zur V<strong>er</strong>hind<strong>er</strong>ung von Kurzschlüssen beim<br />

Bewickeln und zur Erhöhung d<strong>er</strong> Durchschlagsfestigkeit<br />

können Ringk<strong>er</strong>ne auch<br />

mit Lack- od<strong>er</strong> Polyamid-Beschichtung gelief<strong>er</strong>t<br />

w<strong>er</strong>den. Abmessungen und Isolation<br />

d<strong>er</strong> F<strong>er</strong>ritringk<strong>er</strong>ne richten sich nach IEC<br />

61604.<br />

VII. Ring cores<br />

Gen<strong>er</strong>al<br />

Ring cores are frequently used for inductors<br />

with a defined L value, predet<strong>er</strong>mined frequency<br />

stability and th<strong>er</strong>mal and temporal<br />

constancy.<br />

Medium and high <strong>pe</strong>rm manganese-zinc f<strong>er</strong>rites<br />

and medium to low <strong>pe</strong>rm nickel-zinc f<strong>er</strong>rites<br />

are the <strong>mat<strong>er</strong>ials</strong> used for ring cores.<br />

The recommended <strong>mat<strong>er</strong>ials</strong> are:<br />

Frequenzb<strong>er</strong>eich W<strong>er</strong>kstoff<br />

Frequency range Mat<strong>er</strong>ial<br />

10 kHz - 1 MHz K2005, K4000, K5500, K6000, K8000.<br />

K10000, K15000<br />

1 MHz - 200 MHz K40, K250, K800<br />

Frequenzb<strong>er</strong>eich W<strong>er</strong>kstoff<br />

Frequency range Mat<strong>er</strong>ial<br />

20-100 kHz K2004<br />

50-300 kHz K2006<br />

50-500 kHz K2008<br />

300-1000 kHz K2001<br />

F<strong>er</strong>rite ring cores are used for highly symmetrical<br />

transform<strong>er</strong>s, for impulse and wideband<br />

transform<strong>er</strong>s, for common-mode chokes<br />

for damping of radio int<strong>er</strong>f<strong>er</strong>ence and<br />

now increasingly also for the development of<br />

pow<strong>er</strong> transform<strong>er</strong>s.<br />

The following favourable frequency ranges<br />

are predet<strong>er</strong>mined for <strong>mat<strong>er</strong>ials</strong> K2001,<br />

K2004, K2006 and K2008:<br />

In ord<strong>er</strong> to prevent short-circuits when winding<br />

and to increase the insulation strength,<br />

ring cores can also be supplied with lacqu<strong>er</strong><br />

or polyamide coating. Dimensions and insulation<br />

of f<strong>er</strong>rite ring cores are in compliance<br />

with IEC 61604.


Ringk<strong>er</strong>ne sind in folgenden Ausführungen<br />

lief<strong>er</strong>bar:<br />

Wenn nicht and<strong>er</strong>s v<strong>er</strong>einbart gelten für die<br />

Durchschlagsfestigkeit von beschichteten<br />

Ringk<strong>er</strong>nen:<br />

Im Falle von Wechselstromprüfungen gelten<br />

die Isolationsfestigkeiten für den Effektivw<strong>er</strong>t.<br />

Die Prüfvorrichtung für beschichtete<br />

Ringk<strong>er</strong>ne entspricht d<strong>er</strong> IEC 61604 und ist<br />

d<strong>er</strong> nachstehenden Darstellung zu entnehmen<br />

.<br />

Ringk<strong>er</strong>ne<br />

Ring cores<br />

The following ring core v<strong>er</strong>sions can be supplied:<br />

Klassifikationsnumm<strong>er</strong> V<strong>er</strong>sion<br />

Classification numb<strong>er</strong> V<strong>er</strong>sion<br />

317 Lack- od<strong>er</strong> Parylenebeschichtet<br />

lacqu<strong>er</strong> or parylene coated<br />

318 unbeschichtet / uncoated<br />

319 Polyamidbeschichtet / polyamide coated<br />

If not oth<strong>er</strong>wise agreed upon, the following<br />

electrical insulation strenghts apply to coated<br />

toroids:<br />

Aussendurchmess<strong>er</strong> / out<strong>er</strong> diamet<strong>er</strong> ≤ 10 mm: ≥ 1,0 kV<br />

Aussendurchmess<strong>er</strong> / out<strong>er</strong> diamet<strong>er</strong> ≤ 20 mm: ≥ 1,5 kV<br />

Aussendurchmess<strong>er</strong> / out<strong>er</strong> diamet<strong>er</strong> > 20mm: ≥ 2,0 kV<br />

In the case of AC tests, the insulation<br />

strengths apply to the effective value. The<br />

testing device for coated ring cores is illustrated<br />

in the following figures. It complies with<br />

IEC 61604.<br />

241


Die nachstehenden Tabellen beinhalten<br />

eine Lief<strong>er</strong>üb<strong>er</strong>sicht zu F<strong>er</strong>ritk<strong>er</strong>nty<strong>pe</strong>n und<br />

eine Zusammenstellung d<strong>er</strong> A L -W<strong>er</strong>te für<br />

unt<strong>er</strong>schiedliche Ringk<strong>er</strong>ngeometrien und<br />

W<strong>er</strong>kstoffe.<br />

Nickel-Zink-F<strong>er</strong>rite w<strong>er</strong>den aufgrund ihres<br />

hohen elektrischen Wid<strong>er</strong>standes ohne Beschichtung<br />

b<strong>er</strong>eitgestellt. Mangan-Zink-F<strong>er</strong>rite<br />

können dagegen mit Lackbeschichtung<br />

gelief<strong>er</strong>t w<strong>er</strong>den. Die Beschichtung führt bei<br />

den Ringk<strong>er</strong>nen in d<strong>er</strong> Regel zu einem P<strong>er</strong>meabilitätsv<strong>er</strong>lust,<br />

d<strong>er</strong> gesond<strong>er</strong>te V<strong>er</strong>einbarungen<br />

zum A L -W<strong>er</strong>t notwendig macht.<br />

Die angegebenen K<strong>er</strong>nhöhen stellen Orienti<strong>er</strong>ungsw<strong>er</strong>te<br />

dar und können auf Anfrage<br />

v<strong>er</strong>änd<strong>er</strong>t w<strong>er</strong>den.<br />

Die garanti<strong>er</strong>ten Kennw<strong>er</strong>te für Leistungsanwendungen<br />

gelten für die vom H<strong>er</strong>stell<strong>er</strong><br />

vorgegebenen Wickeldaten, die festgelegte<br />

Prüffrequenz, Aussteu<strong>er</strong>ung und Tem<strong>pe</strong>ratur.<br />

Bezüglich d<strong>er</strong> Anwendung von Ringk<strong>er</strong>nen<br />

in stromkom<strong>pe</strong>nsi<strong>er</strong>ten Drosseln sowie<br />

Stromwandl<strong>er</strong>n und Üb<strong>er</strong>trag<strong>er</strong>n für die<br />

Lichttechnik v<strong>er</strong>weisen wir auf uns<strong>er</strong>e Broschüren<br />

„Induktivitäten für die Entstörung“<br />

und „Induktive Bauelemente für die Lichttechnik“.<br />

242<br />

Ringk<strong>er</strong>ne<br />

Ring cores<br />

The following tables contain an ov<strong>er</strong>view of<br />

the f<strong>er</strong>rite core ty<strong>pe</strong>s supplied and a list of<br />

the A L values for diff<strong>er</strong>ent ring core geometries<br />

and <strong>mat<strong>er</strong>ials</strong>.<br />

Nickel-zinc f<strong>er</strong>rites are supplied without coating<br />

due to their high electrical resistance.<br />

In contrast, manganese-zinc f<strong>er</strong>rites can be<br />

supplied with lacqu<strong>er</strong> coating. The coating<br />

gen<strong>er</strong>ally leads to a decrease in <strong>pe</strong>rmeability<br />

which calls for s<strong>pe</strong>cial agreements conc<strong>er</strong>ning<br />

the A L value.<br />

The stated core heights are for orientation<br />

and can be changed on request.<br />

The guaranteed paramet<strong>er</strong>s for pow<strong>er</strong> applications<br />

apply to the winding data stated by<br />

the manufactur<strong>er</strong>, the predet<strong>er</strong>mined testing<br />

frequency, excitation and tem<strong>pe</strong>rature.<br />

With regard to the application of ring cores<br />

in common-mode chokes or in current conv<strong>er</strong>t<strong>er</strong>s<br />

and transform<strong>er</strong>s please see our<br />

brochures „Inductive Components for EMC“<br />

and „Inductive Components for Lighting<br />

Technology“.


K<strong>er</strong>ntyp<br />

core ty<strong>pe</strong><br />

ohne<br />

without<br />

318 ...<br />

Parylene<br />

parylene<br />

317 ...<br />

Ringk<strong>er</strong>ne - Üb<strong>er</strong>sicht<br />

Ring cores - ov<strong>er</strong>view<br />

Beschichtung<br />

coating<br />

Lack<br />

lacqu<strong>er</strong><br />

317 ...<br />

Polyamid<br />

polyamide<br />

319 ...<br />

Seite<br />

page<br />

R 2,5/1,5/1 • • 245<br />

R 3,5/1,8/2,4 • • 245<br />

R 4,1/2,2/1,6 • • 246<br />

R 4,1/2,2/3,6 • • 246<br />

R 5,8/3/1,5 • • 247<br />

R 6,3/3,8/2,5 • • 247<br />

R 6,3/3,8/3,5 • • 248<br />

R 8/4/3 • • 248<br />

R 8/4/3,8 • • 249<br />

R 10/6/4 • • 249<br />

R 10/6/5 • • 250<br />

R 12,5/7,5/5 • • • 250<br />

R 14/9/5 • • • 251<br />

R 14/9/6 • • • 251<br />

R 14/9/9 • • • 252<br />

R 16/9,6/6,3 • • • 252<br />

R 19/11/8 • • • 253<br />

R 20/10/7,4 • • 253<br />

R 20/10/10 • • 254<br />

R 21,5/10,3/7,5 • • 254<br />

R 21,5/10,3/12 • • 255<br />

R 22/10/6 • • 255<br />

R 22/10/9 • • 256<br />

R 23/14/7 • • 256<br />

R 25/15/10 • • 257<br />

R 25/15/15 • • 257<br />

R 26/14,5/10 • • 258<br />

R 26/14,5/15 • • 258<br />

R 26/14,5/20 • • 259<br />

R 27/14,5/8,5 • • 259<br />

R 27/14,5/12 • • 260<br />

R 27/14,5/15 • • 260<br />

R 27/14,5/19 • • 261<br />

R 28/18/19 • • 261<br />

243


K<strong>er</strong>ntyp<br />

core ty<strong>pe</strong><br />

244<br />

Ringk<strong>er</strong>ne - Üb<strong>er</strong>sicht<br />

Ring cores - ov<strong>er</strong>view<br />

ohne<br />

without<br />

318 ...<br />

Parylene<br />

parylene<br />

317 ...<br />

Beschichtung<br />

coating<br />

Lack<br />

lacqu<strong>er</strong><br />

317 ...<br />

Polyamid<br />

polyamide<br />

319 ...<br />

Seite<br />

page<br />

R 29/19/7,5 • • 262<br />

R 29/19/15 • • 262<br />

R 30/11,5/5,3 • • 263<br />

R 30/11,5/6,1 • • 263<br />

R 30/11,5/6,6 • • 264<br />

R 31,5/19/12,5 • • 264<br />

R 31,5/19/20 • • 265<br />

R 31,5/19/24 • • 265<br />

R 32,5/13/7 • • 266<br />

R 32,5/13/8,5 • • 266<br />

R 34/20,5/12,5 • • 267<br />

R 34/20,5/15 • • 267<br />

R 36/23/15 • • 268<br />

R 36/23/20 • • 268<br />

R 40/24/16 • • 269<br />

R 42/26/12,5 • • 269<br />

R 50/30/20 • • 270<br />

R 56/32/18 • • 270<br />

R 58,3/40,8/17,6 • • 271<br />

R 63/38/12,5 • • 271<br />

R 63/38/25 • • 272<br />

R 80/40/15 • • 272<br />

R 80/40/20 • • 273<br />

R 102/65,8/15 • • 273


Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

12,3<br />

6,02<br />

0,49<br />

2,9<br />

G ≈ 0,01 g<br />

601<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

3,94<br />

7,74<br />

1,97<br />

15,2<br />

G ≈ 0,07 g<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Ringk<strong>er</strong>ne R 2,5 und R 3,5<br />

Ring cores R 2.5 and R 3.5<br />

beschichtet<br />

coated<br />

R 2,5/1,5/1<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2500 250 nH ± 25 % ± 25 % xxx 250210 052<br />

K 4000 410 nH ± 25 % ± 25 % xxx 250210 004<br />

K 6000 610 nH ± 25 % ± 30 % xxx 250210 006<br />

K 10000 1020 nH ± 30 % + 30% / - 40% xxx 250210 100<br />

K 15000 1500 nH ± 30 % + 30% / - 40% xxx 250210 315<br />

602<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

R 3,5/1,8/2,4<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 670 nH ± 25 % ± 25 % xxx 351824 026<br />

K 4000 1250 nH ± 25 % ± 25 % xxx 351824 004<br />

K 6000 1900 nH ± 25 % ± 30 % xxx 351824 006<br />

K 10000 3150 nH ± 30 % + 30% / - 40% xxx 351824 100<br />

K 15000 4750 nH ± 30 % + 30% / - 40% xxx 351824 315<br />

245


R 4,1/2,2/1,6<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

R 4,1/2,2/3,6<br />

246<br />

Ringk<strong>er</strong>ne R 4,1<br />

Ring cores R 4.1<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

6,33<br />

9,28<br />

1,47<br />

13,6<br />

G ≈ 0,07 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 420 nH ± 25 % ± 25 % xxx 412216 026<br />

K 4000 800 nH ± 25 % ± 25 % xxx 412216 004<br />

K 6000 1200 nH ± 25 % ± 30 % xxx 412216 006<br />

K 10000 2000 nH ± 30 % +30% / -40% xxx 412216 100<br />

K 15000 3000 nH ± 30 % +30% / -40% xxx 412216 315<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

2,81<br />

9,28<br />

3,31<br />

30,7<br />

G ≈ 0,15 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 950 nH ± 25 % ± 25 % xxx 412236 026<br />

K 4000 1800 nH ± 25 % ± 25 % xxx 412236 004<br />

K 6000 2650 nH ± 25 % ± 30 % xxx 412236 006<br />

K 10000 4450 nH ± 30 % +30% / -40% xxx 412236 100<br />

K 15000 6700 nH ± 30 % +30% / -40% xxx 412236 315<br />

603<br />

604


Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

6,38<br />

12,87<br />

2,0<br />

25,9<br />

G ≈ 0,12 g<br />

605<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

5,0<br />

15,21<br />

3,04<br />

46,3<br />

G ≈ 0,2 g<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Ringk<strong>er</strong>ne R 5,8 und R 6,3<br />

Ring cores R 5.8 and R 6.3<br />

beschichtet<br />

coated<br />

R 5,8/3/1,5<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 420 nH ± 25 % ± 25 % xxx 583015 026<br />

K 4000 800 nH ± 25 % ± 25 % xxx 583015 004<br />

K 6000 1150 nH ± 25 % ± 30 % xxx 583015 006<br />

K 10000 1950 nH ± 30 % +30% / -40% xxx 583015 100<br />

K 15000 2950 nH ± 30 % +30% / -40% xxx 583015 315<br />

606<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

R 6,3/3,8/2,5<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 530 nH ± 25 % ± 25 % xxx 063825 026<br />

