30.05.2013 Views

N. Bresolin - E. Medea

N. Bresolin - E. Medea

N. Bresolin - E. Medea

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

L’impiego delle cellule staminali nelle<br />

malattie neuromuscolari<br />

Prof N. <strong>Bresolin</strong><br />

Dip. Scienze Neurologiche, Universita’di Milano<br />

Fondazione IRCCS Ospedale Maggiore Policlinico,<br />

Mangiagalli e Regina Elena, Milano<br />

IRCCS E. <strong>Medea</strong>, Bosisio Parini, Lecco


Cell transplantation and replacement<br />

GLIAL<br />

degeneration<br />

Demyelinating disease<br />

GLOBAL<br />

Degeneration<br />

Trauma and stroke<br />

Cognitive and Physical<br />

rehabilitation<br />

Neurodegenerative<br />

Neuromuscular<br />

Diseases<br />

Neural Stem cell therapy<br />

NEURONAL<br />

Degeneration<br />

Paracrine systems (PD)<br />

SELECTIVE<br />

Degeneration<br />

ALS, HD, Ataxias,<br />

FSH,DMD,LG etc<br />

Neuroprotective Therapies


Cellule staminali<br />

• Capacità di autorinnovarsi<br />

• Dare origine a cellule differenziate


Zigote<br />

STEM CELLS CONTINUUM<br />

Totipotent<br />

stem cells<br />

Embryonic<br />

stem cells<br />

Pluripotent<br />

stem cells<br />

Somatic<br />

stem cells<br />

Bone<br />

marrow, skin<br />

muscle etc<br />

stem cells


Blood<br />

blood cells<br />

Vessels<br />

endothelial cells<br />

Heart<br />

cardiomyocytes<br />

Le cellule staminali danno origine<br />

a cellule differenziate<br />

Bone<br />

Kidney osteoblasts<br />

Skin<br />

Muscle<br />

Pancreas<br />

Nervous<br />

System<br />

neurons<br />

astrocytes<br />

oligodendrocytes<br />

Liver<br />

insulin producing cells<br />

liver cells


Reprogramming of somatic stem cells<br />

Human Fibroblasts Induced pluripotent<br />

stem cells (iPS)<br />

Teratoma derived from human iPS cells<br />

Injected in SCID mice


In vitro differentiation of iPS.<br />

In vivo engraftment<br />

iPS cell-derived neurons integrate into<br />

the striatum of hemiparkinsonian<br />

rats and improve behavioral deficits.


Le cellule staminali possono avere effetti<br />

terapeutici attraverso diversi meccanismi<br />

Neuroprotezione Sostituzione cellulare<br />

Produzione di molecole con effetto<br />

neurotrofico, antiinfiammatorio,<br />

vasogenico etc.<br />

Geneticamente modificate per<br />

produrre specifici fattori<br />

Genesi di:<br />

•Nuovi neuroni<br />

•Glia


SVZ<br />

Isolation<br />

Astrocytes<br />

SVZ<br />

MATURE CELLS<br />

Neurons<br />

Corti et al<br />

Cellule staminali neurali<br />

Dissociate<br />

Oligodendrocytes<br />

EGF/FGF-2<br />

SELF-RENEWAL<br />

EGF/FGF-2


Cellule staminali neuronali CD133 positive si<br />

integrano in vivo nella corteccia<br />

Corti et al.2007


Multipotentiali<br />

Multipotentiality, ty, homing properties and pyramidal neurogenesis of CNS CNS-derived derived<br />

