15.02.2013 Views

SPE DISTINGUISHED LECTURER SERIES

SPE DISTINGUISHED LECTURER SERIES

SPE DISTINGUISHED LECTURER SERIES

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>SPE</strong> <strong>DISTINGUISHED</strong> <strong>LECTURER</strong> <strong>SERIES</strong><br />

is funded principally<br />

through a grant of the<br />

<strong>SPE</strong> FOUNDATION<br />

The Society gratefully acknowledges<br />

those companies that support the program<br />

by allowing their professionals<br />

to participate as Lecturers.<br />

And special thanks to The American Institute of Mining, Metallurgical,<br />

and Petroleum Engineers (AIME) for their contribution to the program.


Integrated Reservoir Modeling<br />

Challenges and Solutions<br />

Mohan Kelkar<br />

The University of Tulsa


�� Background<br />

�� Approach<br />

Outline<br />

– Hierarchical Descriptions<br />

– Dynamic Data Integration<br />

– Ranking<br />

– Upscaling<br />

– History matching of multiple descriptions<br />

– Uncertainty representation<br />

Uncertainty representation<br />

�� Future Challenges<br />

�� Conclusions


Background<br />

�� What is integrated reservoir modeling?<br />

Integration of various qualities and<br />

quantities of data to generate inter well<br />

reservoir properties of interest so that<br />

uncertainties in future reservoir<br />

performance can be predicted.


Background<br />

�� What are the challenges?<br />

– Scale and resolution of input and output<br />

– Size of geomodel vs. size of simulation model<br />

– Quantification of Uncertainties<br />

– Solutions of inverse problem, especially during<br />

history matching of production data


�� Drawbacks related to<br />

Conventional History<br />

Matching<br />

– Geological and<br />

geophysical<br />

uncertainties<br />

– Uncertainties in future<br />

performance.<br />

– The relationship<br />

between scale and<br />

uncertainty.<br />

Background<br />

�� Drawbacks related to<br />

Automatic History<br />

Matching<br />

– Computationally<br />

intensive<br />

– Customization to<br />

appropriate input<br />

parameters<br />

– Objective Function<br />

– Initial Guess<br />

Dependent


Structural<br />

Modeling<br />

ell Logs Generation<br />

(Rock Type, Perm)<br />

Spatial<br />

Modeling<br />

Approach<br />

Work Flow<br />

Hierarchical Realizations<br />

Property Modeling<br />

Seismic Porosity Integration<br />

Limited Dynamic Data Integration<br />

Fluid in Place Calculations<br />

Ranking of<br />

Realizations<br />

3 Selected<br />

Realizations<br />

Upscaling<br />

Of Prop.<br />

Selective<br />

History<br />

Matching


Topics of Concentration<br />

�� Hierarchical Descriptions<br />

�� Well Test Integration<br />

�� Upscaling using dynamic<br />

characteristics<br />

�� Objective history matching<br />

�� Future uncertainties representation


Hierarchical Multiple Realizations<br />

�� Rank the uncertain parameters from the largest to<br />

the smallest scale<br />

�� Discretize the range of uncertainties if possible<br />

�� Use fewer number of realizations for small scale<br />

uncertainties<br />

�� Limit the potential number of realizations to less<br />

than hundred<br />

�� Use methods such as experimental design to<br />

efficiently sample the range of uncertainties in<br />

input parameters


Limited Dynamic Data Integration<br />

�� Well Test Data<br />

– Adjustment of fine scale permeabilities through<br />

adjustment factors accounting for fractures,<br />

multi-phase and scale<br />

�� PLT (Production Log Testing) Data<br />

– Vertical adjustment to account for flow<br />

– Determination of fracture conductivity


Well Test<br />

Matching Permeability<br />

Procedure<br />

Re<br />

KH - Well Test Match ?<br />

KH – Sim<br />

Fracture<br />

Stop<br />

Yes<br />

No<br />

Enhanced<br />

Permeability<br />

Simulated Fine Scale<br />

Permeability Distribution<br />

Radial<br />

Upscaling


Alteration without Fractures<br />

�� Calculate the upscaled value of kh from fine<br />

scale description<br />

�� Calculate the ratio of (kh) ( kh) well test to (kh) ( kh) upscale. upscale<br />