K 4000 1000 nH ± 25 % ± 25 % xxx 063825 004<br />

K 6000 1500 nH ± 25 % ± 30 % xxx 063825 006<br />

K 10000 2500 nH ± 30 % +30% / -40% xxx 063825 100<br />

K 15000 3750 nH ± 30 % +30% / -40% xxx 063825 315<br />

247


R 6,3/3,8/3,5<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

R 8/4/3<br />

248<br />

Ringk<strong>er</strong>ne R 6,3 und R 8<br />

Ring cores R 6.3 and R 8<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

3,56<br />

15,2<br />

4,27<br />

64,9<br />

G ≈ 0,3 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 750 nH ± 25 % ± 25 % xxx 063835 026<br />

K 4000 1400 nH ± 25 % ± 25 % xxx 063835 004<br />

K 6000 2100 nH ± 25 % ± 30 % xxx 063835 006<br />

K 10000 3500 nH ± 30 % +30% / -40% xxx 063835 100<br />

K 15000 5300 nH ± 30 % +30% / -40% xxx 063835 315<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

3,03<br />

17,42<br />

5,75<br />

100,0<br />

G ≈ 0,5 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 870 nH ± 25 % ± 25 % xxx 080403 026<br />

K 4000 1650 nH ± 25 % ± 25 % xxx 080403 004<br />

K 6000 2500 nH ± 25 % ± 30 % xxx 080403 006<br />

K 10000 4150 nH ± 30 % +30% / -40% xxx 080403 100<br />

K 15000 6200 nH ± 30 % +30% / -40% xxx 080403 315<br />

607<br />

608


Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

2,39<br />

17,42<br />

7,29<br />

127,0<br />

G ≈ 0,6 g<br />

609<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

3,08<br />

24,07<br />

7,8<br />

188,0<br />

G ≈ 0,9 g<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Ringk<strong>er</strong>ne R 8 und R 10<br />

Ring cores R 8 and R 10<br />

beschichtet<br />

coated<br />

R 8/4/3,8<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 1100 nH ± 25 % ± 25 % xxx 080438 026<br />

K 4000 2100 nH ± 25 % ± 25 % xxx 080438 004<br />

K 6000 3150 nH ± 25 % ± 30 % xxx 080438 006<br />

K 10000 5250 nH ± 30 % +30% / -40% xxx 080438 100<br />

K 15000 7900 nH ± 30 % +30% / -40% xxx 080438 315<br />

610<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

R 10/6/4<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 850 nH ± 25 % ± 25 % xxx 100604 026<br />

K 4000 1600 nH ± 25 % ± 25 % xxx 100604 004<br />

K 6000 2450 nH ± 30 % ± 30 % xxx 100604 006<br />

K 10000 4050 nH ± 30 % +30% / -40% xxx 100604 100<br />

K 15000 6100 nH ± 30 % +30% / -40% xxx 100604 315<br />

249


R 10/6/5<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

R 12,5/7,5/5<br />

250<br />

Ringk<strong>er</strong>ne R 10 und R 12,5<br />

Ring cores R 10 and R 12.5<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

2,46<br />

24,07<br />

9,8<br />

235,0<br />

G ≈ 1,1 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 1050 nH ± 25 % ± 25 % xxx 100605 026<br />

K 4000 2000 nH ± 25 % ± 25 % xxx 100605 004<br />

K 6000 3050 nH ± 25 % ± 30 % xxx 100605 006<br />

K 10000 5100 nH ± 30 % +30% / -40% xxx 100605 100<br />

K 15000 7650 nH ± 30 % +30% / -40% xxx 100605 315<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

2,47<br />

30,1<br />

12,2<br />

367<br />

G ≈ 1,8 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 1050 nH ± 25 % ± 25 % xxx 120705 026<br />

K 4000 2000 nH ± 25 % ± 25 % xxx 120705 004<br />

K 6000 3050 nH ± 25 % ± 30 % xxx 120705 006<br />

K 10000 5100 nH ± 30 % +30% / -40% xxx 120705 100<br />

K 15000 7650 nH ± 30 % +30% / -40% xxx 120705 315<br />

611<br />

612


Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

2,85<br />

35,0<br />

12,3<br />

429<br />

G ≈ 2,8 g<br />

615<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

2,37<br />

35,0<br />

14,7<br />

516<br />

G ≈ 2,5 g<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

Ringk<strong>er</strong>ne R 14<br />

Ring cores R 14<br />

R 14/9/5<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 930 nH ± 25 % ± 25 % xxx 140905 026<br />

K 4000 1750 nH ± 25 % ± 25 % xxx 140905 004<br />

K 5500 2400 nH ± 25 % ± 25 % xxx 140905 055<br />

K 6000 2650 nH ± 25 % ± 30 % xxx 140905 006<br />

K 10000 4400 nH ± 30 % +30% / -40% xxx 140905 100<br />

681<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

R 14/9/6<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 1100 nH ± 25 % ± 25 % xxx 140906 026<br />

K 4000 2100 nH ± 25 % ± 25 % xxx 140906 004<br />

K 5500 2900 nH ± 25 % ± 25 % xxx 140906 055<br />

K 6000 3150 nH ± 25 % ± 30 % xxx 140906 006<br />

K 10000 5300 nH ± 30 % +30% / -40% xxx 140906 100<br />

251


R 14/9/9<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

252<br />

Ringk<strong>er</strong>ne R 14 und R 16<br />

Ring cores R 14 and R 16<br />

A L -W<strong>er</strong>t<br />

A L value<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,58<br />

35,0<br />

22,1<br />

773<br />

G ≈ 3,7 g<br />

beschichtet<br />

coated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,96<br />

38,5<br />

19,7<br />

757<br />

G ≈ 3,6 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 1650 nH ± 25 % ± 25 % xxx 140909 026<br />

K 4000 3150 nH ± 25 % ± 25 % xxx 140909 004<br />

K 5500 4350 nH ± 25 % ± 25 % xxx 140909 055<br />

K 6000 4750 nH ± 25 % ± 30 % xxx 140909 006<br />

K 10000 7950 nH ± 30 % +30% / -40% xxx 140909 100<br />

R 16/9,6/6,3<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 1350 nH ± 25 % ± 25 % xxx 160906 026<br />

K 4000 2550 nH ± 25 % ± 25 % xxx 160906 004<br />

K 5500 3500 nH ± 25 % ± 25 % xxx 160906 055<br />

K 6000 3850 nH ± 25 % ± 30 % xxx 160906 006<br />

K 10000 6400 nH ± 30 % +30% / -40% xxx 160906 100<br />

616<br />

617


Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,44<br />

44,9<br />

31,2<br />

1400<br />

G ≈ 6,7 g<br />

619<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,23<br />

43,6<br />

35,5<br />

1545<br />

G ≈ 7,4 g<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Ringk<strong>er</strong>ne R 19 und R 20<br />

Ring cores R 19 and R 20<br />

beschichtet<br />

coated<br />

R 19/11/8<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 1800 nH ± 25 % ± 25 % xxx 191108 026<br />

K 4000 3500 nH ± 25 % ± 25 % xxx 191108 004<br />

K 5500 4800 nH ± 25 % ± 25 % xxx 191108 055<br />

K 6000 5200 nH ± 30 % ± 30 % xxx 191108 006<br />

620<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

R 20/10/7,4<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 2150 nH ± 25 % ± 25 % xxx 201074 026<br />

K 4000 4100 nH ± 25 % ± 25 % xxx 201074 004<br />

K 5500 5600 nH ± 25 % ± 25 % xxx 201074 055<br />

K 6000 6150 nH ± 25 % ± 30 % xxx 201074 006<br />

K 10000 10250 nH ± 30 % +30% / -40% xxx 201074 100<br />

253


R 20/10/10<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

254<br />

Ringk<strong>er</strong>ne R 20 und R 21,5<br />

Ring cores R 20 and R 21.5<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,91<br />

43,6<br />

48,0<br />

2090<br />

G ≈ 10,0 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 2900 nH ± 25 % ± 25 % xxx 201010 026<br />

K 4000 5500 nH ± 25 % ± 25 % xxx 201010 004<br />

K 5500 7600 nH ± 25 % ± 25 % xxx 201010 055<br />

K 6000 8300 nH ± 25 % ± 30 % xxx 201010 006<br />

K 10000 13850 nH ± 30 % +30% / -40% xxx 201010 100<br />

R 21,5/10,3/7,5<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,20<br />

45,9<br />

38,2<br />

1750<br />

G ≈ 8,5 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 2200 nH ± 25 % ± 25 % xxx 211075 026<br />

K 4000 4150 nH ± 25 % ± 25 % xxx 211075 004<br />

K 5500 5750 nH ± 25 % ± 25 % xxx 211075 055<br />

K 6000 6250 nH ± 25 % ± 30 % xxx 211075 006<br />

621<br />

622


Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,75<br />

45,9<br />

61,2<br />

2800<br />

G ≈ 13,5 g<br />

682<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,47<br />

45,7<br />

31,2<br />

1430<br />

G ≈ 6,5 g<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Ringk<strong>er</strong>ne R 21,5 und R 22<br />

Ring cores R 21.5 and R 22<br />

beschichtet<br />

coated<br />

R 21,5/10,3/12<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 3450 nH ± 25 % ± 25 % xxx 211012 026<br />

K 4000 6700 nH ± 25 % ± 25 % xxx 211012 004<br />

K 5500 8400 nH ± 25 % ± 25 % xxx 211012 055<br />

K 6000 10050 nH ± 25 % ± 30 % xxx 211012 006<br />

623<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

R 22/10/6<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 1800 nH ± 25 % ± 25 % xxx 221060 026<br />

K 4000 3400 nH ± 25 % ± 25 % xxx 221060 004<br />

K 5500 4700 nH ± 25 % ± 25 % xxx 221060 055<br />

K 6000 5150 nH ± 25 % ± 30 % xxx 221060 006<br />

255


256<br />

Ringk<strong>er</strong>ne R 22 und R 23<br />

Ring cores R 22 and R 23<br />

R 22/10/9<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

R 23/14/7<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,94<br />

45,7<br />

48,6<br />

2220<br />

G ≈ 10,5 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 2800 nH ± 25 % ± 25 % xxx 221090 026<br />

K 4000 5350 nH ± 25 % ± 25 % xxx 221090 004<br />

K 5500 7350 nH ± 25 % ± 25 % xxx 221090 055<br />

K 6000 8000 nH ± 25 % ± 30 % xxx 221090 006<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,81<br />

55,8<br />

30,8<br />

1715<br />

G ≈ 8,2 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 1450 nH ± 25 % ± 25 % xxx 231407 026<br />

K 4000 2750 nH ± 25 % ± 25 % xxx 231407 004<br />

K 5500 3800 nH ± 25 % ± 25 % xxx 231407 055<br />

K 6000 4150 nH ± 25 % ± 30 % xxx 231407 006<br />

624<br />

625


Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,23<br />

60,2<br />

48,8<br />

2940<br />

G ≈ 14,0 g<br />

627<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,82<br />

60,2<br />

73,2<br />

4400<br />

G ≈ 21,0 g<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

Ringk<strong>er</strong>ne R 25<br />

Ring cores R 25<br />

R 25/15/10<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 2100 nH ± 25 % ± 25 % xxx 251510 026<br />

K 4000 4050 nH ± 25 % ± 25 % xxx 251510 004<br />

K 5500 5600 nH ± 25 % ± 25 % xxx 251510 055<br />

K 6000 6100 nH ± 25 % ± 30 % xxx 251510 006<br />

K 10000 10200 nH +25% / -30% +25% / -40% xxx 251510 100<br />

628<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

R 25/15/15<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 3200 nH ± 25 % ± 25 % xxx 251515 026<br />

K 4000 6100 nH ± 25 % ± 25 % xxx 251515 004<br />

K 5500 8400 nH ± 25 % ± 25 % xxx 251515 055<br />

K 6000 9150 nH ± 25 % ± 30 % xxx 251515 006<br />

257


258<br />

Ringk<strong>er</strong>ne R 26<br />

Ring cores R 26<br />

R 26/14,5/10<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

R 26/14,5/15<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,08<br />

60,1<br />

55,7<br />

3350<br />

G ≈ 16,0 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 2450 nH ± 25 % ± 25 % xxx 261410 026<br />

K 4000 4650 nH ± 25 % ± 25 % xxx 261410 004<br />

K 5500 6400 nH ± 25 % ± 25 % xxx 261410 055<br />

K 6000 7000 nH ± 25 % ± 30 % xxx 261410 006<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,72<br />

60,1<br />

83,8<br />

5050<br />

G ≈ 24,0 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 3650 nH ± 25 % ± 25 % xxx 261415 026<br />

K 4000 7000 nH ± 25 % ± 25 % xxx 261415 004<br />

K 5500 9600 nH ± 25 % ± 25 % xxx 261415 055<br />

K 6000 10500 nH ± 25 % ± 30 % xxx 261415 006<br />

629<br />

649


Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,54<br />

60,1<br />

111,6<br />

6710<br />

G ≈ 32,0 g<br />

630<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,26<br />

61,4<br />

48,7<br />

2990<br />

G ≈ 14,5 g<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Ringk<strong>er</strong>ne R 26 und R 27<br />

Ring cores R 26 and R 27<br />

beschichtet<br />

coated<br />

R 26/14,5/20<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 4900 nH ± 25 % ± 25 % xxx 261420 026<br />

K 4000 9300 nH ± 25 % ± 25 % xxx 261420 004<br />

K 5500 12800 nH ± 25 % ± 25 % xxx 261420 055<br />

K 6000 14000 nH ± 25 % ± 30 % xxx 261420 006<br />

631<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

R 27/14,5/8,5<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 2050 nH ± 25 % ± 25 % xxx 271485 026<br />

K 4000 3950 nH ± 25 % ± 25 % xxx 271485 004<br />

K 5500 5450 nH ± 25 % ± 25 % xxx 271485 055<br />

K 6000 5950 nH ± 25 % ± 30 % xxx 271485 006<br />

259


260<br />

Ringk<strong>er</strong>ne R 27<br />

Ring cores R 27<br />

R 27/14,5/12<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

R 27/14,5/15<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,89<br />

61,4<br />

69,2<br />

4250<br />

G ≈ 20,5 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 2950 nH ± 25 % ± 25 % xxx 271412 026<br />

K 4000 5650 nH ± 25 % ± 25 % xxx 271412 004<br />

K 5500 7450 nH ± 25 % ± 25 % xxx 271412 055<br />

K 6000 8500 nH ± 25 % ± 30 % xxx 271412 006<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,71<br />

61,4<br />

86,8<br />

5350<br />

G ≈ 25,5 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 3700 nH ± 25 % ± 25 % xxx 271415 026<br />

K 4000 7100 nH ± 25 % ± 25 % xxx 271415 004<br />

K 5500 9750 nH ± 25 % ± 25 % xxx 271415 055<br />

K 6000 10650 nH ± 25 % ± 30 % xxx 271415 006<br />

632<br />

633


Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,55<br />

61,4<br />

110,9<br />

6810<br />

G ≈ 32,5 g<br />

634<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,74<br />

68,7<br />

93,3<br />

6400<br />

G ≈ 30,5 g<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Ringk<strong>er</strong>ne R 27und R 28<br />

Ring cores R 27 and R 28<br />

beschichtet<br />

coated<br />

R 27/14,5/19<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 4700 nH ± 25 % ± 25 % xxx 271419 026<br />

