14.02.2013 Views

sorption and desorption studies of benzimidazole pbsticides on soils

sorption and desorption studies of benzimidazole pbsticides on soils

sorption and desorption studies of benzimidazole pbsticides on soils

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SORPTION AND DESORPTION STUDIES OF<br />

BENZIMIDAZOLE PBSTICIDES ON SOILS<br />

Dr. Naghmana Rashid<br />

Supervisor<br />

Saadia Tazaiyen<br />

Roll No. V 867285<br />

Submitted in partial fulfillment <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

requirements for the Master <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Philosophy degree in Chemistry with<br />

specializati<strong>on</strong> in Organic Chemistry at<br />

the Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

Allama Iqbal Open University,<br />

Islamabad<br />

August 04,2009


41"<br />

*<br />

t<br />

1 tl,,l<br />

nf,<br />

IL<br />

l L'l<br />

.Xr I<br />

dL..4'<br />

F<br />

WrygF<br />

-


DEDICATION<br />

Dedicated to<br />

My dear husb<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> sweet s<strong>on</strong>s<br />

Haider, Taimoor<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Abdullah<br />

llr


Title <str<strong>on</strong>g>of</str<strong>on</strong>g> Thesis Sorpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> Benzimidazole<br />

Pesticides <strong>on</strong> Soils<br />

Name <str<strong>on</strong>g>of</str<strong>on</strong>g> Student Saadia Tazaiven<br />

Accepted by the Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry. Allama Iqbal<br />

Open University, in partial fulfillment <str<strong>on</strong>g>of</str<strong>on</strong>g> the requirements for the Master <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Philosophy Degree in chemistry with specializati<strong>on</strong> in organic chemistry.<br />

1.<br />

,\r t l'<br />

2. .l\L .-[,"= J<br />

t*rraln*<br />

3.<br />

4.<br />

3.<br />

.// ,-7tt ." 14.-: \. '-"r--<br />

Externa(Examiner<br />

Supervisor<br />

VIVA VOCE COMMITTEE<br />

tv<br />

(Stamp)<br />

t. nl?ti-r.1t. H ussain Bhattr<br />

^<br />

tecn<br />

Fc:iritv <str<strong>on</strong>g>of</str<strong>on</strong>g> Scicn:es<br />

Aiicna Ii;!, .l 9.,,t.,, l/rrvars;ty<br />

(Stamp)<br />

I 'i' . i.: '1,'::i"i f\lgN,i ji,'ii.:liID<br />

i, ir ar i r-1)ir irt :..i,' i,.s:.. clr i': :r i il: it!;s 0 r<br />

rr':;: ;:.'i :,-'r,t c r ll.)qrnis i r"t'<br />

Allan ra i':; ita i'"^, ;;er'.i r: ivsrsttY<br />

(Stamp)<br />

(Dr. MEHR NIGAR)<br />

Assistant Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor<br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Mech. & Aerospace Engg.<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Avi<strong>on</strong>ics & Aer<strong>on</strong>autics<br />

Air University, lslamabad<br />

(Stamp)<br />

DR. I'J.qGHMANA RASHID<br />

Clr;ir1;?rscr:r .' Associate pr<str<strong>on</strong>g>of</str<strong>on</strong>g>assctii-)iij;ri:j-.flnt<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Clre mistnr<br />

Allarla iqltai O pcn University<br />

i,:." r, :. ri:'l ;?;""';?J,t<br />

A : I d :-- I J,,,111;,1,#:ouniverjify<br />

(Stamp)


ABSTRACT<br />

The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> the present study is to investigate the <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> transport<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> fungicides <str<strong>on</strong>g>and</str<strong>on</strong>g> their possible envir<strong>on</strong>mental impact <strong>on</strong> <strong>soils</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ground water. Benzimidazole fungicides studied were 2-(4-fluorophenyl)-111-<br />

<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g>, N-(111-<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g>-2-ylmethyl) acetamide <str<strong>on</strong>g>and</str<strong>on</strong>g> methyl 1H-<br />

<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g>-2-carboxylate (Carbendazim). Carbendazim is commercially used<br />

fungicide whereas 2-(4-fluorophenyl)-1H-<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g>, N-(1I/-<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g>-2-<br />

ylmethyl) acetamide was synthesized <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g>s, exhibiting good fungicidal activity<br />

as compared to commercially used <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g>s. Soils studied were from agriculture<br />

areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Multan, Tarnol (Islamabad), Murree <str<strong>on</strong>g>and</str<strong>on</strong>g> Ayubia where such types <str<strong>on</strong>g>of</str<strong>on</strong>g> fungicides<br />

are in use.<br />

To better underst<str<strong>on</strong>g>and</str<strong>on</strong>g> the ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>-de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> phenomena pure soil c<strong>on</strong>stituents<br />

silica, alumina, muscovite <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>tmorill<strong>on</strong>ite were also studied.<br />

In all <strong>soils</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> minerals ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>-de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> isotherms were found linear which<br />

show that ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> is increases with increased c<strong>on</strong>centrati<strong>on</strong>. From ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>studies</str<strong>on</strong>g> it<br />

is calculated that the <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> equilibrium distributi<strong>on</strong> co-efficient K6 is higher for<br />

Carbendazim than 2-(4-fluorophenyl)-lIl-<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> N-(1/I-<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g>-2-<br />

ylmethyl) acetamide indicating higher ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>.<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> soil properties <strong>on</strong> the <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> benzimi dazole fungicides was also<br />

evaluated as ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> is a surface phenomen<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> it is dependant <strong>on</strong> soil organic<br />

matter c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> pH. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> parameters were quite high in forest soil from Ayubia<br />

which has low pH (7.6) <str<strong>on</strong>g>and</str<strong>on</strong>g> higher organic matter c<strong>on</strong>tent (9.45) than rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>soils</strong> so<br />

it exhibited resistance to de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>.<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>studies</str<strong>on</strong>g> exhibited that K6 (des) is higher than K6 (aos) for <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Multan,<br />

Tarnol <str<strong>on</strong>g>and</str<strong>on</strong>g> Murree so the potential risk <str<strong>on</strong>g>of</str<strong>on</strong>g> leaching <str<strong>on</strong>g>and</str<strong>on</strong>g> water polluti<strong>on</strong> will be higher in<br />

these <strong>soils</strong>.


ACKNOWLEDEMENTS<br />

We bow our heads to Allah, The Almighty, Who created man <str<strong>on</strong>g>and</str<strong>on</strong>g> gifted him with<br />

the sense to decipher right from wr<strong>on</strong>g, <str<strong>on</strong>g>and</str<strong>on</strong>g> His blessings <strong>on</strong> all the Prophets who guided<br />

their followers <str<strong>on</strong>g>and</str<strong>on</strong>g> our Prophet Muhammad S.A.W. who is beac<strong>on</strong> light for all the<br />

mankind <str<strong>on</strong>g>and</str<strong>on</strong>g> for all the times to come.<br />

I feel gratified <str<strong>on</strong>g>and</str<strong>on</strong>g> privileged in expressing great degree <str<strong>on</strong>g>of</str<strong>on</strong>g> gratitude to my<br />

research supervisor Dr. Naghmana Rashid Associate Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, Deptt. <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry,<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Allama Iqbal Open University, Islamabad for her excellence advice,<br />

skillful guidance, pers<strong>on</strong>al interest <str<strong>on</strong>g>and</str<strong>on</strong>g> valuable suggesti<strong>on</strong>s throughout this research<br />

project.<br />

My sincere thanks to Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Dr. Mahmood-ul-Hassan Butt Vice Chancellor,<br />

Allama Iqbal Open University, Islamabad <str<strong>on</strong>g>and</str<strong>on</strong>g> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Dr. Muhammad Kaleem Tahir,<br />

Dean Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Chairman Deptt <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry AIOU, Islamabad for providing<br />

necessary research facilities, encouragement <str<strong>on</strong>g>and</str<strong>on</strong>g> moral support.<br />

I would like to thank the thesis committee for their c<strong>on</strong>structive suggesti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

scholarly critical review <str<strong>on</strong>g>of</str<strong>on</strong>g> this thesis.<br />

I would like to express my heartfelt appreciati<strong>on</strong> to Dr. Uzma Younas <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Dr.Moazzam Hussain Bhatti for their kindness <str<strong>on</strong>g>and</str<strong>on</strong>g> valuable euidance.<br />

behaviour.<br />

Thanks to all the technical <str<strong>on</strong>g>and</str<strong>on</strong>g> supporting staff for their co-operati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

I am also grateful to my seniors <str<strong>on</strong>g>and</str<strong>on</strong>g> colleagues Khurram, Shaista, Shakir,<br />

Ashfaq <str<strong>on</strong>g>and</str<strong>on</strong>g> my sweet friend Anila who were always there for me <str<strong>on</strong>g>and</str<strong>on</strong>g> I can never forget<br />

the time that I have spent with them. My special thanks are due to my lab fellows for<br />

their help <str<strong>on</strong>g>and</str<strong>on</strong>g> cooperati<strong>on</strong> during research work.<br />

vl<br />

nlce


I have no words to acknowledge the sacrifice, efforts, support, encouragement,<br />

appreciati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> lots <str<strong>on</strong>g>of</str<strong>on</strong>g> prayers, <str<strong>on</strong>g>of</str<strong>on</strong>g> my loving parentsn inJaws <str<strong>on</strong>g>and</str<strong>on</strong>g> brothers. I'm also<br />

thankful to my sisters Aliya <str<strong>on</strong>g>and</str<strong>on</strong>g> Sajida for their c<strong>on</strong>tributi<strong>on</strong> in compiling my thesis,<br />

their strengthening prayers <str<strong>on</strong>g>and</str<strong>on</strong>g> encouragement, which led me to the completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> my<br />

research work.<br />

Finallv" I would like to thank all my well wishers.<br />

vll<br />

Saadia Tazaiyen Abbasi


ABSTRACT<br />

ACKNOWLEDGEMENTS<br />

CONTENTS<br />

LIST OF TABLES<br />

LIST OF FIGURES<br />

CONTENTS<br />

LIST OF ABBREVIATION AND SYMBOLS<br />

CHAPTER<br />

1. INTRODUCTION<br />

1.1 Pesticides<br />

1 . 1 .1 Classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides<br />

1.1.2 Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticide <strong>on</strong> envir<strong>on</strong>ment<br />

1.1.3 Pesticides in Pakistan<br />

1.1.3.1 Use <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides in Pakistan<br />

1.1.3.2 Study <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides in Pakistan<br />

vl11<br />

Page No.<br />

v<br />

1-35


.,<br />

1.1.4 Funsicides<br />

1.1.5<br />

1.2 Soils<br />

1.2.1<br />

1.1.4.1 Classificati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>fungicides<br />

Benzimidazole fungicides<br />

Compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong><br />

1.2.I.1 Soil minerals<br />

I.2.1.2 Surface functi<strong>on</strong>al groups<br />

1.2.2 Classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong><br />

1.2.3 Soil sampling<br />

1.2.4 Soils <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan<br />

1.3 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>-de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>studies</str<strong>on</strong>g><br />

1.3.1 Sorpti<strong>on</strong><br />

1.3.2 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>-de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> models<br />

1.4 Pesticides, Soils <str<strong>on</strong>g>and</str<strong>on</strong>g> soil minerals/clays used in this study<br />

EXPERIMENTAL<br />

2.1 Chemical <str<strong>on</strong>g>and</str<strong>on</strong>g> solvents<br />

2.2 Instruments used<br />

2.3 Soils collecti<strong>on</strong><br />

2.4 Physiochemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides<br />

2.4.1 Moisture c<strong>on</strong>tent<br />

2.4.2 Organic matter c<strong>on</strong>tent<br />

2.4.3 Soil pH<br />

2.5 Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s<br />

IX<br />

8<br />

9<br />

l3<br />

I4<br />

15<br />

18<br />

t9<br />

20<br />

24<br />

27<br />

28<br />

29<br />

JZ<br />

36-40<br />

36<br />

36<br />

a-<br />

)t<br />

38<br />

38<br />

38<br />

38<br />

38


3.<br />

2.5.1 Stock soluti<strong>on</strong>s<br />

2.5.2 Diluti<strong>on</strong>s<br />

2.6 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>studies</str<strong>on</strong>g><br />

2.7 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>studies</str<strong>on</strong>g><br />

RESULTS<br />

3. I Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Pesticides <str<strong>on</strong>g>and</str<strong>on</strong>g> Soil Used In This<br />

Study Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>-de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>studies</str<strong>on</strong>g><br />

3.2 General Method Used for Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>-De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> Studies<br />

3.3 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby alumina<br />

3.4 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by alumina<br />

3.5 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by silica<br />

3.6 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby silica<br />

3.7 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby m<strong>on</strong>tmorill<strong>on</strong>ite<br />

3.8 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby m<strong>on</strong>tmorill<strong>on</strong>ite<br />

3.9 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby muscovite<br />

3.10 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby muscovite<br />

3.11 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil 1<br />

3. 12 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil I<br />

3. 13 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby soil 2<br />

3.14 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby soil 2<br />

3. I 5 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil 3<br />

3.16 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil 3<br />

3.17 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby soil 4<br />

38<br />

39<br />

39<br />

40<br />

4t-91<br />

4T<br />

42<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60


3.1 8 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby soil 4<br />

3.19 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by alumina<br />

3.20 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by alumina<br />

3.21 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by silica<br />

3.22 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by silica<br />

3.23 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by m<strong>on</strong>tmorill<strong>on</strong>ite<br />

3.24 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by m<strong>on</strong>tmorill<strong>on</strong>ite<br />

3.25 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by muscovite<br />

3.26 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by muscovite<br />

3.27 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil 1<br />

3.28 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil 1<br />

3.29 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil2<br />

3.30 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil2<br />

3.31 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil 3<br />

3.32 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil 3<br />

3.33 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil 4<br />

3.34 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil 4<br />

3.35 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by alumina<br />

3.36 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by alumina<br />

3.37 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by silica<br />

3.38 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by silica<br />

3.39 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil I<br />

3.40 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil 1<br />

xl<br />

6l<br />

62<br />

63<br />

64<br />

65<br />

66<br />

67<br />

70<br />

7T<br />

72<br />

73<br />

74<br />

75<br />

76<br />

77<br />

78<br />

79<br />

80<br />

81<br />

84<br />

85<br />

86<br />

87


3.41 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil 2<br />

3.42 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil2<br />

3.43 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil 3<br />

3.44 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil 3<br />

4. DISCUSSION<br />

f,.<br />

6.<br />

4.1 Biological activity<br />

4.1.1 Antifungal Bioassay<br />

4.2 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>studies</str<strong>on</strong>g><br />

4.2.1 Methyl I H- <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g>-2-carboxylate<br />

(Carbendazim)<br />

4.2.2 2-(4-fl uorophenyl)- 1,F1- <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g><br />

(FBNZ)<br />

4.2.3 N-(ll{- benzimidazol -2-ylmethyl)<br />

acetamide (ABNZ)<br />

4.3 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>studies</str<strong>on</strong>g><br />

CONCLUSION<br />

REFERENCES<br />

xll<br />

88<br />

89<br />

90<br />

9l<br />

92-100<br />

92<br />

92<br />

94<br />

95<br />

97<br />

98<br />

99<br />

99-r02<br />

103-107


i.1<br />

1.2<br />

3.1<br />

.).J<br />

3.4<br />

3.5<br />

3.6<br />

Table No.<br />

LIST OF TABLES<br />

Title<br />

The use <str<strong>on</strong>g>and</str<strong>on</strong>g> trade name <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> funeicides.<br />

Soil types <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan<br />

Pesticide used in this studv<br />

The relevant physiochemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> four soil samples<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby AlzOl<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby AlzOl<br />

a)<br />

b)<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by AlzOl<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby AlzOl<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by SiO2<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by SiO2<br />

a)<br />

b)<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by SiO2<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by SiO2<br />

xlll<br />

Page no<br />

l0<br />

26<br />

40<br />

42<br />

46<br />

47<br />

47<br />

48<br />

49<br />

49


an<br />

).1<br />

3.8<br />

3.9<br />

3.10<br />

3.11<br />

3.12<br />

3.13<br />

3.14<br />

3.15<br />

3.t6<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbend azim by m<strong>on</strong>tmorill<strong>on</strong>ite<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbend azim by m<strong>on</strong>tmorill<strong>on</strong>ite<br />

a)<br />

b)<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbenda zim by m<strong>on</strong>tmorill<strong>on</strong>ite<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbenda zim by m<strong>on</strong>tmorill<strong>on</strong>ite<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbend azim by muscovite<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbend azim by muscovite<br />

a)<br />

b)<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by muscovite<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by muscovite<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil 1<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil 1<br />

a)<br />

b)<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil 1<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil 1<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbend azim by<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbend azim by soil2<br />

a)<br />

b)<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby soil 2<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby soil 2<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil 3<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil 3<br />

a) De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil 3<br />

XIV<br />

soil2<br />

50<br />

51<br />

51<br />

52<br />

53<br />

53<br />

54<br />

55<br />

55<br />

56<br />

57<br />

57<br />

58<br />

59


3.17<br />

3.18<br />

3.19<br />

3.20<br />

3.21<br />

3.22<br />

a<br />

J.ZJ ^a<br />

3.24<br />

3.25<br />

3.26<br />

b) De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil 3<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby soil 4<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby soil 4<br />

a)<br />

b)<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby soil 4<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby soil 4<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by AlzOr<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by AlzOr<br />

a)<br />

b)<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by AlzOr<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by AlzOr<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by SiOz<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by SiOz<br />

a)<br />

b)<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by SiOz<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by SiOz<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by m<strong>on</strong>tmorill<strong>on</strong>ite<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by m<strong>on</strong>tmorill<strong>on</strong>ite<br />

a)<br />

b)<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by m<strong>on</strong>tmorill<strong>on</strong>ite<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by m<strong>on</strong>tmorill<strong>on</strong>ite<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by muscovite<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by muscovite<br />

59<br />

6l<br />

6l<br />

62<br />

63<br />

63<br />

65<br />

65<br />

67<br />

67


3.27<br />

3.28<br />

3.29<br />

3.30<br />

3.31<br />

aa^<br />

J.J Z<br />

a aa<br />

J.J J<br />

3.34<br />

3.3s<br />

a) De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by muscovite<br />

b) De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by muscovite<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil 1<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil 1<br />

a) De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil I<br />

b) De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil 1<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil 2<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil2<br />

a) De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZby soil2<br />

b) De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZby soil2<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil 3<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil 3<br />

a) De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZby soll3<br />

b) De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil3<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil4<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil4<br />

a) De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZby soII4<br />

b) De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZby soil4<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by AlzO:<br />

XV1<br />

7I<br />

7l<br />

72<br />

-a<br />

IJ<br />

74<br />

75<br />

75<br />

76<br />

77<br />

77<br />

78<br />

79<br />

79<br />

80


3.36 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Al2O3<br />

aa-<br />

).) I<br />

3.3 8<br />

3.39<br />

3.40<br />

3.41<br />

3.42<br />

3.43<br />

3.44<br />

a)<br />

b)<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by AlzOg<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Al2O3<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by SiO2<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by SiO2<br />

a)<br />

b)<br />

a)<br />

b)<br />

a)<br />

b)<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by SiOz<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by SiOz<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil 1<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil 1<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil2<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil2<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil2<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil2<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil3<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil 3<br />

a)<br />

b)<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil3<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil 3<br />

xvll<br />

81<br />

81<br />

84<br />

85<br />

85<br />

86<br />

87<br />

87<br />

88<br />

89<br />

89<br />

90<br />

9I<br />

9I


4.1 Antifungal activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g>s<br />

4.2 Ko values for ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> carbendazim <strong>on</strong><br />

minerals/<strong>soils</strong><br />

4.3 K6 values for ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ<br />

<strong>on</strong> minerals <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>soils</strong> 98<br />

4.4 Ko values for ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ <strong>on</strong><br />

minerals <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>soils</strong>. 99<br />

XVIIl<br />

93<br />

96


I<br />

Table No.<br />

Fig. 1.1<br />

Fig.I.2<br />

Fig. 1.3<br />

Fig. 1.4<br />

Fig. i.5<br />

Fig. 1.6<br />

Fig. 1.7<br />

Fig.3.1<br />

Fig.3.2<br />

Fig.3.3<br />

Fig. 3.4<br />

LIST OF FIGURES<br />

Title<br />

Diagrammatic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> muscovite (mica)<br />

Diagrammatic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>tmorill<strong>on</strong>ite<br />

Determining the soil textures with the use <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

Soil texture triangle<br />

Map representing 26broad soil types <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan<br />

Types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> isotherms<br />

Minerals/clays used in the study<br />

Soils used in the study<br />

Ab<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby alumina<br />

(ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> blank)<br />

Ab<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by alumina<br />

(ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> a)<br />

Ab<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby alumina<br />

(ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> b)<br />

Ab<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by alumina<br />

xlx<br />

Page no<br />

16<br />

I7<br />

20<br />

25<br />

30<br />

34<br />

35<br />

44<br />

44<br />

44


Fig. 3.5<br />

Fig. 3.6<br />

Fig.3,7<br />

Fig. 3.8<br />

Fig. 3.9<br />

Fig. 3.10<br />

Fig. 3.11<br />

Fig.3.12<br />

Fig.3.13<br />

Fig.3.14<br />

Fig.3.15<br />

Fig. 3.16<br />

Fig.3.17<br />

(de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> a)<br />

Ab<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazimby alumina (de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> b)<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by AlzO:<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by SiOz<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by<br />

M<strong>on</strong>tmorill<strong>on</strong>ite<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by<br />

Muscovite<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil 2<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil 3<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil4<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZby AlzOz<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZby SiO2<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by<br />

M<strong>on</strong>tmorill<strong>on</strong>ite<br />

Ab<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by muscovite<br />

XX<br />

45<br />

45<br />

46<br />

48<br />

50<br />

52<br />

54<br />

56<br />

58<br />

60<br />

62<br />

64<br />

66


Fig.3.18<br />

Fig.3.19<br />

Fig. 3.20<br />

Fig.3.2I<br />

Fig.3.22<br />

Fig.3.23<br />

Fig.3.24<br />

Fig.3.25<br />

Fig.3.26<br />

Fi9.3.27<br />

Fig. 3.28<br />

(ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> blank)<br />

Ab<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by muscovite (ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> a)<br />

Ab<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by muscovite (ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> a) 68<br />

Ab<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by muscovite (de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> a) 69<br />

Ab<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra FBNZ by muscovite (de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> b)<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by muscovite 70<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil 1<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZby soil2<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by soil 3 76<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZby soll4<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by AlzO: 80<br />

Ab<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by silica (ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> blank) 82<br />

xxi<br />

68<br />

68<br />

72<br />

74<br />

78


Fis.3.29<br />

Fig. 3.30<br />

Fig. 3.31<br />

Fig.3.32<br />

Fig. 3.33<br />

Fig.3.34<br />

Fig. 3.35<br />

Fig. 3.36<br />

Fig. 4.1<br />

Ab<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by silica (ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> a) 82<br />

Ab<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by silica (ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> b) 82<br />

Ab<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by silica (de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> a) 83<br />

Ab<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by silica (de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> b)<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by SiO2<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil 1<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil2<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil 3<br />

Antifungal activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g>s<br />

KXIl<br />

83<br />

84<br />

86<br />

88<br />

90<br />

94


LIST OF ABBREVIATIONS<br />

ABNZ : N-(111-benzimidazol-2-ylmethyl) acetamide<br />

AEC : ani<strong>on</strong> exchange capacity<br />

ads : adsorbed<br />

add : added<br />

carb<br />

: carbendazim<br />

oC : degree Centigrade<br />

CEC : cati<strong>on</strong> exchange capacity<br />

des : desorbed<br />

DMSO<br />

emp tb<br />

fnd<br />

FBNZ<br />

0D<br />

ha<br />

kg<br />

Ko (uor)<br />

Ko (oes)<br />

= dimethyl sulfoxide<br />

: empty test tube<br />

: find<br />

: 2-(4-fluorophenyl)-1H-<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g><br />

: gram<br />

: hectar<br />

- kilogram<br />

: linear equilibrium coefficient for ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g><br />

: linear equilibrium coefficient for de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g><br />

XXIlI


L<br />

L kg-'<br />

Ir*<br />

M<br />

MBC<br />

ml<br />

mm<br />

mg<br />

ml pg-'<br />

pm<br />

OC<br />

OM<br />

pH<br />

pk.ht<br />

pKa<br />

ppm<br />

PZA<br />

rpm<br />

SOM<br />

litre<br />

litre per kilogram<br />

maximum wavelength<br />

molar<br />

methyl b enzimidazole carbamate<br />

millilitre<br />

millimeter<br />

miligram<br />

milliliter per microgram<br />

micro meter<br />

organic c<strong>on</strong>tent<br />

organic matter<br />

hydrogen i<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong><br />

peak height<br />

acid dissociati<strong>on</strong> c<strong>on</strong>stant<br />

parts per milli<strong>on</strong><br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g>zero charge<br />

revoluti<strong>on</strong> per minute<br />

soil organic matter<br />

xxiv


STB<br />

tb<br />

UV-VIS<br />

: 3-butyl-2, 4-dioxo-s-triazinol, 2-<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g><br />

: test tube<br />

ultraviolet <str<strong>on</strong>g>and</str<strong>on</strong>g> visible spectroscopy<br />

XXV


1.1 Pesticide<br />

INTRODUCTION<br />

CHAPTER 1<br />

Pesticide is a substance or a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> substances used to kill a pest. Pests<br />

(includes insects, plant pathogens, weeds, molluscs, birds, mammals, fish, nematodes <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

microbes) that compete with humans for food, destroy property, spread or are vector for<br />

disease or cause a nuisance I.<br />

Pesticides have become an integral part <str<strong>on</strong>g>of</str<strong>on</strong>g> the modem agriculture practices. Each<br />

year insects, weeds, bacteria, fungi, virus, parasites, birds <str<strong>on</strong>g>and</str<strong>on</strong>g> rodents c<strong>on</strong>sume or destroy<br />

approximately 48 o/o <str<strong>on</strong>g>of</str<strong>on</strong>g> the world's total food producti<strong>on</strong>. To c<strong>on</strong>trol this tremendous loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong>, pesticides are used. Pest c<strong>on</strong>trolling practices started a l<strong>on</strong>g time ago as the<br />

crude method <str<strong>on</strong>g>of</str<strong>on</strong>g> applying neem oil, olive green etc. These have been transformed into<br />

the extensive use <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic <str<strong>on</strong>g>and</str<strong>on</strong>g> broad spectrum chemical compounds synthesized with the<br />

view to kill the target pest or weeds 2.<br />

Pesticides can save farmers a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ey by preventing crop losses to insects<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> other pests. Although pesticides can save farmers m<strong>on</strong>ey, however extensive use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pesticides can have unintended effects <strong>on</strong> the envir<strong>on</strong>ment. Unlike heavy metals <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

other pollutants, pesticides are lethal to the envir<strong>on</strong>ment even at micro level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong>s. Pesticides being lipid soluble support the process <str<strong>on</strong>g>of</str<strong>on</strong>g> bioaccumulati<strong>on</strong>,<br />

which intensifies the disastrous nature <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides. Moreover, their n<strong>on</strong>-degradable<br />

nature adds to further complicati<strong>on</strong> in term <str<strong>on</strong>g>of</str<strong>on</strong>g> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticide in the envir<strong>on</strong>ment<br />

for decades, leading to their cumulative effect <strong>on</strong> living organisms 2.


1.1.1 Classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides<br />

A pesticide may be a chemical substance, biological agent (such as virus or<br />

bacteria), antimicrobial, disinfectant or device used against any pest 3. There are multiple<br />

ways <str<strong>on</strong>g>of</str<strong>on</strong>g> classifying pesticides a.<br />

i. Algaecides<br />

An algaecide or algicide is a substance used for killing <str<strong>on</strong>g>and</str<strong>on</strong>g> preventing the growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

algae e.g. copper sulphate.<br />

ii. Bactericide<br />

A bactericide or bacteriocide is a substance that kills bacteria. Bactericides are<br />

disinfectants, antiseptics or antibiotics e.g. Hypochlorite's, chloramines,<br />

dichloroisocyanurate <str<strong>on</strong>g>and</str<strong>on</strong>g> chlorine dioxide etc.<br />

iii. Fungicides<br />

Fungicides are chemical compounds or biological organisms used to kill or inhibit fungi<br />

or fungal spores e.g. Benzimidazoles, organophosphorus <str<strong>on</strong>g>and</str<strong>on</strong>g> morpholine fungicides.<br />

iv. Herbicides<br />

An herbicide is substance used to kill unwanted plants. Selective herbicides kill specific<br />

targets while leaving the desired crop relatively unharmed e.g. Atrazine <str<strong>on</strong>g>and</str<strong>on</strong>g> 2, 4-<br />

dichlorophenoxyacetic acid.<br />

v. Insecticides<br />

An insecticide is a pesticide used against insects. They include ovicides <str<strong>on</strong>g>and</str<strong>on</strong>g> larvicides<br />

used against the eggs <str<strong>on</strong>g>and</str<strong>on</strong>g> lawae <str<strong>on</strong>g>of</str<strong>on</strong>g> insect's respectively e.g. Organophosphate,<br />

organochlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> permethrin.<br />

vi. Miticides<br />

Miticides or acaricides are pesticides that kill mite's e.g. carbamate, formamidine <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

mite growth regulators.<br />

vii. Molluscicides<br />

Molluscicides, also known as snail baits <str<strong>on</strong>g>and</str<strong>on</strong>g> snail pellets, are pesticides against molluscs<br />

e.g. Metal salts such as ir<strong>on</strong> (lII) phosphate <str<strong>on</strong>g>and</str<strong>on</strong>g> aluminum sulfate.


viii. Rodenticides<br />

Rodenticides are a category <str<strong>on</strong>g>of</str<strong>on</strong>g> pest c<strong>on</strong>trol chemicals intended to kill rodents, e.g.<br />

coumarins/4-hydroxycoumarins, 1, 3 -ind<str<strong>on</strong>g>and</str<strong>on</strong>g>i<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> difethial<strong>on</strong>e.<br />

ix. Nematicides<br />

A nematicide is a type <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical pesticide used to kill parasitic nematodes<br />

(roundworms). One comm<strong>on</strong> nematicide is obtained from neem tree, Nematophagous<br />

fungi.<br />

x. Avicide<br />

Avicide is any substance (normally, a chemical) which can be used to kill birds.<br />

Comm<strong>on</strong>ly used avicides include strychnine, DRC-1339 (3-chloro-4-methylaniline<br />

hydrochloride, starlicide) <str<strong>on</strong>g>and</str<strong>on</strong>g> avitrol (4-aminopyridine).<br />

Defoliants, desiccants, insect growth regulators, plant growth regulators <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

repellents are also classified as pesticides.<br />

Pesticides can also be classified as synthetic pesticides or biological pesticides,<br />

although the distincti<strong>on</strong>s sometimes blur. According to another classificati<strong>on</strong> broad-<br />

spectrum pesticides are those that kill an affay <str<strong>on</strong>g>of</str<strong>on</strong>g> species, while narrow-spectrum or<br />

selective pesticides <strong>on</strong>ly kill a small group <str<strong>on</strong>g>of</str<strong>on</strong>g> species 5.<br />

1.1.2 Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticide <strong>on</strong> envir<strong>on</strong>ment<br />

With progressive increase in the producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals for<br />

agricultural activities, the c<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil, ground <str<strong>on</strong>g>and</str<strong>on</strong>g> surface water has become a<br />

problem throughout the world 6-7. Efforts to preserve the envir<strong>on</strong>ment <str<strong>on</strong>g>and</str<strong>on</strong>g> to reduce the<br />

risk <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>taminati<strong>on</strong> have established the need to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides<br />

in the natural envir<strong>on</strong>ment. C<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <str<strong>on</strong>g>and</str<strong>on</strong>g> ground water with organic<br />

pollutants such as pesticides c<strong>on</strong>stitute a threat to the ecosystem <str<strong>on</strong>g>and</str<strong>on</strong>g> human beings 8.<br />

Over 98oh <str<strong>on</strong>g>of</str<strong>on</strong>g> sprayed insecticides <str<strong>on</strong>g>and</str<strong>on</strong>g> 95Yo <str<strong>on</strong>g>of</str<strong>on</strong>g> herbicides reach a destinati<strong>on</strong> other<br />

than their target species. Including n<strong>on</strong> target species e.g. air, water, bottom sediments<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> food e.


