19.04.2013 Views

03 Medicina Celular y Molecular.pdf 5474KB May - Centro de ...

03 Medicina Celular y Molecular.pdf 5474KB May - Centro de ...

03 Medicina Celular y Molecular.pdf 5474KB May - Centro de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Medicina</strong> <strong>Celular</strong> y <strong>Molecular</strong> | Cellular and <strong>Molecular</strong> Medicine<br />

76<br />

santiago rodríguez <strong>de</strong> Córdoba<br />

Profesor <strong>de</strong> Investigación | sr<strong>de</strong>cordoba@cib.csic.es<br />

Patología <strong>Molecular</strong> / Genética <strong>de</strong>l Complemento<br />

Tras i<strong>de</strong>ntificar varios genes causantes<br />

<strong>de</strong> enfermeda<strong>de</strong>s, nuestro trabajo<br />

actual se centra en:<br />

Complemento y enfermedad. El<br />

complemento es esencial en la inmunidad<br />

innata con papeles fundamentales en la<br />

infección, la eliminación <strong>de</strong> restos celulares<br />

y complejos inmunes y la modulación <strong>de</strong> la<br />

inmunidad adquirida. Sin embargo, es una<br />

espada <strong>de</strong> doble filo ya que su activación<br />

<strong>de</strong>scontrolada se asocia con muchas<br />

enfermeda<strong>de</strong>s. La manera exacta por la<br />

que el complemento cambia <strong>de</strong> proteger<br />

a <strong>de</strong>struir no se entien<strong>de</strong> totalmente. Para<br />

compren<strong>de</strong>rlo estamos caracterizando las<br />

PhD, 1981.<br />

Hospital Ramón y Cajal, UCM.<br />

Visiting Scientist 1981,<br />

Associate Investigator 1985.<br />

The New York Blood Center, NY, USA.<br />

Científico Titular, 1986,<br />

Incorporación CIB, 1989,<br />

Investigador Científico, 1990.<br />

CIB, CSIC.<br />

Director Unidad <strong>de</strong> Patología <strong>Molecular</strong>, 1996-2002.<br />

Fundación Jiménez Díaz, Madrid.<br />

Profesor <strong>de</strong> Investigación, 2000.<br />

CIB, CSIC.<br />

Utilizamos técnicas genómicas y <strong>de</strong> biología molecular<br />

con el objetivo <strong>de</strong> <strong>de</strong>scifrar las bases moleculares <strong>de</strong><br />

enfermeda<strong>de</strong>s humanas. Nuestra actividad incluye<br />

i<strong>de</strong>ntificar los genes que las causan y caracterizar<br />

funcionalmente sus variantes patogénicas mediante<br />

consecuencias funcionales <strong>de</strong> variaciones<br />

genéticas <strong>de</strong> los genes <strong>de</strong>l complemento<br />

asociados al síndrome hemolítico urémico<br />

atípico, a la enfermedad por <strong>de</strong>pósitos<br />

<strong>de</strong>nsos y a la <strong>de</strong>generación macular asociada<br />

a la edad.<br />

Enfermedad <strong>de</strong> Lafora (LD). LD es una<br />

enfermedad neuro<strong>de</strong>generativa fatal y la<br />

causa más frecuente <strong>de</strong> epilepsia progresiva<br />

mioclónica en Europa meridional. Dos<br />

genes causan LD, EPM2A, que codifica una<br />

tirosina-fosfatasa dual <strong>de</strong>nominada laforina<br />

y EPM2B, que codifica una E3-ubicuitina<br />

ligasa llamada malina. Después <strong>de</strong> “clonar”<br />

el gen EPM2A y mostrar que laforina<br />

Otros miembros | Other lab members:<br />

Tamara Montes Fernán<strong>de</strong>z<br />

Silvana Mouron<br />

Arturo Jiménez Periañez<br />

Rubén Martínez Barricarte<br />

Agustín Tortajada Alonso<br />

Olga Criado García<br />

Sheila Pinto García<br />

Ángela Ruiz Sánchez<br />

www.cib.csic.es/es/grupo.php?idgrupo=21<br />

Laura Blanco Sobero<br />

Javier Gayarre Navarro<br />

Lara Durán Trío<br />

Sonia Alejo Martín<br />

el análisis bioquímico, celular y estructural <strong>de</strong><br />

las proteínas que codifican. A<strong>de</strong>más, generamos<br />

mo<strong>de</strong>los in vitro e in vivo <strong>de</strong> estas enfermeda<strong>de</strong>s con<br />