K 4000 9000 nH ± 25 % ± 25 % xxx 271419 004<br />

K 5500 12400 nH ± 25 % ± 25 % xxx 271419 055<br />

K 6000 13500 nH ± 25 % ± 30 % xxx 271419 006<br />

635<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

R 28/18/19<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 3500 nH ± 25 % ± 25 % xxx 281819 026<br />

K 4000 6700 nH ± 25 % ± 25 % xxx 281819 004<br />

K 5500 9200 nH ± 25 % ± 25 % xxx 281819 055<br />

K 6000 10250 nH ± 25 % ± 30 % xxx 281819 006<br />

261


R 29/19/15<br />

262<br />

Ringk<strong>er</strong>ne R 29<br />

Ring cores R 29<br />

R 29/19/7,5<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,99<br />

73,2<br />

36,8<br />

2700<br />

G ≈ 13,0 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 1300 nH ± 25 % ± 25 % xxx 291975 026<br />

K 4000 2500 nH ± 25 % ± 25 % xxx 291975 004<br />

K 5500 3450 nH ± 25 % ± 25 % xxx 291975 055<br />

K 6000 3800 nH ± 25 % ± 30 % xxx 291975 006<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,99<br />

73,2<br />

73,8<br />

5400<br />

G ≈ 26,0 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 2650 nH ± 25 % ± 25 % xxx 291915 026<br />

K 4000 5050 nH ± 25 % ± 25 % xxx 291915 004<br />

K 5500 6300 nH ± 25 % ± 25 % xxx 291915 055<br />

K 6000 7600 nH ± 25 % ± 30 % xxx 291915 006<br />

683<br />

684


Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,31<br />

56,6<br />

43,3<br />

2450<br />

G ≈ 11,5 g<br />

650<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,14<br />

56,6<br />

49,8<br />

2820<br />

G ≈ 13,5 g<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

Ringk<strong>er</strong>ne R 30<br />

Ring cores R 30<br />

R 30/11,5/5,3<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 2000 nH ± 25 % ± 25 % xxx 301153 026<br />

K 4000 3850 nH ± 25 % ± 25 % xxx 301153 004<br />

K 5500 4800 nH ± 25 % ± 25 % xxx 301153 055<br />

K 6000 5750 nH ± 25 % ± 30 % xxx 301153 006<br />

685<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

R 30/11,5/6,1<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 2300 nH ± 25 % ± 25 % xxx 301161 026<br />

K 4000 4450 nH ± 25 % ± 25 % xxx 301161 004<br />

K 5500 5550 nH ± 25 % ± 25 % xxx 301161 055<br />

K 6000 6650 nH ± 25 % ± 30 % xxx 301161 006<br />

263


264<br />

Ringk<strong>er</strong>ne R 30 und R 31,5<br />

Ring cores R 30 and R 31.5<br />

R 30/11,5/6,6<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,05<br />

56,6<br />

54,0<br />

3050<br />

G ≈ 14,5 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 2500 nH ± 25 % ± 25 % xxx 301166 026<br />

K 4000 4800 nH ± 25 % ± 25 % xxx 301166 004<br />

K 5500 6000 nH ± 25 % ± 25 % xxx 301166 055<br />

K 6000 7200 nH ± 25 % ± 30 % xxx 301166 006<br />

R 31,5/19/12,5<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,00<br />

76,0<br />

76,3<br />

5800<br />

G ≈ 28,0 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 2650 nH ± 25 % ± 25 % xxx 311912 026<br />

K 4000 5050 nH ± 25 % ± 25 % xxx 311912 004<br />

K 5500 6300 nH ± 25 % ± 25 % xxx 311912 055<br />

K 6000 7550 nH ± 25 % ± 30 % xxx 311912 006<br />

686<br />

636


Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,61<br />

76,0<br />

125,0<br />

9500<br />

G ≈ 45,5 g<br />

687<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,51<br />

76,0<br />

149,5<br />

11360<br />

G ≈ 54,5 g<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Ringk<strong>er</strong>ne R 31,5<br />

Ring cores R 31.5<br />

beschichtet<br />

coated<br />

R 31,5/19/20<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 4350 nH ± 25 % ± 25 % xxx 311920 026<br />

K 4000 8250 nH ± 25 % ± 25 % xxx 311920 004<br />

K 5500 10350 nH ± 25 % ± 25 % xxx 311920 055<br />

K 6000 12400 nH ± 25 % ± 30 % xxx 311920 006<br />

688<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

R 31,5/19/24<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 5200 nH ± 25 % ± 25 % xxx 311924 026<br />

K 4000 9900 nH ± 25 % ± 25 % xxx 311924 004<br />

K 5500 12350 nH ± 25 % ± 25 % xxx 311924 055<br />

K 6000 14850 nH ± 25 % ± 30 % xxx 311924 006<br />

265


R 32,5/13/7<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

266<br />

Ringk<strong>er</strong>ne R 32,5<br />

Ring cores R 32.5<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,04<br />

62,7<br />

60,2<br />

3780<br />

G ≈ 18,0 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 2550 nH ± 25 % ± 25 % xxx 321370 026<br />

K 4000 4850 nH ± 25 % ± 25 % xxx 321370 004<br />

K 5500 6050 nH ± 25 % ± 25 % xxx 321370 055<br />

K 6000 7250 nH ± 25 % ± 30 % xxx 321370 006<br />

R 32,5/13/8,5<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,85<br />

62,7<br />

74,0<br />

4650<br />

G ≈ 22,5 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 3100 nH ± 25 % ± 25 % xxx 321385 026<br />

K 4000 5950 nH ± 25 % ± 25 % xxx 321385 004<br />

K 5500 7400 nH ± 25 % ± 25 % xxx 321385 055<br />

K 6000 8950 nH ± 25 % ± 30 % xxx 321385 006<br />

689<br />

690


R 34/20,5/12,5<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,00<br />

82,1<br />

82,4<br />

6760<br />

G ≈ 32,5 g<br />

637<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,83<br />

82,1<br />

98,7<br />

8100<br />

G ≈ 39,0 g<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

Ringk<strong>er</strong>ne R 34<br />

Ring cores R 34<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 2650 nH ± 25 % ± 25 % xxx 342012 026<br />

K 4000 5050 nH ± 25 % ± 25 % xxx 342012 004<br />

K 5500 6050 nH ± 25 % ± 25 % xxx 342012 055<br />

K 6000 7550 nH ± 25 % ± 30 % xxx 342012 006<br />

R 34/20,5/15<br />

691<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 3150 nH ± 25 % ± 25 % xxx 342015 026<br />

K 4000 6050 nH ± 25 % ± 25 % xxx 342015 004<br />

K 5500 7250 nH ± 25 % ± 25 % xxx 342015 055<br />

K 6000 9100 nH ± 25 % ± 30 % xxx 342015 006<br />

267


R 36/23/15<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

268<br />

Ringk<strong>er</strong>ne R 36<br />

Ring cores R 36<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,94<br />

89,7<br />

95,7<br />

8580<br />

G ≈ 41,0 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 2800 nH ± 25 % ± 25 % xxx 362315 026<br />

K 4000 5350 nH ± 25 % ± 25 % xxx 362315 004<br />

K 5500 6700 nH ± 25 % ± 25 % xxx 362315 055<br />

K 6000 8050 nH ± 25 % ± 30 % xxx 362315 006<br />

R 36/23/20<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,70<br />

89,7<br />

127,5<br />

11420<br />

G ≈ 55,0 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2006 3750 nH ± 25 % ± 25 % xxx 362320 026<br />

K 4000 7150 nH ± 25 % ± 25 % xxx 362320 004<br />

K 5500 8950 nH ± 25 % ± 25 % xxx 362320 055<br />

K 6000 10750 nH ± 25 % ± 30 % xxx 362320 006<br />

638<br />

692


Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,77<br />

96,3<br />

124,8<br />

12000<br />

G ≈ 58,0 g<br />

639<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,08<br />

103,0<br />

95,5<br />

9850<br />

G ≈ 48,0 g<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Ringk<strong>er</strong>ne R 40 und R 42<br />

Ring cores R 40 and R 42<br />

beschichtet<br />

coated<br />

R 40/24/16<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2004 3250 nH ± 25 % ± 25 % xxx 402416 024<br />

K 2006 3400 nH ± 25 % ± 25 % xxx 402416 026<br />

K 4000 6500 nH ± 25 % ± 25 % xxx 402416 004<br />

K 5500 7850 nH ± 25 % ± 25 % xxx 402416 055<br />

K 6000 9800 nH ± 25 % ± 30 % xxx 402416 006<br />

640<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

R 42/26/12,5<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2004 2400 nH ± 25 % ± 25 % xxx 422612 024<br />

K 2006 2500 nH ± 25 % ± 25 % xxx 422612 026<br />

K 4000 4650 nH ± 25 % ± 25 % xxx 422612 004<br />

K 5500 6000 nH ± 25 % ± 25 % xxx 422612 055<br />

K 6000 7000 nH ± 25 % ± 30 % xxx 422612 006<br />

269


R 50/30/20<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

R 56/32/18<br />

270<br />

Ringk<strong>er</strong>ne R 50 und R 56<br />

Ring cores R 50 and R 56<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,62<br />

120,4<br />

195,3<br />

23500<br />

G ≈ 115 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2004 4050 nH ± 25 % ± 25 % xxx 503020 024<br />

K 2006 4250 nH ± 25 % ± 25 % xxx 503020 026<br />

K 4000 8150 nH ± 25 % ± 25 % xxx 503020 004<br />

K 5500 9800 nH ± 25 % ± 25 % xxx 503020 055<br />

K 6000 12250 nH ± 25 % ± 30 % xxx 503020 006<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,65<br />

131,5<br />

201,7<br />

26530<br />

G ≈ 127 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2004 3850 nH ± 25 % ± 25 % xxx 563218 024<br />

K 2006 4050 nH ± 25 % ± 25 % xxx 563218 026<br />

K 4000 7700 nH ± 25 % ± 25 % xxx 563218 004<br />

K 5500 9650 nH ± 25 % ± 25 % xxx 563218 055<br />

K 6000 11550 nH ± 25 % ± 30 % xxx 563218 006<br />

641<br />

642


Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,00<br />

152,4<br />

152,0<br />

23160<br />

G ≈ 111 g<br />

643<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

1,00<br />

152,1<br />

152,4<br />

23200<br />

G ≈ 111 g<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Ringk<strong>er</strong>ne R 58,3 und R 63<br />

Ring cores R 58.3 and R 63<br />

beschichtet<br />

coated<br />

R 58,3/40,8/17,6<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2004 2500 nH ± 25 % ± 25 % xxx 584017 024<br />

K 2006 2600 nH ± 25 % ± 25 % xxx 584017 026<br />

K 4000 5000 nH ± 25 % ± 25 % xxx 584017 004<br />

K 5500 6000 nH ± 25 % ± 25 % xxx 584017 055<br />

644<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

beschichtet<br />

coated<br />

R 63/38/12,5<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2004 2500 nH ± 25 % ± 25 % xxx 633812 024<br />

K 2006 2650 nH ± 25 % ± 25 % xxx 633812 026<br />

K 4000 5050 nH ± 25 % ± 25 % xxx 633812 004<br />

K 5500 6050 nH ± 25 % ± 25 % xxx 633812 055<br />

271


R 63/38/25<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

R 80/40/15<br />

272<br />

Ringk<strong>er</strong>ne R 63 und R 80<br />

Ring cores R 63 and R 80<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,50<br />

152,1<br />

305,5<br />

46500<br />

G ≈ 223 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2004 5050 nH ± 25 % ± 25 % xxx 633825 024<br />

K 2006 5300 nH ± 25 % ± 25 % xxx 633825 026<br />

K 4000 10100 nH ± 25 % ± 25 % xxx 633825 004<br />

K 5500 12100 nH ± 25 % ± 25 % xxx 633825 055<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,61<br />

174,2<br />

287,9<br />

50150<br />

G ≈ 240 g<br />

beschichtet<br />

coated<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2004 4150 nH ± 25 % ± 25 % xxx 804015 024<br />

K 2006 4350 nH ± 25 % ± 25 % xxx 804015 026<br />

K 4000 8300 nH ± 25 % ± 25 % xxx 804015 004<br />

K 5500 10500 nH ± 25 % ± 25 % xxx 804015 055<br />

645<br />

646


Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,46<br />

174,2<br />

382,7<br />

66670<br />

G ≈ 320 g<br />

693<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

Formkonstanten / core factors<br />

C = mm 1 -1<br />

l = mm<br />

e<br />

A = mm e 2<br />

V = mm e 3<br />

0,96<br />

255,3<br />

266,8<br />

68100<br />

G ≈ 327 g<br />

Mat<strong>er</strong>ial<br />

mat<strong>er</strong>ial<br />

A L -W<strong>er</strong>t<br />

A L value<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

unbeschichtet<br />

uncoated<br />

unbeschichtet<br />

uncoated<br />

Ringk<strong>er</strong>ne R 80 und R 102<br />

Ring cores R 80 and R 102<br />

Tol<strong>er</strong>anz<br />

tol<strong>er</strong>ance<br />

beschichtet<br />

coated<br />

beschichtet<br />

coated<br />

R 80/40/20<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2004 5500 nH ± 25 % ± 25 % xxx 804020 024<br />

K 2006 5800 nH ± 25 % ± 25 % xxx 804020 026<br />

K 4000 11050 nH ± 25 % ± 25 % xxx 804020 004<br />

K 5500 13850 nH ± 25 % ± 25 % xxx 804020 055<br />

648<br />

R 102/65,8/15<br />

Bestellnumm<strong>er</strong><br />

code numb<strong>er</strong><br />

K 2004 2600 nH ± 25 % ± 25 % xxx 026615 024<br />

K 2006 2750 nH ± 25 % ± 25 % xxx 026615 026<br />

K 4000 5250 nH ± 25 % ± 25 % xxx 026615 004<br />

K 5500 6300 nH ± 25 % ± 25 % xxx 026615 055<br />

273


GP 7/7/3<br />

274<br />

Spulenkör<strong>pe</strong>r und Grundplatten<br />

Coilform<strong>er</strong>s and base plates<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

GP - R 7,5<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

GP - R 7,5 - 1258.1<br />

R 10<br />

Standard-Stiftzahl / standard no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bezeichnung / description<br />

GP 7/7/3 - 1403<br />

R 6,3<br />

Max. Stiftzahl / max. no. of pins 6<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6 30%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 603 014036 014<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 603 125814 087


Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Spulenkör<strong>pe</strong>r und Grundplatten<br />

Coilform<strong>er</strong>s and base plates<br />

Bezeichnung / description<br />

GP - R 10 - 1559<br />

R 14<br />

Standard-Stiftzahl / standard no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 603 015594 027<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

GP - R 10 - 1574<br />

R 14<br />

Standard-Stiftzahl / standard no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 603 015744 027<br />

GP - R 10<br />

GP - R 10<br />

275


276<br />

Spulenkör<strong>pe</strong>r und Grundplatten<br />

Coilform<strong>er</strong>s and base plates<br />

GP - GR 15<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

GP - GR 15 - 1866<br />

R 14<br />

Standard-Stiftzahl / standard no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 602 151866 007<br />

SP - R 16<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

-<br />

Bezeichnung / description<br />

SP - R 16 - 1039<br />

R 16<br />

Max. Stiftzahl / max. no. of pins 2<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 6 30%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 571 161039 014


Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Spulenkör<strong>pe</strong>r und Grundplatten<br />

Coilform<strong>er</strong>s and base plates<br />

Bezeichnung / description<br />

GP - R 20 - 1704<br />

R 20<br />

Standard-Stiftzahl / standard no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 603 217040 027<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