�� Interpolate the ratio across the field using<br />

kriging or similar technique<br />

�� Adjust the fine scale permeability value<br />

accordingly


Matching Permeability<br />

Background Enhancement<br />

�� Definition :<br />

– Enhancement required to match well test when<br />

there is no fracture.<br />

�� Physical Interpretation :<br />

– Enhancement required due to micro<br />

fracture/fissures which are not captured by<br />

seismic curvature analysis


Matching Permeability<br />

Log (EF) vs Fracture Density<br />

Background Enhancement


Layer 35<br />

Not-enhanced<br />

Permeability before and after<br />

enhancement<br />

Layer 35<br />

Enhanced


Layer 35<br />

Enhanced<br />

Permeability before and after<br />

enhancement<br />

Layer 35<br />

Enhanced


Permeability Anisotropy


Permeability Anisotropy<br />

�� �� �� �� Assume Assume that that permeability permeability in in the the direction direction of of fractures fractures is<br />

is<br />

maximum maximum permeability permeability and and the the one one perpendicular perpendicular to to that that is<br />

is<br />

the the minimum minimum permeability. permeability. Minimum Minimum value value is is the the base<br />

base<br />

value.<br />

value.<br />

�� �� �� �� The The enhanced enhanced permeability permeability is is calculated calculated as:<br />

as:<br />

�� �� �� �� Based Based on on tensor tensor relationship<br />

relationship


Dynamic Ranking<br />

�� Use the information from all the realizations<br />

�� Use different methods to rank realizations<br />

– Permeability connectivity<br />

– Streamline simulation<br />

– Finite difference – simplified simulation<br />

– Use observed parameter of interest<br />

�� Select three to five realizations for history<br />

matching


Normalized Sweep<br />

1.30<br />

1.20<br />

1.10<br />

1.00<br />

0.90<br />

0.80<br />

0.70<br />

Dynamic Ranking<br />

Realization 15<br />

Realization 41<br />

0.70 0.80<br />

0.90 1.00 1.10 1.20 1.30<br />

Normalized STOIIP<br />

Realization 4


Upscaling<br />

Technique<br />

Upscaling<br />

Vertical Upscaling Optimization -<br />

Procedure<br />

Fine Scaled Model<br />

Upscaled Model<br />

Streamline<br />

Simulator<br />

Further<br />

Upscaling<br />

Select<br />

Prev.<br />

Level<br />

Fine Scaled<br />

Flow Behavior<br />

No Yes<br />

Similar ?<br />

Upscaled<br />

Flow Behavior


Upscaling Scenarios<br />

�� Coarsen the geo-cellular grids while preserving the<br />

necessary level of heterogeneity<br />

– Use streamline simulator to calculate the sweep efficiency of<br />

each vertical layer<br />

– Combine vertical layers having similar displacements<br />

�� Test the vertical upscaling scenarios with Streamline<br />

simulator<br />

– Sweep efficiency of each vertical layer of the upscaled model<br />

should be close to the sweep efficiency of the fine scale model.<br />

should be close to the sweep efficiency of the fine scale model.<br />

�� Fine tune the scenarios if needed


Fine Scale<br />

(93 layers)<br />

Coarse Scale<br />

(66 layers)<br />

Optimum Upscaling Level


Fine Scale<br />

(93 layers)<br />

Coarse Scale<br />

(50 layers)<br />

Optimum Upscaling Level


Fine Scale<br />

(93 layers)<br />

Coarse Scale<br />

(30 layers)<br />

Optimum Upscaling Level


Fine Scale<br />

(93 layers)<br />

Coarse Scale<br />

(20 layers)<br />

Optimum Upscaling Level


Sweep Efficiency, %<br />

Upscaling Optimization<br />

246 Layers 100 Layers 75 Layers 55 Layers 46 Layers 31 Layers<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 50 100 150 200 250<br />