The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticide that migrates from the intended applicati<strong>on</strong> area is<br />

influenced by different properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the pesticide such as its tendency for binding to soil,<br />

its vapor pressure, its water solubility, <str<strong>on</strong>g>and</str<strong>on</strong>g> its resistance to being broken down over time.<br />

Factors in the soil, such as its texture, its ability to retain water, <str<strong>on</strong>g>and</str<strong>on</strong>g> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic matter c<strong>on</strong>tained in it, pH etc. also affect the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticide that will leave<br />

the areae-l'. Onc" c<strong>on</strong>taminated, the ground water may take a l<strong>on</strong>g time to clear <str<strong>on</strong>g>and</str<strong>on</strong>g> there<br />

is always the danger <str<strong>on</strong>g>of</str<strong>on</strong>g> bioaccumulati<strong>on</strong>.<br />

Since the use <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides in agriculture inevitably leads to exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-<br />

targeted organisms as a result undesirable effects can appear <strong>on</strong> whole species,<br />

communities as well as ecosystems. Agricultural <str<strong>on</strong>g>and</str<strong>on</strong>g> outdoor residential use <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides<br />

is a matter <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental c<strong>on</strong>cem because these chemicals are recognized as a source<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> potential adverse envir<strong>on</strong>mental impact (n<strong>on</strong>point <str<strong>on</strong>g>and</str<strong>on</strong>g> point polluti<strong>on</strong>) <str<strong>on</strong>g>and</str<strong>on</strong>g> their<br />

presence in seawater <str<strong>on</strong>g>and</str<strong>on</strong>g> sediments has grown c<strong>on</strong>siderablyl2.<br />

Pesticides also reach the aquatic envir<strong>on</strong>ment through direct run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, leaching <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

by careless disposal etc. Envir<strong>on</strong>mental problem caused by pesticides has induced some<br />

measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>taminati<strong>on</strong> in water, <strong>soils</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> atmosphere. These compounds<br />

undergo chemical, photochemical <str<strong>on</strong>g>and</str<strong>on</strong>g> biological transformati<strong>on</strong> leading to new products<br />

that can be more toxic than the parent <strong>on</strong>es 13.<br />

In additi<strong>on</strong> to ecological impacts in countries <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>, pesticides that have<br />

been l<strong>on</strong>g banned in developed countries (such as DDT, toxaphene, etc.) are c<strong>on</strong>sistently<br />

found in remote areas such as the high arctic. Chemicals that are applied in tropical <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

subtropical countries are transported over l<strong>on</strong>g distances by global circulati<strong>on</strong>. The global<br />

situati<strong>on</strong> has deteriorated to the point where many countries are calling for a global<br />

c<strong>on</strong>venti<strong>on</strong> <strong>on</strong> "POPS" (Persistent Organic Pollutants) which are mainly chlorinated<br />

compounds that exhibit high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> toxicity, are persistent, <str<strong>on</strong>g>and</str<strong>on</strong>g> bioaccumulati<strong>on</strong>. The<br />

list is not yet fixed; however, "c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate" substances include several pesticides that are<br />

used extensively in developing countriesla.<br />

Pesticides, like other organic pollutants, are retained by the soil depending <strong>on</strong><br />

their physicochemical properties <str<strong>on</strong>g>and</str<strong>on</strong>g> the soil nature <str<strong>on</strong>g>and</str<strong>on</strong>g> compositi<strong>on</strong>l5. Earlier, pesticides


were believed to be immobile in soil envir<strong>on</strong>ment, but in recent years it has been<br />

established that they are highly mobile <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>taminate soil, surface water as well as<br />

ground water. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides has been observed <strong>on</strong> the soil itself i.e. soil<br />

fertility including inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrificati<strong>on</strong> with c<strong>on</strong>comitant have reduced uptake <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nitrogen by plants. These <str<strong>on</strong>g>studies</str<strong>on</strong>g> also suggest that pesticides adversely affect soil<br />

structure <str<strong>on</strong>g>and</str<strong>on</strong>g> soil microorganism which are resp<strong>on</strong>sible for microbial degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant<br />

matter <str<strong>on</strong>g>and</str<strong>on</strong>g> some pesticides.<br />

1.1.3 Pesticides in Pakistan<br />

The ec<strong>on</strong>omy <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan is largely based <strong>on</strong> agriculture. It c<strong>on</strong>tributes ab<str<strong>on</strong>g>of</str<strong>on</strong>g>i25Yo<br />

to the nati<strong>on</strong>al ec<strong>on</strong>omy. The well being <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omy largely depends <strong>on</strong> the producti<strong>on</strong>,<br />

processing <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> major products such as cott<strong>on</strong>, wheat, sugar, milk meat,<br />

edible oil etc.r6<br />

1.1.3.1 Use <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides in Pakistan<br />

The climate <str<strong>on</strong>g>of</str<strong>on</strong>g> the country ranges from hot, humid with rainfall, to arid spells.<br />

This <strong>on</strong> <strong>on</strong>e h<str<strong>on</strong>g>and</str<strong>on</strong>g> provides favourable c<strong>on</strong>diti<strong>on</strong>s for irrigated agriculture. While <strong>on</strong> the<br />

other h<str<strong>on</strong>g>and</str<strong>on</strong>g> it also provides an ideal envir<strong>on</strong>ment for a thriving pest populati<strong>on</strong>. Estimates<br />

suggest that around <strong>on</strong>e-third <str<strong>on</strong>g>of</str<strong>on</strong>g> the yield is destroyed by pests or disease in Pakistan. To<br />

overcome this problem, pesticides have developed into a major agricultural product (80%<br />

are used <strong>on</strong> cott<strong>on</strong> al<strong>on</strong>e). Introduced in 1954 at the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> the green revoluti<strong>on</strong>,<br />

pesticide c<strong>on</strong>sumpti<strong>on</strong> in Pakistan rose from 3677 metric t<strong>on</strong>nes in 1981 to 14745 metric<br />

t<strong>on</strong>nes in 1991. In rupee terms this equalled 4581 milli<strong>on</strong> rupees. By 1996 this had g<strong>on</strong>e<br />

up to 43219 metric t<strong>on</strong>nes. An exhaustive study c<strong>on</strong>ducted by the Food <str<strong>on</strong>g>and</str<strong>on</strong>g> Agriculture<br />

Organizati<strong>on</strong> (FAO) <str<strong>on</strong>g>of</str<strong>on</strong>g> the United Nati<strong>on</strong>s found that pesticide use in Pakistan increased<br />

1,169 percent between 1981 <str<strong>on</strong>g>and</str<strong>on</strong>g> lgggtT. Pesticides used have increased to 129,000 t<strong>on</strong>s<br />

(285, 00 t<strong>on</strong>s active ingredient) in2004t6.<br />

At present 400 products comprising 200 active ingredients are registered. Most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the raw material for the formulati<strong>on</strong> including active ingredients <str<strong>on</strong>g>and</str<strong>on</strong>g> pesticides in<br />

finished form are being imported because local manufacturing <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides is very


limited in Pakistan. Out <str<strong>on</strong>g>of</str<strong>on</strong>g> total pesticides imported for plant protecti<strong>on</strong> 88%;o are<br />

insecticides, IIo herbicides <str<strong>on</strong>g>and</str<strong>on</strong>g> loh fungicidesl8. Agricultural producti<strong>on</strong> has greatly<br />

benefited from the use <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides. The heavy reliance <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides also generated the<br />

questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> how to protect the l<strong>on</strong>g term quality <str<strong>on</strong>g>of</str<strong>on</strong>g> our soil <str<strong>on</strong>g>and</str<strong>on</strong>g> water resources.<br />

1.1.3.2 Study <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides in Pakistan<br />

The study <str<strong>on</strong>g>of</str<strong>on</strong>g> the fate <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides in our own envir<strong>on</strong>ment is highly significant so<br />

that potential threats can be analyzed <str<strong>on</strong>g>and</str<strong>on</strong>g> necessary steps can be taken for their<br />

abatement. Rural areas are the prime victims <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticide c<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the fact that<br />

c<strong>on</strong>venti<strong>on</strong>al water treatments such as chemical oxidati<strong>on</strong>, alkali treatment, aerati<strong>on</strong>,<br />

incinerati<strong>on</strong> etc. fail to remove pesticides below allowable limits make rural populati<strong>on</strong><br />

more vulnerable to pesticide c<strong>on</strong>taminati<strong>on</strong>. Moreovet, in our country these water<br />

purificati<strong>on</strong> systems are not available to most <str<strong>on</strong>g>of</str<strong>on</strong>g> the rural populati<strong>on</strong> 2.<br />

Although wide spread usage <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides had c<strong>on</strong>trolled the pest but started<br />

causing envir<strong>on</strong>mental problems in the area. In some area <str<strong>on</strong>g>of</str<strong>on</strong>g> Punjab <str<strong>on</strong>g>and</str<strong>on</strong>g> Sindh ground<br />

water was found c<strong>on</strong>taminated due to pesticide, ur. te.<br />

Insecticides residue in ground water samples from Mardan, N.W.F.P were also<br />

reported2O. Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> organophosphate <str<strong>on</strong>g>and</str<strong>on</strong>g> pyrethroid pesticides <strong>on</strong> wheat in storage<br />

was also studied with reference to temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> moisture2l.<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides bifenthrien, carbosulfan, )"-cyhalothrin, cypernethrin,<br />

endosulfan, parathi<strong>on</strong> methyl, m<strong>on</strong>ocrotophos, <str<strong>on</strong>g>and</str<strong>on</strong>g> 4-nitrophenol by s<str<strong>on</strong>g>and</str<strong>on</strong>g>y, clay loam <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

s<str<strong>on</strong>g>and</str<strong>on</strong>g>y loam <strong>soils</strong> with varying organic c<strong>on</strong>tents were studied22.<br />

Residues <str<strong>on</strong>g>of</str<strong>on</strong>g> three pesticides popularly used <strong>on</strong> rice, diazin<strong>on</strong> (an<br />

organophosphate), lindane (an organochlorine) <str<strong>on</strong>g>and</str<strong>on</strong>g> carbaryl (a carbamate) was detected<br />

in Punjab <str<strong>on</strong>g>and</str<strong>on</strong>g> N.W.F.P. Results obtained indicated that residues <str<strong>on</strong>g>of</str<strong>on</strong>g> all three insecticides<br />

do fall to nesilible levels23.


Sorpti<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong> toxic pesticides carbaryl <str<strong>on</strong>g>and</str<strong>on</strong>g> phosal<strong>on</strong>e in <strong>soils</strong> from<br />

Pakistan gave the <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> coefficient K6 value, for carbaryl it ranged from 0.99 to 59.1<br />

L/kg <str<strong>on</strong>g>and</str<strong>on</strong>g> for phosal<strong>on</strong>e it ranged from 15.5 to 1182.2L1kg24.<br />

Heavy use <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides was observed in Swat valley. Six pesticides are identified<br />

in soil sample from Swat, N.W.F.P these included four banned type dieldrin, DDT,<br />

melathi<strong>on</strong>, lindane <str<strong>on</strong>g>and</str<strong>on</strong>g> two restricted <strong>on</strong>es ( methyl parathi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> heptachlor)2s.<br />

Pesticides are prevalent ground water c<strong>on</strong>taminants <str<strong>on</strong>g>and</str<strong>on</strong>g> are significant<br />

comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> hazardous waste <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g>fills sites26. The producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> their apparent hazards to human health have prompted investigati<strong>on</strong> c<strong>on</strong>cerning their<br />

fate in air, soil, sub surface water <str<strong>on</strong>g>and</str<strong>on</strong>g> treatment facilities.<br />

1.1.4 Fungicides<br />

The type <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides that are used in this study bel<strong>on</strong>gs to the fungicide class.<br />

Fungicides are chemical compounds or biological organism used to kill or inhabit fungi<br />

or fungal spores. Fungi can also cause serious damage in agriculture, resulting in critical<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> yield, quality <str<strong>on</strong>g>and</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it27.<br />

Fungicides are extensively used in industry <str<strong>on</strong>g>and</str<strong>on</strong>g> agriculture for a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

purposes, including protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds <str<strong>on</strong>g>and</str<strong>on</strong>g> grains, germinati<strong>on</strong>, protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mature<br />

crops, berries, seedlings, flowers, grasses in the field, in storage, during shipment <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carpet <str<strong>on</strong>g>and</str<strong>on</strong>g> fabrics in the home.<br />

Fungicides vary enorrnously in their potential for causing adverse effects in<br />

humans. Historically, some <str<strong>on</strong>g>of</str<strong>on</strong>g> the most tragic epidemics <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticide pois<strong>on</strong>ing occurred<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> mistaken c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seed grain treated with organic mercury or<br />

hexachlorobenzene. However, most fungicides currently in use are unlikely to cause<br />

frequent or severe systemic pois<strong>on</strong>ings for several reas<strong>on</strong>s. Apart from systemic<br />

pois<strong>on</strong>ings, fungicides as a class are probably resp<strong>on</strong>sible for a disproporti<strong>on</strong>ate number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> initant injuries to skin <str<strong>on</strong>g>and</str<strong>on</strong>g> mucous membranes, as well as dermal sensitizati<strong>on</strong>.


l.l.4.l Classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fungicides<br />

They can be classified according to their chemical compositi<strong>on</strong>, applicati<strong>on</strong> site,<br />

applicati<strong>on</strong> timing <str<strong>on</strong>g>and</str<strong>on</strong>g> mode <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> or byproduct behavior. Of these the most<br />

comm<strong>on</strong>ly used classificati<strong>on</strong>s are according to chemical class <str<strong>on</strong>g>and</str<strong>on</strong>g> applicati<strong>on</strong> timing <strong>on</strong><br />

the crop28.<br />

a) Protectantfungicides<br />

Protectant fungicides are applied to the plant surface before infecti<strong>on</strong> occurs.<br />

They remain <strong>on</strong> the surface <str<strong>on</strong>g>and</str<strong>on</strong>g> kill any fungal spores or bacterial cells that come into<br />

c<strong>on</strong>tact with them. Protectant fungicides tend to be broad spectrum <str<strong>on</strong>g>and</str<strong>on</strong>g> be effective<br />

against a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> fungal diseases.<br />

b) Eradicantfungicides<br />

Eradicant fungicides are applied when an infecti<strong>on</strong> has already become visible<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> for preventing further sporulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> the disease.<br />

c) Systemic fungicides<br />

Systemic fungicides move inside a plant following ab<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> by the plant. With<br />

insecticides <str<strong>on</strong>g>and</str<strong>on</strong>g> most fungicides, this movement is usually upward (through the xylem)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> outward. Benzimi dazole compounds bel<strong>on</strong>g to this class <str<strong>on</strong>g>of</str<strong>on</strong>g> fungicides.<br />

Systemic fungicides undoubtedly will cover susceptible foliage <str<strong>on</strong>g>and</str<strong>on</strong>g> flower part<br />

more efficiently than protectant fungicides because <str<strong>on</strong>g>of</str<strong>on</strong>g> their ability <str<strong>on</strong>g>of</str<strong>on</strong>g> translocati<strong>on</strong><br />

through the cuticle <str<strong>on</strong>g>and</str<strong>on</strong>g> across leaves2e.


1.1.5 Benzimid azole Fungicides<br />

The fungicides under study are <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> compounds which bel<strong>on</strong>g to the<br />

class <str<strong>on</strong>g>of</str<strong>on</strong>g> systemic fungicides. Nearly all <str<strong>on</strong>g>of</str<strong>on</strong>g> the commercially used fungicides are synthetic<br />

in nature. They are heterocyclic aromatic organic compound. These bicyclic compounds<br />

c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> benzene <str<strong>on</strong>g>and</str<strong>on</strong>g> imidazole..<br />

lH-<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g><br />

Benzimidazoles are prepared from o-phenylenediamine by the acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm, alcoholic potassium hydroxide <str<strong>on</strong>g>and</str<strong>on</strong>g> formic acid, <str<strong>on</strong>g>and</str<strong>on</strong>g> also by the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

o-nitr<str<strong>on</strong>g>of</str<strong>on</strong>g>ormanilide. Less serviceable methods include the interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> o-<br />

phenylenediamine <str<strong>on</strong>g>and</str<strong>on</strong>g> dichloromethylformamidine, or diphenylformamidine, or<br />

formoacetic anhydride, <str<strong>on</strong>g>and</str<strong>on</strong>g> the thermal decarboxylati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g>-2-carboxylic<br />

acid. The c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aliphatic acids to 2-alkylbenzimrdazoles, by heating with o-<br />

phenylenediamine is a general method for preparing solid derivatives30.<br />

The <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> compounds have been proved to be the most important group<br />

<strong>on</strong> fungicides with systemic activity <str<strong>on</strong>g>and</str<strong>on</strong>g> are well known for their pr<strong>on</strong>ounced ability to<br />

c<strong>on</strong>trol a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> fungal diseases. Benomyl, carbendazim, fuberidazole,<br />

thiabendazole, thiophenate <str<strong>on</strong>g>and</str<strong>on</strong>g> thiophenate-methyl are main example <str<strong>on</strong>g>of</str<strong>on</strong>g> their fungicides<br />

class because <str<strong>on</strong>g>of</str<strong>on</strong>g> their svstemic activitv3r.<br />

N<br />

)<br />

N<br />

H


Table 1..1: The use <str<strong>on</strong>g>and</str<strong>on</strong>g> trade name <str<strong>on</strong>g>of</str<strong>on</strong>g> some commercially available <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g><br />

fungicides.<br />

Structures <str<strong>on</strong>g>and</str<strong>on</strong>g> Name Trade Name Primary Use<br />

-Y'{".<br />

CARBENDAZIM<br />

I<br />

Lr=C-].IHC.H,<br />

BENOMYL<br />

THIABENDAZOLE<br />

Y vilr<br />

il 'r"r'/<br />

'--,,y' */<br />

FUBERIDAZOLE<br />

,.' \--H\ ,rtO<br />

L \rJl -F .N .)-"*-\,o**,<br />

J= c =ll(cHricN<br />

CYPENDAZOLE<br />

Bavistin. Akozim<br />

Benlate, Tersan<br />

Aliette super, Thiram<br />

Arbotect 20-S<br />

Imazalil<br />

Folcidin<br />

10<br />

Protects orchards, vineyards,<br />

vegetables against many fungal<br />

diseases.<br />

Foliage <str<strong>on</strong>g>and</str<strong>on</strong>g> soil fungicide, effective<br />

against grey mold, apple scab <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

powdery mildew, also used in seed<br />

dressins.<br />

For the protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>apples <str<strong>on</strong>g>and</str<strong>on</strong>g> pears<br />

against fungi.<br />

Effective for seed treatment against<br />

Fusarium,leaf rust, <str<strong>on</strong>g>and</str<strong>on</strong>g> powdery<br />

mildew <strong>on</strong> barley<br />

activitv as Benomvl.


pesticides can be grouped according to their chemical structures. Pesticides with<br />

similar structure have similar characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> usually have a similar mode <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>'<br />

The equitoxcity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> compounds with widely different substituent groups<br />

suggest a comm<strong>on</strong> mode <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> moiety being the active part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the molecule. It is likely that a comm<strong>on</strong> mode <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> for various <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g><br />

analogues for fungicidal activity 32.<br />

Benzimidazole nucleus is an important pharmacophore in drug discovery.<br />

Several <str<strong>on</strong>g>of</str<strong>on</strong>g>thous<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g>analogues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> have been synthesized <str<strong>on</strong>g>and</str<strong>on</strong>g> screened<br />

for pharmacological activity. Derivatives <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> compounds are known for<br />

their antibacterial, trichom<strong>on</strong>acidal, anthelmintic, fungicidal, antiviral, antitubercular, anti<br />

allergic, antioxidant, antihistaminic, antimicrobial33'34, antiulcerative, anti-inflammatory,<br />

analgesic, antiHIV-1, antiproliferative, antikinase <str<strong>on</strong>g>and</str<strong>on</strong>g> potential anticancer activities3s.<br />

Benzimidazole fungicides are also called MBC-fungicides because they all<br />

generate MBC (methyl <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> carbamate), either as the principal active<br />

ingredient, or as a breakdown compound formed <strong>on</strong> mixing with water. They have a<br />

comm<strong>on</strong> mode <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> interfering with cell divisi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> hyphal growth <str<strong>on</strong>g>of</str<strong>on</strong>g> sensitive<br />

fungi. They are upwardly systemic with a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> activity against ascomycetes,<br />

fungi imperfecti <str<strong>on</strong>g>and</str<strong>on</strong>g> basidomycetes 36.<br />

In late 1960's they <str<strong>on</strong>g>of</str<strong>on</strong>g>fered systemic, curative fungicidal activity <strong>on</strong> a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

diseases <strong>on</strong> fruits <str<strong>on</strong>g>and</str<strong>on</strong>g> vegetables i.e. mold <strong>on</strong> beans , citrus fruit, berry fruits, grapes, rot<br />

<strong>on</strong> tomatoes, <strong>on</strong>i<strong>on</strong>s, st<strong>on</strong>e fruits, avocadoes, garlic <str<strong>on</strong>g>and</str<strong>on</strong>g> omamentals, powdery mildew <strong>on</strong><br />

cucurbits <str<strong>on</strong>g>and</str<strong>on</strong>g> apples, eyespot <strong>on</strong> cereals, speckled leaf <str<strong>on</strong>g>and</str<strong>on</strong>g> blot <strong>on</strong> wheat37.<br />

Resistance to <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> fungicide is wide spread am<strong>on</strong>g many pathogens i.e.<br />

3 8.<br />

B o tryt i s c ine r e a, Sphaer o the c a ful i gine a, P enc illium di git atum etc<br />

Some important pathogens, such as Pithomyces chartarum, Sclerotinia<br />

sclerotiorum, S.minor <str<strong>on</strong>g>and</str<strong>on</strong>g> Podosphaeria leucotricha are not found resistant yet they are<br />

still effective when applied in mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> protectant fungicides with proper applicati<strong>on</strong><br />

rate <str<strong>on</strong>g>and</str<strong>on</strong>g> cultural c<strong>on</strong>trols 37'3e.<br />

11


a) Carbendazim<br />

Carbendazim is a systemic <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> fungicide <str<strong>on</strong>g>and</str<strong>on</strong>g> it plays a very important<br />

role in plant disease c<strong>on</strong>trol. Carbendazim is used to c<strong>on</strong>trol a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> disease <strong>on</strong><br />

arable crops (cereals, oil rapeseed), fruits, vegetables <str<strong>on</strong>g>and</str<strong>on</strong>g> ornamentals 4042.<br />

It is also used in post-harvest food storage, <str<strong>on</strong>g>and</str<strong>on</strong>g> as a seed preplanting treatment<br />

carbendazim works by inhibiting the development <str<strong>on</strong>g>of</str<strong>on</strong>g> fungi by interfering with spindle<br />

formati<strong>on</strong> (cell divisio n) ot'oo .<br />

The fungicide carbendazim is widely used in crop protecti<strong>on</strong>. It is also the<br />

principal degradati<strong>on</strong> product <str<strong>on</strong>g>of</str<strong>on</strong>g> benomyl <str<strong>on</strong>g>and</str<strong>on</strong>g> thiophenate methyl for this reas<strong>on</strong><br />

benomyl <str<strong>on</strong>g>and</str<strong>on</strong>g> thiophenate methyl tolerance is generally expressed as carbendazima5.<br />

During the growing period these agrochemicals are widely applied <strong>on</strong> various crops like<br />

grapes, pome fruits, st<strong>on</strong>e fruits, lettuce <str<strong>on</strong>g>and</str<strong>on</strong>g> cereal they act systematically. While at post<br />

harvest they are usually applied <strong>on</strong> bananas, citrus fruits, pomes fruits, mangoes <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

potatoes to protect them from decay caused by various fungal pathogens a0-46. This<br />

fungicide has been used in the c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> fungal infecti<strong>on</strong>s in vineyards <str<strong>on</strong>g>and</str<strong>on</strong>g> is indicated<br />

against Botrytis cinerea, Uncinula necator, Plasmopara viticola <str<strong>on</strong>g>and</str<strong>on</strong>g> other fungi. It can be<br />

used either al<strong>on</strong>e or coupled with other fungicides that exhibit different mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

.. 47 4R<br />

actl<strong>on</strong> ' -.<br />

b) Benomyl<br />

Benomyl is a systemic <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> fungicide that is selectively toxic to<br />

microorganisms <str<strong>on</strong>g>and</str<strong>on</strong>g> to invertebrates. It is used against a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> fungal disease <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

field crops, fruits, nuts, ornamentals; mushrooms <str<strong>on</strong>g>and</str<strong>on</strong>g> turfe. It is also useful to c<strong>on</strong>trol<br />

post harvest rots <str<strong>on</strong>g>and</str<strong>on</strong>g> moldsso. Formulati<strong>on</strong>s include wetable powder, dry flowable<br />

powder <str<strong>on</strong>g>and</str<strong>on</strong>g> dispersible granules. Benomyl is str<strong>on</strong>gly bound to soil <str<strong>on</strong>g>and</str<strong>on</strong>g> is highly<br />

persistent sl. It completely degrades to carbendazim within several hours in acidic or<br />

neutral water s2. Benomyl is unstable in water <str<strong>on</strong>g>and</str<strong>on</strong>g> change is completedin24 hours at pH<br />

3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 20oC s3.<br />

t2


The most comm<strong>on</strong> degradati<strong>on</strong> product <str<strong>on</strong>g>of</str<strong>on</strong>g> benomyl is carbendazim which is also<br />

fungi toxic. High performance liquid chromatographic method was used to determine<br />

benomyl <str<strong>on</strong>g>and</str<strong>on</strong>g> carbendazim simultaneously by c<strong>on</strong>verting benomyl into STB in the<br />

alkaline media while carbendazim remained unaffected sa.<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> derivatives <strong>on</strong> clays, minerals <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>soils</strong> are reported.<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> three benzimtdazole derivatives, thia<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g>, carbendazim <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> showed that increase in the activity <str<strong>on</strong>g>of</str<strong>on</strong>g> suspensi<strong>on</strong> resulted in significant<br />

increase in the ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fungicide to the clay ss.-Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> three <strong>soils</strong> also<br />

showed that with increasing acidity increase in ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> these fungicides to the soil<br />

occurred s6. Adso.pti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim with peat <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>tmorill<strong>on</strong>ite was studied as<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exchangeable cati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> kinetics showed that ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g><br />

equilibrium was reached within t hour 57.<br />

1.2 Soils<br />

Soil act as filter <str<strong>on</strong>g>and</str<strong>on</strong>g> buffer but it is recognized that soil is a potential pathway <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pesticides transport to c<strong>on</strong>taminate water, air, plant food <str<strong>on</strong>g>and</str<strong>on</strong>g> ultimately to the human via<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>and</str<strong>on</strong>g> subsurface drainage, interflow <str<strong>on</strong>g>and</str<strong>on</strong>g> leaching, the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> mineral nutrients<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> pesticides from <strong>soils</strong> into the plant <str<strong>on</strong>g>and</str<strong>on</strong>g> animals that c<strong>on</strong>stitute the human food chain.<br />

While various physico-chemical processes affect the fate <str<strong>on</strong>g>of</str<strong>on</strong>g> agrochemicals inc<strong>on</strong>tact with<br />

soil, the ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>-de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important processes which c<strong>on</strong>trols all<br />

other processes such as their movement, persistence, <str<strong>on</strong>g>and</str<strong>on</strong>g> degradati<strong>on</strong>. De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chemicals is also critical in determining the availability to the target species, their<br />

behaviour in run<str<strong>on</strong>g>of</str<strong>on</strong>g>f stream <str<strong>on</strong>g>and</str<strong>on</strong>g> in ground water polluti<strong>on</strong> 58-61.<br />

Soils are complex materials, reflecting the variability <str<strong>on</strong>g>of</str<strong>on</strong>g> the present rock material<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> organic residue from which they are formed. Nevertheless their elemental<br />

compositi<strong>on</strong>, particle size <str<strong>on</strong>g>and</str<strong>on</strong>g> mineralogy can be related more or less systematically to<br />

the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> parent material <str<strong>on</strong>g>and</str<strong>on</strong>g> the degree to which this material has been altered by<br />

weathering 62.<br />

1a<br />

IJ


1.2.1 Compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong><br />

Through their surface electrochemical properties, these soil minerals c<strong>on</strong>trol<br />

ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>, transformati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> release behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical c<strong>on</strong>stituents (e.g- nutrients<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>taminants) to water or soil soluti<strong>on</strong>. Soil surface electrochemical properties vary<br />

between soil types <str<strong>on</strong>g>and</str<strong>on</strong>g> depend <strong>on</strong> factors such as parent material, climate <str<strong>on</strong>g>and</str<strong>on</strong>g> vegetati<strong>on</strong>.<br />

a) Overall makeup <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

ll.<br />

lll.<br />

Inorganic mineral matter defined as soil material made up mostly <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oxygen, silic<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> aluminium. Many other metals in small quantities may<br />

be included.<br />

Organic mineral matter defined as soil material having derived mostly<br />

from plant residue <str<strong>on</strong>g>and</str<strong>on</strong>g> made up mostly <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>, oxygen <str<strong>on</strong>g>and</str<strong>on</strong>g> hydrogen.<br />

Solute refers to the porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil composed <str<strong>on</strong>g>of</str<strong>on</strong>g> water <str<strong>on</strong>g>and</str<strong>on</strong>g> mostly<br />

dissolved salts (plant nutrients).<br />

iv. Air refers to the gaseous porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil composed <str<strong>on</strong>g>of</str<strong>on</strong>g> the gases found tn<br />

the atmosphere (oxygen, nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> carb<strong>on</strong> dioxide) but in different<br />

proporti<strong>on</strong>.<br />

Soil is highly complex, highly variable bimolecular sieve with an array <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physical <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical properties.<br />

b) Physical properties<br />

i. Macro porosity composed <str<strong>on</strong>g>of</str<strong>on</strong>g> pores with diameter greater than 200 pm.<br />

ii. Micro porosity composed <str<strong>on</strong>g>of</str<strong>on</strong>g> pores with diameter less than 200 pm.<br />

iii. Physical stability refers to b<strong>on</strong>ding strength between soil particles forming<br />

aggregates.<br />

I4


iv. External/intemal surface <str<strong>on</strong>g>and</str<strong>on</strong>g> its geometry defined as magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

c) Chemical properties<br />

specific in square meters per gram <str<strong>on</strong>g>and</str<strong>on</strong>g> depth or width <str<strong>on</strong>g>of</str<strong>on</strong>g> clay's internal<br />

surface in nanometer's.<br />

i. Permanent charge defined as cat i<strong>on</strong> exchange capacity, CEC, which is<br />

independent <str<strong>on</strong>g>of</str<strong>on</strong>g> pH.<br />

ii. Variable charge defined as pH-dependant CEC.<br />

iii. Point <str<strong>on</strong>g>of</str<strong>on</strong>g> zero charge, PZA defined as the pH at which the net surface<br />

charge is zero or CEC minus ani<strong>on</strong> exchange capacity, AEC, equal<br />

zero.<br />

iv. Inner sphere/outer sphere surface complexes defined as str<strong>on</strong>g surface<br />

complexes or inner sphere complexes as opposed to weak surface<br />

complexes or outer sphere complexes.<br />

v. Hydrophobic-hydrophilic potential defined as the potential <str<strong>on</strong>g>of</str<strong>on</strong>g> soil to<br />

adsorb water.<br />

vi. pH buffering defined as the potential <str<strong>on</strong>g>of</str<strong>on</strong>g> soil to resist pH changes.<br />