GP 22/1 - 1882<br />

R 20<br />

Max. Stiftzahl / max. no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 603 221882 007<br />

-<br />

GP - R 20<br />

GP 22/1<br />

277


GP - R 25<br />

278<br />

Spulenkör<strong>pe</strong>r und Grundplatten<br />

Coilform<strong>er</strong>s and base plates<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

GP 29/20/1,5<br />

Bezeichnung / description<br />

GP - R 25 - 2001<br />

R 25<br />

Standard-Stiftzahl / standard no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no.<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

603 2001x1 007<br />

(x = 1 od<strong>er</strong>/or 2 entspr./acc. Maß/size A)<br />

Bezeichnung / description<br />

GP 29/20/1,5 - 1969<br />

R 25<br />

Standard-Stiftzahl / standard no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 603 291696 007<br />

-


Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Spulenkör<strong>pe</strong>r und Grundplatten<br />

Coilform<strong>er</strong>s and base plates<br />

Bezeichnung / description<br />

SP - R 29 - 1620<br />

R 29<br />

Standard-Stiftzahl / standard no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bezeichnung / description<br />

GP 32,5/3 - 1827<br />

R 27<br />

Standard-Stiftzahl / standard no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 603 321827 007<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 571 291620 027<br />

-<br />

GP 32,5/3<br />

SP - R 29<br />

279


SP - R 29<br />

280<br />

Spulenkör<strong>pe</strong>r und Grundplatten<br />

Coilform<strong>er</strong>s and base plates<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

GP 30/18/8,5<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

GP 30/18/8,5 - 1928<br />

R 34<br />

Standard-Stiftzahl / standard no. of pins 12<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Phenol / phenolic<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bezeichnung / description<br />

SP - R 27 - 1812<br />

R 29<br />

Standard-Stiftzahl / standard no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Zytel FR 50<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 603 291812 007<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 603 301928 01V<br />

-


Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Spulenkör<strong>pe</strong>r und Grundplatten<br />

Coilform<strong>er</strong>s and base plates<br />

Bezeichnung / description<br />

GP - R 36 - 2002<br />

R 36<br />

Standard-Stiftzahl / standard no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 25%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no.<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

GP - R 36<br />

603 2002x1 007<br />

(x = 1 od<strong>er</strong>/or 2 entspr./acc. Maß/size A)<br />

Bezeichnung / description<br />

GP 43/3 - 1949<br />

R 36<br />

Standard-Stiftzahl / standard no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 25%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 603 431949 007<br />

-<br />

GP 43/3<br />

281


GP 40/20<br />

GP 40/23<br />

282<br />

Spulenkör<strong>pe</strong>r und Grundplatten<br />

Coilform<strong>er</strong>s and base plates<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

GP 40/20 - 2143<br />

R 40<br />

Standard-Stiftzahl / standard no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Rynite FR 530<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 603 214304 00C<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

-<br />

Bezeichnung / description<br />

GP 40/23 - 2154<br />

R 40<br />

Standard-Stiftzahl / standard no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Rynite FR 530<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 603 215401 00C<br />

-


Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Spulenkör<strong>pe</strong>r und Grundplatten<br />

Coilform<strong>er</strong>s and base plates<br />

Bezeichnung / description<br />

GP 78/48/12,5 - 1791<br />

3 x R 40<br />

Standard-Stiftzahl / standard no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bezeichnung / description<br />

GP 52/3 - 2150<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 603 781791 007<br />

-<br />

R 40<br />

Standard-Stiftzahl / standard no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Rynite FR 530<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 603 215000 007<br />

-<br />

GP 52/3<br />

GP 78/48/12,5<br />

283


GP - R 42<br />

284<br />

Spulenkör<strong>pe</strong>r und Grundplatten<br />

Coilform<strong>er</strong>s and base plates<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

GP 48/26/14,5<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

GP 48/26/14,5 - 1682<br />

R 50<br />

Standard-Stiftzahl / standard no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bezeichnung / description<br />

GP - R 42 - 2003<br />

R 42<br />

Standard-Stiftzahl / standard no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 25%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no.<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 603 481682 007<br />

603 2003x1 007<br />

(x = 1 od<strong>er</strong>/or 2 entspr./acc. Maß/size A)<br />

-


Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Spulenkör<strong>pe</strong>r und Grundplatten<br />

Coilform<strong>er</strong>s and base plates<br />

Bezeichnung / description<br />

GP - R 56 - 2004<br />

R 56<br />

Standard-Stiftzahl / standard no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no.<br />

Bezeichnung / description<br />

GP 56/48/12,5 - 1792<br />

2 x R 50<br />

Standard-Stiftzahl / standard no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 603 561792 007<br />

-<br />

GP 56/48/12,5<br />

GP - R 56<br />

603 2004x1 007<br />

(x = 1 od<strong>er</strong>/or 2 entspr./acc. Maß/size A)<br />

285


286<br />

V<strong>er</strong>gussgehäuse<br />

Potting boxes<br />

VGH 7,3/5,4/3,7<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 7,3/5,4/3,7 - 1804 SMD<br />

R 4<br />

Standard-Stiftzahl / standard no. of pins 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial LCP<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 0701F1 804<br />

VGH 12,6/10/7<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 12,6/10/7 - 1674 SMD<br />

R 6,3<br />

Standard-Stiftzahl / standard no. of pins 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial LCP<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 1301F1 674


V<strong>er</strong>gussgehäuse<br />

Potting boxes<br />

Bezeichnung / description<br />

VGH 14/9/15 - 1518<br />

Bem<strong>er</strong>kung / remark auch als SMD / also in SMD<br />

Standard-Ringk<strong>er</strong>n / standard ring core R 10<br />

Max. Stiftzahl / max. no. of pins 10<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 140171 518<br />

Bezeichnung / description<br />

VGH 14/12,5/8 - 1616<br />

Bem<strong>er</strong>kung / remark auch als SMD / also in SMD<br />

Standard-Ringk<strong>er</strong>n / standard ring core R 10<br />

Max. Stiftzahl / max. no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Vectra E130i<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 240 016160 00F<br />

VGH 14/9/15<br />

VGH 14/12,5/8<br />

287


288<br />

V<strong>er</strong>gussgehäuse<br />

Potting boxes<br />

VGH 15/7,3/17,5<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 15/7,3/17,5 - 1528<br />

R 10<br />

Standard-Stiftzahl / standard no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 170171 528<br />

VGH 14/12,5/10<br />

Bezeichnung / description<br />

VGH 14/12,5/10 - 1517<br />

Bem<strong>er</strong>kung / remark auch als SMD / also in SMD<br />

Standard-Ringk<strong>er</strong>n / standard ring core 2 x R 10<br />

Max. Stiftzahl / max no. of pins 10<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 140171 517


Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

V<strong>er</strong>gussgehäuse<br />

Potting boxes<br />

Bezeichnung / description<br />

VGH 17/15/17 - 1605<br />

2 x R 10<br />

Max. Stiftzahl / max. no. of pins 10<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 170171 605<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 17,8/16,5/12,5 - 1778<br />

R 12,5<br />

Standard-Stiftzahl / standard no. of pins 6<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 240 017780 007<br />

VGH 17/15/17<br />

VGH 17,8/16,5/12,5<br />

289


290<br />

V<strong>er</strong>gussgehäuse<br />

Potting boxes<br />

VGH 18/17/12,2<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

VGH 17/9/20,2<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 17/9/20,2 - 1808<br />

R 13,3<br />

Standard-Stiftzahl / standard no. of pins 6<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyethylen(e)t<strong>er</strong><strong>ep</strong>hthalat(e)<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bezeichnung / description<br />

VGH 18/17/12,2 - 1427<br />

R 12,5<br />

Standard-Stiftzahl / standard no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 180171 427<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 1701C1 808


Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

V<strong>er</strong>gussgehäuse<br />

Potting boxes<br />

Bezeichnung / description<br />

VGH 18/9,5/20 - 053<br />

R 13,3<br />

Max. Stiftzahl / max. no. of pins 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 180170 053<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 19/9,4/20 - 1464<br />

R 14<br />

Standard-Stiftzahl / standard no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 200171 464<br />

VGH 18/9,5/20<br />

VGH 19/9,4/20<br />

291


VGH 23/15,4/24<br />

292<br />

V<strong>er</strong>gussgehäuse<br />

Potting boxes<br />

VGH 21/18/8<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 23/15,4/24 - 1465<br />

R 16<br />

Standard-Stiftzahl / standard no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bezeichnung / description<br />

VGH 21/18/8 - 2138<br />

R 14<br />

Standard-Stiftzahl / standard no. of pins 14<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial LCP<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 213800 01D<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 240171 465


Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 23/11,5/25 - 055<br />

R 17<br />

Max. Stiftzahl / max. no. of pins 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 230170 055<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

V<strong>er</strong>gussgehäuse<br />

Potting boxes<br />

Bezeichnung / description<br />

VGH 23/22/13 - 1178<br />

R 17<br />

Standard-Stiftzahl / standard no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 230171 178<br />

VGH 23/11,5/25<br />

VGH 23/22/13<br />

293


294<br />

V<strong>er</strong>gussgehäuse<br />

Potting boxes<br />

VGH 27/18/29<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 27/18/29 - 1527<br />

R 20<br />

Standard-Stiftzahl / standard no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 290171 527<br />

VGH 27/14/30<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 27/14/30 - 1428<br />

R 22<br />

Max. Stiftzahl / max. no. of pins 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 270171 428


Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 28/27/16,5 - 1179<br />

R 22<br />

Standard-Stiftzahl / standard no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 280171 179<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 33/19,9/35 - 1375<br />

R 25<br />

Standard-Stiftzahl / standard no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Ultramid A3X2G5<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 3301A1 375<br />

V<strong>er</strong>gussgehäuse<br />

Potting boxes<br />

VGH 28/27/16,5<br />

VGH 33/19,9/35<br />

295


296<br />

V<strong>er</strong>gussgehäuse<br />

Potting boxes<br />

VGH 32/18/36<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 32/18/36 - 1200<br />

R 27<br />

Standard-Stiftzahl / standard no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 320171 200<br />

VGH 32,5/32/19,5<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 32,5/32/19,5 - 1180<br />

R 27<br />

Standard-Stiftzahl / standard no. of pins 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 320171 180


Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 38/25,5/42 - 1377<br />

R 29<br />

Standard-Stiftzahl / standard no. of pins 4<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Ultramid A3X2G5<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 3801A1 377<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

V<strong>er</strong>gussgehäuse<br />

Potting boxes<br />

Bezeichnung / description<br />

VGH 40/15/40 - 2142<br />

R 29<br />

Standard-Stiftzahl / standard no. of pins 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Rynite FR 530<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 214200 01C<br />

VGH 38/25,5/42<br />

VGH 40/15/40<br />

297


VGH 35/23/37<br />

298<br />

V<strong>er</strong>gussgehäuse<br />

Potting boxes<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 35/23/37 - 2051<br />

R 30<br />

Standard-Stiftzahl / standard no. of pins 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Zytel FR 50<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 298 000000 445<br />

VGH 42/28/45<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 42/28/45 - 1834<br />

R 34<br />

Max. Stiftzahl / max. no. of pins 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 420171 834


Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 43/42/25 - 1181<br />

R 34<br />

Standard-Stiftzahl / standard no. of pins 8<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 430171 181<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

V<strong>er</strong>gussgehäuse<br />

Potting boxes<br />

Bezeichnung / description<br />

VGH 56/33/60 - 1709<br />

R 42<br />

Max. Stiftzahl / max. no. of pins 12<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Neusilb<strong>er</strong> CuNi18Zn20<br />

nickel silv<strong>er</strong> CuNi18Zn20<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 616 560271 709<br />

VGH 43/42/25<br />

VGH 56/33/60<br />

299


300<br />

V<strong>er</strong>gussgehäuse<br />

Potting boxes<br />

VGH 60/59/14,5<br />

Standard-Ringk<strong>er</strong>n<br />

standard ring core<br />

Bezeichnung / description<br />

VGH 60/59/14,5 - 2146<br />

R 50<br />

Standard-Stiftzahl / standard no. of pins -<br />

Standardmat<strong>er</strong>ial / standard mat<strong>er</strong>ial Polyamid(e) 66 35%GF<br />

Standardmat<strong>er</strong>ial Anschlussstifte<br />

standard mat<strong>er</strong>ial pins<br />

Bestellnumm<strong>er</strong> / ord<strong>er</strong> no. 615 214600 007<br />

-


301


302


STABKERNE, SONSTIGE KERNE<br />

ROD CORES, MISCELLANEOUS<br />

303


304<br />

Im<strong>pe</strong>d<strong>er</strong>k<strong>er</strong>ne<br />

Im<strong>pe</strong>d<strong>er</strong> cores<br />

Im<strong>pe</strong>d<strong>er</strong>k<strong>er</strong>ne<br />

Allgemeines<br />

Kaschke Components f<strong>er</strong>tigt ein breites<br />

S<strong>pe</strong>ktrum an F<strong>er</strong>rit-Im<strong>pe</strong>d<strong>er</strong>k<strong>er</strong>nen für die<br />

Hochfrequenzschweißtechnik. Sie dienen<br />

zur Konzentration des magnetischen Flusses<br />

und <strong>er</strong>möglichen so die Kosten- und<br />

En<strong>er</strong>giesparende H<strong>er</strong>stellung von Rohren.<br />

Als geeignet<strong>er</strong> W<strong>er</strong>kstoff mit sehr guten<br />

Schweisseigenschaften hat sich das modifizi<strong>er</strong>te<br />

Leistungsf<strong>er</strong>rit K2006 <strong>er</strong>wiesen.<br />

Er zeichnet sich durch die folgenden h<strong>er</strong>ausragenden<br />

M<strong>er</strong>kmale aus:<br />

• hohe Curie-Tem<strong>pe</strong>ratur und g<strong>er</strong>inge Tem<strong>pe</strong>raturabhängigkeit<br />

d<strong>er</strong> Anfangs<strong>pe</strong>rmeabilität<br />

und d<strong>er</strong> Flussdichte im Betriebstem<strong>pe</strong>raturb<strong>er</strong>eich<br />

• hohe Sättigungsflussdichte im Betriebstem<strong>pe</strong>raturb<strong>er</strong>eich<br />

bis 150°C<br />

• g<strong>er</strong>inge V<strong>er</strong>luste bei Tem<strong>pe</strong>raturanstieg<br />

• relativ hohe Amplituden<strong>pe</strong>rmeabilität<br />

• hohe Stabilität d<strong>er</strong> Anfangs<strong>pe</strong>rmeabilität in<br />

Abhängigkeit von d<strong>er</strong> Frequenz bis 1 MHz<br />

Die Grundlagen für die h<strong>er</strong>ausragenden<br />

physikalischen Eigenschaften sind eine<br />

v<strong>er</strong>bess<strong>er</strong>te Mikrostruktur mit ein<strong>er</strong> optimal<br />

defini<strong>er</strong>ten Korngrößenv<strong>er</strong>teilung und Korngrenzen.<br />

Die W<strong>er</strong>kstoffe finden zur H<strong>er</strong>stellung d<strong>er</strong> folgenden<br />

5 Im<strong>pe</strong>d<strong>er</strong>k<strong>er</strong>nty<strong>pe</strong>n V<strong>er</strong>wendung:<br />

• Stabk<strong>er</strong>ne<br />

• abgeflachte Stabk<strong>er</strong>ne<br />

• gefied<strong>er</strong>te Stabk<strong>er</strong>ne<br />

• Hohlzylind<strong>er</strong>k<strong>er</strong>ne<br />

• gefied<strong>er</strong>te Hohlzylind<strong>er</strong>k<strong>er</strong>ne<br />

