10.06.2015 Views

Mirosław Bućko, Ryszard Gajerski, Stanisław Koziński,

Mirosław Bućko, Ryszard Gajerski, Stanisław Koziński,

Mirosław Bućko, Ryszard Gajerski, Stanisław Koziński,

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Mirosław Bućko, <strong>Ryszard</strong> <strong>Gajerski</strong>, Stanisław Koziński,<br />

Anna Kozłowska-Róg, Stanisław Łabuś, Andrzej Małecki,<br />

Barbara Małecka, <strong>Ryszard</strong> Mania,<br />

Marta Radecka, Małgorzata Wierzbicka,<br />

Krzysztof Wojciechowski<br />

Obliczenia w chemii ogólnej<br />

część I<br />

Podstawy teoretyczne<br />

Praca zbiorowa pod redakcją<br />

Andrzeja Małeckiego<br />

Opracowanie wersji internetowej<br />

Stanisław Łabuś


Spis treści<br />

Przedmowa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

1. Podstawowe definicje i prawa chemiczne . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

1.1. Podstawowe definicje . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

1.2. Podstawowe prawa chemiczne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

2. Klasyfikacja związków nieorganicznych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

2.1. Tlenki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

2.2. Wodorotlenki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

2.3. Kwasy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

2.4. Sole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

3. Uzgadnianie równań reakcji chemicznych . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

3.1. Reakcje bez wymiany elektronów . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

3.2. Reakcje utleniania i redukcji (redoks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

3.2.1. Klasyfikacja reakcji utleniania i redukcji (redoks) . . . . . . . . . . . . . . . . . . . . . 23<br />

3.2.2. Bilansowanie równań utleniania-redukcji . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

3.3. Przewidywanie kierunku zachodzenia reakcji chemicznych . . . . . . . . . . . . . . 24<br />

3.3.1. Ogólne zasady . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

3.3.2. Odstępstwa od kryterium przewidywania kierunku zachodzenia reakcji.<br />

Stany zamrożone, równowagi metatrwałe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

3.3.3. Przewidywanie kierunku zachodzenia reakcji chemicznych typu redoks . . . . 32<br />

4. Stężenia roztworów . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

4.1. Stosowane jednostki stężeń . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

5. Stechiometria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

5.1. Obliczanie składu ilościowego związku chemicznego . . . . . . . . . . . . . . . . . . 44<br />

5.2. Wyprowadzanie empirycznego (uproszczonego) i rzeczywistego wzoru<br />

związku chemicznego na podstawie jego składu . . . . . . . . . . . . . . . . . . . . . . . 46<br />

5.3. Obliczenia na podstawie równań chemicznych . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

6. Równowaga chemiczna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

6.1. Wstęp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

6.2. Równowaga w układach homogenicznych . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

6.3. Równowaga chemiczna w reakcjach heterogenicznych . . . . . . . . . . . . . . . . . 64<br />

6.4. Wpływ czynników zewnętrznych na stan równowagi . . . . . . . . . . . . . . . . . . . 65<br />

1


6.5. Wykorzystanie praw równowagi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72<br />

6.6. Podsumowanie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

7. Równowagi jonowe w wodnych roztworach elektrolitów . . . . . . . . . . . . . . . 75<br />

7.1. Dysocjacja elektrolityczna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

7.1.1. Równowagi dysocjacji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br />

7.1.2. Krytyka teorii Arrheniusa. Mechanizm dysocjacji . . . . . . . . . . . . . . . . . . . . . 79<br />

7.1.3. Struktura roztworów elektrolitów. Aktywność i współczynnik aktywności . . 82<br />

7.1.4. Elektrolity mocne i słabe. Dysocjacja wielostopniowa . . . . . . . . . . . . . . . . . . 88<br />

7.1.5. Teoria elektrolitów mocnych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90<br />

7.1.6. Dysocjacja wody. Iloczyn jonowy wody. pH i pOH . . . . . . . . . . . . . . . . . . . . 94<br />

7.1.6.1. Wyznaczanie wykładnika stężenia jonów wodorowych. Wskaźniki<br />

kwasowo-zasadowe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99<br />

7.1.6.2. Teorie kwasów i zasad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102<br />

7.1.6.3. Czynniki wpływające na moc kwasów i zasad . . . . . . . . . . . . . . . . . . . . . . . . 105<br />

7.2. Roztwory buforowe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106<br />

7.2.1. pH roztworów buforowych i mechanizm ich działania . . . . . . . . . . . . . . . . . . 107<br />

7.2.2. Pojemność buforowa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113<br />

7.2.3. Sporządzanie roztworów buforowych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114<br />

7.3. Hydroliza soli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

7.3.1. Hydroliza soli typu MeR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117<br />

7.3.1.1. Hydroliza anionowa soli typu MeR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />

7.3.1.2. Hydroliza kationowa soli typu MeR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120<br />

7.3.1.3. Hydroliza kationowo-anionowa soli typu MeR . . . . . . . . . . . . . . . . . . . . . . 121<br />

7.3.2. Hydroliza soli słabych dwuprotonowych kwasów i mocnych<br />

jednoprotonowych zasad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122<br />

7.3.3. Hydroliza soli trójprotonowych kwasów i mocnych jednoprotonowych<br />

zasad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123<br />

7.3.4. Hydroliza soli mocnych jednoprotonowych kwasów i wieloprotonowych<br />

zasad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124<br />

7.3.5. Hydroliza soli słabych jedno- lub wieloprotonowych kwasów i słabych<br />

jedno- lub wieloprotonowych zasad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124<br />

7.3.6. Hydroliza soli wieloprotonowych kwasów i mocnych jednoprotonowych<br />

zasad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125<br />

7.4. Równowagi w roztworach trudno rozpuszczalnych soli . . . . . . . . . . . . . . . . . 125<br />

7.4.1. Rozpuszczalność substancji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127<br />

7.4.2. Rozpuszczalność hydrolizujących soli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128<br />

2


7.4.3. Rozpuszczalność soli w roztworach mocnych elektrolitów . . . . . . . . . . . . . . 134<br />

7.4.4. Rozpuszczalność soli w roztworach kompleksów . . . . . . . . . . . . . . . . . . . . . . 144<br />

7.4.5. Rozpuszczalność wodorotlenków . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147<br />

7.4.6. Podsumowanie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

8. Związki koordynacyjne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br />

8.1. Pojęcia podstawowe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br />

8.2. Równowagi w roztworach związków kompleksowych . . . . . . . . . . . . . . . . . . 159<br />

8.3. Trwałość kompleksów . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161<br />

8.4. Reakcje związków koordynacyjnych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163<br />

8.5. Wiązanie koordynacyjne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165<br />

8.6. Zastosowanie kompleksów w analizie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167<br />

9. Analiza wagowa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169<br />

9.1. Koloidy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178<br />

9.1.1. Charakterystyka ogólna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178<br />

9.1.2. Podział koloidów . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179<br />

9.1.3. Koloidy liofobowe i liofilowe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180<br />

9.1.4. Metody otrzymywania koloidów . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182<br />

9.1.5. Metody oczyszczania koloidów . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183<br />

9.1.6. Właściwości układów koloidalnych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184<br />

9.1.7. Koagulacja koloidów . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193<br />

9.1.8. Peptyzacja koloidów . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195<br />

10. Analiza objętościowa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197<br />

11. Literatura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204<br />

3


Przedmowa<br />

Oddajemy do rąk Czytelników skrypt poświęcony podstawowym obliczeniom w chemii<br />

ogólnej. Zakres omawianego materiału obejmuje program zajęć dla studentów I roku<br />

Wydziału Inżynierii Materiałowej i Ceramiki Akademii Górniczo-Hutniczej, jednak w<br />

przekonaniu Autorów ze skryptu mogą korzystać studenci wszystkich wydziałów<br />

chemicznych uniwersytetów i politechnik.<br />

Jest wiele różnych wydawnictw poświęconych problemom obliczeń chemicznych w<br />

zakresie chemii ogólnej, a jednak uważamy, że proponujemy Czytelnikowi nieco odmienne<br />

spojrzenie na sposób prowadzenia obliczeń a przede wszystkim na uzyskany w ich rezultacie<br />

wynik. Wychodzimy z założenia, że umiejętność rozwiązywania zadań z chemii ogólnej<br />

przychodzi dopiero wraz ze zrozumieniem całego podłoża analizowanego problemu, wraz ze<br />

zrozumieniem właściwego sensu i znaczenia liczb wykorzystywanych jako dane i liczb<br />

uzyskiwanych jako wyniki. To właśnie dlatego pierwsza część oddawanego skryptu<br />

poświęcona jest podstawom chemii w wymiarze znacznie obszerniejszym niż to jest zwykle<br />

przyjęte w wydawnictwach poświęconym obliczeniom chemicznym. Materiał zawarty w<br />

części pierwszej może być pomocny w nauce wybranych zagadnień z chemii ogólnej w<br />

oderwaniu od problemu obliczeń. Uważny Czytelnik dostrzeże jednak natychmiast, że<br />

wszystkie zawarte w tej części informacje są naprawdę niezbędne dla poprawnego<br />

prowadzenia obliczeń.<br />

Cechą charakterystyczną przedstawianego materiału jest dążenie do uzyskania w wyniku<br />

obliczeń liczb mających rzeczywistą wartość i znaczenie, liczb których sens i błąd jest jasno<br />

określony. Rezygnujemy z "obliczeń", których wyniki różnią się od rzeczywistej wartości o<br />

całe rzędy, wskazując na brak uzasadnienia w często powszechnym przyjmowaniu<br />

upraszczających założeń. Pokazujemy, że często założenia te nie prowadzą do uproszczenia,<br />

ale raczej do wypaczenia rzeczywistości. Zachęcamy do wykonywania obliczeń w sposób tak<br />

dokładny, jak to tylko jest możliwe, co zapewnia zbliżenie wyniku do rzeczywistej wartości.<br />

Zniechęcamy do prowadzenia obliczeń uproszczonych w takim stopniu, że rozwiązywanie<br />

zadania staje się sztuką samą w sobie, a celem jest wykonanie działań arytmetycznych.<br />

Uważamy po prostu, że świat się zmienił i obecnie, gdy w obliczeniach nie posługujemy się<br />

tylko kartką papieru, tablicami logarytmicznymi czy suwakiem logarytmicznym, obliczenia<br />

dokładniejsze przy zastosowaniu kalkulatora programowalnego czy komputera są łatwe i<br />

szybkie do przeprowadzenia. Nie chcemy jednak, aby za wielocyfrowymi liczbami<br />

4


zjawiającymi się na wyświetlaczach kalkulatorów czy ekranach komputerów ginął ich<br />

właściwy sens. Dlatego tam, gdzie to jest tylko możliwe, odnosimy uzyskaną wartość do<br />

rzeczywistości, dyskutujemy jej sens, pamiętając, że liczba będąca wynikiem zadania, jest<br />

liczbą posiadającą wymiar a nie pojęciem abstrakcyjnym, a więc nie każda jej wartość może<br />

być przyjęta.<br />

Zdajemy sobie sprawę, że niektóre partie podręcznika nie są łatwe, że ich dokładne<br />

zrozumienie wymaga poważnej pracy, ale wiemy również, że kto tę pracę wykona<br />

samodzielnie, na końcu odkryje – „ależ to jest zupełnie proste !”<br />

5


Rozdział 1<br />

Podstawowe definicje i prawa chemiczne<br />

1.1. Podstawowe definicje<br />

Masa atomowa i masa cząsteczkowa<br />

Substancje są zbudowane z atomów lub dwu- i wieloatomowych cząsteczek. Za pomocą<br />

określonych metod fizycznych możemy wyznaczyć z dużą dokładnością masę atomu lub<br />

cząsteczki, np.:<br />

masa atomu wodoru wynosi: 1,66 ⋅ 10 g<br />

masa atomu węgla wynosi: 1,99 ⋅ 10g.<br />

Podane liczby nazywamy bezwzględnymi masami atomowymi. W praktyce ich nie<br />

stosujemy, ponieważ nie wiążą się z nimi żadne prawa chemiczne.<br />

Wprowadzono zatem pojecie względnej masy atomowej. Jest to liczba niemianowana,<br />

wyrażona w tzw. skali węglowej, której jednostka równa się 1/12 masy atomu izotopu węgla C.<br />

Masa atomowa pierwiastka chemicznego wskazuje, ile razy masa atomu<br />

danego pierwiastka jest większa od 1/12 masy atomu izotopu węgla 12 C.<br />

Masy atomowe wybranych pierwiastków podano w tabeli w drugiej części skryptu. Należy<br />

zauważyć, że masy atomowe nie są liczbami całkowitymi. Wynika to po pierwsze z faktu, że<br />

większość pierwiastków występujących w przyrodzie stanowi mieszaniny dwóch lub więcej<br />

izotopów (nie mają trwałych izotopów m.in. beryl, fluor, sód, glin, kobalt), a po drugie, z<br />

istnienia tzw. defektu masy. Posługujemy się zatem nie masami atomowymi poszczególnych<br />

izotopów, ale średnimi masami atomowymi.<br />

Obliczenie średniej masy atomowej wymaga znajomości mas atomowych izotopów oraz<br />

zawartości tych izotopów w mieszaninie (podanej np. w % wagowych).<br />

W przypadku związku chemicznego lub pierwiastków występujących w stanie wolnym w<br />

formie cząsteczek wieloatomowych (np.O 2 , O 3 ) wprowadzono pojęcie względnej masy<br />

cząsteczkowej.<br />

Masa cząsteczkowa jest to liczba, która wskazuje, ile razy masa cząsteczki jest większa<br />

od 1/12 masy atomu izotopu węgla 12 C.<br />

6


Masę cząsteczkową związku chemicznego oblicza się, sumując masy atomowe<br />

pierwiastków wchodzących w skład cząsteczki, pomnożone przez liczbę atomów danego<br />

pierwiastka w cząsteczce tego związku chemicznego.<br />

Na przykład:<br />

dla azotu cząsteczkowego ( N 2 ) wynosi ona: 2 ⋅ 14,0067 = 28,0134<br />

dla kwasu azotowego(V) (HNO 3 ) wynosi: 1,0079 + 14,0067 + 3 ⋅ 15,9994 = 63,0132.<br />

Mol<br />

Mol jest mianowaną jednostką chemiczną (g⋅mol), która stanowi podstawową jednostkę<br />

układu SI, będącą miarą ilości materii.<br />

Mol (atomów, cząsteczek, jonów, elektronów, lub innych cząstek) jest to taka ilość materii,<br />

która zawiera tyle cząstek, ile atomów węgla zawartych jest w 0,012 kg izotopu węgla 12 C.<br />

Np.: 12 g węgla to 1 mol atomów węgla,<br />

32 g tlenu to 1 mol cząsteczek tlenu,<br />

28 g tlenku węgla(II) CO to 1 mol cząsteczek tlenku węgla,<br />

23 g jonów Na to 1 mol jonów sodu.<br />

Mol odpowiada zatem liczbowo masie atomowej lub cząsteczkowej danej substancji. Z<br />

podanej powyżej definicji mola wynika, że jednostka ta zastępuje takie pojęcia, jak: gramoatom,<br />

gramojon, gramocząsteczka.<br />

Oprócz mola używa się także jednostek pochodnych, zasady tworzenia których określane są<br />

w taki sam sposób jak dla wszystkich innych jednostek układu SI. Na przykład :<br />

1 kilomol (kmol) = 10 mol<br />

1 milimol (mmol) = 10 mol.<br />

W jednym molu znajduje się określona liczba molekuł.<br />

Nazwano ją liczbą_Avogadra i wynosi ona<br />

N A = 6,023 ⋅ 10 23<br />

Gramorównoważnik związku chemicznego<br />

Gramorównoważnik jest obecnie w chemii pojęciem zbędnym i dlatego jest systematycznie<br />

eliminowany z nowych wydań podręczników i zbiorów zadań. W obowiązującym od roku 1977<br />

7


Międzynarodowym Układzie Jednostek Miar zwanym w skrócie SI, jednostką ilości materii jest<br />

mol. Ponadto gramorównoważnik jest wielkością fizyczną, której definicja (w przeciwieństwie<br />

do mola) jest nieprecyzyjna i niejednoznaczna. Gramorównoważnik nie odnosi się bowiem tylko<br />

do substancji (związku chemicznego czy pierwiastka), ale także do reakcji, w której bierze ona<br />

udział. Szczególnie problem ten pojawia się w przypadku obliczeń gramorównoważnika dla<br />

utleniacza i reduktora (zagadnienie to będzie omówione w rozdziale 3).<br />

Ponieważ pojęcie gramorównoważnika możemy jeszcze spotkać np. w starych przepisach<br />

analitycznych lub zbiorach zadań, z których korzystamy, zachodzi konieczność podania<br />

sposobu obliczenia gramorównoważnika związku chemicznego (stanowi on zawsze określoną<br />

część mola).<br />

Gramorównoważnik obliczamy dzieląc mol w przypadku:<br />

a) kwasu, przez liczbę atomów wodoru w cząsteczce (tylko tych, które odszczepiają się<br />

w procesie dysocjacji jako jony H),<br />

b) wodorotlenku, przez liczbę grup wodorotlenkowych w cząsteczce,<br />

c) soli, przez iloczyn liczby kationów (lub anionów) w cząsteczce soli i ich wartościowości.<br />

1.2. Podstawowe prawa chemiczne<br />

Reakcje chemiczne podporządkowane są określonym prawom, do których zalicza się:<br />

Prawo zachowania masy:<br />

Suma mas produktów reakcji (substancji powstających w reakcji chemicznej) jest równa<br />

sumie mas substratów (substancji wyjściowych w reakcji chemicznej).<br />

Prawem ogólniejszym od prawa zachowania masy jest prawo zachowania materii, które jest<br />

sformułowane w ten sposób:<br />

Suma masy i energii jest wielkością stałą w danym układzie zamkniętym<br />

Σ(m + E) = const.<br />

W reakcjach silnie egzotermicznych (np. reakcje jądrowe) konieczne jest uwzględnienie<br />

tzw. defektu masy (przypomnijmy, że związek masy i energii jest dany zależnością Einsteina E<br />

= mc). Należy podkreślić, że efekty energetyczne reakcji chemicznych są na tyle małe, że tzw.<br />

defekt masy możemy pominąć w obliczeniach chemicznych.<br />

8


Prawo stałych stosunków wagowych (molowych):<br />

Pierwiastki tworzące dany (jeden) związek chemiczny łączą się ze sobą zawsze w tym<br />

samym stosunku wagowym (molowym), niezależnie od pochodzenia danego związku,<br />

jak i od sposobu jego otrzymania.<br />

Związki chemiczne, które posiadają ściśle określony i stały skład ilościowy, nazywamy<br />

daltonidami. Zaliczamy do nich gazy, ciecze i grupę substancji w stanie stałym. Większość<br />

krystalicznych substancji nieorganicznych to bertolidy (związki niestechiometryczne), czyli<br />

połączenia chemiczne o składzie zmieniającym się w szerszym lub węższym zakresie (większe<br />

lub mniejsze odstępstwo od stechiometrii). Składu tych związków nie można więc wyrazić za<br />

pomocą prostych liczb całkowitych. Do bertolidów zaliczamy m.in. tlenki i siarczki takich metali<br />

jak tytan, mangan, żelazo, kobalt czy nikiel.<br />

Stosunek wagowy sodu do tlenu w tlenku sodu można w przybliżeniu zapisać jako:<br />

Na : O = 23 : 8<br />

co oznacza, że na 23 części wagowe sodu przypada 8 części wagowych tlenu.<br />

Skład wagowy siarczku srebra (srebro z siarką tworzy tylko jedno połączenie) wyraża się w<br />

przybliżeniu stosunkiem:<br />

Ag : S = 27 : 4<br />

Wynika stad, że jeżeli zmieszamy dwadzieścia siedem części wagowych srebra z czterema<br />

częściami wagowymi siarki, to zajdzie reakcja tworzenia siarczku srebra i nastąpi całkowite<br />

przereagowanie składników mieszaniny.<br />

Jeżeli w przygotowanej mieszaninie srebra i siarki zamiast czterech części wagowych siarki<br />

użyto by siedmiu części (tzn. więcej niż wynika z powyższego stosunku), to trzy części wagowe<br />

siarki nie przereagują ze srebrem.<br />

Prawo wielokrotnych stosunków wagowych (molowych)<br />

Prawo to odnosi się do pierwiastków, które łącząc się ze sobą, tworzą dwa lub więcej<br />

związków chemicznych.<br />

Jeżeli dwa pierwiastki tworzą ze sobą kilka związków chemicznych, to na stałą ilość<br />

wagową (molową) jednego pierwiastka przypadają ilości wagowe (molowe) drugiego<br />

pierwiastka, pozostające do siebie w stosunku niewielkich liczb naturalnych.<br />

9


Węgiel tworzy z tlenem następujące połączenia:<br />

tlenek węgla(II) - CO<br />

tlenek węgla(IV) - CO 2<br />

Jeżeli przyjmiemy jeden mol węgla za stałą ilość wagową, to stosunek wagowy ilości tlenu<br />

w tych połączeniach wynosi 1 : 2 (są to niewielkie liczby naturalne). A zatem tlenki te stosują<br />

się do prawa stosunków wielokrotnych.<br />

Prawa stanu gazowego<br />

Stan każdej substancji gazowej (gazu) charakteryzuje się wielkościami fizycznymi, takimi<br />

jak: masa, objętość, ciśnienie i temperatura. Są one powiązane ze sobą w określone zależności,<br />

które nazywamy prawami gazowymi.<br />

Parametry charakteryzujące stan gazowy dają się połączyć w jedno równanie stanu gazu<br />

doskonałego, które można zapisać jako:<br />

p⋅ v = n⋅R⋅T<br />

(1.1)<br />

gdzie: p - ciśnienie gazu (Pa),<br />

v - objętość (m),<br />

R - stała gazowa - 8,3145 (J⋅ mol⋅K) lub 83,14 (hPa·dm/mol·K)<br />

T - temperatura bezwzględna (K),<br />

n - ilość moli gazu.<br />

Z powyższego równania stanu gazu doskonałego dają się wyprowadzić następujące prawa<br />

gazowe będące jego konsekwencjami:<br />

Prawo Boyle'a - Mariotte'a<br />

W warunkach izotermicznych (T = const) dla stałej masy gazu, iloczyn objętości i ciśnienia<br />

jest wielkością stałą:<br />

Prawo Gay - Lussaca<br />

p · v = const<br />

(1.2)<br />

W warunkach izobarycznych (p = const) dla stałej masy gazu, stosunek objętości do<br />

temperatury (T w skali Kelvina) jest stały:<br />

ν<br />

T =<br />

const<br />

(1.3)<br />

10


Prawo Charlesa<br />

W warunkach izochorycznych (v = const) dla stałej masy gazu, stosunek ciśnienia gazu do<br />

temperatury (T w skali Kelvina) jest stały:<br />

p = const<br />

(1.4)<br />

T<br />

Podane prawa gazowe wyprowadzono, zakładając określony model gazu rzeczywistego<br />

(model gazu doskonałego). Podstawowe założenia tego modelu to:<br />

1) gaz składa się z cząsteczek, które są punktami materialnymi;<br />

2) między cząsteczkami gazu nie działają żadne siły;<br />

3) zderzenia cząsteczek są sprężyste;<br />

4) cząsteczki gazu znajdują się w ciągłym ruchu i poruszają się ruchem prostoliniowym<br />

na odcinkach pomiędzy zderzeniami.<br />

Gazy rzeczywiste wykazują większe lub mniejsze odchylenia od praw gazowych ponieważ<br />

nie spełniają one dokładnie założeń przedstawionego modelu gazu doskonałego. Wielkość tego<br />

odstępstwa zależy od temperatury, ciśnienia i rodzaju gazu.<br />

Równanie stanu gazu doskonałego pozwala obliczyć objętość 1 mola dowolnego gazu w<br />

warunkach normalnych.<br />

Pod tym pojęciem rozumiemy temperaturę 0C (273,15 K) i ciśnienie 1 atm (101325 Pa).<br />

Jeżeli powyższe wartości wstawimy do równania (1.1), to objętość 1 mola gazu doskonałego w<br />

warunkach normalnych wyniesie 22,414 dm. Dla gazów rzeczywistych objętość 1 mola nie jest<br />

dokładnie równa 22,414 dm, ponieważ gazy te nie spełniają równania stanu gazu doskonałego.<br />

Dla przykładu w tabeli 1.1. podano objętość 1 mola wybranych gazów rzeczywistych w<br />

warunkach normalnych.<br />

Równanie (1.1) pozwala (w przybliżeniu) obliczyć gęstość gazu. Ilość moli gazu (n)<br />

obliczamy, dzieląc masę gazu przez masę cząsteczkową, stąd możemy napisać:<br />

i<br />

(1.5)<br />

gdzie d jest gęstością gazu.<br />

pM<br />

RT<br />

pv =<br />

m<br />

M<br />

RT<br />

m<br />

= = d<br />

(1.6)<br />

v<br />

11


Tabela 1.1. Objętości molowe V o (dm) gazów rzeczywistych w warunkach normalnych<br />

Gaz Objętość 1 mola<br />

wodór 22,43<br />

tlen 22,39<br />

tlenek azotu 22,39<br />

fluorowodór 21,71<br />

chlor 22,02<br />

amoniak 22,05<br />

Prawa gazowe umożliwiają również obliczenie masy cząsteczkowej gazu. Wykorzystuje się<br />

w tym celu następujące zależności:<br />

a) masa cząsteczkowa gazu jest równa:<br />

M = 22, 4d<br />

(1.7)<br />

gdzie d jest gęstością bezwzględną tego gazu w warunkach normalnych,<br />

b) równanie stanu gazu doskonałego (ilość moli n można zapisać jako iloraz masy gazu m<br />

i masy cząsteczkowej M) po przekształceniu daje zależność:<br />

mRT<br />

M = (1.8)<br />

pv<br />

c) znajomość gęstości względnej umożliwia obliczanie masy cząsteczkowej gazu przy<br />

wykorzystaniu równania:<br />

M<br />

M<br />

1<br />

D = (1.9)<br />

2<br />

gdzie D oznacza gęstość względną substancji gazowej (1) w stosunku do substancji gazowej (2),<br />

a M 1 i M 2 odpowiednio masy cząsteczkowe gazów. Wzór ten można wyprowadzić z równania<br />

stanu gazu doskonałego.<br />

Związek między gęstościami bezwzględnymi dwóch różnych gazów wyznaczonych w tej<br />

samej temperaturze i przy tym samym ciśnieniu a ich masami cząsteczkowymi ma postać:<br />

d<br />

1<br />

M =<br />

1<br />

(1.10)<br />

d<br />

2<br />

M<br />

2<br />

Iloraz po lewej stronie tego równania nazywamy gęstością względną gazu (1) w stosunku do<br />

gęstości gazu (2) i oznacza się go przez D. Najczęściej podaje się tę wielkość w stosunku do<br />

wodoru lub powietrza.<br />

12


Jeżeli wzorcem jest wodór, to równanie (1.10) przyjmuje postać:<br />

M<br />

x<br />

D<br />

H<br />

=<br />

2<br />

2,016<br />

(1.11)<br />

Jeżeli wzorcem jest powietrze, to równanie (1.8) przyjmie postać:<br />

M<br />

x<br />

D<br />

pow<br />

= (1.12)<br />

29<br />

Liczba 29 nie jest masą cząsteczkową powietrza, ponieważ jest ono mieszaniną gazów. Jest<br />

to średnia masa 1 mola powietrza, którą można obliczyć, znając gęstość bezwzględną w<br />

warunkach normalnych (patrz równanie 1.7). Dla 1 dm suchego powietrza wynosi ona 1,293 g,<br />

stąd masa 1 mola powietrza wyraża się wzorem:<br />

M = 1 ,293⋅22,4<br />

= 29<br />

(1.13)<br />

pow<br />

Za wzorzec można przyjąć również inny gaz o znanej masie cząsteczkowej.<br />

13


Rozdział 2<br />

Klasyfikacja związków nieorganicznych<br />

Związki nieorganiczne dzielimy na cztery podstawowe grupy: tlenki, wodorotlenki, kwasy i<br />

sole. W rozdziale tym wprowadzono, w sposób uproszczony, podstawowe zasady nomenklatury<br />

związków nieorganicznych, zgodnie z wytycznymi Międzynarodowej Unii Chemii Czystej i<br />

Stosowanej z roku 1971.<br />

2.1. Tlenki<br />

Tlenek jest to połączenie dowolnego pierwiastka chemicznego z tlenem (z wyjątkiem<br />

związków fluoru z tlenem, które są fluorkami).<br />

Jeżeli dany pierwiastek tworzy jeden tlenek, to jego nazwa zawiera słowo tlenek i nazwę<br />

kationu w formie rzeczownikowej (drugi przypadek liczby pojedynczej), na przykład:<br />

ZnO - tlenek cynku (nie cynkowy),<br />

MgO - tlenek magnezu (nie magnezowy).<br />

Jeżeli dany pierwiastek tworzy więcej niż jedno połączenie z tlenem, wówczas oprócz<br />

nazwy pierwiastka, w nawiasie podany jest jego stopień utlenienia (cyfrą rzymską). Na<br />

przykład:<br />

SO 2 - tlenek siarki(IV),<br />

SO 3<br />

- tlenek siarki(VI),<br />

CO 2 - tlenek węgla(IV),<br />

CO - tlenek węgla(II).<br />

Ze względu na właściwości chemiczne, tlenki można podzielić na: tlenki kwasowe,<br />

zasadowe, amfoteryczne. Tlenki nie dające się zaszeregować do żadnej z wymienionych grup,<br />

określa się jako tlenki obojętne.<br />

Tlenek kwasowy (bezwodnik kwasowy) w bezpośredniej reakcji z wodą (lub pośrednio)<br />

tworzy odpowiedni kwas. Tlenek zasadowy (bezwodnik zasadowy) w bezpośredniej reakcji z<br />

wodą (lub pośrednio) tworzy odpowiedni wodorotlenek. Tlenek amfoteryczny wykazuje<br />

zarówno właściwości tlenku kwasowego, jak i zasadowego, w zależności od środowiska reakcji.<br />

Poniżej w tabeli 2.1 przedstawiono przykłady tych tlenków.<br />

14


Tabela 2.1. Podział tlenków ze względu na ich właściwości chemiczne<br />

tlenki zasadowe tlenki kwasowe tlenki amfoteryczne tlenki obojętne<br />

Na 2 O SO 3 Al 2 O 3<br />

NO<br />

CaO CO 2<br />

ZnO CO<br />

MgO N 2 O 3 As 2 O 3 H 2 O<br />

2.2. Wodorotlenki<br />

Ogólny wzór wodorotlenku można zapisać jako Me(OH), gdzie Me jest metalem na stopniu<br />

utlenienia +n. Dysocjuje on na kation metalu i jony wodorotlenkowe (nie wodorotlenowe):<br />

Me(OH) n = Me n+ + nOH -<br />

Uwaga: ładunek jonu podaje się, pisząc najpierw cyfrę oznaczającą stopień utlenienia a<br />

następnie jego znak, a nie odwrotnie.<br />

Niektóre wodorotlenki możemy otrzymać w wyniku bezpośredniej reakcji tlenku metalu z<br />

wodą. Dotyczy to wyłącznie tlenków litowców (nie należy używać nazwy "metale alkaliczne") i<br />

berylowców, za wyjątkiem berylu (nie należy używać ani nazwy "metale ziem alkalicznych",<br />

ani "wapniowce").<br />

Na przykład:<br />

Na 2 O + H 2 O = 2NaOH wodorotlenek sodu (a nie zasada sodowa),<br />

CaO + H 2 O = Ca(OH) 2 wodorotlenek wapnia.<br />

Każdemu tlenkowi zasadowemu (a zatem także tlenkowi amfoterycznemu) można<br />

przypisać odpowiedni wodorotlenek, na przykład:<br />

MgO – Mg(OH) 2 wodorotlenek magnezu,<br />

Al 2 O 3 – Al(OH) 3 wodorotlenek glinu.<br />

Nazwę wodorotlenku tworzymy, podobnie jak w przypadku tlenku, to znaczy do słowa<br />

wodorotlenek dodajemy nazwę kationu w formie rzeczownikowej.<br />

Jeżeli dany pierwiastek tworzy więcej niż jeden wodorotlenek, w nazwie musimy<br />

dodatkowo podać stopień utlenienia pierwiastka (cyfrą rzymską). Na przykład :<br />

Fe(OH) 2<br />

Fe(OH) 3<br />

- wodorotlenek żelaza(II),<br />

- wodorotlenek żelaza(III).<br />

15


2.3. Kwasy<br />

Kwasy dzielimy na dwie zasadnicze grupy:<br />

- kwasy tlenowe,<br />

- kwasy beztlenowe.<br />

Przykładami kwasów beztlenowych są:<br />

HF - kwas fluorowodorowy,<br />

HCl - kwas chlorowodorowy (nazwa tradycyjna "kwas solny"),<br />

HBr - kwas bromowodorowy,<br />

HI - kwas jodowodorowy (uwaga: jod ma symbol I, a nie J),<br />

HCN - kwas cyjanowodorowy,<br />

H 2 S - kwas siarkowodorowy.<br />

Pierwsze cztery wymienione powyżej kwasy są roztworami wodnymi połączeń<br />

fluorowców (a nie chlorowców) z wodorem. Ściśle biorąc powinniśmy wzory kwasów<br />

beztlenowych pisać z dolnym indeksem aq. (od łacińskiego słowa aqua - woda), ponieważ wzory<br />

tych kwasów i połączeń pierwiastków, wchodzących w skład cząsteczki kwasu, z wodorem są<br />

identyczne. Na przykład H 2 S jest wzorem siarkowodoru (siarczku wodoru), jak również wzorem<br />

kwasu siarkowodorowego.<br />

Przykłady kwasów tlenowych :<br />

H 2 CO 3 - kwas węglowy,<br />

H 2 SO 4<br />

H 2 SO 4<br />

HNO 2<br />

- kwas siarkowy(IV),<br />

- kwas siarkowy(VI),<br />

- kwas azotowy(III),<br />

HNO 3 - kwas azotowy(V),<br />

HClO - kwas chlorowy (I),<br />

HClO 4 - kwas chlorowy(VII).<br />

Obecnie w nazwach kwasów wyeliminowano przedrostki nad- i pod- oraz przyrostek -awy,<br />

obowiązuje jedynie przyrostek -owy i podany jest liczbą rzymską stopień utlenienia atomu<br />

niemetalu w reszcie kwasowej (w przypadku gdy dany pierwiastek tworzy więcej niż jeden<br />

bezwodnik kwasowy).<br />

16


2.4. Sole<br />

Sole są to związki metali z resztą kwasową. Sposoby otrzymywania soli można przedstawić<br />

w sposób schematyczny następującymi reakcjami:<br />

a) metal + kwas = sól + wodór,<br />

b) tlenek metalu + kwas = sól + woda,<br />

c) wodorotlenek + kwas = sól + woda (tzw. reakcja zobojętniania),<br />

d) wodorotlenek + sól = nowa sól + nowy wodorotlenek (warunkiem zajścia tej reakcji jest<br />

wytrącenie się jednego produktu w formie osadu),<br />

e) tlenek metalu + tlenek niemetalu = sól,<br />

f) tlenek niemetalu + zasada = sól + woda,<br />

g) kwas + sól = nowy kwas i nowa sól,<br />

h) metal + niemetal = sól (tak można otrzymać tylko sole kwasów beztlenowych).<br />

Konsekwencją podziału kwasów na tlenowe i beztlenowe jest podział soli na sole kwasów<br />

tlenowych i sole kwasów beztlenowych.<br />

Sole kwasów beztlenowych (wybrane przykłady):<br />

NaCl - chlorek sodu,<br />

NaI - jodek sodu,<br />

KBr - bromek potasu,<br />

K 2 S - siarczek potasu.<br />

Sole kwasów tlenowych (wybrane przykłady):<br />

CaCO 3 - węglan wapnia,<br />

NaNO 2<br />

KNO 3<br />

NaClO<br />

NaClO 2<br />

NaClO 3<br />

- azotan(III) sodu,<br />

- azotan(V) potasu,<br />

- chloran(I) sodu,<br />

- chloran(III) sodu,<br />

- chloran(V) sodu,<br />

CuSO 4 - siarczan(VI) miedzi(II).<br />

Nazwa soli skalda się zawsze z dwóch wyrazów: pierwszy z nich określa nazwę reszty<br />

kwasowej, natomiast drugi określa nazwę kationu metalu wchodzącego w skład soli. Sole<br />

kwasów beztlenowych mają końcówki ek, sole kwasów tlenowych natomiast wyłącznie<br />

końcówki -an (nie używa się ani przedrostków nad-, pod- ani końcówki -yn lub -in).<br />