These physiochemical properties play an important role in regulating surface <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

ground water chemistry 63.<br />

l.2.l.l Soil minerals<br />

a) Inorganic minerals<br />

Inorsanic minerals <str<strong>on</strong>g>of</str<strong>on</strong>g> soil are classified into:<br />

i. Primary minerals<br />

ii. Sec<strong>on</strong>dary minerals<br />

15


Generally the size <str<strong>on</strong>g>of</str<strong>on</strong>g> soil mineral varies from clay sized colloids (< 2pm) to gravel (< 2mm) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

rocks.<br />

Primary minerals are minerals with chemical compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> structure obtained during<br />

the crystallizati<strong>on</strong>process <str<strong>on</strong>g>of</str<strong>on</strong>g> molten lava. Primary mineral groups are silica minerals (including<br />

quartz), feldspar, olivines, pyroxene, amphioboles <str<strong>on</strong>g>and</str<strong>on</strong>g> micas based <strong>on</strong> alrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>nected<br />

silica (SiO+) tetrahedral.<br />

3Sr,1AI<br />

6 (o)<br />

K<br />

6(o)<br />

3SilAl<br />

{o),2(oH)<br />

6Al<br />

4(O),z(OH)<br />

3SrlAl<br />

6(o)<br />

Fig. 1.1: Diagrammatic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Muscovite (Mica)<br />

Alumino silicates have an inorganic crystalline structure which makes up a large part <str<strong>on</strong>g>of</str<strong>on</strong>g> <<br />

0.2mm soil-sized particle. These minerals known as clay mineral c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> Si-O tetrahedra<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Al-O octahedra. Substituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum atom for silic<strong>on</strong> in tetrahedr<strong>on</strong> or substituti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> divalent cati<strong>on</strong> (i.e. Mg*2 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fe*2) for aluminum is comm<strong>on</strong> occrurence. Substituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

given coordinating cati<strong>on</strong> by a lower valence in a mineral gives rise to permanent negative<br />

l6


charge or cati<strong>on</strong> exchange capacity CEC locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this substituti<strong>on</strong> give rise to clay<br />

minerals with unique physiochemical properties.<br />

4Si<br />

6 (o)<br />

rrarious cati<strong>on</strong>s<br />

6(o)<br />

4Si<br />

4(o),2(oH)<br />

6(AI, Fe,IvE)<br />

4(o),2(OH)<br />

4Si<br />

6(O)<br />

Fig. 1.2: Diagrammatic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>tmorill<strong>on</strong>ite<br />

Whereas sec<strong>on</strong>dary minerals are those that have been altered from the original structure<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> chemical compositi<strong>on</strong> by weathering, a process referred to as the geomorphic cycle in clay<br />

fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> as sheet silicates. They have numerous structural combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the tetrahedral<br />

sheets with octahedral coordinated metal cati<strong>on</strong> i.e Kaol<strong>on</strong>ite (1:1), vermiculite (2:1) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

smectite (2:l) layer silicates.<br />

t7


) Metal oxides<br />

Metal oxides are present in soil as:<br />

i. Free oxides<br />

ll.<br />

iii.<br />

Clay mineral coatings<br />

Clay edges<br />

Metal oxides exhibit charge due to prot<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> deprot<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the oxygen<br />

coordinated to metal (F.*', Mn *', Al*3 <str<strong>on</strong>g>and</str<strong>on</strong>g> Si*4; this charge is known as variable charge<br />

or pH dependant charge 6a.<br />

c) Soil organic matter<br />

Soil organic matter (SOM) is made <str<strong>on</strong>g>of</str<strong>on</strong>g> two major groups <str<strong>on</strong>g>of</str<strong>on</strong>g> compounds the n<strong>on</strong>-<br />

nitrogenous compounds which are mainly carbohydrates <str<strong>on</strong>g>and</str<strong>on</strong>g> the nitrogenous compounds<br />

derived from protiens.<br />

As organic matter decomposes the final product humus is produced ,70 to 80% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic matter, by weight found in most <strong>soils</strong> c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> humic substances.<br />

Humic substances c<strong>on</strong>tains a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> identical functi<strong>on</strong>al groups with<br />

different pKu values <str<strong>on</strong>g>and</str<strong>on</strong>g> are partiti<strong>on</strong>ed into three main fracti<strong>on</strong>s based up<strong>on</strong> their<br />

stability behavior.<br />

l.<br />

ii.<br />

iii.<br />

Humic acid<br />

Fulvic acid<br />

Humin<br />

Humic substance exhibit poly functi<strong>on</strong>ality, molecular negative charge,<br />

hydrophobicity <str<strong>on</strong>g>and</str<strong>on</strong>g> structure liability due to intermolecular associati<strong>on</strong>. Comm<strong>on</strong>ly<br />

humic substance forms a str<strong>on</strong>g complex with clay.<br />

l8


1.2.1.2 Surface functi<strong>on</strong>al group<br />

The mineral surface comp<strong>on</strong>ent resp<strong>on</strong>sible for ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> is also called<br />

functi<strong>on</strong>al group. In case <str<strong>on</strong>g>of</str<strong>on</strong>g> minerals with permanent charge (e.g. aluminosilicates)<br />

functi<strong>on</strong>al group is siloxane or ditrig<strong>on</strong>al cavity in case <str<strong>on</strong>g>of</str<strong>on</strong>g> clay mineral edges, the surface<br />

functi<strong>on</strong>al groups are (OH)- species capable <str<strong>on</strong>g>of</str<strong>on</strong>g> dissociating (H*). There are three such<br />

potential functi<strong>on</strong>al groups <strong>on</strong> clay minerals.<br />

ll.<br />

I ll.<br />

The first group is the -AI-OH (octahedr<strong>on</strong>) or aluminol with pKu around<br />

The sec<strong>on</strong>d is silanol (-Si-OH) tetrahedr<strong>on</strong> with pKu around 9, the<br />

intermediate -Si-Al-OH2 (OH shared between a tetrahedral sheet <str<strong>on</strong>g>and</str<strong>on</strong>g> an<br />

octahedral sheet) with apparent pKu <str<strong>on</strong>g>of</str<strong>on</strong>g> around 6-7. These functi<strong>on</strong>al<br />

groups are distributed <strong>on</strong> three different clay mineral site types. First site<br />

is planar exposed by siloxane cavities, sec<strong>on</strong>d is known as edge <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

represented by aluminol silanol <str<strong>on</strong>g>and</str<strong>on</strong>g> intermediate functi<strong>on</strong>al OH groups.<br />

Third site is knows a inter layer <str<strong>on</strong>g>and</str<strong>on</strong>g> is represented by the space between<br />

adiacent siloxane cavities.<br />

1.2.2 Classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

Soil textures are classified by the fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>each soil separately (s<str<strong>on</strong>g>and</str<strong>on</strong>g>, silt, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

clay) present in a soil. Classificati<strong>on</strong>s are typically named for the primary c<strong>on</strong>stituent<br />

particle size or a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the most abundant particle sizes, e.g. "s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay" or<br />

"silty clay". A fourth term loam, is used to describe a roughly equal c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

s<str<strong>on</strong>g>and</str<strong>on</strong>g>, silt, clay, <str<strong>on</strong>g>and</str<strong>on</strong>g> lends to the naming <str<strong>on</strong>g>of</str<strong>on</strong>g> even more classificati<strong>on</strong>s, e.g. "clay loam" or<br />

"silt loam".<br />

Twelve soil texture classificati<strong>on</strong>s are defined by the USDA 67.<br />

ll.<br />

Clay<br />

silt<br />

19


i. S<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

ii. Loam<br />

iii. Silty clay<br />

iv. S<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay<br />

v. Clay loam<br />

vi. Silt loam<br />

vii. S<str<strong>on</strong>g>and</str<strong>on</strong>g>y Loam<br />

viii. Loamy s<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

ix. Silty clay loam<br />

x. S<str<strong>on</strong>g>and</str<strong>on</strong>g>y clay loam<br />

Determining the soil textures is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten aided with the use <str<strong>on</strong>g>of</str<strong>on</strong>g> a soil texture triangle.<br />

90<br />

100<br />

\60 50 40<br />

Percent S<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Fig. 1.3: Determining the soil textures with the use <str<strong>on</strong>g>of</str<strong>on</strong>g> a soil texture triangle<br />

20


1.2.3 Soil sampling<br />

Soil is a heterogeneous material which is evident from the fact that various types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>soil have visual differences in surface appearance <str<strong>on</strong>g>and</str<strong>on</strong>g> in the pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile 68.<br />

Successful soil testing depends up<strong>on</strong> the initial soil samples.The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

representative soil sample prior to laboratory preparati<strong>on</strong>, extracti<strong>on</strong>, analysis <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> results is readily apparent. Obtaining the representative soil sample is the<br />

key to soil sampling program.<br />

a) Time <str<strong>on</strong>g>of</str<strong>on</strong>g> sampling<br />

Fields used for crop producti<strong>on</strong> are best sampled at any time after crop harvest<br />

before planting. Fields with n<strong>on</strong> cultivated crops can be sampled during dormant seas<strong>on</strong>.<br />

To account for seas<strong>on</strong>al variati<strong>on</strong> soil samples should be collected at<br />

approximately the same time each year. Soil should be retested as <str<strong>on</strong>g>of</str<strong>on</strong>g>ten as necessary ro<br />

determine the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> crop producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> cultural practices <strong>on</strong> soil chemical<br />

properties.<br />

b) Sampling materials<br />

Comm<strong>on</strong> tools used to sample <strong>soils</strong> for routine analysis include: spade, h<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

probe, h<str<strong>on</strong>g>and</str<strong>on</strong>g> auger, bucket auger, oakfield probe <str<strong>on</strong>g>and</str<strong>on</strong>g> king tube or vehicle mounted<br />

hydraulic probe or auge, 6t.<br />

Sampling equipment should be clean free <str<strong>on</strong>g>of</str<strong>on</strong>g> rust <str<strong>on</strong>g>and</str<strong>on</strong>g> chrome plated, or made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stainless steel, especially for micro nutrient analysis.<br />

c) Sampling procedures<br />

Obtaining the representative soil sample is the key to a soil sampling program.<br />

A representative soil sample gives an average estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> the whole area sampled.<br />

A sub sample <str<strong>on</strong>g>of</str<strong>on</strong>g> soil mixture is removed <str<strong>on</strong>g>and</str<strong>on</strong>g> placed in a soil sample bag, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

lined with plastic. Individual soil cores from a minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 locati<strong>on</strong>s should be mixed<br />

2I


thoroughly in clean plastic c<strong>on</strong>tainers. This sample comm<strong>on</strong>ly referred to as the<br />

composite sample c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> the individual cores.<br />

The altemative to composite sampling is the physical averaging <str<strong>on</strong>g>of</str<strong>on</strong>g> the analytical<br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> individual soil cores (a costly procedure) to obtain the arithmetic mean.<br />

Composite sampling decreases the cost <str<strong>on</strong>g>of</str<strong>on</strong>g> individual analysis for each soil core <str<strong>on</strong>g>of</str<strong>on</strong>g> the bag<br />

must be properly labeled with_field identificati<strong>on</strong>, sampling depth management history<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> other descriptive characteristics. Moist samples must be air dried before submissi<strong>on</strong><br />

to laboratory to prevent alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the nutrient c<strong>on</strong>centrati<strong>on</strong> by soil microorganism.<br />

Sample c<strong>on</strong>taminati<strong>on</strong> from dust <str<strong>on</strong>g>and</str<strong>on</strong>g> foreign materials should be avoided during the air<br />

drying process.<br />

Generally, a 100 acre field comprises <str<strong>on</strong>g>of</str<strong>on</strong>g> the largest area to be sampled as <strong>on</strong>e unit<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> cores to represent an average soil from a field is determined by field<br />

variability not by number <str<strong>on</strong>g>of</str<strong>on</strong>g> acres. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> cores obtained determine the accuracy<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the analytical result. Crop residues should be removed from the surface<br />

before sampling.<br />

Sampling depth for most soil traditi<strong>on</strong>ally has been the tillage depth, which<br />

c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> 0-6 inch interval. The top 6 inches is the area that has the majority <str<strong>on</strong>g>of</str<strong>on</strong>g> root<br />

activity <str<strong>on</strong>g>and</str<strong>on</strong>g> pesticide applicati<strong>on</strong> are restricted to this depth 67.<br />

Uniform field can be sampled in a simple r<str<strong>on</strong>g>and</str<strong>on</strong>g>om, stratified r<str<strong>on</strong>g>and</str<strong>on</strong>g>om or systematic<br />

pattern .The results from these sampling plans, the soil test value, provides an estimate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the entire populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> possible soil test results. As the number <str<strong>on</strong>g>of</str<strong>on</strong>g> cores increases, the<br />

error or chances <str<strong>on</strong>g>of</str<strong>on</strong>g> obtaining an inaccurate estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> the average soil test value<br />

decreases. A good sampling plan helps to ensure the accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil test<br />

result.<br />

R<str<strong>on</strong>g>and</str<strong>on</strong>g>om sampling<br />

With a simple r<str<strong>on</strong>g>and</str<strong>on</strong>g>om system each soil core is selected separately, r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

independently <str<strong>on</strong>g>of</str<strong>on</strong>g> previously drawn units.<br />

22


X<br />

X<br />

X X<br />

X X<br />

XXXX<br />

XX<br />

ii. Stratified r<str<strong>on</strong>g>and</str<strong>on</strong>g>om<br />

X X X<br />

X<br />

A stratified r<str<strong>on</strong>g>and</str<strong>on</strong>g>om sample is taken from a field that has been divided into several<br />

sub units or quadrant from which simple r<str<strong>on</strong>g>and</str<strong>on</strong>g>om cores are obtained. This increases the<br />

precisi<strong>on</strong> for the field.<br />

X<br />

KX<br />

X'<br />

X<br />

X<br />

X<br />

X<br />

^a ZJ<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X


111. Systematic sampling<br />

The systematic sample is a further progressi<strong>on</strong> in an attempt to ensure<br />

complete field coverage similar to the change from the r<str<strong>on</strong>g>and</str<strong>on</strong>g>om to the stratified<br />

r<str<strong>on</strong>g>and</str<strong>on</strong>g>om cores are taken at regular spaced interval in all directi<strong>on</strong>s. The systematic<br />

sampling plan has been widely accepted because it is straight forward <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

potentially increases the accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g>soil test.<br />

1.2.4 Soils <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan<br />

XXIXXX<br />

XXIXXX<br />

X X IX X X<br />

X X IX X X<br />

XXXIXXX<br />

The <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan are derived from two types <str<strong>on</strong>g>of</str<strong>on</strong>g> parent materials 68<br />

ii.<br />

Alluvium, Loess <str<strong>on</strong>g>and</str<strong>on</strong>g> wind reworked s<str<strong>on</strong>g>and</str<strong>on</strong>g>s. They are <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed<br />

mineralogy.<br />

Residual material obtained from weathering <str<strong>on</strong>g>of</str<strong>on</strong>g> underlying rocks. Most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the rocks are calcareous. In some areas, granites have produced n<strong>on</strong>-<br />

calcareous soil material. Very small quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> salts are released from<br />

most <str<strong>on</strong>g>of</str<strong>on</strong>g> the rocks. The <strong>soils</strong> are therefore. essentiallv n<strong>on</strong>-saline.<br />

The <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan have acquired distinct characteristics from the parent<br />

material <str<strong>on</strong>g>and</str<strong>on</strong>g> by their mode <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong>. The river-laid sediments have developed into<br />

1A


alluvial <strong>soils</strong>. The desert s<str<strong>on</strong>g>and</str<strong>on</strong>g>s have turned into distinct <strong>soils</strong>. The hills, mountains <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

plateaus have produced Residual Soils with patches <str<strong>on</strong>g>of</str<strong>on</strong>g> alluvial, loess <str<strong>on</strong>g>and</str<strong>on</strong>g> other <strong>soils</strong>.<br />

Accordingly, the <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan can be classified into the following six types.<br />

i. Alluvial <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flood plains.<br />

ii. Alluvial <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the bar upl<str<strong>on</strong>g>and</str<strong>on</strong>g>s.<br />

iii. Soils <str<strong>on</strong>g>of</str<strong>on</strong>g> the Piedm<strong>on</strong>t plains.<br />

iv. Desert <strong>soils</strong>.<br />

vi.<br />

Soils <str<strong>on</strong>g>of</str<strong>on</strong>g> Potohar plateau.<br />

Soils <str<strong>on</strong>g>of</str<strong>on</strong>g> westem hills based <strong>on</strong> these broad classes.<br />

't' r<br />

Fig. 1.4: Map represents the 26 broad soil types <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan.<br />

25<br />

ti<br />

I<br />

I F<br />

I I<br />

ill I<br />

i<br />

i<br />

i<br />

:<br />

rl<br />

qrn<br />

rffirs<br />

5F<br />

illr<br />

Itlt<br />

I<br />

I<br />

l:llrhd-<br />

I rrrlr*il<br />

{<br />

N<br />

i<br />

i t -rttf r*<br />

j gir,


Table 1.2: Soil types <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan (Descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> figure F.gl.a)<br />

Soil Type Area<br />

(000'ha)<br />

I Loamv <str<strong>on</strong>g>and</str<strong>on</strong>g> s<str<strong>on</strong>g>and</str<strong>on</strong>g>v stratified <strong>soils</strong> 1.0 0.1<br />

2. Loamy <str<strong>on</strong>g>and</str<strong>on</strong>g> clayey n<strong>on</strong>-calcareous <strong>soils</strong> 4.6 0.6<br />

J. MOUNTAINS: Loamy shallow <strong>soils</strong> VALLEYS :<br />

Loamy n<strong>on</strong>-calcareous <strong>soils</strong><br />

r 8.6 z.)<br />

4. Loamy s<str<strong>on</strong>g>and</str<strong>on</strong>g>v stratified <strong>soils</strong> 1.5 0.2<br />

5. Loamy clayey n<strong>on</strong>-calcareous <strong>soils</strong> 7.7 1.0<br />

6. Loamy n<strong>on</strong>-calcareous <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> alluvial/loess plains 18.2 2..)<br />

n<br />

MOUNTAINS: Loamy <str<strong>on</strong>g>and</str<strong>on</strong>g> shallow <strong>soils</strong> VALLEYS :<br />

Laomy <strong>soils</strong><br />

8. MOTINTAINS: Rock out-crops loamy <str<strong>on</strong>g>and</str<strong>on</strong>g> shallow <strong>soils</strong><br />

VALLEYS : Loamy <strong>soils</strong><br />

t0.2 1.3<br />

17.0 2.1<br />

9. Loamy partly gravelly <strong>soils</strong> 0.7 0.1<br />

10. MOUNTAINS: Loamy shallow <strong>soils</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> rock out-crop<br />

VALLEYS : Loamy <strong>soils</strong><br />

l1 MOLINTAINS: Rock out-crop <str<strong>on</strong>g>and</str<strong>on</strong>g> loamy very shallow<br />

<strong>soils</strong> VALLEYS : Loamy <strong>soils</strong><br />

26<br />

2.7 0.3<br />

4r.7 5.2<br />

o/otage


12. MOL|NTAINS:Rock outcrop, some loamy very shallow<br />

<strong>soils</strong> VALLEYS : Mainlv loamv <strong>soils</strong><br />

22.7 2.9<br />

lJ. Laomy s<str<strong>on</strong>g>and</str<strong>on</strong>g>y stratified <strong>soils</strong> 18.8 2.4<br />

t4. Loamy clayey <strong>soils</strong> 90.4 tt.4<br />

15. Loamy <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> old river terraces 21.9 2.8<br />

t6. Laomy clayey mainly dense saline sodic <strong>soils</strong> 2.0 0.3<br />

17. Loamy <str<strong>on</strong>g>and</str<strong>on</strong>g> clayey partly slaine sodic <strong>soils</strong> 52.7 6.6<br />

18. Mainly loamy saline <strong>soils</strong> 15.3 t.9<br />

t9. Silty <str<strong>on</strong>g>and</str<strong>on</strong>g> calyey saline <strong>soils</strong> 5.6 0.7<br />

20. Rolling to hilly s<str<strong>on</strong>g>and</str<strong>on</strong>g>y <strong>soils</strong> 116.9 14.7<br />

21 Mainly loamy partly gravelly <strong>soils</strong> 46.6 5.8<br />

22. Mainly loamy partly gravelly <strong>soils</strong> 16.7 2.1<br />

^a z)- MOUNTAINS: Rocky out-crop with patchy <strong>soils</strong><br />

VALLEYS : Mainly loamy partly gravelly <strong>soils</strong><br />

244.5 30.6<br />

24. Clayey <str<strong>on</strong>g>and</str<strong>on</strong>g> loamy severely slaine sodic <strong>soils</strong> 2.7 0.3<br />

25. Glaciers <str<strong>on</strong>g>and</str<strong>on</strong>g> snow caps 3.4 0.4<br />

26. Rivers 13.0 r.6<br />

Total 796.1 100.0<br />

27


1.3 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>-de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>studies</str<strong>on</strong>g><br />

Soil functi<strong>on</strong>s as a chemical <str<strong>on</strong>g>and</str<strong>on</strong>g> biological filter that lessens the envir<strong>on</strong>mental<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> organic chemicals soil forms the first line <str<strong>on</strong>g>of</str<strong>on</strong>g> defense against these compounds<br />

into ground water <str<strong>on</strong>g>and</str<strong>on</strong>g> biosphere.A knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical<br />

substances is necessary to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> the c<strong>on</strong>sequences that may arise from their<br />

c<strong>on</strong>trolled or unc<strong>on</strong>trolled distributi<strong>on</strong> in the envir<strong>on</strong>ment.<br />

The ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> -de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticide interacti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> phenomena<br />

can influence the translocati<strong>on</strong> volatility, persistence <str<strong>on</strong>g>and</str<strong>on</strong>g> bioactivity <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticide in soil .<br />

Soil curtails mobility <str<strong>on</strong>g>of</str<strong>on</strong>g> organic chemicals by two *uys 6e.<br />

i) Sorpti<strong>on</strong>.<br />

ii) Biological <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical degradati<strong>on</strong>.<br />

Although various physiochemical processes affect the fate <str<strong>on</strong>g>of</str<strong>on</strong>g> agrochemicals in<br />

c<strong>on</strong>tact with soil, the ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> with the solid matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> soil is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important<br />

phenomen<strong>on</strong>, which c<strong>on</strong>trols other processes such as pesticide transport, persistence<br />

bioavailability <str<strong>on</strong>g>and</str<strong>on</strong>g> degradati<strong>on</strong>.<br />

For predicting the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> organic pollutant in the soil, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

evaluating the risk that a chemical might leach into ground water follows from<br />

underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g>nature <str<strong>on</strong>g>and</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g>these ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> degradati<strong>on</strong> process.<br />

1.3.1 Sorpti<strong>on</strong><br />

In <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>, a chemical species may accumulate <strong>on</strong> a mineral's surface either<br />

through ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>, hydrophic interacti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g>l or precipitati<strong>on</strong>.<br />

A mineral <str<strong>on</strong>g>and</str<strong>on</strong>g> organic surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soils</strong> (adsorbent) may adsorb organic molecule<br />

(the absorbent) weakly or str<strong>on</strong>gly depending <strong>on</strong> the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the adsorbate-adsorbent<br />

interacti<strong>on</strong>. Str<strong>on</strong>g interacti<strong>on</strong> is indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>, or chemi<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>s in<br />

28<br />

for<br />

an


which a covalent or short range electrostatic b<strong>on</strong>d forms between the molecule <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

surface.<br />

Weak ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g> is characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> physical ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g><br />

which the b<strong>on</strong>ding interacti<strong>on</strong> is not very energetic (typically 20<br />

Kcal/mole than physical ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> (< l0 Kcal/mol).<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> & de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic molecule in <strong>soils</strong> is c<strong>on</strong>trolled by chemical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the molecules <str<strong>on</strong>g>and</str<strong>on</strong>g> the surface properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the particular soil 70.<br />

Organic adsorbate has following relevant properties.<br />

11.<br />

Il1.<br />

lv.<br />

V.<br />

Identity <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al group attached to the molecule.<br />

Acidity or basicity <str<strong>on</strong>g>of</str<strong>on</strong>g> the functi<strong>on</strong>al groups.<br />

Molecular size <str<strong>on</strong>g>and</str<strong>on</strong>g> shape.<br />

Polarity <str<strong>on</strong>g>and</str<strong>on</strong>g> charge <str<strong>on</strong>g>of</str<strong>on</strong>g> the molecule.<br />

Polarizability <str<strong>on</strong>g>of</str<strong>on</strong>g> the molecule.<br />

These properties determine the water solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> the molecule <str<strong>on</strong>g>and</str<strong>on</strong>g> the tendency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the molecules to adsorb <strong>on</strong> soil surface. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides in soil<br />

influence their bioefficacy <str<strong>on</strong>g>and</str<strong>on</strong>g> persistence. It is also an important factor governing the<br />

migratory behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides in soil <str<strong>on</strong>g>and</str<strong>on</strong>g> ground water <str<strong>on</strong>g>and</str<strong>on</strong>g> may also influence the<br />

uptake <str<strong>on</strong>g>and</str<strong>on</strong>g> metabolism by plant or microorganisms <str<strong>on</strong>g>and</str<strong>on</strong>g> other organisms present in soil.<br />

29<br />

in<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>


1.3.2 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>-de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> models<br />

Equilibrium between soluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> adsorbed or sorbed phases is a c<strong>on</strong>diti<strong>on</strong><br />

comm<strong>on</strong>ly used to evaluate ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> or <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> processes in <strong>soils</strong> or soil-clay<br />

minerals. Equilibrium is defined as the point at which the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the forward reacti<strong>on</strong><br />

equals the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the reverse reacti<strong>on</strong>. Two major techniques comm<strong>on</strong>ly used to model<br />

soil ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> or <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> equilibrium processes are the (l) the Freundlich approach <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

(2) the Langmuir approach. Both involve ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> isotherms. A <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g><br />

isotherm describes the relati<strong>on</strong>ship between the dissolved c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a given<br />

species (adsorbate) in units <str<strong>on</strong>g>of</str<strong>on</strong>g> micrograms per liter, milligrams per liter, microequivalents<br />

per liter, or millimoles per liter, <str<strong>on</strong>g>and</str<strong>on</strong>g> the sorbed quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> the same species by the solid<br />

phase in units <str<strong>on</strong>g>of</str<strong>on</strong>g> adsorbate per unit mass <str<strong>on</strong>g>of</str<strong>on</strong>g> adsorbent (solid) at equilibrium under<br />

c<strong>on</strong>stant pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature. Sorpti<strong>on</strong> isotherms have been classified into four<br />

types, depending <strong>on</strong> their general shapes.<br />

m<br />

t<br />

b<br />

5<br />

o<br />

t<br />

b<br />

d<br />

m<br />

I<br />

L-Type<br />

Equilibrium C<strong>on</strong>centrati<strong>on</strong><br />

C-Type<br />

m<br />

t<br />

b<br />

s<br />

o<br />

R<br />

B<br />

E<br />

d<br />

m<br />

I<br />

b<br />

s<br />

o<br />

r<br />

o<br />

e<br />

d<br />

S-Type<br />

Equilibrium C<strong>on</strong>centrati<strong>on</strong><br />

Equilibrium C<strong>on</strong>centrati<strong>on</strong> Equilibrium C<strong>on</strong>centrati<strong>on</strong><br />

Fig. 1.5: Types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> isotherms<br />

L-type: describes high affinity ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> between the adsorbate <str<strong>on</strong>g>and</str<strong>on</strong>g> adsorbent<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> usually indicate chemi<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>s. (e. g. Phosphate-soil interacti<strong>on</strong>s)<br />

30


11.<br />

ul.<br />

1V.<br />

S-type: describes adsorbate-adsorbate interacti<strong>on</strong>s <strong>on</strong> the adsorbate, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten referred<br />

to as clustering , <str<strong>on</strong>g>and</str<strong>on</strong>g>/or the interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the adsorbate with soluti<strong>on</strong> lig<str<strong>on</strong>g>and</str<strong>on</strong>g>s.<br />

When lig<str<strong>on</strong>g>and</str<strong>on</strong>g> saturati<strong>on</strong> is reached, ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> proceeds (e.g. aluminium-fulvic<br />

acid-clay interacti<strong>on</strong>s)<br />

C-type: describes interacti<strong>on</strong> between a generally hydrophobic adsorbate with a<br />

hydrophobic adsorbent (e. g. pesticide-organic matter interacti<strong>on</strong>s)<br />

H-type: describes str<strong>on</strong>g chemi<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>s interacti<strong>on</strong>s, which is basically an<br />

extreme case <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ltype isotherms (e.g. phosphate-ir<strong>on</strong> oxide interacti<strong>on</strong>s).<br />

As menti<strong>on</strong>ed earlier two major techniques comm<strong>on</strong>ly used to model soil<br />

<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> equilibrium processes are the (1) the Freundlich approach <str<strong>on</strong>g>and</str<strong>on</strong>g> (2) the Langmuir<br />

approach.<br />

a) Freundlichequilibriumapproach<br />

Soils are multicomp<strong>on</strong>ent systems c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> solid, liquid <str<strong>on</strong>g>and</str<strong>on</strong>g> gaseous phases.<br />

These three phases are c<strong>on</strong>stantly in a dynamic state, trying to maintain equilibrium. Any<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> perturbati<strong>on</strong> in <strong>on</strong>e phase influences the other phases so that a new equilibrium<br />

state is approached. An equilibrium process that has been extensively investigated in soil<br />

systems employing the Freundlich equati<strong>on</strong> involves <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>.<br />

-S + l/nC = -SC (t)<br />

where - S denotes a heterogeneous soil mineral surface, C denotes chemicals<br />

substance (e.g. organic c<strong>on</strong>taminant in soluti<strong>on</strong>) in equilibrium with -S, l/n is an<br />

empirical linearizati<strong>on</strong> c<strong>on</strong>stant, <str<strong>on</strong>g>and</str<strong>on</strong>g> -SC denotes the adsorbate-surface complex in<br />

milligrams <str<strong>on</strong>g>of</str<strong>on</strong>g> adsorbate per unit mass <str<strong>on</strong>g>of</str<strong>on</strong>g> soil (e.g. per 100 g <str<strong>on</strong>g>of</str<strong>on</strong>g> soil).<br />

b) Langmuir equilibrium approach<br />

The Langmuir equilibrium approach was developed in 1918 by Langmuir to<br />

describe vapor ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> a homogeneous surface. It incorporates several assumpti<strong>on</strong>s<br />

31


when employed to model ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical species-soluti<strong>on</strong> suspensi<strong>on</strong>s. These<br />

assumpti<strong>on</strong>s are that :<br />

i. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> surface ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> sites are fixed.<br />

ii. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> includes a single m<strong>on</strong>olayer.<br />

iii.Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> behavior is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> surface coverage.<br />

iv. All ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> sites are represented by similar types <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al groups.<br />

v. The isotherms displays L-type behavior 7r.<br />

1.4 Pesticides used<br />

In this study commercially used <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> derivative methyl IH-<br />

<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g>-2-carboxylate (Carbendazim) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> derivatives 2-(4-<br />

fluorophenyl)- lH- <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> (FBNZ) <str<strong>on</strong>g>and</str<strong>on</strong>g> N-(1I1- <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> -2-ylmethyl)<br />

acetamide (ABNZ), synthesized were used.<br />

Table 1.3: Pesticide used in this studv<br />

resticide Structures <str<strong>on</strong>g>and</str<strong>on</strong>g> Chemical Names<br />

arbendazim<br />

FPNZ<br />

ABNZ<br />

\--1<br />

NO<br />

,/\<br />

N O-CH3<br />

m ethyl 1 H-benzim id azole -2-ca(boxvlate<br />

N<br />

\<br />

N<br />

2 -(4 -lluo rop h en yl)-1 H,benzim idazo le<br />

\.. /2<br />

).----*H4e u^<br />

N'r<br />

N-(1 H -benzim idazol-2 -ylm ethyl)acetam ide<br />

JZ


Four field <strong>soils</strong> were collected from differerrt selected agricultural areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan.<br />