LeX(ssea LeX(ssea-1)+/CXCR4+ 1)+/CXCR4+ stem cells<br />

Isolamento di una<br />

sottofrazione<br />

staminale con<br />

doppia positività<br />

per LeX(Le) e<br />

CXCR4(CX) che<br />

possiede elevato<br />

potenziale di<br />

homing nel SNC<br />

ed estesa capacità<br />

di engraftement<br />

S. Corti, FASEB J. 2005 Nov;19(13):1860<br />

Nov;19(13):1860-2


Isolamento di una sottofrazione cellulare Le+CX+<br />

Adult<br />

murine brain<br />

Neurospheres<br />

MACS selection for<br />

LeX followed by<br />

FACS selection for<br />

LeX+CXCR4+<br />

SVZ<br />

Evaluation of<br />

Self Self-renewal renewal<br />

Differentation<br />

Phase Phase/DAPI DAPI LeX LeX/CXCR4 CXCR4<br />

Phase Phase/DAPI DAPI<br />

LeX CXCR4<br />

LeX LeX/CXCR4 CXCR4


Il trapianto di cellule staminali Le+CX+ si integra in<br />

corteccia e ricostituisce i circuiti neuronali in un<br />

modello ischemico murino<br />

Corti et al.2007


Trapianto di cellule staminali<br />

nelle malattie neuromuscolari:<br />

le distrofie muscolari


Distrofia Muscolare<br />

di Duchenne<br />

E’ una malattia geneticamente<br />

determinata X-linked dovuta all’assenza<br />

di distrofina<br />

•E’ caratterizzata da distrofia muscolare<br />

progressiva con ipostenia muscolare<br />

ingravescente e perdita della<br />

deambulazione intorno a 12 anni.


Il trapianto di cellule staminali puo’<br />

contribuire alla rigenerazione del<br />

tessuto muscolare scheletrico


Il nostro obiettivo: trapiantare le cellule<br />

muscolari attraverso la circolazione sanguigna<br />

Injected MSCs<br />

Muscle progenitors<br />

Rescue of muscular dystrophy


Isolation of muscle-derived stem cells<br />

(MDSCs).<br />

Density gradient separation<br />

Magnetic labeling using<br />

Sca-1/CD34 microbeads<br />

Separation with MACS<br />

column type LS<br />

Elution of<br />

highly pure MDSCs


Muscle homing of the Sca-1+/CD34-MDSCs after<br />

i.m. transplantation of mdx mice<br />

Pectoralis<br />

Quadriceps


Sca-1+/CD34- MDSCs express the L-selectin<br />

adhesion molecules


Myogenic differentiation of<br />

Sca-1+/CD34-/L-selectin+ MDSCs<br />

after i.v. injection of mdx mice


Delivery of stem cells to muscle fibers via<br />

intra-venous injection<br />

Two months-old mdx One year-old mdx


TRAP assay<br />

Clonogenic, self-renewal and multi-potency<br />

of AC133 positive cells from blood<br />

VEGF<br />

CFU-C assay in methyl<br />

cellulose


Expression of muscle markers by CD133 positive cells<br />

derived from the blood tissues.<br />

AC133+<br />

MyHC GFP Merge


Double-blinded randomized clinical trial phase I: autologous<br />

transplantation of muscle-derived AC133+ cells in Duchenne<br />

Muscular Dystrophy.<br />

Eight DMD patients were included in this study and randomized into two<br />

groups:<br />

Group A (n=5; subjects 003-004-005-006-007)<br />

AC133+cells injection into left abductor digiti minimi muscles (ADM)<br />

Group B (n=3 subjects 008-009-010)<br />

saline solution injection into ADM<br />

Primary outcome: Tolerance and feasibility of intramuscular<br />

transplantation of AC133+ cells to always ensure first, the<br />

patient’s safety and well-being, while aiming towards a treatment.<br />

Secondary outcome: muscular strength tests by MVIC and muscle<br />

force analysis skinned myofibers.<br />

Torrente Y et al. Cell Transplantation 2007


Autologous transplantation of muscle-derived AC133+<br />

cells<br />

Tibialis Anterior muscle (1gr)<br />

Muscle dissotiation LIBERASE Hi<br />

Left abductor digiti minimi muscle (ADM)<br />

Quality control,<br />

microbiology<br />

Myofibers Injections of 20X103AC133+ cells<br />

*15ml Hamilton with a 27-G needle<br />

Injection site<br />

•RPMI +<br />

In vitro serum free<br />

culture for 48h<br />

•human albumin 20%+<br />

•human insulin 100 Ul/m<br />

*5ml of cell suspension delivered in<br />

each injection<br />

*Injection depth 0.5 cm,interinjection<br />

distances 1mm (sterile<br />

transparent grid)