W nazwie soli konieczne jest podanie stopnia utlenienia niemetalu w reszcie kwasowej i kationu<br />

17


metalu wchodzącego w skład soli.<br />

Sole można podzielić na:<br />

- sole obojętne,<br />

- wodorosole,<br />

- hydroksosole.<br />

Sole obojętne powstają w reakcji zobojętniania, w której następuje całkowite podstawienie<br />

kationów wodoru w kwasie przez jony metalu pochodzące z wodorotlenku. Np. w reakcji :<br />

H 2 SO 4 + 2 NaOH = Na 2 SO 4 + 2 H 2 O<br />

powstaje obojętny siarczan(VI) sodu.<br />

Jeżeli zamiast dwóch moli w reakcji bierze udział jeden mol wodorotlenku sodu, to nastąpi<br />

niecałkowite zastąpienie jonów wodoru w kwasie, zgodnie z równaniem:<br />

H 2 SO 4 + NaOH = NaHSO 4 + H 2 O<br />

i utworzy się wodorosiarczan(VI) sodu.<br />

W cząsteczkach wodorosoli, oprócz metalu i reszty kwasowej, znajdują się kationy wodoru<br />

(wodorosole mogą tworzyć tylko te kwasy, które zawierają dwa lub więcej jonów wodoru<br />

zdolnych do odszczepienia się w procesie dysocjacji elektrolitycznej).<br />

Wodorosole (wybrane przykłady):<br />

KHCO 3<br />

- wodorowęglan potasu,<br />

Mg(HCO 3 ) 2<br />

KHSO 4<br />

CaHPO 4<br />

- wodorowęglan magnezu,<br />

- wodorosiarczan(VI) potasu,<br />

- wodorofosforan(V) wapnia,<br />

NaH 2 PO 4<br />

- dwuwodorofosforan(V) sodu.<br />

Hydroksosole (wodorotlenosole) są solami, które powstają w reakcji zobojętniania, przy<br />

czym następuje niecałkowite podstawienie grup wodorotlenkowych w cząsteczce wodorotlenku<br />

przez resztę kwasową.<br />

Na przykład:<br />

Al(OH) 3 + HCl = Al(OH) 2 Cl + H 2 O<br />

lub<br />

Al(OH) 3 + 2 HCl = 2Al(OH)Cl 2 + 2 H 2 O<br />

W cząsteczkach tych soli oprócz kationu metalu i reszty kwasowej znajdują się także grupy<br />

OH - (sole te mogą powstawać w reakcji zobojętniania wodorotlenków zawierających więcej niż<br />

jedną grupę OH - ).<br />

18


Hydroksosole (wybrane przykłady):<br />

CaCl(OH) - chlorek wodorotlenek wapnia,<br />

MgCl(OH) - chlorek wodorotlenek magnezu,<br />

Al(OH) 2 Cl - chlorek dwuwodorotlenek glinu,<br />

Al(OH)Cl 2 - dwuchlorek wodorotlenek glinu.<br />

W nazwach tych soli nazwy anionów piszemy w porządku alfabetycznym, który może być<br />

inny niż we wzorach.<br />

W nazwach zarówno wodorosoli, jak i hydroksosoli uwzględnia się ilość pozostających w<br />

soli kationów wodoru lub grup wodorotlenkowych.<br />

19


Rozdział 3<br />

Uzgadnianie równań reakcji chemicznych<br />

Podstawową formą opisywania reakcji między atomami, jonami i cząsteczkami są<br />

równania chemiczne. Dostarczają one zarówno informacji natury jakościowej dotyczącej<br />

rodzaju substancji wchodzących w reakcje i produktów reakcji jak i ilościowej - o stosunkach<br />

molowych, wagowych oraz w przypadku gazów o stosunkach objętościowych<br />

poszczególnych substratów i produktów. Równania chemiczne nie informują nas o<br />

mechanizmie reakcji, a stanowią jedynie zapis sumaryczny procesu.<br />

Reakcja chemiczna:<br />

2N 2 O 5 → 2N 2 O 4 + O 2<br />

składa się z następujących reakcji cząstkowych, opisujących jej mechanizm:<br />

N 2 O 5 → N 2 O 3 + O 2<br />

N 2 O 3 → NO + NO 2<br />

NO + N 2 O 5 → 3NO 2<br />

4NO 4 → 2N 2 O 4<br />

Poniżej podano podstawowe prawa, którym podlegają reakcje chemiczne. Prawa te mogą<br />

być użyteczne zarówno do uzgadniania równań chemicznych (prawo zachowania pierwiastka<br />

oraz prawo zachowania ładunku), jak i do rozwiązywania zadań opartych o równania<br />

chemiczne (tzw. obliczenia stechiometryczne).<br />

Prawo zachowania masy:<br />

Masa produktów reakcji równa się masie substancji wyjściowych (substratów).<br />

Prawo zachowania masy jest spełnione z bardzo dobrym przybliżeniem w przypadku<br />

reakcji chemicznych, nie ma ono natomiast zastosowania do reakcji jądrowych. Obowiązuje<br />

wówczas, zgodnie z teorią relatywistyczną, ogólne prawo zachowania energii-masy.<br />

Prawo zachowania pierwiastka:<br />

W reakcjach chemicznych nie ulega zmianie liczba atomów poszczególnych<br />

pierwiastków, jak również ilość pierwiastków.<br />

20


Prawo zachowania pierwiastka daje możliwość doboru współczynników reakcji. W<br />

reakcjach jądrowych prawo to nie obowiązuje. W tym przypadku stosuje się zasadę<br />

zachowania liczby nukleonów. Na przykład dla reakcji jądrowej:<br />

4<br />

17<br />

7<br />

N +<br />

2He<br />

→<br />

8O<br />

+<br />

14<br />

nie jest spełnione prawo zachowania pierwiastka, natomiast liczba nukleonów (podana przez<br />

górne wskaźniki) substratów reakcji równa się liczbie nukleonów produktów reakcji.<br />

1<br />

1<br />

H<br />

Prawo zachowania ładunku:<br />

Sumaryczny ładunek substratów jest równy sumarycznemu ładunkowi produktów.<br />

Przy zapisywaniu równań reakcji chemicznych należy zwrócić uwagę na:<br />

a) Prawidłowe zapisywanie wzorów chemicznych;<br />

Wymagana jest znajomość wartościowości poszczególnych pierwiastków,<br />

a w przypadku soli znajomość pochodnych kwasów i zasad.<br />

b) Prawidłowe przewidywanie produktów reakcji;<br />

Nie zawsze można jednoznacznie przewidzieć, jakie tworzą się produkty. Często<br />

wymagana jest wiedza o warunkach zachodzenia procesu: np. w reakcji żelaza<br />

z tlenem (spalania żelaza) jako produkt mogą tworzyć się : FeO, Fe 3 O 4 lub Fe 2 O 3<br />

- w zależności od temperatury i zawartości tlenu.<br />

c) Uzupełnienie współczynników reakcji chemicznej w oparciu o prawa zachowania<br />

pierwiastka i ładunku.<br />

Reakcje chemiczne dzieli się na dwa zasadnicze rodzaje:<br />

⎯ reakcje przebiegające bez wymiany elektronów między reagującymi substancjami,<br />

⎯ reakcje utleniania-redukcji.<br />

Równania reakcji chemicznych zapisuje się w postaci tzw. równań cząsteczkowych,<br />

jonowo-cząsteczkowych i jonowych.<br />

3.1. Reakcje bez wymiany elektronów<br />

Reakcje bez wymiany elektronów są to reakcje pomiędzy substancjami, które wymieniają<br />

ze sobą jedynie atomy, jony lub ich grupy. Można tu wymienić reakcje:<br />

• syntezy, tj. powstawania substancji złożonej z substancji prostych, nie będących<br />

pierwiastkami chemicznymi;<br />

• rozkładu substancji złożonej, tj. reakcje odwrotne do reakcji syntezy;<br />

• wymiany podwójnej.<br />

21


3.2. Reakcje utleniania i redukcji (redoks)<br />

Reakcje, w których występuje zmiana stopnia utlenienia niektórych atomów (jonów)<br />

nazywamy reakcjami utleniania i redukcji.<br />

Stopniem utlenienia pierwiastka, wchodzącego w skład określonej substancji nazywamy<br />

liczbę dodatnich lub ujemnych ładunków elementarnych, jaką można by przypisać atomom<br />

tego pierwiastka, gdyby w jego cząsteczkach występowały wyłącznie wiązania jonowe.<br />

Stopień utlenienia jest pojęciem umownym. Podaje się go jako liczbę ze znakiem "+" lub<br />

"–" umieszczoną za nazwą lub symbolem pierwiastka, np. Co 2+ , C 4- , Fe 8/3+ .<br />

Stopień utlenienia określa się według następujących zasad:<br />

1. Suma stopni utlenienia wszystkich atomów wchodzących w skład cząsteczki wynosi<br />

zero. W przypadku złożonego jonu suma stopni utlenienia atomów wchodzących w<br />

jego skład równa się ładunkowi jonu.<br />

2. Pierwiastkom w stanie wolnym przypisuje się stopień utlenienia równy 0.<br />

3. Fluor we wszystkich swych połączeniach występuje na stopniu utlenienia 1-.<br />

4. Wodór przyjmuje w swych związkach stopień utlenienia równy 1+. Wyjątek stanowią<br />

wodorki litowców i berylowców, w których stopień utlenienia wodoru równy jest 1-.<br />

5. Tlen w swych połączeniach występuje na stopniu utlenienia 2-. Wyjątek stanowią np.<br />

BaO 2 , H 2 O 2 , dla których przyjmuje się stopień utlenienia tlenu 1-, KO 2 (K 2 O 4 ), dla<br />

którego przyjmuje się stopień utlenienia 1/2-, oraz OF 2 , w którym tlen przyjmuje<br />

stopień utlenienia 2+.<br />

Na przykład stopień utlenienia węgla w kwasie węglowym H 2 CO 3 obliczamy<br />

uwzględniając, że suma stopni utlenienia dwóch atomów wodoru i wszystkich atomów tlenu<br />

w cząsteczce H 2 CO 3 wynosi 2·(1+) + 3·(2-) = - 4. Aby suma stopni utlenienia wszystkich<br />

atomów zawartych w cząsteczce była równa zeru, stopień utlenienia węgla musi wynosić +4.<br />

W tabeli 3.1 podano stopień utlenienia węgla oraz siarki w różnych związkach:<br />

22


Tabela 3.1. Stopień utlenienia węgla i siarki w wybranych związkach<br />

Wzór związku<br />

chemicznego<br />

Stopień utlenienia<br />

węgla<br />

CO<br />

2+<br />

HCHO<br />

0<br />

CH 4<br />

4-<br />

H 2 C 2 O 4<br />

3+<br />

C 3 H 8<br />

3/8-<br />

Wzór związku<br />

chemicznego<br />

H 2 S<br />

Stopień utlenienia<br />

siarki<br />

2-<br />

H 2 SO 3<br />

4+<br />

SO 3<br />

6+<br />

H 2 S 2 O 3<br />

2+<br />

Na 2 S 4 O 6<br />

5/2+<br />

Rozpatrzmy reakcję powstawania siarczku miedzi(II):<br />

Cu + S = CuS<br />

Każde równanie reakcji utleniania i redukcji można przedstawić w postaci reakcji<br />

połówkowych, opisujących proces utleniania i redukcji:<br />

Cu - 2e = Cu proces utleniania,<br />

S + 2e = S proces redukcji.<br />

Atom miedzi oddaje dwa elektrony, zmieniając stopień utlenienia z 0 na 2- (utlenia się,<br />

będąc reduktorem). Atom siarki, pobierając dwa elektrony, redukuje się, zmieniając stopień<br />

utlenienia z 0 na 2- (jest utleniaczem).<br />

3.2.1. Klasyfikacja reakcji utleniania i redukcji (redoks)<br />

Reakcje utleniania i redukcji można podzielić na trzy grupy:<br />

1. Reakcje utleniania-redukcji międzyatomowej lub międzycząsteczkowej, w których<br />

utleniacz i reduktor są różnymi substancjami. Przykład stanowią najprostsze reakcje<br />

syntezy i pojedynczej wymiany:<br />

2Ca + O = 2CaO<br />

Fe + CuSO 4 = Cu + FeSO 4<br />

2. Reakcje samoutleniania i samoredukcji (dysproporcjonowania), w których atom tego<br />

samego pierwiastka równocześnie utlenia się i redukuje:<br />

3HNO 2 = HNO 3 + 2NO + H 2 O<br />

3. Reakcje utleniania-redukcji wewnątrzcząsteczkowej, w których atomy ulegające<br />

redukcji i utlenieniu wchodzą w skład tej samej cząsteczki. Do tej klasy należą te reakcje<br />

rozkładu związków chemicznych, w wyniku których wydziela się pierwiastek w stanie<br />

wolnym:<br />

23


2KClO 3 = 3O 2 + 2KCl<br />

3.2.2. Bilansowanie równań reakcji utleniania-redukcji<br />

W celu uzgodnienia równania reakcji utleniania-redukcji należy:<br />

1. Prawidłowo napisać wzory lub symbole wszystkich substratów i produktów.<br />

2. Określić stopnie utlenienia poszczególnych pierwiastków.<br />

3. Ustalić, która z substancji jest utleniaczem a która reduktorem.<br />

4. Ustalić współczynniki przy poszczególnych związkach, w oparciu o liczbę elektronów<br />

oddanych przez atom lub jon reduktora i pobranych przez atom lub jon utleniacza.<br />

5. Sprawdzić, czy ostateczne równanie jest prawidłowo uzgodnione i spełnia prawo<br />

zachowania pierwiastka i ładunku.<br />

Odpowiednie przykłady takiego postępowania znajdzie czytelnik w części II skryptu.<br />

3.3. Przewidywanie kierunku zachodzenia reakcji chemicznych<br />

3.3.1. Ogólne zasady<br />

W pierwszej części niniejszego rozdziału opisano, jak uzgadnia się współczynniki reakcji<br />

chemicznych. Prawidłowy zapis równania reakcji chemicznej nie daje nam jednak żadnych<br />

gwarancji, czy w warunkach określonych przez temperaturę, ciśnienie i zawartości<br />

poszczególnych reagentów dana reakcja przebiega według podanego poniżej schematu:<br />

substraty → produkty (R 3.1)<br />

Możliwe są następujące warianty:<br />

a) reakcja przebiega według zaproponowanego schematu (R 3.1);<br />

b) reakcja przebiega w kierunku przeciwnym;<br />

c) żaden z wymienionych procesów nie jest obserwowany.<br />

Zakwalifikowanie każdej z możliwych reakcji chemicznych do jednego z podanych<br />

wyżej wariantów stwarzało i nadal stwarza liczne trudności, a próby sformułowania ogólnych<br />

kryteriów klasyfikacji zakończyły się jedynie częściowym sukcesem. Wynika to z wielkiej<br />

różnorodności reakcji chemicznych, których przebieg zależy zarówno od rodzaju reagentów,<br />

jak i warunków procesu. Podejmowane w ubiegłych wiekach oraz obecnie próby<br />

przeprowadzenia reakcji i przewidywania kierunku ich zachodzenia przyczyniają się do<br />

rozwoju nauk chemicznych. Przykładowo, prace alchemików nad otrzymaniem złota z mniej<br />

szlachetnych metali, np. ołowiu czy też diamentów będących rzadką odmianą alotropową<br />

24


węgla, ze związków węgla czy też grafitu (bardzo popularnej odmiany alotropowej węgla),<br />

doprowadziły do poznania i opisania licznych związków chemicznych. Obecna wiedza<br />

pozwala otrzymywać zarówno złoto, jak i diament, których nie udało się uzyskać<br />

alchemikom. Złoto można otrzymać w odpowiednich reakcjach jądrowych, jednak koszt<br />

takiego procesu znacznie przewyższa koszt produktu, czyli złota. Wykorzystanie grafitu do<br />

otrzymania sztucznych diamentów ma znaczenie praktyczne.<br />

Podstawę formułowania kryteriów przewidujących kierunek zachodzenia procesów (a lub<br />

b lub c) stanowią ogólne prawa przyrody. Jak wynika z prostych obserwacji, zjawiska<br />

fizyczne charakteryzują się pewną wyróżnioną kierunkowością. Kierunkiem większości<br />

procesów fizycznych rządzi zasada minimum energii potencjalnej:<br />

W układzie samorzutnie zachodzą te procesy, które prowadzą do obniżenia jego energii<br />

potencjalnej.<br />

Odpowiednikiem tej zasady w chemii jest zasada minimum entalpii swobodnej G,<br />

stosowana w przewidywaniu kierunkowości procesów chemicznych zachodzących w<br />

warunkach izobarycznych. Dokładne definicje entalpii swobodnej można znaleźć w kursie<br />

termodynamiki. Ogólne kryterium określające kierunek reakcji chemicznych oraz przemian<br />

fazowych:<br />

Procesy zachodzą samorzutnie w takim kierunku, w którym entalpia swobodna maleje.<br />

Aby określić kierunek zachodzenia reakcji chemicznej i przemian fazowych, konieczna<br />

jest znajomość zmiany funkcji G układu, spowodowanej zajściem reakcji lub przemiany<br />

fazowej w układzie. Zmianę tę nazywa się entalpią swobodną reakcji (przemiany fazowej) i<br />

oznacza symbolem ∆G. W tabeli 3.2 zilustrowano ogólne kryterium zachodzenia reakcji i<br />

przemian fazowych w oparciu o znak wartości ∆G. Entalpia swobodna reakcji (przemiany<br />

fazowej) jest funkcją stężeń reagentów (substratów i produktów) oraz temperatury 1 .<br />

Funkcję tę można zapisać:<br />

gdzie: T - temperatura [K],<br />

∆G o - tzw. standardowa entalpia reakcji,<br />

∆G (stężenia, T) = ∆G(T) o + RT ln K * (3.1)<br />

1<br />

∆G może ponadto zależeć od ciśnienia. Jednak wpływ ciśnienia na wartość ∆G jest nieznaczny. Ilustruje<br />

to następujący przykład mający znaczenie praktyczne. ∆G przemiany: grafit diament wynosi dla ciśnienia<br />

1atm (100 kPa) 2.9 kJ/mol (patrz tab. 3.3). Dopiero powyżej 15 000 atm (1,5 MPa) wartość ∆G<br />

rozpatrywanego procesu jest ujemna.<br />

25


R<br />

K *<br />

- stała gazowa: 8,31 [J/(mol·K)],<br />

- określa zależność ∆G od stężenia reagentów (dla gazów zależność od<br />

ciśnień parcjalnych).<br />

K * wyrażona jest poprzez stężenia w analogicznej postaci funkcyjnej jak stała równowagi<br />

(rozdz. 6) - z tym, że w miejsce stężeń odpowiadających stanowi równowagi w wyrażeniu K *<br />

występują aktualne stężenia (ciśnienia parcjalne).<br />

Zgodnie z powyższą definicją, K * w stanie równowagi jest równe stałej równowagi K,<br />

natomiast jak wynika z tabeli 3.2, w stanie równowagi ∆G = 0, stąd z równania 3.1<br />

otrzymujemy:<br />

gdzie K - stała równowagi.<br />

0<br />

∆ = RT ln K<br />

(R 3.2)<br />

G( T )<br />

−<br />

Tabela 3.2. Kryteria samorzutnego zachodzenia reakcji : Substraty → Produkty<br />

Proces<br />

A. Reakcja zachodzi ujemna<br />

B. Zachodzi reakcja odwrotna dodatnia<br />

Wartość ∆G<br />

C. Żaden proces nie zachodzi a) zero - stan równowagi<br />

b) dodatnia lub ujemna -<br />

reakcje zamrożone<br />

Kryterium przewidywania kierunku zachodzenia reakcji wyjaśnimy, rozpatrując<br />

następujące szczegółowe przypadki:<br />

Reakcje i przemiany fazowe, które są nieodwracalne bez względu na warunki<br />

Do tej grupy reakcji można zaliczyć m.in. reakcje w fazie stałej, w której wszystkie<br />

reagenty występują jako jednoskładnikowe ciała stałe (bez roztworów stałych). Należą także<br />

do niej przemiany polimorficzne. Przykładami są następujące reakcje (oraz odwrotne do<br />

nich):<br />

SiO 2 + CaO → CaSiO 3<br />

SrO + TiO 2 → SrTiO 3<br />

Y 2 O 3 + 4BaO + 6CuO = 2YBa 4 Cu 6 O 13<br />

C (grafit) → C (diament)<br />

Reakcje te przebiegają do momentu wyczerpania któregokolwiek z substratów.<br />

26


Dla tych reakcji słuszna jest zależność:<br />

∆ (3.3)<br />

0<br />

G = ∆G (T )<br />

Tak więc kierunek zachodzenia tych procesów można określić, odczytując z tabeli<br />

standardowych entalpii swobodnych znak ∆G o . Tabele standardowych entalpii swobodnych<br />

można znaleźć w tablicach wielkości fizykochemicznych.<br />

Reakcje przebiegające do końca w pewnych warunkach<br />

Jest to grupa reakcji chemicznych, które w zależności od warunków mogą przebiegać do<br />

końca (reakcje nieodwracalne) bądź też w innych warunkach są odwracalne. Do tej grupy<br />

należą m.in. reakcje utleniania metali, siarkowania w parach siarki, reakcje rozkładu ciał<br />

stałych, w których przynajmniej jednym z produktów jest gaz (reakcje rozkładu węglanów,<br />

siarczanów, wodorotlenków metali, hydratów, niektórych związków organicznych) oraz<br />

reakcje odwrotne do nich.<br />

Jako przykład rozważmy utlenianie miedzi w powietrzu w 1000 K. W układzie z<br />

nieograniczonym dostępem powietrza zachodzi następująca reakcja:<br />

2Cu + 1/2O 2 Cu 2 O (R 3.2)<br />

Zastosujmy obecnie podane wcześniej ogólne kryterium przewidywanego kierunku<br />

reakcji. W tym celu obliczamy entalpię swobodną tej reakcji:<br />

∆<br />

0<br />

−1/<br />

2<br />

G = ∆G<br />

+ RT ln( p(<br />

O2<br />

))<br />

(3.4)<br />

gdzie p(O 2 ) oznacza ciśnienie parcjalne tlenu w powietrzu i wynosi 0.21 atm. Z tablic<br />

wartości entalpii swobodnych można odczytać, że w temperaturze 1000 K ∆G o = - 97,51 kJ.<br />

Tak więc:<br />

∆G = -97,51 [kJ] - 0,5· 8,31 [J/mol·K]·1000 [K]·ln(0,21) = - 104,0 kJ < 0<br />

Entalpia swobodna nie ulega zmianie w podanych warunkach {p(O 2 ) pozostaje stałe}.<br />

Ponieważ wartość ∆G jest ujemna, więc reakcja ta biegnie do końca, czyli do momentu aż<br />

cała użyta miedź ulegnie utlenieniu.<br />

Reakcja ta przebiega inaczej w naczyniu zamkniętym (z ograniczoną zawartością tlenu).<br />

W trakcie przebiegu reakcji (R 3.2) maleje p(O 2 ), więc zgodnie z (3.4) ∆G rośnie. Gdy ilość<br />

tlenu jest mniejsza od ilości potrzebnej do całkowitego utlenienia użytej miedzi, to reakcja<br />

biegnie do momentu, gdy ciśnienie parcjalne tlenu osiągnie taką wartość, dla której ∆G<br />

27


wyliczone z równania (3.2) osiągnie wartość 0. Ustala się wówczas stan równowagi. To<br />

charakterystyczne dla danej temperatury ciśnienie tlenu p(O 2 ) o nosi nazwę ciśnienia<br />

równowagowego albo ciśnienia rozkładowego tlenku miedzi(I). Wstawiając więc ∆G = 0<br />

uzyskujemy:<br />

ln p(O 2 ) o = 2·(-97,51 kJ)/(1000 K·8,31 J/mol·K) = - 23,47<br />

czyli p(O 2 ) o = 6,41·10 -11 atm.<br />

Stan równowagi reakcji (R 3.2) można również osiągnąć „z drugiej strony”, ogrzewając<br />

Cu 2 O w temperaturze 1000 K w takich warunkach, w których ciśnienie tlenu p(O 2 ) < p(O 2 ) o =<br />

6.41·10 -11 atm. Załóżmy przykładowo, że p(O 2 ) = 10 -15 atm.<br />

Dla reakcji: Cu 2 O → 2Cu + 1/2O 2<br />

∆G = ∆G o + RT ln(p(O 2 )) 1/2<br />

przy czym ∆G o = 97,51 kJ (zawsze ∆G reakcji odwrotnej ma przeciwną wartość do ∆G reakcji<br />

wprost), uzyskujemy:<br />

∆G = 97,51 kJ + 0,5 · 8,31(J/mol·K) · 1000K · ln(10 -15 J) = - 46,0 kJ p(O 2 ) o , wówczas metal wykazywał będzie tendencję do utleniania, w<br />

przeciwnym wypadku utlenianie metalu nie będzie zachodzić (w takich warunkach tlenek<br />

metalu wykazywał będzie tendencję do rozkładu).<br />

W oparciu o przytoczone rozumowanie czytelnik samodzielnie może określić kryteria<br />

zachodzenia reakcji rozkładu typu:<br />

CaCO 3 = CaO + CO 2 (gaz)<br />

Reakcje odwracalne<br />

Z poprzedniego paragrafu wynika wniosek, że reakcje odwracalne przybiegają w kierunku<br />

osiągania stanu równowagi. Można to zapisać:<br />

∆G → 0<br />

K * → K (czytaj K * dąży do K) (3.5)<br />

W oparciu o wyrażenie (3.5) można przewidzieć kierunek zachodzenia tego typu reakcji.<br />

28


W rozdziale 7 opisano zastosowanie wyrażenia (3.5) dla przypadku przewidywania kierunku<br />

reakcji wytrącania się osadów z roztworu elektrolitów. Poniżej przedstawimy ten sposób<br />

rozumowania na przykładzie reakcji syntezy NH 3 :<br />

3H 2 + N 2 → 2NH 3 (R 3.3)<br />

Korzystając z tablicy standardowych entalpii (czy też z tablicy stałych równowag) dla tej<br />

reakcji, uzyskujemy w temperaturze 773 K:<br />

K p = 1,5·10 -5 [atm]<br />

gdzie K p oznacza stałą równowagi. Wyrażona przez ciśnienia parcjalne:<br />

K p<br />

2<br />

p0<br />

( NH<br />

3)<br />

=<br />

3<br />

(3.6)<br />

p ( H ) ⋅ p ( N )<br />

0<br />

2<br />

0<br />

2<br />

Załóżmy, że sporządzono mieszaninę gazową, w której ciśnienia parcjalne wynoszą:<br />

p(NH 3 ) = 10 -2 atm, p(H 2 ) = 10 -3 atm, p(N 2 ) = 10 -1 atm.<br />

Aby określić kierunek reakcji w takiej mieszaninie w temperaturze 773 K, liczymy<br />

wartość K * p :<br />

*<br />

K p<br />

2<br />

p0<br />

( NH<br />

3)<br />

=<br />

3<br />

(3.7)<br />

p ( H ) ⋅ p ( N )<br />

0<br />

2<br />

0<br />

2<br />

Po podstawieniu wartości liczbowych otrzymujemy:<br />

2<br />

p0<br />

( NH<br />

3)<br />

3<br />

p ( H ) ⋅ p ( N )<br />

(10<br />

−2<br />

2<br />

*<br />

6<br />

K p<br />

= =<br />

= 10<br />

−3<br />

3 −1<br />

0 2 0 2<br />

(10 ) ⋅10<br />

)<br />

atm<br />

Jak widać K p * > K p , tak więc, aby spełniona była relacja (3.5), wyrażenie K p * musi<br />

maleć w trakcie reakcji. Jest to możliwe wówczas, gdy licznik ułamka w wyrażeniu (3.7)<br />

będzie malał, a mianownik rósł. Oznacza to, że musi nastąpić rozkład amoniaku. Czyli w tych<br />

warunkach możliwa jest reakcja odwrotna do reakcji (R 3.3).<br />

3.3.2. Odstępstwa od kryterium przewidywania kierunku zachodzenia reakcji.<br />

Stany zamrożone, równowagi metatrwałe.<br />

Podane kryterium przewidywania kierunku zachodzenia reakcji nie jest w pełni<br />

rozstrzygające. Na jego podstawie możemy jedynie orzec, czy dana reakcja w określonych<br />

warunkach może zajść samorzutnie (∆G < 0), czy też może zajść reakcja odwrotna ∆G > 0).<br />

Nie oznacza to jednak, że reakcja w tych warunkach musi zachodzić. Innymi słowy, kryteria<br />

29


te nie są w stanie jednoznacznie opisać przypadku c. W przypadku c może się zdarzyć, że<br />

G = 0, co odpowiada ustaleniu się w układzie równowagi termodynamicznej, ale nie można<br />

wykluczyć, że ∆G < 0 lub ∆G > 0. W takiej sytuacji reakcja (R 3.1) lub do niej odwrotna jest<br />

możliwa, ale nie zachodzi ze względu na zahamowanie czy też "zamrożenie" spowodowane<br />

występowaniem tzw. równowagi metatrwałej. Nie istnieje zależność pomiędzy szybkością<br />

reakcji chemicznej a wartością ∆G. Tak więc wniosek o zachodzeniu lub nie reakcji nie<br />

oznacza, że w danych warunkach reakcja będzie przebiegała z mierzalną szybkością. Istnieje<br />

wiele przykładów, dla których ∆G < 0, a proces nie jest obserwowany. Spowodowane to jest<br />

między innymi:<br />

a) szybkość reakcji jest bardzo mała (w porównaniu z czasem obserwacji).<br />

Reakcja powstawania tlenku azotu(II) jest reakcją endotermiczną i zachodzi powyżej<br />

temperatury 3000 o C. W temperaturach niższych ale powyżej 1000 o C zachodzi proces<br />

odwrotny, tzn. rozkład tlenku azotu(II) na azot i tlen. Czas połowicznego rozkładu (t 1/2 )<br />

tlenku wynosi:<br />

Czas połowicznego rozkładu NO<br />

Temperatura w o C t 1/2<br />

------------------------------------------------------------<br />

2900 3,4·10 s<br />

2100 5,08 s<br />

1500 1,26 dni<br />

1000 81 lat<br />

W przypadku tak wolnych reakcji, w celu ich przyśpieszenia powszechnie stosuje się<br />

katalizatory.<br />

b) procesy, w których pojawiają się nowe fazy, mogą nie zachodzić, co jest związane z<br />

pojawieniem się pewnych barier związanych z tzw. procesem zarodkowania. Przykładem<br />

tego jest tzw. roztwór przesycony. Roztwór taki można otrzymać z roztworu<br />

nienasyconego poprzez zmianę jego temperatury (z reguły obniżenie) lub też<br />

odparowanie nadmiaru rozpuszczalnika. W wyniku tego otrzymujemy roztwór danej<br />

substancji, której stężenie przekracza jej równowagowe stężenie zwane<br />

rozpuszczalnością. W przypadku przesyconego roztworu elektrolitu iloczyn aktywności<br />

jonów przekracza iloczyn rozpuszczalności. Roztwór taki jest w równowadze<br />

metatrwałej. Małe zaburzenie (np. wrzucenie kryształka substancji rozpuszczonej)<br />

spowoduje wytrącenie nadmiaru substancji rozpuszczonej, tj. przejście w stan równowagi<br />

trwałej.<br />

∆<br />

30


Zjawisko tworzenia się roztworów przesyconych rozważmy na przykładzie prostej<br />

reakcji wytrącania się osadu z roztworu elektrolitu:<br />

Ag + Cl → AgCl↓ (R 3.4)<br />

Załóżmy, że stężenia jonów Ag + oraz Cl - były takie, że ∆G R3.4 reakcji (R 3.4) jest<br />

mniejsze od 0 (zgodnie z rozdziałem 7). Ma to miejsce wtedy, gdy iloczyn stężeń przekracza<br />

wartość iloczynu rozpuszczalności).<br />

Często zdarza się jednak, że pomimo ∆G R 3.4 < 0 osad AgCl nie wytrąca się. Innymi<br />

słowy tworzy się roztwór przesycony AgCl. Zjawisko to można wyjaśnić w oparciu o tzw.<br />

teorię zarodkowania. Otóż reakcję (R 3.4) należy traktować jako sumaryczną reakcję<br />

następujących reakcji cząstkowych:<br />

Ag + + Cl - → (AgCl)* (R 3.5)<br />

(AgCl)* → AgCl (R 3.6)<br />

gdzie (AgCl) * oznacza chlorek srebra AgCl w formie bardzo drobnokrystalicznego osadu<br />

(zarodków krystalicznych).<br />

Szczegółowe rozważania termodynamiczne wykazały, że ∆G R3.5 reakcji (R 3.5) jest<br />

dodatnie (!) w zakresie stężenia jonów, dla których:<br />

-6 kJ/mol < ∆G R 3.4 < 0<br />

Czyli, że reakcja (R 3.5) wówczas nie zachodzi. Oczywiście nie może wówczas zajść reakcja<br />

(R 3.6) (brak substratów tej reakcji), pomimo że dla tej reakcji ∆G R3.6 < 0. Z kursu<br />

termodynamiki wynika, że:<br />

∆G R 3.4 = ∆G R 3.5 + ∆G R 3.6<br />

Obserwowany fakt przejścia roztworu przesyconego w nasycony z równoczesnym<br />

wydzieleniem osadu, wywołany przez wrzucenie odrobiny osadu (kryształka) substancji<br />

rozpuszczonej, łatwo wyjaśnić w oparciu o podany opis. Mianowicie w obecności osadu<br />

reakcja (R 3.4) nie przebiega według podanej „drogi reakcji” poprzez kolejne stadia (R 3.5) i<br />

(R 3.6), lecz wytrącenie nadmiaru osadu z roztworu zachodzi na powierzchni<br />

wprowadzonego kryształka (osadu). Powyższy przykład można uogólnić następująco:<br />

Gdy w danym układzie reakcja jest sumą (łańcuchem) kilku reakcji (2, 3, i, ...), z których<br />

przynajmniej dla jednej z nich ∆G i > 0, to wówczas reakcja sumaryczna nie zachodzi, mimo<br />

że dla niej ∆G < 0. Ujemny znak sumy nie wyklucza możliwości, że istnieje dodatni<br />

składnik tej sumy , tak więc z faktu: ∆G 1 + ∆G 2 +...+ ∆G i < 0 nie wynika, że wszystkie<br />

składniki w tej sumie muszą być ujemne.<br />

31


Tabela 3.3. Standardowe entalpie swobodne reakcji w temp. 298 K<br />

Reakcja ∆G 298 [kJ/mol] Wynik<br />

H 2 + 1/2O 2 → H 2 O (c)<br />

- 228,8 zachodzi lub jest zamrożona<br />

H 2 O (c) → H 2 + 1/2O 2<br />

+ 228,8 nie zachodzi<br />

C + O 2 → CO 2<br />

- 395,4 zachodzi lub jest zamrożona<br />

CO 2 → C + O 2<br />

+ 395,4 nie zachodzi<br />

H 2 + I 2(s) → 2HI 0 nie zachodzi - stan równowagi<br />

C (diament) → C (grafit)<br />

- 2,9 zachodzi lub jest zamrożona<br />

C (grafit) → C (diament)<br />

+ 2,9 nie zachodzi<br />

3.3.3. Przewidywanie kierunku zachodzenia reakcji chemicznych typu redoks<br />

Kierunek zachodzenia reakcji redoks (znak funkcji ∆G) można przewidzieć w oparciu o<br />

tzw. szereg utleniająco-redukcyjny, wynikający z analizy siły elektromotorycznej SEM ogniw.<br />

W tym celu rozważmy prosty układ, jakim jest metal (Me) zanurzony w roztworze<br />

zawierającym jony tego metalu (Me n+ ). Ustala się wówczas następująca równowaga<br />

pomiędzy jonami metalu w roztworze a atomami metalu:<br />

Me Me n+ + ne (R 3.7)<br />

Układ taki nosi nazwę półogniwa (elektrody) i zapisujemy go w postaci Me | Me n+ .<br />

Potencjał V elektrody metalicznej można wyrazić za pomocą równania Nernsta:<br />

0 RT<br />

n+<br />

V = V + ln([ Me ])<br />

(3.8)<br />

nF<br />

gdzie: V o - oznacza standardowy potencjał elektrody, gdy aktywność jonów wynosi<br />