Mostly agricultural areas <str<strong>on</strong>g>of</str<strong>on</strong>g> NWFP, central <str<strong>on</strong>g>and</str<strong>on</strong>g> southern Punjab districts are focused.<br />

The selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these areas is based <strong>on</strong> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> pesticides. The major<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> pesticides is against fungal diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> fruits, vegetables <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

cereals. The areas <str<strong>on</strong>g>of</str<strong>on</strong>g> south Punjab are major wheat growing areas <str<strong>on</strong>g>and</str<strong>on</strong>g> other selected<br />

areas are major fruit growing areas. The soil samples from following areas were<br />

studied:<br />

11.<br />

111.<br />

iv.<br />

Tarnol<br />

Multan<br />

Murree<br />

Ayubia Q{.W.F.P)<br />

The collecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> processing <str<strong>on</strong>g>of</str<strong>on</strong>g> soil is d<strong>on</strong>e by using the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard methods. Each<br />

soil is characterized by type, pH, moisture <str<strong>on</strong>g>and</str<strong>on</strong>g> organic c<strong>on</strong>tents etc.<br />

Besides different <strong>soils</strong>, following soil minerals/clays<br />

<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>/de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>studies</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> these pesticides.<br />

11.<br />

iii.<br />

lv.<br />

Silica<br />

Alumina<br />

M<strong>on</strong>tmorill<strong>on</strong>ite<br />

Muscovite<br />

used for<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> experiments with pure soil c<strong>on</strong>stituents will provide valuable<br />

knowledge to all <str<strong>on</strong>g>of</str<strong>on</strong>g> the above menti<strong>on</strong>ed points because such experiment will show to<br />

what extent these pesticides are absorbed if there are differences between adsorbent<br />

which could indicate difference between <strong>soils</strong> with variety <str<strong>on</strong>g>of</str<strong>on</strong>g> compositi<strong>on</strong>72.<br />

an<br />

JJ


Ilg; lJ: Mhcnb/drp rEGd ln tbe rtrdy<br />

v


t<br />

i<br />

Trmol<br />

Flg; l.?: So& rrcd<br />

35<br />

l,tnrm Avft


2.1 Chemicals <str<strong>on</strong>g>and</str<strong>on</strong>g> solvents<br />

EXPERIMENTAL<br />

CHAPTER 2<br />

Acet<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> Methanol used were 99.9 oh pure from Merck, Germany. Sodium<br />

chloride <str<strong>on</strong>g>and</str<strong>on</strong>g> calcium chloride anhydrous powder, extra pure used were products <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Scharlau Company, Spain. Benomyl, analytical grade benomyl, 99Yo pure was purchased<br />

from ACCU St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard USA. Carbendazim Analytical st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard was purchased from<br />

ACCU St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard USA. Aluminum Oxide active neutral Brock Mann Grade I, used was<br />

product from BDH Poole, Engl<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Silica gel 0.2 mm for chromatography was<br />

product <str<strong>on</strong>g>of</str<strong>on</strong>g> Scharlau Company, Spain.<br />

Muscovite, research grade was purchased from Alfa Aesar Company, Germany<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> M<strong>on</strong>tmorill<strong>on</strong>ite, K-10 obtained from Sigma Aldrich Company, Germany. Pesticides<br />

used in this study are <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> derivatives 2-(4-fluorophenyl)-1H- <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g><br />

(FBNZ) <str<strong>on</strong>g>and</str<strong>on</strong>g> N-(111- <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> -2-ylmethyl) acetamide (ABNZ) were synthesized in<br />

the laboratory.<br />

2.2 Instruments used<br />

Melting points <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides were determined by melting point apparatus from<br />

Gallen Kamp, Sanyo, UK. Organic matter c<strong>on</strong>tents were determined using Vulcan box<br />

furnace. Soil pH was measured using Ori<strong>on</strong> 420 plus, pH meter equipped with glass<br />

electrode. Stuart Orbital shaker was used for agitati<strong>on</strong>. Centrifugati<strong>on</strong> was d<strong>on</strong>e in<br />

Hettich Zentrifiigen EBA 20. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra were recorded <strong>on</strong> UV-Visible<br />

spectrophotometer model U-2800, Hitachi.<br />

2.3 Soil collecti<strong>on</strong><br />

Four <strong>soils</strong> were collected (0-6 cm) deep from cultivated soil areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Punjab &<br />

N.W.F.P with no recent history <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides applicati<strong>on</strong>s.<br />

36


a) soIL I<br />

Twenty sub samples <str<strong>on</strong>g>of</str<strong>on</strong>g> 2-3 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> each were collected from Tarnol, Islamabad in<br />

March 2009. Soil texture was clavey loam. Vesetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the area is wheat.<br />

b) sorl, 2<br />

Twenty sub samples <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 kg each were collected from acre <str<strong>on</strong>g>of</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g> from chak no<br />

136 W.B Tehsil, Harrapa district Multan, <strong>on</strong> 25 February 2008. Soil texture was<br />

calcareous s<str<strong>on</strong>g>and</str<strong>on</strong>g>y loam. Vegetati<strong>on</strong> when sampled was cott<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> wheat.<br />

c) SOIL 3<br />

Fifteen sub samples were collected from Murree regi<strong>on</strong>, a boarder <str<strong>on</strong>g>of</str<strong>on</strong>g> Punjab &<br />

N.W.F.P mountain area. It is a mountain soil, red in color locally called as "Ratti Mitti".<br />

Soil texture was clayey loam. Vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the area when sampled was apples, apricots<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> plum. Soil was collected <strong>on</strong>23 July 2008.<br />

d) sorl, 4<br />

Fourth soil was collected from Ayubia <str<strong>on</strong>g>and</str<strong>on</strong>g> twelve sub samples <str<strong>on</strong>g>of</str<strong>on</strong>g> forest soil were<br />

taken <strong>on</strong> 5 August 2009. Soil texture is loamy s<str<strong>on</strong>g>and</str<strong>on</strong>g> forest soil. Vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the area is<br />

maize, fresh beans <str<strong>on</strong>g>and</str<strong>on</strong>g> cucumbers.<br />

All soil sub samples were collected in polythene bags. Each soil was than mixed<br />

thoroughly, disaggregated first manually <str<strong>on</strong>g>and</str<strong>on</strong>g> than using a mortar <str<strong>on</strong>g>and</str<strong>on</strong>g> pestle. Soils were<br />

than passed through 2 mm sieve <str<strong>on</strong>g>and</str<strong>on</strong>g> mixed manually to achieve homogeneity.<br />

37


2.4 Physiochemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides<br />

Samples <str<strong>on</strong>g>of</str<strong>on</strong>g> homogenized soil were used to determine moisture c<strong>on</strong>tent, organic matter<br />

c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> pH.<br />

2.4.1 Moisture c<strong>on</strong>tent<br />

Soils were dried at 105'C until a c<strong>on</strong>stant weight was achieved. Moisture c<strong>on</strong>tents were<br />

determined by taking the difference in pre <str<strong>on</strong>g>and</str<strong>on</strong>g> post oven weights.<br />

2,4.2 Organic matter c<strong>on</strong>tent<br />

"Loss <strong>on</strong> Igniti<strong>on</strong> Methods" was used to determine organic matter c<strong>on</strong>tentT3. Same soil<br />

samples moisture c<strong>on</strong>tents have been determined were taken <str<strong>on</strong>g>and</str<strong>on</strong>g> heated at 400oC in<br />

fumace for 24 hours to oxidize orqanic matter.<br />

2.4.3 Soil pH<br />

Soil pH <str<strong>on</strong>g>of</str<strong>on</strong>g> all the <strong>soils</strong> was measured by mixing 1g <str<strong>on</strong>g>of</str<strong>on</strong>g> soil in 10 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> re-distilled <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

dei<strong>on</strong>ized water. After I hour <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact time pH <str<strong>on</strong>g>of</str<strong>on</strong>g> the slurry was measured using pH<br />

meter74.<br />

2.5 Preparati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s<br />

2.5.1 Stock soluti<strong>on</strong>s<br />

Soluti<strong>on</strong> A: 20 ppm: 20.6 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ & FBNZ was dissolved in lL <str<strong>on</strong>g>of</str<strong>on</strong>g> dei<strong>on</strong>ized<br />

water separately <str<strong>on</strong>g>and</str<strong>on</strong>g> pH was checked.<br />

Soluti<strong>on</strong> B: 10 ppm: 10.3 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim, ABNZ & FBNZ was dissolved in lL<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dei<strong>on</strong>ized water separately <str<strong>on</strong>g>and</str<strong>on</strong>g> pHwas checkedLT4-7s<br />

38


2.5.2 Diluti<strong>on</strong>s<br />

Eight c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim (0, 0.25, 0.5, 0.75, I.0,2.5,5.0 <str<strong>on</strong>g>and</str<strong>on</strong>g> 7.5<br />

ppm) due to its limited solubility, <str<strong>on</strong>g>and</str<strong>on</strong>g> nine c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ & ABNZ (0, 0.25,<br />

0.5, 0.75, I.0,2.5,5.0,7.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 10 ppm) were made in 0.1M sodium chloride.<br />

It was added as background electrolyte in each c<strong>on</strong>centrati<strong>on</strong> to simulate i<strong>on</strong>ic<br />

strength similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g> natural soil soluti<strong>on</strong>. It was also added as aqueous solvent phase<br />

to improve centrifugati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> to minimize cati<strong>on</strong> exchange. Diluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the stock soluti<strong>on</strong><br />

was d<strong>on</strong>e step wise as follows:<br />

i. 100 ml volumetric flasks were washed, dried <str<strong>on</strong>g>and</str<strong>on</strong>g> labeled.<br />

ii. 10 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1M NaCl soluti<strong>on</strong> was added in each flask.<br />

iii. 0,2.5,5.0,7.5, 10,25 & 50 <str<strong>on</strong>g>and</str<strong>on</strong>g> 75 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> stock soluti<strong>on</strong> B was added in flasks<br />

labeled 0, 0.25,0.5, 0.75, I.0,2.5 & 7.5 ppm for each Carbendazim, ABNZ &<br />

FBNZ, respectively .<br />

iv. To prepare 10 ppm soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim, ABNZ & FBNZ 50 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> stock<br />

soluti<strong>on</strong> A was added in flask labeled 10.<br />

v. Dei<strong>on</strong>ized water was added in each flask to achieve the desired c<strong>on</strong>centrati<strong>on</strong>s.<br />

2.6 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>studies</str<strong>on</strong>g><br />

All experiments were performed under isotherm c<strong>on</strong>diti<strong>on</strong>s at 25 + loC. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>studies</str<strong>on</strong>g> were c<strong>on</strong>ducted as follows:<br />

i. 15 ml Pyrex glass centrifuge tubes with screw cap were weighed.<br />

ii. 0.5 g <str<strong>on</strong>g>of</str<strong>on</strong>g> mineral/soil was added as in each tube.<br />

iii. 10 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard soluti<strong>on</strong> from the volumetric flasks in each tube was<br />

added <str<strong>on</strong>g>and</str<strong>on</strong>g> Sorbent/soluti<strong>on</strong> ratio was kept at 1:20.<br />

iv. The tubes were c<strong>on</strong>tinuously agitated <strong>on</strong> Shaker at 90 rpm for 24 hours at room<br />

temperature (25 "C) to achieve equilibrium.<br />

v. The ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> equilibrati<strong>on</strong> process was d<strong>on</strong>e in duplicate for each c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> blank sample c<strong>on</strong>taining <strong>on</strong>ly dissolved fungicides plus 0.1 M NaCl<br />

39


ackground electrolyte without any mineral or soil were prepared <str<strong>on</strong>g>and</str<strong>on</strong>g> treated in<br />

parallel with each set <str<strong>on</strong>g>of</str<strong>on</strong>g> batch experiment to qualifu the losses <str<strong>on</strong>g>and</str<strong>on</strong>g> to account for<br />

possible degradati<strong>on</strong> during ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> process.<br />

vi. The centrifuge tubes c<strong>on</strong>taining equilibrated material were centrifuged at 3000<br />

rpm for 25 minutes atZloC.<br />

vii. Centrifuged tubes were decanted by filtering soil water suspensi<strong>on</strong> through 0.2<br />

pm membrane <str<strong>on</strong>g>and</str<strong>on</strong>g> clear aliquots were taken for analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the pesticides by<br />

visible ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectrophotometry.<br />

viii. Supematant pH was measured in each tube.<br />

2.7 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>studies</str<strong>on</strong>g><br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> was c<strong>on</strong>ducted <strong>on</strong> the same fungicides soil /minerals soluti<strong>on</strong>s.<br />

i. After <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> experiment the remainder <str<strong>on</strong>g>of</str<strong>on</strong>g> the supernatant was decanted.<br />

ii. The centrifuge tubes plus the c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> the tubes were reweighed.<br />

iii. Pesticide was desorbed by adding 9 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> freshly prepared 0.lM CaClz soluti<strong>on</strong><br />

to the soil/minerals remaining in the centrifuge tubes.<br />

iv. The samples were again shaken for 24 hours at25 oC.<br />

v. Tubes were centrifuged for 25 minutes at 3000 rpm.<br />

vi. Part <str<strong>on</strong>g>of</str<strong>on</strong>g> the supernatant was decanted <str<strong>on</strong>g>and</str<strong>on</strong>g> filtered through 0.2 pmmembrane.<br />

vii. C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> fungicides were measured by ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g><br />

spectrophotometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the desorbed fungicides.<br />

40


RESULTS<br />

3.1 Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>soils</strong> used<br />

CHAPTER 3<br />

In this study commercially used <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> derivative methyl lH-<br />

<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g>-2-carboxylate (Carbendazim) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> derivatives 2-(4-<br />

fluorophenyl)- lH- <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> (FBNZ) <str<strong>on</strong>g>and</str<strong>on</strong>g> N-(1.F1- <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> -2-ylmethyl)<br />

acetamide (ABNZ), synthesized were used because they showed good antifungal<br />

activity.<br />

Table 3.1: Pesticides used in this study<br />

Pesticide Color &<br />

state<br />

Carbendazinr White<br />

crystalline<br />

FBNZ White<br />

crystalline<br />

A.BNZ Pale white<br />

:rystalline<br />

Structures & chemical names M.P<br />

2 -(4 -lluo ro p h e n yl)-1 H -b e n zim ad a zo le<br />

N-(1H-benzim idazol-2-y lm ethyl)acetam ide<br />

41<br />

250"c<br />

(Dec)<br />

z6t"c<br />

T77"C


Various physical <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the four <strong>soils</strong> that were used to find out the<br />

<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> behaviors <str<strong>on</strong>g>of</str<strong>on</strong>g> the three <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> fungicides were determined (table 3.2).<br />

Table 3.2: Relevant physiochemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> four <strong>soils</strong><br />

lharacteristics famol<br />

Soil 1<br />

3.2 General method used for ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>-de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>studies</str<strong>on</strong>g><br />

UV-Visible spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> all the fungicides adsorbed <strong>on</strong> minerals <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>soils</strong> were<br />

recorded at wavelength ranged between 200-300nm. The l. n,* for carbendazim was taken<br />

at 28I.2 nm, FBNZ at 299.2 nm <str<strong>on</strong>g>and</str<strong>on</strong>g> ABNZ at 273 nm as shown in the spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> all the<br />

compounds. Spectra were scanned for a range <str<strong>on</strong>g>of</str<strong>on</strong>g> wavelength (figs 3.1-3.5, 3.I7-3.2I,<br />

3.28-3.32) to ensure that if there is any change in the maximum wavelength (I,*) either<br />

due to degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides or due to soil-pesticides chemical interacti<strong>on</strong>. The<br />

absorbance <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s recorded at the l.<br />

'-nu*<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the adsorbed fungicides.<br />

was taken as peak height to calculate the<br />

The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> the fungicides adsorbed (pgl g soil or mineral) was obtained<br />

simply by subtracting the value obtained from the blank <str<strong>on</strong>g>and</str<strong>on</strong>g> the fungicide remaining in<br />

the soluti<strong>on</strong> after equilibrati<strong>on</strong> using the relati<strong>on</strong>:<br />

X:V/m (Ce -CJ<br />

Multan<br />

Soil2<br />

Murree<br />

Soil 3<br />

rH(1:10) 7.9 8.1 8.2 7.6<br />

)rganic matter (oh) 2.29 2.27 2.32 ).45<br />

Soil texture Loamy & clayey Loamy &<br />

s<str<strong>on</strong>g>and</str<strong>on</strong>g>y<br />

regetati<strong>on</strong> when sampled Wheat Wheat,<br />

cott<strong>on</strong><br />

42<br />

Ayubia<br />

Soil4<br />

roamy Silt loam<br />

A.pples,<br />

A.pricots,<br />

Peaches.<br />

Maize,<br />

French beans,<br />

Cucumbers.<br />

(2)


Where X: amount adsorbed, V: soluti<strong>on</strong> volume, m: grams <str<strong>on</strong>g>of</str<strong>on</strong>g> soil taken, Cs=<br />

equilibrium c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> blank <str<strong>on</strong>g>and</str<strong>on</strong>g> C.: equilibrium c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment<br />

supematant.<br />

The ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> values found were used to c<strong>on</strong>struct following linear type <str<strong>on</strong>g>of</str<strong>on</strong>g> isotherm (C-<br />

tvpe).<br />

X: K61u6ry C. (3)<br />

Where Ko(uor) is linear or <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> equilibrium distributi<strong>on</strong> co-efficient in (ml pg-t;. X is<br />

the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pesticide adsorbed in (pg/g soil) <str<strong>on</strong>g>and</str<strong>on</strong>g> C. is the pesticide<br />

c<strong>on</strong>centrati<strong>on</strong> (pglml) at the equilibrium c<strong>on</strong>centrati<strong>on</strong>.<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>, expressed as micrograms adsorbed/gram <str<strong>on</strong>g>of</str<strong>on</strong>g> soil/mineral (Wglg soil or<br />

mineral), was obtained from the difference, taken into account the soluti<strong>on</strong> remaining in<br />

the soil after the supernatant was poured <str<strong>on</strong>g>of</str<strong>on</strong>g>f. The <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> equilibrium distributi<strong>on</strong> co-<br />

efficient Ka(o.s) in (ml pg-'1*as calculated as:<br />

Ko(orr):XIC" (4)<br />

43


o.7<br />

0.6<br />

0.5<br />

o.4<br />

0.3<br />

o.2<br />

0.1<br />

00<br />

o.7<br />

0.6<br />

o.5<br />

o.4<br />

0.3<br />

o.2<br />

o.1<br />

i-.'-.'.,,..,,.:"''"':....:.:..:,]l],;.,..,,.,.-,.'.",','L''.:J1<br />

%o o 350<br />

Fig. 3.1. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Almunia (ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> blank)<br />

%o 300 350<br />

Fig.3.2. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Almunia (ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> a)<br />

o.7<br />

u.o<br />

o.5<br />

o.4<br />

n?<br />

v.z<br />

o.1<br />

%o 300 350<br />

Fig. 3.3. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Almunia (ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> b)


o.3o I<br />

o.25'<br />

o.20 I<br />

I<br />

o.15 i<br />

o.1o I<br />

:<br />

o.ou i\;,,...<br />

1-'<br />

o.oo<br />

'<br />

I<br />

I r r -'f' l nr<br />

2fi 300 350<br />

Fig. 3.4. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Almunia (de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> a)<br />

o.so i<br />

o.25 |<br />

I<br />

0.20 i<br />

n 1R<br />

--I<br />

i'<br />

o.ro l"<br />

n\"<br />

0.o5<br />

o.00<br />

l<br />

,. :<br />

I<br />

250<br />

,l 300<br />

Fig. 3.5. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Almunia (de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> b)<br />

350<br />

nr<br />

45


3.3 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Alumina<br />

Table 3.3: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Alumina<br />

pk.ht carb add ppm add uq/O.5q fnd ppm fnd uq/O.5q ads uq/O.5q ads uo/o % ads<br />

A B C=B*10 p=(g/bt)-A E=D*10 F=C-E G=F*2 H=rrlcrtoo<br />

1 1.7500 0.2500 2.5000 0.1626 1.6264 0.8736 1.7472 34.9442<br />

z 1.7800 0.2500 2.5000 0.1654 1.6543 0.8457 1.6914 33.8290<br />

J 3.5200 0.5000 5.0000 0.3308 3.3083 1.6917 3.3835 33.8346<br />

4 3.5100 0.5000 5.0000 0.3299 3.2989 1.7011 3.4023 34.0226<br />

5.0100 0.7500 7.5000 0.5285 5.2848 2.2152 4.4304 29.5359<br />

b 5.0200 0.7500 7.5000 0.5295 5.2954 2.2046 4.4093 29.3952<br />

6.3800 1.0000 10.0000 0.7641 7.6407 2.3593 4.7186 23.5928<br />

B 5.9700 1.0000 10.0000 0.7150 7.1497 2.8503 5.7006 28.5030<br />

I 15.0500 2.5000 25.0000 1.9364 19.3644 5.6356 11.2712 22.5425<br />

10 15.0900 2.5000 25.0000 1.9416 19.4'159 5.5841 1'1.1683 22.3366<br />

11 29.8900 5.0000 50.0000 3.7883 37.8834 12.1166 24.2332 24.2332<br />

12 29.8000 5.0000 50.0000 3.7769 37.7693 12.2307 24.4613 24.4613<br />

12 41.0100 7.5000 75.0000 5.9596 59.5960 15.4040 30.8080 20.5387<br />

14 40.8800 7.5000 75.0000 5.9407 59,4071 15.5929 31 .1 858 20.7905<br />

o'<br />

B<br />

.$<br />

od<br />

{ ct<br />

di<br />

tr<br />

o<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Fig.3.6<br />

ADSORPTTON & DESORPTTON OF CARBENDAZTM BY At2O3<br />

Equil. c<strong>on</strong>c. ug/ml<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by AlzOs<br />

46<br />

ads<br />

des<br />

o I


3.4 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Alumina<br />

Table 3.4 (a): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Alumina<br />

emo tb tb+min+sol ent sol<br />

c-<br />

A B<br />

(B-A)-.5<br />

carb<br />

ent uq<br />

p=<br />

fndpom*C<br />

Table 3.4 (b): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Alumina<br />

pk ht<br />

oes fnd uo/ml final vol fnd uq<br />

H I J=1 0+C K=l*J<br />

4 I 0.4690 0.0436 10.4580 0.4558<br />

2 0.4580 0.0426 10.5340 0.4484<br />

? 0.7540 0.0709 10.5240 0.7458<br />

4 0.8147 0.0766 10.5140 0.8051<br />

5 1.4850 0.1 566 10.5300 1.6495<br />

6 1.8490 0.1 950 10.5580 2.0593<br />

7 2.1 860 0 2618 10.5200 2.7541<br />

I 1 .9510 0.2337 10.5560 2.4664<br />

I 3.9890 0.5133 10.6780 5.4805<br />

10 3.7780 0.4861 10.5700 5.1 381<br />

11 8.5690 1.0861 10.5420 11.4492<br />

12 8.1 250 1.0298 10.5390 10.8529<br />

1? 11.8560 1.7229 10.5720 18.2147<br />

14 '1 1.'1 150 1.6152 10.5360 17.0182<br />

des des<br />

uo/0.5 uq/q % des<br />

Efnduo-D<br />

F=E*2<br />

Q=<br />

(E/ads/.5)*1 00<br />

1 12.6250 1 3.1 040 0.4580 0.0745 0.3813 0.7627 43.6521<br />

2 12.6430 1 3.1 600 0.5340 0.0883 0.3600 0.7201 42.5720<br />

12.6360 1 3.1 480 0.5240 0.1734 0.5724 1.1449 33.8368<br />

4 12.9810 13.4880 0.5140 0.1696 0.6355 1.2710 37.3570<br />

5 12.3300 12.8450 0.5300 0.2801 1.3694 2.7388 61.8179<br />

o 12.7530 13.2820 0.5580 0.2955 1.7638 3.5275 80.0028<br />

12.5640 13.0740 0.5200 0.3973 2.3568 4.7136 99.8940<br />

8 12.6620 1 3.1 900 0.5560 0.3975 2.0689 4.1378 72.5859<br />

12.3430 12.9320 0.6780 1.3129 4.1676 8.3352 73.9512<br />

10 12.4210 12.9560 0.5700 1.1067 4.0314 8.0628 72.1939<br />

11 12.7320 13.2530 0.5420 2.0533 9.3959 18.7919 77.5460<br />

12 12.3780 12.8430 0.5390 2.0358 8.8171 17.6343 72.0903<br />

13 12.8360 13.3720 0.5720 3.4089 14.8058 29.6117 96.1169<br />

14 12.6520 13.1700 0.5360 3.1842 13.8339 27.6679 88.7194<br />

47


3.5 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Silica<br />

Table 3.5: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Silica<br />

40<br />

35<br />

30<br />

ct,<br />

o)<br />

ZJ<br />

.i<br />

q)<br />

oU zo<br />

!t<br />

U,<br />

(!<br />

d15<br />

(E<br />

o<br />

10<br />

5<br />

0<br />

Fig.3.7<br />

ok.ht<br />

carb add<br />

oDm add uq/O.5s fnd ppm<br />

Equil. c<strong>on</strong>c. ug/ml<br />

fnd<br />

uo/0.5o<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by SiO2<br />

ads<br />

uq/0.5q<br />

ads<br />

uo/o % ads<br />

1 1.5200 0.2500 2.5000 0.1514 1.5139 0.9861 1.9721 39.4422<br />

z 1.5300 0.2500 2.5000 0.1524 1.5239 0.9761 1.9522 39.0438<br />

3.2500 0.5000 5.0000 0.3244 3.2435 1.7565 3.5130 35.1297<br />

4 3.2600 0.5000 5.0000 0.3253 3.2535 1.7465 3.4930 34.9301<br />

4.9'100 0.7500 7.5000 0.5376 5.3759 2.1241 4.2482 28.3212<br />

o 4.9500 0.7500 7.5000 0.5420 5.4197 2.0803 4.1606 27.7372<br />

7 6.4600 1.0000 10.0000 0.8055 8.0549 1.9451 3.8903 19.4514<br />

8 6.4700 1.0000 10.0000 0.8067 8.0673 1.9327 3.8653 19.3267<br />

g '15.1500 2.5000 25.0000 1.9819 19.8195 5.1 805 10.361 1 20.7221<br />

10 15.2100 2.5000 25.0000 1.9898 19.8980 5.1020 10.2041 20.4082<br />

11 29.1500 5.0000 50.0000 3.7200 37.2001 12.7999 25.5998 25.5998<br />

12 29.2500 5.0000 50.0000 3.7328 37.3277 12.6723 25.3446 25.3446<br />

13 40.7400 7.5000 75.0000 5.9538 59.5382 15.4618 30.9236 20.6157<br />

14 41 .0100 7.5000 75.0000 5.9933 59.9328 15.0672 30.1 345 20.0896<br />

48<br />

ads<br />

des<br />

o<br />

I


3.6 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Silica<br />

Table 3.6 (a): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Silica<br />

emo tb tb+min+sol ent sol<br />

Table 3.6(b): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Silica<br />

pk ht<br />

des<br />

carb<br />

ent uo<br />

des<br />

uo/0.5<br />

fnd<br />

uo/ml finalvol fnd uq<br />

4 I 0.6780 0.0675 10.8320 0.7315<br />

z 0.5760 0.0574 10.8760 0.6240<br />

J 0.9950 0.0993 10.8940 1 .0818<br />

4 0.9870 0.0985 10.9540 1.0790<br />

6 1.1210 0.1227 10.8920 1.3369<br />

o 1.1120 0.1218 10.8920 1.3261<br />

7 1.7450 0.2176 10.8560 2.3621<br />

I 1 .8910 0.2358 10.8500 2.5583<br />

9 4.1120 0.5379 10.8940 5.8603<br />

10 4.0120 0.5249 10.9200 5.7314<br />

11 8.7560 1.1174 10.8680 12.1440<br />

12 8.4320 1.0761 10.8960 11.7247<br />

13 10.4150 1.5221 10.9160 16.6149<br />

14 10.5690 1.5446 10.8900 16.8204<br />

des<br />

uq/q % des<br />

1 12.9380 13.6040 0.8320 0.1260 0.6055 1.2110 61.4086<br />

z 12.6330 13.3210 0 8760 0.1 335 0.4905 0.9809 50.2479<br />

12.6970 13.3940 0.8940 0.2900 0.7918 1.5836 45.0797<br />

4 12.6410 13.3680 0.9540 0.3104 0.7686 1.5372 44.0089<br />

12.5900 13.2860 0.8920 0.4795 0.8573 1.7146 40.3619<br />

o 12.8520 13.5480 0.8920 0.4834 0.8427 1.6854 40.5079<br />

7 12.7200 13.3980 0.8560 0.6895 1.6726 3.3451 85.9869<br />

8 12.3330 13.0080 0.8500 0.6857 1.8725 3.7451 96.8894<br />

12.5930 13.2900 0.8940 1 .7719 4.0884 8.1 769 78.9193<br />

10 12.5850 13.2950 0.9200 1.8306 3.9008 7.8016 76.4560<br />

11 12.4410 13.1250 0.8680 3.2290 8.9150 17.8300 69.6491<br />

12 12.3330 13.0310 0.8960 3.3446 8.3802 16.7604 66.1 300<br />

13 12.6610 13.3690 0.9160 5.4537 11.1612 22.3224 72.1855<br />

14 12.2390 12.9340 0.8900 5.3340 11.4864 22.9728 76.2342<br />

49


3.7 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by M<strong>on</strong>tmorill<strong>on</strong>ite<br />

Table 3.7: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by M<strong>on</strong>tmorill<strong>on</strong>ite<br />

ok.ht carb add ppm add uq/O.5q fnd oom fnd uq/O.5q ads uq/O.5q ads uq/q % ads<br />

1 2.2150 0.2500 2.5000 0.1 303 1.3029 1.1971 2.3941 47.8824<br />

z 2.2060 0.2500 2.5000 0.1298 1.2976 1.2024 2.4047 48.0941<br />

J 2.3050 0.5000 5.0000 0.1 668 1.6679 3.3321 6.6643 66.6425<br />

4 2.3050 0.5000 5.0000 0.1668 1.6679 3.3321 6.6643 66.6425<br />

5 2.3420 0.7500 7.5000 0.2079 2.0787 5.4213 10.8426 72.2840<br />

2.3420 0.7500 7.5000 0.2079 2.0787 5.4213 10.8426 72.2840<br />

7 2.3700 1.0000 10.0000 0.2292 2.2921 7.7079 15.4159 77.0793<br />

o 2.3700 1.0000 10.0000 0.2292 2.2921 7.7079 15.4159 77.0793<br />

2.4900 2.5000 25.0000 0.3009 3.0087 21.9913 43.9826 87.9652<br />

10 2.4660 2.5000 25.0000 0.2980 2.9797 22.0203 44.0406 88.0812<br />

11 2.7810 5.0000 50.0000 0.3487 3.4867 46.5133 93.0266 93.0266<br />

12 2.7840 5.0000 50.0000 0.3490 3.4905 46.5095 93.0191 93.0191<br />

13 2.8860 7.5000 75.0000 0.3923 3.9233 71.0767 142.1533 94.7689<br />

14 2.6550 7.5000 75.0000 0.3609 3.6093 71.3907 142.7814 95.1 876<br />

o<br />

ct)<br />

o<br />

E o<br />

di<br />

tr<br />

o<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

46<br />

Equil. c<strong>on</strong>c.ug/ml<br />

Fig.3.8 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by M<strong>on</strong>tmorill<strong>on</strong>ite<br />

s0<br />

ads<br />

des<br />

o I


3.8 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by M<strong>on</strong>tmorill<strong>on</strong>ite<br />