el objetivo <strong>de</strong> enten<strong>de</strong>r los mecanismos patogénicos<br />

y <strong>de</strong>sarrollar estrategias diagnósticas y terapéuticas.<br />

interacciona con proteínas <strong>de</strong>l metabolismo<br />

<strong>de</strong>l glucógeno, hemos <strong>de</strong>mostrado<br />

que el complejo laforina-malina regula<br />

la síntesis <strong>de</strong>l glucógeno a través <strong>de</strong> la<br />

ubicuitinilación y <strong>de</strong>gradación proteosomal<br />

<strong>de</strong> glucógeno Sintasa y <strong>de</strong> PTG. También<br />

hemos <strong>de</strong>mostrado que laforina juega un<br />

papel en autofagia. Usando una colección<br />

<strong>de</strong> mo<strong>de</strong>los animales generados en<br />

el laboratorio estamos <strong>de</strong>scifrando los<br />

mecanismos patogénicos <strong>de</strong> la LD.<br />

Transferencia <strong>de</strong> tecnología. Hemos<br />

generado una compañía spin-off <strong>de</strong>l CIB<br />

(www.secugen.es) <strong>de</strong>dicada a secuenciación<br />

<strong>de</strong> DNA y diagnóstico molecular.<br />

La figura muestra el árbol genealógico <strong>de</strong>l primer caso <strong>de</strong> enfermedad<br />

por <strong>de</strong>pósitos <strong>de</strong>nsos (EDD) <strong>de</strong>bido a una mutación en el gen <strong>de</strong> C3.<br />

La caracterización funcional <strong>de</strong> esta mutación ha aportado pruebas<br />

concluyentes en humanos indicando que la <strong>de</strong>sregulación <strong>de</strong>l complemento<br />

en plasma, con la generación continua <strong>de</strong> C3b, juega un papel importante<br />

en la patogénesis <strong>de</strong> EDD. El análisis <strong>de</strong> esta excepcional mutación ha<br />

mostrado a<strong>de</strong>más algunos <strong>de</strong> los requisitos estructurales que subyacen en<br />

el reconocimiento <strong>de</strong>l sustrato y a los mecanismos <strong>de</strong> regulación por fH, DAF<br />

y MCP, aumentando nuestro conocimiento <strong>de</strong> la activación y la regulación<br />

<strong>de</strong> la convertasa <strong>de</strong>l C3 <strong>de</strong> la vía alternativa (Véase Martínez-Barricarte et al.,<br />

J Clin Invest. 120:3702-3712 (2010) para más <strong>de</strong>talles).<br />

The figure shows the pedigree of the first case of <strong>de</strong>nse <strong>de</strong>posit disease<br />

(DDD) due to a mutation in the C3 gene. The functional characterization of<br />

this mutation provi<strong>de</strong>d conclusive evi<strong>de</strong>nce in humans indicating that fluid<br />

phase-restricted AP dysregulation, resulting in the continuous generation of<br />

C3b in plasma, plays a major role in DDD pathogenesis. Furthermore, analysis<br />

of this exceptional C3 mutation illustrates some of the structural requirements<br />

un<strong>de</strong>rlying the substrate recognition and regulatory activities of fH, DAF and<br />

MCP, advancing our un<strong>de</strong>rstanding of the activation and regulation of the<br />

AP C3 convertase. See Martínez-Barricarte et al., J Clin Invest. 120:3702-3712<br />

(2010) for <strong>de</strong>tails.<br />

<strong>Molecular</strong> Pathology /<br />

Complement Genetics<br />

We perform research in genomics and molecular genetics with<br />

a specific interest in the molecular bases of human disease.<br />

Our activities involve gene i<strong>de</strong>ntification, mutation <strong>de</strong>tection and<br />

biochemical, cellular and structural analysis of the proteins enco<strong>de</strong>d by<br />

the disease-associated genes. A major objective is generating in vitro and<br />

in vivo mo<strong>de</strong>ls to increase our un<strong>de</strong>rstanding of pathogenic mechanisms, to<br />

improve diagnostics and to <strong>de</strong>velop preventive and therapeutic strategies.<br />