1 mol/dm,<br />

R - stała gazowa [8,31 J/(mol·K)],<br />

T - temperatura [K],<br />

F - stała Faradaya (96 485 C),<br />

[Me n+ ] - stężenie jonów metalu Me w roztworze, utożsamiane w przypadku<br />

rozcieńczonych roztworów z aktywnością jonów, wyrażone w mol/dm 3 .<br />

32


Rozważmy teraz dwa półogniwa różniące się rodzajami użytych metali; Me (1) i Me (2) lub<br />

też różniące się stężeniami jonów: n+<br />

C<br />

Me<br />

(1)<br />

C<br />

i Me<br />

n+<br />

(2)<br />

. Połączenie przewodem obu elektrod<br />

oraz zastosowanie klucza elektrolitycznego spowoduje przepływ elektronów, czyli przepływ<br />

prądu z metalu, który był bardziej ujemnie naładowany. Powstały prąd elektryczny wywołany<br />

jest różnicą potencjałów półogniw. W półogniwie o wyższym potencjale będzie zachodzić<br />

proces redukcji: Me(1) ← Me(1) n+ + ne, w półogniwie o potencjale niższym proces<br />

utleniania: Me(2) → Me(2) m+ + me. Otrzymany układ Me(1) | Me(1) n+ || Me(2) | Me(2) m+<br />

nosi nazwę ogniwa i może służyć jako źródło prądu stałego. Symbol | oznacza granicę faz<br />

metal-roztwór, symbol || klucz elektrolityczny. Gdy oba półogniwa różnią się rodzajami<br />

użytych metali, wówczas takie ogniwo nosi nazwę chemicznego, natomiast, gdy różnią się<br />

tylko stężeniami, wówczas mamy ogniwo stężeniowe.<br />

W wyniku reakcji na elektrodach pojawia się różnica potencjałów. Różnica potencjałów<br />

między elektrodami ogniwa otwartego E, zwana siłą elektromotoryczną SEM ogniwa, jest<br />

określona wzorem<br />

n+ o RT<br />

m +<br />

( Me(1) ]) - VMe ( 2 ) - ln ([<br />

Me(2) ])<br />

o RT<br />

E = VMe (1) + ln [<br />

(3.9)<br />

nF<br />

mF<br />

n+<br />

m<br />

o RT ⎛ [ Me(1)<br />

]<br />

lub ⎟ ⎞<br />

E = E + ln ⎜<br />

m+<br />

n<br />

(3.10)<br />

mnF ⎝[<br />

Me(2)<br />

] ⎠<br />

gdzie: E o = V o Me(1) - V o Me(2), - stała, zależna od rodzajów użytych metali {Me(1), Me(2)},<br />

dla ogniwa stężeniowego E o = 0.<br />

Z równań (3.8 i 3.9) wynika, że dla wyznaczenia E o należy zbudować ogniwo, w którym<br />

oba stężenia jonów (ściślej aktywności) są jednostkowe i wynoszą 1 mol/dm. Takie ogniwo<br />

nosi nazwę „normalnego”. Wartość E o<br />

ogniwa normalnego.<br />

jest równa wówczas sile elektromotorycznej SEM<br />

Nie istnieje możliwość doświadczalnego wyznaczenia różnicy potencjałów pomiędzy<br />

metalem a roztworem, czyli potencjału półogniwa w ogólności, a potencjału normalnego V o w<br />

szczególności. Zestawienie wartości SEM ogniw normalnych byłoby zbyt kłopotliwe, gdyż<br />

należałoby utworzyć tabele dla wszystkich kombinacji możliwych par półogniw. Przeszkodę<br />

tę omija się poprzez określenie względnych potencjałów elektrod, tj. potencjałów<br />

odniesionych do potencjałów elektrody wzorcowej. Jako elektrodę odniesienia przyjęto<br />

33


normalną elektrodę wodorową.<br />

Elektrodę wodorową stanowi płytka platynowa lub palladowa, pokryta tzw. „czernią”,<br />

czyli warstwą Pt(Pd) o bardzo rozwiniętej powierzchni. Płytka metaliczna opływana jest<br />

strumieniem wodoru i zanurzona w roztworze zawierającym jony wodorowe. W przypadku<br />

takiego półogniwa ustala się następująca równowaga:<br />

H 2 2H + + 2e<br />

Jeżeli ciśnienie wodoru gazowego wynosi 0.1013 MPa (1 atm), a stężenie (aktywność<br />

jonów wodorowych) 1 mol/dm 3 czy też pH = 0, to taka elektroda nosi nazwę normalnej<br />

elektrody wodorowej ( H + | H 2 , Pt). Dla tej elektrody przyjmuje się zgodnie z umową, że jej<br />

potencjał normalny jest równy zeru w każdej temperaturze. Konstruując zatem ogniwa, w<br />

których jedna elektroda jest normalną elektrodą wodorową, a druga normalną elektrodą<br />

dowolnego metalu, możemy wyznaczyć V o (Me) z równania:<br />

0 0<br />

0<br />

0<br />

E = V ( Me)<br />

− V ( H ) = V ( Me)<br />

(3.11)<br />

Zgodnie z obowiązującą w Polsce konwencją wielkość i znak potencjału elektrody wyraża<br />

tendencję jonów dodatnich do samorzutnego przejścia z roztworu do metalu, tj. ich<br />

redukcji.<br />

Tak więc przykładowo rozpatrzmy dwie elektrody normalne: Zn | Zn 2+ (tj. metaliczny<br />

cynk zanurzony w roztworze zawierającym jony cynku(II) o aktywności (stężeniu) 1<br />

mol/dm 3 ). Potencjał tej elektrody jest ujemny (- 0,7628 V), gdyż w ogniwie normalnym<br />

Zn | Zn 2+ || H + | H 2 ,Pt podczas pracy tego ogniwa istnieje samorzutna tendencja<br />

przechodzenia metalu do roztworu (dodatnie jony Zn nie posiadają tendencji do wydzielania<br />

się na metalu), tj. zachodzi reakcja:<br />

Zn → Zn 2+ + 2e<br />

natomiast w przypadku: Cu | Cu 2+ (tj. metaliczna miedź Cu zanurzona w roztworze<br />

zawierającym jony miedzi(II) o aktywności (stężeniu) 1 mol/dm 3 ) podczas pracy ogniwa<br />

Cu | Cu 2+ || H + | H 2 ,Pt istnieje samorzutna tendencja przechodzenia dodatnich jonów miedzi<br />

do metalu, tj. zachodzi reakcja:<br />

Cu 2+ + 2e → Cu<br />

co oznacza, że jej potencjał normalny jest dodatni (+ 0,337 V).<br />

Zestawienie potencjałów normalnych dla wszystkich metali według rosnących wartości<br />

nosi nazwę szeregu elektrochemicznego lub szeregu napięciowego metali. Szereg napięciowy<br />

2<br />

34


można przedstawić w formie tabeli zawierającej równania reakcji elektrodowych i<br />

odpowiadające im potencjały normalne. Inną postacią szeregu napięciowego jest<br />

przedstawienie go w formie osi liczbowej potencjałów.<br />

Szereg napięciowy metali został następnie rozszerzony o inny typ elektrod, zwanych<br />

„utleniająco-redukcyjnymi”. Elektrody takie zbudowane są z metalu szlachetnego (najczęściej<br />

platyny), zanurzonego w roztworze zawierającym jony występujące na dwóch, różnych<br />

stopniach utlenienia. Nazwa tego typu elektrod jest w pewnym sensie umowna, gdyż procesy<br />

elektrodowe we wszystkich półogniwach są procesami utleniająco-redukującymi. Reakcję<br />

przebiegającą na elektrodzie utleniająco-redukującej można przedstawić schematycznie:<br />

reduktor utleniacz + ne (R 3.8)<br />

a potencjał takiej elektrody opisany jest równaniem:<br />

0 RT ⎛[<br />

utleniacz]<br />

⎞<br />

V = V + ln⎜<br />

⎟<br />

(3.12)<br />

nF ⎝ [ reduktor]<br />

⎠<br />

Uzupełniając szereg elektrochemiczny metali o wartości V o dla elektrod utleniającoredukcyjnych,<br />

uzyskujemy tabelę potencjałów utleniająco-redukcyjnych, zwaną także tabelą<br />

potencjałów standardowych, tabelą potencjałów normalnych, szeregiem napięciowym<br />

elektrod.<br />

Kierunek reakcji redoks określamy w oparciu o następującą regułę:<br />

Reakcja typu redoks przebiega w kierunku określonym schematem:<br />

utleniacz(1) + reduktor(2) → utleniacz(2) + reduktor(1),<br />

gdy dla obu par (utleniacz, reduktor) wyznaczone z równania (3.12) potencjały<br />

elektrod spełniają nierówność: V 1 > V 2<br />

Znajomość normalnych potencjałów umożliwia m.in.:<br />

a) wyznaczenie siły elektromotorycznej ogniwa złożonego z dowolnych półogniw<br />

(patrz równanie 3.8),<br />

b) wyznaczenie stałej równowagi reakcji redoks,<br />

c) przewidywanie kierunku reakcji redoks,<br />

d) wyznaczenie zmian funkcji termodynamicznych m.in. ∆G, towarzyszących reakcjom<br />

redoks.<br />

Sposób wyznaczania stałych równowag reakcji redoks oraz przewidywanie kierunku<br />

reakcji redoks wyjaśnimy na przykładzie, natomiast sposób wyznaczania zmian funkcji<br />

termodynamicznych jest szczegółowo opisany w kursie chemii fizycznej.<br />

35


Rozważmy następującą reakcję redoks:<br />

SnCl 2 + KMnO 4 + H 2 SO 4 = Sn(SO 4 ) 2 + SnCl 4 + KCl + MnCl 2 + H 2 O<br />

lub też prościej, w formie reakcji jonowej:<br />

Sn 2+ + MnO - 4 + H + = Sn 2+ + Mn 2+ + H 2 O<br />

Współczynniki tej reakcji uzgadniamy, pisząc bilans elektronowy:<br />

MnO<br />

- 4 + 8H + + 5e → Mn 2+ + 4H 2 O |·2 (1)<br />

Sn 2+ → Sn 4+ + 2e |·5 (2)<br />

czyli:<br />

2MnO<br />

- 4 + 16H + + 10e → 2Mn 2+ + 8H 2 O (3)<br />

5Sn 2+ → 5Sn 4+ + 10e (4)<br />

Stąd ostatecznie otrzymujemy:<br />

5Sn 2+ + 2MnO<br />

- 4 + 16H + = 5 Sn 4+ + 2Mn 2+ + 8H 2 O (R 3.9)<br />

Z tabeli potencjałów normalnych odczytujemy potencjały normalne półogniw:<br />

V o 1 {MnO - 4 , H + | Mn 2+ } = 1,503 V<br />

V o 2 {Sn 4+ | Sn 2+ } = 0,15 V<br />

Na elektrodzie: MnO - 4 , H + | Mn 2+ ustala się następująca równowaga (porównaj z reakcją<br />

(1), pamiętając, że zgodnie z (R 3.8) reakcję elektrodową zapisujemy w taki sposób, by po<br />

stronie produktów reakcji występowały elektrony):<br />

Mn 2+ + 4H 2 O MnO<br />

- 4 + 8H + + 5e (5)<br />

a potencjał półogniwa, zgodnie z (3.12) wynosi:<br />

−<br />

RT ⎛[<br />

MnO4<br />

] ⋅[<br />

H<br />

,52 + ln⎜<br />

5F<br />

⎝ [ Mn ]<br />

V (3.13)<br />

1<br />

= 1<br />

2+<br />

+<br />

]<br />

8<br />

⎞<br />

⎟<br />

⎠<br />

(stężenie wody, jako rozpuszczalnika przyjmuje się jako stałe, stąd też opuszcza się je w<br />

poniższym równaniu).<br />

Analogicznie, na elektrodzie Sn 4+ | Sn 2+ ustala się równowaga:<br />

Sn 4+ Sn 2+ + 2e (6)<br />

a potencjał elektrody, zgodnie z (3.12) wynosi:<br />

2<br />

4+<br />

RT ⎛[<br />

Sn<br />

= 0,15<br />

+ ln⎜<br />

2+<br />

2F<br />

⎝[<br />

Sn<br />

] ⎞<br />

⎟<br />

] ⎠<br />

V (3.14)<br />

36


Jeżeli sporządzimy roztwór substratów reakcji R 3.9 (np. przez zmieszanie wodnych<br />

roztworów KMnO 4 , SnCl 2 i H 2 SO 4 ) albo też produktów reakcji (np. przez zmieszanie<br />

wodnych roztworów SnCl 4 , MnCl 2 , H 2 SO 4 ), to po pewnym czasie ustali się równowaga<br />

chemiczna, opisana równaniem reakcji R 3.9. Gdyby do takiego roztworu będącego w stanie<br />

równowagi chemicznej włożyć blaszkę platynową, to wówczas występowałyby równocześnie<br />

dwie elektrody utleniająco-redukcyjne: MnO - 4 , H + | Mn 2+ oraz Sn 4+ | Sn 2+ . Ponieważ w<br />

stanie równowagi blaszka platynowa może mieć tylko jedną wartość potencjału względem<br />

roztworu, więc lewe strony równań 3.13 i 3.14 muszą być sobie równe. Wynika stąd, że<br />

również prawe strony winne być sobie równe, czyli:<br />

− + 8<br />

4+<br />

RT ⎛[<br />

MnO ⎞<br />

⎛ ⎞<br />

4<br />

] ⋅[<br />

H ] RT [ Sn ]<br />

,52 + ln⎜<br />

⎟ = 0,15 + ln⎜<br />

⎟<br />

2+<br />

+<br />

5F<br />

⎝ [ Mn ] ⎠ 2F<br />

⎝[<br />

Sn ] ⎠<br />

1<br />

2<br />

(3.15)<br />

Po przekształceniu otrzymujemy:<br />

4+<br />

5 2+<br />

2<br />

⎛ [ Sn ] [ Mn ] ⎞<br />

10F<br />

ln ⎜<br />

= (1,503 −0,15)<br />

⋅<br />

2 5<br />

2 8<br />

[ Sn ] [ MnO4<br />

] [ H ]<br />

⎟<br />

+<br />

− +<br />

⎝<br />

⎠<br />

RT<br />

(3.16)<br />

Wyrażenie 3.16 zostało wyprowadzone przy założeniu, że w roztworze ustalił się stan<br />

równowagi, czyli występujące w nim stężenia są stężeniami w stanie równowagi. Jak można<br />

więc zauważyć, wyrażenie pod logarytmem naturalnym określa stałą równowagi<br />

rozpatrywanej reakcji (R 3.9).<br />

Zależność 3.16 można uogólnić:<br />

1 2 nF<br />

ln K = ( V0<br />

− V0<br />

) ⋅<br />

RT<br />

(3.17)<br />

gdzie: K - stała równowagi reakcji redoks, V o 1 , V o<br />

2<br />

- potencjały normalne elektrod, przy czym<br />

wskaźnik 1 odpowiada temu półogniwu, którego „utleniacz” jest substratem globalnej reakcji<br />

redoks (w naszym przypadku jest nim jon MnO 4 - ), n - liczba elektronów występująca w<br />

uzgodnionym bilansie elektronowym (w naszym przypadku n = 10, patrz: równania 3 i 4).<br />

Kierunek reakcji redoks można przewidzieć, porównując potencjały V 1 i V 2 elektrod.<br />

Przykładowo dla reakcji w temperaturze 298 K, opisanej równaniem (R 3.9) i o stężeniach<br />

jonów:<br />

[MnO 4 - ] = 0,1 mol/dm 3 ; [H + ] = 2 mol/dm 3 ; [Mn 2+ ] = 10 -3 mol/dm 3 ;<br />

37


[Sn 4+ ]= 0,01 mol/dm 3 ; [Sn 2+ ] = 1 mol/dm 3<br />

potencjały elektrod wynoszą:<br />

− + 8<br />

RT ⎛[<br />

MnO4<br />

] ⋅[<br />

H ] ⎞<br />

V1 = 1,52<br />

+ ln⎜<br />

⎟ = 1, 57V<br />

2+<br />

5F<br />

⎝ [ Mn ] ⎠<br />

4+<br />

RT ⎛[<br />

Sn ] ⎞<br />

V2 = 0,15<br />

+ ln⎜<br />

⎟ = 0, 09V<br />

2+<br />

2F<br />

⎝[<br />

Sn ] ⎠<br />

Potencjały elektrod spełniają zależność V 1 > V 2 , tak więc reakcja przebiega w kierunku<br />

redukcji manganu zawartego w jonie MnO 4<br />

-<br />

do Mn 2+ i utlenianiu jonów Sn 2+ do Sn 4+ .<br />

38


Rozdział 4<br />

Stężenia roztworów<br />

Zawartość substancji w roztworze wyraża się ilością substancji rozpuszczonej znajdującej,<br />

się w jednostkowej ilości roztworu lub rozpuszczalnika.<br />

lub<br />

ilość składnika<br />

stężenie składnika = ———————<br />

ilość roztworu<br />

ilość składnika<br />

stężenie składnika = —————————<br />

ilość rozpuszczalnika<br />

Do wyrażenia ilości substancji rozpuszczonej oraz ilości roztworu lub rozpuszczalnika<br />

można stosować jednostki fizyczne (masy lub objętości) lub jednostki chemiczne (np. liczby<br />

moli substancji). Wybór jednostek stężeń w dużej mierze zależy od dziedziny, w której są one<br />

używane. W technice przyjmuje się na ogół jednostki fizyczne, w chemii analitycznej używa się<br />

najczęściej jednostek chemicznych.<br />

Tabela 4.1. Najczęstsze sposoby wyrażania zawartości składników<br />

Sposób wyrażenia<br />

zawartości składnika A<br />

Nazwa Wzór Jednostka<br />

podstawowa<br />

liczba moli składnika A<br />

———————————<br />

objętość roztworu<br />

stężenie molowe<br />

c =<br />

A<br />

nA<br />

V mol·m -3<br />

roztw<br />

masa składnika A<br />

————————<br />

objętość roztworu<br />

stężenie wagowe 2<br />

(masowe)<br />

m<br />

A<br />

ρ<br />

A<br />

=<br />

kg·m -3<br />

V roztw<br />

liczba moli składnika A<br />

———————————<br />

liczba moli wszystkich<br />

składników<br />

ułamek molowy<br />

x A =<br />

nA<br />

∑n<br />

i<br />

mol·mol<br />

2<br />

Ze względu na definicję i przyjęte jednostki poprawniejsze są nazwy stężenie masowe i ułamek masowy<br />

zamiast powszechnie używanych - stężenie wagowe i ułamek wagowy.<br />

39


masa składnika A<br />

————————<br />

masa roztworu<br />

ułamek wagowy<br />

(masowy)<br />

w =<br />

A<br />

m<br />

m<br />

A<br />

roztw<br />

kg/kg<br />

objętość składnika A<br />

————————<br />

objętość roztworu<br />

ułamek objętościowy<br />

v =<br />

A<br />

V A<br />

V m 3 /m 3<br />

roztw<br />

Oprócz wymienionych sposobów wyrażania ilościowego składu roztworów używane<br />

bywa czasem stężenie normalne, które oznacza liczbę gramorównoważników substancji x<br />

znajdujących się w 1 dm 3 roztworu. Ponieważ gramorównoważnik substancji zależy od<br />

reakcji, w której ta substancja bierze udział, dlatego też stężenie normalne roztworu jest<br />

zależne od reakcji, w której bierze udział roztwór.<br />

Na przykład używanemu w analizie miareczkowej redoks roztworowi manganianu(VII)<br />

potasu KMnO 4 o stężeniu 0,1 mol/dm 3 odpowiadają różne stężenia normalne w zależności od<br />

miareczkowanej substancji i pH środowiska. W reakcjach prowadzonych w środowisku<br />

kwaśnym zwykle następuje zmiana stopnia utlenienia manganu z Mn 7+ do Mn 2+ . Wtedy<br />

roztwór manganianu(VII) potasu o stężeniu 0,1 mol/l jest 0,5 normalny. W reakcjach<br />

prowadzonych w środowisku obojętnym może następować redukcja manganu z Mn 7+ do<br />

Mn 4+ a w środowisku silnie zasadowym z Mn 7+ do Mn 6+ . Wtedy odpowiednio ten sam<br />

roztwór jest 0,3 n i 0,1 n. Dlatego np. napis na butelce z manganianem(VII) potasu<br />

stwierdzający, że roztwór posiada stężenie 0,1 n nie jest jednoznaczny i wymaga<br />

dodatkowego określenia, w jakiej reakcji ten odczynnik zostanie użyty. Z powodu możliwych<br />

niejednoznaczności wyrażanie zawartości składnika za pomocą stężenia normalnego zgodnie<br />

z obowiązującym układem SI uważane jest za nielegalne i nie powinno być używane.<br />

Przedstawione definicje stężeń mogą być stosowane tylko w ograniczonym zakresie.<br />

Maksymalne stężenie substancji w roztworze wynika z zakresu, w jakim ta substancja może<br />

tworzyć z rozpuszczalnikiem jednorodną, jednofazową mieszaninę. Taka mieszanina o<br />

maksymalnym stężeniu, pozostająca przy danym ciśnieniu i temperaturze w równowadze z<br />

inną fazą zawierającą tę substancję, nazywana jest roztworem nasyconym. Powyżej granicy<br />

rozpuszczalności można mówić jedynie o zawartości składników w mieszaninie, gdyż układ<br />

40


staje się co najmniej dwufazowy 3 . O wiele trudniej jest precyzyjnie określić dolną granicę<br />

stosowalności pojęcia: stężenie. Oczywiste jest, że ze względu na ziarnistą strukturę materii<br />

nie ma sensu fizycznego stężenie np.: rzędu 10 -30 mol/dm 3 , gdyż oznacza to, że w 1 dm 3<br />

roztworu znajduje się 6·10 -7 atomu lub cząsteczki. Podobnie, trudno jest mówić o stężeniu,<br />

gdy na 1 dm 3 objętości przypada jedna cząsteczka, co odpowiada stężeniu ok. 1,66·10 -24<br />

mol/dm 3 . Jeżeli podzielimy tę objętość na przykład na 100 równych części (rys. 1)<br />

stwierdzimy, że w sześcianie A, w którym znajduje się cząsteczka, stężenie jest 100 razy<br />

większe od średniego stężenia w całej objętości. Natomiast w sześcianie B i w pozostałej<br />

objętości roztworu stężenie jest równe 0! Mamy do czynienia z fluktuacjami stężenia od 0<br />

do 10000% wartości średniej i w dodatku w żadnej z wydzielonych części stężenie nigdy<br />

średniej wartości stężenia nie osiągnie. Sytuacja nie ulegnie istotnej poprawie, jeżeli stężenie<br />

w roztworze będzie 100 - krotnie wyższe, czyli 1,66·10 -22 mol/dm 3 . Wtedy na jedną z<br />

wydzielonych części objętości przypadnie dokładnie 1 cząsteczka. Ale prawdopodobieństwo<br />

takiego zdarzania, że cząsteczki rozłożą się równomiernie (jedna na jedną wydzieloną część<br />

roztworu), jest równe ok. 9·10 -43 , czyli praktycznie zerowe. Jeżeli pobierzemy za pomocą<br />

pipety 10 cm 3 roztworu, to jest niemal równie prawdopodobne, że stężenie w wydzielonej<br />

przez nas części roztworu będzie równe 1,66·10 -24 mol/dm 3 (1 cząsteczka), jak i to, że w<br />

pipecie nie znajdzie się żadna cząsteczka.<br />

A<br />

B<br />

Rys. 1. Ilustracja przypadku, w którym na 1 dm objętości przypada 1 cząsteczka.<br />

3<br />

Dla niektórych substancji możliwe jest otrzymanie roztworu przesyconego, to jest roztworu o stężeniu<br />

większym niż stężenie roztworu nasyconego w danych warunkach. Roztwór przesycony jest układem<br />

niestabilnym; pojawienie się zarodków innej fazy zwykle powoduje szybkie utworzenie się roztworu<br />

nasyconego.<br />

41


Wielkość fluktuacji stężenia zależna jest od ilości cząsteczek, jak i rozpatrywanej<br />

objętości. Nie można więc jednoznacznie określić granicy stężenia powyżej której fluktuacje<br />

w każdym przypadku są pomijalne. Dlatego dla większości problemów w chemii umownie<br />

przyjmuje się granicę stężenia rzędu 10 -17 , 10 -18 mol/dm 3 , choć nie wszyscy chcą ten fakt<br />

zauważać.<br />

4.1. Stosowane jednostki stężeń<br />

Używanie w chemii podstawowych jednostek miar masy i objętości z reguły jest bardzo<br />

niewygodne. Dla roztworów o małych stężeniach i małych objętościach powszechnie stosuje<br />

się jednostki będące podwielokrotnościami jednostki podstawowej (np.: mg/dm 3 , µg/dm 3 ,<br />

mmol/dm 3 , itd.). Ponieważ w systemie SI litr jest synonimem decymetra sześciennego i jego<br />

używanie jest dozwolone, zamiast podanych jednostek można konsekwentnie podawać mg/l,<br />

mg/l lub mmol/l.<br />

Uwaga: od jednostki 1 l nie tworzy się wielokrotności i podwielokrotności (np.: ml, µl.)<br />

Do wyrażania stężenia molowego można używać specjalnych jednostek [M], przy czym:<br />

1[M] = 1[mol/dm 3 ].<br />

Zawartość składników podaną w postaci ułamków masowych, objętościowych lub<br />

molowych można wyrazić także za pomocą procentów. Mówimy wówczas o procentowej<br />

zawartości (wagowej, objętościowej lub molowej) lub krócej procencie (wagowym,<br />

objętościowym, molowym) składnika. Tak wyrażone stężenie jest sto razy większe od<br />

odpowiadającego mu ułamka.<br />

w A (%) = w A · 100%<br />

Ponieważ jest powszechnie przyjęte używanie pojęcia zawartości procentowej (albo<br />

stężenia procentowego) jako synonimu procentu wagowego, dlatego w sytuacji, gdy<br />

stosujemy inne sposoby wyrażania stężeń, należy wyraźnie zaznaczyć, do jakiego ułamka<br />

odnoszą się procenty np.: 10% (m/m) - ułamek wagowy, 10% (V/V) - ułamek objętościowy,<br />

10% (n/n) - ułamek molowy.<br />

W chemii analitycznej w wielu przypadkach spotykamy się z koniecznością wyrażenia<br />

bardzo małych zawartości składników. Wymaga to stosowania bardzo małych liczb, co w<br />

praktyce też jest niewygodne. Z tego względu wprowadzono i dopuszczono do stosowania w<br />

42


systemie SI bezwymiarowe jednostki ppm (z języka angielskiego: parts per million, czyli<br />

części milionowe):<br />

1 ppm = 10 -6 = 10 -4 %<br />

Dopuszczalne są jeszcze mniejsze jednostki: ppb - parts per billion (10 -9 ), ppt - parts per<br />

trillion (10 -12 ), ppqud - parts per quadrillion (10 -15 ), lecz w praktyce są to jednostki bardzo<br />

rzadko używane. Przy wyrażaniu stężeń za pomocą jednostek ppm, podobnie jak w przypadku<br />

procentów, należy zaznaczyć do jakiego ułamka są one odniesione (np.: 10 ppm (V/V), 5 ppb<br />

(m/m)) .<br />

Czasem w sposób nieprawidłowy, lecz bez wprowadzania istotnego błędu, używa się<br />

jednostek ppm do wyrażania stężenia wagowego. Na przykład mając na myśli poziom<br />

zanieczyszczeń w wodzie w ilości 7·10 -6 kg/dm 3 , wyraża się go jako 7 ppm. Takie postępowanie<br />

jest słuszne tylko dla roztworów, których gęstość jest dokładnie równa 1 kg/dm 3 .<br />

43


Rozdział 5<br />

Stechiometria<br />

Każdą reakcję chemiczną można zapisać równaniem, które jest jakościową i ilościową<br />

charakterystyką tej reakcji. Określa ono bowiem, jakie pierwiastki lub związki biorą udział w<br />

danej reakcji oraz w jakich stosunkach wagowych lub objętościowych reagują one ze sobą.<br />

Umożliwia to przeprowadzanie obliczeń, które noszą nazwę obliczeń stechiometrycznych.<br />

Wymagają one umiejętności poprawnego zapisu dowolnej reakcji chemicznej, jak również<br />

znajomości podstawowych praw chemii. Zagadnienia te zostały omówione w poprzednich<br />

rozdziałach tego skryptu.<br />

5.1. Obliczanie składu ilościowego związku chemicznego<br />

Wzór dowolnego związku chemicznego podaje nam nie tylko jego skład jakościowy (z<br />

jakich pierwiastków jest zbudowana jego cząsteczka), ale także skład ilościowy.<br />

Na przykład wzór siarczanu(VI) sodu (Na 2 SO 4 ) wskazuje: po pierwsze, że związek ten<br />

składa się z sodu, siarki i tlenu, a po drugie, że 1 mol tego związku zawiera 2 mole sodu, 1 mol<br />

siarki i 4 mole tlenu.<br />

Pozwala to na obliczenie składu (w procentach wagowych) tego związku na podstawie jego<br />

wzoru:<br />

Mol soli (M s ) = 2⋅22,98 + 32,06 + 4⋅15,99 = 141,9 g⋅mol<br />

Procentowa zawartość sodu (w molu tej soli są dwa mole sodu) wynosi:<br />

2 ⋅ M Na 2 ⋅ 22,98<br />

p Na (% Na) = = ⋅100<br />

= 32,38<br />

M 141,9<br />

soli<br />

gdzie M Na oznacza mol sodu.<br />

Dla drugiego pierwiastka - siarki (w molu tej soli jest jeden mol siarki) zawartość<br />

procentowa wynosi:<br />

MS<br />

32,06<br />

pS (%S) = = ⋅100<br />

= 22,59<br />

M 141,9<br />

gdzie M S oznacza mol siarki.<br />

Zawartość procentowa trzeciego pierwiastka tlenu jest równa :<br />

soli<br />

44


p O (% O) = 100 - (p Na + p S ) = 100 - (32,38 + 22,59) = 45,03<br />

Rozważmy dowolny związek chemiczny, składający się np. z trzech pierwiastków<br />

(oznaczamy je jako A, B, C), dla którego chcemy obliczyć skład procentowy na podstawie jego<br />

wzoru. Wówczas wzór ogólny możemy zapisać jako:<br />

A m B n C p<br />

gdzie m, n, p są współczynnikami stechiometrycznymi pierwiastków wchodzących w skład<br />

cząsteczki tego związku.<br />

Zawartość procentową poszczególnych pierwiastków A, B, C obliczamy, korzystając z<br />

następujących równań:<br />

p<br />

A<br />

(% A) =<br />

m ⋅ M<br />

M<br />

Z<br />

A<br />

⋅100<br />

p<br />

B<br />

(%B) =<br />

n ⋅ M<br />

M<br />

Z<br />

B<br />

⋅100<br />

p C (% C) = 100 - (p A + p B )<br />

gdzie M A , M B , są masami molowymi odpowiednich pierwiastków wchodzących w skład<br />

cząsteczki a M z jest masą molową związku chemicznego, dla którego obliczamy skład<br />

procentowy.<br />

Niekiedy dla soli oblicza się nie zawartość procentową poszczególnych pierwiastków, ale<br />

udział procentowy zawartych w niej tlenków. Wówczas wzór chemiczny tej soli musimy<br />

przedstawić w formie tlenkowej.<br />

Na przykład:<br />

soli K 2 SO 4 odpowiada wzór tlenkowy K 2 O·SO 3 ,<br />

soli K 2 CrO 4 odpowiada wzór tlenkowy K 2 O·CrO 3 .<br />

Ogólnie, dla dowolnej soli (tylko dla soli kwasów I tlenowych) wzór tlenkowy można<br />

zapisać jako:<br />

x moli tlenku A ⋅ y moli tlenku B.<br />

Skład procentowy soli w przeliczeniu na tlenki oblicza się, korzystając z następujących<br />

wzorów:<br />

p<br />

tlenku A<br />

M<br />

(% tlenku A) = x ⋅<br />

M<br />

tlenku A<br />

soli<br />

⋅100<br />

p tlenku B (% tlenku B) = 100 - p tlenku A<br />

45


gdzie M tlenku A oznacza masę molową tlenku A.<br />

Podobnie można wzory chemiczne minerałów, na przykład wzór dolomitu:<br />

CaCO 3 · MgCO 3 (węglan wapnia i magnezu)<br />

przedstawić w formie tlenkowej jako: CaO ·MgO·2CO 2 {1 mol tlenku wapnia, 1 mol tlenku<br />

magnezu, 2 mole tlenku węgla(IV)}.<br />

Jeżeli dana substancja nie jest czystym związkiem chemicznym, to aby obliczyć procentową<br />

zawartość pierwiastków w tej substancji, konieczna jest znajomość zawartości (w %) czystego<br />

związku chemicznego.<br />

5.2. Wyprowadzanie wzoru empirycznego (uproszczonego) i rzeczywistego<br />

związku chemicznego na podstawie jego składu<br />

Znajomość składu procentowego związku chemicznego (zazwyczaj otrzymuje się go na<br />

drodze analizy ilościowej) pozwala na wyprowadzanie jego wzoru empirycznego. Wyraża on<br />

najprostszy skład atomowy mola danego związku chemicznego, odpowiadający jego składowi<br />

wagowemu.<br />

Rozważamy związek chemiczny składający się z trzech pierwiastków A, B, C, którego skład<br />

procentowy jest następujący:<br />

% pierwiastka A – a , % pierwiastka B – b , % pierwiastka C – c,<br />

i w oparciu o te dane wyprowadzamy wzór empiryczny związku (A m B n C p , gdzie m, n, p są<br />

współczynnikami stechiometrycznymi w tym wzorze).<br />

Dane te pozwalają na wyznaczenie liczby moli poszczególnych pierwiastków A, B, C<br />

zgodnie z następującymi wzorami:<br />

a<br />

m = ,<br />

M A<br />

b<br />

n = ,<br />

M B<br />

p =<br />

c<br />

M C<br />

gdzie M A , M B , M C są molami pierwiastków A, B, C.<br />

Stosunek otrzymanych z tych równań wartości m : n : p (doprowadzony do najprostszych<br />

liczb całkowitych) jest równy stosunkowi liczby moli pierwiastków A, B, C , a liczby m, n, p są<br />

współczynnikami stechiometrycznymi we wzorze empirycznym rozważanego związku<br />

chemicznego.<br />

Każdy związek chemiczny oprócz wzoru empirycznego posiada wzór rzeczywisty. Podanie<br />

tego wzoru dla związku chemicznego wymaga, obok wzoru empirycznego, znajomości wartości<br />

masy cząsteczkowej. Jest ona podana albo bezpośrednio, albo należy ją obliczyć na podstawie<br />

danych zawartych w zadaniu.<br />

46


Porównanie masy cząsteczkowej, obliczonej na podstawie wzoru empirycznego, z masą<br />

cząsteczkową danego związku pozwala określić rzeczywistą liczbę atomów poszczególnych<br />

pierwiastków wchodzących w skład cząsteczki danego związku.<br />

W tym celu należy w oparciu o wzór empiryczny obliczyć masę cząsteczkową M e , a<br />

następnie podzielić rzeczywistą masę cząsteczkową M rz przez tę wartość:<br />

M<br />

M<br />

rz =<br />

e<br />

n<br />

Otrzymana wartość n jest liczbą, przez która należy pomnożyć współczynniki<br />

stechiometryczne we wzorze empirycznym, aby wyprowadzić wzór rzeczywisty danego<br />

związku chemicznego.<br />

Dla rozważanego przez nas przykładu związku o ogólnym wzorze A m B n C p (wzór<br />

empiryczny) możemy mieć dwa przypadki:<br />

a) gdy n = 1 wówczas wzór empiryczny jest identyczny ze wzorem rzeczywistym,<br />

b) gdy n jest różne od jedności, na przykład n = 2, wzór empiryczny nie jest wzorem<br />

rzeczywistym (należy współczynniki stechiometryczne we wzorze empirycznym<br />

pomnożyć przez liczbę n). Wzór rzeczywisty ma wówczas postać A 2m B 2n C 2p .<br />

5.3. Obliczenia na podstawie równań chemicznych<br />

Równanie chemiczne jest zapisem reakcji chemicznej, które nie tylko wskazuje substraty i<br />

produkty danej reakcji, ale podaje również stosunki molowe (wagowe), w jakich substancje<br />

reagują ze sobą.<br />

Na przykład równanie syntezy siarczku żelaza(II) z pierwiastków można zapisać jako:<br />

