22.02.2015 Views

Vzorcovník

Vzorcovník

Vzorcovník

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1. Taylorove rozvoje<br />

∞∑ f (n) (0)<br />

f(x) =<br />

x n<br />

n!<br />

e x =<br />

ln(1 + x) =<br />

n=0<br />

∞∑<br />

k=0<br />

Vzorcovník<br />

Kubo Kováč<br />

x k<br />

k! = 1 + x + x2<br />

2! + x3<br />

3! + x4<br />

4! + O(x5 ) pre x → 0<br />

∞∑ (−1) k+1 x k<br />

k=1<br />

k<br />

= x − x2<br />

2 + x3<br />

3 − x4<br />

4 + O(x5 ) pre x → 0<br />

∞<br />

1<br />

1 − x = ∑<br />

x k = 1 + x + x 2 + x 3 + x 4 + O(x 5 ) pre x → 0<br />

k=0<br />

∞∑<br />

( ( ( ( α α α α<br />

(1 + x) α = x<br />

n)<br />

n = 1 + αx + x<br />

2)<br />

2 + x<br />

3)<br />

3 + x<br />

4)<br />

4 + O(x 5 ) pre x → 0<br />

n=0<br />

ln(1 + O(f(n))) = O(f(n))<br />

e O(f(n)) = 1 + O(f(n))<br />

pre f(n) = o(1)<br />

pre f(n) = O(1)<br />

(1 + O(f(n))) O(g(n)) = 1 + O(f(n)g(n)) pre f(n) = O(1), g(n) = o(1)<br />

2. Aproximácie<br />

n∑ 1<br />

H n =<br />

k = ln n + γ + 1<br />

2n − 1<br />

12n 2 + 1<br />

120n 4 + 1<br />

252n 6 + O(n−8 )<br />

k=1<br />

n! = √ ( n<br />

) ( n<br />

2πn 1 + 1<br />

e 12n + 1<br />

288n 2 − 139<br />

)<br />

51840n 3 − 571<br />

2488320n 4 + O(n−5 )<br />

ln n! = n ln n − n + 1 2 ln(2πn) + 1<br />

12n − 1<br />

360n 3 + 1<br />

1260n 5 − 1<br />

1680n 7 + O(n−9 )<br />

π(n) =<br />

n<br />

ln n + n<br />

(ln n) 2 + 2! n<br />

(ln n) 3 + 3! n ( ) n<br />

(ln n) 4 + O (ln n) 5<br />

p n = n ln n + n ln ln n +<br />

n<br />

( )<br />

( ) n · (ln ln n)<br />

2<br />

ln ln n − ln n − 2 + O<br />

ln n<br />

(ln n)<br />

(<br />

2<br />

B n = 2 · [2 \ n](−1) n/2 n!<br />

(2π) n 1 + 1<br />

2 n + 1<br />

3 n + 1 )<br />

4 n + O(5−n )<br />

3. Eulerov-Maclaurinov vzorec<br />

b∑<br />

∫ b<br />

m∑<br />

B k<br />

f(k) δk = f(x)dx +<br />

k! f (k−1) (x)<br />

∣<br />

a<br />

a<br />

k=1<br />

Ak f (2m) (x) ≥ 0 pre a ≤ x ≤ b, potom<br />

b<br />

a<br />

+ R m , kde R m = (−1) m+1 ∫ b<br />

|R 2m | ≤ B b<br />

2m<br />

(2m)! f (2m−1) (x)<br />

∣ ,<br />

a<br />

a<br />

B m ({x})<br />

f (m) (x) dx<br />

m!<br />

teda chyba |R 2m | nie je väčšia ako posledný neuseknutý člen. Ak navyše f (2m+2) (x) ≥ 0 a f (2m+4) (x) ≥ 0,<br />