Local side effects after intramuscular transplantation of<br />

muscle-derived AC133+ cells<br />

Treated Controlateral<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

2004-<br />

003<br />

2004-<br />

004<br />

2004-<br />

005<br />

2004-<br />

006<br />

2004-<br />

007<br />

2004-<br />

008<br />

2004-<br />

009<br />

2004-<br />

010


Single muscle fibre strenght increase in<br />

DMD patients<br />

after AC133+ local injection<br />

CD133+/CXCR4+/CD34+<br />

Torrente Y et al. Cell Transplantation 2007<br />

0003C 0003T<br />

Slow Myofibers<br />

Fast Myofibers<br />

CD31 vessels


Intra-arterial delivery of wild-type<br />

mesoangioblasts<br />

in alpha-SG null mice<br />

i.a.<br />

α-SG KO


Expression of alpha-SG in alpha-SG null mice<br />

after intra-arterial delivery of wild-type<br />

mesoangioblasts<br />

Sampaolesi et al. Science 2003;301(5632):487-92


Expression of α-SG and dystrophin related proteins<br />

in α-SG null mice after intra-arterial delivery of<br />

wild-type mesangioblasts<br />

Sampaolesi et al. Science 2003;301(5632):487-92


Morphology by Evans blue and Azan-Mallory<br />

stainings of long-term treated α-SG null dystrophic<br />

muscles after three consecutive i.a. of wild-type<br />

mesangioblasts<br />

Functional properties of single muscle<br />

fibres of long-term treated a-SG null<br />

dystrophic muscles<br />

Sampaolesi et al. Science 2003;301(5632):487-92


Three-dimensional visualization of injected<br />

stem cells labeled with iron oxide<br />

nanoparticles after their intra-arterial<br />

transplantation<br />

Torrente Y et al., FEBS Lett. 2006;580(24):5759-64.