Fe + S = FeS<br />

Równanie to wskazuje, że z 1 mola żelaza i 1 mola siarki (substraty reakcji) powstaje 1 mol<br />

siarczku żelaza(II) (produkt reakcji). Można również powiedzieć, że 55,85 g żelaza całkowicie<br />

reaguje z 32,07 g siarki, dając 87,92 g siarczku.<br />

Dla reakcji zachodzących w stanie gazowym z równania reakcji chemicznych można<br />

odczytać dodatkowo stosunki objętościowe reagujących substancji. Na przykład reakcja syntezy<br />

chlorowodoru z chloru i wodoru zapisana równaniem:<br />

H 2 + Cl 2 = 2 HCl<br />

wskazuje nie tylko, że 1 mol wodoru reaguje z 1 molem chloru, ale również, że 1 objętość<br />

wodoru reaguje z 1 objętością chloru, dając dwie objętości chlorowodoru lub, że 22,4 dm 3<br />

47


wodoru reaguje z 22,4 dm 3 chloru, dając 44,8 dm 3 chlorowodoru (odnosi się to do warunków<br />

normalnych, przy założeniu, że gazy zachowują się jak gazy doskonałe).<br />

Rozwiązanie zadania stechiometrycznego wymaga:<br />

A. Poprawnie napisanego równania reakcji chemicznej (na podstawie treści zadania). Lewa<br />

strona równania powinna zawierać wszystkie substraty reakcji, a prawa wszystkie jej<br />

produkty.<br />

B. Uzgodnienia tak napisanej reakcji chemicznej.<br />

(Zagadnienia zawarte w punktach A i B są dokładnie omówione w rozdziale 3 tego<br />

skryptu).<br />

C. Ułożenia odpowiedniej proporcji, w której z danych zawartych w zadaniu możemy<br />

obliczyć poszukiwaną ilość substratu lub produktu, wyrażoną w gramach, molach lub<br />

objętościach reagujących gazów (do tych obliczeń wykorzystujemy uzgodnione<br />

równanie danej reakcji chemicznej).<br />

D. W zadaniach, w których substratami lub produktami są gazy przyjmujemy, o ile nie<br />

zostało to w zadaniu inaczej określone, że gazy te zachowują się jak gazy doskonale<br />

(objętość 1 mola takiego gazu w warunkach normalnych wynosi 22,4 dm 3 ).<br />

48


Rozdział 6<br />

Równowaga chemiczna<br />

6.1. Wstęp<br />

Układając równania reakcji chemicznych i prowadząc obliczenia stechiometryczne, na ogół<br />

nie zastanawiamy się nad warunkami, jakie musimy spełnić, aby skutecznie je przeprowadzić. O<br />

tym, że warunki zewnętrzne mogą wpływać na przebieg reakcji chemicznych, możemy<br />

przekonać się, wykonując kilka doświadczeń.<br />

Przeprowadzimy proces rozkładu termicznego węglanu wapnia w ten sposób, że substrat<br />

zamykamy w szczelnej ampule, usunąwszy z niej uprzednio powietrze, i umieszczamy ją w<br />

piecu. Ponieważ w poradniku fizyko-chemicznym podano, że temperatura rozkładu CaCO 3<br />

wynosi 1098 K, zatem temperatura w piecu nie powinna być niższa. Po pewnym czasie<br />

wyciągamy z pieca ampułę i przeprowadzamy analizę jej zawartości. Okazuje się, że zawiera<br />

ona nadal węglan wapnia i pewne ilości dwutlenku węgla i tlenku wapnia. Ktoś może sądzić, że<br />

zbyt krótko wygrzewaliśmy ampułę z węglanem wapnia i dlatego reakcja nie zaszła do końca.<br />

Powtarzamy więc doświadczenie, wydłużając czas przebywania ampuły w nagrzanym piecu.<br />

Ilościowa analiza zawartości ampuły daje taki sam wynik jak poprzednio. Przeprowadźmy to<br />

doświadczenie nieco inaczej. Umieśćmy węglan wapnia w otwartej ampule i prowadźmy<br />

rozkład termiczny, zachowując pozostałe warunki doświadczenia. Po reakcji przeprowadzamy<br />

analizę zawartości ampuły. Okazuje się, że w ampule pozostał jedynie tlenek wapnia.<br />

Analizując powyższe doświadczenia możemy łatwo zauważyć, że:<br />

• jeżeli rozkład termiczny węglanu wapnia jest prowadzony w zamkniętej ampule, to nie<br />

zachodzi on do końca,<br />

• jeżeli rozkład jest prowadzony w otwartej ampule, to można doprowadzić do całkowitego<br />

rozkładu węglanu wapnia.<br />

Można przeprowadzić jeszcze inne doświadczenia:<br />

Do dokładnie opróżnionej szklanej kolby o pojemności 1 dm 3 wprowadźmy 0,1000 mola<br />

gazowego HI, i po zamknięciu, ogrzejmy ją do 630 K. Wnętrze kolby zabarwi się na fioletowo,<br />

co świadczy o pojawieniu się par jodu. Gdybyśmy przeprowadzili ilościową analizę zawartości<br />

kolby, to okazałoby się , że wewnątrz kolby znajduje się po 0,0098 mola jodu i wodoru i 0,0804<br />

49


mola jodowodoru. Wynika stąd, że w kolbie pewna ilość jodowodoru uległa rozkładowi na jod i<br />

wodór zgodnie z równaniem:<br />

2HI (g) = H 2(g) + I 2(g)<br />

Można przeprowadzić też nieco inny eksperyment. Do takiej samej kolby wprowadzić po<br />

0,0500 mola jodu i wodoru i po zamknięciu, ogrzać ją do 630 K. Po pewnym czasie okaże się, że<br />

w kolbie znów mamy po 0,0098 mola jodu i wodoru oraz 0,0804 mola jodowodoru. Mimo<br />

innego stanu początkowego niż w poprzednim doświadczeniu, końcowy skład gazowych<br />

reagentów jest taki sam w obu kolbach.<br />

Co stanie się, jeśli do takiej samej kolby wprowadzimy 0,0700 mola wodoru i 0,0500 mola<br />

jodu, czyli większą ilość wodoru niż wynikałoby to ze stechiometrii reakcji pomiędzy wodorem<br />

a jodem. Przy zachowaniu wszystkich pozostałych warunków doświadczenia, analiza pokaże<br />

nam, że w kolbie pozostanie 0,0049 mola jodu, 0,0249 mola wodoru i powstanie 0,0902 mola<br />

jodowodoru.<br />

Warto zwrócić uwagę na obecność w stanie końcowym wszystkich trzech reagentów, mimo<br />

różnych warunków początkowych w każdym z powyższych doświadczeń. Ponadto, stan ten nie<br />

ulega zmianie przez dowolnie długi czas, pod warunkiem stałości temperatury kolby.<br />

Oznacza to, że reakcje opisane równaniami:<br />

2HI (g) = H 2(g) + I 2(g)<br />

i<br />

H 2(g) + I 2(g) = 2HI (g)<br />

nie przebiegają do końca, lecz „zatrzymują się”. Cudzysłów przy określeniu – zatrzymują się –<br />

użyty został celowo, gdyż nie mamy tu do czynienia z prawdziwym zakończeniem się reakcji,<br />

lecz z jednoczesnym przebiegiem dwu konkurencyjnych względem siebie reakcji. Jedną z nich<br />

jest reakcja jego rozkładu a drugą synteza jodowodoru:<br />

2HI (g) → H 2(g) + I 2(g)<br />

H 2(g) + I 2(g) → 2HI (g)<br />

O tym, że te dwie reakcje stale zachodzą, możemy się przekonać, wprowadzając do kolby<br />

znikomo małą ilość promieniotwórczego izotopu jodu I, wkrótce będzie można zaobserwować w<br />

kolbie promieniotwórczy jodowodór HI. I na odwrót, po pewnym czasie od wprowadzenia<br />

odrobiny jodowodoru HI, wewnątrz kolby zaobserwujemy promieniotwórczy jod.<br />

Można tu pokusić się o następujące stwierdzenie:<br />

dla procesu prowadzonego w określonych warunkach w układzie zamkniętym ustala się<br />

pewien stan, w którym substraty i produkty reakcji pozostają w pewnej „ilościowej<br />

równowadze ze sobą”. W układzie otwartym ten fakt nie ma miejsca.<br />

50


We wszystkich przedstawianych powyżej przykładach, układ zamknięty osiąga taki stan, w<br />

którym nie występuje już żadna zmiana stężeń poszczególnych reagentów. A zatem szybkości<br />

obu reakcji (prostej i odwrotnej) są w tym stanie jednakowe. Czas, po jakim nastąpi wyrównanie<br />

tych szybkości i końcowy skład reagentów w układzie zależą od temperatury. Dla rozważanej<br />

reakcji w miarę jak rośnie temperatura, stopień przereagowania jodu z wodorem maleje; i tak np.<br />

w 720 K w pierwszej kolbie mielibyśmy po 0,0110 mola jodu i wodoru i 0,0780 mola<br />

jodowodoru. W dostatecznie wysokiej temperaturze praktycznie nie obserwowalibyśmy reakcji<br />

jodu z wodorem, a wprowadzony jodowodór ulegałby całkowitemu rozkładowi na jod i wodór.<br />

Ponieważ w omawianym tu przykładzie mamy do czynienia nie tylko z reakcją pomiędzy<br />

jodem a wodorem, lecz także z reakcją rozkładu jodowodoru, to dla uwypuklenia tego faktu<br />

stosujemy następujący zapis:<br />

H 2(g) + I 2(g) ↔ 2HI (g)<br />

Ta dwustronna strzałka ↔ pokazuje, że mamy do czynienia z reakcją odwracalną. Dla<br />

reakcji odwracalnych tradycyjne terminy – substraty i produkty – mają trochę inne znaczenie.<br />

Terminem substraty opisujemy reagenty znajdujące się w równaniu reakcji po lewej stronie<br />

strzałki ↔, a produkty – po jej prawej stronie. Dla uproszczenia w dalszej części naszych<br />

rozważań, reakcję której przebieg opisuje równanie reakcji czytane z lewej strony na prawą,<br />

będziemy nazywać reakcją prostą, natomiast reakcję przebiegającą w kierunku przeciwnym<br />

będziemy nazywać reakcją odwrotną. Oczywiście to, czy jakaś reakcja jest w danym momencie<br />

reakcją prostą, czy odwrotną, zależy od sposobu jej zapisania. Jak zatem zapiszemy równanie<br />

reakcji rozkładu termicznego węglanu wapnia?<br />

Dla układu otwartego:<br />

CaCO 3(s) → CaO (s) + CO 3(g)<br />

substrat → produkty<br />

Po zajściu reakcji nie ma już substratu, tj. węglanu wapnia. Uległ on „zamianie” na<br />

produkty, tj. tlenek wapnia i dwutlenek węgla.<br />

Dla układu zamkniętego:<br />

CaCO 3(s) ↔ CaO (s) + CO 3(g)<br />

W układzie zamkniętym reakcja zachodzi jakby w obydwie strony, co zaznaczono znakiem<br />

podwójnej strzałki, gdyż w produktach reakcji obecne są: tlenek wapnia, dwutlenek węgla oraz<br />

węglan wapnia.<br />

Stan takiego niepełnego przereagowania nie jest w chemii zjawiskiem nadzwyczajnym, a<br />

wręcz przeciwnie, można ten stan uważać za powszechny, dla reakcji prowadzonych w układach<br />

51


zamkniętych, w których produkty reakcji (zwłaszcza gazowe) nie mogą opuszczać środowiska<br />

reakcji. Dla większości reakcji chemicznych można stworzyć takie warunki, w których mamy do<br />

czynienia z niepełnym przereagowaniem. Weźmy na przykład pod uwagę reakcję w<br />

stechiometrycznej mieszaninie tlenu z wodorem. W temperaturze 1000 K, pod ciśnieniem<br />

1,013·10 5 Pa = 1 atm, reakcja:<br />

2H 2(g) + O 2(g) ↔ 2H 2 O (g)<br />

przebiega praktycznie do końca, a ilości niezwiązanego tlenu i wodoru są znikomo małe (rzędu<br />

10%). Natomiast w temperaturze 2500 K ilości nieprzereagowanego tlenu i wodoru są już<br />

znaczne (4,1% – czyli ponad 100 000 razy więcej).<br />

6.2. Równowaga w układach homogenicznych<br />

Rozważania dotyczące tego, co nazywa się równowagą chemiczną, rozpoczniemy od<br />

reakcji zachodzących w układach homogenicznych, zwanych inaczej jednorodnymi. Warto<br />

przypomnieć, że układ jest homogeniczny, jeżeli badany metodami fizycznymi lub<br />

chemicznymi, wykazuje w każdym punkcie jednakowe właściwości. Układem homogenicznym<br />

jest np. mieszanina gazów lub roztwór rzeczywisty.<br />

Aby znaleźć ilościowe związki pomiędzy stężeniami reagentów w stanie równowagi,<br />

rozpatrzmy reakcję chemiczną, przebiegającą w fazie gazowej, którą opisać możemy za pomocą<br />

równania:<br />

A + B ↔ C + D (R.1)<br />

Przyjmijmy ponadto, że reakcja ta zachodzi jednostopniowo, tzn. w momencie zderzenia się<br />

cząsteczki A z cząsteczką B powstają cząsteczki C i D. Przykładem właśnie takiej reakcji jest<br />

reakcja syntezy i rozpadu jodowodoru, gdzie A i B to H 2 i I 2 , a C i D to cząsteczki HI.<br />

Warunkiem koniecznym zajścia reakcji jest takie zbliżenie ze sobą cząsteczek substratów (w tym<br />

przykładzie A i B), aby wytworzyły się odpowiednie wiązania chemiczne, prowadzące do<br />

powstania cząsteczek produktów (w tym przykładzie C i D). Zbliżenie to możemy traktować, na<br />

gruncie molekularnej teorii budowy gazów, jako niesprężyste zderzenie cząsteczek.<br />

Prawdopodobieństwo zderzenia się cząsteczek jest tym większe, im większe jest stężenie<br />

reagentów, gdyż przy wyższym stężeniu mamy do czynienia z większą ilością cząsteczek w tej<br />

samej objętości. Podobnie, im wyższa jest temperatura (większa jest wówczas przeciętna<br />

prędkość cząsteczek), tym częściej może dochodzić do efektywnych, tj. prowadzących do zajścia<br />

reakcji, zderzeń. Oznacza to, że szybkość reakcji jest funkcją (czytaj – zależy) temperatury i<br />

stężeń reagentów. Możemy to stwierdzenie, będące tzw. pierwszym prawem kinetyki reakcji<br />

52


chemicznych, zapisać formalnie w sposób następujący:<br />

v = k(T) · f (stężenie reagentów)<br />

Często jako miarę szybkości reakcji chemicznej – v – przyjmuje się stosunek zmiany<br />

stężenia substratów (lub produktów) do czasu, w jakim ta zmiana zachodzi, k – nosi nazwę<br />

stałej szybkości reakcji a jej wartość zależy od rodzaju reakcji oraz od temperatury, f –<br />

funkcja stężeń zależna jest od mechanizmu danej reakcji chemicznej. W jednym z prostszych<br />

przypadków funkcja ta może mieć postać iloczynu stężeń substratów. Wówczas dla przebiegu<br />

reakcji (R.1), z lewej strony na prawą, zapiszemy:<br />

v 1 = k 1 [A] [B]<br />

gdzie: [A] i [B] oznaczają stężenia molowe substratów.<br />

Dla lepszego zrozumienia procesów prowadzących do równowagi chemicznej musimy<br />

poświęcić tu nieco miejsca i czasu na choćby pobieżne omówienie przebiegu reakcji chemicznej.<br />

Zróbmy to na przykładzie syntezy jodowodoru. W momencie zderzenia się ze sobą cząsteczek<br />

wodoru i jodu ulegają rozerwaniu wiązania H–H i I–I, a na ich miejsce powstają dwa nowe<br />

wiązania H–I. Dla zajścia takiego procesu nie wystarczy sam fakt zetknięcia się cząsteczki jodu<br />

z cząsteczką wodoru. Gdyby tak było, to w mieszaninie gazowej, pod ciśnieniem<br />

atmosferycznym, każda reakcja zachodziłaby w czasie mierzonym ułamkiem sekundy, gdyż<br />

liczba zderzeń pomiędzy cząsteczkami w 1 cm, czasie 1 sekundy, jest rzędu 10. Ponieważ na<br />

ogół tak szybkich reakcji nie obserwujemy, zatem większość zderzeń pomiędzy cząsteczkami<br />

reagentów nie prowadzi do reakcji. Na to, aby zderzające się ze sobą cząsteczki przereagowały,<br />

potrzebna jest pewna energia. Na rys. 6.1 przedstawiono, w sposób symboliczny, stan<br />

energetyczny substratów (H 2 + I 2 ) i produktów (2HI) reakcji syntezy jodowodoru. Warto<br />

zauważyć, że, aby przejść ze stanu (H 2 + I 2 ) do stanu (2HI), wymagane jest pokonanie pewnej<br />

bariery energetycznej. A zatem tylko takie zderzenia są efektywne, czyli prowadzące do<br />

powstania cząsteczki jodowodoru, gdy zderzające się ze sobą cząsteczki jodu i wodoru mają<br />

energię wystarczającą do pokonania tej bariery, zwanej energią aktywacji. Z kinetycznomolekularnej<br />

teorii budowy gazów wynika, że cząsteczki gazu znajdują się w ciągłym<br />

chaotycznym ruchu, a szybkości poruszających się cząsteczek (a więc i ich energie) nie są<br />

jednakowe. Niektóre z nich mają dużą szybkość, inne zaś mniejszą. Zależność pomiędzy liczbą<br />

cząsteczek posiadających w danej temperaturze określoną energię, a jej wartością jest opisana za<br />

pomocą tzw. rozkładu Maxwella-Boltzmana. Jest ona zilustrowana wykresami na rys. 6.2.<br />

53


Rys. 6.1. Przebieg zmian energii podczas syntezy HI.<br />

Rys. 6.2. Zależność pomiędzy liczbą cząsteczek o danej energii, a wartością tej energii dla tej<br />

samej ilości gazu, w dwu różnych temperaturach.<br />

Z rysunku tego wynika, że w zbiorowisku cząsteczek gazu znajdują się zarówno cząsteczki<br />

o małej, jak i o dużej energii. Im wyższa jest temperatura gazu, tym więcej mamy cząsteczek o<br />

wyższej energii. Na rys. 6.2 pokazane są rozkłady energii dla tej samej ilości tego samego gazu,<br />

w dwu różnych temperaturach. Krzywa dla wyższej temperatury jest przesunięta w stronę<br />

wyższych energii, co oznacza, że w wyższej temperaturze jest więcej cząsteczek o większej<br />

energii. Zaznaczono też pewną wartość energii E a . Ilości cząsteczek o energii wyższej od E a jest<br />

54


proporcjonalna do wielkości zakreskowanych pól pod krzywymi rozkładu. Jak widać na<br />

rysunku, pole pod krzywą dla wyższej temperatury jest większe od pola pod krzywą dla<br />

temperatury niższej. Oznacza to, że im wyższa jest temperatura reagentów, tym większa liczba<br />

cząsteczek będzie zdolna do zderzeń efektywnych. W niskich temperaturach takich cząsteczek<br />

mamy niewiele i dlatego rzadko dochodzi do zderzeń prowadzących do powstania produktów. A<br />

zatem, gdy wzrasta temperatura, rośnie prawdopodobieństwo efektywnych zderzeń. Inaczej<br />

mówiąc, wzrasta wartość stałej szybkości reakcji. Zależność stałej szybkości reakcji od<br />

temperatury opisana jest wzorem:<br />

k<br />

=<br />

A e E a<br />

−<br />

RT<br />

'<br />

(6.1)<br />

lub po zlogarytmowaniu:<br />

E<br />

a<br />

RT<br />

ln k = A −<br />

(6.2)<br />

gdzie: A’ i A = lnA’ – stałe charakterystyczne dla danej reakcji, E a – energia aktywacji, R – stała<br />

gazowa, T – temperatura bezwzględna reakcji (w skali Kelwina). Wartość energii aktywacji<br />

decyduje o zmianach szybkości reakcji ze zmianą temperatury. Gdy reakcja charakteryzuje się<br />

niewielką energią aktywacji, wtedy jej szybkość rośnie powoli ze wzrostem temperatury. Przy<br />

wysokiej energii aktywacji nawet niewielka zmiana temperatury powoduje poważną zmianę<br />

szybkości reakcji.<br />

Załóżmy, że w chwili początkowej, w reaktorze zamkniętym były wyłącznie substraty, czyli<br />

cząsteczki A i B. W trakcie reakcji stężenia substratów maleją, wzrastają zaś stężenia produktów.<br />

Wzrasta też prawdopodobieństwo zderzenia się ze sobą cząsteczek produktów C i D. W tej<br />

sytuacji, obok reakcji chemicznej, przebiegającej, zgodnie z równaniem (R.1), z lewej strony na<br />

prawą (reakcja prosta), pojawia się reakcja, w której rolę substratów zaczynają odgrywać<br />

powstałe przed chwilą produkty. W układzie zaczyna się reakcja odwrotna, której przebieg<br />

opisuje równanie (R.1), ale czytane z prawej strony na lewą. Szybkość tej odwrotnej reakcji – v 2<br />

– jest z kolei, proporcjonalna do stężeń tych cząsteczek, które są dla niej substratami, a więc<br />

dana jest wzorem:<br />

v 2 = k 2 [C][D]<br />

gdzie k 2 , [C] i [D] oznaczają odpowiednio stałą szybkości reakcji odwrotnej i stężenia<br />

reagentów.<br />

W miarę postępu reakcji maleje szybkość reakcji prostej, gdyż zmniejszają się stężenia<br />

substratów, a rośnie szybkość reakcji odwrotnej, gdyż rosną stężenia produktów. Dlatego też<br />

wiele reakcji chemicznych nie przebiega do końca, lecz ustala się pewien stan stacjonarny, w<br />

55


którym wzajemne stosunki ilościowe substratów i produktów nie ulegają zmianie. Jest to stan<br />

równowagi dynamicznej, w której szybkość reakcji prostej jest taka sama jak szybkość reakcji<br />

odwrotnej. Stan taki nazywamy stanem równowagi chemicznej. Dla reakcji (R.1) możemy<br />

wtedy zapisać, że:<br />

v 1 = v 2 zatem k 1 [A][B] = k 2 [C][D]<br />

Z faktu iż, w stanie równowagi chemicznej v 1 = v 2 , wynika związek pomiędzy stężeniami<br />

poszczególnych reagentów, wyrażony wzorem:<br />

K =<br />

c<br />

k<br />

k<br />

1<br />

2<br />

[C][D]<br />

[A][B]<br />

= (6.3)<br />

gdzie: [A], [B], [C], [D] oznaczają stężenia molowe reagentów w stanie równowagi a K c jest<br />

tzw. stężeniową stałą równowagi chemicznej.<br />

Korzystając ze wzoru (6.3), możemy obliczyć stałą równowagi K c dla opisywanej na<br />

początku reakcji dysocjacji termicznej jodowodoru:<br />

HI (g) + HI (g) ↔ H 2(g) + I 2(g)<br />

Sposób, w jaki napisane jest tu równanie reakcji, odpowiada kinetyce tego procesu. Proces<br />

dysocjacji termicznej jodowodoru polega na zderzeniu się ze sobą dwu cząsteczek jodowodoru i<br />

w konsekwencji na ich rozpadzie na wodór i jod.<br />

[ H2 ][ I2<br />

]<br />

K c [ HI]<br />

0, 0098⋅0,<br />

0098<br />

= = = 0 , 015<br />

2 2<br />

0,<br />

0804<br />

W drugim przypadku nie mamy jednak do czynienia z dysocjacją termiczną, lecz z syntezą<br />

jodowodoru. Aby poprawnie opisać ten proces, równanie reakcji napiszemy w postaci:<br />

H 2(g) + I 2(g) ↔ HI (g) + HI (g)<br />

K c<br />

2<br />

[ HI]<br />

[ H ][ I ]<br />

0,<br />

0804<br />

67<br />

0, 0098⋅0,<br />

0098<br />

= = =<br />

2 2<br />

2<br />

Te dwie stałe, mimo opisywania tego samego stanu równowagi, różnią się między sobą tym,<br />

że jedna jest odwrotnością drugiej, gdyż substancje, które są produktami w pierwszej reakcji, są<br />

substratami w drugiej. Dlatego bardzo ważną rzeczą jest sposób, w jaki zapisujemy równanie<br />

reakcji będącej w równowadze.<br />

W trzecim przypadku stała równowagi wyniesie:<br />

K c<br />

2<br />

[ HI]<br />

[ H ][ I ]<br />

0,<br />

0902<br />

67<br />

0, 0249⋅0,<br />

0049<br />

= = =<br />

2 2<br />

2<br />

Obie stałe są sobie równe, gdyż odnoszą się do tej samej reakcji, przebiegającej w tej samej<br />

56


temperaturze.<br />

Opisany powyżej prosty mechanizm reakcji chemicznej jest raczej rzadko spotykany. Już<br />

reakcja powstawania gazowego chlorowodoru przebiega według innego mechanizmu. Według<br />

jeszcze innego mechanizmu reaguje brom w stanie gazowym z wodorem. Mimo znacznego<br />

formalnego podobieństwa reakcji:<br />

H 2(g) + I 2(g) ↔ 2HI (g)<br />

H 2(g) + Cl 2(g) ↔ 2HCl (g)<br />

H 2(g) + Br 2(g) ↔ 2HBr (g)<br />

każda z nich przebiega według innego mechanizmu.<br />

W większości przypadków reakcje chemiczne przebiegają wieloetapowo, co oznacza, że w<br />

czasie reakcji tworzą się pośrednie produkty zużywane na następnych etapach. Załóżmy, że<br />

reakcja opisana równaniem (R.1) przebiega w taki sposób, że dwie cząsteczki A, zderzając się ze<br />

sobą, tworzą cząsteczki C i P. P – jest produktem pośrednim, powstającym w pierwszym etapie i<br />

zużywanym w następnym. Z kolei cząsteczki P i B (w kinetyce używa się wówczas określenia<br />

„w następnym etapie”), zderzają się, dając jako produkt cząsteczki A i D. Zapiszemy to<br />

następująco:<br />

A + A = C + P<br />

P + B = A + D<br />

Jeżeli powyższe równania dodamy do siebie, to sumarycznie otrzymamy równanie (R.1).<br />

Przykładem tak przebiegającej reakcji jest proces rozkładu NOCl, zachodzący zgodnie z<br />

sumarycznym równaniem:<br />

2NOCl (g) ↔ 2NO (g) + Cl 2(g)<br />

Badania wykazują że reakcja ta przebiega w 2 etapach:<br />

etap 1.<br />

etap 2.<br />

NOCl (g) ↔ NO (g) + Cl (g)<br />

NOCl (g) + Cl (g) ↔ NO (g) + Cl 2(g)<br />

zatem Cl (g) jest dla tej reakcji produktem pośrednim. Na ogół reakcje w poszczególnych etapach<br />

nie przebiegają z taką samą szybkością, lecz zwykle jedna z nich biegnie znacznie szybciej niż<br />

druga. Niemniej jednak, gdy reakcja (R.1) osiągnie stan równowagi, to wówczas reakcje<br />

pośrednie są też w stanie równowagi, czyli szybkości ich przebiegu w obie strony są takie same.<br />

Zatem możemy dla nich zapisać następujące zależności:<br />

k 1 [A][A] = k 2 [C][P]<br />

i<br />

k 3 [P][B] = k 4 [A][D]<br />

57


gdzie: k 1 , k 2 , k 3 i k 4 są odpowiednimi stałymi szybkości dla reakcji na obu etapach, zarówno<br />

prostej, jak i odwrotnej. Obliczając z pierwszego równania stężenie produktu pośredniego P i<br />

wstawiając do drugiego, otrzymujemy:<br />

k 1 k 3 [A][B] = k 2 k 4 [C][D]<br />

stąd, ponieważ k 1 , k 2 , k 3 i k 4 mają wartość stałą więc:<br />

k<br />

K c<br />

= 1 k 3<br />

k 2 k4<br />

[C][D]<br />

=<br />

[A][B]<br />

Jak widać wyrażenie na stałą równowagi zależy tylko od postaci sumarycznego równania<br />

opisującego przebieg reakcji, nie zależy natomiast od jej mechanizmu.<br />

Z innym sposobem wyprowadzenia równania na stałą równowagi chemicznej spotykamy<br />

się na gruncie termodynamiki. Z dokładnych rozważań termodynamicznych wynika, że dla<br />

dowolnej reakcji chemicznej, przebiegającej w fazie ciekłej lub gazowej, którą można zapisać za<br />

pomocą ogólnego równania:<br />

xA + yB ↔ zC + tD<br />

(R.2)<br />

w stanie równowagi istnieje zależność pomiędzy stężeniami produktów i substratów, opisana<br />

wzorem:<br />

K =<br />

(a ) (a )<br />

C<br />

z<br />

D<br />

(a ) (a )<br />

A<br />

x<br />

B<br />

t<br />

y<br />

(6.4)<br />

gdzie: a A , a B , a C i a D – oznaczają odpowiednio aktywności reagentów A, B, C i D.<br />

Stała równowagi wyrażona jest w tym równaniu nie poprzez stężenia, ale poprzez<br />

aktywności. Aktywność dowolnego reagenta jest zdefiniowana jako iloczyn stężenia c i<br />

współczynnika aktywności f:<br />

a = f · c (6.5)<br />

Potrzeba takiej formy zapisu wyrażenia określającego stan równowagi jest rezultatem<br />

wyników doświadczeń. Posługiwanie się wartościami stężeń zamiast aktywnością jest możliwe<br />

tylko wówczas, gdy wielkości te są sobie bliskie, co ma miejsce, gdy współczynnik aktywności<br />

jest bliski jedności. Jednakże, aby nieco uprościć rozważania prezentowane w niniejszym<br />

skrypcie, będziemy posługiwać się w obliczeniach wartościami stężeń a nie aktywnościami.<br />

Ważnym jest, aby czytelnik, zdawał sobie sprawę z faktu, że o sposobie zachowania się<br />

reagentów decydują w efekcie nie ich stężenia, lecz aktywności. Przy rozwiązywaniu zadań w<br />

niniejszym skrypcie, będziemy korzystać z prawa równowagi chemicznej przedstawionego<br />

58


ównaniem (6.6).<br />

K<br />

c<br />

=<br />

z<br />

[C] [D]<br />

x<br />

[A] [B]<br />

t<br />

y<br />

(6.6)<br />

Wyrażenie (6.6) na stałą równowagi zostało po raz pierwszy sformułowane w 1864 r. przez<br />

K.M. Guldberga i P. Waagego jako tzw. prawo działania mas. Prawo to możemy sformułować<br />

następująco:<br />

W stałej temperaturze, w stanie równowagi chemicznej iloraz iloczynu stężeń produktów<br />

do iloczynu stężeń substratów reakcji, podniesionych odpowiednio do potęg, których<br />

wykładniki są równe współczynnikom w chemicznym równaniu reakcji, ma wartość stałą.<br />

Nazwa tego prawa, wywodząca się od jego twórców, którzy określili je jako „prawo<br />

działania mas aktywnych”, nie jest zbyt adekwatna, gdyż forma jego zapisu sugeruje raczej<br />

określenie „prawo działania stężeń”. Nazwa „prawo działania mas” jest obecnie coraz rzadziej<br />

używana, w jej miejsce najczęściej stosuje się nazwę „prawo równowagi chemicznej”.<br />

Stała równowagi chemicznej jest wielkością charakterystyczną dla danej reakcji, zależną<br />

tylko od temperatury, a niezależną od stężeń reagentów. Gdy ta sama reakcja chemiczna,<br />

wychodząc z różnych początkowych stężeń reagentów, prowadzona w dwu różnych zbiornikach,<br />

ale w tej samej temperaturze, dochodzi do stanu równowagi, to końcowe stężenia takich samych<br />

reagentów w obu zbiornikach będą różne. Jeśli wartości tych stężeń wstawimy do równania<br />

(6.6), to otrzymamy taką samą (w granicach błędu) wartość stałej równowagi.<br />

Przykład:<br />

Weźmy dwa zbiorniki, jeden o objętości 1,000 dm 3 i drugi o objętości 5,000 dm 3 , a<br />

następnie do pierwszego z nich wprowadźmy 0,1000 mola Cl 2 i 0,2000 mola PCl 3 , a do drugiego<br />

1,000 mol PCl 5 i ogrzejmy je do 546 K. Po ustaleniu się równowagi w pierwszym z nich<br />

będziemy mieć 0,065 mola PCl 5 , 0,135 mola PCl 3 i 0,035 mola Cl 2 . W drugim zbiorniku<br />

będziemy mieć 0,5515 mola PCl 5 i po 0,4485 mola PCl 3 i Cl 2 .<br />

Obliczmy teraz stałą równowagi reakcji:<br />

Cl 2(g) + PCl 3(g) ↔ PCl 5(g)<br />

w temperaturze 546 K. Stałą równowagi K c obliczymy ze wzoru:<br />

59


[PCl 5 ]<br />

K c<br />

=<br />

[Cl ][PCl ]<br />

2 3<br />

W pierwszym zbiorniku (o objętości 1,000 dm 3 ) stężenia poszczególnych reagentów w<br />

stanie równowagi są następujące: [PCl 5 ] = 0,065 mol/dm 3 , [PCl 3 ] = 0,135 mol/dm3 i [Cl 2 ] =<br />

0,035 mol/dm 3 , co daje:<br />

0,<br />

065<br />

14<br />

0, 135⋅0,<br />

035<br />

K c<br />

= =<br />

W drugim zbiorniku (o objętości 5,000 dm 3 ) w stanie równowagi mamy następujące<br />

stężenia: [PCl 5 ] = 0,5515 mola/5,000 dm 3 = 0,1103 mol/dm 3 i [PCl 3 ] = [Cl 2 ] = 0,4485<br />

mola/5,000 dm 3 = 0,0897 mol/dm 3 . Zatem:<br />

0,<br />

1103<br />

K c<br />

= = 13,<br />

7<br />

0, 0897⋅0, 0897<br />

Mimo znacznych różnic w stężeniach równowagowych w obu zbiornikach, stała równowagi<br />

ma (w granicach błędu) taką samą wartość, gdyż stała równowagi jest wielkością<br />

charakterystyczną dla danej reakcji i temperatury, a nie zależy od początkowych wartości stężeń<br />

reagentów.<br />

Wyznaczone doświadczalnie wartości stałych równowagi zmieniają się w bardzo szerokim<br />

zakresie wartości (od bardzo małych do bardzo wielkich). Jeżeli K c < 1, to wówczas mianownik<br />

ułamka w równaniu (6.6) ma większą wartość niż licznik, czyli stężenia substratów są wyższe<br />

niż stężenia produktów. Oznacza to, że stan równowagi zostanie już osiągnięty, gdy względnie<br />

niewielka ilość substratów ulegnie przemianie w produkty. Bez ingerencji z zewnątrz nie można<br />

zmienić tego stanu, a więc i stężeń reagentów. Można powiedzieć, że w tych warunkach<br />

wydajność prowadzonego procesu (otrzymywania tego co jest produktem) jest mała. Używa się<br />

również określenia (niezbyt udanego), że wówczas stan równowagi układu jest przesunięty w<br />

lewo. Np. stała równowagi reakcji syntezy amoniaku:<br />

N 2(g) + 3H 2(g) ↔ 2NH 3(g)<br />

w temperaturze 500 K wynosi K c = 2,4 · 10 –5 , czyli stan równowagi jest osiągnięty po<br />

wytworzeniu bardzo niewielkiej ilości amoniaku. Jeżeli natomiast wartość K c > 1 , to mianownik<br />

ułamka (6.6) jest mniejszy niż licznik i wówczas w stanie równowagi mamy więcej produktów<br />

niż substratów. Np. dla reakcji:<br />

2CO (g) + O 2(g) = 2CO 2(g)<br />

60


w temperaturze 2000 K stała równowagi K c = 6,58·10 6 , co oznacza, że w warunkach równowagi<br />

ilość CO 2 znacznie przeważa (zajmuje ok. 98% objętości) nad tlenem i tlenkiem węgla.<br />