Table 3.8 (a): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by M<strong>on</strong>tmorill<strong>on</strong>ite<br />

emp tb tb+min+sol ent sol<br />

carb ent<br />

uq<br />

des<br />

uq/0.5<br />

des<br />

uo/o % des<br />

1 12.8130 13.0690 0.0120 0.0016 0.2757 0.55'13 46.0581<br />

z 12.9730 13.2300 0.0140 0.0018 0.3287 0.6574 54.6728<br />

? 12.9720 13.2250 0.0060 0.0010 0.8182 1.6364 49.1093<br />

4 12.9230 13.2190 0.0920 0.0153 0.7370 1.4740 44.2345<br />

5 12.9400 13.2120 0.0440 0.0091 1 .1816 2.3633 43.5920<br />

12.9260 13.2180 0.0840 0.0175 1.2870 2.5740 47.4792<br />

7 12.9620 13.3140 0.2040 0.0468 1.4528 2.9057 37.6972<br />

8 12.6820 12.9890 0.1140 0.0261 1.5961 3.1922 41.4139<br />

a 12.8920 13.2170 0.1 500 0.0451 3.6568 7.3136 33.2569<br />

10 12.6320 12.9620 0.1600 0.0477 3.8540 7.7080 35.0040<br />

11 12.9190 13.2150 0.0920 0.0321 5.2083 10.4165 22.3948<br />

12 12.7010 13.0120 0.1220 0.0426 5.1206 10.2412 22.0195<br />

13 12.9450 13.2140 0.0380 0.0149 5.9072 11.8144 16.6221<br />

14 13.5160 13.8150 0.0980 0.0354 5.7704 11.5409 1 6.1 658<br />

Table 3.8 (b): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by M<strong>on</strong>tmorill<strong>on</strong>ite<br />

pk ht<br />

des<br />

fnd<br />

uo/ml finalvol fnd uo<br />

1 0.4700 0.0276 10.0276 0.2772<br />

2 0.5600 0.0329 10.0329 0.3305<br />

3 1.1230 0.0813 10.0813 0.8192<br />

4 1.0320 0.0747 10.0747 0.7523<br />

6 1.3260 0.1177 10.1177 I .1 908<br />

6 1.4510 0.1288 1 0.1 288 1.3045<br />

7 1.5280 0.1478 10.1478 1.4996<br />

B 1.6510 0.1 597 1 0.1 597 1.6222<br />

o 2.9580 0.3574 10.3574 3.7019<br />

10 3.1120 0.3760 '10.3760 3.9017<br />

11 3.9810 0.4991 10.4991 5.2403<br />

12 3.9250 0.4921 10.4921 5.1632<br />

13 4.1250 0.5608 10.5608 5.9221<br />

14 4.0480 0.5503 10.5503 5.8058<br />

51


3.9 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Muscovite<br />

Table 3.9: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Muscovite<br />

80<br />

70<br />

60<br />

E)<br />

o)<br />

?so<br />

o(l,<br />

E<br />

o{ ao<br />

at<br />

!, (E<br />

o""<br />

t""<br />

o 20<br />

10<br />

0<br />

pk.ht<br />

carb add<br />

oom<br />

add<br />

uo/0.5q fnd opm<br />

Equil. c<strong>on</strong>c. ug/ml<br />

fnd<br />

uo/0.5o<br />

ads<br />

uo/0.5o<br />

Fig. 3.9 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by muscovite<br />

ads<br />

uo/o<br />

2.0500 0.2500 2.5000 0.1412 1.4118 1.0882 4.3526<br />

2 2.0500 0.2500 2.5000 0.1412 1.4118 1.0882 4.3526<br />

3 5.9500 0.5000 5.0000 0.4685 4.6850 0.3150 1.2598<br />

4 5.9800 0.5000 5.0000 0.4709 4.7087 0.2913 1.1654<br />

6.7700 0.7500 7.5000 0.6501 6.5013 0.9987 3.9949<br />

o 6.8100 0.7500 7.5000 0.6540 6.5397 0.9603 3.8412<br />

7.9200 1.0000 10.0000 0.8131 8.1314 1.8686 7.4743<br />

I 7.9400 1.0000 10.0000 0.8152 8.1520 1.8480 7.3922<br />

I 16.5600 2.5000 25.0000 2.0690 20.6897 4.3103 17.2414<br />

10 16.6500 2.5000 25.0000 2.0802 20.8021 4.1979 16.7916<br />

11 33.1 500 5.0000 50.0000 4.2229 42.2293 7.7707 31.0828<br />

12 33.1 900 5.0000 50.0000 4.2280 42.2803 7.7197 30.8790<br />

13 46.9500 7.5000 75.0000 6.3883 63.8833 11.1167 44.4666<br />

14 46.9100 7.5000 75.0000 6.3829 63.8289 11.1711 44.6843<br />

52<br />

ads<br />

des<br />

o T


3.10 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Muscovite<br />

Table 3.10(a): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Muscovite<br />

emp tb tb+min+sol ent sol<br />

carb ent<br />

Table 3.10(b): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Muscovite<br />

UO<br />

des<br />

uo/0.5<br />

pk ht fnd<br />

des uo/ml finalvol fnd uq<br />

0.4400 0.0303 10.0303 0.3039<br />

2 0.4500 0.0310 10.0310 0.3109<br />

3 0.6900 0.0543 10.0543 0.5463<br />

4 0.6800 0.0535 10.0535 0.5383<br />

1.3500 0.1296 10.1296 1.3132<br />

o '1.2500 0.1200 1 0.1 200 1.2148<br />

7 1.8500 0.1 899 1 0.1 899 1.9355<br />

8 1.8900 0.1 940 1 0.1 940 1.9781<br />

q<br />

3.9900 0.4985 10.4985 5.2335<br />

10 4.0100 0.5010 10.5010 5.2610<br />

11 6.8900 0.8777 10.8777 9.5474<br />

12 6.9100 0.8803 10.8803 9.5774<br />

'13 9.1 900 1.2505 11.2505 14.0682<br />

14 9.1 900 1.2505 11.2505 14.0682<br />

des<br />

uq/q % des<br />

I 12.3230 12.8710 0.5960 0.0841 0.2198 0.4396 20.'1996<br />

2 12.3690 12.9560 0.6740 0.0952 0.2157 0.4314 19.8243<br />

e 12.4470 12.9940 0.5940 0.2783 0.2680 0.5359 85.0797<br />

4 12.3480 12.8750 0.5540 0.2609 0.2774 0.5549 95.2294<br />

12.2990 12.7970 0.4960 0.3225 0.9908 1.9815 99.2028<br />

o 12.2520 12.7290 0.4540 0.2969 0.9179 1.8358 95.5831<br />

12.3730 12.9100 0.5740 0.4667 1.4687 2.9374 78.6006<br />

8 12.3790 12.9340 0.6100 0.4973 1.4808 2.9617 80.1297<br />

o 12.3870 12.8910 0.5080 1.0510 4.1825 8.3650 97.0334<br />

10 12.3730 12.8950 0.5440 1.1316 4.1294 8.2587 98.3673<br />

11 12.3300 12.9190 0.6780 2.8631 6.6843 13.3686 86.0192<br />

12 12.3730 12.8780 0.5100 2.1563 7.4211 14.8422 96.1 31 5<br />

13 '12.3330 12.9290 0.6920 4.4207 9.6474 19.2949 86.7837<br />

14 12.1130 12.6600 0.5940 3.7914 10.2767 20.5535 91.9941<br />

53


3.11 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil I<br />

Table 3.11: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil I<br />

ok.ht carb add ppm add uq/O.5q fnd ppm fnd uq/O.5q ads uq/0.5q ads uq/q % ads<br />

1 1.1200 0.2500 2.5000 0.2240 2.2400 0.2600 0.5200 10.4000<br />

z 1 .1 100 0.2500 2.5000 0.2220 2.2200 0.2800 0.5600 11.2000<br />

3.9500 0.5000 5.0000 0.4247 4.2473 0.7527 1.5054 15.0538<br />

4 3.9900 0.5000 5.0000 0.4290 4.2903 0.7097 1.4194 14.1935<br />

5.1200 0.7500 7.5000 0.6667 6.6667 0.8333 1.6667 11.1111<br />

o 5.1 1 00 0.7500 7.5000 0.6654 o.ocJo 0.8464 1.6927 11.2847<br />

6.0100 1.0000 10.0000 0.8735 8.7355 1.2645 2.5291 12.6453<br />

6.0500 1.0000 10.0000 0.8794 8.7936 1.2064 2.4128 12.0640<br />

o 15.8900 2.5000 25.0000 2.0393 20.3927 4.6073 9.2146 18.4292<br />

'10 15.9200 2.5000 25.0000 2.0431 20.4312 4.5688 9.1 376 18.2752<br />

11 28.7900 5.0000 50.0000 3.9886 39.8864 10.1 136 20.2272 20.2272<br />

12 28.8700 5.0000 50.0000 3.9997 39.9972 10.0028 20.0055 20.0055<br />

13 40.4500 7.5000 75.0000 5.8397 58.3975 16.6025 33.2050 22.1367<br />

14 40.4200 7.5000 75.0000 5.8354 58.3542 16.6458 33.2916 22.1944<br />

ED<br />

Et<br />

o<br />

od<br />

tt<br />

(!<br />

ai<br />

tr<br />

o<br />

40<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Fig.3.10<br />

ADSORPTION & DESORPTION OF CARBENDAZIM BY SOIL 1<br />

Equil. c<strong>on</strong>c. ug/ml<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil 1<br />

54<br />

ads<br />

des<br />

o I


3.12 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil I<br />

Table 3.12(a):De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil I<br />

emp tb tb+soil+sol ent sol<br />

carb<br />

ent uq des uq/O.5 des uo/o % des<br />

1 12.3230 12.7510 0.3560 0.0797 0.1 1 83 0.2365 90.9655<br />

z 12.3690 12.8010 0.3640 0.0808 0.1174 0.2349 B3.B7B3<br />

? 12.4470 12.8810 0.3680 0.1 563 0.1 263 0.2527 33.5717<br />

4 12.3480 12.8110 0.4260 0.1 828 0.1 397 0.2795 39.3788<br />

5 12.4960 12.9890 0.4860 0.3240 0.2211 0.4421 53.0524<br />

o 12.2520 12.7450 0.4860 0.3234 0.2247 0.4494 53.0982<br />

7 12.3730 12.8710 0.4960 0.4333 0.4750 0.9500 75.1242<br />

8 12.3790 12.8790 0.5000 0.4397 0.4525 0.9050 75.0178<br />

a 12.3870 12.9120 0.5500 1.1216 1 .1 685 2.3371 50.7257<br />

10 12.2730 12.7980 0.5500 1.1237 1.1 606 2.3213 50.8073<br />

11 12.3300 12.8950 0.6300 2.5128 1.4694 2.9388 29.0578<br />

12 12.3730 12.9240 0.6020 2.4078 1.6543 3.3086 33.0771<br />

13 12.3330 12.9890 0.8120 4.7419 3.9627 7.9253 47.7359<br />

14 12.1130 12.7840 0.8420 4.9134 3.9452 7.8904 47.4020<br />

Table 3.12(b): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil I<br />

pk ht<br />

des<br />

fnd<br />

uq/ml finalvol fnd uo<br />

1 0.0980 0.0196 10.1020 0.1 980<br />

z 0.0990 0.0198 10.0120 0.1 982<br />

J 0.2560 0.0275 10.2680 0.2826<br />

4 0.2890 0.0311 10.3780 0.3225<br />

5 0.4157 0.0541 10.0700 0.5451<br />

6 0.4125 0.0537 10.2040 0.5481<br />

7 0.6215 0.0903 10.0540 0.9083<br />

B 0.61 15 0.0889 10.0380 0.8922<br />

9 1.7258 0.2215 10.3400 2.2901<br />

10 1.7325 0.2223 10.2740 2.2844<br />

11 2.7950 0.3872 10.2840 3.9822<br />

12 2.8950 0.4011 1 0.1 280 4.0621<br />

IJ 5.8800 0.8489 10.2540 8.7046<br />

14 5.8640 0.8466 10.4640 8.8586<br />

55


3.13 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil2<br />

Table 3.13: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil 2<br />

40<br />

('r 30<br />

(tt<br />

CD<br />

E' zc<br />

oq,<br />

€ o!t


3.14 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil 2<br />

Table 3.14(a):De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soit 2<br />

emp tb tb+soil+sol ent sol<br />

carb ent<br />

uo<br />

des<br />

uo/.5<br />

Table 3.14@): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil 2<br />

pk ht fnd<br />

des uq/ml finalvol fnd uo<br />

I<br />

I 0.2173 0.0183 10.1020 0.1 848<br />

2 0.2276 0.0192 10.0120 0.1 91 B<br />

J 0.3565 0.0312 10.2680 0.3200<br />

4 0 3586 0.0313 10.3780 0.3253<br />

5 0.5247 0.0572 10.0700 0.5760<br />

o 0.5544 0.0604 10.2040 0.6166<br />

I 0.7658 0.0860 10.0540 0.8642<br />

8 0.7590 0.0852 10.0380 0.8551<br />

9 1.1700 0.1 504 10.3400 1.5550<br />

10 1 .1 500 0.1478 10.2740 1.5187<br />

11 2.6800 0.3674 10.2840 3.7786<br />

12 2.6400 0.3619 1 0.1 280 3.6657<br />

13 4.3988 0.6438 10.2540 6.6020<br />

14 4.4126 0.6459 10.4640 6.7583<br />

des<br />

uq/q % des<br />

1 12.8130 13.1140 0.1 020 0.0167 0.1680 0.3360 9.7847<br />

z 12.9730 13.2900 0.1 340 0.0215 0.1702 0.3405 9.5400<br />

J 12.9720 13.3200 0.1960 0.0848 0.2352 0.4703 17.4698<br />

4 12.9230 13.2800 0.2140 0.0930 0.2323 0.4646 17.7170<br />

5 12.9410 13.3200 0.2580 0.1 730 0.4030 0.8060 25.3207<br />

o 12.9260 13.3100 0.2680 0.1 768 0.4399 0.8798 24.3090<br />

7 12.9620 13.4200 0.4160 0.3740 0.4902 0.9804 24.2644<br />

8 12.6820 1 3.1 600 0.4560 0.4089 0.4462 0.8923 21.6054<br />

I 12.8920 13.3900 0.4960 1.0844 0.4705 0.9411 7.5017<br />

10 12.6320 13.1200 0.4760 1.0432 0.4755 0.9510 7.7069<br />

11 12.9190 13.4200 0.5020 2.1755 1.6031 3.2062 12.0297<br />

12 12.7010 13.2200 0.5380 2.3293 1.3364 2.6728 9.9672<br />

13 12.9450 13.5100 0.6300 3.9762 2.6258 5.2515 11.0463<br />

14 12.5160 13.1 100 0.6880 4.3453 2.4130 4.8261 10.1890<br />

57


3.15 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil 3<br />

Table 3.15: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil 3<br />

o)<br />

ct<br />

40<br />

35<br />

30<br />

o<br />

!t<br />

oU ^^<br />

o<br />

t, (!<br />

ci rs<br />

t<br />

o '10<br />

5<br />

0<br />

0<br />

Fig.3.12<br />

carb add<br />

ppm<br />

add<br />

uo/0.5q fnd ppm<br />

246<br />

Equil. c<strong>on</strong>c. ug/ml<br />

fnd<br />

uo/0.5q<br />

ads<br />

uo/0.5o<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil 3<br />

ads<br />

uo/o % ads<br />

1 0.2500 2.5000 0.1498 1.4983 1 .0017 2.0034 40.0685<br />

z 0.2500 2.5000 0.1464 1.4640 1.0360 2.0719 41.4384<br />

0.5000 5.0000 0.2749 2.7487 2.2513 4.5026 45.0262<br />

4 0.5000 5.0000 0.2818 2.8185 2.1815 4.3630 43.6300<br />

5 0.7500 7.5000 0.4325 4.3248 3.1752 6.3504 42.3358<br />

o 0.7500 7.5000 0.4358 4.3577 3.1423 6.2847 41.8978<br />

1.0000 10.0000 0.5761 5.7606 4.2394 8.4787 42.3937<br />

B 1.0000 10.0000 0.5794 5.7942 4.2058 8.4116 42.0582<br />

2.5000 25.0000 1.8045 18.0448 6.9552 13.9104 27.8207<br />

10 2.5000 25.0000 1.8096 18.0963 6.9037 13.8073 27.6146<br />

11 5.0000 50.0000 3.9487 39.4874 10.5126 21.0252 21.0252<br />

12 5.0000 50.0000 3.9474 39.4737 10.5263 21.0526 21.0526<br />

13 7.5000 75.0000 5.8324 58.3236 16.6764 33.3527 22.2351<br />

14 7.5000 75.0000 5.8614 58.6142 16.3858 32.7716 21.8478<br />

58<br />

ads<br />

des<br />

o I


3.16 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil 3<br />

Table 3.16(a): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil 3<br />

emo tb tb+soil+sol ent sol<br />

carb ent<br />

UO<br />

des<br />

uo/O.5<br />

des<br />

uo/o % des<br />

1 12.6250 13.0100 0.2700 0.0405 0.0509 0.1 01 8 33.9814<br />

2 12.6430 13.0480 0.3100 0.0454 0.0423 0.0847 28.9256<br />

J 12.6360 13.0680 0.3640 0.1 001 0.1 1 01 0.2202 40.0591<br />

4 12.9810 13.4150 0.3680 0.1 037 0.1187 0.2374 42.1210<br />

5 12.3300 12.7650 0.3700 0.1 600 0.2983 0.5966 68.9721<br />

o 12.7530 13.1910 0.3760 0.1 638 0.3117 0.6235 71.5392<br />

12.5640 '13.0150 0.4020 0.2316 0.5064 1.0128 87.9055<br />

8 12.6620 13.1200 0.4160 0.2410 0.4802 0.9604 82.8790<br />

o 12.4340 12.8980 0.4280 0.7723 0.8438 1.6876 46.7617<br />

'10 12.4210 12.8900 0.4380 0.7926 0.8430 1.6859 46.5820<br />

11 12.7320 13.2150 0.4660 1.8401 1.1043 2.2085 27.9652<br />

12 12.3180 12.7990 0.4620 1.8237 1.2179 2.4358 30.8530<br />

13 12.8360 13.3660 0.5600 3.2661 1.5844 3.1 688 27.1659<br />

14 12.6520 1 3.1 990 0.5940 3.4817 1.4012 2.8023 23.9049<br />

Table 3.16(b): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil3<br />

pk ht<br />

des<br />

fnd<br />

uo/ml finalvol fnd uo<br />

1 0.1 056 0.0090 10.1020 0.0914<br />

z 0j024 0.0088 10.0120 0.0877<br />

3 0.2346 0.0205 10.2680 0.2102<br />

4 0.2456 0.0214 10.3780 0.2224<br />

0.4157 0.0455 10.0700 0.4583<br />

o 0.4257 0.0466 10.2040 0.4756<br />

7 0.6562 0.0734 10.0540 0.7380<br />

8 0.6424 0.0719 10.0380 0.7213<br />

o 1.2135 0.1 563 10.3400 1.6161<br />

10 1.2360 0.1 592 10.2740 1.6356<br />

11 2.0889 0.2863 10.2840 2.9444<br />

12 2.1911 0.3003 10.'1280 3.0416<br />

13 3.2564 0.4730 10.2540 4.8505<br />

14 3.2123 0.4666 10.4640 4.8828<br />

59


3.17 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil 4<br />

Table 3.17: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil 4<br />

50<br />

45<br />

40<br />

935<br />

ct,<br />

ui go<br />

(,<br />

E<br />

€zs<br />

o<br />

!t o<br />

d20<br />

u,<br />

(J 1s<br />

'10<br />

5<br />

0<br />

pk.ht<br />

carb add<br />

DDM<br />

add<br />

uq/0.5q fnd ppm<br />

fnd<br />

uq/0.5q<br />

ads<br />

uq/0.5q<br />

ads<br />

uo/o % ads<br />

1 2.1400 0.2500 2.5000 0.'1832 1.8322 0.6678 1.3356 26.7123<br />

2 2j300 0.2500 2.5000 0.1824 1.8236 0.6764 1.3527 27.0548<br />

J 3.9500 0.5000 5.0000 0.3447 3.4468 1.5532 3.1 065 31.0646<br />

4 3.9900 0.5000 5.0000 0.3482 3.4817 1.5183 3.0366 30.3665<br />

5 4.5100 0.7500 7.5000 0.4938 4.9380 2.5620 5.1241 34.1606<br />

b 4.5900 0.7500 7.5000 0.5026 5.0255 2.4745 4.9489 32.9927<br />

5.6600 1.0000 10.0000 0.6331 6.3311 3.6689 7.3378 36.6890<br />

R 5.6800 1.0000 10.0000 0.6353 6.3535 3.6465 7.2931 36.4653<br />

12.5500 2.5000 25.0000 1.6164 1 6.1 643 8.8357 17.6713 35.3426<br />

10 12.4500 2.5000 25.0000 1.6036 16.0355 8.9645 17.9289 35.8578<br />

11 24.3100 5.0000 50.0000 3.3320 33.3196 16.6804 33.3607 33.3607<br />

12 24.2500 5.0000 50.0000 3.3237 33.2374 16.7626 33.5252 33.5252<br />

13 32.2600 7.5000 75.0000 4.6862 46.8623 28.1377 56.2754 37.5169<br />

14 32.2800 7.5000 75.0000 4.6891 46.8913 28.1087 56.2173 37.4782<br />

0<br />

Fig.3.13<br />

Equil. c<strong>on</strong>c. ug/ml<br />

ads<br />

des<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim by soil 4<br />

o T


3.18 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soit 4<br />

Table 3.18(a):De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil 4<br />

emo tb tb+soil+sol ent sol<br />

carb ent<br />

UO<br />

des<br />

uo/0.5<br />

des<br />

uo/q % des<br />

1 12.9380 13.3970 0.4180 0.0766 0.1 099 0.2198 59.9753<br />

z 12.6330 13.0950 0.4240 0.0773 0.1 065 0.2129 58.3781<br />

? 12.6970 13.2100 0.5260 0.1 81 3 0.1 865 0.3730 54.1118<br />

4 12.6410 1 3.1 560 0.5300 0.1 845 0.1791 0.3582 51.4459<br />

5 12.5900 13.1190 0.5580 0.2755 0.4020 0.8040 81.4065<br />

o 12.8520 13.3790 0.5540 0.2784 0.4059 0.81 18 80.7645<br />

7 12.7200 13.2897 0.6394 0.4048 0.5799 1 .1 598 91.5950<br />

R 12.3300 12.8900 0.6200 0.3939 0.6139 1.2278 96.6216<br />

12.9530 13.5550 0.7040 '1 .1380 1.4084 2.8168 87.1 305<br />

10 12.5850 13.1810 0.6920 1.1097 1.4721 2.9441 91.8006<br />

11 12.4410 1 3.1 000 0.8180 2.7255 2.4404 4.8808 73.2426<br />

12 12.3330 12.9870 0.8080 2.6856 2.2618 4.5236 68.0503<br />

13 12.6610 13.3560 0.8900 4.1707 3.9299 7.8599 83.8613<br />

14 12.2390 12.9390 0.9000 4.2202 3.7719 7.5439 80.4397<br />

Table 3.18(b): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbendazim by Soil 4<br />

pk ht<br />

des<br />

fnd<br />

uo/ml finalvol fnd uo<br />

1 0.2156 0.0185 1 0.1 020 0.1 865<br />

z 0.2144 0.0184 10.0120 0.1 838<br />

J 0.4105 0.0358 10.2680 0.3678<br />

4 0.4016 0.0350 10.3780 0.3636<br />

0.6145 0.0673 10.0700 0.6775<br />

o 0.6125 0.067'1 10.2040 0.6843<br />

7 0.8756 0.0979 10.0540 0.9847<br />

8 0.8976 0.1004 10.0380 1.0078<br />

I 1.9120 0.2463 10.3400 2.5464<br />

10 1.9510 0.2513 10.2740 2.5817<br />

11 3.6650 0.5023 10.2840 5.1 660<br />

12 3.5640 0.4885 1 0.1 280 4.9474<br />

13 5.4384 0.7900 10.2540 8.1 007<br />

14 5.2578 0.7638 10.4640 7.9921<br />

6l


3.19 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Alumina<br />

Table 3.19: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by AlzOs<br />

pk.ht fbnz add ppm add uq/O.5q fnd ppm fnd uo/0.5q ads uq/O.5q ads uq/q % ads<br />

1 3.1187 0.2500 2.5000 0.1306 1.3063 1.1937 2.3873 47.7463<br />

z 2.9628 0.2500 2.5000 0.1241 1.2410 1.2590 2.5179 50.3581<br />

2 5.5462 0.5000 5.0000 0.2876 2.8760 2.1240 4.2480 42.4803<br />

4 5.6000 0.5000 5.0000 0.2904 2.9039 2.0961 4.1922 41.9216<br />

7.8960 0.7500 7.5000 0.4675 4.6746 2.8254 5.6508 37.6723<br />

h 7.8114 0.7500 7.5000 0.4624 4.6245 2.8755 5.7511 38.3404<br />

'13.1078 1.0000 10.0000 0.7856 7.8559 2.1441 4.2882 21.4411<br />

R 12.9847 1.0000 10.0000 0.7782 7.7821 2.2179 4.4357 22.1786<br />

Y 33.4537 2.5000 25.0000 1.9960 19.9597 5.0403 10.0805 20.1611<br />

10 33.3034 2.5000 25.0000 1.9870 19.8700 5.1 300 10.2599 20.5199<br />

11 68.0393 5.0000 50.0000 4.3255 43.2554 6.7446 13.4891 13.4891<br />

12 68.1 1 03 5.0000 50.0000 4.3301 43.3006 6.6994 13.3988 13.3988<br />

13 119.1677 10.0000 100.0000 8.0223 80.2232 19.7768 39.5537 19.7768<br />

14 120.1456 10.0000 100.0000 B.OBB1 80.8815 19.1185 38.2370 19.1 185<br />

45<br />

40<br />

35<br />

ctt<br />

cD 30<br />

q<br />

o^-<br />

od<br />

o^^<br />

Ezu<br />

(U<br />

N<br />

F15<br />

r<br />

ll.<br />

10<br />

5<br />

0<br />

Equi. c<strong>on</strong>c. ug/ml<br />

Fig.3.14 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Al2O3<br />

62<br />

ads<br />

des<br />

o<br />

I


3.20 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ bY Alumina<br />

Table 3.20 (a): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Al2O3<br />

emp tb tb+min+sol ent sol<br />

fbnz<br />

ent uo<br />

des<br />

uq/0.5<br />

des<br />

uo/o % des<br />

1 12.4020 12.7840 0.2640 0.0345 0.1 968 0.3935 16.4842<br />

z 12.4200 12.7870 0.2340 0.0290 0.2027 0.4054 16.1015<br />

12.2820 12.7810 0.4980 0.1432 0.4211 0.8421 19.8241<br />

4 12.2620 12.7530 0.4820 0.1400 0.4304 0.8607 20.5321<br />

12.3820 12.8870 0.5100 0.2384 1.0277 2.0555 36.3742<br />

o 12.2740 12.7720 0.4960 0.2294 1.0536 2.1072 36.6407<br />

7 12.3650 12.8810 0.5320 0.4179 1.4568 2.9135 67.9428<br />

B 12.3430 12.8590 0.5320 0.4140 1.4637 2.9273 65.9947<br />

o 12.3780 12.9160 0.5760 1.1497 2.7702 5.5405 54.9623<br />

10 12.3740 12.9090 0.5700 1.1326 2.6224 5.2449 51.1198<br />

11 12.3560 12.9070 0.6020 2.6040 4.1033 8.2065 60.8382<br />

12 12.1300 12.6810 0.6020 2.6067 3.9100 7.8200 58.3638<br />

13 12.2720 12.8520 0.6600 5.2947 9.9112 19.8225 50.1153<br />

14 12.3090 12.8850 0.6520 5.2735 10.4699 20.9399 54.7634<br />

Table 3.20 (b): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by AlzOr<br />

pk ht<br />

des<br />

fnd<br />

uo/ml finalvol fnd uq<br />

1 0.5465 0.0229 1 0.1 020 0.2313<br />

2 0.5526 0.0231 10.0120 0.23'18<br />

? 1.0598 0.0550 10.2680 0.5643<br />

4 1.0598 0.0550 10.3780 0.5703<br />

5 2.1238 0.1257 10.0700 1.2661<br />

2.1238 0.1257 10.2040 1.2830<br />

7 3.1112 0.1 865 10.0540 1.8747<br />

B 3.1211 0.1871 10.0380 1.8777<br />

I 6.3540 0.3791 10.3400 3.9199<br />

10 6.1 258 0.3655 10.2740 3.7550<br />

11 10.2589 0.6522 10.2840 6.7072<br />

12 10.1210 0.6434 1 0.1 280 6.5167<br />

13 22.0282 1.4829 10.2540 15.2060<br />

14 22.3491 1.5045 10.4640 15.7434<br />

63


3.21 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Silica<br />

Table 3.21: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by SiO2<br />

ok.ht fbnz add oom add uq/0.5q fnd ppm fnd uq/O.5q ads uq/0.5q ads uq/q % ads<br />

1 3.0858 0.2500 2.5000 0.1 593 1.5932 0.9068 1.8135 36.2701<br />

z 2.9896 0.2500 2.5000 0.1544 1.5436 0.9564 1.9128 38.2569<br />

2 4.4549 0.5000 5.0000 0.2402 2.4016 2.5984 5.1 969 51.9687<br />

4 4.2398 0.5000 5.0000 0.2286 2.2856 2.7144 5.4288 54.2879<br />

6.4186 0.7500 7.5000 0.4114 4.1138 3.3862 6.7724 45.1495<br />

6.3696 0.7500 7.5000 0.4082 4.0824 3.4176 6.8352 45.5683<br />

11.7389 1.0000 10.0000 0.7117 7.1169 2.8831 5.7662 28.8310<br />

12.0442 1.0000 10.0000 0.7302 7.3020 2.6980 5.3960 26.9801<br />

30.7526 2.5000 25.0000 1.8206 18.2064 6.7936 13.5873 27.1745<br />

10 30.2296 2.5000 25.0000 1.7897 17.8967 7.1 033 14.2065 28.4130<br />

11 56.3588 5.0000 50.0000 3.6217 36.2173 13.7827 27.5653 27.5653<br />

12 56.2401 5.0000 50.0000 3.6141 36.1 41 0 13.8590 27.7180 27.7180<br />

13 108.3579 10.0000 100.0000 7.5992 75.9922 24.0078 48.0157 24.0078<br />

14 103.6174 10.0000 100.0000 7.2668 72.6676 27.3324 54.6648 27.3324<br />

ADSORPTTON & DESORPTTON OF FBNZ By SiO2<br />

4<br />

Equil. c<strong>on</strong>c. ug/ml<br />

ads<br />

des<br />

Fig.3.15 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by SiO2<br />

o I


3.22 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Silica<br />

Table 3.22 (a\z De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by SiOz<br />

emo tb tb+min+sol ent sol<br />

Table 3.22(b): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by SiO2<br />

pk ht<br />

des<br />

Fbnz<br />

ent uo<br />

fnd<br />

uq/ml finalvol fnd uq<br />

1 0.9910 0.0512 10.1020 0.5169<br />

2 0.9689 0.0500 10.0120 0.5009<br />

J 1.9983 0.1077 10.2680 1.1061<br />

4 1.8898 0.1 01 9 10.3780 1.0573<br />

5 3.1203 0.2000 10.0700 2.0138<br />

o 3.0580 0.1 960 10.2040 1.9999<br />

7 4.9156 0.2980 10.0540 2.9963<br />

B<br />

I<br />

4.8888<br />

6.7777<br />

0.2964<br />

0.4013<br />

10.0380<br />

10.3400<br />

2.9752<br />

4.1490<br />

10 6.9975 0.4143 10.2740 4.2562<br />

11 12.4518 0.8002 10.2840 8.2290<br />

12 12.4125 0.7977 10.1280 8.0786<br />

13 20.3568 1.4276 10.2540 14.6390<br />

14 19.7799 1.3872 10.4640 14.5154<br />

des<br />

uq/O.5 des uq/q % des<br />

1 12.3300 12.9980 0.8360 0.1332 0.3837 0.7674 16.4842<br />

z 12.4020 13.0790 0.8540 0.1 31 8 0.3690 0.7381 16.1015<br />

2 12.4810 1 3.1 650 0.8680 0.2085 0.8977 1.7953 19.8241<br />

4 12.2820 12.9750 0.8860 0.2025 0.8548 1.7095 20.5321<br />

5 12.2930 '13.0210 0.9560 0.3933 1.6206 3.2411 36.3742<br />

o 12.3280 13.0560 0.9560 0.3903 1.6096 3.2193 36.6407<br />

12.3940 13.07'10 0.8540 0.6078 2.3885 4.7769 67.9428<br />

I 12.3650 13.0420 0.8540 0.6236 2.3516 4.7032 65.9947<br />

o 12.2480 12.8990 0.8020 1.4602 2.6889 5.3777 54.9623<br />

'10 12.3780 13.0950 0.9340 1.6716 2.5847 5.1 693 51.1 1 98<br />

11 12.3870 13.0570 0.8400 3.0423 5.1 868 10.3736 60.8382<br />

12 12.3560 13.0410 0.8700 3.1443 4.9344 9.8687 58.3638<br />

4't 12.2560 12.9490 0.8860 6.7329 7.9061 15.8122 50.1 1 53<br />

14 12.272 12.952 0.86 6.249415 8.266019 16.53204 54.7634<br />

65


3.23 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by M<strong>on</strong>tmorill<strong>on</strong>ite<br />