Layer Number


Rock Type Upscaling<br />

246 Layers 57 Layers


Porosity Upscaling<br />

246 Layers 57 Layers


Permeability Upscaling<br />

246 Layers 57 Layers (Kx)


Compare Well Logs<br />

Before and After Upscaling<br />

Optimum Level Fine Scale


History Matching<br />

�� Define objective standards for history<br />

matching<br />

�� Vary dynamic parameters within the range<br />

of uncertainty<br />

�� Explore the impact of input parameters on<br />

observed performance<br />

�� Simultaneously history match multiple<br />

realizations


Field Example 1<br />

�� Carbonate, naturally fractured reservoir<br />

�� Influence of water influx as well as injected<br />

water<br />

�� Approximately 55 well strings<br />

�� Parameters adjusted:<br />

– Relative permeability parameters<br />

– Aquifer strength<br />

– Local permeabilities at three wells


Static<br />

Model<br />

Stage – 2<br />

Stage – 1 Stage – 3<br />

Original Model<br />

Field Study<br />

History Match<br />

38%<br />

59%<br />

Well Testing<br />

Calibrated<br />

Model<br />

95%<br />

History Matching<br />

Final Model


Field-wide<br />

Match<br />

Stage-1 (38%)<br />

Stage-2 (59%) Stage-3 (95%)<br />

Cum.Oil<br />

Pressure<br />

Oil Rate Water Cut<br />

Cum.Oil<br />

Oil Rate<br />

Pressure<br />

Water Cut<br />

Cum.Oil<br />

Pressure<br />

Oil Rate Water Cut


Cum.Oil<br />

Jan 1983 Jan 2004<br />

Oil Rate<br />

Stage-1 (38%)<br />

Reservoir Pressure<br />

Water Cut


Cum.Oil<br />

Jan 1983 Jan 2004<br />

Oil Rate<br />

Stage-2 (59%)<br />

Reservoir Pressure<br />

Water Cut


Cum.Oil<br />

Jan 1983 Jan 2004<br />

Oil Rate<br />

Stage-3 (95%)<br />

Reservoir Pressure<br />

Water Cut


BHFP<br />

Oil Rate<br />

Field Study<br />

History Match (cont’d)<br />

Middle Zone Matrix Well<br />

Simulation<br />

RFT<br />

U1<br />

U2<br />

U3<br />

BHCIP/PBU<br />

Model<br />

96 %<br />

Water Cut<br />

PLT<br />

100 %


BHFP<br />

Oil Rate<br />

Field Study<br />

History Match (cont’d)<br />

Upper Zone Fracture Well<br />

BHCIP/PBU<br />

Water Cut Cut


Field Study<br />

History Match (cont’d)<br />

�� Blind Tests :<br />

– 7 Newly Drilled Wells<br />

�� 3 Rehorizontalized Wells<br />

�� 4 New Horizontal/High Deviated Wells<br />

– 17 Pressure Observer Well Strings<br />

– 10-months Extended Production Data<br />

�� Results :<br />

– 6 out of 7 well production was successfully simulated<br />

– 15 out 17 pressure observation wells were matched<br />

– Excellent Field-wide performance during the extended period


Field Study<br />

Blind Test at Rehorizontalized Well<br />

BHP BHCIP/PBU<br />

Oil Rate<br />

Water Cut


BHFP<br />

Field Study<br />

Blind Test at New Fractured Well<br />

BHFP<br />

Oil Rate<br />

Oil Rate<br />

Fracture Realization: 1000 m<br />

BHCIP/PBU<br />

BHCIP/PBU<br />

Water Cut<br />

Water Cut<br />

Well-43<br />

New Well


540<br />

530<br />

2<br />

8<br />

14<br />

E<br />

12<br />

25<br />

23<br />

16<br />

520<br />

780 790<br />

B<br />

Field Study<br />

Saturation Comparison at New Wells<br />

2002/2003 “OH Log SW ” Match Map<br />

19<br />

26<br />

15<br />

4<br />

5<br />

10<br />

11<br />

27<br />

13<br />

H<br />

6<br />

21<br />

22<br />

17<br />

OWC 4055<br />

24<br />

18<br />

1<br />

20<br />

J<br />

7<br />

F<br />

3<br />

9<br />

“R 2+R3”