Posługując się określeniem położenia stanu równowagi, powiemy w tej sytuacji, że jest ona<br />

przesunięta w prawo.<br />

Należy zwrócić uwagę, że, równania (6.3), (6.4) i (6.6) są spełniane wtedy i tylko wtedy,<br />

gdy układ znajduje się w stanie równowagi. W niektórych przypadkach czas konieczny do<br />

osiągnięcia stanu równowagi może być bardzo długi. Np. mieszaninę wodoru i tlenu w stosunku<br />

objętościowym 2:1, możemy przechowywać przez dowolnie długi czas w temperaturze<br />

pokojowej i nie zaobserwujemy w niej tworzenia się wody, mimo że z wartości stałej równowagi<br />

dla reakcji:<br />

H 2(g) + 1/2 O 2(g) ↔ H 2 O (g) K p (300K) = 6,40·10 79<br />

wynika, że praktycznie całość mieszaniny powinna zamienić się w parę wodną. Powyższa<br />

równowaga może być osiągnięta w krótkim czasie w obecności silnie rozdrobnionej platyny<br />

(tzw. czerni platynowej), spełniającej rolę katalizatora.<br />

Katalizatorami nazywamy takie substancje, których obecność przyspiesza lub opóźnia<br />

(inhibitor) przebieg reakcji chemicznych, a które po zakończeniu reakcji pozostają niezmienione.<br />

Katalizatory, biorąc udział w pośrednich etapach reakcji chemicznej, zmieniają jej mechanizm i<br />

w konsekwencji powodują zmianę wartości energii aktywacji. Z uwagi na eksponencjalną<br />

zależność stałej szybkości reakcji od energii aktywacji, nawet niewielka zmiana jej wartości,<br />

powoduje znaczną zmianę szybkości reakcji. Jeżeli wartość energii aktywacji jakiejś reakcji<br />

wynosi 60 kJ/mol, to obniżenie jej o 20 kJ/mol spowoduje 100–krotne zwiększenie szybkości, a<br />

obniżenie do 20 kJ/mol, zwiększy szybkość tej reakcji 10 000 razy, przy nie zmienionych innych<br />

parametrach (temperatura, stężenia).<br />

Wartość stałej równowagi odnosi się do sposobu, w jaki zapisujemy równanie reakcji.<br />

Powodem tego jest sposób jej zdefiniowania, jako ilorazu iloczynu stężeń produktów do<br />

iloczynu stężeń substratów, podniesionych do potęg równych odpowiednim współczynnikom<br />

stechiometrycznym w równaniu reakcji. Z tego powodu stała równowagi reakcji tworzenia<br />

jodowodoru jest równa odwrotności stałej równowagi jego dysocjacji. Podobnie, jeżeli<br />

weźmiemy pod uwagę reakcję tworzenia pary wodnej z wodoru i tlenu, to jej równanie możemy<br />

zapisać na dwa sposoby:<br />

I sposób: 2 H 2(g) + O 2(g) ↔ 2H 2 O (g) i wtedy K 1<br />

= [ H2O<br />

]<br />

2<br />

[ H2 ] 2 [ O2<br />

]<br />

61


II sposób: H 1<br />

2 (g)<br />

+ O H O i wtedy K<br />

2 2 (g)<br />

↔<br />

2 (g) 2<br />

= [ H2O<br />

]<br />

1<br />

[ H2 ][ O2<br />

] 2<br />

Można łatwo sprawdzić, że K 1 = (K 2 ) 2 .<br />

Wiele reakcji odwracalnych zachodzi w fazie gazowej. W zbiorniku o objętości V, w którym<br />

ustaliła się równowaga, mamy do czynienia z mieszaniną gazową, tworzoną przez reagenty.<br />

Całkowita ilość moli mieszaniny gazowej – n – jest sumą ilości moli n i poszczególnych jej<br />

składników:<br />

n = n 1 + n 2 + n 3 + …<br />

Jeżeli reagujące ze sobą gazy zachowują się jak gazy doskonałe, to ich zachowanie możemy<br />

opisać za pomocą równania stanu gazu doskonałego:<br />

RT<br />

RT RT RT RT<br />

P = n = (n + n + n + ...) = n + n + n + ... = P + P + P + ... (6.7)<br />

gdzie: P<br />

1<br />

V 1 2 3<br />

n1RT<br />

V<br />

= , P<br />

2<br />

n2RT<br />

V<br />

= , P<br />

3<br />

V 1<br />

n3RT<br />

V<br />

V 2<br />

V 3<br />

V 1 2 3<br />

= ... są to tzw. ciśnienia cząstkowe gazów wchodzących<br />

w skład mieszaniny.<br />

Ciśnieniem cząstkowym jakiegoś gazu wchodzącego w skład mieszaniny gazowej<br />

nazywamy ciśnienie, jakie wywierałby ten gaz ,gdyby sam wypełniał całkowitą<br />

objętość naczynia.<br />

Jak wynika z równania (6.4), całkowite ciśnienie mieszaniny jest sumą<br />

ciśnień cząstkowych gazów wchodzących w skład tej mieszaniny (prawo Daltona).<br />

Przyjmijmy, że wszystkie reagenty w reakcji opisanej równaniem (R.2) są gazami<br />

stosującymi się do równania stanu gazu doskonałego. Gazy te będą spełniać następujące<br />

zależności:<br />

A B C D<br />

P = RT ; P = RT; P = RT; P = RT<br />

(6.8)<br />

A<br />

n<br />

V<br />

B<br />

n<br />

V<br />

C<br />

n<br />

V<br />

gdzie: P A , P B , P C , P D oznaczają odpowiednie ciśnienia cząstkowe reagentów gazowych z<br />

równania (R.2), a n A , n B , n C i n D – ilości moli tych reagentów. Ponieważ stężenie molowe jest<br />

z definicji równe stosunkowi ilości moli danej substancji do zajmowanej przez nią objętości,<br />

zatem z relacji (6.8) wynika:<br />

po przekształceniach mamy:<br />

P = [A]RT ; P = [B]RT ; P = [C]RT ; P = [D]RT<br />

A B C D (6.9)<br />

[A] =<br />

PA<br />

RT<br />

;[B] =<br />

PB<br />

RT<br />

;[C] =<br />

PC<br />

RT<br />

;<br />

D<br />

[D] =<br />

n<br />

V<br />

PD<br />

RT<br />

(6.10)<br />

62


wstawiając te zależności do równania (6.6) i przekształcając je, otrzymujemy:<br />

z<br />

C<br />

K = P P<br />

c x<br />

P P<br />

A<br />

t<br />

D<br />

y<br />

B<br />

-(z+t-x-y)<br />

-(z+t-x-y)<br />

(RT) = K<br />

p(RT)<br />

(6.11)<br />

gdzie: K p jest tzw. ciśnieniową stałą równowagi chemicznej daną wzorem:<br />

z<br />

C<br />

K = P P<br />

p x<br />

P P<br />

A<br />

t<br />

D<br />

y<br />

B<br />

(6.12)<br />

Z równań (6.11) wynika prosty związek pomiędzy oboma stałymi równowagi:<br />

∆n<br />

K<br />

p<br />

= K<br />

c(RT)<br />

(6.13)<br />

gdzie: ∆n = (z + t) – (x + y) jest odpowiednio różnicą sum współczynników<br />

stechiometrycznych produktów i substratów. Można inaczej powiedzieć, że ∆n przedstawia<br />

zmianę liczby moli w układzie przy całkowitej zamianie substratów na produkty, o ile w<br />

warunkach początkowych ilości substratów odpowiadały zapisowi równania reakcji. Dla reakcji<br />

w fazie gazowej obrazuje zarazem zmianę liczby cząsteczek w układzie. Przyjmijmy, że w<br />

stanie początkowym mamy w układzie zamkniętym tylko cząsteczki substratów, to ∆n > 0<br />

obrazuje nam, że po osiągnięciu stanu równowagi liczba cząsteczek w układzie będzie większa<br />

niż na początku. Jeżeli ∆n < 0, to liczba cząsteczek zmaleje. Dla układów zamkniętych o stałej<br />

objętości obrazuje to odpowiednio, wzrost (∆n > 0), lub spadek ciśnienia (∆n < 0). Wartość ∆n<br />

jest zależna od rodzaju reakcji np. dla:<br />

H 2(g) + CO 2(g) ↔ H 2 O (g) + CO (g) ∆n = 0<br />

PCl 5(g) ↔ PCl 3(g) + Cl 2(g) ∆n = 1<br />

PCl 3(g) + Cl 2(g) ↔ PCl 5(g) ∆n = –1<br />

3H 2 (g) + N 2 (g) ↔ 2NH 3 (g) ∆n = –2<br />

4HCl (g) + O 2 (g) ↔ 2Cl 2 (g) + 2H 2 O (g) ∆n = –1<br />

Specjalnego wyjaśnienia wymaga kwestia jednostek, w jakich wyrażane są stężenia i<br />

ciśnienia cząstkowe we wzorach na stałe równowagi. Wzory na stałe równowagi, wyprowadzone<br />

na gruncie termodynamiki, są oparte na tzw. stanach standardowych. Takim stanem<br />

standardowym dla stężenia jest 1 mol/dm 3 , a dla ciśnienia 1 atmosfera, (w skrócie 1 atm), przy<br />

czym 1 atm = 1,013·10 5 Pa. Zatem, aby obliczyć stężeniową stałą równowagi K c , stężenia<br />

63


eagentów zarówno ciekłych, jak i gazowych, należy wyrażać w mol/dm 3 . Obliczając<br />

ciśnieniową stałą równowagi K p , ciśnienia cząstkowe poszczególnych reagentów należy wyrażać<br />

w atm. (Aby obliczyć wartość ciśnienia w atm, należy ciśnienie wyrażone w Pa podzielić przez<br />

1,013·10 5 ). Z kolei stężenia wyliczone ze stałej K c wyrażane są zawsze w mol/dm 3 , natomiast<br />

ciśnienia cząstkowe obliczone ze stałej K p wyrażane są w atm. Aby obliczyć wartość ciśnienia w<br />

Pa, należy ciśnienie wyrażone w atm. pomnożyć przez 1,013·10 5 .<br />

6.3. Równowaga chemiczna w reakcjach heterogenicznych<br />

Przez reakcje heterogeniczne rozumiemy takie reakcje, w których udział biorą dwie lub<br />

więcej faz. Przykładem takiej reakcji może być reakcja wytwarzania tzw. „gazu wodnego”, który<br />

powstaje przez działanie pary wodnej na rozżarzony węgiel:<br />

C (s) + H 2 O (g) = CO (g) + H 2 (g)<br />

Załóżmy, że proces jest prowadzony w układzie zamkniętym. Stosując formalny zapis<br />

prawa działania mas, otrzymujemy następujące wyrażenie na stałą równowagi:<br />

K = [CO][H ] 2<br />

c<br />

[C][H O]<br />

2<br />

(6.14)<br />

gdzie [C] oznacza stężenie węgla w fazie stałej. Powyższe równanie możemy uprościć,<br />

ponieważ stężenie węgla w fazie stałej nie ulega zmianie. Dodanie lub zmniejszenie ilości węgla<br />

nie powoduje zmiany jego stężenia, gdyż stężenie to stosunek liczby moli do objętości i ta<br />

wielkość dla jednorodnego ciała stałego jest niezależna od jego ilości. Zatem stężenie węgla jest<br />

wielkością stałą. Natomiast zmieniać się mogą stężenia gazowych reagentów, czyli CO, H 2 O lub<br />

CO 2 . Powyższe równanie możemy więc zapisać następująco:<br />

K [C] = [CO][H 2<br />

] '<br />

c<br />

⋅ = K<br />

(6.15)<br />

[H O]<br />

2<br />

K’ = K c [C] jako iloczyn dwu wartości stałych ma też wartość stałą.<br />

Ciśnieniowa stała równowagi dla tej reakcji jest opisana za pomocą równania:<br />

PC O P<br />

K p P<br />

H 2<br />

=<br />

H 2 O<br />

W ogólnym przypadku do opisu reakcji odwracalnych, w których występują reagenty stałe<br />

jako fazy jednoskładnikowe, stężenie fazy stałej należy uważać za stałe, nie wpływające na<br />

stan równowagi.<br />

64


Przykładowo dla reakcji:<br />

FeO (s) + CO (g) ↔ Fe (s) + CO 2(g)<br />

[ CO<br />

P<br />

2 ]<br />

CO2<br />

Kc<br />

=<br />

[ CO]<br />

i K<br />

p<br />

=<br />

PCO<br />

a dla reakcji termicznego rozkładu węglanu wapniowego:<br />

CaCO 3 (s) ↔ CaO (s) + CO 2 (g)<br />

K c = [CO 2 ] i K p = p CO2<br />

6.4. Wpływ czynników zewnętrznych na stan równowagi<br />

Stan równowagi może ulec zakłóceniu na skutek działania różnych czynników, np.:<br />

a) zmiany stężenia jednego lub kilku reagentów, b) zmiany ciśnienia, c) zmiany temperatury.<br />

Zmiana stężenia jednego lub kilku reagentów<br />

Zastanówmy się, co się wydarzy, jeżeli do kolby zawierającej w stanie równowagi wodór,<br />

jod i jodowodór w stałej temperaturze, wprowadzimy dodatkową ilość gazowego jodu. Aby<br />

wprowadzić tę dodatkową ilość jodu, musimy otworzyć układ, czyli złamać założenie, że układ<br />

jest zamknięty. Oczywiście, po wprowadzeniu jodu należy układ ponownie zamknąć. A zatem<br />

akt wprowadzenia jodu jest zaburzeniem. Taka ingerencja z zewnątrz zawsze wpływa na układ.<br />

Można powiedzieć, że „wytrąca” go ze stanu równowagi. Jeżeli proces wprowadzania jodu uległ<br />

zakończeniu, to i układ zaczyna „odreagowywać”, podążając znów do stanu równowagi. Jeśli<br />

wzrośnie stężenie jodu to wzrośnie także szybkość reakcji:<br />

H 2 (g) + I 2 (g) → 2HI (g)<br />

gdyż wzrośnie liczba zderzeń pomiędzy cząsteczkami jodu i wodoru. Większa szybkość<br />

tworzenia się jodowodoru da nam w rezultacie w krótkim czasie zwiększenie jego stężenia.<br />

Wzrost liczby cząsteczek jodowodoru prowadzi do zwiększenia prawdopodobieństwa ich<br />

wzajemnego zderzania się, co natychmiast spowoduje wzrost szybkości reakcji:<br />

2HI (g) → H 2 (g) + I 2 (g)<br />

Po pewnym czasie szybkość syntezy jodowodoru znów zrówna się z szybkością jego<br />

rozkładu i ustali się nowy stan równowagi, ale już przy innych stężeniach poszczególnych<br />

reagentów. Stężenie jodowodoru nieco wzrośnie, stężenie jodu będzie pośrednie pomiędzy<br />

stężeniem jodu w poprzednim stanie równowagi a jego stężeniem w pierwszym momencie po<br />

wprowadzeniu dodatkowej ilości jodu. Stężenie wodoru zmaleje, gdyż zostanie on częściowo<br />

65


zużyty na powstawanie jodowodoru w procesie dochodzenia do nowego stanu równowagi.<br />

Układ nasz zachował się w taki sposób, że dochodząc do nowego stanu równowagi zmniejszył<br />

stężenie jodu, którego dodatkowe wprowadzenie do układu było przyczyną zaburzenia stanu<br />

równowagi. Po wstawieniu wartości stężeń do równania (6.6) okaże się, że wartość stałej<br />

równowagi jest (w granicach błędu) taka sama jak poprzednio, mimo że stężenia są inne. Dzieje<br />

się tak dlatego, że stała K nie jest funkcją stężeń, a zatem zmiana stężenia wywołana<br />

wprowadzeniem dodatkowej ilości jednego z reagentów nie ma na nią wpływu. Na podstawie<br />

powyższego doświadczenia można też przeprowadzić inne rozumowanie – przy różnych<br />

stężeniach reagentów w stanie równowagi wartość K jest taka sama, a więc jest ona stała, –<br />

niezależna od zmian stężenia.<br />

Do takich samych wniosków dochodzimy, rozpatrując formalnie wzór na stałą równowagi,<br />

pamiętając tylko o tym, że w ogólnym przypadku reakcji opisanej równaniem:<br />

x A + y B ↔ z C + t D<br />

z równowagą chemiczną mamy do czynienia wtedy i tylko wtedy, gdy stężenia reagentów będą<br />

spełniały zależność:<br />

K c<br />

=<br />

[C]<br />

z<br />

[D]<br />

t<br />

[A]<br />

x<br />

[B]<br />

y<br />

Jeżeli np. wzrośnie stężenie substancji B, i w mianowniku powyższego ułamka wzrośnie<br />

wartość czynnika [B] y , to aby nie zmieniła się wartość całego ułamka, musi wzrosnąć też<br />

wartość licznika, czyli muszą wzrosnąć stężenia substancji C i D. Do stanu takiego dojdzie tylko<br />

wtedy, gdy część wprowadzonej substancji B przereaguje z A i powstaną nowe ilości substancji<br />

C i D. W nowym stanie równowagi będziemy mieć nieco mniejsze stężenie substancji A i<br />

większe stężenia substancji C i D. Natomiast wprowadzona dodatkowa ilość substancji B<br />

zostanie częściowo zużyta na zwiększenie stężenia C i D. Możemy powiedzieć, że dodanie do<br />

układu dodatkowej ilości substancji B spowoduje przesunięcie się stanu równowagi reakcji<br />

(R.2) w prawą stronę. W przypadku odwrotnym, gdy z jakiegoś powodu stężenie owej substancji<br />

B zmaleje, to przeprowadzając analogiczne rozważania, dojdziemy do wniosku, iż w nowym<br />

stanie równowagi stężenia substancji C i D zmaleją, wzrośnie natomiast stężenie substancji A.<br />

Stężenie substancji B, przyjmie jakąś wartość pośrednią pomiędzy poprzednim stanem<br />

równowagi a momentem, w którym nastąpiło zaburzenie stanu równowagi. Stan równowagi<br />

reakcji przesunie się w lewo, tzn. stężenia reagentów, zapisane w równaniu reakcji po lewej<br />

66


stronie, będą większe niż poprzednio.<br />

Zmiana ciśnienia<br />

Zaburzenie stanu równowagi układu, wywołane zmianą ciśnienia w wyniku ingerencji z<br />

zewnątrz, rozpatrzmy na przykładzie dwu reakcji: a) reakcji utleniania CO do CO 2 , b) reakcji<br />

tworzenia chlorowodoru z gazowego chloru i wodoru:<br />

2CO + O 2 ↔ 2CO 2 K =<br />

p<br />

2<br />

CO 2<br />

P<br />

PCO<br />

2 ⋅P<br />

O 2<br />

(a)<br />

H 2 + Cl 2 ↔ 2HCl K =<br />

p<br />

2<br />

PHCl<br />

P ⋅ P<br />

H 2 Cl 2<br />

(b)<br />

Załóżmy, że w przypadku obu reakcji nastąpiło izotermiczne sprężenie, np. poprzez<br />

dwukrotne zmniejszenie objętości zbiorników, w których one zachodzą. W momencie<br />

początkowym dwukrotny wzrost ciśnienia całkowitego w układzie spowoduje taki sam wzrost<br />

ciśnień cząstkowych. Dla reakcji (a) w równaniu na stałą równowagi wartość licznika wzrośnie<br />

czterokrotnie, a wartość mianownika ośmiokrotnie. Zatem w układzie muszą zajść takie zmiany,<br />

które spowodują wzrost wartości licznika i zmniejszenie wartości mianownika. Taka zmiana<br />

nastąpi wtedy, gdy część CO ulegnie utlenieniu do CO 2 . W przypadku tej reakcji wzrost<br />

ciśnienia spowoduje przesunięcie się stanu równowagi z lewej strony na prawą. W przypadku<br />

obniżenia ciśnienia będziemy mieć do czynienia z odwrotną sytuacją, stan równowagi reakcji<br />

przesunie się w lewą stronę. Część CO 2 rozpadnie się na CO i O 2 .<br />

W przypadku reakcji (b) dwukrotny wzrost ciśnień cząstkowych spowoduje, po wstawieniu<br />

tych nowych wartości do równania (b), czterokrotny wzrost wartości licznika i czterokrotny<br />

wzrost wartości mianownika, zatem wartość całego ułamka nie ulegnie zmianie. Oznacza to, że<br />

w tym przypadku zmniejszenie objętości układu zamkniętego, wywołujące w układzie zmiany<br />

ciśnień parcjalnych, nie wpływa na stan równowagi układu. Z brakiem wpływu ciśnienia na stan<br />

równowagi reakcji zachodzących w fazie gazowej będziemy mieli do czynienia wówczas, gdy<br />

ilości moli reagentów w stanie gazowym uwidocznione po obu stronach równania reakcji będą<br />

takie same. Są to takie reakcje, dla których ∆n = 0.<br />

Gdy ∆n ≠ 0 , to przy zwiększaniu ciśnienia w układzie będą w nim zachodziły reakcje<br />

prowadzące do zmniejszenia ilości moli gazu w układzie, a po zmniejszeniu ciśnienia, zachodzić<br />

będą reakcje zwiększające ilość moli gazu, co w efekcie spowoduje wzrost ciśnienia w układzie.<br />

Zmiana ciśnienia nie wpływa też na stan równowagi reakcji zachodzących w fazie ciekłej.<br />

67


Zależność stałej równowagi od temperatury<br />

Każda reakcja chemiczna związana jest z wydzielaniem lub pochłanianiem ciepła. Weźmy<br />

pod uwagę reakcję opisaną równaniem:<br />

x A + y B = z C + t D<br />

Ciepło reakcji ∆H r , jest taka ilość ciepła, jaką należy dostarczyć lub pobrać z układu, w<br />

którym zachodzi reakcja, aby pod stałym ciśnieniem, i w stałej temperaturze, x moli substancji A<br />

przereagowało z y molami substancji B i w wyniku tej reakcji powstało z moli substancji C i t<br />

moli substancji D. Należy zwrócić uwagę, że ciepło reakcji ∆H r ma wartość dodatnią, gdy jest<br />

dostarczane do układu, a ujemną, gdy ciepło jest odbierane od układu. Jeżeli reakcja chemiczna,<br />

biegnąc z lewej strony na prawą, jest związana z wydzielaniem się ciepła, to taką reakcję<br />

nazywamy egzotermiczną. W przypadku gdy mamy do czynienia z pochłanianiem ciepła z<br />

otoczenia, to reakcję taką nazywamy endotermiczną. Zatem dla reakcji endotermicznych ciepło<br />

reakcji ma wartość dodatnią (∆H r > 0), a dla egzotermicznych ma wartość ujemną (∆H r < 0).<br />

Aby stwierdzić, w jaki sposób stała równowagi reakcji jest zależna od temperatury T i ciepła<br />

reakcji ∆H r , należy powrócić do rozważań na temat kinetyki procesów chemicznych. Jak już<br />

wspomniano w 6.2, stała szybkości reakcji jest zależna od temperatury T i od energii aktywacji<br />

E a :<br />

k<br />

=<br />

−<br />

A e E a<br />

RT<br />

'<br />

gdzie: A’ – stała charakterystyczna dla danej reakcji.<br />

W stanie równowagi chemicznej mamy do czynienia z dwiema biegnącymi jednocześnie<br />

reakcjami, a ich efekty cieplne są takie same co do wartości bezwzględnej, lecz przeciwne co do<br />

znaku. Jeżeli np. reakcja prosta jest reakcją endotermiczną, to reakcja odwrotna jest<br />

egzotermiczna. Aby uniknąć niejednoznaczności przyjęto zasadę, że podając wartość ciepła<br />

reakcji ∆H r podaje się ciepło dla reakcji prostej (biegnącej z lewej strony na prawą). Załóżmy, że<br />

reakcja prosta jest reakcją egzotermiczną, a wydzielane w czasie jej przebiegu ciepło reakcji<br />

wynosi ∆H r . Na rys. 6.3 (a) pokazano przebieg zmian energii w czasie tej reakcji. Aby zaszła<br />

reakcja chemiczna biegnąca z lewej strony na prawą, cząsteczki biorące w niej udział muszą<br />

mieć energię większą od energii aktywacji E a . Natomiast dla reakcji biegnącej ze strony prawej<br />

na lewą, biorące w niej udział cząsteczki muszą mieć energię większą od sumy bezwzględnych<br />

68


wartości energii aktywacji E a i ciepła reakcji ∆H r , Zatem odpowiednie stałe szybkości reakcji<br />

będą wyrażone wzorami:<br />

dla reakcji prostej<br />

k<br />

A e E a<br />

' −<br />

RT<br />

=<br />

1 1<br />

i dla reakcji odwrotnej<br />

k A e E a H r<br />

' −<br />

RT<br />

=<br />

2 2<br />

−∆<br />

Rys. 6.3. Przebieg zmian energii w trakcie reakcji: a)egzotermicznej, b)endotermicznej.<br />

Energia aktywacji dla reakcji odwrotnej jest równa E a – ∆H r , gdyż dla reakcji<br />

egzotermicznych ∆H r < 0. Jeżeli omawiana tu reakcja jest w stanie równowagi chemicznej, to<br />

stała K c jest równa stosunkowi stałych szybkości reakcji:<br />

K<br />

c<br />

k<br />

k<br />

1<br />

= = =<br />

2<br />

E a<br />

'<br />

−<br />

A e RT<br />

1<br />

( E a −∆H − r )<br />

' RT<br />

2<br />

A e<br />

A<br />

A<br />

'<br />

1<br />

'<br />

2<br />

e<br />

−<br />

∆H r<br />

RT<br />

Zatem:<br />

K<br />

c<br />

=<br />

A<br />

A<br />

'<br />

1<br />

'<br />

2<br />

e<br />

−<br />

∆H r<br />

RT<br />

Po zlogarytmowaniu otrzymujemy:<br />

69


ln K = B -<br />

c<br />

∆Hr<br />

RT<br />

(6.16)<br />

gdzie: B = ln(A’ 1 /A’ 2 ) jest stałą dla danej reakcji. Identyczne równanie można uzyskać na<br />

zależność stałej K p od temperatury.<br />

Rys. 6.4. Zależność stałych równowag K p od odwrotności temperatury dla reakcji:<br />

a) egzotermicznej, b) endotermicznej.<br />

Z równania 6.16 wynika, że jeżeli reakcja, będąca w stanie równowagi, jest reakcją<br />

egzotermiczną, (∆H r < 0), to ze wzrostem temperatury wartość stałej równowagi maleje.<br />

Oznacza to, że ze wzrostem temperatury maleje ilość reagentów po prawej stronie równania<br />

reakcji, a rośnie ilość reagentów po lewej stronie, czyli stan równowagi reakcji ze wzrostem<br />

temperatury przesuwa się w lewo. Natomiast jeśli reakcja jest endotermiczna (∆H r > 0), to ze<br />

wzrostem temperatury wartość stałej równowagi rośnie. Oznacza to, że ze wzrostem temperatury<br />

następuje przesunięcie się stanu równowagi w prawo. Na rys. 6.4 pokazano zależność stałych<br />

równowagi K p od odwrotności temperatury dla dwu reakcji: (a) egzotermicznej:<br />

SO 2 (g) + Cl 2 (g) ↔ SO 2 Cl 2 (g) ∆H r = – 93,1 kJ/mol<br />

i (b) endotermicznej:<br />

CO 2 (g) + H 2 (g) ↔ CO (g) + H 2 O (g) ∆H r = + 39,9 kJ/mol<br />

Jeżeli znamy wartość stałych równowagi K 1 i K 2 jakiejś reakcji w dwu różnych<br />

70


temperaturach T 1 i T 2 , to wstawiając je do równania (14), otrzymujemy:<br />

ln K = B -<br />

1<br />

∆Hr<br />

RT1<br />

i<br />

ln K = B -<br />

2<br />

∆Hr<br />

RT2<br />

Odejmując stronami, otrzymujemy bardzo użyteczne równanie:<br />

⎛ K ⎞ ∆H<br />

ln ⎜ ⎟ =<br />

⎝ K ⎠ R<br />

2 r<br />

⎛ 1<br />

T - 1 ⎞<br />

⎜ ⎟<br />

⎝ T ⎠<br />

1 1 2<br />

(6.17)<br />

Równanie 6.17 pozwala, na podstawie znajomości stałych równowag w dwu<br />

temperaturach, obliczyć ciepło danej reakcji.. Można też, znając stałą równowagi w jednej<br />

temperaturze i ciepła tej reakcji, obliczyć stałą równowagi w innej temperaturze. Zależność 6.17<br />

jest spełniana, gdy ∆H r ma stałą wartość dla zakresu temperatur pomiędzy T 1 a T 2 .<br />

Oddzielnym czynnikiem odgrywającym dużą rolę w reakcjach chemicznych są katalizatory.<br />

Obecność katalizatora często w drastyczny sposób wpływa na szybkość reakcji chemicznych, ale<br />

w taki sam sposób zmienia on szybkość reakcji prostej, jak i odwrotnej. Dlatego jego obecność<br />

nie wpływa na stan równowagi chemicznej. Gdyby za pomocą katalizatorów można było<br />

wpływać na szybkość tylko jednej z reakcji, to wszystkie laboratoria naukowe, zajmujące się<br />

katalizatorami, intensywnie poszukiwałyby takiego katalizatora, który np. przyspieszałby reakcję<br />

dysocjacji termicznej pary wodnej. Mając taki „katalizator”, moglibyśmy w niskiej temperaturze<br />

rozkładać parę wodną na wodór i tlen, uzyskując w ten sposób nieograniczone źródło energii.<br />

Proces ten byłby jednak sprzeczny z zasadą zachowania energii, czyli byłoby to tzw. „perpetuum<br />

mobile”. Katalizatory pozwalają tylko skrócić czas oczekiwania na osiągnięcie przez układ stanu<br />

równowagi, ale nie mogą zmienić jego położenia.<br />

Powyższe rozważania opisujące zachowanie się układu będącego w stanie równowagi pod<br />

wpływem czynników zaburzających ten stan można zreasumować następująco:<br />

• wprowadzenie do układu dodatkowej ilości któregokolwiek z substratów prowadzi do<br />

nowego stanu równowagi, w którym część z tego substratu zostanie zużyta na zwiększenie<br />

ilości produktów;<br />

• wprowadzenie do układu dodatkowej ilości któregokolwiek z produktów prowadzi do<br />

nowego stanu równowagi, w którym część z tego produktu zostanie zużyta na zwiększenie<br />

ilości produktów;<br />

• zmniejszenie ilości jakiegoś substratu (produktu) też prowadzi do nowego stanu równowagi,<br />

71


w którym część z produktów (substratów) przereagowuje ze sobą, częściowo odtwarzając<br />

usunięty substrat (produkt);<br />

• podwyższenie ciśnienia w układzie preferuje taką reakcję która prowadzi do zmniejszenia<br />

liczby moli gazu;<br />

• obniżenie ciśnienia w układzie preferuje taką reakcję która prowadzi do zwiększenia liczby<br />

moli gazu;<br />

• zmiana ciśnienia nie wpływa na stan równowagi takiej reakcji, w przebiegu której nie zmienia<br />

się liczba moli gazu (dla ∆n = 0);<br />

• podwyższenie temperatury przesuwa stan równowagi w takim kierunku, w którym ciepło jest<br />

absorbowane;<br />

• obniżenie temperatury przesuwa stan równowagi w takim kierunku, w którym ciepło jest<br />

wydzielane.<br />

W powyższych rozważaniach można zauważyć, że zastosowaliśmy pewną „personifikację”<br />

układu, tak jakby miał on pewną świadomość, znał i stosował prawa przyrody – w tym<br />

przypadku prawo równowagi. Zabieg ten miał na celu wyłącznie ułatwienie zrozumienia<br />

omawianych tutaj problemów. Zwróćmy jednak uwagę na fakt, że kamień rzucony do góry<br />

spadnie na ziemię, mimo że nie zna prawa powszechnego ciążenia. Kamień nie czyni tego w<br />

sposób świadomy, on po prostu podlega prawom przyrody. Identycznie ma się sytuacja w<br />

układach chemicznych – o czym warto pamiętać – podlegają one prawom przyrody.<br />

Wpływ zmiany czynników zewnętrznych na stan równowagi został uogólniony przez<br />

Le Chatelier'a i nosi nazwę reguły przekory lub reguły przeciwdziałania. Brzmi ona następująco:<br />

Jeżeli układ pozostający w stanie równowagi zostanie poddany działaniu jakiegoś<br />

bodźca zewnętrznego, to w układzie zajdą takie zmiany, które zmniejszą<br />

działanie tego bodźca.<br />

6.5. Wykorzystanie praw równowagi<br />

Poznanie praw rządzących równowagą pozwoliło na lepsze zrozumienie zjawisk<br />

obserwowanych w trakcie procesów chemicznych i, co cenniejsze, na ich praktyczne<br />

wykorzystanie w przemyśle chemicznym. Pierwszym i bodaj najbardziej spektakularnym<br />

osiągnięciem wynikającym z ich wykorzystania jest opracowanie technologii syntezy amoniaku<br />

z wodoru i azotu. Zajmowali się tym najwybitniejsi chemicy końca XIX wieku z F. Haberem na<br />

czele i dlatego technologia otrzymywania amoniaku z wodoru i azotu nosi często nazwę procesu<br />

Habera. Amoniak jest jednym z ważniejszych produktów przemysłu chemicznego, a zwłaszcza<br />

przemysłu nawozów sztucznych, i niemal w całości produkowany jest z azotu i wodoru. Np. w<br />

72


USA roczna produkcja amoniaku, metodą Habera, wynosi ok. 17 mln ton. Ze względu na<br />

wielkość produkcji, optymalizacja procesu technologicznego jest poważnym problemem<br />

technologicznym i ekonomicznym.<br />

Stała równowagi K p reakcji:<br />

N 2 (g) + 3H 2 (g) ↔ 2NH 3 (g) ∆H r = – 92 kJ/mol<br />

wykazuje silną zależność od temperatury. Ponieważ jest to reakcja egzotermiczna, wartość stałej<br />

równowagi maleje ze wzrostem temperatury. Aby proces cechował się jak największą<br />

wydajnością, należy prowadzić go w możliwie niskiej temperaturze. Najkorzystniej byłoby<br />

prowadzić ten proces w temperaturze pokojowej, gdyż stała K p w tej temperaturze wynosi<br />

6,53·10 5 . Tak duża wartość stałej równowagi oznacza, że w temperaturze pokojowej praktyczne<br />

cała stechiometryczna mieszanina azotu i wodoru powinna przereagować na amoniak. Niestety<br />

na przeszkodzie stoi tu kinetyka tej reakcji. Proces syntezy amoniaku ma dużą energię aktywacji<br />

i dlatego w pokojowej temperaturze właściwie w ogóle nie zachodzi. Z kolei w temperaturze<br />

600 o C, powyżej której szybkość reakcji jest dostateczna dla jej przemysłowego wykorzystania,<br />

stała K p wynosi 2,3·10 –6 , czyli równowaga reakcji jest bardzo mocno przesunięta w lewą stronę i<br />

raczej możemy oczekiwać rozpadu amoniaku niż jego syntezy. Jak wiadomo, wartość energii<br />

aktywacji możemy obniżyć, a przez to zwiększyć szybkość reakcji, stosując katalizator. Dla tej<br />

reakcji zwykle stosuje się jako katalizator Fe 3 O 4 , zawierający dodatkowo pewne ilości K 2 O i<br />

Al 2 O 3 . Zastosowanie katalizatora pozwala na prowadzenie procesu syntezy, z wystarczającą<br />

szybkością, w zakresie temperatur od 400 do 500 o C. Ale nawet wtedy wydajność reakcji syntezy<br />

nie jest zbyt duża, gdyż w 400 o C K p = 1,82·10 –4 , a w 500 o C 1,5·10 –5 (równowaga reakcji jest<br />

nadal mocno przesunięto w stronę substratów). Na szczęście, z równania reakcji wynika, że<br />

podwyższenie ciśnienia powinno zwiększyć wydajność reakcji syntezy, gdyż 3 cząsteczki azotu i<br />

jedna wodoru (razem cztery) łączą się w dwie cząsteczki amoniaku. I rzeczywiście, o ile pod<br />

ciśnieniem atmosferycznym stopień przereagowania stechiometrycznej mieszaniny azotu i<br />

wodoru wynosi tylko 0,25%, to pod ciśnieniem 300 atm (ok. 30 MPa), stopień przereagowania<br />

wynosi 30%. W tabeli 6.1 podane są równowagowe ciśnienia cząstkowe amoniaku uzyskanego<br />

ze stechiometrycznej mieszaniny azotu i wodoru dla kilku różnych temperatur i ciśnień<br />

całkowitych mieszaniny.<br />

Tabela ta stanowi podsumowanie powyższych rozważań na temat doboru optymalnych<br />

warunków technologicznych otrzymywania amoniaku. Wynika z niej, że proces syntezy<br />

amoniaku należy prowadzić w możliwie najniższej temperaturze i pod jak najwyższym<br />