tak<br />

b<br />

B 2m+2<br />

|R 2m | = Θ 2m ·<br />

(2m + 2)! f (2m+1) (x)<br />

∣ , Θ 2m ∈ (0, 1),<br />

teda |R 2m | je niekde medzi nulou a prvým useknutým členom.<br />

1<br />

a


4. Bernoulliho čísla<br />

m−1<br />

∑<br />

k=0<br />

k n = 1<br />

n + 1<br />

k=0<br />

n∑<br />

( ) n + 1<br />

B k m n+1−k = B n+1(m) − B n+1 (0)<br />

k<br />

n + 1<br />

k=0<br />

m∑<br />

( ) m + 1<br />

B k = [m = 0],<br />

k<br />

∑<br />

k<br />

( m<br />

k<br />

)<br />

B k = B m<br />

n 0 1 2 4 6 8 10 12 14 16 18 20<br />

B n 1 − 1 2<br />

1<br />

6<br />

− 1 30<br />

1<br />

42<br />

− 1 30<br />

5<br />

66<br />

− 691<br />

2730<br />

7<br />

6<br />

− 3617<br />

510<br />

43867<br />

798<br />

− 174611<br />

330<br />

5. Bernoulliho polynómy<br />

n∑<br />

( n<br />

B n (x) = B k x<br />

k)<br />

n−k<br />

k=0<br />

n ∑<br />

k=0<br />

k p = B p+1(n + 1) − B p+1 (0)<br />

p + 1<br />

6. Generujúce funkcie<br />

B 0 (x) = 1<br />

B 1 (x) = x − 1/2<br />

B 2 (x) = x 2 − x + 1/6<br />

B 3 (x) = x 3 − 3 2 x2 + 1 2 x<br />

B 4 (x) = x 4 − 2x 3 + x 2 − 1<br />

30<br />

B 5 (x) = x 5 − 5 2 x4 + 5 3 x3 − 1 6 x<br />

B 6 (x) = x 6 − 3x 5 + 5 2 x4 − 1 2 x2 + 1<br />

42<br />

Budeme hovoriť, že f(x) je (obyčajná) generujúca funkcia pre postupnosť {a n } ∞ ogf<br />

n=0<br />

a zapisovať f(x) ←→<br />

{a n } ∞ n=0 , keď f(x) = ∑ ∞<br />

n=0 a nx n . Nech f ←→ ogf<br />

{a n } ∞ n=0 , g ←→ ogf<br />

{b n } ∞ n=0 a h ←→ ogf<br />

{c n } ∞ n=0<br />

. Potom platí<br />

f − a 0 − · · · − a h−1 x h−1<br />

x h<br />

(f − a 0 )/x ogf<br />

←→ {a n+1 } ∞ n=0<br />

ogf<br />

←→ {a n+h } ∞ n=0<br />

(xDf) ogf<br />

←→ {na n } ∞ n=0<br />

(xD) k f<br />

ogf<br />

←→ { n k a n<br />

} ∞<br />

n=0<br />

ogf<br />

P (xD)f ←→ {P (n)a n } ∞ n=0<br />

{ n<br />

fg ←→<br />

ogf ∑<br />

} ∞<br />

a r b n−r<br />

r=0 n=0<br />

{ ∑<br />

fgh ←→<br />

ogf<br />

f k<br />

f<br />

(1 − x)<br />

ogf<br />

←→<br />

ogf<br />

←→<br />

} ∞<br />

a r b s c t<br />

r+s+t=n n=0<br />

{<br />

∑<br />

} ∞<br />

a n1 a n2 · · · a nk<br />

n 1+···+n k =n n=0<br />

{<br />

∑ n<br />

i=0<br />

a i<br />

} ∞<br />

n=0<br />

2


7. Exponenciálne generujúce funkcie<br />

Budeme hovoriť, že f(x) je exponenciálna generujúca funkcia pre {a n } ∞ egf<br />

n=0<br />

, f(x) ←→ {a b } ∞ n=0<br />

, ak f(x) =<br />

∑ ∞<br />

n=0 a nx n /n!. Nech f ←→ egf<br />

{a n } ∞ n=0 a g ←→ egf<br />

{b n } ∞ n=0<br />

, potom platí<br />

f ′<br />

D h f<br />

egf<br />

←→ {a n+1 } ∞ n=0<br />

egf<br />

←→ {a n+h } ∞ n=0<br />

egf<br />

P (xD)f ←→ {P (n)a n } ∞ n=0<br />

{ ∑<br />

( } ∞<br />

fg ←→<br />

egf n<br />

a r b n−r<br />

r)<br />

r<br />

n=0<br />

{<br />

∑<br />

(<br />

f k<br />

egf<br />

←→<br />

r 1+r 2+···+r k =n<br />

)<br />

} ∞<br />

n<br />

a r1 a r2 · · · a rk<br />

r 1 , r 2 , . . . , r k<br />

n=0<br />

8. Dirichletove generujúce funkcie<br />

Dirichletova generujúca funkcia postupnosť {a n } ∞ n=1 je<br />

f(x) =<br />

∞∑<br />

n=1<br />

a n<br />

n x = a 1 + a 2<br />

2 x + a 3<br />

3 x + a 4<br />

4 x + · · · ,<br />

píšeme f(x) ←→ dgf<br />

{a n } ∞ dgf<br />

n=1<br />

. Nech f ←→ {a n } ∞ n=1 a g ←→ dgf<br />

{b n } ∞ n=1<br />

, potom platí<br />

{ } ⎧ ⎫ ∞<br />

∞<br />

∑<br />

⎨<br />

fg ←→<br />

dgf<br />

∑ ⎬<br />

a r b s = a<br />

⎩ d b n/d .<br />

⎭<br />

rs=n n=1 d\n<br />

Máme ζ(x) = ∑ {<br />

∞<br />

n=1 1/nx = 1 −x + 2 −x + 3 −x + · · ·, teda ζ(x) ←→ dgf<br />

{1} ∞ n=1 a ζ2 (x) ←→<br />

dgf ∑ } ∞<br />

d\n 1 ,<br />

n=1<br />

teda [n −x ]ζ 2 (x) = d(n), počet deliteľov čísla n.<br />

n=1<br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!