Die G<strong>er</strong>adlinigkeit d<strong>er</strong> K<strong>er</strong>ne wird mit ein<strong>er</strong><br />

200 mm - Messlehre nachg<strong>ep</strong>rüft, d<strong>er</strong>en In-<br />

Im<strong>pe</strong>d<strong>er</strong> cores<br />

Gen<strong>er</strong>al<br />

Kaschke Components off<strong>er</strong>s a wide range of<br />

im<strong>pe</strong>d<strong>er</strong> cores for HF welding applications.<br />

F<strong>er</strong>rite im<strong>pe</strong>d<strong>er</strong> cores are used for the concentration<br />

of magnetic flux to obtain a cost-<br />

and en<strong>er</strong>gy-effective production of tubes<br />

and pi<strong>pe</strong>s.<br />

A suitable mat<strong>er</strong>ial with excellent welding<br />

pro<strong>pe</strong>rties is the modified manganese pow<strong>er</strong><br />

f<strong>er</strong>rite K2006 .<br />

This K2006 mat<strong>er</strong>ial has the following excellent<br />

physical pro<strong>pe</strong>rties:<br />

• high Curie tem<strong>pe</strong>rature and a low tem<strong>pe</strong>rature<br />

de<strong>pe</strong>ndence of the initial <strong>pe</strong>rmeability<br />

and of the flux density in the working<br />

tem<strong>pe</strong>rature range<br />

• a high saturation flux density in the working<br />

tem<strong>pe</strong>rature range up to 150°C<br />

• low losses with increase of tem<strong>pe</strong>rature<br />

• a relatively high amplitude <strong>pe</strong>rmeability<br />

• a high stability of the initial <strong>pe</strong>rmeability<br />

v<strong>er</strong>sus frequency up to 1 MHz<br />

The fundamentals for the excellent physical<br />

pro<strong>pe</strong>rties of the K2006 mat<strong>er</strong>ial are an optimized<br />

microstructure with a well-defined<br />

grain size distribution and grain boundaries.<br />

We use them for the production of the following<br />

5 diff<strong>er</strong>ent im<strong>pe</strong>d<strong>er</strong> core ty<strong>pe</strong>s:<br />

• solid round rod<br />

• solid flatsided rod<br />

• solid fluted rod<br />

• hollow rod<br />

• hollow fluted rod<br />

The ov<strong>er</strong>all straightness of im<strong>pe</strong>d<strong>er</strong> cores is<br />

excellent and is controlled using a 200 mm


nendurchmess<strong>er</strong> dem Nenn-Aussendurchmess<strong>er</strong><br />

des K<strong>er</strong>ns plus 1,0 mm entspricht.<br />

Dieses Kapitel zeigt nur einen Ausschnitt aus<br />

uns<strong>er</strong>em breiten S<strong>pe</strong>ktrum von Im<strong>pe</strong>d<strong>er</strong>k<strong>er</strong>nen.<br />

Weit<strong>er</strong>e Längen und Durchmess<strong>er</strong> als<br />

die in den Tabellen angegebenen sind auf<br />

Anfrage <strong>er</strong>hältlich.<br />

Im<strong>pe</strong>d<strong>er</strong>k<strong>er</strong>ne<br />

Im<strong>pe</strong>d<strong>er</strong> cores<br />

long gauge with an inn<strong>er</strong> diamet<strong>er</strong> of nominal<br />

out<strong>er</strong> diamet<strong>er</strong> of the core plus 1.0 mm.<br />

This chapt<strong>er</strong> only presents a selection of our<br />

wide range of im<strong>pe</strong>d<strong>er</strong> cores. Oth<strong>er</strong> lengths<br />

and diamet<strong>er</strong>s than those shown in the following<br />

tables are available on request.<br />

305


Typ<br />

ty<strong>pe</strong><br />

306<br />

Im<strong>pe</strong>d<strong>er</strong>k<strong>er</strong>ne<br />

Im<strong>pe</strong>d<strong>er</strong> cores<br />

Abmessungen<br />

dimensions<br />

Segmente<br />

segments<br />

Gewicht / Stück<br />

weight / piece<br />

Bestellnumm<strong>er</strong><br />

ord<strong>er</strong> numb<strong>er</strong><br />

D l<br />

mm mm g<br />

S 3/200A 3 ± 0,3 200 ± 3 1 7 402 032001 026<br />

S 4/200A 4 ± 0,3 200 ± 3 1 12 402 042001 026<br />

S 5/200A 5 ± 0,3 200 ± 3 1 18 402 052001 026<br />

S 6/200A 6 ± 0,3 200 ± 3 1 27 402 062001 026<br />

S 7/200A 7 ± 0,3 200 ± 3 1 35 402 072001 026<br />

S 8/200A 8 ± 0,3 200 ± 3 1 47 402 082001 026<br />

S 10/200A 10 ± 0,35 200 ± 3 1 74 402 102001 026<br />

S 11/200A 11 ± 0,35 200 ± 3 1 85 402 112001 026<br />

S 12/200A 12 ± 0,35 200 ± 3 1 105 402 122001 026<br />

S 14/200A 14 ± 0,4 200 ± 3 1 145 402 142001 026<br />

S 15/200A 15 ± 0,45 200 ± 3 1 165 402 152001 026<br />

S 16/200A 16 ± 0,5 200 ± 3 1 190 402 162001 026<br />

S 18/200A 18 ± 0,55 200 ± 3 1 240 402 182001 026<br />

S 20/200A 20 ± 0,6 200 ± 3 1 295 402 202001 026<br />

S 22/200A 22 ± 0,65 200 ± 3 8 360 402 222001 026<br />

Weit<strong>er</strong>e Längen und Durchmess<strong>er</strong> auf Anfrage<br />

Diff<strong>er</strong>ent lenghts and diamet<strong>er</strong>s on request


Typ<br />

ty<strong>pe</strong><br />

Abmessungen<br />

dimensions<br />

Segmente<br />

segments<br />

Schlitze<br />

grooves<br />

Im<strong>pe</strong>d<strong>er</strong>k<strong>er</strong>ne<br />

Im<strong>pe</strong>d<strong>er</strong> cores<br />

Gew./St.<br />

wt./pc.<br />

Bestellnumm<strong>er</strong><br />

ord<strong>er</strong> numb<strong>er</strong><br />

D l<br />

mm mm g<br />

S 5/200B 5 ± 0,3 200 ± 3 1 6 15 402 052004 026<br />

S 6/200B 6 ± 0,3 200 ± 3 1 6 22 402 062004 026<br />

S 7/200B 7 ± 0,3 200 ± 3 1 6 30 402 072004 026<br />

S 8/200B 8 ± 0,3 200 ± 3 1 6 38 402 082004 026<br />

S 9/200B 9 ± 0,3 200 ± 3 1 6 48 402 092004 026<br />

S 10/200B 10 ± 0,35 200 ± 3 1 6 60 402 102004 026<br />

S 11/200B 11 ± 0,35 200 ± 3 1 6 70 402 112004 026<br />

S 12/200B 12 ± 0,35 200 ± 3 1 8 90 402 122004 026<br />

S 13/200B 13 ± 0,35 200 ± 3 1 8 105 402 132004 026<br />

S 14/200B 14 ± 0,4 200 ± 3 1 8 120 402 142004 026<br />

S 15/200B 15 ± 0,4 200 ± 3 1 8 145 402 152004 026<br />

S 16/200B 16 ± 0,5 200 ± 3 1 8 165 402 162004 026<br />

S 17/200B 17 ± 0,5 200 ± 3 1 8 185 402 172004 026<br />

S 18/200B 18 ± 0,55 200 ± 3 1 8 205 402 182004 026<br />

S 19/200B 19 ± 0,55 200 ± 3 1 8 230 402 192004 026<br />

S 20/200B 20 ± 0,6 200 ± 3 1 8 255 402 202004 026<br />

S 21/200B 21 ± 0,6 200 ± 3 8 8 280 402 212004 026<br />

S 22/200B 22 ± 0,65 200 ± 3 8 8 310 402 222004 026<br />

S 23/200B 23 ± 0,75 200 ± 3 8 8 340 402 232004 026<br />

S 24/200B 24 ± 0,75 200 ± 3 8 8 370 402 242004 026<br />

S 25/200B 25 ± 0,75 200 ± 3 8 8 460 402 252004 026<br />

S 27/200B 27 ± 0,85 200 ± 3 8 8 520 402 272004 026<br />

S 30/200B 25 ± 0,9 200 ± 3 8 8 600 402 302004 026<br />

Weit<strong>er</strong>e Längen und Durchmess<strong>er</strong> auf Anfrage<br />

Diff<strong>er</strong>ent lenghts and diamet<strong>er</strong>s on request<br />

307


Typ<br />

ty<strong>pe</strong><br />

308<br />

Im<strong>pe</strong>d<strong>er</strong>k<strong>er</strong>ne<br />

Im<strong>pe</strong>d<strong>er</strong> cores<br />

Abmessungen<br />

dimensions<br />

Segmente<br />

segments<br />

Gewicht / Stück<br />

weight / piece<br />

Bestellnumm<strong>er</strong><br />

ord<strong>er</strong> numb<strong>er</strong><br />

D l<br />

mm mm g<br />

S 3/200C 3 ± 0,3 200 ± 3 1 6 402 032003 026<br />

S 4/200C 4 ± 0,3 200 ± 3 1 10 402 042003 026<br />

S 5/200C 5 ± 0,3 200 ± 3 1 18 402 052003 026<br />

S 6/200C 6 ± 0,3 200 ± 3 1 26 402 062003 026<br />

S 7/200C 7 ± 0,3 200 ± 3 1 35 402 072003 026<br />

S 8/200C 8 ± 0,3 200 ± 3 1 46 402 082003 026<br />

S 9/200C 9 ± 0,3 200 ± 3 1 58 402 092003 026<br />

S 10/200C 10 ± 0,35 200 ± 3 1 71 402 102003 026<br />

S 11/200C 11 ± 0,35 200 ± 3 1 86 402 112003 026<br />

S 12/200C 12 ± 0,35 200 ± 3 1 102 402 122003 026<br />

S 13/200C 13 ± 0,4 200 ± 3 1 120 402 132003 026<br />

S 14/200C 14 ± 0,4 200 ± 3 1 140 402 142003 026<br />

S 15/200C 15 ± 0,45 200 ± 3 1 160 402 152003 026<br />

S 16/200C 16 ± 0,5 200 ± 3 1 182 402 162003 026<br />

S 18/200C 18 ± 0,55 200 ± 3 1 230 402 182003 026<br />

S 19/200C 19 ± 0,55 200 ± 3 1 255 402 192003 026<br />

S 20/200C 20 ± 0,6 200 ± 3 1 285 402 202003 026<br />

S 22/200C 22 ± 0,65 200 ± 3 8 345 402 222003 026<br />

Weit<strong>er</strong>e Längen und Durchmess<strong>er</strong> auf Anfrage<br />

Diff<strong>er</strong>ent lenghts and diamet<strong>er</strong>s on request


Typ<br />

ty<strong>pe</strong><br />

Abmessungen<br />

dimensions<br />

Segm.<br />

segm.<br />

Im<strong>pe</strong>d<strong>er</strong>k<strong>er</strong>ne<br />

Im<strong>pe</strong>d<strong>er</strong> cores<br />

Gew./St.<br />

wt./pc.<br />

Bestellnumm<strong>er</strong><br />

ord<strong>er</strong> numb<strong>er</strong><br />

D d l<br />

mm mm mm<br />

HZ 5/2/200g 5 ± 0,3 2 ± 0,3 200 ± 3 1 14 407 052200 026<br />

HZ 6/3/200g 6 ± 0,3 3 ± 0,3 200 ± 3 1 20 407 063200 026<br />

HZ 7/3/200g 7 ± 0,3 3 ± 0,3 200 ± 3 1 29 407 073200 026<br />

HZ 8/4/200g 8 ± 0,3 4 ± 0,3 200 ± 3 1 35 407 084200 026<br />

HZ 9/4/200g 9 ± 0,3 4 ± 0,3 200 ± 3 1 48 407 094200 026<br />

HZ 10/5/200g 10 ± 0,35 5 ± 0,3 200 ± 3 1 55 407 105200 026<br />

HZ 11/5/200g 11 ± 0,35 5 ± 0,3 200 ± 3 1 70 407 115200 026<br />

HZ 12/6/200g 12 ± 0,35 6 ± 0,3 200 ± 3 1 80 407 126200 026<br />

HZ 13/6/200g 13 ± 0,35 6 ± 0,3 200 ± 3 1 100 407 136200 026<br />

HZ 14/7/200g 14 ± 0,4 7 ± 0,3 200 ± 3 1 110 407 147200 026<br />

HZ 15/7/200g 15 ± 0,4 7 ± 0,3 200 ± 3 1 130 407 157200 026<br />

HZ 16/8/200g 16 ± 0,5 8 ± 0,3 200 ± 3 1 142 407 168200 026<br />

HZ 17/8/200g 17 ± 0,5 8 ± 0,3 200 ± 3 1 166 407 178200 026<br />

HZ 18/9/200g 18 ± 0,55 9 ± 0,3 200 ± 3 1 180 407 189200 026<br />

HZ 19/9/200g 19 ± 0,55 9 ± 0,3 200 ± 3 1 205 407 199200 026<br />

HZ 20/10/200g 20 ± 0,6 10 ± 0,35 200 ± 3 1 225 343 201020 026<br />

HZ 21/10/200g 21 ± 0,6 10 ± 0,35 200 ± 3 8 250 343 211020 026<br />

HZ 22/11/200g 22 ± 0,65 11 ± 0,35 200 ± 3 8 270 343 221120 026<br />

HZ 25/12/200g 25 ± 0,75 12 ± 0,35 200 ± 3 8 355 343 251220 026<br />

HZ 26/13/200g 26 ± 0,8 13 ± 0,4 200 ± 3 8 380 343 261320 026<br />

HZ 28/14/200g 28 ± 0,85 14 ± 0,4 200 ± 3 8 435 343 281420 026<br />

HZ 30/15/200g 30 ± 0,9 15 ± 0,45 200 ± 3 8 500 343 301520 026<br />

Weit<strong>er</strong>e Längen und Durchmess<strong>er</strong> auf Anfrage<br />

Diff<strong>er</strong>ent lenghts and diamet<strong>er</strong>s on request<br />