DMD genotypes for exon-<br />

skipping of AC133+ stem cells<br />

Exon phasing around exon 51 : DMD genotypes selected


Lentivirus U7exon51 map :<br />

Promoteur U7 (267 Pb)<br />

GGGUCUAGAUAACAACAUAGGAGCUGUGAU<br />

UGGCUGUUUUCAGCCAAUCAGCACUGACUC<br />

AUUUGCAUAGCCUUUACAAGCGGUCACAAAC<br />

UCAAGAAACGAGCGGUUUUAAUAGUCUUUUA<br />

GAAUAUUGUUUAUCGAACCGAAUAAGGAACU<br />

GUGCUUUGUGAUUCACAUAUCAGUGGAGGG<br />

GUGUGGAAAUGGCACCUUGAUCUCACCCUC<br />

AUCGAAAGUGGAGUUGAUGUCCUUCCCUGG<br />

CUCGCUACAGACGCACUUCCGCAA<br />

Lentivirus-mediated exon-skipping<br />

U7SmOPT<br />

(85 pb)<br />

Downstream<br />

Sequences (116 pb)<br />

CCCAAUUUCACUGGU<br />

CUACAAUGAAAGCAA<br />

AACAGUUCUCUUCCC<br />

CGCUCCCCGGUGUG<br />

UGAGAGGGGCUUUG<br />

AUCCUUCUCUGGUUU<br />

CCUAGGAAACGCGUA<br />

UGUGGCUAGCUUU<br />

U<br />

C G<br />

A U<br />

G C<br />

U A<br />

C G<br />

U A<br />

U A<br />

U A<br />

U A<br />

G C<br />

5’ CCUCUGUGAUUUUAUAACUUGAU/UCAAGGAAGAUGGCAUUUCUAAUUUUUGGAGCAG 3’<br />

UC h51AON2 h51AON1<br />

Site de liaison<br />

aux protéines<br />

SM (OPT)<br />

U G<br />

C G<br />

A U<br />

G C<br />

U A<br />

C G<br />

U A<br />

U A<br />

U A<br />

U A<br />

G C<br />

5’ CCUCUGUGAUUUUAUAACUUGAU/UCAAGGAAGAUGGCAUUUCUAAUUUUUGGAGCAG CCCU 3’<br />

UC U G<br />

C G<br />

A U<br />

G C<br />

U A<br />

C G<br />

U A<br />

U A<br />

U A<br />

U A<br />

G C<br />

5’ CCUCUGUGAUUUUAUAACUUGAU/UCAAGGAAGAUGGCAUUUCUAAUUUUUGGAGCAG CCCU 3’<br />

UC U G<br />

C G<br />

A U<br />

G C<br />

U A<br />

C G<br />

U A<br />

U A<br />

U A<br />

U A<br />

G C<br />

CCUCUGUGAUUUUAUAACUUGAU/UCAAGGAAGAUGGCAUUUCUAAUUUUUGGAGCAG CCCU<br />

UC U G<br />

C G<br />

A U<br />

G C<br />

U A<br />

C G<br />

U A<br />

U A<br />

U A<br />

U A<br />

G C<br />

CCUCUGUGAUUUUAUAACUUGAU/UCAAGGAAGAUGGCAUUUCUAAUUUUUGGAGCAG CCCU<br />

UC h51AON2 h51AON1<br />

Site de liaison<br />

aux protéines<br />

SM (OPT)<br />

G<br />

CCCU<br />

Skipped band<br />

A<br />

Characteristics :<br />

. Pseudotype : VSV-G<br />

. Title : 2.10 9 ip/ml<br />

. Transduction : 10 6 to 10 8 ip/ml<br />

Exon-skipping efficiency in vitro :<br />

tested on human myoblasts Δ52<br />

1 2 3 4<br />

1 2 3 4<br />

T 30 50<br />

B<br />

Ex50 Ex53<br />

Legend :<br />

1 : Myob Δ52 no transduced<br />

2 : Transduction (10 6 ip/ml)<br />

3 : Transduction (10 7 ip/ml)<br />

4 : H 2O


Human dystrophin expression in scid/mdx mice<br />

after transplantation of Delta 48-50 DMD exon<br />

skipped blood-derived AC133+ stem cells<br />

8 weeks after i.m. injection of skipped DMD D48-50<br />

blood-derived AC133 + cells (2.10 4 cells/TA)<br />

340 bp<br />

Genotype D48-50<br />

340 bp<br />

SM 1 2<br />

Skipping exon 51


Human dystrophin expression in scid/mdx mice<br />

after transplantation of Delta 48-50 DMD exon skipped<br />

blood-derived AC133+ stem cells


Lou<br />

Stefano


Sclerosi Laterale Amiotrofica


Transplantation of LeX+/CXCR4+ Adult Neural Stem Cells in the Spinal<br />

Cord of a Murine Model of Amyotrophic Lateral Sclerosis<br />

20 000 cells<br />

Primed Le+CX+<br />

Donor: β-actinGFP<br />

Hb9GFP<br />

Transplantation<br />

into spinal cord<br />

C57Bl6 SOD1 SOD1-<br />

G93A (treated n=24<br />

control n=24)<br />

70 days


LeX+CX+ cells share the properties of stem cells<br />

and produce MN protective cytokines


Acquisizione di un fenotipo colinergico motoneuronale<br />

HB9eGFP HB9eGFP/HB9 HB9 HB9eGFP HB9eGFP/Isl1 Isl1<br />

HB9eGFP HB9eGFP/ChAT ChAT HB9eGFP HB9eGFP/ChAT ChAT HB9eGFP HB9eGFP/BTX BTX<br />

% of HB9eGFP cells<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 1 10 100 1000<br />

Shh


Time to fall (s)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Il trapianto di cellule Le+CX+ migliora la funzione<br />

neuromuscolare e la sopravvivenza in topi SOD1<br />

10 11 12 13 14 15 16 17 18 19 20 21 22<br />

age (weeks)<br />

GFP<br />

HB9<br />

CTR1<br />

CTR2<br />

1GFP<br />

2ctr11<br />

3<br />

Hb9<br />

4<br />

ctr12<br />

Survivor<br />

1,00<br />

0,75<br />

0,50<br />

0,25<br />

Survival Plot (PL estimates)<br />

0,00<br />

120 140 160 180 200<br />

Times


La sopravvivenza dei motoneuroni è incrementata<br />

dopo il trapianto di cellule LeX+CX+<br />

wt<br />

wt<br />

transplanted<br />

SOD1<br />

transplanted<br />

SOD1<br />

untransplanted<br />

SOD1<br />

untransplanted<br />

SOD1<br />

no. motor neurons<br />

no. axons<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

wt GFP HB9 SOD1untransp.1<br />

wt GFP HB9 SODuntrasp.1<br />

SOD1untransp.2<br />

SODuntrasp.2


Il trapianto di cellule LeX+CXCR4+ incrementa<br />

la produzione di growth factors<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