Field Study<br />

Pressure Match at Observer Well<br />

BHCIP<br />

Simulation RFT


Cum. Oil<br />

Cum. Oil<br />

Oil Rate<br />

Field Study<br />

Blind Test at the Extended Production<br />

Time Period<br />

Reservoir Pressure Pressure<br />

Water Cut Cut


Field Example 2<br />

�� Highly faulted sandstone reservoir (over 100 faults)<br />

�� Large uncertainty with respect to permeability values<br />

�� More than 110 wells – producers and injectors<br />

�� Weak aquifer drive – high water cut in many wells<br />

�� Parameters adjusted:<br />

– Aquifer strength<br />

– Relative permeability parameters<br />

– Capillary pressure curves<br />

– Fault transmissibilities


FLPR<br />

(stb/day)<br />

FGOR<br />

(mscf/stb)<br />

16000<br />

12000<br />

8000<br />

4000<br />

0<br />

16000<br />

12000<br />

8000<br />

4000<br />

0<br />

History Matching<br />

pessimistic<br />

likely<br />

optimistic<br />

historical<br />

Field Level<br />

0 2000 4000 6000<br />

Time, days<br />

0 2000 4000 6000<br />

Time, days


FOPR<br />

(stb/day)<br />

FWCT<br />

30000<br />

20000<br />

10000<br />

0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

History Matching<br />

Field Level<br />

0 2000 4000 6000<br />

Time, days<br />

0 2000 4000 6000<br />

Time, days<br />

pessimistic<br />

likely<br />

optimistic<br />

historical


GGPR<br />

mmscf/day<br />

GGPR<br />

mmscf/day<br />

4<br />

3<br />

2<br />

1<br />

0<br />

12<br />

8<br />

4<br />

0<br />

History Matching<br />

Bloque#4<br />

Group Level<br />

pessimistic<br />

likely<br />

optimistic<br />

historical<br />

0 2000 4000 6000<br />

Bloque#5<br />

Time, days<br />

0 2000 4000 6000<br />

Time, days


GOPR<br />

mstb/day<br />

GOPR<br />

mstb/day<br />

4<br />

2<br />

0<br />

4<br />

3<br />

2<br />

1<br />

0<br />

History Matching<br />

Bloque#4<br />

pessimistic<br />

likely<br />

optimistic<br />

historical<br />

0 2000 4000 6000<br />

Bloque#5<br />

Group Level<br />

Time, days<br />

0 2000 4000 6000<br />

Time, days


GWPR<br />

mstb/day<br />

GWPR<br />

mstb/day<br />

12<br />

8<br />

4<br />

0<br />

8<br />

4<br />

0<br />

History Matching<br />

Bloque#4<br />

pessimistic<br />

likely<br />

optimistic<br />

historical<br />

0 2000 4000 6000<br />

Bloque#5<br />

Group Level<br />

Time, days<br />

0 2000 4000 6000<br />

Time, days


WOPR<br />

stb/day<br />

WWPR<br />

stb/day<br />

400<br />

200<br />

0<br />

800<br />

400<br />

0<br />

History Matching<br />

W31<br />

pessimistic<br />

likely<br />

optimistic<br />

historical<br />

0 2000 4000 6000<br />

W31<br />

Well Level<br />

Time, days<br />

0 2000 4000 6000<br />

Time, days


WOPR<br />

stb/day<br />

WWPR<br />

stb/day<br />

2000<br />

1600<br />

1200<br />

800<br />

400<br />

0<br />

3000<br />

2000<br />

1000<br />

0<br />

History Matching<br />

W90<br />

pessimistic<br />

likely<br />

optimistic<br />

historical<br />

0 2000 4000 6000<br />

W90<br />

Well Level<br />

Time, days<br />

0 2000 4000 6000<br />

Time, days


WOPR<br />

stb/day<br />

WWPR<br />

stb/day<br />

1200<br />

800<br />

400<br />

0<br />

3000<br />

2000<br />

1000<br />

0<br />

History Matching<br />

W25<br />

0 2000 4000 6000<br />

W25<br />

Well Level<br />

Time, days<br />

pessimistic<br />

likely<br />

optimistic<br />

historical<br />

0 2000 4000 6000<br />

Time, days


Future Challenges<br />

�� “Right Right Scaling” Scaling of Reservoir Model<br />

– Generate reservoir description consistent with<br />

resolution of production data<br />

– Generate reservoir description consistent with the flow<br />

process in the future<br />

�� Prioritize Observations<br />

– Some observations are more important than others<br />

– Large perturbations have more information content than<br />

small perturbations<br />

– Eliminating large amount of observations prior to<br />

history matching will make the process cleaner and<br />

easier


Future Challenges<br />

�� Uncertainty Quantification in Future<br />

Performance<br />

– Fit for purpose uncertainty quantification<br />

– Quantification during the exploration phase<br />

– Use of uncertainties prediction in future<br />

reservoir management


Conclusions<br />

�� A practical work flow allows an efficient<br />

history matching of multiple reservoir<br />

descriptions<br />

�� Partial integration of dynamic data makes<br />

the history matching more efficient<br />

�� Uncertainties in future performance can be<br />

quantified through multiple reservoir<br />

descriptions


Maintain Local Consistency<br />

among Attributes

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!