After previous successes in mapping and i<strong>de</strong>ntifying various<br />

disease-causing genes our current work focused on:<br />

Disor<strong>de</strong>rs due to dysregulation of the complement system.<br />

Complement is central to innate immunity with roles in bacterial killing,<br />

apoptotic cell clearance, immune complex handling and modulating<br />

adaptive immunity. Complement is a double-edged sword, with<br />

uncontrolled activation contributing to pathology in many diseases.<br />

However, the precise way in which complement shifts from protective<br />

to <strong>de</strong>structive roles is not completely un<strong>de</strong>rstood. Using in vitro and<br />

in vivo mo<strong>de</strong>ls, we are currently addressing the study of the functional<br />

consequences of different genetic variations of the complement<br />

genes associated to atypical hemolytic uremic syndrome, <strong>de</strong>nse<br />

<strong>de</strong>posit disease and age-related macular <strong>de</strong>generation.<br />

Lafora Disease (LD). LD is a fatal neuro<strong>de</strong>generative disor<strong>de</strong>r and<br />

the most frequent cause of progressive myoclonus epilepsy in<br />

Southern Europe. Two genes cause LD, EPM2A encoding laforin, a<br />

dual protein tyrosine phosphatise and EPM2B encoding malin, a<br />

E3-ubiquiting ligase. We cloned EPM2A and later <strong>de</strong>monstrated that<br />

laforin interacts with proteins implicated in glycogen metabolism.<br />

Recently we showed that the complex formed by laforin and malin<br />

La figura muestra el análisis mediante microscopia confocal <strong>de</strong> las proteínas asociadas<br />

a los Cuerpos <strong>de</strong> Lafora (LB) en ratones Epm2B -/-, un mo<strong>de</strong>lo <strong>de</strong> Enfermedad <strong>de</strong><br />

Lafora. Los ratones Epm2B -/- presentan dos tipos <strong>de</strong> LBs, gran<strong>de</strong>s redondos y<br />

uniformes y pequeños e irregulares. La reconstrucción con imágenes seriadas <strong>de</strong><br />

los LBs en el tronco cerebral <strong>de</strong> estos ratones <strong>de</strong>muestra que los LBs irregulares<br />

pequeños se tiñen uniformemente para laforina y ubiquitina (A), tal vez sugiriendo<br />

un intento <strong>de</strong> eliminar los LBs en su etapa inicial <strong>de</strong> formación. La ubiquitina está<br />

ausente en los LBs gran<strong>de</strong>s don<strong>de</strong>, a<strong>de</strong>más <strong>de</strong> laforina, está presente la glucógeno<br />

sintasa (MGS) (B). En estos LBs, laforina se localiza predominantemente en el centro<br />

y MGS está en la superficie (C), lo que podría indicar que el glucógeno se acumula<br />

continuamente manteniendo estas estructuras en crecimiento.<br />

The figure shows the confocal microscope analysis of proteins associated with Lafora<br />

Bodies (LB) in the Epm2B-/- mouse, a mo<strong>de</strong>l of Lafora Disease. Epm2B-/- mice present<br />

two different types of LBs, big round uniform structures and small irregular ones. Confocal<br />

serial reconstruction of the LBs in the brainstem of these mice <strong>de</strong>monstrates that the<br />

small irregular LBs stain uniformly for laforin and ubiquitin (A), perhaps suggesting an<br />

attempt to eliminate the LBs at this early stage of formation. Ubiquitin is absent in the<br />

round LBs, where, in contrast skeletal muscle glycogen synthase (MGS) is present (B). In<br />

these LBs, laforin localizes predominantly at the core and MGS is in the surface (C), perhaps<br />

suggesting that glycogen is continuously accumulating in these growing structures.<br />

regulates glycogen metabolism<br />

by a novel mechanism involving<br />

the ubiquitinilation and proteosomal<br />

<strong>de</strong>gradation of GS and PTG proteins<br />

and have provi<strong>de</strong>d evi<strong>de</strong>nce that laforin<br />

has a role in autophagy. Using a collection<br />

of animal mo<strong>de</strong>ls generated in our lab we are<br />

currently exploring the pathogenic mechanisms<br />

un<strong>de</strong>rlying LD.<br />

Technology transfer. Our expertise in DNA<br />

sequencing and its applications contributed to<br />

generate a spin-off company in the CIB (www.secugen.es)<br />

<strong>de</strong>dicated to DNA sequencing and molecular diagnostics.<br />

Publicaciones Seleccionadas<br />

Selected Publications<br />

Martínez-Barricarte R.*, Heurich M.*, Val<strong>de</strong>s-Cañero F., Vázquez-Martul E.,<br />