GDNF VEGF IGF<br />

IGF IGF-1R 1R β IGFBP5 IGFBP5<br />

wt<br />

Treated<br />

Untreated<br />

% of IGFB5 hig h p ositive MN<br />

100<br />

Wild type<br />

80<br />

60<br />

40<br />

20<br />

0<br />

wt tr-SOD1 untr-SOD1<br />

Transplanted<br />

SOD1G93A<br />

% of IGF1-R positive MNs<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Untransplanted<br />

SOD1G93A<br />

wt tr-SOD1 untr-SOD1


Il trapianto di cellule LeX+CXCR4+ modifica<br />

il signalling di IGF1 nel midollo spinale dei topi SOD1


Cellule staminali nelle malattie del motoneurone<br />

Normal Intermediate<br />

stage<br />

Neuroprotezione Sostituzione cellulare<br />

End Stage


Atrofie Muscolari Spinali:<br />

SMA e SMARD1


Atrofia Muscolare Spinale (SMA)<br />

SMN expression


SMARD1 is due to mutations in the<br />

IGHMBP2, a RNA/DNA Helicase


Neuroni ALDH proiettano lunghi assoni e<br />

formano giunzioni neuromuscolari


GFP<br />

Differenziamento delle cellule<br />

staminali<br />

+ Neurobasal<br />

+ EGF/FGF<br />

Nestina<br />

CD15 Merge GFP/ChAT<br />

RA+Shh<br />

ES NSCs<br />

(CD15+Nestin+)<br />

Motoneurons<br />

- Feeder<br />

-LIF<br />

Corti et al.2008


GFP/Nestina<br />

Predifferenziamento<br />

GFP/ChAT<br />

Disegno Sperimentale<br />

TOPO SMA<br />

TOPO SMA<br />

TRATTATO


Analisi del fenotipo SMA dopo il trapianto


Midollo spinale di topo trapiantato<br />

GFP/DAPI


Cellule trapiantate si differenziano in motoneuroni<br />

GFP<br />

Neu-N<br />

ChAT<br />

Merge


Effetti del trapianto sui motoneuroni del midollo spinale<br />

Il trapianto<br />

aumenta il numero<br />

di motoneuroni e<br />

il loro diametro


Effetti del trapianto sulle miofibre muscolari<br />

Il trapianto aumenta il<br />

numero, il diametro<br />

delle miofibre e l’area<br />

muscolare


Utilizzo di sostanze per promuovere la crescita degli<br />

assoni verso i muscoli (GDNF e rolipram)


Lab of Biochemistry and Genetics<br />

Giacomo P. Comi<br />

Stefania Corti<br />

Dimitra Papadimitriou<br />

Domenico Santoro<br />

Di Fonzo Alessio<br />

Francesca Magri<br />

Isabella Ghione<br />

Marinella Carpo<br />

Dario Ronchi<br />

Monica Nizzardo<br />

Serena Ghezzi<br />

Roberto Del Bo<br />

Francesco Fortunato<br />

Andreina Bordoni<br />

Sabrina Lucchiari<br />

Sabrina Salani<br />

Chiara Donadoni<br />

Martina Nardini<br />

Serena Pagliarani<br />

Domenica Saccomanno<br />

Francesca Saladino<br />

Dino Ferrari Centre,<br />

Department of Neurological Sciences,<br />

University of Milan<br />

IRCCS Foundation “Ospedale<br />

Maggiore Policlinico Mangiagalli<br />

and Regina Elena”, Milan<br />

Stem Cell Lab<br />

Yvan Torrente<br />

Marzia Belicchi<br />

Andrea Farini<br />

Mirella Meregalli<br />

Manuela Gavina<br />

Federica Colleoni


Stem Cell Research Institute<br />

DIBIT-HSR, MILAN<br />

Cossu G<br />

Sampaolesi M<br />

Tonlorenzi R<br />

UMR,CNRS 7000<br />

Paris<br />

Butler Browne G<br />

Mouly V<br />

University of Paris<br />

Pauline D<br />

GENETHON<br />

Garcia L<br />

Goyenvalle A<br />

Collaborations<br />

University of Pavia<br />

Bottinelli R<br />

D’Antona G<br />

University of Verona<br />

Costantin G<br />

Rossi B<br />

University of Laval<br />

Sante Foy, Canada<br />

Tremblay J<br />

IRCCS E. <strong>Medea</strong><br />

Bosisio Parini<br />

D’Angelo MG<br />

Sironi M<br />

Cagliani R

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!