309


Typ<br />

ty<strong>pe</strong><br />

310<br />

Im<strong>pe</strong>d<strong>er</strong>k<strong>er</strong>ne<br />

Im<strong>pe</strong>d<strong>er</strong> cores<br />

Abmessungen<br />

dimensions<br />

D d l<br />

Seg.<br />

seg.<br />

Schl.<br />

gr.<br />

mm mm mm g<br />

Gew./St.<br />

wt./pc.<br />

Bestellnumm<strong>er</strong><br />

ord<strong>er</strong> numb<strong>er</strong><br />

HZ 10/3/200GF 10 ± 0,35 3 ± 0,3 200 ± 3 1 6 60 391 103206 026<br />

HZ 11/3/200GF 11 ± 0,35 3 ± 0,3 200 ± 3 1 8 75 391 113208 026<br />

HZ 12/4/200GF 12 ± 0,35 4 ± 0,3 200 ± 3 1 8 85 391 124208 026<br />

HZ 13/5/200GF 13 ± 0,35 5 ± 0,3 200 ± 3 1 8 95 391 135208 026<br />

HZ 14/4/200GF 14 ± 0,4 4 ± 0,3 200 ± 3 1 8 120 391 144208 026<br />

HZ 15/5/200GF 15 ± 0,4 5 ± 0,3 200 ± 3 1 8 135 391 155208 026<br />

HZ 16/5/200GF 16 ± 0,5 5 ± 0,3 200 ± 3 1 8 155 391 165208 026<br />

HZ 17/5/200GF 17 ± 0,5 5 ± 0,3 200 ± 3 1 8 180 391 175208 026<br />

HZ 18/6/200GF 18 ± 0,55 6 ± 0,3 200 ± 3 1 8 195 391 186208 026<br />

HZ 19/6/200GF 19 ± 0,55 6 ± 0,3 200 ± 3 1 8 220 391 196208 026<br />

HZ 20/6/200GF 20 ± 0,6 6 ± 0,3 200 ± 3 1 8 245 391 206208 026<br />

HZ 21/6/200GF 21 ± 0,6 6 ± 0,3 200 ± 3 8 8 280 391 216208 026<br />

HZ 22/6/200GF 22 ± 0,65 6 ± 0,3 200 ± 3 8 8 310 391 226208 026<br />

HZ 23/6/200GF 23 ± 0,75 6 ± 0,3 200 ± 3 8 8 340 391 236208 026<br />

HZ 25/10/200GF 25 ± 0,75 10 ± 0,35 200 ± 3 8 8 360 391 250208 026<br />

HZ 26/10/200GF 26 ± 0,75 10 ± 0,35 200 ± 3 8 8 395 391 260208 026<br />

HZ 28/13/200GF 28 ± 0,85 13 ± 0,4 200 ± 3 8 8 420 391 283208 026<br />

HZ 29/10/200GF 29 ± 0,85 10 ± 0,35 200 ± 3 8 8 510 391 290208 026<br />

HZ 32/13/200GF 32 ± 0,95 13 ± 0,4 200 ± 3 8 8 590 391 323208 026<br />

HZ 33/10/200GF 33 ± 0,9 10 ± 0,35 200 ± 3 8 8 680 391 330208 026<br />

HZ 40/20/200GF 40 ± 1,2 20 ± 0,6 200 ± 3 8 8 820 391 402208 026<br />

Weit<strong>er</strong>e Längen und Durchmess<strong>er</strong> auf Anfrage<br />

Diff<strong>er</strong>ent lenghts and diamet<strong>er</strong>s on request


Zylind<strong>er</strong>- und Stabk<strong>er</strong>ne<br />

Allgemeines<br />

Zylind<strong>er</strong>k<strong>er</strong>ne nach IEC-Publikation 60220<br />

und DIN 41291 w<strong>er</strong>den zum Aufbau von<br />

Drosseln, Siebglied<strong>er</strong>n und Kleinsignalüb<strong>er</strong>trag<strong>er</strong>n<br />

v<strong>er</strong>wendet.<br />

Vorzugs<strong>w<strong>er</strong>kstoffe</strong> sind die Nickel-Zink-<br />

Kobalt-F<strong>er</strong>rite K14, K40, K80, K250 und<br />

die Mangan-Zink-F<strong>er</strong>rite K300, K600 und<br />

K2004. Maßgebend für die Applikation<br />

von Zylind<strong>er</strong>k<strong>er</strong>nen sind d<strong>er</strong>en wirksame<br />

P<strong>er</strong>meablität, d<strong>er</strong>en Tol<strong>er</strong>anz bezogen auf<br />

die v<strong>er</strong>einbarte Messspule ±10% (K14 und<br />

K40) bzw. ±5% (K80, K250, K300, K600 und<br />

K2004) beträgt, und die Güte, für die ein<br />

Tol<strong>er</strong>anzfeld von ±20% festgelegt wird. Die<br />

Prüfung d<strong>er</strong> elektrischen Kennw<strong>er</strong>te <strong>er</strong>folgt<br />

nach IEC 60401.<br />

Zylind<strong>er</strong>k<strong>er</strong>ne sind in 2 Ausführungen lief<strong>er</strong>bar;<br />

Typ „g“ mit ein<strong>er</strong> Aussendurchmess<strong>er</strong>tol<strong>er</strong>anz,<br />

wie sie sich durch die F<strong>er</strong>tigung <strong>er</strong>gibt,<br />

und Typ „f“, bei d<strong>er</strong> die Tol<strong>er</strong>anz durch<br />

Schleifen v<strong>er</strong>ring<strong>er</strong>t wird.<br />

Die nachstehenden Tabellen beinhaltet die<br />

Vorzugsformen für geschliffene und ungeschliffene<br />

Zylind<strong>er</strong>k<strong>er</strong>ne.<br />

Längentol<strong>er</strong>anz von Zylind<strong>er</strong>k<strong>er</strong>nen<br />

Length margin of rod cores<br />

Rod cores<br />

Gen<strong>er</strong>al<br />

Zylind<strong>er</strong>k<strong>er</strong>ne<br />

Rod cores<br />

Rods in compliance with IEC publication<br />

60220 and DIN 41291 are used for chokes,<br />

filt<strong>er</strong> chokes and small-signal transform<strong>er</strong>s.<br />

The pref<strong>er</strong>red <strong>mat<strong>er</strong>ials</strong> are nickel-zinc-cobalt<br />

f<strong>er</strong>rites K14, K40, K80, K250 and manganese-zinc<br />

f<strong>er</strong>rites K300, K600 and K2004.<br />

Decisive for the application of rods is their<br />

effective <strong>pe</strong>rmeability the tol<strong>er</strong>ance of which<br />

is ±10% (K14 and K40) resp. ±5% (K80,<br />

K250, K300, K600 and K2004) related to the<br />

agreed measuring coil, and the Q factor for<br />

which a tol<strong>er</strong>ance range of ±20% is defined.<br />

The testing of the electrical paramet<strong>er</strong>s is<br />

conducted in compliance with IEC 60401.<br />

Rod cores are available in 2 ty<strong>pe</strong>s.Ty<strong>pe</strong> „g“<br />

has a tol<strong>er</strong>ance of the out<strong>er</strong> diamet<strong>er</strong> as it<br />

results of the production, wh<strong>er</strong>eas ty<strong>pe</strong> „f“ is<br />

ground to a small<strong>er</strong> tol<strong>er</strong>ance.<br />

The following tables contain the pref<strong>er</strong>red<br />

ty<strong>pe</strong>s for ground and unground rods with regard<br />

to their lengths and diamet<strong>er</strong>s, as well<br />

as their tol<strong>er</strong>ances.<br />

Länge / length Tol<strong>er</strong>anz / margin Länge / length Tol<strong>er</strong>anz / margin<br />

5,0 - 7,5 mm - 0,3 mm 7,6 - 10,0 mm - 0,4 mm<br />

10,1 - 12,5 mm - 0,5 mm 12,6 - 15,0 mm - 0,6 mm<br />

15,1 - 17,5 mm - 0,7 mm 17,6 - 20,0 mm - 0,8 mm<br />

20,1 - 22,5 mm - 0,9 mm 22,6 - 25,0 mm - 1,0 mm<br />

25,1 - 27,5 mm - 1,1 mm 27,6 - 30,0 mm - 1,2 mm<br />

30,1 - 32,5 mm - 1,3 mm 32,6 - 35,0 mm - 1,4 mm<br />

35,1 - 37,5 mm - 1,5 mm 37,6 - 40,0 mm - 1,6 mm<br />

40,1 - 42,5 mm - 1,7 mm 42,6 - 45,0 mm - 1,8 mm<br />

45,1 - 47,5 mm - 1,9 mm 47,6 - 50,0 mm - 2,0 mm<br />

311


Typ<br />

ty<strong>pe</strong><br />

312<br />

Zylind<strong>er</strong>k<strong>er</strong>ne<br />

Rod cores<br />

W<strong>er</strong>kstoff<br />

mat<strong>er</strong>ial<br />

für „xx“ die Länge in mm eintragen<br />

r<strong>ep</strong>lace „xx“ with the length in mm<br />

Abmessungen<br />

dimensions<br />

D / mm l / mm l / mm<br />

min max<br />

Bestellnumm<strong>er</strong><br />

ord<strong>er</strong> numb<strong>er</strong><br />

VZ 6/... g K 40 6,0 -0,5 10 30 301 060xx0 040<br />

VZ 8/ ... g 8,0 -0,5 12 35 301 080xx0 040<br />

VZ 10/... g 10,0 -0,5 20 58 301 100xx0 040<br />

VZ 4/... g K 250 4,0 -0,5 10 26 301 040xx0 250<br />

VZ 6/... g 6,0 -0,5 10 30 301 060xx0 250<br />

VZ 8/ ... g 8,0 -0,5 12 35 301 080xx0 250<br />

VZ 10/... g 10,0 -0,5 20 58 301 100xx0 250<br />

VZ 5/... g K 600 5,0 -0,5 8 30 301 050xx0 600<br />

VZ 6/... g 6,0 -0,5 10 30 301 060xx0 600<br />

VZ 8/ ... g 8,0 -0,5 12 35 301 080xx0 600<br />

VZ 10/... g 10,0 -0,5 20 55 301 100xx0 600<br />

VZ 5/... g K 2004 5,0 -0,5 8 35 301 050xx0 024<br />

VZ 6/... g 6,0 -0,5 10 45 301 060xx0 024<br />

VZ 8/ ... g 8,0 -0,5 12 35 301 080xx0 024<br />

VZ 10/... g 10,0 -0,5 20 55 301 100xx0 024


Typ<br />

ty<strong>pe</strong><br />

W<strong>er</strong>kstoff<br />

mat<strong>er</strong>ial<br />

Abmessungen<br />

dimensions<br />

D / mm l / mm l / mm<br />

min max<br />

Zylind<strong>er</strong>k<strong>er</strong>ne<br />

Rod cores<br />

Bestellnumm<strong>er</strong><br />

ord<strong>er</strong> numb<strong>er</strong><br />

VZ 3/... f K 40 3,0 -0,05 8 20 304 030xx0 040<br />

VZ 5/... f 5,0 -0,05 8 30 304 050xx0 040<br />

VZ 6/... f 6,0 -0,05 10 36 304 060xx0 040<br />

VZ 8/ ... f 8,0 -0,05 12 32 304 080xx0 040<br />

VZ 10/... f 10,0 -0,05 20 50 304 100xx0 040<br />

VZ 2/... f K 250 2,0 -0,05 6 15 304 020xx0 250<br />

VZ 2,5/... f 2,5 -0,05 6 20 304 025xx0 250<br />

VZ 3/... f 3,0 -0,05 6 26 304 030xx0 250<br />

VZ 3,5/... f 3,5 -0,05 8 26 304 035xx0 250<br />

VZ 4/... f 4,0 -0,05 10 26 304 040xx0 250<br />

VZ 5/... f 5,0 -0,05 8 32 304 050xx0 250<br />

VZ 5,5/... f 5,5 -0,05 10 32 304 055xx0 250<br />

VZ 6/... f 6,0 -0,05 10 36 304 060xx0 250<br />

VZ 8/ ... f 8,0 -0,05 12 32 304 080xx0 250<br />

VZ 10/... f 10,0 -0,05 20 50 304 100xx0 250<br />

VZ 4/... f K 600 4,0 -0,05 10 30 304 040xx0 600<br />

VZ 5/... f 5,0 -0,05 8 32 304 050xx0 600<br />

VZ 6/... f 6,0 -0,05 10 30 304 060xx0 600<br />

VZ 8/ ... f 8,0 -0,05 12 30 304 080xx0 600<br />

VZ 10/... f 10,0 -0,05 20 50 304 100xx0 600<br />

VZ 2/... f K 2004 2,0 -0,05 6 15 302 020xx0 024<br />

VZ 3/... f 3,0 -0,05 6 26 304 030xx0 024<br />

VZ 4/... f 4,0 -0,05 10 26 304 040xx0 024<br />

VZ 5/... f 5,0 -0,05 8 32 304 050xx0 024<br />

VZ 6/... f 6,0 -0,05 10 36 304 060xx0 024<br />

VZ 8/ ... f 8,0 -0,05 12 32 304 080xx0 024<br />

VZ 10/... f 10,0 -0,05 20 50 304 100xx0 024<br />

für „xx“ die Länge in mm eintragen<br />

r<strong>ep</strong>lace „xx“ with the length in mm<br />

313


314<br />

Stabk<strong>er</strong>ne und Flachstäbe<br />

Rods and flatsided rods<br />

Stabk<strong>er</strong>ne und Flachstäbe<br />

Allgemeines<br />

Stabk<strong>er</strong>ne (S) und Flachstäbe (FS) w<strong>er</strong>den<br />

im Gegensatz zu Zylind<strong>er</strong>k<strong>er</strong>nen im Extrusionsv<strong>er</strong>fahren<br />

h<strong>er</strong>gestellt. Durch diese Methode<br />

können K<strong>er</strong>nlängen bis ca. 200 mm<br />

gef<strong>er</strong>tigt w<strong>er</strong>den.<br />

Als Mat<strong>er</strong>ialien kommen üb<strong>er</strong>wiegend das<br />

Nickel-Zink-F<strong>er</strong>rit K250 und die Mangan-<br />

Zink-F<strong>er</strong>rite K600 und K2004 zum Einsatz.<br />

D<strong>er</strong> hauptsächliche Anwendungsb<strong>er</strong>eich<br />

liegt in d<strong>er</strong> Antennentechnik mit Arbeitsfrequenzen<br />

unt<strong>er</strong>halb 5 MHz.<br />

Typ<br />

ty<strong>pe</strong><br />

W<strong>er</strong>kstoff<br />

mat<strong>er</strong>ial<br />

Rods and flatsided rods<br />

Gen<strong>er</strong>al<br />

Rods (ty<strong>pe</strong> „S“) and flatsided rods (ty<strong>pe</strong> „FS“)<br />

are produced by the extrusion process. This<br />

method allows core lengths up to 200 mm.<br />

The pref<strong>er</strong>red <strong>mat<strong>er</strong>ials</strong> are the Nickel Zinc<br />

f<strong>er</strong>rite K250 and the Manganese Zinc f<strong>er</strong>rites<br />