73


ciśnieniem. W praktyce amoniak otrzymuje się, przepuszczając w temperaturze ok. 800 K, pod<br />

ciśnieniem 30 ÷ 40 MPa (300 ÷ 400 atm), mieszaninę wodoru i azotu przez komorę wypełnioną<br />

katalizatorem. W tych warunkach wydajność reakcji syntezy amoniaku wynosi kilkanaście<br />

procent. Mieszaninę wodoru, azotu i powstałego amoniaku, po opuszczeniu komory oziębia się,<br />

amoniak skrapla się, a pozostały wodór i azot są ponownie kierowane do komory.<br />

T [ o C] K p<br />

Tabela 6.1. Równowagowe ciśnienia cząstkowe amoniaku uzyskanego ze stechiometrycznej<br />

mieszaniny azotu i wodoru dla różnych temperatur i ciśnień całkowitych mieszaniny.<br />

P = 1 atm P = 30 atm P = 100 atm P = 300 atm<br />

Ciśnienie równowagowe NH 3 [atm]<br />

400 1,82·10 –4 0,0044 3,18 24,8 128,7<br />

450 4,68·10 –5 0,0022 1,77 15,9 94,5<br />

500 1,48·10 –5 0,0012 1,05 10,1 67,5<br />

550 5,25·10 –6 0,0007 0,63 6,7 48,0<br />

600 2,14·10 –6 0,0005 0,42 4,3 33,9<br />

6.6. Podsumowanie<br />

• Równowaga chemiczna ma charakter dynamiczny.<br />

• W stanie równowagi szybkość reakcji chemicznych w obu kierunkach jest jednakowa i<br />

dlatego nie obserwujemy zmian w stężeniach reagentów.<br />

• Relacje ilościowe pomiędzy reagentami są opisywane za pomocą stałej równowagi.<br />

• Wartość stałej równowagi dla reakcji odwrotnej jest równa odwrotności stałej równowagi dla<br />

reakcji prostej.<br />

• Wartość stałej równowagi zależy od temperatury, dla reakcji endotermicznych rośnie ze<br />

wzrostem temperatury, dla reakcji egzotermicznych maleje ze wzrostem temperatury.<br />

W rozdziale tym omówiono tylko podstawowe prawa równowagi chemicznej, i skupiono się<br />

przede wszystkim na reakcjach z udziałem fazy gazowej. W następnym rozdziale będą<br />

dyskutowane równowagi w roztworach elektrolitów. Pozwolą one na zrozumienie wielu<br />

procesów zachodzących zwłaszcza w wodnych roztworach soli, kwasów i zasad.<br />

74


Rozdział 7<br />

Równowagi jonowe w wodnych roztworach elektrolitów<br />

7.1. Dysocjacja elektrolityczna<br />

Już na początku XIX wieku wiadomo było, że wodne roztwory niektórych substancji<br />

wykazują zdolność do przewodzenia prądu elektrycznego. Substancje te nazwano<br />

elektrolitami. Pierwsza teoria objaśniająca mechanizm przepływu prądu przez elektrolity<br />

została podana przez R.I. Grotthusa w 1806 r. Zgodnie z nią dipolowe cząsteczki elektrolitów<br />

ulegają polaryzacji w przestrzeni międzyelektrodowej, a następnie rozerwaniu (dysocjacji) na<br />

jony przez pole elektryczne przyłożone do elektrod. Pogląd ten uznawany był przez ponad pół<br />

wieku, pomimo że prowadził do wniosków niezgodnych z danymi doświadczalnymi.<br />

Przyjmując mechanizm Grotthusa, należało się bowiem spodziewać, że elektroliza może<br />

rozpocząć się dopiero po przekroczeniu pewnej wartości różnicy potencjałów, koniecznej do<br />

rozerwania cząsteczek. Fakty doświadczalne wykazywały jednak, że w wielu przypadkach<br />

następuje ona już przy bardzo małej wartości napięcia. Nowe trudności w teorii Grotthusa<br />

wystąpiły z chwilą ogłoszenia wyników badań przez J.W. Hittorfa (1853), który stwierdził<br />

istotne różnice w stężeniu elektrolitu w przestrzeniach przyelektrodowych, powstające w<br />

wyniku przepływu prądu. Wyniki badań Hittorfa i Kolrauscha, dotyczące przewodnictwa<br />

elektrycznego roztworów elektrolitów, stanowiły już podstawę do sformułowania teorii o<br />

samorzutnej dysocjacji elektrolitycznej. W roku 1884 Svante Arrhenius przedstawił jako<br />

część swojej rozprawy doktorskiej teorię dysocjacji elektrolitycznej, zgodnie z którą<br />

cząsteczki elektrolitu w roztworze wodnym rozpadają się samorzutnie na cząstki o<br />

przeciwnych ładunkach (jony), będące nośnikami prądu elektrycznego. Jako ilościową miarę<br />

dysocjacji elektrolitów Arrhenius wprowadził pojęcie stopnia dysocjacji α, zdefiniowanego<br />

jako stosunek liczby cząsteczek, które uległy dysocjacji - n (lub stężenia molowego<br />

zdysocjowanej części elektrolitu - c) do ogólnej liczby cząsteczek wprowadzonych do<br />

roztworu - n o (lub całkowitego stężenia - c o ):<br />

n<br />

α = =<br />

n<br />

o<br />

c<br />

c<br />

o<br />

(7.1)<br />

W rozważaniach dotyczących przewodnictwa użyteczne staje się posługiwanie taką<br />

ilością moli elektrolitu n, która w wyniku całkowitej dysocjacji tworzy jony dodatnie o<br />

75


łącznym ładunku +eN A i jony ujemne o łącznym ładunku -eN A (e - ładunek elektronu, N A -<br />

liczba Avogadra). Na przykład w wyniku całkowitej dysocjacji n = 1 mola NaCl powstaje<br />

liczba Avogadra jonów Na + i jonów Cl - ; n = 1 dla MgSO 4 daje ładunek +2eN A jonów Mg 2+<br />

i –2eN A jonów SO<br />

2- 4 (należy zatem użyć 0,5 mola MgSO 4 ) itd. Dogodną miarą<br />

przewodnictwa elektrolitu byłoby więc przewodnictwo takiej jego ilości, aby między<br />

elektrodami naczyńka pomiarowego, oddalonymi od siebie o 1 cm, mieściła się objętość<br />

roztworu zawierająca ładunek +eN A kationów i -eN A anionów elektrolitu. Wielkość tę,<br />

wprowadzoną przez F.W.G. Kolrauscha, nazywamy przewodnictwem równoważnikowym Λ<br />

. Konsekwencją istnienia równowagi pomiędzy niezdysocjowanymi cząsteczkami elektrolitu,<br />

a powstającymi w wyniku dysocjacji jonami jest zawsze wzrost stopnia dysocjacji dla<br />

roztworów bardziej rozcieńczonych. Ponieważ przewodnictwo zależy od obecności nośników<br />

prądu, stanowi to jakościowe wytłumaczenie zależności przewodnictwa równoważnikowego<br />

od stężenia. Na rysunku 7.1 przedstawiono przykładowo wyznaczone doświadczalnie<br />

wartości przewodnictwa równoważnikowego dla kilku elektrolitów w zależności od c n ;<br />

(c n - stężenie wyrażone jako liczba moli ładunków dodatnich lub ujemnych, przypadających<br />

na 1 dm 3 roztworu, mol · |eN A | -1 · dm -3 ).<br />

Jak można zauważyć, przy c n → 0 wartość przewodnictwa równoważnikowego dąży do<br />

pewnej wartości granicznej Λ o , którą nazwano granicznym przewodnictwem<br />

równoważnikowym (na rys. 7.1 wartość tego przewodnictwa pokazuje linia przerywana<br />

będąca ekstrapolacją przewodnictwa równoważnikowego w rozcieńczeniu nieskończenie<br />

wielkim). Obserwacja ta nasunęła Arrheniusowi pomysł metody wyznaczania stopnia<br />

dysocjacji elektrolitu na podstawie pomiarów przewodnictwa:<br />

α = Λ (7.2)<br />

Λ o<br />

Od stężenia roztworu zależy szereg jego właściwości, takich jak: ciśnienie osmotyczne,<br />

obniżenie prężności pary rozpuszczalnika nad roztworem, obniżenie temperatury krzepnięcia<br />

czy też podwyższenie temperatury wrzenia roztworów w stosunku do odpowiednich<br />

temperatur dla czystego rozpuszczalnika.<br />

Rozważmy dla przykładu ciśnienie osmotyczne. Zgodnie z badaniami Van’t Hoffa,<br />

ciśnienie osmotyczne roztworu π wyraża się zależnością:<br />

π = c·R·T (7.3)<br />

76


gdzie: c - stężenie molowe,<br />

T - temperatura w skali bezwzględnej,<br />

R - stała gazowa.<br />

Doświadczalnie wykazano, że wzór (7.3) stosować można tylko dla roztworów nie<br />

przewodzących prądu elektrycznego, czyli nieelektrolitów. Dla elektrolitów słuszny jest wzór:<br />

π = i· c· R· T (7.4)<br />

gdzie i nosi nazwę współczynnika izotonicznego van’t Hoffa.<br />

500<br />

Λ / Ω -1 ∙ cm 2<br />

przewodnictwo równoważnikowe<br />

400<br />

300<br />

200<br />

100<br />

HCl<br />

NaOH<br />

KCl<br />

BaCl 2<br />

CH 3 COOH<br />

0<br />

0.0 0.1 0.2 0.3 0.4<br />

Rys. 7.1. Zależność przewodnictwa równoważnikowego od<br />

dla wodnych roztworów niektórych elektrolitów.<br />

c n<br />

Wyjaśnienie różnic wynikających z wykorzystania w obliczeniach wzorów (7.3) i (7.4)<br />

staje się proste na gruncie teorii Arrheniusa. Ciśnienie osmotyczne jest wprost proporcjonalne<br />

do stężenia cząstek obecnych w roztworze. Dla elektrolitu o stężeniu c, który ulega dysocjacji<br />

w stopniu α, liczba cząstek (cząsteczek i jonów) w roztworze rośnie, ponieważ każda<br />

dysocjująca cząsteczka dostarcza co najmniej dwóch jonów. Konsekwencją tego faktu musi<br />

być wzrost ciśnienia osmotycznego elektrolitu w porównaniu z roztworem nieelektrolitu o<br />

takim samym stężeniu. Rozważmy przypadek elektrolitu o stężeniu c i stopniu dysocjacji α,<br />

77


który dysocjuje na ν jonów. Suma stężeń jonów i cząsteczek niezdysocjowanych wynosić<br />

będzie ν· c· α + c(1 - α). Liczba cząstek w jednostce objętości roztworu musi być zatem<br />

wprost proporcjonalna do tej wielkości, a współczynnik izotoniczny wyrazi się zależnością:<br />

ν ⋅ c ⋅ α + c(1 − α)<br />

i = = 1 + α(<br />

ν −1)<br />

(7.5)<br />

c<br />

i<br />

skąd: α = − 1<br />

(7.6)<br />

ν −1<br />

Zależność (7.6) może być podstawą drugiej metody wyznaczania stopnia dysocjacji<br />

elektrolitu, wskazując równocześnie na słuszność koncepcji Arrheniusa w stosunku do<br />

pierwotnej teorii Grotthusa. Przykład ciśnienia osmotycznego dowodzi bowiem, że jony w<br />

roztworze elektrolitu obecne są również wtedy, gdy nie płynie przez niego prąd.<br />

7.1.1. Równowagi dysocjacji<br />

Dysocjacja elektrolityczna jest reakcją odwracalną. W każdej temperaturze w roztworze<br />

słabego elektrolitu ustala się równowaga dynamiczna pomiędzy cząsteczkami elektrolitu i<br />

jonami pochodzącymi z jego dysocjacji. Fakt ten pozwala na wykorzystanie prawa<br />

równowagi chemicznej do obliczania stałych równowagi procesu dysocjacji. Nie jest możliwe<br />

wyprowadzenie dla wszystkich typów elektrolitów poprawnego wyrażenia ogólnego,<br />

wiążącego stałą równowagi reakcji dysocjacji ze stopniem dysocjacji. Zależność taką można<br />

natomiast łatwo wyprowadzić dla określonego typu elektrolitu. Rozważmy dla przykładu 1,1-<br />

wartościowy elektrolit AB, którego dysocjację można przedstawić równaniem:<br />

AB A + + B -<br />

Jeżeli w wyniku dysocjacji początkowe stężenie elektrolitu AB zmniejszyło się o c = c o·<br />

, to w stanie równowagi wynosi ono: c o - c o· = c o (1 - α). Jednocześnie stężenie utworzonych<br />

(w tej samej liczbie) jonów A + i B - wynosi c o· α. Stężenia w stanie równowagi<br />

wynoszą więc odpowiednio: [AB] = c o (1 - α) i [A + ] = [B - ] = c o· α,<br />

gdzie c - stężenie molowe.<br />

Zgodnie z prawem równowagi chemicznej otrzymujemy wyrażenie na stałą dysocjacji<br />

K c :<br />

Kc<br />

+ −<br />

[A ][B ]<br />

= =<br />

[AB]<br />

2<br />

α ⋅c<br />

1−<br />

α<br />

(7.7)<br />

78


Wprowadzając zależność (7.2) do (7.7), otrzymujemy:<br />

Kc<br />

=<br />

2<br />

Λ ⋅c<br />

( Λo<br />

− Λ)<br />

⋅Λo<br />

(7.8)<br />

Równanie to wyraża tzw. prawo rozcieńczeń Ostwalda. Stanowi ono podstawę do<br />

wyznaczenia wartości stałej dysocjacji drogą pomiarów przewodnictwa równoważnikowego<br />

roztworów. Stwierdzono doświadczalnie, że dla części elektrolitów stała K c , wyznaczona z<br />

równania (7.8), w niewielkim stopniu zależy od stężenia. Jednocześnie istnieje duża grupa<br />

elektrolitów, dla których prawo rozcieńczeń Ostwalda nie jest spełniane, a wartość K c zmienia<br />

się bardzo silnie wraz ze zmianami stężenia. Analiza zależności Λ ( c)<br />

przedstawionych na<br />

rys.7.1 wykazuje, że elektrolity można podzielić na dwie grupy; do pierwszej zaliczamy te,<br />

dla których przewodnictwo w zakresie niskich stężeń ma przebieg prostoliniowy, do drugiej<br />

zaś elektrolity, dla których przebieg zależności Λ ( c)<br />

jest krzywoliniowy w całym zakresie<br />

stężeń. Okazało się, że prawo rozcieńczeń Ostwalda opisuje z dobrym przybliżeniem<br />

zachowanie elektrolitów zaliczonych do drugiej grupy. Wartość stopnia dysocjacji tych<br />

elektrolitów, wyliczona z pomiarów przewodnictwa czy ciśnienia osmotycznego roztworów<br />

o stężeniach 0,1 - 1M, jest niewielka. Nazwano je elektrolitami słabymi. Dla grupy<br />

elektrolitów nie spełniających prawa rozcieńczeń Ostwalda znaleziono jednocześnie stopnie<br />

dysocjacji zbliżone do jedności. Elektrolity te nazwano mocnymi. Problemy związane z tymi<br />

definicjami omówione zostaną w dalszej części.<br />

W podsumowaniu można stwierdzić, że podstawowe założenie teorii Arrheniusa,<br />

mówiące o rozpadzie cząsteczek elektrolitu w roztworze na jony, odegrało niezwykle istotną<br />

rolę w rozwoju teorii chemicznych i zachowuje ważność do chwili obecnej.<br />

7.1.2. Krytyka teorii Arrheniusa. Mechanizm dysocjacji<br />

Założenie Arrheniusa o naturalnej tendencji elektrolitów do samorzutnego rozpadu na<br />

jony budzi szereg wątpliwości przede wszystkim natury energetycznej. Rozważmy cząsteczkę<br />

typowego elektrolitu, np. NaCl. Z doświadczenia wiadomo, że cząsteczkę tego związku<br />

można traktować jako złożoną z dwóch jonów o ładunkach 1,602 · 10 -19 C, umieszczonych w<br />

odległości 0,236 nm. Z danych tych można obliczyć energię wiązań Na + ⎯ Cl - na 1 mol:<br />

E<br />

=<br />

2<br />

1 q<br />

⋅ ⋅ N A ≈ ⋅<br />

4π ⋅εo<br />

r<br />

590kJ mol 1 79<br />


gdzie: q - ładunek jonu,<br />

r - odległość pomiędzy jonami,<br />

N A - liczba Avogadra,<br />

ε o - przenikalność dielektryczna próżni = 8,86 ·10 -12 C 2 · N -1 · m -2 .<br />

Otrzymana wartość jest tak duża, że NaCl nawet w fazie gazowej (temperatura > 1400 o C)<br />

występuje w postaci cząsteczkowej, a nie jonowej. Z drugiej strony, w wodnym roztworze<br />

NaCl jest całkowicie zdysocjowany na jony. Zachodzi pytanie, skąd bierze się energia na<br />

pokonanie sił wiązania jonów w cząsteczce NaCl, gdy znajduje się ona w roztworze?<br />

Podstawową różnicą między fazą gazową a roztworem jest obecność w tym ostatnim<br />

rozpuszczalnika. To właśnie rozpuszczalnik musi być odpowiedzialny za dysocjację<br />

cząsteczki na jony.<br />

Średnie odległości pomiędzy cząsteczkami cieczy są tego samego rzędu, co ich własne<br />

wymiary. Konsekwencją tego faktu staje się wzrost roli oddziaływań międzycząsteczkowych,<br />

a przestrzeń zajęta przez ciecz nabiera szczególnych własności, różnych od własności próżni<br />

czy przestrzeni wypełnionej gazem. Z naszego punktu widzenia istotną cechą tej przestrzeni<br />

jest jej względna przenikalność dielektryczna. Siła, a więc i energia oddziaływania ładunków<br />

elektrycznych, jest odwrotnie proporcjonalna do przenikalności dielektrycznej.<br />

Wprowadzenie cząsteczek NaCl do wody, której przenikalność dielektryczna ε ≈ 80,<br />

powoduje drastyczne zmniejszenie energii wiązania Na + ⎯ Cl - , od wartości 590 kJ · mol -1 do<br />

około 7,4 kJ · mol -1 . Energia ta staje się porównywalna ze średnią energią kinetyczną ruchów<br />

termicznych cząsteczek w cieczy już w temperaturze pokojowej, wywołując ich dysocjację na<br />

jony podczas przypadkowych zderzeń. Można zatem uważać, że istota procesu dysocjacji<br />

elektrolitycznej tkwi w wysokiej wartości przenikalności dielektrycznej rozpuszczalnika.<br />

Wiadomo, że wysoką wartość przenikalności dielektrycznej mogą mieć tylko te<br />

substancje, których cząsteczki są trwałymi dipolami. Nasuwa się więc kolejny wniosek, że<br />

rozpuszczalnik, w którym możliwa jest dysocjacja, musi mieć budowę dipolową. Fakt ten ma<br />

istotne znaczenie nie tylko z punktu widzenia dysocjacji elektrolitycznej, ale również<br />

zjawiska solwatacji, polegającej na otaczaniu powstałych jonów przez cząsteczki<br />

rozpuszczalnika.<br />

Zdolność cząsteczek do dysocjacji elektrolitycznej zależy nie tylko od natury<br />

rozpuszczalnika, ale również od typu wiązań pomiędzy atomami. Ogólnie można podzielić te<br />

wiązania na trzy podstawowe grupy: kowalencyjne (atomowe), atomowe spolaryzowane i<br />

80


jonowe. Wiązanie jonowe występuje w czystej postaci w kryształach jonowych, które<br />

zbudowane są z jonów dodatnich i ujemnych, prostych lub kompleksowych. Siły działające<br />

pomiędzy jonami są znaczne, co powoduje, że substancje o budowie jonowej mają<br />

stosunkowo wysokie temperatury topnienia i są mało lotne. Sieci przestrzenne o wiązaniach<br />

kowalencyjnych spotykamy w kryształach niektórych pierwiastków, jak np. węgiel (diament),<br />

a także w przypadku związków utworzonych przez pierwiastki wykazujące zbliżone<br />

powinowactwo elektronowe; jako przykłady wymienić tu można węglik krzemu SiC i węglik<br />

tytanu TiC. Wiązanie atomowe spolaryzowane możemy rozpatrywać jako superpozycję<br />

wiązań atomowego i jonowego, zaś energię wiązania w cząsteczce możemy w przybliżeniu<br />

przedstawić jako sumę energii wiązania jonowego i kowalencyjnego. W wiązaniu atomowym<br />

spolaryzowanym rola składnika jonowego rośnie w miarę wzrostu polaryzacji wiązania.<br />

Przenikalność dielektryczna rozpuszczalnika, której wpływ na dysocjację już omówiono, jest<br />

w stanie zmienić tylko siłę oddziaływania elektrostatycznego, pozostając praktycznie bez<br />

wpływu na energię wiązania kowalencyjnego. Łatwo zauważyć, że wpływ rozpuszczalnika na<br />

energię wiązania w cząsteczce spada w miarę przechodzenia od wiązania jonowego do<br />

atomowego. Cząsteczki o wiązaniu kowalencyjnym lub atomowym spolaryzowanym o<br />

małym udziale wiązania jonowego nie wykazują tendencji do dysocjacji elektrolitycznej.<br />

Ze względu na asymetrię rozmieszczenia w cząsteczce elektronów wiążących, celowe<br />

wydaje się przypisanie każdemu atomowi liczby, wyrażającej tendencję elektronów<br />

wiążących do przemieszczania się ku temu atomowi. Wskaźnik taki, określający tendencję do<br />

przyciągania elektronów wiązania, nazywa się elektroujemnością. Według L. Paulinga różnicę<br />

∆ między rzeczywistą energią wiązania, a energią wiązania kowalencyjnego można przyjąć<br />

jako miarę jonowego charakteru wiązania. Wprowadzona przez niego skala<br />

elektroujemności przypisuje każdemu pierwiastkową liczbową wartość z przedziału od 0,7<br />

(Cs) do 4,0 (F). Różnica elektroujemności wiążących się za sobą pierwiastków związana jest<br />

z wartością ∆ następującą zależnością:<br />

χ<br />

A<br />

− χ = ∆<br />

B<br />

gdzie: χ , χ - elektroujemności pierwiastków A i B.<br />

A<br />

B<br />

Zależność ta może stanowić podstawę półilościowej metody oceny kowalencyjno - jonowego<br />

charakteru wiązania.<br />

Opisany powyżej mechanizm dysocjacji dotyczy cząsteczek. Wiadomo jednak, że istnieje<br />

szereg substancji (tzw. elektrolity rzeczywiste), które przechodzą do roztworu od razu w<br />

postaci jonów, a nie cząsteczek. Oddziaływanie cząsteczek rozpuszczalnika sprowadza się nie<br />

81


tylko do efektów związanych z jego przenikalnością dielektryczną, ale także do zmian w<br />

strukturze elektronowej cząsteczek substancji rozpuszczonej. Zmiany te prowadzą do wzrostu<br />

udziału wiązania jonowego w cząsteczce ulegającej dysocjacji i następczej reakcji, w wyniku<br />

której swobodny jon otacza się sferą związanych z nim cząsteczek rozpuszczalnika<br />

(solwatacja). Tworzące się wówczas wiązania często nie mają charakteru prostych<br />

oddziaływań Van der Waalsa; mogą to być np. wiązania wodorowe, co już nadaje dysocjacji<br />

charakter reakcji chemicznej. Procesy towarzyszące dysocjacji są skomplikowane i w całości<br />

nie zostały wyjaśnione do dnia dzisiejszego.<br />

Podsumowując dotychczasowe rozważania, możemy stwierdzić, że:<br />

1. Dysocjacja elektrolityczna jest procesem rozpadu cząsteczek elektrolitu na jony, będącym<br />

wynikiem oddziaływania rozpuszczalnika z cząsteczkami elektrolitu.<br />

2. Aby dysocjacja elektrolitu była możliwa, muszą być spełnione następujące warunki:<br />

─ rozpuszczalnik musi mieć odpowiednio dużą wartość względnej przenikalności<br />

dielektrycznej, czyli musi mieć budowę dipolową (jest to warunek konieczny, ale<br />

niewystarczający),<br />

─ rozpuszczona substancja musi posiadać w swoich cząsteczkach wiązanie jonowe lub<br />

tomowe spolaryzowane.<br />

3. Rozpad cząsteczek na jony przy spełnieniu powyższych warunków zachodzi w wyniku<br />

zderzeń termicznych, efektów orientacji dipoli rozpuszczalnika wokół dysocjujących<br />

cząsteczek, a także na skutek złożonych oddziaływań między cząsteczkami<br />

rozpuszczalnika i substancji rozpuszczonej, które nadają dysocjacji elektrolitycznej cechy<br />

reakcji chemicznej (reakcja przeniesienia jonu).<br />

Jak widzimy, teoria Arrheniusa nie brała pod uwagę roli rozpuszczalnika w procesie<br />

dysocjacji, która w świetle powyższych rozważań jest decydująca. Przedstawiony powyżej<br />

współczesny pogląd na mechanizm dysocjacji tłumaczy nie tylko możliwość zachodzenia<br />

tego procesu, lecz również fakt, że ta sama substancja w różnych rozpuszczalnikach i przy<br />

tym samym stężeniu wykazuje różne wartości stopnia dysocjacji.<br />

7.1.3. Struktura roztworów elektrolitów. Aktywność i współczynnik aktywności<br />

Omawiając w rozdziale 7.1. zastosowanie prawa równowagi chemicznej do procesu<br />

dysocjacji, stwierdziliśmy jego stosowalność tylko dla tzw. słabych elektrolitów. Jednak<br />

nawet w tym przypadku podkreśliliśmy, że prawo to wyrażone równaniem (7.7) lub (7.8)<br />

stosuje się jedynie z dużym przybliżeniem. Przyjęcie, że szybkość procesów chemicznych jest<br />

82


proporcjonalna do stężenia, wymaga założenia, że każda reagująca w danym środowisku<br />

cząsteczka jest kinetycznie niezależna. Tylko w tym przypadku liczba zderzeń reagujących<br />

cząsteczek czy jonów, prowadzących do reakcji pomiędzy nimi, jest wprost proporcjonalna do<br />

stężenia i w konsekwencji - szybkość całego procesu jest proporcjonalna do stężenia. Teoria<br />

Arrheniusa zakładała, że w roztworach elektrolitów brak jest oddziaływań międzyjonowych<br />

czy międzycząsteczkowych, co w konsekwencji doprowadziło do wniosku, że udział jonów<br />

w przewodnictwie elektrycznym jest wprost proporcjonalny do ich stężenia. Pozwoliło to<br />

Arrheniusowi określić stopień dysocjacji za pomocą równania (7.2).<br />

Jak już wspomniano w rozdziale 7.1.2, rola oddziaływań międzyjonowych i<br />

międzycząsteczkowych odgrywa decydującą rolę w procesie dysocjacji. W roztworach<br />

elektrolitów występują zarówno dipolowe cząsteczki, jak i jony. W związku z tym można<br />

oczekiwać występowania w nich trzech typów oddziaływań: jon-jon, jon-dipol i dipol-dipol.<br />

Łatwo zrozumieć, że siła oddziaływania dwóch jonów musi być znacznie większa niż siła<br />

oddziaływania dwóch dipoli umieszczonych w tej samej odległości. Rozważmy dla przykładu<br />

1-molowy roztwór NaCl, o którym wiemy, że jest mocnym elektrolitem. Przy założeniu<br />

całkowitej dysocjacji, w 1 dm 3 roztworu znajdzie się około 12·10 23 jonów (dwa razy więcej<br />

niż cząsteczek NaCl). Zakładając równomierne rozłożenie tych jonów w sześcianie o<br />

objętości 1 dm 3 , znajdziemy, że wzdłuż krawędzi o długości 10 cm rozmieszczonych jest<br />

3 12⋅ 10 23 jonów, co oznacza, że średnia odległość międzyjonowa wynosi około 0,9 nm.<br />

Zauważmy, że taka odległość między cząsteczkami gazu występuje przy ciśnieniu około 5<br />

MPa. Znajomość tej odległości i ładunku jonów pozwala na oszacowanie wielkości energii<br />

oddziaływania elektrostatycznego między nimi w roztworze wodnym (przyjmując<br />

przenikalność dielektryczną wody za równą 80). Uzyskana analogicznie jak w rozdziale 7.1.1<br />

wartość tej energii wynosi 1,9 kJ/mol. Porównanie tej wartości z wyznaczoną poprzednio<br />

energią oddziaływania jonów w cząsteczkach NaCl rozpuszczanych w wodzie (wynoszącą<br />

około 8,4 kJ/mol) wskazuje wyraźnie, że nie da się zaniedbać energii oddziaływania jonów w<br />

porównaniu z energią ich wiązania. Jednocześnie przy tych samych warunkach można<br />

wykazać, że energia oddziaływań dipol-dipol, charakterystycznych dla oddziaływań<br />

międzycząsteczkowych, wynosi około 0,014 kJ/mol i jest zaniedbywalnie mała. Powyższe<br />

rozważania potwierdzają istnienie w roztworach elektrolitów silnych oddziaływań<br />

wynikających z obecności w nich wolnych jonów. Stanowi to istotną różnicę w stosunku do<br />

roztworów nieelektrolitów, w których mogą występować tylko względnie słabe<br />

oddziaływania międzycząsteczkowe, zwane siłami Van der Waalsa.<br />

83


Rozważmy w dalszym ciągu kolejny wymieniony typ oddziaływań w roztworach<br />

elektrolitów, tj. oddziaływanie jon-dipol. Natężenie pola elektrycznego w okolicy wolnego<br />

jonu osiąga wartości rzędu 1 GV/m. Tak silne pole, spowodowane niewielkimi rozmiarami<br />

jonu, musi wywoływać wybitne efekty polaryzacyjne w jego sąsiedztwie. Wynikiem tych<br />

oddziaływań staje się orientacja dipoli cząsteczek rozpuszczalnika w przestrzeni wokół jonu.<br />

Wytwarza się sytuacja, w której swobodny jon zostaje otoczony zorientowanymi<br />

dipolowymi cząsteczkami rozpuszczalnika, zyskując jakby ich otoczkę. Proces ten w<br />

ogólnym przypadku nazywamy solwatacją, zaś w przypadku gdy rozpuszczalnikiem jest<br />

woda – hydratacją. Proces solwatacji nie zmienia ładunku jonu, który nadal uczestniczy w<br />

oddziaływaniach jon-jon omówionych poprzednio. W roztworach elektrolitów nie ma zatem<br />

całkowicie swobodnych jonów, ponieważ każdy musi posiadać swoją otoczkę solwatacyjną<br />

(hydratacyjną). Dodatkowo, w przestrzeni wokół jonu z otoczką solwatacyjną istnieje pole<br />

elektryczne wytworzone przez jego ładunek. Ponieważ natężenie pola elektrycznego maleje<br />

odwrotnie proporcjonalnie do kwadratu odległości od jego źródła, zatem pole elektryczne na<br />

zewnątrz otoczki jest osłabione. W rozważanym obszarze, poza otoczką solwatacyjną,<br />

prawdopodobieństwo pojawienia się jonu przeciwnego znaku (wraz z jego otoczką<br />

solwatacyjną) jest większe niż dla jonu tego samego znaku. Oddziaływania elektrostatyczne<br />

w roztworach elektrolitów prowadzą zatem do sytuacji, w której wokół solwatyzowanego<br />

jonu gromadzą się raczej jony przeciwnego znaku wraz z ich otoczkami solwatacyjnymi.<br />

Tworzy się układ, który w teorii elektrolitów nazywamy atmosferą jonową. Atmosferę<br />

jonową należy rozumieć jako twór dynamiczny. Siły pola elektrycznego w jej obszarze nie są<br />

już tak duże jak w obszarze otoczki solwatacyjnej. Energia kinetyczna termicznego ruchu<br />

jonów jest porównywalna z energią ich oddziaływań w atmosferze jonowej, która ulega<br />

ciągłym procesom tworzenia i rozpadu. Nie zmienia to jednak faktu, że prawdopodobieństwo<br />

występowania w sąsiedztwie danego jonu jonów przeciwnego znaku pozostaje zawsze<br />

istotnie większe niż prawdopodobieństwo sąsiedztwa jonów jednoimiennych. Wytworzoną w<br />

roztworze sytuację należy rozumieć w ten sposób, że dany jon wraz ze swoją otoczką<br />

solwatacyjną i swoją atmosferą jonową jest jednocześnie składnikiem atmosfery jonowej<br />

innego jonu. W roztworach elektrolitów tworzy się zatem dynamiczna struktura podlegająca<br />

procesom tworzenia i rozpadu, która nadaje tym roztworom szczególne własności<br />

odróżniające je od roztworów nieelektrolitów.<br />

Postać i forma atmosfery jonowej jest rezultatem konkurencji sił oddziaływania<br />

elektrostatycznego i sił wynikających z energii kinetycznej termicznego ruchu jonów. Wzrost<br />

stężenia elektrolitu powoduje zmniejszenie się średnich odległości międzyjonowych,<br />

84


prowadząc do wzrostu sił oddziaływania elektrostatycznego. Jeżeli dwa jony przeciwnego<br />

znaku wraz z ich otoczkami solwatacyjnymi znajdują się w odległości mniejszej od pewnej<br />

wielkości krytycznej, wówczas energia kinetyczna ich ruchu termicznego może okazać się za<br />

mała, aby pokonać siły elektrostatycznego przyciągania. Taką parę jonową uważamy za<br />

zasocjowaną. Zauważmy, że proces asocjacji, wiążąc dwa jony ze sobą, tworzy obiekt, który<br />

nie musi posiadać wypadkowego ładunku elektrycznego. Asocjat, chociaż budową zbliżony<br />

do cząsteczki, cząsteczką jednak nie jest. Zasocjowane jony posiadają bowiem swoje otoczki<br />

solwatacyjne, zatem ich sytuacja jest odmienna niż w niezdysocjowanej cząsteczce.<br />

Wspomniana krytyczna odległość międzyjonowa, r min , poniżej której jony można uważać za<br />

zasocjowane, została określona przez N. Bjerruma jako:<br />

2<br />

z z eo<br />

rmin = + ⋅ − ⋅<br />

2 ⋅ ε ⋅ k ⋅ T<br />

(7.9)<br />

gdzie: z +· e o , z -· e o - ładunki jonów dodatnich i ujemnych,<br />

T - temperatura bezwzględna,<br />

ε - względna przenikalność dielektryczna rozpuszczalnika,<br />

k - stała Boltzmanna.<br />

Proces asocjacji jonów w sposób oczywisty prowadzi do efektu, który z<br />

makroskopowego punktu widzenia moglibyśmy zinterpretować jako obniżenie obserwowanej<br />

wartości stopnia dysocjacji. Przykładowo, zasocjowane jony mogą utworzyć element<br />

struktury roztworu nie posiadający wypadkowego ładunku elektrycznego i w związku z tym<br />

nie biorący udziału w przewodnictwie. Wyznaczenie stopnia dysocjacji na podstawie<br />

równania (7.2) daje w rezultacie niższą wartość stopnia dysocjacji, chociaż zasocjowane jony<br />

nie są niezdysocjowaną cząsteczką. Obecność asocjatów zmienia liczbę obiektów<br />

obdarzonych wypadkowym ładunkiem elektrycznym w roztworze elektrolitu, wpływając tym<br />

samym na całościowe oddziaływania elektrostatyczne. Także postać atmosfer jonowych<br />

zależy od stężenia powstałych jonów. Asocjaty należy także rozpatrywać dynamicznie. W<br />

zadanych warunkach w roztworze, asocjaty tworzą się i rozpadają, a ich średnie stężenie jest<br />

wynikiem konkurencji procesów tworzenia i rozpadu.<br />

Wspomnijmy jeszcze, że współczesna teoria elektrolitów dopuszcza także istnienie trójek<br />

jonowych typu A + B - A + lub B - A + B - . Ich obecność w roztworze została potwierdzona doświadczalnie;<br />

efekty powodowane ich obecnością zbliżone są do wywoływanych przez pary<br />

jonowe.<br />

85


Przedstawiony powyżej obraz zachowania się elektrolitów wskazuje wyraźnie na<br />

występowanie swoistej struktury, której nie można stwierdzić w roztworach nieelektrolitów.<br />