Table 3.23: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by M<strong>on</strong>tmorill<strong>on</strong>ite<br />

200<br />

150<br />

ot<br />

ED<br />

o<br />

06<br />

nnn<br />

ot vv<br />

tt (E<br />

N<br />

z<br />

o<br />

lI-<br />

ok.ht<br />

50<br />

FBNZ<br />

add<br />

DDM<br />

add<br />

uo/0.5o fnd oom<br />

2<br />

fnd<br />

uo/0.5o<br />

aquit. cJrc. r.rglmt<br />

ads<br />

uo/0.5o ads uq/q % ads<br />

I 1.0015 0.2500 2.5000 0.0578 0.5782 1.9218 3.8437 76.8732<br />

z 1.0130 0.2500 2.5000 0.0585 0.5848 1.9152 3.8303 76.6067<br />

1.0426 0.5000 5.0000 0.0687 0.6870 4.3130 8.6259 86.2594<br />

4 1.0385 0.5000 5.0000 0.0684 0.6844 4.3156 8.6312 86.31 17<br />

1.1428 0.7500 7.5000 0.0863 0.8631 6.6369 13.2738 88.4920<br />

1.1528 0.7500 7.5000 0.0871 0.8707 6.6293 13.2587 88.3913<br />

1.2901 1.0000 10.0000 0.1 026 1.0258 8.9742 17.9485 89.7423<br />

8 1.2837 1.0000 10.0000 0.1 026 1.0256 8.9744 17.9489 89.7443<br />

1.3456 2.5000 25.0000 0.1226 1.2261 23.7739 47.5477 95.0955<br />

10 1.3848 2.5000 25.0000 0.1262 1.2618 23.7382 47.4763 94.9526<br />

11 2.1230 5.0000 50.0000 0.1671 1.6715 48.3285 96.6571 96.6571<br />

12 2.3820 5.0000 50.0000 0.1 875 1.8754 48.1246 96.2493 96.2493<br />

13 3.45'10 10.0000 100.0000 0.353'1 3.5310 96.4690 192.9379 96.4690<br />

14 3.5490 10.0000 100.0000 0.3631 3.6313 96.3687 192.7374 96.3687<br />

ads<br />

des<br />

Fig.3.16 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by m<strong>on</strong>tmorill<strong>on</strong>ite<br />

66<br />

o I<br />

6


3.24 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by M<strong>on</strong>tmorill<strong>on</strong>ite<br />

Table 3.24 (a)z De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by M<strong>on</strong>tmorill<strong>on</strong>ite<br />

Table 3.24 @\:<br />

emp tb tb+min+sol ent sol<br />

FBNZ<br />

ent uq<br />

des<br />

uo/0.5<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by M<strong>on</strong>tmorill<strong>on</strong>ite<br />

des<br />

uo/o % des<br />

4 12.3290 12.6740 0.1 900 0.01 10 0.0080 0.0159 13.7837<br />

2 12.3980 12.7350 0.1740 0.0102 0.0088 0.0177 15.1168<br />

J 12"4470 12.8440 0.2940 0.0202 0.0347 0.0694 50.4922<br />

4 12.3480 12.7450 0.2940 0.0201 0.0356 0.0713 52.0651<br />

12.3740 12.8450 0.4420 0.0381 0.0381 0.0761 44.0931<br />

o 12.2520 12.7250 0.4460 0.0388 0.0387 0.0774 44.4460<br />

12.3730 12.8560 0.4660 0.0478 0.0667 0.1 333 64.9975<br />

8 12.3740 12.8650 0.4820 0.0494 0.0673 0.1 345 65.5749<br />

12.3870 12.8870 0.5000 0.0613 0.0999 0.1 998 81.4784<br />

10 12.2730 12.8190 0.5920 0.0747 0.0856 0.1711 67.8154<br />

11 12.3300 12.8710 0.5820 0.0973 0.1498 0.2995 B9.5931<br />

12 12.3770 12.9150 0.5760 0.1 080 0.1408 0.2815 75.0589<br />

13 12.3330 12.9980 0.8300 0.2931 0.1707 0.3413 48.3320<br />

14 1 2.1 630 12.8120 0.7980 0.2898 0.1 858 0.3716 51.1695<br />

pk ht<br />

des<br />

fnd<br />

uq/ml finalvol fnd uq<br />

1 0.0325 0.0019 1 0.1 020 0.0190<br />

z 0.0329 0.0019 10.0120 0.0190<br />

? 0.0811 0.0053 10.2680 0.0549<br />

4 0.0815 0.0054 10.3780 0.0558<br />

0.1 002 0.0076 10.0700 0.0762<br />

o 0.1 006 0.0076 10.2040 0.0775<br />

7 0.1432 0.0114 10.0540 0.1145<br />

8 0.1455 0.0116 10.0380 0.1167<br />

q<br />

0.1711 0.0156 10.3400 0.1612<br />

10 0.1712 0.0156 10.2740 0.1603<br />

11 0.3051 0.0240 10.2840 0.2470<br />

12 0.3120 0.0246 10.1280 0.2488<br />

13 0.4420 0.04s2 10.2540 0.4637<br />

14 0.4442 0.0455 10.4640 0.4756<br />

67


o.s i<br />

i<br />

v5i<br />

o.7 I<br />

06.i l<br />

ORL<br />

;<br />

04:i<br />

03i l<br />

Ot,i<br />

0.1 i<br />

1.._.<br />

o.o'<br />

0.9<br />

o.8<br />

o.7<br />

0.6<br />

0.5<br />

o.4<br />

o.3<br />

o.2<br />

o.1<br />

o.o<br />

0.9<br />

0.8<br />

o.7<br />

0.6<br />

0.5<br />

o.4<br />

0.3<br />

o.2<br />

o.1<br />

oo<br />

'lnl 350<br />

Fig. 3.17. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Muscovite (Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> blank)<br />

l'{ -<br />

:i ""'':. ' .: :. .,.1<br />

' r i<br />

-.'---f --T--1 nr<br />

%o 300 350<br />

Fig. 3.18. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Muscovite (Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> a)<br />

lil<br />

' I , lr :i:' i:i r:lr::r i I :i::1 :,<br />

60 30<br />

i....,.,,<br />

:-<br />

: . :.<br />

' i i I l'-'-<br />

%o 3m 350<br />

j r 'l- - nr<br />

Fig. 3.19. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Muscovite (Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> b)<br />

68


:<br />

o.45 i<br />

0.4o l<br />

O.35 I<br />

l<br />

0.3o I<br />

:<br />

0.25 I<br />

o.2o l<br />

0.15 I<br />

o.10 ,j<br />

:<br />

lL\<br />

o.o5 :'t,,,.<br />

o.@:\ i<br />

o.lb<br />

0.20<br />

036<br />

o.o<br />

l<br />

06l<br />

<strong>on</strong>i<br />

o1s i<br />

o,10 :<br />

l)'<br />

o* 1,',t,,.<br />

o.@ |<br />

250<br />

r<br />

I<br />

300<br />

r- -r- I<br />

..,*]<br />

Fig. 3.17. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Muscovite (de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> a)<br />

'-''' ,.. : I : .-<br />

I r I'l I -r "-''.--r'-l<br />

-<br />

:z5J_s@<br />

Fig. 3.21. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Muscovite (de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> b)<br />

350<br />

n<br />

69<br />

nr


3.25 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Muscovite<br />

Table 3.25: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Muscovite<br />

80<br />

70<br />

60<br />

50<br />

E)<br />

$o<br />

a<br />

a80<br />

E<br />

IU<br />

o<br />

EI<br />

,90<br />

T\<br />

z.<br />

fiIn<br />

lL"<br />

ok.ht<br />

FBNZ<br />

add<br />

DOm<br />

add<br />

uq/0.5q fnd ppm<br />

fnd<br />

uq/0.5q<br />

ads<br />

uo/0.5o<br />

ads<br />

uo/o % ads<br />

I I 1.8868 0.2500 2.5000 0.1 089 1.0893 1.4107 2.8214 56.4280<br />

z 2.6381 0.2500 2.5000 0.1523 1.5230 0.9770 1.9539 39.0781<br />

2.6815 0.5000 5.0000 0.1767 1.7670 3.2330 6.4659 64.6594<br />

4 2.6492 0.5000 5.0000 0.1746 1.7459 3.2541 6.5081 65.0811<br />

5 4.1 006 0.7500 7.5000 0.3097 3.0970 4.4030 8.8061 58.7070<br />

4.4272 0.7500 7.5000 0.3344 3.3436 4.1564 8.3127 55.4182<br />

7 6.0331 1.0000 10.0000 0.4797 4.7969 5.2031 10.4061 52.0307<br />

8 5.8391 1.0000 10.0000 0.4665 4.6649 5.3351 10.6701 53.3506<br />

o 13.8008 2.5000 25.0000 1.2575 12.5755 12.4245 24.8491 49.6982<br />

10 15.4883 2.5000 25.0000 1.4113 14.1131 10.8869 21.7738 43.5475<br />

11 34.0750 5.0000 50.0000 2.6828 26.8276 23.1724 46.3448 46.3448<br />

12 34.6436 5.0000 50.0000 2.7275 27.2752 22.7248 45.4495 45.4495<br />

13 54.9270 7.5000 75.0000 4.2151 42.1506 32.8494 65.6989 43.7993<br />

14 51.6294 7.5000 75.0000 3.9620 39.6200 35.3800 70.7600 47.1733<br />

Equillc<strong>on</strong>c. ug/ml<br />

Fig.3.22 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Muscovite<br />

70<br />

ads<br />

des<br />

e T


3.26 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Muscovite<br />

Table 3.26(a)z De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Muscovite<br />

emo tb tb+min+sol ent sol<br />

Table 3.26(b): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Muscovite<br />

pk ht<br />

des<br />

FBNZ<br />

ent uq<br />

des<br />

uq/0.5<br />

fnd<br />

uq/ml finalvol fnd uq<br />

1 0.1072 0.0062 1 0.1 020 0.0625<br />

2 0.1 01 I 0.0059 10.0120 0.0589<br />

3 0.2014 0.0133 10.2680 0.1362<br />

4 0.2013 0.0133 10.3780 0.1377<br />

6 0.2922 0.0221 10.0700 0.2222<br />

o 0.2943 0.0222 10.2040 0.2268<br />

7 0.6232 0.0496 10.0540 0.4982<br />

8 0.6311 0.0504 10.0380 0.5061<br />

o 0.8392 0.0765 10.3400 0.7907<br />

10 0.8451 0.0770 10.2740 0.7912<br />

11 1.2345 0.0972 10.2840 0.9995<br />

12 1.2547 0.0988 10.1280 1.0005<br />

13 2.4122 0.1 851 10.2540 1.8981<br />

14 2.4292 0.1 864 10.4640 1.9506<br />

des<br />

uo/o % des<br />

1 12.8130 13.0690 0.0'120 0.0013 0.0612 0.1224 56.1 953<br />

2 12.9730 13.2300 0.0140 0.0021 0.0568 0.1135 37.2726<br />

3 12.9720 13.2600 0.0760 0.0134 0.1228 0.2456 69.5009<br />

4 12.9230 13.2100 0.0740 0.0129 0.1248 0.2496 71.4689<br />

12.9400 13.2310 0.0820 0.0254 0.1 968 0.3937 63.5616<br />

h 12.9260 13.2180 0.0840 0.0281 0.1 987 0.3975 59.4361<br />

7 12.9620 13.2650 0.1 060 0.0508 0.4473 0.8947 93.2546<br />

8 12.6820 12.9860 0.1 080 0.0504 0.4557 0.91 15 97.6924<br />

o 12.8920 13.2040 0.1240 0.1 559 0.6348 1.2695 50.4755<br />

10 12.6320 12.9620 0.1600 0.2258 0.5654 1.1307 40.0588<br />

11 12.9190 13.2210 0.1 040 0.2790 0.7205 1.4411 26.8578<br />

12 12.7010 13.0100 0.1 1 80 0.3218 0.6786 1.3573 24.8810<br />

IJ 12.9450 13.2230 0.0560 0.2360 1.6621 3.3242 39.4319<br />

14 12.7050 13.0100 01100 0.4358 1.5148 3.0297 38.2339<br />

7T


3.27 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ bY Soil l<br />

Table 3.27: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil I<br />

ok.ht fbnz add ppm add uq/O.5q fnd oom fnd uq/O.5q ads ug/O.59 ads uq/q % ads<br />

I 2.5728 0.2500 2.5000 0.1 962 1.9622 0.5378 1.0757 21.5131<br />

z 2.5728 0.2500 2.5000 0.1962 1.9622 0.5378 1.0757 21.5131<br />

? 6.8253 0.5000 5.0000 0.4682 4.6822 0.3178 0.6357 6.3565<br />

4 6.8978 0.5000 5.0000 0.4732 4.7319 0.2681 0.5362 5.3618<br />

5 10.9284 0.7500 7.5000 0.7210 7.2100 0.2900 0.5799 3.8661<br />

o 10.5027 0.7500 7.5000 0.6929 6.9292 0.5708 1.1416 7.6109<br />

I 14.7838 1.0000 10.0000 0.9498 9.4983 0.5017 1.0034 5.0171<br />

I 14.4758 1.0000 10.0000 0.9300 9.3004 0.6996 1.3992 6.9960<br />

o 36.5877 2.5000 25.0000 2.3622 23.6223 1.3777 2.7554 5.5109<br />

10 36.5387 2.5000 25.0000 2.3591 23.5906 1.4094 2.8187 5.6374<br />

11 75.2628 5.0000 50.0000 4.7089 47.0889 2.9111 5.8221 5.8221<br />

12 75.2628 5.0000 50.0000 4.7089 47.0889 2.9111 5.8221 5.8221<br />

13 140.6877 10.0000 100.0000 9.4353 94.3527 5.6473 11.2946 5.6473<br />

14 140.7597 10.0000 100.0000 9.4401 94.4010 5.5990 11.1980 5.5990<br />

40<br />

35<br />

30<br />

Et<br />

ctt<br />

,zJ<br />

o<br />

!,<br />

06 zo<br />

o<br />

t, o<br />

Nrs<br />

z,<br />

o<br />

ll-<br />

'10<br />

5<br />

Equil. c<strong>on</strong>c. ug/ml<br />

Fig.3.23 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil I<br />

72<br />

ads<br />

des<br />

o I


3.28 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil I<br />

Table 3.28(a): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil I<br />

emp tb tb+soil+sol ent sol<br />

fbnz<br />

ent uo<br />

Table 3.28(b): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil I<br />

des<br />

uo/0.5<br />

des<br />

uq/q % des<br />

1 12.3300 12.7510 0.3420 0.0671 0.0159 0.0317 2.9508<br />

z 12.4020 12.7900 0.2760 0.0542 0.0231 0.0462 4.2984<br />

? 12.4810 12.8710 0.2800 0.1 31 1 0.0379 0.0757 11.9168<br />

4 12.2820 12.6810 0.2980 0.1410 0.0369 0.0739 13.7778<br />

12.3940 12.8480 0.4080 0.2942 0.1 51 8 0.3036 52.3481<br />

h 12.3560 12.8370 0.4620 0.3201 0.1 395 0.2791 24.4457<br />

12.2430 12.7510 0.5160 0.4901 0.2213 0.4427 44.1162<br />

8 12.3280 12.8320 0.5080 0.4725 0.1 736 0.3471 24.8081<br />

o 12.2480 12.8900 0.7840 1.8520 0.7613 1.5226 55.2564<br />

10 12.3780 12.9900 0.7240 1.7080 0.8653 1.7305 61.3950<br />

11 12.3870 12.9260 0.5780 2.7217 1.5117 3.0234 51.9293<br />

12 12.3560 12.8900 0.5680 2.6747 1.6011 3.2022 55.0000<br />

13 12.2560 12.6560 0.3000 2.8306 2.8842 5.7684 51.0720<br />

14 12.2720 12.6890 0.3340 3.1 530 2.6694 5.3388 47.6762<br />

pk ht<br />

des<br />

fnd<br />

uq/ml finalvol fnd uo<br />

1 0.1077 0.0082 1 0.1 020 0.0830<br />

2 0.1012 0.0077 10.0120 0.0773<br />

J 0.2399 0.0165 10.2680 0.1 690<br />

4 0.2500 0.0171 10.3780 0.1779<br />

5 0.6713 0.0443 10.0700 0.4460<br />

6 0.6828 0.0450 10.2040 0.4597<br />

7 1.1014 0.0708 10.0540 0.7114<br />

8 1.0017 0.0644 10.0380 0.6460<br />

o 3.9145 0.2527 10.3400 2.6133<br />

10 3.8793 0.2505 10.2740 2.5732<br />

11 6.5795 0.4117 10.2840 4.2334<br />

12 6.7476 0.4222 1 0.1 280 4.2757<br />

13 8.3101 0.5573 10.2540 5.7148<br />

14 8.2967 0.5564 10.4640 5.8224<br />

-a IJ


3.29 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil2<br />

Table 3.29: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil2<br />

pk.ht Fbnz add oom add uq/O.5q fnd oom fnd uo/O.5q ads uq/O.5q ads uq/q % ads<br />

1 2.8450 0.2500 2.5000 0.1568 1.5676 0.9324 1.8648 37.2961<br />

2 2.6394 0.2500 2.5000 0.1454 1.4543 1.0457 2.0914 41.8276<br />

7.4861 0.5000 5.0000 0.4269 4.2694 0.7306 1.4612 14.6124<br />

4 7.5034 0.5000 5.0000 0.4279 4.2792 0.7208 1.4415 14.4151<br />

5 9.5114 0.7500 7.5000 0.6901 6.9014 0.5986 1.1972 7.9815<br />

9.5212 0.7500 7.5000 0.6908 6.9085 0.5915 1.1831 7.8871<br />

I 13.2516 1 0000 10.0000 0.8053 8.0526 1.9474 3.8948 19.4740<br />

8 13.4079 1.0000 10.0000 0.8148 8.1476 1.8524 3.7048 18.5242<br />

o 31.4999 2.5000 25.0000 2.0321 20.3207 4.6793 9.3585 18.7171<br />

10 31.3960 2.5000 25.0000 2.0254 20.2537 4.7463 9.4926 18.9852<br />

11 66.0943 5.0000 50.0000 4.2250 42.2505 7.7495 15.4991 15.4991<br />

12 66.0124 5.0000 50.0000 4.2222 42.2221 7.7779 15.5557 15.5557<br />

,.t ? 119.5010 10.0000 100.0000 8.8032 88.0321 11.9679 23.9357 11.9679<br />

14 120.6490 10.0000 100.0000 8.8878 88.8778 11.1222 22.2443 11.1222<br />

ttt<br />

ct<br />

40<br />

35<br />

30<br />

,zc<br />

o<br />

!t<br />

c6zo<br />

,;<br />

!t (E<br />

N15<br />

z<br />

o<br />

ll-<br />

10<br />

5<br />

0<br />

Equil. c<strong>on</strong>c. ug/ml<br />

o<br />

ads<br />

des<br />

Fig. 3.24 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil 2<br />

74<br />

o T


3.30 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ bY Soil2<br />

Table 3.30(a):De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil2<br />

emo tb tb+soil+sol ent sol<br />

Fbnz ent<br />

Table 3.30(b): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil2<br />

UO<br />

des<br />

uq/0.5<br />

des<br />

uo/o % des<br />

I 12.3300 12.7510 0.3420 0.0536 0.2873 0.5746 30.8148<br />

z 12.4020 12.7900 0.2760 0.0401 0.2851 0.5701 27.2610<br />

3 12.4810 12.8710 0.2800 0.1 1 95 0.3599 0.7198 49.2569<br />

4 12.2820 12.6810 0.2980 0.1275 0.3986 0.7973 55.3096<br />

12.3940 12.8480 0.4080 0.2816 0.4593 0.9186 76.7313<br />

12.3560 12.8370 0.4620 0.3192 0.4627 0.9254 78.2180<br />

7 12.2430 12.7510 0.5160 0.4155 0.9867 1.9734 50.6666<br />

B 12.3280 12.8320 0.5080 0.4139 0.9803 1.9605 52.9184<br />

9 12.2480 12.8900 0.7840 1.5931 1.1462 2.2924 24.4949<br />

10 12.3780 12.9900 0.7240 1.4664 1.2673 2.5347 26.7016<br />

11 12.3870 12.9260 0.5780 2.4421 2.1525 4.3050 27.7757<br />

12 12.3560 12.8900 0.5680 2.3982 2.2028 4.4056 28.3213<br />

13 12.2560 12.6560 0.3000 2.6410 4.2699 8.5398 35.6780<br />

14 12.2720 12.6890 0.3340 2.9685 4.3056 8.61 13 38.7123<br />

pk ht<br />

des<br />

fnd<br />

uq/ml finalvol fnd uq<br />

4 I 0.6125 0.0337 10.1020 0.3409<br />

2 0.5895 0.0325 10.0120 0.3252<br />

3 0.8187 0.0467 10.2680 0.4794<br />

4 0.8890 0.0507 10.3780 0.5262<br />

5 '1.0140 0.0736 10.0700 0.7409<br />

o 1.0560 0.0766 10.2040 0.78'19<br />

7 2.2951 0.1 395 10.0540 1.4022<br />

8 2.2856 0.1 389 10.0380 1.3942<br />

o 4.1067 0.2649 10.3400 2.7393<br />

10 4.1246 0.2661 10.2740 2.7337<br />

11 6.9890 0.4468 10.2840 4.5946<br />

12 7.1026 0.4543 1 0.1 280 4.6010<br />

13 9.1489 0.6740 10.2540 6.9109<br />

14 9.4366 0.6952 10.4640 7.2742<br />

75


3.31 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil3<br />

Table 3.31: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil3<br />

pk.ht<br />

Fbnz<br />

add<br />

oom<br />

add<br />

uo/0.5o<br />

fnd<br />

oDm<br />

fnd<br />

uq/0.5o<br />

ads<br />

uq/0.5q ads uq/q % ads<br />

1 1.2100 0.2500 2.5000 0.1 398 1.3978 1.1022 2.2044 44.0889<br />

z 1 .1 000 0.2500 2.5000 0.1344 1.3435 1 .1 565 2.3129 46.2581<br />

J 4.7090 0.5000 5.0000 0.3082 3.0821 1.9179 3.8358 38.3578<br />

4 4.8405 0.5000 5.0000 0.3168 3.1682 1.8318 3.6637 36.6369<br />

8.2975 0.7500 7.5000 0.4672 4.6720 2.8280 5.6560 37.7065<br />

o 8.3675 0.7500 7.5000 0.4751 4.7507 2.7493 5.4987 36.6578<br />

13.5975 1.0000 10.0000 0.6715 6.7148 3.2852 6.5704 32.8519<br />

B '13.6375 1.0000 10.0000 0.6491 6.4910 3.5090 7.0181 35.0904<br />

I 30.6031 2.5000 25.0000 1.986'1 19.8614 5.1 386 10.2772 20.5543<br />

10 30.6453 2.5000 25.0000 1.9889 19.8888 5.1112 10.2224 20.4448<br />

11 63.7089 5.0000 50.0000 4.1504 41.5035 8.4965 16.9930 16.9930<br />

12 63.6987 5.0000 50.0000 4.1497 41.4969 8.5031 17.0062 17.0062<br />

1? 106.7875 10.0000 100.0000 8.3669 83.6689 16.3311 32.6621 16.3311<br />

14 106.6875 10.0000 100.0000 8.3591 83.5906 16.4094 32.B1BB 16.4094<br />

40<br />

35<br />

30<br />

cn<br />

CD<br />

oq)<br />

!t<br />

1ro<br />

o<br />

!t<br />

(!<br />

Nrq<br />

z'-<br />

o<br />

lt '10<br />

5<br />

0<br />

Equil. c<strong>on</strong>c. ug/ml<br />

Fig. 3.25 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil3<br />

76<br />

ads<br />

des<br />

o<br />

I


3.32 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil3<br />

Table 3.32 (a)z De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil 3<br />

emo tb tb+soil+sol ent sol<br />

Fbnz ent<br />

uo<br />

Table 3.32(b): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil3<br />

des<br />

uq/.5<br />

des<br />

uo/o % des<br />

1 12.3300 12.6650 0.1 700 0.0238 0.0228 0.0455 2.0643<br />

z 12.4020 12.7120 0.1200 0.0161 0.0287 0.0573 2.4792<br />

? 12.4810 1 3.1 050 0.7480 0.2305 0.4343 0.8685 22.6421<br />

4 12.2820 12.9590 0.8540 0.2706 0.4340 0.8679 23.6897<br />

5 12.3940 12.7990 0.3100 0.1448 0.4801 0.9601 16.9755<br />

o 12.3560 12.7880 0.3640 0.1729 0.4644 0.9288 16.8914<br />

7 12.2430 12.6890 0.3920 0.2632 0.7919 1.5838 24.1045<br />

I 12.3280 12.7890 0.4220 0.2739 0.7320 1.4641 20.8613<br />

o 12.2480 12.7360 0.4760 0.9454 0.9341 1.8682 18.1779<br />

10 12.3780 12.8770 0.4980 0.9905 0.8623 1.7246 16.8711<br />

11 12.3870 12.8900 0.5060 2.1001 1.1686 2.3373 13.7544<br />

12 12.3560 12.8710 0.5300 2.1 993 1.0788 2.1576 12.6870<br />

13 12.2560 12.6810 0.3500 2.9284 2.6152 5.2304 16.0136<br />

14 12.2720 12.7010 0.3580 2.9925 2.6809 5.3619 16.3378<br />

pk ht<br />

des<br />

fnd<br />

uo/ml finalvol fnd uo<br />

1 0.0399 0.0046 10.1020 0.0465<br />

z 0.0366 0.0045 10.0120 0.0448<br />

3 0.9892 0.0647 10.2680 0.6648<br />

4 1.0372 0.0679 10.3780 0.7045<br />

5 1.1021 0.0621 10.0700 0.6249<br />

1.1 001 0.0625 10.2040 0.6373<br />

7 2.1251 0.1 049 10.0540 1.0551<br />

B 2.1055 01002 10.0380 1.0059<br />

o 2.8008 0.1 81 B 10.3400 1.8795<br />

10 2.7787 0.1 803 10.2740 1.8528<br />

11 4.8790 0.3178 10.2840 3.2687<br />

12 4.9684 0.3237 1 0.1 280 3.2781<br />

13 6.9001 0.5406 10.2540 5.5436<br />

14 6.9200 0.5422 10.4640 5.6735<br />

.1.f


3.33 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil4<br />

Table 3.33: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil4<br />

ctl<br />

ct<br />

rt<br />

o<br />

!t<br />

0d<br />

o<br />

E<br />

o<br />

N<br />

z<br />

@<br />

tl.<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

pk.ht<br />

o2468<br />

Fbnz add<br />

DDM<br />

add<br />

uo/0.5o<br />

fnd<br />

DOm<br />

fnd<br />

uq/0.5o<br />

Equil.c<strong>on</strong>c. ug/ml<br />

Fig.3.26 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil4<br />

ads<br />

uq/0.5o ads uo/o % ads<br />

I 2.1152 0.2500 2.5000 0.1 576 1.5758 0.9242 1.8485 36.9694<br />

z 2.2051 0.2500 2.5000 0.1643 1.6428 0.8572 1.7144 34.2885<br />

? 4.8112 0.5000 5.0000 0.3056 3.0555 1.9445 3.8890 38.8899<br />

4 4.7812 0.5000 5.0000 0.3036 3.0365 1.9635 3.9271 39.2709<br />

5 7.5622 0.7500 7.5000 0.4828 4.8280 2.6720 5.3441 35.6272<br />

h 7.8774 0.7500 7.5000 0.5029 5.0292 2.4708 4.9416 32.9440<br />

7 11.5808 1.0000 10.0000 0.7429 7.4285 2.5715 5.1429 25.7146<br />

8 10.8706 1.0000 10.0000 0.6973 6.9730 3.0270 6.0540 30.2702<br />

o 24.5788 2.5000 25.0000 1.6026 16.0261 8.9739 17.9479 35.8957<br />

10 24.5532 2.5000 25.0000 1.6009 16.0094 8.9906 17.9812 35.9625<br />

11 44.1200 5.0000 50.0000 2.9047 29.0473 20.9527 41.9054 41.9054<br />

12 44.0952 5.0000 50.0000 2.9031 29.0310 20.9690 41.9381 41.9381<br />

1'4, 74.0285 10.0000 100.0000 6.6111 66.1112 33.8888 67.7777 33.BBB8<br />

14 74.8068 10.0000 100.0000 6.6806 66.8062 33.1938 66.3876 33.1 938<br />

78<br />

ads<br />

des<br />

o<br />

I


3.34 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil4<br />

Table 3.34(a): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil4<br />

emo tb tb+soil+sol ent sol<br />

Fbnz ent<br />

Table 3.34(b): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ by Soil4<br />