K600 and K2004.<br />

The main application field is for antennas<br />

with a working frequency below 5 MHz.<br />

Abmessungen<br />

dimensions<br />

a / mm b / mm l / mm l / mm<br />

min max<br />

Bestellnumm<strong>er</strong><br />

ord<strong>er</strong> numb<strong>er</strong><br />

FS 3,5/18/... K 40 3,5 -0,4 18 -0,7 25 120 303 3518xx 040<br />

FS 3,5/18/... K 250 3,5 -0,4 18 -0,7 25 200 303 3518xx 250<br />

FS 3,5/18/... K 300 3,5 -0,4 18 -0,7 30 200 303 3518xx 300<br />

FS 3,5/18/... K 600 3,5 -0,4 18 -0,7 30 200 303 3518xx 600<br />

FS 4/18/... 4,0 -0,4 18 -0,7 40 80 303 4018xx 600<br />

FS 5/18/... K 2004 5,0 -0,5 18 -1,0 50 120 303 5018xx 024<br />

FS 8/18/... 8,0 -0,5 18 -1,0 50 120 303 8018xx 024<br />

FS 9,5/25,4/... 9,5 ± 0,4 25,4±0,6 50 200 403 9525xx 024<br />

für „xxx“ die Länge in mm eintragen<br />

r<strong>ep</strong>lace „xx“ with the length in mm


V<strong>er</strong>s. A V<strong>er</strong>s. B<br />

Typ<br />

ty<strong>pe</strong><br />

W<strong>er</strong>kstoff<br />

mat<strong>er</strong>ial<br />

Stabk<strong>er</strong>ne und Flachstäbe<br />

Rods and flatsided rods<br />

Abmessungen<br />

dimensions<br />

D / mm l / mm min l / mm<br />

max<br />

Bestellnumm<strong>er</strong><br />

ord<strong>er</strong> numb<strong>er</strong><br />

S 6/... A K 250 6,0 -0,5 60 200 302 06xxx1 250<br />

S 8/... A 8,0 -0,5 60 200 302 08xxx1 250<br />

S 10/... A 10,0 -0,5 60 200 302 10xxx1 250<br />

S 8/... A K 600 8,0 -0,5 60 200 302 08xxx1 600<br />

S 8/... B 8,0 -0,5 60 200 302 08xxx2 600<br />

S 10/... A 10,0 -0,5 60 200 302 10xxx1 600<br />

S 10/... B 10,0 -0,5 60 200 302 10xxx2 600<br />

S 12/... A 12,0 -0,5 60 200 302 12xxx1 600<br />

S 12/... B 12,0 -0,5 60 200 302 12xxx2 600<br />

S 15/...A 15,0 -0,5 60 200 302 15xxx1 600<br />

S 8/... A K 2004 8,0 -0,5 60 200 302 08xxx1 024<br />

S 8/... B 8,0 -0,5 60 200 302 08xxx2 024<br />

S 10/... A 10,0 -0,5 60 200 302 10xxx1 024<br />

S 10/... B 10,0 -0,5 60 200 302 10xxx2 024<br />

S 15/...A 15,0 -0,5 60 200 302 15xxx1 024<br />

für „xxx“ die Länge in mm eintragen<br />

r<strong>ep</strong>lace „xxx“ with the length in mm<br />

315


Rohrk<strong>er</strong>ne<br />

Allgemeines<br />

316<br />

Rohrk<strong>er</strong>ne<br />

Sleeves<br />

Rohrk<strong>er</strong>ne nach IEC-Publikation 60220 w<strong>er</strong>den<br />

als Üb<strong>er</strong>trag<strong>er</strong>k<strong>er</strong>ne für nicht-abgleichbare<br />

Spulen, für Dämpfungszwecke sowie<br />

für magnetische Abschirmungen v<strong>er</strong>wendet.<br />

Als W<strong>er</strong>kstoffe für Rohrk<strong>er</strong>ne w<strong>er</strong>den bevorzugt<br />

K250, K2004 und K4000 eingesetzt.<br />

Die Tol<strong>er</strong>anz d<strong>er</strong> wirksamen P<strong>er</strong>meabilität<br />

wird mit ± 5% als Richtw<strong>er</strong>t festgelegt.<br />

Die Messung d<strong>er</strong> elektrischen Kennw<strong>er</strong>te<br />

von Rohrk<strong>er</strong>nen wird in Anlehnung an die<br />

DIN 41276 Blatt 1 vorgenommen.<br />

Rohrk<strong>er</strong>ne sind in 2 Ausführungen lief<strong>er</strong>bar;<br />

Typ „g“ mit ein<strong>er</strong> Aussendurchmess<strong>er</strong>tol<strong>er</strong>anz,<br />

wie sie sich durch die F<strong>er</strong>tigung <strong>er</strong>gibt,<br />

und Typ „f“, bei d<strong>er</strong> die Tol<strong>er</strong>anz durch<br />

Schleifen v<strong>er</strong>ring<strong>er</strong>t wird.<br />

Die Kodi<strong>er</strong>ung zur Ausführung bzw. Länge<br />

ist in d<strong>er</strong> folgenden Üb<strong>er</strong>sicht beschrieben:<br />

Sleeves<br />

Gen<strong>er</strong>al<br />

3 0 x 6 0 3 0 x x 0 2 4<br />

Baugrup<strong>pe</strong><br />

s<strong>er</strong>ies<br />

Bestellnumm<strong>er</strong> / Code numb<strong>er</strong><br />

K<strong>er</strong>nlänge<br />

core length<br />

Sleeves in compliance with IEC publication<br />

60220 are used as transform<strong>er</strong> cores for non<br />

adjustable coils, for attenuation purposes<br />

and for magnetic screening.<br />

The pref<strong>er</strong>red <strong>mat<strong>er</strong>ials</strong> used for sleeves are<br />

K250, K2004, and K4000. The tol<strong>er</strong>ance of<br />

the effective <strong>pe</strong>rmeability is predet<strong>er</strong>mined<br />

at ± 5% as a standard value.<br />

The measurement of the electrical paramet<strong>er</strong>s<br />

of sleeves is conducted in compliance<br />

with DIN 41276 page 1.<br />

Sleeves are available in 2 ty<strong>pe</strong>s.Ty<strong>pe</strong> „g“<br />

has a tol<strong>er</strong>ance of the out<strong>er</strong> diamet<strong>er</strong> as it<br />

results of the production, wh<strong>er</strong>eas ty<strong>pe</strong> „f“ is<br />

ground to a small<strong>er</strong> tol<strong>er</strong>ance.<br />

The coding for ty<strong>pe</strong> and length is given in the<br />

following ov<strong>er</strong>view:<br />

W<strong>er</strong>kstoff<br />

mat<strong>er</strong>ial<br />

Ziff<strong>er</strong> 3 d<strong>er</strong> Baugrup<strong>pe</strong><br />

digit 3 in the s<strong>er</strong>ies 5 für Ty<strong>pe</strong> „g“ mit K<strong>er</strong>nlänge bis 9,9 mm<br />

for ty<strong>pe</strong> „g“ with core length up to 9.9 mm<br />

6 für Ty<strong>pe</strong> „g“ mit K<strong>er</strong>nlänge ≥ 10 mm<br />

for ty<strong>pe</strong> „g“ with core length ≥ 10 mm<br />

8 für Ty<strong>pe</strong> „f“ mit K<strong>er</strong>nlänge bis 9,9 mm<br />

for ty<strong>pe</strong> „f“ with core length up to 9.9 mm<br />

9 für Ty<strong>pe</strong> „f“ mit K<strong>er</strong>nlänge ≥ 10 mm<br />

for ty<strong>pe</strong> „f“ with core length ≥ 10 mm


Typ<br />

ty<strong>pe</strong><br />

W<strong>er</strong>kstoff<br />

mat<strong>er</strong>ial<br />

Abmessungen<br />

dimensions<br />

Rohrk<strong>er</strong>ne<br />

Sleeves<br />

Bestellnumm<strong>er</strong><br />

ord<strong>er</strong> numb<strong>er</strong><br />

D / mm d / mm L min / mm L max / mm<br />

HZ 6/3/... g K 250 6,0 -0,3 3,0 +0,2 8 18 30x 6030xx 250<br />

HZ 8/5,3/... g 8,0 -0,4 5,3 +0,3 10 14 306 8053xx 250<br />

HZ 5/2/...g K 800 5,0 -0,3 2,0 +0,2 6 10 30x 5020xx 800<br />

HZ 8/5,3/... g K 1500 8,0 -0,4 5,3 +0,3 10 14 406 8338xx 151<br />

HZ 8,3/3,8/... g 8,0 -0,4 5,3 +0,3 6 10 30x 8053xx 151<br />

HZ 3,5/1,2/... g K 2004 3,5 -0,3 1,2 +0,2 5 7 305 3512xx 024<br />

HZ 4/2/... g 4,0 -0,3 2,0 +0,2 5 12 30x 4020xx 024<br />

HZ 5/2,5/... g 5,0 -0,3 2,5 +0,2 6 14 30x 5025xx 024<br />

HZ 5/2/...g 5,0 -0,3 2,0 +0,2 6 10 30x 5020xx 024<br />

HZ 6/3/... g 6,0 -0,3 3,0 +0,2 8 18 30x 6030xx 024<br />

HZ 6,7/2,5/... g 6,7 -0,4 3,0 +0,2 8 20 30x 6730xx 024<br />

HZ 8/3/... g 8,0 -0,4 3,0 +0,2 10 16 306 8030xx 024<br />

HZ 10/5/... g 10,0 -0,5 5,0 +0,3 12 20 306 1050xx 024<br />

HZ 3,5/1,2/... g K 4000 3,5 -0,3 1,2 +0,2 5 8 305 3512xx 004<br />

Typ<br />

ty<strong>pe</strong><br />

W<strong>er</strong>kstoff<br />

mat<strong>er</strong>ial<br />

Abmessungen<br />

dimensions<br />

D / mm d / mm L min / mm L max / mm<br />

Bestellnumm<strong>er</strong><br />

ord<strong>er</strong> numb<strong>er</strong><br />

HZ 4/2/... f K 2004 4,0 -0,05 2,0 +0,2 6 11 30x 4020xx 024<br />

HZ 6/3/... f 6,0 -0,05 3,0 +0,2 8 20 30x 6030xx 024<br />

HZ 4,1/2/... f K 4000 4,1 -0,05 2,0 +0,2 6 12 40x 4120xx 004<br />

HZ 6,2/3/... f K 6000 6,2 -0,05 3,0 +0,2 8 11 40x 6230xx 006<br />

317


318<br />

Dämpfungs<strong>pe</strong>rlen<br />

Beads<br />

Dämpfungs<strong>pe</strong>rlen<br />

Allgemeines<br />

Dämpfungs<strong>pe</strong>rlen w<strong>er</strong>den zur defini<strong>er</strong>ten<br />

Kleinsignaldämpfung im Kurz- bzw. Ultrakurzwellenb<strong>er</strong>eich<br />

signalführend<strong>er</strong> Drähte<br />

benutzt. Die Dämpfung wird dabei durch<br />

die frequenzabhängigen Magnetisi<strong>er</strong>ungsv<strong>er</strong>luste<br />

d<strong>er</strong> F<strong>er</strong>rit<strong>pe</strong>rlen <strong>er</strong>zeugt. Die Aneinand<strong>er</strong>reihung<br />

mehr<strong>er</strong><strong>er</strong> P<strong>er</strong>len <strong>er</strong>höht die<br />

Dämpfung. Durch eine bestimmte Vormagnetisi<strong>er</strong>ung<br />

des P<strong>er</strong>len<strong>mat<strong>er</strong>ials</strong> kann and<strong>er</strong>seits<br />

die Dämpfung reduzi<strong>er</strong>t w<strong>er</strong>den.<br />

Die IEC-Publikation 60220 orienti<strong>er</strong>t auf eine<br />

einheitliche geometrische Gestaltung und<br />

die Einhaltung defini<strong>er</strong>t<strong>er</strong> Dämpfungsparamet<strong>er</strong><br />

d<strong>er</strong> Dampfungs<strong>pe</strong>rlen.<br />

Die Messung d<strong>er</strong> Einfügungsdämpfung wird<br />

nach VDE 0565 Teil 2 vorgenommen. Als<br />

Messaufnahme wird ein v<strong>er</strong>silb<strong>er</strong>t<strong>er</strong> Kupf<strong>er</strong>leit<strong>er</strong><br />

mit einem Durchmess<strong>er</strong> von 1,0<br />

mm v<strong>er</strong>wendet. Die P<strong>er</strong>len w<strong>er</strong>den vorzugsweise<br />

aus den W<strong>er</strong>kstoffen K14 und K250<br />

h<strong>er</strong>gestellt.<br />

Beads<br />

Gen<strong>er</strong>al<br />

Beads are used for defined low signal attenuation<br />

in the short and ultrashort wave range<br />

of signal wires. Attenuation is achieved<br />

via the frequency de<strong>pe</strong>ndent magnetization<br />

losses of the f<strong>er</strong>rite beads. The threading<br />

of sev<strong>er</strong>al beads increases attenuation.<br />

Alt<strong>er</strong>natively, attenuation can be reduced<br />

by a c<strong>er</strong>tain premagnetization of the bead<br />

mat<strong>er</strong>ial.<br />

The IEC publication 60220 proposes a uniform<br />

geometric design and to maintain defined<br />

attenuation paramet<strong>er</strong>s of the beads.<br />

The measurement of ins<strong>er</strong>tion loss is conducted<br />

in compliance with VDE 0565 part<br />

2. A silv<strong>er</strong>-plated cop<strong>pe</strong>r conductor with a<br />

diamet<strong>er</strong> of 1.0 mm is used as a measuring<br />

sensor. The beads are pref<strong>er</strong>ably made of<br />

<strong>mat<strong>er</strong>ials</strong> K14 and K250.


Im nebenstehenden<br />

Diagramm ist die<br />

Dämpfung als Funktion<br />

d<strong>er</strong> Frequenz<br />

(P<strong>er</strong>len d<strong>er</strong> Abmessung<br />

3,5/1,2/5 mm,<br />

W<strong>er</strong>kstoff K 250)<br />

dargestellt.<br />

Typ<br />

ty<strong>pe</strong><br />

W<strong>er</strong>kstoff<br />

mat<strong>er</strong>ial<br />

Abmessungen<br />

dimensions<br />

D / mm d / mm l / mm<br />

Dämpfungs<strong>pe</strong>rlen<br />

Beads<br />

In the adjoining diagram<br />

attenuation is<br />

shown as a function<br />

of frequency (beads<br />

3.5/1.2/5 mm, mat<strong>er</strong>ial<br />

K 250).<br />

Bestellnumm<strong>er</strong><br />

ord<strong>er</strong> numb<strong>er</strong><br />

DP 2,5/1/3 K 14 2,5 ± 0,2 1,0 + 0,2 3,0 ± 0,2 311 251030 014<br />

DP 3,5/1,6/1 3,5 ± 0,2 1,6 + 0,2 1,0 ± 0,2 311 351610 014<br />

DP 4/2/3,8 4,0 ± 0,2 2,0 + 0,2 3,8 ± 0,2 311 402038 014<br />

DP 2,5/1/1 K 40 2,5 ± 0,2 1,0 + 0,2 1,0 ± 0,2 311 251010 040<br />

DP 3/1,2/3 K 250 3,0 ± 0,2 1,2 + 0,2 3,0 ± 0,2 311 301230 250<br />

DP 3,5/1,2/3 3,5 ± 0,2 1,2 + 0,2 3,0 ± 0,2 311 351230 250<br />

DP 3,5/1,2/5 3,5 ± 0,2 1,2 + 0,2 5,0 ± 0,2 311 351250 250<br />

DP 3,5/1,6/5 3,5 ± 0,2 1,6 + 0,2 5,0 ± 0,2 311 351650 250<br />

DP 3/1/4,5 K 2004 3,0 ± 0,2 1,0 + 0,2 4,5 ± 0,2 311 301045 024<br />

DP 3,5/1,6/5 3,5 ± 0,2 1,6 + 0,2 5,0 ± 0,2 311 351650 024<br />

319


320<br />

Dop<strong>pe</strong>l- und Mehrlochk<strong>er</strong>ne<br />

Double and multi a<strong>pe</strong>rture cores<br />

Dop<strong>pe</strong>l- und Mehrlochk<strong>er</strong>ne<br />

Allgemeines<br />

Dop<strong>pe</strong>llochk<strong>er</strong>ne (DL) nach DIN 41279 w<strong>er</strong>den<br />

zum Aufbau von Breitbandüb<strong>er</strong>trag<strong>er</strong>n<br />

bis zu Frequenzen von 2,5 GHz v<strong>er</strong>wendet.<br />

Sie <strong>er</strong>möglichen auß<strong>er</strong>dem den einfachen<br />

Aufbau von Symmetrie- und Anpassungsglied<strong>er</strong>n<br />

in den Eingangsschaltungen für die<br />

Video- und Audiotechnik. Zur H<strong>er</strong>stellung<br />

von Dop<strong>pe</strong>llochk<strong>er</strong>nen w<strong>er</strong>den die W<strong>er</strong>kstoffe<br />

K250, K800, 2006, K4000 und K6000<br />

v<strong>er</strong>wendet. Auf Anfrage können Induktivitäts-<br />

und Gütew<strong>er</strong>te in Abhängigkeit von d<strong>er</strong><br />

Frequenz für die Applikation von Dop<strong>pe</strong>llochk<strong>er</strong>nen<br />

zur V<strong>er</strong>fügung gestellt w<strong>er</strong>den.<br />

Mehrlochk<strong>er</strong>ne (BBK) w<strong>er</strong>den zur Bedämpfung<br />

von Leitungen, Kabeln und Steckv<strong>er</strong>bindungen<br />

eingesetzt. Dabei w<strong>er</strong>den die<br />

W<strong>er</strong>kstoffe K250 und K800 v<strong>er</strong>wendet.<br />

Die möglichen Bauformen zu Mehrlochk<strong>er</strong>nen<br />

beinhaltet die nachstehende Üb<strong>er</strong>sicht.<br />

Double and multi a<strong>pe</strong>rture cores<br />

Gen<strong>er</strong>al<br />

Double a<strong>pe</strong>rture cores (DL) in compliance<br />

with DIN 41279 are used for wideband transform<strong>er</strong>s<br />

up to frequencies of 2.5 GHz. They<br />

also allow the simple design of balun and im<strong>pe</strong>dance<br />

matching links in the input circuits<br />

for video and audio technology. Mat<strong>er</strong>ials<br />

K250, K800, K2006, K4000, and K6000 are<br />

used to manufacture double a<strong>pe</strong>rture cores.<br />

The following table contains an ov<strong>er</strong>view<br />

of the core ty<strong>pe</strong>s supplied. Inductance and<br />

quality values can be supplied on request<br />

de<strong>pe</strong>nding upon the application frequency<br />

of the cores.<br />

Multi a<strong>pe</strong>rture cores (BBK) are used for the<br />

attenuation of lines, cables and plug-in connections.<br />

Mat<strong>er</strong>ials K250 and K800 are used<br />

for this purpose.<br />

The possible sha<strong>pe</strong>s of multi a<strong>pe</strong>rture cores<br />

are given in the following ov<strong>er</strong>view.