Struktura ta staje się przyczyną szeregu osobliwości wykazywanych przez roztwory<br />

elektrolitów, w stosunku do roztworów nieelektrolitów, w których jedynym typem<br />

oddziaływania są siły międzycząsteczkowe, tzw. siły Van der Waalsa. Istnienie tej struktury<br />

uniemożliwia traktowanie jonów w roztworze elektrolitu jako jednostek kinetycznie<br />

niezależnych. Gdy obniżamy stężenie elektrolitu lub gdy jest on zdysocjowany w niewielkim<br />

stopniu, małe stężenie jonów powoduje zmniejszenie roli oddziaływań międzyjonowych.<br />

W takiej sytuacji struktura roztworu elektrolitu rozmywa się bądź zanika, a wytworzona<br />

sytuacja staje się porównywalna z występującą w roztworach nieelektrolitów. Z drugiej strony<br />

współcześnie istnieją dowody, że bardzo stężone roztwory elektrolitów mocnych mają<br />

strukturę wręcz zbliżoną do ich struktury w stanie krystalicznym.<br />

Powróćmy teraz do problemu stosowalności prawa równowagi chemicznej do opisu<br />

procesu dysocjacji. Wiemy już, że jego stosowalność w znanej nam formie wymaga przyjęcia<br />

niezależnego kinetycznie ruchu jonów w roztworze. W świetle opisanej powyżej struktury<br />

roztworów elektrolitów założenie takie przeczy temu wymaganiu. Wyjaśnia to również,<br />

dlaczego zastosowanie przez W. Ostwalda prawa równowagi chemicznej do opisu procesu<br />

dysocjacji elektrolitycznej (wzór 7.8) nie stosuje się do elektrolitów mocnych, a w pozostałych<br />

przypadkach stosuje się z lepszym lub gorszym przybliżeniem. W zastosowaniu do roztworów<br />

elektrolitów słabych prawo rozcieńczeń spełniane jest z dobrym przybliżeniem,<br />

ponieważ w wyniku ich dysocjacji powstają względnie niewielkie ilości jonów. W takim<br />

przypadku struktura roztworu jest bardzo słabo wykształcona i można przyjąć, że jony<br />

zachowują się jak cząstki kinetycznie niezależne. Formalnie można przyjąć, że występowanie<br />

oddziaływań elektrostatycznych w roztworach elektrolitów prowadzi do pozornej zmiany<br />

rzeczywistego stężenia elektrolitu w roztworze. Fakt ten nie ma żadnego znaczenia np. z<br />

punktu widzenia ilościowej analizy chemicznej, jednak w przypadkach, gdy badamy zjawiska<br />

zależne od ruchliwości jonów w roztworze (kinetyka reakcji, przewodnictwo elektrolitu), nie<br />

możemy tych zmian zaniedbywać. Kinetyczne zachowanie jonu w roztworze o rzeczywistym<br />

stężeniu molowym c odpowiada kinetycznemu zachowaniu jonów hipotetycznym roztworze o<br />

stężeniu a, w którym nie byłoby opisanych oddziaływań. Wielkość a nazywamy aktywnością<br />

jonu i wiążemy ją ze stężeniem c zależnością:<br />

a = f · c (7.10)<br />

Współczynnik f nazywamy współczynnikiem aktywności. Jak przekonamy się w<br />

dalszym ciągu, współczynnik aktywności zależy od rodzaju jonów, ich ładunków i stężeń, nie<br />

86


można więc mówić, że aktywność jest wprost proporcjonalna do stężenia. Wprowadzając<br />

zatem do równania (7.7) kinetycznie niezależne parametry a w miejsce stężeń można je<br />

zapisać następująco:<br />

K<br />

a =<br />

a ⋅ a<br />

a<br />

+ −<br />

AB<br />

(7.11)<br />

gdzie:<br />

a + , a - , a AB oznaczają odpowiednio aktywności jonów A + , B - i cząsteczek AB<br />

w roztworze. Stałą K a nazywamy termodynamiczną stałą dysocjacji. W ogólnym przypadku<br />

elektrolitu A m B n dysocjującego według równania:<br />

A m B n ⇔ mA n +<br />

+ nB m -<br />

na termodynamiczną stałą dysocjacji otrzymujemy wyrażenie:<br />

K<br />

a<br />

=<br />

a<br />

n<br />

A<br />

n+<br />

a<br />

A<br />

⋅ a<br />

m<br />

B<br />

m<br />

B<br />

n<br />

m−<br />

n+<br />

m<br />

m<br />

n<br />

m−<br />

[ A ] [ B ]<br />

=<br />

[ A B ]<br />

n<br />

=<br />

n<br />

+<br />

f<br />

f<br />

A<br />

⋅<br />

m<br />

f<br />

B<br />

m<br />

−<br />

n<br />

(7.12)<br />

Ponieważ w roztworze elektrolitu niemożliwy jest pomiar współczynników aktywności<br />

poszczególnych jonów, w wyrażeniach termodynamicznych występują pojęcia tzw. średniej<br />

aktywności i średniego współczynnika aktywności f ± , będące średnią geometryczną<br />

aktywności lub współczynników aktywności indywidualnych jonów:<br />

1<br />

±<br />

m<br />

−<br />

n<br />

+<br />

m+<br />

n<br />

a = ( a ⋅ a )<br />

oraz<br />

1<br />

±<br />

m<br />

−<br />

n<br />

+<br />

m+<br />

n<br />

f = ( f ⋅ f )<br />

(7.13)<br />

Zarówno średni współczynnik aktywności, jak i współczynniki aktywności<br />

poszczególnych jonów można wyznaczyć w oparciu o teorię Debye’a-Hückela (rozdz. 7.1.5).<br />

Najczęściej przyjmuje się, że w niezbyt stężonych roztworach oddziaływania elektrostatyczne<br />

mają decydujący wpływ wyłącznie na kinetyczne zachowanie jonów, a nie cząsteczek.<br />

Otrzymujemy zatem f ± ≠ 1 dla jonów, podczas gdy dla cząsteczek f AB = 1. Równanie (7.12)<br />

przyjmuje wtedy postać:<br />

K<br />

a<br />

m n<br />

+ −<br />

c ⋅ c<br />

=<br />

c<br />

AB<br />

⋅ f<br />

m n<br />

± +<br />

(7.14)<br />

lub<br />

K = K ⋅ f± + (7.15)<br />

a<br />

c<br />

m<br />

n<br />

87


gdzie K c oznacza tzw. stężeniową stałą dysocjacji.<br />

Obserwowane doświadczalnie zmiany wartości K c , związane ze zmianami stężenia<br />

elektrolitu, były wynikiem niedoceniania roli struktury roztworów elektrolitów. Właściwą<br />

stałą równowagi dla procesu dysocjacji jest K a , a ona oczywiście może zachować stałość<br />

nawet wówczas, gdy K c ulega zmianom. Oczekujemy, że gdy stężenie elektrolitu dąży do zera<br />

lub gdy stopień dysocjacji jest niewielki, stałość wartości stężeniowej stałej dysocjacji K c<br />

jest tym lepsza im bardziej f ± → 1.<br />

7.1.4. Elektrolity mocne i słabe. Dysocjacja wielostopniowa<br />

W rozdziale 7.1.1 ustaliliśmy warunki, przy których proces dysocjacji elektrolitycznej<br />

może zachodzić. Bardziej szczegółowe badania elektrolitów w stanie stałym wykazały, że<br />

związki te tworzą sieci krystaliczne, w węzłach których występują albo jony, np.<br />

w kryształach NaCl, KCl, CaCl 2 , albo cząsteczki, np. w kryształach elektrolitów<br />

organicznych. Równocześnie stwierdzono, że wszystkie elektrolity zaliczane do grupy<br />

elektrolitów mocnych tworzą krystaliczne sieci jonowe. W krysztale jonowym nie można<br />

wyróżnić pojedynczej cząsteczki, np. w krysztale NaCl każdy z jonów Na + sąsiaduje z<br />

sześcioma jonami Cl - i na odwrót. Rozpatrując rozpuszczanie kryształu jonowego w<br />

rozpuszczalniku o wysokiej wartości przenikalności dielektrycznej (np. w wodzie), należy<br />

przyjąć, że elementami struktury kryształu przechodzącymi do roztworu są właśnie jony.<br />

Wysoce nieprawdopodobne jest założenie, że jony te najpierw tworzą niezdysocjowane<br />

cząsteczki, które następnie ulegają dysocjacji. Konsekwencją tego jest przyjęcie tezy, zgodnie<br />

z którą związki tworzące w stanie krystalicznym sieci o budowie czysto jonowej występują w<br />

roztworach wodnych w postaci całkowicie zdysocjowanej. Dla związków tworzących sieci<br />

cząsteczkowe można przyjąć mechanizm dysocjacji opisany w rozdziale 7.1.2. Z drugiej<br />

strony nie można pominąć asocjacji jonów. Stosując prawo równowagi do dysocjacji<br />

elektrolitycznej, zakładamy istnienie równowagi dynamicznej pomiędzy procesami rozpadu<br />

na jony i rekombinacji jonów w niezdysocjowane cząsteczki. W związku z faktem<br />

występowania solwatacji jonów, proces rekombinacji musi być poprzedzony asocjacją.<br />

Dopiero w stanie asocjacji możliwe jest zajście rekombinacji odtwarzającej cząsteczkę:<br />

(A + . . . B - ) asocjacja ←→ (A - B) cząsteczka + cząsteczki rozpuszczalnika (7.16)<br />

Z powyższą równowagą musimy się liczyć zawsze, gdy tylko możliwa jest asocjacja.<br />

88


Rozważmy elektrolit 1,1-wartościowy, tzn. taki, którego dysocjacja prowadzi do<br />

utworzenia jonów o ładunkach +1 i –1. Z zależności (7.9) otrzymujemy dla temperatury<br />

25 o C wartość r min = 0,36 nm, poniżej której możliwa jest asocjacja. Jeżeli jony zbliżą się do<br />

siebie na taką lub mniejszą odległość, możemy je uważać za zasocjowane. Jednak w wyniku<br />

istnienia otoczki solwatacyjnej efektywne promienie jonów w roztworach są większe niż<br />

promienie jonów izolowanych i może być niemożliwe ich zbliżenie na odległość mniejszą<br />

niż r min . Dla takich elektrolitów asocjacja jest więc niemożliwa. Jeżeli w dodatku elektrolity<br />

takie tworzą jonową sieć krystaliczną, to wobec braku istnienia równowagi opisanej<br />

wyrażeniem (7.16) musimy przyjąć, że występują one w roztworach w postaci całkowicie<br />

zdysocjowanej. W takim przypadku ich stopień dysocjacji α = 1 i stosowanie prawa<br />

równowagi chemicznej do opisu reakcji dysocjacji jest pozbawione sensu.<br />

Powyższe rozważania pozwalają na bardziej precyzyjne określenie elektrolitu mocnego.<br />

Elektrolity mocne definiujemy jako substancje, które w roztworach są całkowicie zdysocjowane<br />

na jony nie wykazujące zdolności do asocjacji. Wszystkie pozostałe elektrolity<br />

zaliczamy do elektrolitów słabych. W świetle tej definicji do grupy elektrolitów mocnych<br />

należy względnie mała grupa substancji. Najbardziej typowymi przedstawicielami<br />

elektrolitów mocnych są sole i wodorotlenki litowców (za wyjątkiem litu) i berylowców (za<br />

wyjątkiem berylu i magnezu), a także chlorki, bromki, jodki, azotany i nadchlorany<br />

niektórych metali pozostałych grup. Można do nich zaliczyć również rozcieńczone roztwory<br />

niektórych kwasów, np. azotowego(V), chlorowego(VII), siarkowego(VI),<br />

chlorowodorowego, bromowodorowego, jodowodorowego oraz czwartorzędowe zasady<br />

amoniowe i ich sole.<br />

W naszych rozważaniach często używamy terminów “roztwór stężony” lub “roztwór<br />

rozcieńczony”. Pojęcia te są wysoce nieprecyzyjne ze względu na fakt, że dla każdego<br />

układu: substancja rozpuszczona ─ rozpuszczalnik, ze względu na duże różnice w<br />

rozpuszczalnościach, oznaczają inne wartości stężenia. Przez roztwór rozcieńczony należy<br />

zatem uważać taki, w którym można praktycznie zaniedbać wzajemne oddziaływania jonów,<br />

zaś stężony to taki, w którym oddziaływania te w istotny sposób wpływają na otrzymywane<br />

wyniki obliczeń.<br />

Wspomnijmy w tym miejscu, że czasem dla odróżnienia dysocjacji mocnego elektrolitu<br />

od słabego używamy symbolu = lub → zamiast ⇔. Ma to na celu podkreślenie zupełności<br />

dysocjacji. W istocie jednak w literaturze chemicznej przyjęto najczęściej stosować symbol<br />

⇔, traktując go umownie jako znak zastępujący słowo „dysocjuje”. Ma to swoje<br />

89


uzasadnienie, ponieważ często nie wiemy, czy dysocjacja jest rzeczywiście całkowita, czy też<br />

nie. Zależność (7.9) wskazuje, że wzrost ładunku jonów ułatwia asocjację, zatem, w świetle<br />

przyjętej definicji szeregu soli, jak np. FeCl 3 , nie będzie można uznać za mocne elektrolity.<br />

Elektrolity tworzące w stanie stałym sieci jonowe nazywamy rzeczywistymi, zaś<br />

elektrolity tworzące sieci cząsteczkowe - potencjalnymi. Żaden elektrolit potencjalny nie jest<br />

elektrolitem mocnym. Czasem można się spotkać z poglądem, że wszystkie sole są mocnymi<br />

elektrolitami. Nie jest to prawda. Jeżeli wiązanie pomiędzy kationem i anionem w cząsteczce<br />

soli wykazuje duży udział wiązania kowalencyjnego, wówczas obserwujemy niepełną<br />

dysocjację i sól nie jest elektrolitem mocnym nawet wtedy, gdy w jej roztworze nie tworzą się<br />

pary jonowe. Do wspomnianych katonów należą m.in. Ag + , Cd 2+ , Hg 2+ , Hg 2+ 2 , Tl + . Z punktu<br />

widzenia liczby jonów tworzonych przez cząsteczkę w wyniku całkowitej dysocjacji,<br />

elektrolity dzielimy na symetryczne (tj. dające taką samą liczbę kationów i anionów, np.<br />

NaCl) oraz niesymetryczne (dające różne liczby kationów i anionów, np. BaCl 2 ). W<br />

przypadku, gdy elektrolit niesymetryczny nie jest mocnym elektrolitem, jego dysocjacja jest<br />

kilkustopniowa, np.:<br />

H 2 SO 4 ⇔ H + + HSO<br />

2- 4 I stopień<br />

HSO<br />

2- 4 ⇔ H + + SO<br />

2- 4 II stopień<br />

Dysocjacja I stopnia jest znacznie istotniejsza niż dysocjacja wyższych stopni. Łatwo to<br />

zrozumieć, mając na uwadze, że dysocjacja wyższego stopnia polega na rozpadzie cząstki<br />

obdarzonej już ładunkiem elektrycznym, co wymaga wykonania dodatkowej pracy przeciwko<br />

siłom pola elektrycznego. Ponieważ kolejne stałe dysocjacji przeważającej ilości elektrolitów<br />

niesymetrycznych są zazwyczaj mniejsze o kilka rzędów wielkości, szczegółowe obliczenia<br />

uwzględniające własności jonów powstających w drugim i na dalszych etapach dysocjacji nie<br />

odgrywają istotnej roli i w większości przypadków są pomijane.<br />

Na zakończenie zauważmy, że ten sam elektrolit, który jest elektrolitem mocnym w<br />

roztworze wodnym, może być elektrolitem słabym w roztworze innego rozpuszczalnika.<br />

Wynika to również z równania (7.9), w którym występuje przenikalność dielektryczna,<br />

zależna od rodzaju rozpuszczalnika. Jej wartość ma decydujący wpływ na sam proces rozpadu<br />

na jony, jak i na ich ewentualną asocjację.<br />

7.1.5. Teoria elektrolitów mocnych<br />

W przypadku, gdy stężenie jonów w roztworze elektrolitu jest duże, nie możemy ich<br />

traktować jako cząstek kinetycznie niezależnych. Sytuacja taka występuje nawet w niezbyt<br />

90


stężonych roztworach elektrolitów mocnych, które w wyniku dysocjacji tworzą duże ilości<br />

jonów silnie oddziałujących na siebie. W takim przypadku, stosując do opisu równowag<br />

jonowych prawo działania mas, należy używać wprowadzonego pojęcia aktywności.<br />

Aktywność można zmierzyć na drodze doświadczalnej lub wyznaczyć teoretycznie<br />

współczynnik aktywności f i wyliczyć aktywność z równania (7.10). Pomiary aktywności<br />

dla wielu różnych roztworów doprowadziły Lewisa i Randalla do wniosku, że średni jonowy<br />

współczynnik aktywności elektrolitu f ± można powiązać ze stężeniem i ładunkami wszystkich<br />

jonów obecnych w roztworze. Przyczyną tego jest wspomniany już fakt, że struktura roztworu<br />

elektrolitu zależy przede wszystkim od oddziaływań jon-jon i jon-cząsteczka, podczas gdy<br />

oddziaływania międzycząsteczkowe mają dużo mniejsze znaczenie. Miarą oddziaływań<br />

wszystkich obecnych w roztworze jonów jest znaleziona drogą empiryczną przez Lewisa i<br />

Randalla siła jonowa I, określona wzorem:<br />

n<br />

2<br />

I = 0,<br />

5∑ ci<br />

⋅ zi<br />

(7.17)<br />

i=<br />

1<br />

gdzie: c i - stężenie molowe i-tego jonu [mol/dm 3 ],<br />

z i - ładunek i-tego jonu,<br />

n - ilość różnych jonów w roztworze.<br />

Przykładowo, w 0,1 molowym roztworze CaCl 2 dysocjującym całkowicie wg równania:<br />

CaCl 2 ⇔ Ca 2+ + 2Cl -<br />

siła jonowa wynosi:<br />

I = 0,5[0,1 · (+2) 2 + (2· 0,1) · (-1) 2 ] = 0,3<br />

ponieważ stężenia jonów Ca 2+ i Cl - wynoszą odpowiednio 0,1 i 0,2 mol/dm 3 , zaś ładunki<br />

+2 i -1.<br />

Prawo siły jonowej Lewisa i Randalla zostało odkryte w wyniku badań wpływu obcych<br />

soli na rozpuszczalność soli trudnorozpuszczalnych. Stwierdzono np., że rozpuszczalność<br />

KIO 3 jest większa w obecności innych elektrolitów nie mających wspólnego jonu, przy czym<br />

niezależnie od rodzaju dodanego elektrolitu jest jednakowa we wszystkich roztworach o tej<br />

samej sile jonowej. Oznacza to, że średni jonowy współczynnik aktywności f ± jest taki sam<br />

we wszystkich roztworach o jednakowej sile jonowej. Dokładność, z jaką spełniane jest<br />

prawo siły jonowej, jest tym większa, im mniejsze są stężenia roztworów. Współczynnik 0,5<br />

przed znakiem sumy nie ma istotnego znaczenia; wprowadzono go, by dla elektrolitów 1,1-<br />

91


wartościowych stężenie i siła jonowa były liczbowo równe. W 1923 r. P. Debye i E. Hückel,<br />

zakładając strukturę roztworów elektrolitów opisaną w rozdziale 7.1.3, traktując jony jako<br />

ładunki punktowe i nie uwzględniając asocjacji, podali tzw. prawo graniczne, stosujące się<br />

do roztworów elektrolitów, dla których siła jonowa I ≤ 0,01:<br />

ln f<br />

i<br />

1⎛<br />

= − ⎜<br />

8 ⎝ ε<br />

ο<br />

2<br />

e ⎞<br />

⎟<br />

⋅ ε ⋅ k⋅<br />

T ⎠<br />

3<br />

2<br />

2000N<br />

A<br />

⋅ z<br />

2<br />

i<br />

I<br />

(7.18)<br />

gdzie: f i<br />

I<br />

z i<br />

e<br />

- współczynnik aktywności i-tego jonu,<br />

- siła jonowa,<br />

- ładunek jonu w jednostkach ładunku elektronu,<br />

- ładunek elektronu (1,6·10 -19 C),<br />

N A - liczba Avogadra (6,023 ·10 23 ),<br />

ε o<br />

- przenikalność dielektryczna próżni (8,85·10 -12 F/m),<br />

ε - względna przenikalność dielektryczna ośrodka,<br />

T - temperatura bezwzględna,<br />

k - stała Boltzmana (1,38 ·10 -23 J/deg.<br />

Zależność (7.18) można zapisać w uproszczonej postaci:<br />

2<br />

log fi<br />

= − A zi<br />

I<br />

(7.19)<br />

Wartość liczbowa stałej A dla wody jako rozpuszczalnika wynosi 0,509 w 25 o C.<br />

Prawo graniczne Debye’a i Hückela prawidłowo przewiduje liniową zależność między<br />

logarytmem współczynnika aktywności, a pierwiastkiem kwadratowym z siły jonowej<br />

roztworu. Przy jego wyprowadzaniu zakładano, że jony są punktami materialnymi,<br />

obdarzonymi ładunkiem elektrycznym. W roztworach o tej samej wartości siły jonowej jony<br />

o jednakowym ładunku, np.: Na + , K + , NH + 4 , Cl - lub Ca 2+ , Mg 2+ , Cu 2+ , SO 2- 4 , itp. mają<br />

zbliżone współczynniki aktywności. Łatwo zauważyć, że dla elektrolitów 1,1-wartościowych<br />

I = c, 1,2 - wartościowych I = 3c, zaś dla 2,2 - wartościowych I = 4c. Należy podkreślić, że<br />

w przypadku elektrolitów słabych do obliczenia siły jonowej potrzebna jest znajomość<br />

stopnia dysocjacji, ponieważ niezdysocjowana część elektrolitu nie wpływa na jej wartość.<br />

Wówczas:<br />

I = c o· α<br />

92


gdzie c o - całkowite stężenie elektrolitu.<br />

W przypadku, gdy znaleziona wartość siły jonowej nie przekracza 0,1 (I ≤ 0,1), do<br />

obliczenia współczynników aktywności wykorzystuje się równanie Debye’a-Hückela w<br />

postaci:<br />

log f<br />

i<br />

2<br />

Azi<br />

I<br />

= − (7.20)<br />

1 + aB I<br />

Stałe A i B zależą od natury rozpuszczalnika i temperatury. W temperaturze 25 o C wartości<br />

A i B wynoszą: A = 0,509; B = 3,30·10 7 . Parametr a odpowiada efektywnemu promieniowi<br />

jonu w roztworze. Jego wartość wyznaczyć można doświadczalnie; zmienia się on w<br />

granicach 3 ·10 -8 do 1,1·10 -7 .<br />

W tabeli 7.1 zamieszczono wartości iloczynów a·B w równaniu Debye’a-Hückela dla<br />

wybranych jonów (dla temperatury 25 o C). Należy zwrócić uwagę na fakt, że wartości<br />

współczynników aktywności większości jonów wyznaczone z prawa granicznego (7.19) i<br />

wyliczone z równania Debye’a-Hückela (w oparciu o dane a· B zamieszczone w tabeli 7.1)<br />

mogą różnić się istotnie między sobą.<br />

Wyrażenia (7.18) do (7.20) mogą być również wykorzystane do wyznaczania średnich<br />

współczynników aktywności jonowej f ± , przy wykorzystaniu zależności (7.13).<br />

Po zlogarytmowaniu tego wyrażenia otrzymujemy:<br />

1 m n<br />

log f± = log( f− f+ ) ( log log )<br />

m n<br />

m n m f − n f +<br />

+ ⋅ ⋅ = 1<br />

+ ⋅ ⋅ + ⋅<br />

Tabela 7.1. Wartości iloczynu a· B w równaniu Debye’a-Hückela dla niektórych jonów.<br />

Jon<br />

a·B<br />

Sn 4+ , Ce 4+ , Th 4+ , Zr 4+ 3.6<br />

H + , Al 3+ , Fe 3+ , Cr 3+ 3.0<br />

Mg 2+ , Be 2+ 2.6<br />

Li + , Ca 2+ , Cu 2+ , Zn 2+ , Sn 2+ , Mn 2+ , Fe 2+ , Ni 2+ , Co 2+ 2.0<br />

Sr 2+ , Ba 2+ , Cd 2+ , Hg 2+ , S 2- , CH 3 COO - 1.6<br />

Na + , Pb 2+ , CO 2- 3 , SO 2- 4 , HPO 2- 4 , PO<br />

3- 4<br />

1.3<br />

OH - , F - , SCN - , HS - , ClO - 4 , Cl - , Br - , I - , NO - 3 , K + , NH + 4 , Ag + 1.0<br />

Uwzględniając wzór Debye’a-Hückela na log f + i log f - (7.19) dla kationu A o ładunku<br />

93


z+ i anionu B o ładunku z- :<br />

0,<br />

509 I 2 2<br />

log f± = − ( mz− + nz+<br />

)<br />

m+<br />

n<br />

Wyrażenie to można uprościć, wprowadzając warunek elektroobojętności elektrolitu:<br />

m( z ) + n( z ) = 0<br />

− +<br />

Mnożąc powyższe równanie przez z + i oddzielnie przez z - otrzymuje się:<br />

2 2<br />

− + − + − +<br />

mz + nz z = 0 i mz z + nz = 0<br />

Dodanie tych dwóch wyrażeń i przekształcenie daje:<br />

2 2<br />

− + + −<br />

mz + nz = − z z ( m+<br />

n)<br />

Podstawiając tę zależność do równania na średni współczynnik aktywności f ± , otrzymuje<br />

się poszukiwany, oparty na prawie granicznym Debye’a-Hückela wzór na średni<br />

współczynnik aktywności elektrolitu w roztworze wodnym w temp. 25 o C:<br />

log<br />

f ± = 0,509z + z<br />

−<br />

I<br />

W przypadku, gdy wartość siły jonowej jest większa od 0,1 obliczanie współczynników<br />

aktywności staje się problemem złożonym i zostało pominięte w niniejszym opracowaniu.<br />

Wyznaczone doświadczalnie wartości średnich współczynników aktywności f ± dla różnych<br />

elektrolitów w ich wodnych roztworach w zakresie stężeń: 0,1 - 3 mol/dm 3 zostały<br />

zamieszczone w tabeli na końcu II części niniejszego skryptu.<br />

7.1.6. Dysocjacja wody. Iloczyn jonowy wody. pH i pOH<br />

Jak już wspomniano, cząsteczki rozpuszczalnika, w którym możliwa jest dysocjacja,<br />

mają budowę dipolową i jednocześnie tworzą środowisko o wysokiej wartości przenikalności<br />

dielektrycznej. Budowa dipolowa cząsteczek wiąże się z polaryzacją wiązań chemicznych.<br />

Sformułowane w rozdziale 7.1.2 warunki dysocjacji wskazują zatem na możliwość<br />

autojonizacji cząsteczek rozpuszczalnika. Najczęściej stosowanym rozpuszczalnikiem w<br />

praktyce doświadczalnej chemii nieorganicznej jest woda. Spełnia ona wszystkie wymagania<br />

postawione dla procesu dysocjacji, należy zatem oczekiwać dysocjacji jej cząsteczek<br />

przebiegającej zgodnie z równaniem:<br />

H 2 O ⇔ H + + OH - (7.21)<br />

94


Doświadczenie wykazało, że czysta woda jest bardzo słabym elektrolitem ulegającym<br />

procesowi autojonizacji, zaś stężenie jonów H + i OH - wynosi 1,0·10 -7 mol/dm 3 w<br />

temperaturze około 25 o C (dokładnie w temp. 22 o C). Stężeniowa stała dysocjacji wody wyraża<br />

się równaniem:<br />

K<br />

H 2 O<br />

+<br />

[H ][OH ]<br />

= (7.22)<br />

[H O]<br />

2<br />

−<br />

gdzie [H 2 O] oznacza stężenie molowe niezdysocjowanej wody.<br />

Stężenie molowe czystej wody [H 2 O] jest bardzo duże ([H 2 O] = 1000/18 ≈ 55,6 mol/dm 3 )<br />

i w niewielkim stopniu zależy od temperatury. Porównując tę liczbę ze stężeniem jonów<br />

pochodzących z dysocjacji wody, łatwo zauważyć, że stężenie molowe wody w wodzie<br />

praktycznie nie ulega zmianie w wyniku procesu dysocjacji i może być traktowane jako<br />

wartość stała. Iloczyn K H ⋅ [H 2O]<br />

oznaczany symbolem K w jest zatem również wartością<br />

2 O<br />

stałą (dla określonej temperatury) i nosi nazwę iloczynu jonowego wody.<br />

K w = K H O ⋅[H 2 O] = [H<br />

+<br />

][OH<br />

−<br />

]<br />

(7.23)<br />

2<br />

Ponieważ w czystej wodzie stężenia jonów H + i OH - są identyczne, zatem iloczyn<br />

jonowy wody w temperaturze 25 o C wynosi:<br />

K [H ][OH ] 1,01 10<br />

−14<br />

w =<br />

+ −<br />

= ⋅<br />

(7.24)<br />

Wartość iloczynu jonowego wody zależy silnie od temperatury, co przedstawiono w<br />

tabeli 7.2.<br />

Iloczyn jonowy wody zachowuje, w określonej temperaturze, wartość stałą dla każdego<br />

nieskończenie rozcieńczonego elektrolitu, tzn. dla roztworów, których siła jonowa I → 0.<br />

Zgodnie z wyrażeniem na iloczyn jonowy wody, wzrost stężenia jonów wodorowych w<br />

roztworze związany jest ze zmniejszeniem stężenia jonów wodorotlenkowych i na odwrót.<br />

Ponieważ tylko jedno z tych stężeń możemy zmienić w sposób swobodny, wartość drugiego<br />

wyznaczana jest z iloczynu jonowego wody. Jeżeli np. wprowadzając odpowiednią ilość<br />

kwasu wytworzymy w wodzie stężenie jonów H + równe 10 -2 mol/dm 3 , otrzymamy<br />

jednocześnie na stężenie jonów wodorotlenkowych (w temp. ~25 o C) wartość 1,00·10 -12<br />

mol/dm 3 .<br />

95


Tabela 7.2. Zależność iloczynu jonowego wody K w i jego wykładnika pK w od temperatury<br />

Temperatura<br />

pK w = Temperatura<br />

pK w =<br />

[K] K w·10 14 - log K w<br />

[K] K w·10 14 - log K w<br />

273 0,113 13,05 298 1,008 14,00<br />

283<br />

288<br />

291<br />

293<br />

0,292<br />

0,470<br />

0,570<br />

0,681<br />

13,47<br />

13,67<br />

13,76<br />

13,83<br />

303<br />

313<br />

323<br />

373<br />

1,468<br />

2,917<br />

5,474<br />

~59<br />

14,17<br />

14,46<br />

14,74<br />

~15,7<br />

Równanie dysocjacji wody zapisane w postaci (7.21) wskazywałoby, że w procesie tym<br />

tworzy się jon wodorowy, który jest protonem. Jak wcześniej wykazano, wobec wysokiej<br />

wartości natężenia pola elektrycznego w przestrzeni wokół jonu, ulegać on musi w roztworze<br />

procesowi hydratacji. Ze względu na fakt, że klasycznie rozumiany promień protonu jest<br />

około pięć rzędów mniejszy niż promień przeciętnego jonu, wytwarzane przez proton<br />

natężenie pola elektrycznego jest około dziesięć rzędów większe od wytwarzanego przez inny<br />

jon. Wartość ta wyklucza istnienie wolnego protonu w roztworze wodnym. Dlatego uważa<br />

się, że proces dysocjacji wody można traktować jako przeniesienie protonu pomiędzy dwiema<br />

cząsteczkami wody:<br />

H 2 O + H 2 O ⇔ H 3 O + + OH -<br />

Jon H 3 O + nosi nazwę jonu oksoniowego i traktujemy go jako jon kompleksowy,<br />

w którym wszystkie wiązania H ⎯ O są równocenne. Każda dysocjacja cząsteczki<br />

odszczepiającej proton w środowisku wodnym prowadzi więc do utworzenia jonu<br />

oksoniowego. W tym świetle np. zamiast pisać:<br />

H 2 SO 4 ⇔ H + + HSO<br />

- 4<br />

powinniśmy raczej pisać:<br />

H 2 SO 4 + H 2 O ⇔ H 3 O + + HSO<br />

- 4<br />

Wielu autorów uważa ten zapis za prawidłowy. Wiadomo jednak już od 1954 r., że jon<br />

oksoniowy H 3 O + ulega dalszej bardzo silnej hydratacji, przyłączając 3 cząsteczki wody<br />

(E. Wicke, M. Eigen, Th. Ackermann), tworząc kompleks [H 3 O + ](H 2 O) 3 lub [H(H 2 O) 4 ] + .<br />

W zakresie temperatur 0 - 100 o C w roztworach kompleks ten pozostaje nienaruszony,<br />

a dodatni ładunek wewnątrz niego może przepływać swobodnie wzdłuż wszystkich mostków<br />

wodorowych. W rzeczywistości trwały kompleks [H(H 2 O) 4 ] + posiada jeszcze labilną otoczkę<br />

utworzoną z cząsteczek wody. Formalnie zatem jego budowę opisać można wzorem<br />

96


[H 9 O 4 ] + (H 2 O) n , gdzie wartość n (3 ÷ 6) zależy od stężenia jonów w roztworze i od<br />

temperatury. Lepiej zatem umówić się, że dla prostoty zapisu będziemy w równaniach<br />

dysocjacji, w których pojawia się jon wodorowy, stosować formę zapisu jonu wodorowego<br />

jako H + , pamiętając, że w rzeczywistości zachodzi proces hydratacji i wolne protony<br />

w roztworze wodnym nie występują. Strukturę podobną do opisanej dla jonu H + posiadają<br />

także jony OH - .<br />

W rezultacie niskiej wartości iloczynu jonowego wody przynajmniej jedno ze stężeń<br />

jonów [H + ] lub [OH - ] wyraża się małą liczbą. Użyteczne stało się więc wprowadzenie<br />

logarytmicznej miary tych stężeń, która zwalnia nas z konieczności używania małych liczb w<br />

postaci wykładniczej. Do określania kwasowości roztworów posługujemy się tzw.<br />

wykładnikiem jonów wodorowych, oznaczanym symbolem pH (S.P.L. Sörensen, 1909):<br />

pH = - log[H + ] (7.25)<br />

Odpowiednio, zasadowość roztworu można określić za pomocą wykładnika stężenia<br />

jonów wodorotlenkowych pOH:<br />

pOH = - log[OH - ] (7.26)<br />

Łatwo zauważyć, że zlogarytmowanie wyrażenia na iloczyn jonowy wody (7.23)<br />

prowadzi do zależności:<br />

pH + pOH = pK w (7.27)<br />

W czystej wodzie (środowisko obojętne), w temperaturze 25 o C:<br />

[H + ] = [OH - ] = 10 -7 i pH = pOH = 7<br />

w środowisku kwaśnym:<br />

[H + ] > [OH - ] i pH < 7 < pOH<br />

w środowisku zasadowym:<br />

[H + ] < [OH - ] i pH > 7 > pOH<br />

Równanie (7.27) dostarcza nam prostego związku pomiędzy pH i pOH. Ponieważ stała<br />

dysocjacji wody zależy od temperatury (por. tabela 7.2), zatem pH czystej wody (roztwór<br />

obojętny) w temperaturze różnej od 25 o C będzie również różnić się od 7. Należy także<br />

pamiętać, że określenie iloczynu jonowego wody równaniem (7.23) obowiązuje tylko<br />

wówczas, gdy współczynniki aktywności jonów H + i OH - można przyjąć za równe 1. Taka<br />

sytuacja ma miejsce w czystej wodzie i praktycznie w roztworach, w których siła jonowa jest<br />

mniejsza niż 10 -4 . W pozostałych sytuacjach przyjmowanie, że iloczyn jonowy wody<br />

97


w temperaturze ∼25 o C wynosi 10 -14 jest niedopuszczalne, ponieważ jego wartość wyznaczona<br />

jest aktywnościami jonów H + i OH - , a nie stężeniami. W świetle tych rozważań należy w<br />

miejsce pH i pOH wprowadzić aktywnościowe wykładniki jonów wodorowych i<br />

wodorotlenkowych, p a H i p a OH, odpowiedzialne za rzeczywistą kwasowość (zasadowość)<br />

roztworu:<br />

p a H = -log a H + = -log([H + ]· f H +) = - log[H + ] - log f H + = pH - log f H +<br />

oraz (7.28)<br />

p a OH = -log a OH - = -log([OH - ]· f OH -) = pOH - log f OH -<br />

Obliczmy dla przykładu wartości pH i p a H mieszaniny 0,001M kwasu<br />

chlorowodorowego z 0,1M roztworem NaCl w temperaturze 25 o C przy założeniu całkowitej<br />

dysocjacji cząsteczek HCl i NaCl. Kwas solny dysocjuje zgodnie z równaniem:<br />