Torreira E., Montes T., Tortajada A., Pinto S., López-Trascasa M., Morgan BP.,<br />

Llorca O., Harris CL. and Rodríguez <strong>de</strong> Córdoba S. Human C3 mutation<br />

reveals a mechanism of Dense Deposit Disease pathogenesis and provi<strong>de</strong>s<br />

insights into complement activation and regulation. J Clin Invest.<br />

120:3702-3712 (2010). (*Equal first author).<br />

Hakobyan S*, Tortajada A*, Harris CL, Rodríguez <strong>de</strong> Córdoba S and<br />

Morgan PB. Variant-specific quantification of factor H in plasma i<strong>de</strong>ntifies<br />

null alleles associated with atypical Hemolytic Uremic Syndrome. Kidney<br />

Int. 78:782-788 (2010). (*Equal first author).<br />

Rodríguez <strong>de</strong> Córdoba S. aHUS: a disor<strong>de</strong>r with many risk factors. Blood.<br />

115:158-160 (2010).<br />

Moreno-Navarrete JM, Martínez-Barricarte R, Catalán V, Sabater M, Gómez-<br />

Ambrosi J, Ortega FJ, Ricart W, Blüher M, Frühbeck G, Rodríguez <strong>de</strong> Córdoba<br />

S and Fernán<strong>de</strong>z-Real JM. Complement Factor H is expressed in adipose<br />

tissue in association with insulin resistance. Diabetes 59:200-9 (2010).<br />

Torreira E*, Tortajada A*, Montes T*, Rodríguez <strong>de</strong> Córdoba S (*#) and Llorca<br />

O (*#). Coexistence of closed and open conformations of complement factor<br />

B in the alternative pathway C3bB (Mg2+) proconvertase. J. Immunol.<br />

183:7347-7351 (2009) (*Equal first and last author, # correspon<strong>de</strong>nce author).<br />

Abarrategui-Garrido C*, Martínez Barricarte R*, López-Trascasa M,<br />

Rodríguez <strong>de</strong> Córdoba S and Sánchez-Corral P. Characterization of<br />

complement factor H-related (CFHR) proteins in plasma reveals novel<br />

genetic variations of CFHR1 associated with atypical Hemolytic Uremic<br />

Syndrome. Blood. 114: 4261-4271 (2009). (*Equal first author).<br />

Tortajada A, Montes T, Martínez-Barricarte R, Morgan PB, Harris CL and<br />

Rodríguez <strong>de</strong> Córdoba S. The disease-protective complement factor<br />

H allotypic variant Ile62 shows increased binding affinity for C3b and<br />

enhanced cofactor activity. Hum Mol Genet. 18:3452-61 (2009).<br />

Montes T, Tortajada A, Morgan BP, Rodríguez <strong>de</strong> Córdoba S and Harris CL.<br />

Functional basis of protection against age-related macular <strong>de</strong>generation<br />

conferred by a common polymorphism in complement factor B. Proc.<br />

Natl. Acad Sci USA. 106:4366-4371 (2009).<br />

Torreira E*, Tortajada A*, Montes T*, Rodríguez <strong>de</strong> Córdoba S (*#) and<br />

Llorca O (*#). 3D structure of the C3bB complex provi<strong>de</strong>s insights into<br />

the activation and regulation of the complement alternative pathway<br />

convertase. Proc. Natl. Acad Sci USA. 106:882-887 (2009). (*Equal first<br />

and last author, # correspon<strong>de</strong>nce author).<br />

Premio<br />

Award<br />

Premio Nacional <strong>de</strong> Genética por las contribuciones en investigación<br />

<strong>de</strong> la genética humana y sus aplicaciones (2009).<br />

77

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!