V<strong>er</strong>s. 3 V<strong>er</strong>s. 5<br />

Typ<br />

ty<strong>pe</strong><br />

V<strong>er</strong>s.<br />

V<strong>er</strong>s.<br />

W<strong>er</strong>kst.<br />

Mat.<br />

A L -W<strong>er</strong>t<br />

A L value<br />

Dop<strong>pe</strong>llochk<strong>er</strong>ne<br />

Double a<strong>pe</strong>rture cores<br />

Abmessungen<br />

dimensions<br />

nH l / mm a / mm h / mm<br />

Bestellnumm<strong>er</strong><br />

ord<strong>er</strong> numb<strong>er</strong><br />

DL 5x2,5/1,5/2,5C 3 K 250 125 5,1±0,25 2,5±0,2 2,35±0,2 312 052023 250<br />

DL 5x2,5/1,5/2,5E 5 110 5,0±0,3 2,5±0,2 2,5±0,2 312 052025 250<br />

DL 6,5x3/1/2C 3 200 6,5±0,3 3,0±0,2 2,0±0,2 312 073023 250<br />

DL 6,5x3/1/3C 3 300 6,5±0,3 3,0±0,2 3,0±0,2 312 073033 250<br />

DL 6,5x3/1/4C 3 335 6,5±0,3 3,0±0,2 4,0±0,2 312 073043 250<br />

DL 7,3x4,5/1,8/2,2C 3 120 7,3-0,5 4,5-0,4 2,2±0,2 312 074023 250<br />

DL 7,3x4,5/1,8/5,2C 3 260 7,3-0,5 4,5-0,5 5,2-0,5 312 074053 250<br />

DL 3,6x2,1/0,8/2,5C 3 K 800 650 3,6-0,3 2,1-0,3 2,5±0,2 312 362253 800<br />

DL 3,6x2,1/0,8/2,5E 5 650 3,6±0,2 2,1±0,2 2,5-0,3 312 362255 800<br />

DL 5x2,5/1/2,5C 3 710 5,1±0,25 2,6±0,2 2,35±0,2 312 052153 800<br />

DL 5x2,5/1,5/2,5E 5 560 5,0±0,3 2,5±0,2 2,5±0,2 312 052255 800<br />

DL 6,5x3/1/2C 3 690 6,5±0,3 2,9±0,2 2,0±0,2 312 073023 800<br />

DL 6,9x4,5/2/4,2C 3 1000 7,0-0,5 4,5-0,5 4,2-0,4 312 074043 800<br />

DL 7,3x4,5/1,8/3,7C 3 900 7,3-0,7 4,5-0,6 3,7-0,4 312 074373 800<br />

DL 4,7x2,5/0,9/2,5C 3 K 2006 1470 4,7±0,25 2,5±0,2 2,5±0,2 412 472923 026<br />

DL 3,6x2,1/0,8/2,5C 3 K 4000 1950 3,6-0,3 2,1-0,3 2,5-0,3 312 362253 004<br />

DL 4,7x2,5/0,9/2,5C 3 1550 4,7±0,25 2,5±0,2 2,5±0,2 412 472923 004<br />

DL 5x2,5/1,5/2,5E 5 2000 5,0±0,3 2,5±0,2 2,5±0,2 312 052255 004<br />

DL 3,6x2,1/0,8/2,5C 3 K 6000 2100 3,6-0,3 2,1-0,3 2,5-0,3 312 362253 006<br />

Die A L -W<strong>er</strong>te haben eine Tol<strong>er</strong>anz von ± 30%; die Messfrequenz beträgt 1 MHz<br />

The A L values have a tol<strong>er</strong>ance of ± 30%; the test frequency is 1 MHz<br />

321


Typ<br />

ty<strong>pe</strong><br />

322<br />

Mehrlochk<strong>er</strong>ne<br />

Multi a<strong>pe</strong>rture cores<br />

V<strong>er</strong>s. 1 V<strong>er</strong>s. 2<br />

V<strong>er</strong>s.<br />

V<strong>er</strong>s.<br />

W<strong>er</strong>kst.<br />

Mat.<br />

Abmessungen<br />

dimensions<br />

D / mm d / mm l / mm<br />

Bestellnumm<strong>er</strong><br />

ord<strong>er</strong> numb<strong>er</strong><br />

BBK 6/10 - 6x0,8 1 K 250 6,0±0,3 0,8±0,1 10,0±0,5 313 610608 250<br />

BBK 7/2,5 - 4x1,2 2 K 250 7,0-0,7 1,2±0,2 2,5±0,15 313 725412 250<br />

BBK 7/2,7 - 4x1 2 K 800 7,0-0,7 1,0±0,1 2,7±0,15 313 727410 800<br />

BBK 7/3,1 - 4x1 2 K 800 7,0-0,7 1,0±0,1 3,1±0,15 413 731410 800<br />

BBK 7/8 - 4x1,2 2 K 250 7,0-0,7 1,2±0,2 8,0±0,4 313 780412 250


Segmente für induktive Erwärmung<br />

Allgemeines<br />

Die Kaschke Components produzi<strong>er</strong>t für<br />

induktive Erwärmungssysteme F<strong>er</strong>ritplatten<br />

auf d<strong>er</strong> Grundlage d<strong>er</strong> W<strong>er</strong>kstoffe K2004<br />

und K2006.<br />

Das folgende Bild beinhaltet die Darstellung<br />

d<strong>er</strong> möglichen Plattengeometrie für Segmente,<br />

die in induktiven Kochfeld<strong>er</strong>n für den<br />

Küchenbetrieb Einsatz finden.<br />

Typ<br />

ty<strong>pe</strong><br />

W<strong>er</strong>kstoff<br />

mat<strong>er</strong>ial<br />

Segmente für induktive Erwärmung<br />

Segments for inductive heating<br />

Segments for inductive heating<br />

Gen<strong>er</strong>al<br />

Kaschke Components also produces f<strong>er</strong>rite<br />

segments based on the <strong>mat<strong>er</strong>ials</strong> K2004<br />

and K2006 for inductive heating systems.<br />

The following figure shows available segment<br />

geometries.<br />

Abmessungen<br />

dimensions<br />

A / mm B / mm<br />

Bestellnumm<strong>er</strong><br />

ord<strong>er</strong> numb<strong>er</strong><br />

RST 145/20/3,5-4 K 2004 72,5 ± 2,0 3,5 -0,6 399 371143 024<br />

K 2006 72,5 ± 2,0 3,5 -0,6 399 371143 026<br />

RST 180/20/3,75-4 K 2004 90 ± 2,0 3,75 -0,6 399 371183 024<br />

K 2006 90 ± 2,0 3,75 -0,6 399 371183 026<br />

RST 210/20/3,75-4 K 2004 105 ± 2,0 3,75 -0,6 399 371213 024<br />

K 2006 105 ± 2,0 3,75 -0,6 399 371213 026<br />

323


324<br />

Absorb<strong>er</strong>kacheln<br />

Absorb<strong>er</strong> tiles<br />

Absorb<strong>er</strong>platten<br />

Allgemeines<br />

Für den Aufbau von Prüfkamm<strong>er</strong>n zur Ermittlung<br />

d<strong>er</strong> Störfestigkeit elektrisch<strong>er</strong> und<br />

elektronisch<strong>er</strong> G<strong>er</strong>äte entsprechend d<strong>er</strong><br />

EMV-Gesetzgebung wurde das Nickel-Zink-<br />

F<strong>er</strong>rit K1500 entwickelt, ein Absorb<strong>er</strong>mat<strong>er</strong>ial,<br />

das einen reflexionsfreien Prüfbetrieb<br />

im Frequenzb<strong>er</strong>eich von 30 bis 1000 MHz<br />

<strong>er</strong>möglicht und zur H<strong>er</strong>stellung von F<strong>er</strong>ritkacheln<br />

V<strong>er</strong>wendung findet.<br />

F<strong>er</strong>ritkacheln <strong>er</strong>möglichen klein<strong>er</strong>e Dimensionen<br />

für die Prüfhallen. Sie sind Chemikalien-<br />

und wärmebeständig und nicht entflammbar.<br />

Nickel-Zink-F<strong>er</strong>rite entsprechend d<strong>er</strong> W<strong>er</strong>kstoffqualität<br />

des K1500 besitzen folgende<br />

mechanische und th<strong>er</strong>mische Eigenschaften:<br />

F<strong>er</strong>ritabsorb<strong>er</strong>platten aus dem W<strong>er</strong>kstoff<br />

K1500 entsprechen d<strong>er</strong> IEC 60801 - 3 und<br />

dem MIL Standard 461. Sie sind auch zum<br />

Aufbau von Hybridabsorb<strong>er</strong>n geeignet.<br />

Die folgende Abbildung zeigt die Abhängigkeit<br />

d<strong>er</strong> Dämpfung (Reflectivity) von Nickel-<br />

Zink-Absorb<strong>er</strong>platten, die zu einem Flachabsorb<strong>er</strong><br />

monti<strong>er</strong>t wurden.<br />

Absorb<strong>er</strong> tiles<br />

Gen<strong>er</strong>al<br />

For the building of anechoic chamb<strong>er</strong>s for<br />

the det<strong>er</strong>mination of the immunity of electric<br />

and electronic appliances in compliance with<br />

the EMC regulations, the nickel-zinc f<strong>er</strong>rite<br />

K1500 was develo<strong>pe</strong>d, an absorb<strong>er</strong> mat<strong>er</strong>ial<br />

with z<strong>er</strong>o reflectivity that allows testing<br />

o<strong>pe</strong>rations in the frequency range from 30 to<br />

1000 MHz and is used for the production of<br />

f<strong>er</strong>rite tiles.<br />

F<strong>er</strong>rite tiles allow small<strong>er</strong> dimensions for test<br />

chamb<strong>er</strong>s, they are resistant to chemicals,<br />

heat-resistant and non-flammable.<br />

Nickel-zinc f<strong>er</strong>rite made of the mat<strong>er</strong>ial grade<br />

K1500 has the following mechanical and<br />

th<strong>er</strong>mal pro<strong>pe</strong>rties:<br />

Dichte<br />

Density ρ = 5,1 g/cm 3<br />

E-Modul<br />

Young‘s modulus E = 150 GPa<br />

Zugfestigkeit<br />

Tensile strength σ Z ~ 45 MPa<br />

Druckfestigkeit<br />

Compressive strength σ D ~ 400 MPa<br />

lineare Wärmedehnung<br />

Linear th<strong>er</strong>mal expansion coeff. α = 95 x 10 -7 K -1<br />

Wärmeleitfähigkeit<br />

Th<strong>er</strong>mal conductivity λ = 3,5 W/mK<br />

F<strong>er</strong>rite tiles made of mat<strong>er</strong>ial K1500 comply<br />

with IEC 60801 - 3 and MIL standard 461.<br />

They are also suitable for mounting hybrid<br />

absorb<strong>er</strong>s.<br />

The following figure shows the de<strong>pe</strong>ndence<br />

of attenuation (reflectivity) of nickel-zinc f<strong>er</strong>rite<br />

tiles that have been assembled to a flat<br />

absorb<strong>er</strong>.


F<strong>er</strong>ritabsorb<strong>er</strong>platten sind lief<strong>er</strong>bar<br />

• mit und ohne Befestigungslöch<strong>er</strong>n<br />

• allseitig geschliffen<br />

• ungeschliffen mit k<strong>er</strong>amiktypischen Grobtol<strong>er</strong>anzen<br />

Typ<br />

ty<strong>pe</strong><br />

a e / dB<br />

40<br />

30<br />

20<br />

10<br />

Absorb<strong>er</strong>kacheln<br />

Absorb<strong>er</strong> tiles<br />

0<br />

30 100 300 1000 3000<br />

Abmessungen<br />

dimensions<br />

f / MHz<br />

F<strong>er</strong>rite tiles are supplied<br />

• with and without attachment holes<br />

• ground on all sides<br />

• unground with c<strong>er</strong>amic typical rough tol<strong>er</strong>ances<br />

Durchb.<br />

deflect.<br />

A / mm B / mm C / mm D / mm mm<br />

Bestellnumm<strong>er</strong><br />

ord<strong>er</strong> numb<strong>er</strong><br />

VKSL 100/100/4-6-VSGS 100-0,3 100-0,3 4,0±0,3 6 +0,5 ≤ 1,0 369 008416 151<br />

VKSL 100/100/5-6-VSGS 100-0,3 100-0,3 5,0±0,3 6 +0,5 ≤ 1,0 369 008516 151<br />

VKSL 100/100/6-6-VSGS 100-0,3 100-0,3 6,0±0,3 6 +0,5 ≤ 1,0 369 008616 151<br />

VKSL 100/100/3,7-6-BSG-VSGS 100-0,3 100-0,3 3,7±0,3 6 +0,5 ≤ 0,3 369 009716 151<br />

VKSL 100/100/4-6-BSG-VSGS 100-0,3 100-0,3 4,0±0,3 6 +0,5 ≤ 0,3 369 009416 151<br />

VKSL 100/100/5-6-BSG-VSGS 100-0,3 100-0,3 5,0±0,3 6 +0,5 ≤ 0,3 369 009516 151<br />

VKSL 100/100/6-6-BSG-VSGS 100-0,3 100-0,3 6,0±0,3 6 +0,5 ≤ 0,3 369 009616 151<br />

325


326

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!