UO<br />

des<br />

uq/O.5<br />

des<br />

uo/o % des<br />

1 12.3300 12.8200 0.4800 0.0756 0.8544 1.7088 92.4430<br />

2 12.4020 12.9020 0.5000 0.0821 0.7635 1.5269 89.0647<br />

12.4810 13.0100 0.5580 0.1 705 0.9084 1.8168 46.7168<br />

4 12.2820 12.8200 0.5760 0.1749 0.8935 1.7870 45.5035<br />

5 12.3940 12.9510 0.6140 0.2964 1.1178 2.2356 41.8340<br />

6 12.3560 12.9210 0.6300 0.3168 1 .1 166 2.2331 45.1 903<br />

7 12.2430 12.8100 0.6340 0.4710 1.7528 3.5057 68.1650<br />

8 12.3280 12.8990 0.6420 0.4477 1.6271 3.2543 53.7540<br />

9 12.2480 12.8610 0.7260 1.1635 1.8634 3.7268 20.7644<br />

10 12.3780 12.9890 0.7220 1.1 559 2.0072 4.0145 22.3258<br />

11 12.3870 13.3120 1.3500 3.9214 2.1365 4.2730 10.1967<br />

12 12.3560 12.9840 0.7560 2.1947 3.5664 7.1328 17.0079<br />

12.2560 12.9680 0.9240 6.1 087 3.9627 7.9253 11.6931<br />

14 12.2720 12.9650 0.8860 5.9190 4.4486 8.8971 13.4018<br />

pk ht<br />

des<br />

fnd<br />

uq/ml finalvol fnd uq<br />

1 1.2358 0.0921 1 0.1 020 0.9300<br />

2 1.1337 0.0845 10.0120 0.8456<br />

? 1.6545 0.1 051 10.2680 1.0789<br />

4 1.6210 0.1 029 10.3780 1.0684<br />

5 2.1998 0.1404 10.0700 1.4143<br />

6 2.2003 0.1405 10.2040 1.4334<br />

7 3.4482 0.2212 10.0540 2.2238<br />

8 3.2223 0.2067 10.0380 2.0748<br />

4.4896 0.2927 10.3400 3.0269<br />

10 4.7218 0.3079 10.2740 3.1631<br />

11 8.9472 0.5891 10.2840 6.0579<br />

12 8.6400 0.5688 10.1280 5.7611<br />

13 10.9981 0.9822 10.2540 10.0713<br />

14 11.0944 0.9908 10.4640 10.3676<br />

79


3.35 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Alumina<br />

Table 3.35 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Alumina<br />

ct<br />

ctt<br />

o<br />

t,<br />

od<br />

c,<br />

!t (!<br />

N<br />

z<br />

o<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

ok.ht<br />

ABNZ add<br />

DOm<br />

add<br />

uq/0.5o<br />

ADSORPTTON & DESORPTTON OF ABNZ By At2O3<br />

4<br />

Equil. c<strong>on</strong>. ug/ml<br />

Fig.3.27 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Al2O3<br />

80<br />

fnd<br />

oDm<br />

fnd<br />

uo/0.5o<br />

ads<br />

uo/0.5o ads uq/q % ads<br />

1 1.2341 0.2500 2.5000 0.2340 2.3403 0.1 597 0.3195 6.3890<br />

z 1.2240 0.2500 2.5000 0.2321 2.3210 0.1 790 0.3580 7.1605<br />

? 3.4446 0.5000 5.0000 0.4794 4.7936 0.2064 0.4129 4.1290<br />

4 3.4381 0.5000 5.0000 0.4785 4.7845 0.2155 0.4309 4.3091<br />

5 5.4331 0.7500 7.5000 0.6274 6.2745 1.2255 2.4511 16.3406<br />

o 5.2976 0.7500 7.5000 0.61 18 6.1180 1.3820 2.7640 18.4265<br />

7 7.5654 1.0000 10.0000 0.8281 8.2814 1.7186 3.4373 17.1863<br />

I 7.4516 1.0000 10.0000 0.8157 8.1 570 1.8430 3.6860 18.4298<br />

o 15.1791 2.5000 25.0000 2.2918 22.9182 2.0818 4.1636 8.3272<br />

10 1 5.1 599 2.5000 25.0000 2.2889 22.8892 2.1108 4.2217 8.4434<br />

11 30.4485 5.0000 50.0000 4.6996 46.9961 3.0039 6.0078 6.0078<br />

12 30.3535 5.0000 50.0000 4.6849 46.8494 3.1 506 6.3012 6.3012<br />

13 41.4286 7.5000 75.0000 6.7439 67.4391 7.5609 15.1217 10.0812<br />

14 41.4606 7.5000 75.0000 6.7491 67.4913 7.5087 15.0174 10.01 16<br />

ads<br />

des<br />

o T


3.36 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Alumina<br />

Table 3.36 (a): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by AlzOs<br />

emo tb tb+min+sol<br />

ent<br />

sol<br />

abnz ent<br />

uq<br />

Table 3.36(b): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Al2O3<br />

pk ht<br />

des fnd uo/ml finalvol fnd uo<br />

1 0.1257 0.0238 10.1020 0.2408<br />

2 0.1 356 0.0257 10.0120 0.2575<br />

? 0.3569 0.0497 10.2680 0.5100<br />

4 0.3633 0.0506 10.3780 0.5247<br />

5 0.7788 0.0885 10.0700 0.8910<br />

6 0.7542 0.0856 10.2040 0.8734<br />

7 1.0011 0.1 096 10.0540 1.1018<br />

8 1.0024 0.1 097 10.0380 1.1015<br />

o 1.5215 0.2297 10.3400 2.3753<br />

10 1.5142 0.2286 10.2740 2.3489<br />

11 2.9729 0.4589 10.2840 4.7189<br />

12 2.9988 0.4629 10.1280 4.6878<br />

13 4.6125 0.7508 10.2540 7.6991<br />

14 4.6500 0.7569 10.4640 7.9207<br />

81<br />

des<br />

uq/0.5 des uq/q % des<br />

1 12.36 12.771 0.322 0.075357 0.165402 0.330805 70.67649<br />

z 12.467 12.878 0.322 0.074736 0.182769 0.365539 78.74633<br />

12.447 12.866 0.338 0162022 0.34802 0.69604 72.6017<br />

4 12.35 12.765 0.33 0.1 5789 0.36683 0.73366 76.66979<br />

5 12.374 12.845 0.442 0.277331 0.613625 1.22725 97.79739<br />

o 12.254 12.725 0.442 0.270416 0.602965 1.20593 98.55568<br />

7 12.369 12.856 0.474 0.392537 0.709225 1.41845 85.64103<br />

8 12.371 12.865 0.488 0.398063 0.703401 1.406802 86.23263<br />

9 12.41 12.871 0.422 0.967148 1.408149 2.816299 61.44244<br />

10 12.385 12.868 0.466 1.066635 1.282223 2.564447 56.01883<br />

11 12.336 12.882 0.592 2.782169 1.936707 3.873414 41.20995<br />

12 12.272 12.825 0.606 2.839075 1.848707 3.697413 39.46061<br />

13 12.332 12.998 0.832 5.610936 2.088194 4.176387 30.96412<br />

14 12.113 12.799 0.872 5.885241 2.035442 4.070885 30.1 5859


o.7<br />

0.6<br />

NE<br />

0.4<br />

o.3<br />

v-z<br />

0.1<br />

o.o<br />

0.45<br />

0.40<br />

u.53<br />

0.30<br />

0.25<br />

o.20<br />

n 1q<br />

0.10<br />

0.05<br />

0.00<br />

o.45<br />

o.40<br />

0.35<br />

o.30<br />

o.25<br />

o.20<br />

u. t3<br />

0.10<br />

0.o5<br />

o.00<br />

nr<br />

250 300 350<br />

Fig. 3.28. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Silica (Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> blank)<br />

rl<br />

250<br />

l'-Jr--.i- 1'--r"---l<br />

nr<br />

300 350<br />

Fig. 3.29. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Silica (Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> a)<br />

25\J<br />

rrlll<br />

300<br />

l.'::: I nl<br />

350<br />

Fig. 3.30. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Silica (Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> b)<br />

82


0.25<br />

o.20<br />

0.15<br />

0.10<br />

o.o5<br />

o.00<br />

o.45<br />

o.40<br />

0.35<br />

o.30<br />

0.25<br />

o.20<br />

0.15<br />

0.10<br />

0.05<br />

o.00<br />

-o.05<br />

-o.10<br />

-o.15<br />

I<br />

1.,<br />

if*v'*;;-. , -<br />

irrl<br />

250<br />

i\<br />

r\<br />

l\<br />

i\<br />

r\.<br />

I<br />

I<br />

I<br />

I<br />

t.<br />

rll\ ; l-t.1-*,<br />

\\1<br />

_ .- :t-<br />

,lrriT-lnr<br />

3@ 350<br />

Fig. 3.31. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Silica {de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> a)<br />

26 ri ir llr<br />

2n 300 350<br />

Fig. 3.28. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Silica (de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> b)<br />

83


3.37 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Silica<br />

Table 3.37: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by SiO2<br />

70<br />

60<br />

or 5o<br />

ctt<br />

ti<br />

Odo<br />

!t-<br />

06<br />

ti<br />

Ean<br />

(! ""<br />

N<br />

z<br />

@<br />

4zo<br />

10<br />

0<br />

ok.ht<br />

ABNZ add<br />

oom add uq/0.5q fnd ppm<br />

fnd<br />

uo/0.5o<br />

ads<br />

uo/0.5o<br />

ads<br />

uq/o % ads<br />

1 1 .1 300 0.2500 2.5000 0.1 61 8 1.6183 0.8817 1.7635 35.2695<br />

z 1.1370 0.2500 2.5000 0.1628 1.6283 0.8717 1.7434 34.8685<br />

3 1.5933 0.5000 5.0000 0.2157 2.1572 2.8428 5.6855 56.8550<br />

4 1.6114 0.5000 5.0000 0.2182 2.1818 2.8182 5.6365 56.3649<br />

5 2.3305 0.7500 7.5000 0.3413 3.4127 4.0873 8.1746 54.4971<br />

A 2.8254 0.7500 7.5000 0.4137 4.1374 3.3626 6.7251 44.8342<br />

7 4.6043 1.0000 10.0000 0.5040 5.0401 4.9599 9.9199 49.5995<br />

I 4.5890 1.0000 10.0000 0.5023 5.0234 4.9766 9.9531 49.7657<br />

o 9.0670 2.5000 25.0000 1.3690 '13.6898 11.3102 22.6204 45.2407<br />

1n 9.0736 2.5000 25.0000 1.3700 13.6998 11.3002 22.6004 45.2009<br />

11 19.3908 5.0000 50.0000 2.9929 29.9290 20.0710 40.1420 40.1420<br />

12 19.4537 5.0000 50.0000 3.0026 30.0261 19.9739 39.9479 39.9479<br />

13 27.7016 7.5000 75.0000 4.5094 45.0938 29.9062 59.8124 39.8749<br />

14 29.4759 7.5000 75.0000 4.7982 47.9821 27.0179 54.0359 36.0239<br />

Equil. c<strong>on</strong>c. ug/ml<br />

ads<br />

des<br />

Fig. 3.33 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by SiO2<br />

84<br />

o T


3.38 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Silica<br />

Table 3.38 (a): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by SiO2<br />

emp tb tb+min+sol ent sol<br />

Abnz<br />

ent uq<br />

Table 3.38(b): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Silica<br />

des<br />

uq/0.5<br />

des<br />

uo/o % des<br />

I 12.3600 13.0150 0.8100 0.1311 0.0767 0.1 533 47.3759<br />

z 12.4670 1 3.1 200 0.8060 0.1312 0.0775 0.1 550 47.6100<br />

a 12.4470 13.1260 0.8580 0.1 851 0.1103 0.2207 51.1453<br />

4 12.3500 13.0250 0.8500 0.1854 0.1145 0.2291 52.5017<br />

5 12.3740 13.1100 0.9720 0.3317 0.2763 0.5525 80.9532<br />

o 12.2540 12.9980 0.9880 0.4088 0.2076 0.4152 50.1754<br />

7 12.3690 13.1 180 0.9980 0.5030 0.4779 0.9557 94.8143<br />

8 12.3710 1 3.1 040 0.9660 0.4853 0.4867 0.9734 96.8891<br />

o 12.4100 13.2010 1.0820 1.4812 1.2064 2.4128 88.1243<br />

10 12.3850 1 3.1 500 1.0300 1.4111 1.2268 2.4535 89.5469<br />

11 12.3360 1 3.1 450 1.1 180 3.3461 2.9539 5.9078 98.6977<br />

12 12.2720 13.0860 1.1280 3.3869 2.7292 5.4583 90.8929<br />

13 12.3320 1 3.1 590 1.1540 5.2038 4.4054 8.8107 97.6932<br />

14 12.1130 12.9490 1.1720 5.6235 4.4221 8.8441 92.1606<br />

pk ht<br />

des fnd uq/ml finalvol fnd uq<br />

1 0.1436 0.020565 10.102 0.207746<br />

2 0.1456 0.020851 10.012 0.208763<br />

3 0.2125 0.028771 10.268 0.295425<br />

4 0.2135 0.028907 10.378 0.299995<br />

E 0.4123 0.060376 10.07 0.607987<br />

o 0.4125 0.060405 10.204 0.616376<br />

7 0.89125 0.09756 10.054 0.980867<br />

8 0.88456 0.09683 10.038 0.971978<br />

o 1.72154 0.259927 10.34 2.687643<br />

10 1.7005 0.25675 10.274 2.63785<br />

11 3.969 0.6126 10.284 6.299982<br />

12 3.9125 0.60388 10.128 6.1 1 6095<br />

13 5.7568 0.937115 10.254 9.609182<br />

14 5.89745 0.960011 10.464 10.04556<br />

85


3.39 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Soit I<br />

Table 3.39: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Soil 1<br />

h 5<br />

{<br />

od<br />

$ I<br />

t<br />

40<br />

3o<br />

25<br />

20<br />

'15<br />

10<br />

o<br />

pk.ht<br />

ABNZ<br />

add ppm<br />

add<br />

uo/0.5o fnd opm<br />

ADSORPTION & DESORPTION OF ABNZ BY SOIL 1<br />

Fig.3.34 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil I<br />

fnd<br />

uq/0.5q<br />

ads<br />

uo/0.5o ads uq/q % ads<br />

1 2.5959 0.2500 2.5000 0.2312 2.3116 0.1 884 0.3768 7.5362<br />

z 2.6237 0.2500 2.5000 0.2336 2.3363 0.1637 0.3273 6.5467<br />

5 4.2130 0.5000 5.0000 0.4072 4.0715 0.9285 1.8570 18.5695<br />

4 4.2007 0.5000 5.0000 0.4060 4.0596 0.9404 1.8807 18.8073<br />

5 5.9437 0.7500 7.5000 0.5566 5.5662 1.9338 3.8675 25.7834<br />

o 5.9437 0.7500 7.5000 0.5566 5.5663 1.9337 3.8675 25.7830<br />

7 8.6139 1.0000 10.0000 0.7462 7.4624 2.5376 5.0752 25.3762<br />

B 8.4370 1.0000 10.0000 0.7309 7.3091 2.6909 5.3817 26.9087<br />

I 14.8261 2.5000 25.0000 2.0104 20.1 038 4.8962 9.7923 19.5846<br />

10 14.7961 2.5000 25.0000 2.0056 20.0558 4.9442 9.8884 19.7769<br />

11 27.9617 5.0000 50.0000 4.3408 43.4080 6.5920 1 3.1 840 1 3.1 840<br />

12 27.8861 5.0000 50.0000 4.3291 43.2906 6.7094 13.4187 13.4187<br />

13 40.4632 7.5000 75.0000 6.5653 65.6528 9.3472 18.6945 12.4630<br />

14 40.4132 7.5000 75.0000 6.5572 65.5716 9.4284 18.8567 12.5711<br />

86<br />

ads<br />

des<br />

o T


\<br />

3.40 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Soil I<br />

Table 3.40(a):De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Soil 1<br />

emp tb tb+soil+sol ent sol<br />

Table 3.a0@): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Soil I<br />

87<br />

Abnz<br />

ent uq<br />

des<br />

uq/0.5<br />

des<br />

uq/q % des<br />

1 12.3600 12.7710 0.3220 0.0744 0.1 956 0.3912 84.6226<br />

2 12.4670 12.8780 0.3220 0.0752 0.2013 0.4027 86.1 71 I<br />

? 12.4470 12.8660 0.3380 0.1376 0.3100 0.6200 76.1429<br />

4 12.3500 12.7650 0.3300 0.1 340 0.3234 0.6468 79.6567<br />

5 12.3740 12.8450 0.4420 0.2460 0.4127 0.8255 74.1486<br />

o 12.2540 12.7250 0.4420 0.2460 0.4129 0.8257 74.1709<br />

7 12.3690 12.8560 0.4740 0.3537 0.5090 1.0180 68.2095<br />

8 12.3710 12.8650 0.4880 0.3567 0.5055 1.0111 69.1 646<br />

o 12.4100 12.8710 0.4220 0.8484 1.2545 2.5089 62.3989<br />

10 12.3850 12.8680 0.4660 0.9346 1.2744 2.5487 63.5413<br />

11 12.3360 12.8820 0.5920 2.5698 2.7715 5.5430 63.8474<br />

12 12.2720 12.8250 0.6060 2.6234 2.6313 5.2626 60.7823<br />

13 12.3320 12.9980 0.8320 5.4623 6.5416 13.0832 99.6392<br />

14 12.1130 12.8120 0.8980 5.8883 6.5261 13.0522 99.5262<br />

pk ht<br />

des<br />

fnd<br />

uq/ml finalvol fnd uo<br />

1 0.3002 0.0267 10.1020 0.2700<br />

2 0.3102 0.0276 10.0120 0.2766<br />

3 0.4511 0.0436 10.2680 0.4476<br />

4 0.4560 0.0441 10.3780 0.4573<br />

5 0.6985 0.0654 10.0700 0.6588<br />

6 0.6895 0.0646 10.2040 0.6589<br />

0.9905 0.0858 10.0540 0.8627<br />

8 0.9915 0.0859 10.0380 0.8622<br />

I 1.4998 0.2034 10.3400 2.1028<br />

10 1.5862 0.2150 10.2740 2.2090<br />

11 3.3456 0.5194 10.2840 5.3412<br />

12 3.3421 0.5188 10.1280 5.2547<br />

13 7.2150 1.1707 10.2540 12.0039<br />

14 7.3120 1.1864 10.4640 12.4144


3.41 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Soil2<br />

Table 3.41: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Soil2<br />

ct)<br />

ctt<br />

40<br />

35<br />

30<br />

=^- .zc<br />

o<br />

!t<br />

6. zo<br />

at,<br />

!,<br />

(!<br />

Nrs z- @<br />

10<br />

c<br />

0<br />

pk.ht<br />

ABNZ add<br />

ppm<br />

add<br />

uo/0.5o<br />

fnd<br />

oom<br />

fnd<br />

uq/0.5o<br />

ads<br />

uo/0.5o ads uq/q % ads<br />

1 '1.7358 0.2500 2.5000 0.0921 0.9209 1.5791 3.1582 63.1645<br />

2 1.2045 0.2500 2.5000 0.0639 0.6390 1.8610 3.7220 74.4392<br />

2 3.4204 0.5000 5.0000 0.3338 3.3383 1.6617 3.3234 33.2344<br />

4 3.3293 0.5000 5.0000 0.3249 3.2494 1.7506 3.5013 35.0127<br />

5.5769 0.7500 7.5000 0.6506 6.5061 0.9939 1.9879 13.2527<br />

o 5.6889 0.7500 7.5000 0.6637 6.6367 0.8633 1.7266 11.5105<br />

7 8.4467 1.0000 10.0000 0.8987 8.9869 1.0131 2.0262 1 0.1 308<br />

I 8.3318 1.0000 10.0000 0.8865 8.8647 1 .1 353 2.2705 11.3525<br />

o 14.0068 2.5000 25.0000 2.1679 21.6794 3.3206 6.6412 13.2824<br />

10 14.0268 2.5000 25.0000 2.1710 21.7104 3.2896 6.5793 1 3.1 586<br />

11 27.7618 5.0000 50.0000 4.2897 42.8968 7.1032 14.2064 14.2064<br />

12 27.6709 5.0000 50.0000 4.2756 42.7564 7.2436 14.4873 14.4873<br />

13 39.5480 7.5000 75.0000 6.4168 64.1678 10.8322 21.6643 14.4429<br />

14 40.2104 7.5000 75.0000 6.5243 65.2426 9.7574 19.5148 13.0099<br />

Fig. 3.35 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil2<br />

88<br />

ads<br />

des<br />

o<br />

I


3.42 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Soil2<br />

Table 3.42(a):De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Soil2<br />

emp tb tb+soil+sol ent sol<br />

Abnz<br />

ent uq<br />

des<br />

uq/0.5<br />

des<br />

uo/o % des<br />

1 12.2180 12.5450 0.1 540 0.0142 0.0573 0.1146 62.2361<br />

z 12.3530 12.6650 0.1240 0.0079 0.0518 0.1 037 81.1118<br />

J 12.3010 12.6450 0.1 880 0.0628 0.1 490 0.2980 44.6320<br />

4 12.3820 12.7300 0.1 960 0.0637 0.1964 0.3928 60.4490<br />

5 12.2540 12.6030 0.1 980 0.1288 0.4863 0.9726 74.7445<br />

o 12.3710 12.7450 0.2480 0.1 646 0.498,1 0.9962 75.0535<br />

12.3920 12.7780 0.2720 0.2444 0.5955 1 .1910 66.2614<br />

8 12.3010 12.7060 0.3100 0.2748 0.5771 1.1543 65.'1054<br />

o 12.2730 12.7050 0.3640 0.7891 0.8470 1.6939 39.0675<br />

10 12.3070 12.7330 0.3520 0.7642 0.8279 1.6558 38.1 334<br />

11 12.3270 12.7750 0.3960 1.6987 2.2784 4.5568 53.1 1 30<br />

12 12.3520 12.8010 0.3980 1.7017 2.4939 4.9879 58.3290<br />

13 12.3660 12.8350 0.4380 2.8106 3.6782 7.3564 57.3217<br />

14 12.4370 12.8990 0.4240 2.7663 3.8723 7.7447 59.3530<br />

Table 3.42(b): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Soil2<br />

pk ht<br />

des<br />

fnd<br />

uo/ml finalvol fnd uq<br />

1 0.1 334 0.0071 1 0.1 020 0.0715<br />

2 0.1125 0.0060 10.0120 0.0598<br />

3 0.2113 0.0206 10.2680 0.2118<br />

4 0.2568 0.0251 10.3780 0.2601<br />

5 0.5236 0.0611 10.0700 0.6151<br />

6 0.5567 0.0649 10.2040 0.6627<br />

7 0.7852 0.0835 10.0540 0.8399<br />

8 0.7977 0.0849 10.0380 0.8520<br />

o 1.0223 0.1582 10.3400 1.6361<br />

10 1.0012 0.1 550 10.2740 1.5921<br />

11 2.5028 0.3867 10.2840 3.9771<br />

12 2.6810 0.4143 1 0.1 280 4.1 956<br />

'13 3.9001 0.6328 10.2540 6.4888<br />

14 3.9101 0.6344 10.4640 6.6386<br />

89


3.43 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Soil3<br />

Table 3.43: Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Soil3<br />

cn<br />

ctt<br />

f<br />

o<br />

tt<br />

od<br />

o<br />

o<br />

N<br />

z<br />

o<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

ok.ht<br />

ABNZ add<br />

pDm<br />

add<br />

uq/0.5q<br />

fnd<br />

DOm<br />

4<br />

Equil. c<strong>on</strong>c. ug/ml<br />

fnd<br />

uq/0.5q<br />

Fig.3.36 Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by soil3<br />

ads<br />

uo/0.5o ads uq/o % ads<br />

1 2.2917 0.2500 2.5000 0.1716 1.7159 0.7841 1.5682 31.3636<br />

2 2.2422 0.2500 2.5000 0.1679 1.6788 0.8212 1.6423 32.8461<br />

3.2405 0.5000 5.0000 0.3530 3.5298 1.4702 2.9404 29.4039<br />

4 3.2279 0.5000 5.0000 0.3516 3.5160 1.4840 2.9680 29.6795<br />

4.1092 0.7500 7.5000 0.5227 5.2272 2.2728 4.5456 30.3041<br />

b 4.0170 0.7500 7.5000 0.5689 5.6888 1.8112 3.6224 24.1492<br />

7.2169 1.0000 10.0000 0.7723 7.7228 2.2772 4.5544 22.7718<br />

8 7.4202 1.0000 10.0000 0.7940 7.9404 2.0596 4.1193 20.5963<br />

I 12.8953 2.5000 25.0000 2.0779 20.7787 4.2213 8.4426 16.8853<br />

10 12.6692 2.5000 25.0000 2.0414 20.4144 4.5856 9.1711 18.3422<br />

11 25.7920 5.0000 50.0000 4.0457 40.4569 9.5431 19.0862 19.0862<br />

12 25.8020 5.0000 50.0000 4.0473 40.4726 9.5274 19.0548 19.0548<br />

13 36.1 91 5 7.5000 75.0000 6.0350 60.3497 14.6503 29.3007 19.5338<br />

14 36.2280 7.5000 75.0000 6.0411 60.4106 14.5894 29.1788 19.4525<br />

t<br />

90<br />

ads<br />

des<br />

O<br />

T


3.44 DesorPti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ bY Soil 3<br />

Table 3.44(a\: De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ by Soil3<br />

emo tb tb+soil+sol ent sol<br />

Abnz<br />

ent uq<br />

Table 3.a4@): De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ bY Soil3<br />

des<br />

uo/0.5<br />

des<br />

uo/o % des<br />

1 12.2180 12.6150 0.2940 0.0271 0.0218 0.0437 23.7056<br />

2 12.3530 12.7500 0.2940 0.0188 0.0238 0.0475 37.1804<br />

J 12.3010 12.7080 0.3140 0.1 048 0.0498 0.0997 14.9267<br />

4 12.3820 12.7910 0.3180 0.1033 0.0556 0.1112 17.1084<br />

12.2540 12.6740 0.3400 0.2212 0.0905 0.1 809 13.9042<br />

o 12.3710 12.7860 0.3300 0.2190 0.0851 0.1703 12.8282<br />

7 12.3920 12.8350 0.3860 0.3469 0.1521 0.3042 16.9269<br />

B 12.3010 12.7400 0.3780 0.3351 0.1 373 0.2746 15.4875<br />

9 12.2730 12.7119 0.3778 0.8190 0.3103 0.6205 14.3113<br />

10 12.3070 12.7490 0.3840 0.8337 0.3026 0.6051 13.9361<br />

11 12.3270 12.7810 0.4080 1.7502 0.7036 1.4073 16.4029<br />

12 12.3520 12.7990 0.3940 1.6846 0.7606 1.5213 17.7900<br />

13 12.3660 12.8310 0.4300 2.7592 1.2334 2.4669 19.2220<br />

14 12.4370 12.8990 0.4240 2.7663 1.4440 2.8879 22.1321<br />

pk ht<br />

des<br />

fnd<br />

uq/ml finalvol fnd uq<br />

1 0.0913 0.0048 10.1020 0.0489<br />

2 0.0801 0.0042 10.0120 0.0425<br />

3 0.1 543 0.0151 10.2680 0.1547<br />

4 0.1 569 0.0153 10.3780 0.1 589<br />

5 0.2653 0.0310 10.0700 0.3117<br />

6 0.2555 0.0298 10.2040 0.3041<br />

7 0.4665 0.0496 10.0540 0.4990<br />

8 0.4423 0.0471 10.0380 0.4724<br />

I 0.7056 0.1 092 10.3400 1.1293<br />

10 0.7145 0.1 106 10.2740 1.1362<br />

11 1.5442 0.2386 10.2840 2.4538<br />

12 1.5625 0.2414 1 0.1 280 2.4452<br />

13 2.3998 0.3894 10.2540 3.9926<br />

14 2.4798 0.4024 10.4640 4.2102<br />

9l


4.1 Biological activity<br />

DISCUSSION<br />

CHAPTER 4<br />

The biological activity <str<strong>on</strong>g>of</str<strong>on</strong>g> the synthesized <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> derivatives 2-(4-<br />

fluorophenyl)-l/I-<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> (FBNZ) <str<strong>on</strong>g>and</str<strong>on</strong>g> N-(111- <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> -2-ylmethyl)<br />

acetamide (ABNZ) was determined. The results including this activity are being<br />

discussed.<br />

4.1.1 AntifugalBioassay:<br />

The in vitro antifungal bioassay was carried out by Agar tube diluti<strong>on</strong> protocol. 77<br />

Growth in the compound c<strong>on</strong>taining media was determined by measuring linear<br />

growth in millimeter (mm). C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> the tested compound was 200pg/ml<br />

in DMSO. The results are reported as o/o inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the synthesized compound being<br />

tested. The antifungal bioassay was carried out against six species <str<strong>on</strong>g>of</str<strong>on</strong>g> fungi; Trichophyt<strong>on</strong><br />

l<strong>on</strong>gifusus, C<str<strong>on</strong>g>and</str<strong>on</strong>g>ida albicans, Aspergillus favus, Microsporum canis, Fusarium solani &<br />

C<str<strong>on</strong>g>and</str<strong>on</strong>g>ida Glaberata. The st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard drug used was Mic<strong>on</strong>azole for all the pathogens except<br />

C<str<strong>on</strong>g>and</str<strong>on</strong>g>ida albicans for which Amphotecin-B was taken.<br />

The antifungal activity <str<strong>on</strong>g>of</str<strong>on</strong>g> newly synthesized <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> derivatives 2-(4-<br />

fluorophenyl)-1/I-<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> (FBNZ) <str<strong>on</strong>g>and</str<strong>on</strong>g> N-(1/I-benzimidazol-2-ylmethyl)<br />

acetamide (ABNZ) <str<strong>on</strong>g>and</str<strong>on</strong>g> commercially used Benomyl was compared.<br />

92


Table 4.1: Antifungal activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g>s<br />

Fungi % Inhibiti<strong>on</strong><br />

Irichpyt<strong>on</strong> L<strong>on</strong>gifusus<br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g>ida Albicans<br />

Benomyl FBNZ A.BNZ<br />

A.spergillus Flavus )0% 35%<br />

Microsporum Canis z0% +0%<br />

usarium Solani J0% 5% +0%<br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g>ida Glabrata<br />

C<strong>on</strong>centrati<strong>on</strong> taken was 200 pg/ml at27 oC <str<strong>on</strong>g>and</str<strong>on</strong>g> incubati<strong>on</strong> time was 7 days.<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> (Table 4.1) showed that compound ABNZ have relatively greater<br />

activity against Microsporum canis & Fusarium solani than the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the species <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

compound FBNZ have relatively greater activity against Aspergillus flavus than any other<br />

species.<br />

It was also observed that compounds FBNZ <str<strong>on</strong>g>and</str<strong>on</strong>g> ABNZ antifungal activities are<br />

greater than the commercially used fungicide benomyl. This shows a possibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> benomyl by these compounds.<br />

All the compounds showed zero activity against Trichophyt<strong>on</strong> l<strong>on</strong>gifusus,<br />

C<str<strong>on</strong>g>and</str<strong>on</strong>g>ida albicans <str<strong>on</strong>g>and</str<strong>on</strong>g> C<str<strong>on</strong>g>and</str<strong>on</strong>g>ida Glaberata. Compound N-(111- <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> -2-<br />

ylmethyl) acetamide (ABNZ) showed in maximum antifungal activity compared to rest<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the tested compound.<br />

93


-0<br />

0.r5<br />

o,l<br />

os<br />

--"" c -sQ'<br />

.(c"<br />

ANTIFUNGAL ACTIVITY OF BENZIMIDAZOLES<br />

"."t<br />

"""*<br />

.*f .po"*<br />

a"s<br />

^-t{9<br />

o*""*<br />

-€<br />

^..-<br />


4.2.1 Methyl 1 H- benzim idazole-2-ca rboxylate (Ca rben d azim)<br />

The ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> isotherms <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim <strong>on</strong> alumina, silica, m<strong>on</strong>tmorill<strong>on</strong>ite,<br />

muscovite <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>soils</strong> (l-4) respectively (Fig.3.1-Fig.3.8) yielded straight line which<br />

resembles C-type isotherm shape. This type <str<strong>on</strong>g>of</str<strong>on</strong>g> isotherm describes interacti<strong>on</strong> between a<br />

generally hydrophobic adsorbate with a hydrophobic adsorbent (e.g. pesticide-organic<br />

matter interacti<strong>on</strong>s) which means that hydrophobic organic c<strong>on</strong>taminant distributes itself<br />

linearly between hydrophobic organic matter adsorbed <strong>on</strong> an inorganic mineral particle<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> soluti<strong>on</strong>Tl.<br />

Linear or <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> equilibrium distributi<strong>on</strong> co-efficient K6, in (ml pg-r) was<br />

calculated by plotting c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pesticide adsorbed in (pglg soil or mineral)<br />

against C. the pesticide c<strong>on</strong>centrati<strong>on</strong> (pglml) at the equilibrium c<strong>on</strong>centrati<strong>on</strong> for all<br />

<strong>soils</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> minerals(Table 4.1).For carbendazimit was observed that am<strong>on</strong>g minerals the<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> K6 ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> was m<strong>on</strong>tmorill<strong>on</strong>ite ) muscovite > silica > alumina which reflects<br />

the fungicide carbendazim may be trapped between the layers <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>tmorill<strong>on</strong>ite clay.<br />

This can be explained by the fact that interlayer spacing is much smaller in muscovite as<br />

compared to m<strong>on</strong>tmorill<strong>on</strong>ite.<br />

95


Table: 4,22 Kavalues for ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> carbendazim minerals/<strong>soils</strong><br />

CARBENDAZTM<br />

Minerals & <strong>soils</strong> Ko(uot Ko (oes)<br />

Alzo: 5.22 17.51<br />

SiOz 5.22 15.02<br />

Muscovite 6.94 16.13<br />

M<strong>on</strong>tmorill<strong>on</strong>ite 263.31 21.01<br />

Soil 1 5.81 9.r3<br />

Soil2 3.s9 7.43<br />

Soil 3 4.9r 6.21<br />

Soil4 1 1.6 9.67<br />

Carbendazim is highly adsorbed <strong>on</strong> forest soil 4 as compared to the other <strong>soils</strong>.<br />

The different sorptive behaviors exhibited by carbendazim <strong>on</strong> <strong>soils</strong> (1-4) are probably<br />

caused by the general physical/chemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <str<strong>on</strong>g>and</str<strong>on</strong>g> pesticides soluti<strong>on</strong>. For<br />

example variati<strong>on</strong> in sorptive behavior was studied with change in pH sa.<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> is surface phenomena <str<strong>on</strong>g>and</str<strong>on</strong>g> is dependant <strong>on</strong> the surface area <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

organic c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the sorbent. Forest soil 4 has higher organic c<strong>on</strong>tent (9.2%) <str<strong>on</strong>g>and</str<strong>on</strong>g> lower<br />

pH (7.6) (Table 3.2) as compared to other <strong>soils</strong> so its higher ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> might be due to<br />

the i<strong>on</strong>ized molecules <str<strong>on</strong>g>of</str<strong>on</strong>g> the fungicides is adsorbed by the organic fracti<strong>on</strong>. The increase<br />

in ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil 4 might be dependant <strong>on</strong> pH. The pH dependant ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> derivatives may suggest a reacti<strong>on</strong> with clay surface by prot<strong>on</strong>ated<br />

molecule. The basicity <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim is presented in the following equati<strong>on</strong><br />

N<br />

)-rt'<br />

NFO<br />

u/<br />

cHr<br />

H<br />

96<br />

N<br />

\)-r.rH<br />

/+ \<br />

NFO<br />

Ho'<br />

cHe<br />

(pK"4.0) (s)


In the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> increased hydrogen i<strong>on</strong> activity in the clay surfaces,<br />

<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> derivatives may be prot<strong>on</strong>ated to form a positive charged molecule which<br />

reacts with the clay surface as follows 5a .<br />

Benzimidazole + H*--clay Benzimidazole- H-clav (6)<br />

With increasing acidity <str<strong>on</strong>g>of</str<strong>on</strong>g> soil suspensi<strong>on</strong> an increase in the ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fungicide carbendazim to soil 4 occurred. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, organic matter c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil 4 is also higher than that <str<strong>on</strong>g>of</str<strong>on</strong>g> the other three <strong>soils</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> the i<strong>on</strong>ized molecules could be<br />

adsorbed by the organic fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil. The difference in the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim<br />

adsorbed <strong>on</strong> various <strong>soils</strong>, as obtained by the ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> isotherm, may represent actual<br />

variati<strong>on</strong> in the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> this fungicide to the plant50.<br />

4.2.2 2 - (4-fluoro p h eny l) -l H - b enzi m i d azole (FBNZ)<br />

The close similarity <str<strong>on</strong>g>of</str<strong>on</strong>g> the molecular structures <str<strong>on</strong>g>of</str<strong>on</strong>g> all three <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> with<br />

each other may be resp<strong>on</strong>sible for the values <str<strong>on</strong>g>of</str<strong>on</strong>g> Ka showing the similar behavior in <strong>soils</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> minerals. Other results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ a newly synthesized <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g><br />

having good fungicidal activity, shows the ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> isotherms (Figs.3.19-3.26) were<br />

linear also. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fungicides adsorbed (%) <strong>on</strong> were in order, m<strong>on</strong>tmorill<strong>on</strong>ite ><br />

muscovite > silica > alumina. FBNZ as calculated in (tables 3.26-3.34) when applied to<br />

the <strong>soils</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> varying organic c<strong>on</strong>tent indicates that the <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> is associated with organic<br />

c<strong>on</strong>tent. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fungicides adsorbed (%) was in the order soil 4 > soil3 > soil2 ><br />

soil 1 when calculated (tables 3.26-3.34) again shows the relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> with<br />

increase in the organic matter c<strong>on</strong>tents.<br />

97


Table: 4.3: ko values for ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBNZ <strong>on</strong> minerals <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>soils</strong><br />

FBNZ<br />

Minerals & <strong>soils</strong> Ko ads K6 des<br />

AlzOg 4.21 13.36<br />

SiOz 6.61 I 1.15<br />

Muscovite 16.01 16.51<br />

M<strong>on</strong>tmorill<strong>on</strong>ite 655.11 7.71<br />

Soil I 1.16 9.28<br />

Soil2 2.61 tt.49<br />

Soil 3 3.5 I 8.69<br />

Soil4 10.49 7.38<br />

4.2,3 N-( 111- benzi m id azol -2 -ylm ethyl)acetamide (ABNZ)<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ABNZ showed very high value for m<strong>on</strong>tmorill<strong>on</strong>ite as compared<br />

to rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the minerals <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>soils</strong> (Fig3.27, Figs.3.33-3.36) showing str<strong>on</strong>g ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ABNZ <strong>on</strong> m<strong>on</strong>tmorill<strong>on</strong>ite than muscovite <str<strong>on</strong>g>and</str<strong>on</strong>g> silica. In <strong>soils</strong> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> is<br />

same as FBNZ while <strong>soils</strong> (l-3) show nearly similar values <str<strong>on</strong>g>of</str<strong>on</strong>g> Ko.<br />

98


Table: 4.4: l ABNZ<br />

> FBNZ in soil I from Tarnol, soil 2 from Multan, red soil 3 from Murree. Forest soil 4<br />

from Ayubia has shown the order as carb > FBNZ which clearly indicates that<br />

carbendazim was adsorbed more than other two fungicides <str<strong>on</strong>g>and</str<strong>on</strong>g> fungicide ABNZ was<br />

adsorbed more than FBNZ fungicide. This behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> might be dependant<br />

up<strong>on</strong> the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the organic molecule as structural features <str<strong>on</strong>g>of</str<strong>on</strong>g> the adsorbent is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

main factors for K6 values.<br />

4.3 De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>studies</str<strong>on</strong>g><br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> isotherm represents the microgram <str<strong>on</strong>g>of</str<strong>on</strong>g> the fungicide still adsorbed per<br />

gram <str<strong>on</strong>g>of</str<strong>on</strong>g> soil as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equilibrium c<strong>on</strong>centrati<strong>on</strong> after <strong>on</strong>e ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> cycle.<br />

Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> was reversible but the de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> values were c<strong>on</strong>stantly higher than those for<br />

ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>. This is because the higher amount <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim, FBNZ <str<strong>on</strong>g>and</str<strong>on</strong>g> ABNZ are not<br />

retained after de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> than that for ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> at equilibrium c<strong>on</strong>centrati<strong>on</strong>. There are<br />

many potential causing this difference, including size <str<strong>on</strong>g>of</str<strong>on</strong>g> the adsorbing -<br />

sorbing organics,<br />

particle size, diffusi<strong>on</strong> effect <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical thermodynamic effects. In additi<strong>on</strong> to the<br />

99


ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> organics by surface owing to their low pH, the latter also promotes all,<br />

77<br />

cataly zes hydro lysi s reacti <strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many organi c s<br />

De<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>studies</str<strong>on</strong>g> showed that the Tarnol, soil 1 lost nearly 54.49yo,35.780 ,<br />

68.75% <str<strong>on</strong>g>of</str<strong>on</strong>g> the carbendazim, FBNZ <str<strong>on</strong>g>and</str<strong>on</strong>g> ABNZ. Soil 2 from Multan lost nearly 36.690 ,<br />

43.06% <str<strong>on</strong>g>and</str<strong>on</strong>g> 55.30Yo <str<strong>on</strong>g>of</str<strong>on</strong>g> the carbendazim, FBNZ <str<strong>on</strong>g>and</str<strong>on</strong>g> ABNZ. Red soil 3 from Murree lost<br />

nearly 47.14oA,15.06% <str<strong>on</strong>g>and</str<strong>on</strong>g> 16.95o/o <str<strong>on</strong>g>of</str<strong>on</strong>g> the carbendazim, FBNZ <str<strong>on</strong>g>and</str<strong>on</strong>g> ABNZ. Forest soil 4<br />

lost nearly 75.6304,71.29% carbendazim <str<strong>on</strong>g>and</str<strong>on</strong>g> FBNZ after <strong>on</strong>e de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>.<br />

The percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> as compared to ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> is quite low found in<br />

soil 4 shows that adsorbed fungicides were retained by the soil particles. The de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g><br />

isotherm <str<strong>on</strong>g>of</str<strong>on</strong>g> all the compounds were linear or <str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> equilibrium distributi<strong>on</strong> co-<br />

efficient Ka (des), in (ml pg-r) values are c<strong>on</strong>stantly higher in soil minerals alumina, silica<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> muscovite <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>soils</strong> (1-3) than those for ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> (tables 4.I-4.3). This could be<br />

explained by possible hysteresis effect taking place during ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g>, involving various<br />

forces that caused the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fungicides retained to higher after de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> than after<br />

ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> at unit equilibrium c<strong>on</strong>centrati<strong>on</strong>.<br />

The relative high value <str<strong>on</strong>g>of</str<strong>on</strong>g> Ko (des) compared with Ko (uor) for alumina, silica,<br />

muscovite <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>soils</strong> (1-3) shows ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> was reversible. The Ko (des) were lower in the<br />

m<strong>on</strong>tmorill<strong>on</strong>ite <str<strong>on</strong>g>and</str<strong>on</strong>g> soil 4 indicates they are more pr<strong>on</strong>e to release the adsorbed<br />

fungicides.<br />

Structure features, hyrophobicity, organic matter c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> soil pH <str<strong>on</strong>g>and</str<strong>on</strong>g> solubility<br />

are the main factors for K6 values <str<strong>on</strong>g>of</str<strong>on</strong>g> ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> in all <strong>soils</strong> being<br />

significantly higher for carbendazimthan other t-wo fungicides.<br />

100


5.1 C<strong>on</strong>clusi<strong>on</strong>s<br />

CONCLUSION<br />

CHAPTER 5<br />

As in above study FBNZ <str<strong>on</strong>g>and</str<strong>on</strong>g> ABNZ antifungal activities are greater than the<br />

commercially used pesticides Benomyl which showed a possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> replacement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pesticide.<br />

In all <strong>soils</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> minerals ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> increased with the increasing c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the pesticides <str<strong>on</strong>g>and</str<strong>on</strong>g> no limiting ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> was observed within the c<strong>on</strong>centrati<strong>on</strong> range<br />

studied.<br />

The order <str<strong>on</strong>g>of</str<strong>on</strong>g> carbendazim > ABNZ > FBNZ in all <strong>soils</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> minerals indicated<br />

that carbendazim was adsorbed more in all <str<strong>on</strong>g>of</str<strong>on</strong>g> them <str<strong>on</strong>g>and</str<strong>on</strong>g> it is dependent <strong>on</strong> different<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the pesticide such as its tendency for binding to soil, its structural features,<br />

hyrophobicity ,its vapor pressure, its water solubility, <str<strong>on</strong>g>and</str<strong>on</strong>g> its resistance to being broken<br />

down over time.<br />

Minerals<br />

Sorpti<strong>on</strong> process was reversible in all minerals the de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> values were c<strong>on</strong>stantly<br />

higher than those for ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> in alumina, silica <str<strong>on</strong>g>and</str<strong>on</strong>g> muscovite which clearly indicated<br />

that these minerals are more pr<strong>on</strong>e to release the adsorbed fungicides. This is verified by<br />

the K6 values as the relative high value <str<strong>on</strong>g>of</str<strong>on</strong>g> K6 (des) c<str<strong>on</strong>g>of</str<strong>on</strong>g>iip?red with Ko (uor) were for<br />

alumina, silica <str<strong>on</strong>g>and</str<strong>on</strong>g> muscovite except m<strong>on</strong>tmorill<strong>on</strong>ite which has highly adsorbed all the<br />

fungicides. While de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> is quite low as compared to ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> in m<strong>on</strong>tmorill<strong>on</strong>ite<br />

which means fungicides are trapped between the layers <str<strong>on</strong>g>of</str<strong>on</strong>g> the mineral. Similarly the Ko<br />

(des) were lower in the m<strong>on</strong>tmorill<strong>on</strong>ite showing this mineral more pr<strong>on</strong>e to release the<br />

adsorbed fungicides.<br />

101


Soils<br />

Sorpti<strong>on</strong> was reversible <str<strong>on</strong>g>and</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> was soil 4 > soil 3 > soil 2 ><br />

soil l.Highest ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> soil 4 is dependent <strong>on</strong> factors in the soil, such as its texture,<br />

its ability to retain water, <str<strong>on</strong>g>and</str<strong>on</strong>g> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter c<strong>on</strong>tained in it, its pH etc.<br />

Similarly the de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> values were c<strong>on</strong>stantly higher than those for ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> in rest<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>soils</strong> this is verified by the K4 values as the relative high value <str<strong>on</strong>g>of</str<strong>on</strong>g> Ko (des) compffed<br />

with Ko 1365; wer€ for these <strong>soils</strong> which indicated that these <strong>soils</strong> are more pr<strong>on</strong>e to release<br />

the adsorbed fungicides <str<strong>on</strong>g>and</str<strong>on</strong>g> it predicts their mobility <str<strong>on</strong>g>and</str<strong>on</strong>g> leaching potential to the<br />

ground water resulting in bioaccumulati<strong>on</strong>.<br />

Soil 4 having higher organic matter <str<strong>on</strong>g>and</str<strong>on</strong>g> low pH gave low value <str<strong>on</strong>g>of</str<strong>on</strong>g> ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> as<br />

compared to de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> indicated that it is reluctant to release the fungicide <str<strong>on</strong>g>and</str<strong>on</strong>g> it will<br />

influence the uptake <str<strong>on</strong>g>and</str<strong>on</strong>g> metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> plant or microorganisms or other bioactivities in<br />

soil.<br />

Data limitati<strong>on</strong>s are still the major obstacle towards establishing clear envir<strong>on</strong>mental<br />

trends in Pakistan. The envir<strong>on</strong>mental regulatory authorities <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan can greatly<br />

benefited from these preliminary <str<strong>on</strong>g>studies</str<strong>on</strong>g> to c<strong>on</strong>duct such <str<strong>on</strong>g>studies</str<strong>on</strong>g> <strong>on</strong> larger scales.<br />

Extensive educati<strong>on</strong>al programs are required for capacity building <str<strong>on</strong>g>of</str<strong>on</strong>g> farmers as low<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> farmers requires the need for their proper awareness <str<strong>on</strong>g>and</str<strong>on</strong>g> training<br />

to mitigate health <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental risks associated with the proper selecti<strong>on</strong>, usage<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> h<str<strong>on</strong>g>and</str<strong>on</strong>g>ling <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides.<br />

This study can set the future course <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different <str<strong>on</strong>g>studies</str<strong>on</strong>g> <strong>on</strong> pesticide in <strong>soils</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ground water in Pakistan. Results discussed in this part will provide a background to<br />

prioritize pesticides or chemical groups that should be evaluated under various field<br />

c<strong>on</strong>diti<strong>on</strong>s with regard to their leaching potential to groundwater in different climates.<br />

r02


REFERENCES:<br />

1. Pesticide. Wikipedia the free encyclopedia,http:llEn Wikipedia.Org/Wiki/Pesticide,<br />

accessed 22107/09.<br />

2. Yedla. S, Dikshit. A. K, Abatement <str<strong>on</strong>g>of</str<strong>on</strong>g> Pesticide Polluti<strong>on</strong>,Narosa Publishing House:<br />

India, 2005, I.<br />

3. What Is Pesticide? US EPA http://www.epa.gov/pesticides/about/index.htm accessed<br />

<strong>on</strong> July 24,2007.<br />

4. Types <str<strong>on</strong>g>of</str<strong>on</strong>g> Pesticides, Wikipediahttp:llwww.epa.gov/opp00001/about/types.htm,<br />

accessed 22107/09.<br />

5. Asghnar. A, Naseri. G. Farmad. M.C, J Intl. <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharma tech. research.,2009,I,247-<br />

251.<br />

6. K<strong>on</strong>da L, czinkota I, Fuleky, Morovjan G. J, Agric. Food chem.,2002,50,7326-<br />

7331.<br />

7. Lars<strong>on</strong>. S. , Capel. P. D, Majewski. M. 5., Pesticides In Surface Waters: Distributi<strong>on</strong>,<br />

Trends, And Governing Factors, Ann Arbor Press: chelsea, }r/rr, lggT,373.<br />

8. Lombardi. B, Baschini. M, Torres Sanchez. R. M., J.App ctay sci.,2003,24,43-50.<br />

9. Envir<strong>on</strong>mental Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Pesticides from Wikipedia,<br />

http://En.Wikipedia.Org/Wiki/Envir<strong>on</strong>mental Effects Of Pesticides accessed<br />

22t07t09.<br />

10. Koleli.N, Kantar. C, Cuvalci. U, Yilmaz .H, J. Envir<strong>on</strong>. Anal. Chem. 2006.86. 1127-<br />

1t34.<br />

11. Yedla. S, Dikshit A. K, Abatement <str<strong>on</strong>g>of</str<strong>on</strong>g> Pesticide Polluti<strong>on</strong>, Narosa Publishing House,<br />

India 2005, 2.<br />

12. Yang. G, Zhao. Y.H, Xiao. L. L, Xian. C. G, J. Coltoids <str<strong>on</strong>g>and</str<strong>on</strong>g> Surfaces : Physiochemical<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Engine ering Aspects. 2005, 264, 17 9-196.<br />

13. Csutoras. C, Kiss. A, Efficient Method for the Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Pesticides with Different Soil Samples, J.Micro chemical, 2007,95,2r-24.<br />

14. Pesticides as water pollutantg FAO Corporate Document Repository, Natural<br />

Resources Management <str<strong>on</strong>g>and</str<strong>on</strong>g> Envir<strong>on</strong>ment Department<br />

103


15. Hern<str<strong>on</strong>g>and</str<strong>on</strong>g>ez. M.C. S, Mingorance. M.D,Pena. A, Interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pesticides with A<br />

Surfactant Modified Soil Interface: Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Properties, Colloids <str<strong>on</strong>g>and</str<strong>on</strong>g> Surfaces A:<br />

Physiochemical <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering Aspects 306, s. 1-3, 1 Octobet 2007, 49-55.<br />

l6.MazariR. B, Country Report <strong>on</strong> Internati<strong>on</strong>al Code <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>duct <strong>on</strong> the Distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Use <str<strong>on</strong>g>of</str<strong>on</strong>g> Pesticdepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Protectministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Food, Agriculture & Livestock<br />

Government <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan.<br />

17. Pakistan envir<strong>on</strong>mental issues. Green Living Associati<strong>on</strong>for a Green<br />

World,Http://Www.Greenlivingasc.Org/Pakistan2.Htm, accessed 221 07 I 09 .<br />

18. Ec<strong>on</strong>omic survey <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan 2003-2004,<br />

http://www.finance.gov.pk/finance_ec<strong>on</strong>omic_survey_aspx, accessed22/07/09.<br />

19. Jabbar.A,Zafar. M.S, Parveen. Z, Ali. M, Bull Envir<strong>on</strong>.C<strong>on</strong>tam.Toxicol,1993,5I,<br />

268-273.<br />

20. Ahad. K, Anwar. T, Ahmad. I, Mohammad. A, Tahir. S, Aziz. S, Baloch. U.K,<br />

Determinati<strong>on</strong> Of Insecticide Residues In Groundwater Of Mardan Divisi<strong>on</strong>. NWFP.<br />

Pakistan: A case study, 2000, 26,409-412 (11 Refs.)<br />

21. Afridi. I. A. K, Zahida. P, Zafar. S. M, Stability Of Organophosphate And Pyrethroid<br />

Pesticides On Wheat In Storage, Journal Of Stored Products Research, Volume 37, 2,<br />

April 2001, Pages 199-204<br />

22. Muhammad. I. T, Shahzad. A,Ishtiaq. H, Toxicological & Envir<strong>on</strong>mental Chemistry,<br />

Published By: Taylor & Francis, Volume Number: 91<br />

23.Mft2a M. H. B, Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Pesticides, Their Chemical Degradati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Their Residual Toxicity Under Storage C<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan, 1992.<br />

24. Ahmed. R, Kookana. R. S, Alst<strong>on</strong>. A.M, Bromillow. R, Differences in Sorpti<strong>on</strong><br />

Behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> Carbaryl <str<strong>on</strong>g>and</str<strong>on</strong>g> Phosal<strong>on</strong>e in Soils from Australia, Pakistan, & United<br />

Kingdom, Australian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Research.<br />

25. Louise. A, Gimsing, Sorensin. J.C, Strobel. B.W, Hensen.H.C.B, Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

glucosinolates to metal oxides clay minerals <str<strong>on</strong>g>and</str<strong>on</strong>g> humic acid.,applied clay science,vol<br />

35,3-4 ,2007.212-217<br />

26. Ant<strong>on</strong>ie. G, Degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Benomyl, Picloram, <str<strong>on</strong>g>and</str<strong>on</strong>g> Dicamba in a C<strong>on</strong>ical Apparatus<br />

by Zero-Yalent Ir<strong>on</strong> Powder, Chemosphere, 43, 8, June 2001, 1109-1117.<br />

104


27. Fungicide, From Wikipedia, the free encyclopedia,<br />

http ://en.wikipedia. org/wiki/Fungicide<br />

28. http://www.pestmanagement.co.uk/expert/ecotox/f_cide.shtml, Ecotoxicology -<br />

Pesticide Classificati<strong>on</strong> - Fungicides<br />

29. Wagner. E. C, Millett. W. H, (1943). "Benzimidazole" . Org. Synth., Coll. 2: 65<br />

30. Pawar .N. S, Dalal. D. S, Shimpi. S. R, Mahulikar. P. P, Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> antimicrobial<br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> N-alkyl <str<strong>on</strong>g>and</str<strong>on</strong>g> N-acyl 2-(4-thiazolyl)-1F1-<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g>s European Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Pharmaceutical Sciences 21, s2-3, February 2004, Pages 115-118<br />

31. Austin. S, Michael.A. W, The toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> benomyl <str<strong>on</strong>g>and</str<strong>on</strong>g> some related 2-substituted<br />

<str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> to the earthworm Lumbricus terrestris, 7 5, 28 April 2006, 459 - 464<br />

32. Elamine. I. E, Zubair. M. U, Al-Badr A.A, Antibacterial <str<strong>on</strong>g>and</str<strong>on</strong>g> Antifungal Activities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Benzimidazole <str<strong>on</strong>g>and</str<strong>on</strong>g> Benzoxazole Derivatives Antimicrobial agents <str<strong>on</strong>g>and</str<strong>on</strong>g> chemotherapy,<br />

Jan. 1981, 29-32 19, No. I<br />

33. Thimmegowda. N.R, Swamy.N.S, Kumar. C.S. A, Kumar. Y. C. S, George. W,<br />

synthesis, characterizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>benzimidazole</str<strong>on</strong>g> derivative <str<strong>on</strong>g>and</str<strong>on</strong>g> its<br />

precursors as inhibitors <str<strong>on</strong>g>of</str<strong>on</strong>g> MDA-MB-231 human breast cancer cell proliferati<strong>on</strong>.<br />

34. Rosalinda. C, Angelina. F.P, Edgar. M, Fabiola. T, Horacio. L.S, Nor6h. B.B , m<strong>on</strong>o to<br />

polydentate azole <str<strong>on</strong>g>and</str<strong>on</strong>g> benzazole derivatives, versatile lig<str<strong>on</strong>g>and</str<strong>on</strong>g>s for main group <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

transiti<strong>on</strong> metal atoms Coordinati<strong>on</strong> Chemistry Reviews, 253, No. 15-16. (August<br />

2009), .1979-1999.<br />

35. Roy N.K, Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides. CBS New Delhi, 2002,98.<br />

36. Martin. N. A, Beresford. R.M, Harringt<strong>on</strong>. K.C, Pesticides Resistance: Preventi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Management Strategies, New Zeal<str<strong>on</strong>g>and</str<strong>on</strong>g>, 2005.<br />

37. Beever. R. E, Laracy. E. P, Pak. H. A, Plant Pathologt ,38 3,427 - 437<br />

38. Jean. G, J.Cropprotecti<strong>on</strong>., 27, 325,2008, 566-571.<br />

39. WHO/FAO Data Sheets <strong>on</strong> Pesticides No.89 Carbendazim,<br />

http://www.panuk.org/pestnews/actives/carbenda.htm, accessed 01/08/09.<br />

40. Carb Advisory Committee On Pesticides, Evaluati<strong>on</strong> On Cnbendazim, Evaluati<strong>on</strong> Of<br />

Fully Approved Or Provisi<strong>on</strong>ally Approved Products, No. 58, Ministry Of Agriculture,<br />

Fisheries And Food , July 1992.<br />

41. Orea. J.M, Bescos.B, Mentero.C, Urena. A.G, Anal Chem., 1998, 70 , 491-497.<br />

105


42. Singh. P, Srivastava. A, Ashok, Bulletin Of Envir<strong>on</strong>mental C<strong>on</strong>taminati<strong>on</strong> And<br />

Toxicology, 81,2008 , 258-261.<br />

43. B6rbara. M. L, Rosa. M. T. S, Pierre. E, Genet. M, Applied Clay Science.,33, 2006,<br />

59-65<br />

44. Sian R. E, Mark. E, Hods<strong>on</strong>a, Philip. W, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Biolog,t.,43, Supplement 1,<br />

2007, s239-5245<br />

45. Brown. G. E, John.O.C, J. Proc. Fla. State Hort. 5oc,I989,I02,I81-185.<br />

46. Angel. M, Rufino. M, Francisco. M, Valle-Algarrab, Eva. M.M, Misericordia.J,J.Intl<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fo o d mi u o b i o I o 9,,,2007,1<br />

19 .<br />

47.Lopez.L.F ,Lopez. A. G, Riba. M.V, HPLC , j. Agric. Food Chem,1989,37 (3), 684-<br />

687<br />

48. Benomyl, EX T O XN E T, Extensi<strong>on</strong>Toxicology Network,Pesticide Informati<strong>on</strong><br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>i les, http : //extoxnet.orst. edu/pips/benomyl.htm, accessed 0 1 /0 8/09.<br />

49. Kiigemagi. U, Roderick. D. I, Meelenthin. W.M, Max. L. D,J. Agric. Food Chem.<br />

1991.39 (2),400-403.<br />

50. Fedrick.J. B, Harlan. L. P, Richard. F. H, J. Agric. Food Chem.1974,22 (3), 413-418.<br />

51. Gunter. Z, Ru. Y. G, J. Anal. Chem.,1983,55 (8), 1448-1451.<br />

52. Austin. D. J, Briggs. G. G, J. Pestic Sci., 1976,7,20I.<br />

53. Mikio. C, Raj. P. S,l Agric. Food Chem.,1986, 34 (1), 108-112.<br />

54. Nadav. A,Uzi. K, J. Agric. Food Chem., 1975, 23 (3), 434-437 .<br />

55. Nadav. A,Uzi.K, J. Agric. Food Chem., 1975, 23 (4), 720-724.<br />

56. Cancela.G.D, Taboada.E, Sanchez. F.R,J.<str<strong>on</strong>g>of</str<strong>on</strong>g> soil sci.,I,1992, 99-IIl.<br />

57. David. A. L, Pau. Y. Y, William C. K, Tom R. S, Robert H. D, J. Envir<strong>on</strong>. Sci.<br />

Technol., 1994, 28, 1054-1061.<br />

58. Hern<str<strong>on</strong>g>and</str<strong>on</strong>g>ez. M.C. S, Mingorance. M.D,Pena. A, J.Colloids <str<strong>on</strong>g>and</str<strong>on</strong>g> Surfaces A,<br />

Physiochemical <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering Aspects, 2007, 306, 49-55.<br />

59. Jana. T.K, Das. B, Bull. Envir<strong>on</strong>. C<strong>on</strong>tam. Toxicol,7997, 59, 65-71.<br />

60. Mohammed. A. A, Peter. J.B,J. Envir<strong>on</strong>. Anal. Chem., 83, ll, 923-933<br />

61. Munay. B. M, Envir<strong>on</strong>mental Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Soils, Published By Oxford University,<br />

1994, 31.<br />

r06<br />

I


62.Evangelou. V. P, Envir<strong>on</strong>mental Soil <str<strong>on</strong>g>and</str<strong>on</strong>g> Water Chemistry, Published by Wiley-<br />

Interscience Publicati<strong>on</strong>s, 1998, 100-102.<br />

63. Evangelou. V. P, Envir<strong>on</strong>mental Soil <str<strong>on</strong>g>and</str<strong>on</strong>g> l4/ater Chemistry, Published by Wiley-<br />

Interscience Publicati<strong>on</strong>s, 1998, 13 l-135.<br />

64. Soil texture classificati<strong>on</strong>, Wikipedia,http:llen.wikipedia.org/wiki/Soil-texture<br />

accessed 01/08i09.<br />

65. Jeffrey. S. J, http://www.m<strong>on</strong>tana.edu/wwwpb/pubs/mt8602.html accessed 01/08/09.<br />

66. Best Sampling Procedures, http://www.al-labs-plains.com/best_sampling.html accessed<br />

01/08/09.<br />

67. Sam. F, Soil Sampling, htp://www.turfdiag.com/soil*sampling.htm, accessed 01/08/09.<br />

68. Soils <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan, Study Area.<br />

http://www.rrcap.unep .orgllclcdlhtml/countryrep/pakistan/studyarea.html, accessed<br />

01/08/09.<br />

69. Mcbride. M. B, Envir<strong>on</strong>mental Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Soils Published By Oxford University,<br />

1994, 342-343<br />

70. M<strong>on</strong>kiedje.A, Spiteller.M, J.Chemosphere, 49, 6, November 2002, 659-668.<br />

71. Evangelou. V. P, Envir<strong>on</strong>mental Soil <str<strong>on</strong>g>and</str<strong>on</strong>g> Water Chemistry, Published by Wiley-<br />

Interscience Publicati<strong>on</strong>s, 1998,I7 8-179.<br />

72. Mohammad. N, Mohammad. R. J, Khan. H, App clay sci.,2008: 201-204.<br />

73. Organic matter determinati<strong>on</strong>,<br />

http://www.uic.edu/classes/cemm/cemmlab/experiment0/o202organic%o20c<strong>on</strong>tent.pdf,<br />

accessed 01/08/09.<br />

74. Ad<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> de<str<strong>on</strong>g>sorpti<strong>on</strong></str<strong>on</strong>g> using batch equilibrium method,<br />

http:llecb jrc.ec.europa.eu/documents/testing-methods/annexv/cl8web2001.pdf,<br />

accessed 01/08/09.<br />

75. Rashid. N, Ukrainczyk.I,J. Agri <str<strong>on</strong>g>and</str<strong>on</strong>g>food chem.,1995,43,847.<br />

76. Victor. L, Antibiotics in lab medicine, published by Lippincot Williams <str<strong>on</strong>g>and</str<strong>on</strong>g> Wilkins,<br />

2005,374.<br />

77.Evangelou. V. P, Envir<strong>on</strong>mental Soil <str<strong>on</strong>g>and</str<strong>on</strong>g> Water Chemistry, Published by Wiley-<br />

Inter s cienc e P ub I icati<strong>on</strong>s. 1998.3 62.<br />

t07

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!