HCl = H + + Cl - ,<br />

zatem:<br />

[H + ] = c HCl = 0,001M i pH = -log[H + ] = -log10 -3 = 3,00.<br />

W obliczeniu p a H należy uwzględnić współczynnik aktywności jonów wodorowych f H +.<br />

Wartość siły jonowej roztworu (HCl + NaCl) wynosi:<br />

I = 0,5{c H + ·(1) 2 + c Cl - ·(1) 2 + c Na + ·(1) 2 + c Cl - ·(1) 2 } =<br />

= 0,5(0,001 + 0,001 + 0,1 + 0,1) = 0,101<br />

2<br />

− 0,509⋅1<br />

⋅ 0,101<br />

log f + = = − 0,08283; f + = 0,826<br />

H H<br />

;<br />

1+<br />

3⋅0,3178<br />

p a H = - log[H + ] · f H + = - log 0,000826 = 3,08.<br />

Wartości zebrane w tabeli 7.3 ukazują różnice w wyliczeniach pH i p a H wodnych<br />

roztworów kwasu solnego oraz jego mieszanin z nie ulegającym hydrolizie chlorkiem sodu.<br />

Stężenie NaCl dobierano tak, aby nie przekroczyć dozwolonej równaniem Debye’a-Hückela<br />

wartości siły jonowej (I = 0,1) i zachować możliwość obliczania współczynników<br />

aktywności.<br />

98


Tabela 7.3. Wartości pH i p a H dla wodnych roztworów HCl oraz jego mieszanin z NaCl<br />

Roztwór I [H + ] f H + pH p a H<br />

0,001M HCl 0,001 0,001 0,967 3,00 3,01<br />

0,001M HCl<br />

+ 0,1M NaCl 0,101 0,001 0,826 3,00 3,08<br />

0,01M HCl 0,010 0,010 0,914 2,00 2,04<br />

0,01M HCl<br />

+ 0,09M NaCl 0,100 0,010 0,827 2,00 2,08<br />

0,1M HCl 0,100 0,100 0,827 1,00 1,08<br />

7.1.6.1. Wyznaczanie wykładnika stężenia jonów wodorowych.<br />

Wskaźniki kwasowo – zasadowe<br />

Przebieg szeregu reakcji w roztworach elektrolitów zależy od kwasowości środowiska.<br />

Fakt ten ma niezwykle istotne znaczenie w reakcjach wykorzystywanych w chemii<br />

analitycznej, np. do śledzenia przebiegu procesu miareczkowania kwasu zasadą i<br />

wyznaczania punktu końcowego miareczkowania. Podobnie można powiązać ze stężeniem<br />

jonów wodorowych szybkość niektórych reakcji katalizowanych przez kwasy. Znajomość<br />

kwasowości środowiska, w którym prowadzimy reakcję, jest w wielu przypadkach niezbędna<br />

do poprawnej, tzn. zgodnej z założoną stechiometrią, realizacji szeregu reakcji analitycznych.<br />

Metody wyznaczania pH roztworów można podzielić na dwie grupy:<br />

a) potencjometryczne;<br />

b) kolorymetryczne.<br />

Pierwsze z nich oparte są na występowaniu zależności siły elektromotorycznej ogniw od<br />

kwasowości elektrolitów w ogniwie. Rozważmy np. ogniwo:<br />

Pt | H 2 (1 atm) | roztwór || Hg 2 Cl 2 (nas.) | Hg 2 Cl 2 (s) | Hg<br />

złożone z elektrody wodorowej działającej w badanym roztworze i tzw. elektrody<br />

kalomelowej, połączonej z elektrodą wodorową kluczem elektrolitycznym. Na elektrodach<br />

tych zachodzą reakcje:<br />

prawa elektroda: 1/2Hg 2 Cl 2 (s) + e - ⇔ Hg + Cl - (nas.)<br />

lewa elektroda: 1/2H 2 ⇔ H + + e -<br />

reakcja sumaryczna: 1/2H 2 + 1/2Hg 2 Cl 2 ⇔ H + + Cl - (nas.) + Hg<br />

Zakładając, że stężenie i aktywność jonów chlorkowych są niezmienne i uwzględnione<br />

w wartości wyrazu stałego, wykorzystując wzór W.H. Nernsta, można napisać:<br />

0,05915<br />

E = const−<br />

loga<br />

+<br />

(7.29)<br />

H<br />

1<br />

99


Jeżeli ogniwo to zostanie wycechowane, np. przez wykonanie pomiarów dla 1M<br />

roztworu HCl, zmierzona siła elektromotoryczna będzie wskaźnikiem stężenia lub aktywności<br />

jonów wodorowych, umożliwiając wyznaczenie stałej w powyższym równaniu. Ogniwo takie<br />

umożliwia np. śledzenie przebiegu miareczkowania kwasu zasadą lub powiązanie szybkości<br />

reakcji katalizowanej przez kwas z kwasowością roztworu.<br />

Niewątpliwie jednym z najczęściej używanych w chemii analitycznej przyrządów jest<br />

pehametr, w którym stosuje się kombinację elektrody szklanej i elektrody kalomelowej. Siła<br />

elektromotoryczna takiego ogniwa zależy od pH w podobny sposób, jak siła<br />

elektromotoryczna ogniwa złożonego z elektrody wodorowej i elektrody kalomelowej.<br />

Formalnie, działanie pehametru oparte jest na zależności:<br />

E = const. - 0,05915 log a H + lub − loga H<br />

+ =<br />

E − const<br />

0,<br />

05915<br />

(7.30)<br />

Wartość wyrazu stałego można wyznaczyć, wykonując pomiary na roztworze o znanym<br />

stężeniu jonów wodorowych. Znając tę wartość, otrzymuje się, mierząc E dla roztworu<br />

badanego, wartość prawej strony równania (7.30), a tym samym pH. Skalę pehametru cechuje<br />

się najczęściej w taki sposób, by podawała ona bezpośrednio wartość pH, nie zaś siłę<br />

elektromotoryczną. W związku z tym wartość pH można też zdefiniować wzorem:<br />

pH<br />

=<br />

E − const<br />

0,<br />

05915<br />

(7.31)<br />

Metody kolorymetryczne oparte są na własności posiadanej przez pewne słabe kwasy lub<br />

zasady organiczne. Własność ta polega na tym, że ich cząsteczki posiadają barwę różną od<br />

barwy form zdysocjowanych. Substancje wyróżniające się takimi własnościami noszą nazwę<br />

indykatorów i mogą być wykorzystywane jako wskaźniki kwasowo-zasadowe (wskaźniki<br />

alkacymetryczne). Jeżeli cząsteczkę kwasu posiadającego takie własności oznaczymy<br />

symbolem HInd, to jego dysocjacja zachodzi zgodnie z równaniem:<br />

HInd ⇔ H + + Ind -<br />

barwa I barwa II (7.32)<br />

Wypadkowa barwa roztworu jest zatem determinowana wzajemnym stosunkiem stężeń<br />

formy zdysocjowanej i niezdysocjowanej, wyznaczonym przez stałą równowagi dysocjacji:<br />

+ −<br />

[H ][Ind ]<br />

K HInd =<br />

[HInd]<br />

(7.33)<br />

Wprowadźmy teraz do roztworu wodnego wskaźnika pewną ilość kwasu. Stężenie [H + ]<br />

100


oczywiście wzrośnie, a ponieważ wartość stałej dysocjacji musi pozostać niezmieniona,<br />

zatem stężenie [Ind - ] musi ulec obniżeniu. Odpowiada to przesunięciu równowagi dysocjacji<br />

(7.32) w stronę wzrostu stężenia niezdysocjowanych cząsteczek. W tym przypadku<br />

dominować będzie barwa nadawana przez niezdysocjowane cząsteczki wskaźnika (barwa I).<br />

Z kolei wprowadzając do roztworu pewną ilość zasady, uzyskamy efekt odwrotny. W zgodzie<br />

z równaniem (7.23) stężenie jonów wodorowych będzie się zmniejszać. Konieczność<br />

zachowania stałej wartości K HInd wymaga wzrostu stężenia [Ind - ], co odpowiada przesunięciu<br />

równowagi (7.23) w stronę wzrostu stężenia formy zdysocjowanej. W konsekwencji barwa<br />

roztworu zostanie zdominowana przez barwę II, wywołaną przez jony [Ind - ].<br />

Rozumowanie powyższe wskazuje, że dla każdego indykatora musi istnieć pewien zakres<br />

wartości kwasowości środowiska (zakres pH), w którym barwa roztworu będzie pośrednia<br />

pomiędzy barwą nadawaną przez formę zdysocjowaną i niezdysocjowaną. Wystąpi to w<br />

sytuacji, gdy [HInd] ≈ [Ind - ]. Obszar ten nazywamy zakresem zmiany barwy wskaźnika.<br />

Poniżej lub powyżej tego zakresu barwa roztworu determinowana jest tylko jedną z tych<br />

form. Do analogicznych wniosków dojdziemy, używając indykatora będącego słabą zasadą<br />

IndOH, dysocjującą zgodnie z równaniem:<br />

IndOH ⇔ Ind + + OH -<br />

barwa I barwa II<br />

W tym przypadku w środowisku kwaśnym dominuje forma zdysocjowana [Ind + ] (barwa<br />

II), zaś w środowisku zasadowym - forma niezdysocjowana [IndOH] (barwa I).<br />

Zakres pH, w którym występuje pośrednia barwa wskaźnika, wynosi zazwyczaj 1,5 - 2<br />

jednostek pH. Oznacza to, że jeżeli roztwór badany wykaże barwę pośrednią, możemy<br />

określić jego kwasowość z dokładnością ±1 jednostek pH. Dokładność wyznaczenia pH<br />

barwy pośredniej zależy również od różnicy barw formy cząsteczkowej i jonowej wskaźnika.<br />

Z kolei zabarwienie roztworu wskaźnika na jedną z barw granicznych pozwala wyłącznie na<br />

określenie, czy roztwór badany jest bardziej kwaśny, czy też zasadowy od zakresu pH dla<br />

barwy pośredniej.<br />

W tabeli 7.4 przedstawiono zakresy zmiany barwy dla kilkunastu najbardziej znanych<br />

wskaźników kwasowo-zasadowych. Dobierając odpowiedni zestaw indykatorów, można<br />

wyznaczyć pH roztworów z dokładnością wystarczającą do wielu celów.<br />

101


Tabela 7.4. Niektóre ważniejsze wskaźniki alkacymetryczne<br />

Wskaźnik<br />

fiolet metylowy<br />

błękit tymolowy<br />

fiolet metylowy<br />

błękit bromofenolowy<br />

oranż metylowy<br />

czerwień metylowa<br />

lakmus<br />

błękit bromotymolowy<br />

czerwień fenolowa<br />

błękit tymolowy<br />

fenoloftaleina<br />

tymoloftaleina<br />

żółcień alizarynowa<br />

Zmiana barwy<br />

zakresie pH<br />

0,15 - 0,5<br />

1,2 - 2,8<br />

1,8 - 3,2<br />

3,0 - 4,6<br />

3,1 - 4,4<br />

4,2 - 6,3<br />

5,0 - 8,0<br />

6,0 - 7,6<br />

6,8 - 8,4<br />

8,0 - 9,6<br />

8,3 - 10,0<br />

9,3 - 10,5<br />

10,0 - 12,1<br />

Barwa w roztworze<br />

pH < od dolnego<br />

zakresu<br />

pH > od górnego<br />

zakresu<br />

żółta<br />

niebieskozielona<br />

czerwona żółta<br />

niebieskozielona fioletowa<br />

żółta<br />

niebieska<br />

czerwona żółta<br />

czerwona żółta<br />

czerwona niebieska<br />

żółta<br />

niebieska<br />

żółta<br />

czerwona<br />

żółta<br />

niebieska<br />

bezbarwna purpurowa<br />

bezbarwna niebieska<br />

żółta<br />

czerwona<br />

7.1.6.2. Teorie kwasów i zasad<br />

Teoria dysocjacji elektrolitycznej już w swoim pierwotnym ujęciu pozwoliła<br />

Arrheniusowi na sformułowanie definicji kwasu i zasady. Zgodnie z jego poglądem kwasy i<br />

zasady to substancje, które ulegając dysocjacji elektrolitycznej w roztworach wodnych,<br />

tworzą odpowiednio jony wodorowe [H + ] i wodorotlenkowe [OH - ]. Definicje te, tłumacząc<br />

wiele faktów chemicznych, nie pozwoliły jednak wyjaśnić zachowania się elektrolitów w<br />

roztworach niewodnych. Przykładem może być zasadowy charakter amoniaku<br />

rozpuszczonego w eterze etylowym, w którym to środowisku nie mogą powstawać jony OH - .<br />

W 1923 r. J.N. Brönsted i niezależnie od niego T.M. Lowry, opracowali nową teorię, która<br />

kładzie nacisk nie tyle na odróżnianie kwasów i zasad, ile na sam proces reakcji kwasowozasadowej.<br />

Zgodnie z ich poglądem reakcja tego typu jest reakcją protolizy, czyli<br />

przekazywania protonu pomiędzy reagującymi cząsteczkami czy jonami. Substancja będąca<br />

w danej reakcji donorem protonu pełni rolę kwasu, zaś substancja będąca akceptorem protonu<br />

spełnia funkcję zasady. W teorii Brönsteda-Lowry’ego reakcję protolizy zapisujemy ogólnym<br />

równaniem:<br />

HA + B ⇔ A + HB (7.34)<br />

W powyższej reakcji, rozpatrywanej jako przebiegającej z lewa na prawo, HA jest<br />

102


donorem protonu (kwasem), zaś B - jego akceptorem, czyli zasadą. Jednocześnie AH oddając<br />

proton, tworzy cząstkę A, która przy rozpatrywaniu reakcji z prawej strony na lewą jest<br />

akceptorem protonu, a więc zasadą. Zgodnie z poglądem Brönsteda przyjmiemy, że HA i A<br />

oraz HB i B tworzą tzw. sprzężone pary kwas-zasada. Proces dysocjacji kwasów w wodzie z<br />

uwzględnieniem hydratacji protonu możemy traktować także jako reakcję kwasu z zasadą.<br />

Podajmy kilka przykładów:<br />

_________________<br />

⏐<br />

⏐<br />

HCl + H 2 O ⇔ Cl - + H 3 O +<br />

⏐______________⏐<br />

_________________<br />

⏐<br />

⏐<br />

H 2 O + NH 3 ⇔ OH - + NH<br />

+ 4<br />

⏐_______________⏐<br />

_________________<br />

⏐<br />

⏐<br />

HSO<br />

- 4 + H 2 O ⇔ SO<br />

2- 4 + H 3 O +<br />

⏐_______________⏐<br />

Powyższe równania zapisane są zgodnie z konwencją przyjętą w równaniu (7.34).<br />

Sprzężone pary kwas-zasada zaznaczono w równaniach reakcji. W podanych przykładach<br />

kwasami i zasadami są zarówno cząsteczki, jak i jony. Cząsteczka wody występuje raz jako<br />

kwas (w reakcji z NH 3 ), a raz jako zasada (w reakcji z HCl i HSO - 4 ). Omawianą teorię<br />

możemy także stosować z powodzeniem do roztworów niewodnych. Dla przykładu<br />

rozważymy roztwór CH 3 COOH w ciekłym NH 3 oraz roztwór HBr w bezwodnym CH 3 COOH.<br />

Odpowiednie reakcje protolizy mają postać:<br />

CH 3 COOH + NH 3 ⇔ CH 3 COO - + NH<br />

+ 4<br />

kwas zasada zasada kwas<br />

HBr + CH 3 COOH ⇔ Br - + CH 3 COOH 2<br />

+<br />

kwas zasada zasada kwas<br />

Widzimy zatem, że zachowanie kwasu octowego w danej reakcji (jako kwasu lub zasady)<br />

zależy od wzajemnego stosunku własności protonodonorowych substancji rozpuszczonej i<br />

rozpuszczalnika. Wspomnieliśmy już, że proces dysocjacji kwasów czy zasad można<br />

103


wyjaśnić jako reakcję protolizy, zachodzącą pomiędzy cząsteczką rozpuszczonego kwasu lub<br />

zasady a cząsteczką rozpuszczalnika:<br />

CH 3 COOH + H 2 O ⇔ CH 3 COO - + H 3 O +<br />

H 2 O + NH 3 ⇔ OH - + NH<br />

+ 4<br />

Przyjęcie tego poglądu pozwala zrozumieć, dlaczego np. stopień dysocjacji kwasu<br />

octowego w ciekłym amoniaku jest znacznie wyższy niż w wodzie, chociaż przenikalność<br />

dielektryczna ciekłego amoniaku jest dużo niższa od przenikalności dielektrycznej wody.<br />

Przyjmując zaproponowany powyżej reakcyjny mechanizm dysocjacji, wystarczy<br />

wiedzieć, że własności protonoakceptorowe NH 3 są znacznie silniejsze niż H 2 O. Ogólnie<br />

możemy powiedzieć, że im silniejsze własności protonogenne ma rozpuszczalnik, tym<br />

mocniejszym kwasem jest rozpuszczona w nim substancja protonodonorowa. Z drugiej<br />

strony, im silniejsze są własności protonodonorowe rozpuszczalnika, tym mocniejszą zasadą<br />

jest rozpuszczona w nim substancja protonoakceptorowa. Podkreślmy jednak, że niezależnie<br />

od podejścia do problemu dysocjacji kwasów i zasad, proces ten pozostaje wynikiem<br />

oddziaływań między cząsteczkami substancji rozpuszczonej i rozpuszczalnika.<br />

Teoria Brönsteda z oczywistych względów może dotyczyć tylko cząsteczek lub jonów,<br />

które zawierają proton bądź są zdolne do jego pobierania. Teoria ta została rozszerzona przez<br />

Lewisa, który przyjął, że kwasem jest substancja będąca akceptorem wolnej pary<br />

elektronowej, zaś zasadą - substancja będąca donorem tej pary. Na przykład w reakcji:<br />

H F H F<br />

. . . . . . . .<br />

H : N : + B : F = H : N : B : F<br />

. . . . . . . .<br />

H F H F<br />

kwasem jest BF 3 , zaś zasadą NH 3 . Podejście Lewisa rozszerza znacznie pojęcia kwasu i<br />

zasady, zbliża je do pojęć elektronoakceptora, a także wiąże reakcje kwasowo-zasadowe z<br />

procesami utleniania i redukcji. Można także wskazać na związek teorii Lewisa z poglądem<br />

Brönsteda, wynikający z faktu silnych własności elektronoakceptorowych protonu. W<br />

każdym jednak przypadku używając terminu kwas lub zasada, należy precyzować, czy mowa<br />

o kwasach i zasadach w sensie Lewisa czy Brönsteda.<br />

104


7.1.6.3. Czynniki wpływające na moc kwasów i zasad<br />

Moc kwasu lub zasady (w ujęciu Brönsteda) wiąże się ze stopniem ich dysocjacji w<br />

roztworze. Dysponując roztworami kwasów lub zasad o tym samym stężeniu, uważamy za<br />

mocniejsze te, którym odpowiada większa wartość stopnia dysocjacji. Z dotychczasowych<br />

rozważań wiemy, że moc kwasów lub zasad zależy od rodzaju rozpuszczalnika. Wykażemy<br />

teraz, że istnieją inne czynniki, od których zależy moc kwasów i zasad. Przyjmiemy tutaj<br />

uproszczone podejście zaproponowane przez Van Arkela jeszcze w 1956 r., które choć nie<br />

pozbawione wad, pozwala jednak znaleźć wiele ogólnych prawidłowości. Zgodnie z Van<br />

Arkelem przyjmuje się, że proton ma promień równy zero, czyli stanowi punktowy ładunek<br />

elektryczny. Założenia te pozwalają obliczyć energię potrzebną do dysocjacji cząsteczki w<br />

sposób analogiczny do stosowanego w rozdziale 7.1.2 przy obliczeniach energii dysocjacji<br />

cząsteczki NaCl. Wyobraźmy sobie anion reszty kwasowej jako kulkę o promieniu r i<br />

ładunku n · e pamiętając, że przy rozważaniach oddziaływań elektrostatycznych kuli<br />

z ładunkiem punktowym można przyjąć, że ładunek kuli zgromadzony jest w jej środku.<br />

Zauważymy natychmiast, że energia wiązania przy tym samym ładunku anionu reszty<br />

kwasowej jest odwrotnie proporcjonalna do jego promienia jonowego. Zatem moc kwasów<br />

będzie rosła ze wzrostem promienia anionu, np. w szeregach:<br />

HF < HCl < HBr < HI<br />

H 2 O < H 2 S < H 2 Se < H 2 Te<br />

NH 3 < PH 3 < SbH 3<br />

co jest wynikiem faktu wzrostu promienia jonowego w miarę wzrostu liczby atomowej<br />

pierwiastka w danej grupie (przy założeniu tego samego ładunku jonu!). Z drugiej strony fakt,<br />

że H 2 O jest słabszym kwasem niż HF, zaś H 2 S jest słabszym kwasem niż HCl, zgodnie z<br />

założeniami Van Arkela możemy wytłumaczyć wyższym (-2) ładunkiem anionu reszty<br />

kwasowej, od którego odłączamy proton.<br />

W przypadku NH 3 i PH 3 wiązanie protonu jest już tak silne (w wyniku wiązania wodoru<br />

z jonem o ładunku +3e), że związki te wykazują tendencję do przyłączania protonu, będąc w<br />

sensie teorii Brönsteda zasadami. Rozważając grupę kwasów tlenowych o wzorze ogólnym<br />

H m RO n , na podstawie analogicznych rozważań możemy powiedzieć, że większy ładunek lub<br />

mniejszy promień jonu centralnego r powoduje, że kwas jest mocniejszy (w modelu Van<br />

Arkela ładunek atomu niemetalu R jest dodatni, powodując silniejsze odpychanie protonów).<br />

Wyjaśnia to znaną regułę, że kwas pochodzący od pierwiastków występujących na<br />

najwyższych stopniach utlenienia jest najmocniejszy. Na przykład kwas H 2 S 6+ O 4 jest<br />

105


mocniejszy od H 2 S 4+ O 3 , zaś moc kwasów tlenowych chloru, węgla, azotu i boru zmienia się<br />

w szeregach:<br />

HN 5+ O 3 > H 2 C 4+ O 3 > H 3 B 3+ O 3<br />

HCl 7+ O 4 > HCl 5+ O 3 > HCl 3+ O 2 > HCl 1+ O<br />

Powyższe powody tłumaczą, dlaczego dla kwasów dysocjujących wielostopniowo moc<br />

kwasowa maleje dla każdego wyższego stopnia dysocjacji. Jest to mianowicie spowodowane<br />

tym, że każdy kolejno odszczepiający się jon wodorowy odłącza się od jonu obdarzonego<br />

coraz wyższym wypadkowym ładunkiem ujemnym.<br />

Podobnie stopień dysocjacji wodorotlenków maleje przy zmniejszaniu się promienia i<br />

wzroście ładunku jonu metalu. Możemy tu jednak zaobserwować ciekawy fakt. Wzrost<br />

ładunku metalu (czyli ładunku dodatniego) prowadzi w modelu Van Arkela do wzrostu siły<br />

odpychania protonu w grupie OH wodorotlenku, co w następstwie prowadzi do dysocjacji<br />

kwasowej. Na przykład w ciągu<br />

NaOH, Mg(OH) 2 , Al(OH) 3 , Si(OH) 4 , P(OH) 5 = H 3 PO 4· H 2 O<br />

wzrost ładunku kationu powoduje przejście od mocnego wodorotlenku, poprzez wodorotlenki<br />

amfoteryczne do kwasu. W wodorotlenkach amfoterycznych tendencja do odszczepienia<br />

grupy OH - jest zbliżona do tendencji do odszczepienia protonu. Wpływ promienia jonowego<br />

kationu łatwo zaobserwować, rozpatrując ciąg wodorotlenków metali alkalicznych<br />

(litowców), w których moc zmienia się następująco:<br />

LiOH < NaOH < KOH < RbOH < CsOH<br />

podczas gdy promień jonowy rośnie od 0,068 nm dla litu do 0,167 nm dla cezu. Pamiętając,<br />

że wielkość promienia jonowego zmniejsza się w okresach układu okresowego pierwiastków<br />

wraz ze wzrostem ładunku, z drugiej zaś strony rośnie przy przesuwaniu się w dół grupy<br />

układu okresowego, uzyskujemy możliwość względnej oceny mocy kwasów i zasad.<br />

7.2. Roztwory buforowe<br />

Dodatek nawet bardzo niewielkich ilości mocnego kwasu lub mocnej zasady do czystej<br />

wody lub roztworów niektórych związków chemicznych powoduje dużą zmianę wartości pH<br />

roztworu. W szeregu reakcji wykorzystywanych w chemii analitycznej (wytrącanie osadów),<br />

w procesach biochemicznych zachodzących w organizmach żywych lub w procesach<br />

technologicznych (fermentacja, procesy galwanizacyjne) konieczne jest zapewnienie ściśle<br />

określonej i w przybliżeniu stałej kwasowości środowiska, mimo iż zachodzi w nim reakcja<br />

chemiczna.<br />

106


Utrzymanie w przybliżeniu stałej kwasowości środowiska, pomimo wprowadzania do<br />

niego mocnych kwasów lub zasad, zapewniają tzw. mieszaniny buforowe zwane<br />

roztworami buforowymi. Najczęściej są to roztwory słabych kwasów i ich soli z mocnymi<br />

zasadami lub słabych zasad i ich soli z mocnymi kwasami. Własności buforujące wykazują<br />

również roztwory wodorosoli, np.: NaHCO 3 , NaH 2 PO 4 lub Na 2 HPO 4 oraz mieszaniny<br />

roztworów słabych kwasów i ich soli ze słabymi zasadami (np. HCOOH + HCOONH 4 ).<br />

Według teorii Brönsteda i Lowry’ego roztworami buforowymi są roztwory słabych kwasów<br />

i sprzężonych z nimi zasad (CH 3 COOH i CH 3 COO - , H 2 PO<br />

- 4 i HPO 2- 4 , HCO<br />

- 3 i CO 2- 3 ) lub<br />

roztwory słabych zasad i sprzężonych z nimi kwasów (np. NH 3(aq) i NH + 4 ).<br />

Najczęściej stosowanymi w praktyce roztworami buforowymi są:<br />

1) bufor octanowy CH 3 COOH i CH 3 COONa 3,5 < pH < 6<br />

2) bufor fosforanowy NaH 2 PO 4 i Na 2 HPO 4 5,5 < pH < 8<br />

3) bufor boranowy H 3 BO 4 i Na 2 B 4 O 7 7 < pH < 9<br />

4) bufor amonowy NH 3(aq) i NH 4 Cl 8 < pH < 11<br />

Stosowane są również bufory bardziej złożone.<br />

Mechanizm działania roztworów buforowych wynika z zawartości w nich jonów<br />

stanowiących pułapki wiążące jony wodorowe lub wodorotlenowe (wprowadzane do<br />

roztworu przez mocne kwasy lub zasady) w słabo zdysocjowane kwasy lub zasady.<br />

7.2.1. pH roztworów buforowych i mechanizm ich działania<br />

Rozważmy przykład roztworu buforowego, stanowiącego mieszaninę słabego kwasu<br />

jednozasadowego HR oraz soli tego kwasu z mocną zasadą MeR np. (CH 3 COOH i<br />

CH 3 COONa, HCOOH i HCOOK). Równowaga dysocjacji słabego kwasu opisana jest<br />

reakcją:<br />

HR ⇔ H + + R -<br />

Równowadze powyższej odpowiada stała równowagi będąca aktywnościową stałą<br />

dysocjacji słabego kwasu K a :<br />

K a =<br />

− ⋅ c<br />

=<br />

a<br />

a a<br />

R H<br />

+<br />

HR<br />

R<br />

−<br />

⋅ f c f<br />

R<br />

− ⋅ ⋅<br />

H<br />

+<br />

H<br />

+<br />

f<br />

HR<br />

⋅ c<br />

HR<br />

(7.35)<br />

Sól MeR jako mocny elektrolit jest całkowicie zdysocjowana na jony Me + i R - .<br />

107


W wyniku słabej dysocjacji kwasu HR cofniętej dodatkowo przez istniejące w roztworze<br />

jony R - , pochodzące z dysocjacji MeR (tzw. efekt wspólnego jonu) możemy przyjąć, iż<br />

stężenie niezdysocjowanego kwasu HR w roztworze jest praktycznie równe stężeniu<br />

całkowitemu tego kwasu c K . Natomiast stężenie jonów R - określone jest przez stężenie tych<br />

jonów pochodzących z całkowitej dysocjacji soli c S .<br />

Wobec powyższego:<br />

c HR ≈ c K i c R - ≈ c S<br />

po podstawieniu powyższych zależności do wzoru (7.35) otrzymujemy:<br />

K a =<br />

c<br />

S ⋅ f c f<br />

R<br />

− ⋅ ⋅<br />

H<br />

+<br />

H<br />

+<br />

c<br />

K<br />

⋅ f<br />

HR<br />

(7.36)<br />

Po przekształceniu otrzymujemy zależność wyrażającą aktywność jonów wodorowych<br />

w roztworze:<br />

c<br />

c + ⋅<br />

H f H<br />

+ = a H<br />

+ = K a ⋅ c<br />

K<br />

S<br />

⋅<br />

⋅<br />

f<br />

f<br />

HR<br />

R<br />

−<br />

(7.37)<br />

W celu uzyskania wyrażenia na wykładnik aktywności jonów wodorowych w roztworze<br />

logarytmujemy powyższe równanie i mnożymy stronami przez (-1):<br />

p a H = - log a +<br />

H = - log K a - log<br />

Ponieważ :<br />

- log K a = pK a<br />

c<br />

c<br />

K<br />

S<br />

⋅<br />

⋅<br />

f<br />

f<br />

HR<br />

R<br />

−<br />

p a H = pK a - log<br />

c<br />

c<br />

K<br />

S<br />

⋅<br />

⋅<br />

f<br />

f<br />

HR<br />

R<br />

−<br />

(7.38)<br />

Wzór (7.38) służy w praktyce do obliczania pH roztworu buforowego, złożonego ze<br />

słabego kwasu i soli tego kwasu z mocną zasadą, gdzie:<br />

K a<br />

- termodynamiczna stała dysocjacji kwasu,<br />

f HR<br />

- współczynnik aktywności niezdysocjowanego kwasu,<br />

f<br />

R<br />

− - współczynnik aktywności anionu.<br />

W praktyce często (np. w analizie chemicznej) nie jest nam potrzebna bardzo dokładna<br />

znajomość pH roztworu buforowego. Stosowane są również duże stężenia składników<br />

108


oztworu buforowego (większe niż 0,1 mola/dm 3 ), leżące poza zakresem stosowalności prawa<br />

granicznego i równania Debye’a – Hückela. Nie możemy zatem obliczyć wartości<br />

aktywności. W przypadkach tych możemy stosować wzór przybliżony, w którym zamiast<br />

aktywności “a” posłużymy się stężeniami “c”. Wtedy wzór (7.38) przyjmie postać:<br />

c K<br />

pH ≈ pK a - log<br />

cS<br />

(7.39)<br />

Rozważany roztwór buforowy stanowi więc mieszaninę jonów R - , Me + i praktycznie<br />

niezdysocjowanych cząsteczek kwasu HR. Dodatek niewielkiej ilości mocnego kwasu<br />

wprowadza do roztworu jony H + . Jony te będą jednak natychmiast wiązane przez jony R - na<br />

praktycznie niezdysocjowany w tych warunkach słaby kwas HR, nie mogą więc spowodować<br />

wyraźnego wzrostu kwasowości roztworu. Wprowadzając zaś mocną zasadę, wprowadzamy<br />

jony OH - , które będą wiązane w praktycznie niezdysocjowaną wodę przez jony H + ,<br />

pochodzące ze słabej dysocjacji kwasu HR. Dodatek mocnego kwasu lub mocnej zasady<br />

prowadzi zatem do reakcji:<br />

H + + R - ⇔ HR<br />

HR + OH - ⇔ R - + H 2 O<br />

Tak więc zgodnie z naszymi oczekiwaniami roztwór buforowy zawiera pułapki dla<br />

wprowadzanych jonów H + lub OH - , co umożliwia mu zachowywanie praktycznie stałego pH<br />

mimo wprowadzania do niego jonów H + lub OH - .<br />

Ponieważ wartość stałej dysocjacji większości słabych kwasów zmienia się nieznacznie<br />

z temperaturą (np. CH 3 COOH dla 20 o C K a = 1,753⋅10 -5 a dla 60 o C K a = 1,542⋅10 -5 ), zatem<br />

również w roztworach składających się ze słabego kwasu i sprzężonej z nim zasadą, pH<br />

roztworu buforowego zmienia się nieznacznie z temperaturą.<br />

W przypadku buforu składającego się ze słabej zasady MeOH i jej soli z mocnym<br />

kwasem MeR równowaga dysocjacyjna słabej zasady MeOH opisana jest reakcją:<br />

MeOH ⇔ Me + + OH -<br />

Odpowiadająca jej stała dysocjacji ma postać:<br />

K a =<br />

a<br />

Me<br />

+ ⋅ OH<br />

−<br />

=<br />

a<br />

a<br />

MeOH<br />

c<br />

Me<br />

+ ⋅ f c<br />

Me<br />

+ ⋅<br />

OH<br />

− ⋅<br />

c<br />

MeOH<br />

+<br />

f<br />

MeOH<br />

f<br />

OH<br />

−<br />

(7.40)<br />

Sól MeR jako mocny elektrolit zdysocjowana jest całkowicie na jony Me +<br />

i R - . W<br />

109


wyniku słabej dysocjacji MeOH, cofniętej dodatkowo przez jony Me + pochodzące z<br />

dysocjacji MeR (efekt wspólnego jonu), możemy przyjąć, że stężenie niezdysocjowanego<br />

MeOH w roztworze jest praktycznie równe stężeniu całkowitemu tej zasady c Z . Stężenie zaś<br />

jonów Me + w roztworze określone jest przez stężenie jonów pochodzących tylko z całkowicie<br />

zdysocjowanej soli c S .<br />

Wobec powyższego możemy przyjąć, że:<br />

c +<br />

Me<br />

≈ c Z oraz c MeOH ≈ c Z<br />

Po podstawieniu powyższych zależności do wzoru (7.40) i przekształceniu otrzymujemy:<br />

a<br />

OH<br />

− = OH<br />

−<br />

c ⋅ f OH<br />

− = K a ⋅<br />

cZ<br />

c<br />

S<br />

⋅<br />

⋅<br />

f<br />

f<br />

MeOH<br />

Me<br />

+<br />

Z iloczynu jonowego wody wynika, że:<br />

a<br />

OH − = K W<br />

a<br />

H<br />

+<br />

(7.41)<br />

Po wprowadzeniu tej zależności do wzoru (7.41) otrzymujemy:<br />

a H + = W<br />

K a<br />

K cS<br />

⋅ f<br />

⋅<br />

Me<br />

+<br />

cZ<br />

⋅ fMeOH<br />

(7.42)<br />

Po zlogarytmowaniu i pomnożeniu stronami przez (-1) otrzymujemy:<br />

- log a +<br />

H = - log K W + log K a - log<br />

c<br />

c<br />

S ⋅ f<br />

Me<br />

+<br />

Z<br />

⋅ f<br />

MeOH<br />

p a H = - logK W - pK a + log<br />

cZ<br />

c<br />

S<br />

⋅<br />

⋅<br />

f<br />

f<br />

MeOH<br />

Me<br />

+<br />

(7.43)<br />

W przypadku zastąpienia aktywności stężeniami wzór przybliżony przyjmuje postać:<br />

pH ≈ - log K W – pK a + log c Z<br />

cS<br />

(7.44)<br />

Wartość K W (Tabela 7.2) zmienia się zwykle silniej ze zmianą temperatury niż wartość<br />

K a , wobec tego wykładnik stężenia jonów wodorowych w roztworze buforowym złożonym ze<br />

słabej zasady i soli tej zasady z mocnym kwasem zmniejsza się znacznie wraz ze wzrostem<br />

temperatury. Rozpatrywany powyżej roztwór buforowy stanowi mieszaninę jonów Me + i R -<br />

oraz praktycznie niezdysocjowanej słabej zasady MeOH. Dodatek mocnego kwasu lub<br />

110


mocnej zasady prowadzi do reakcji:<br />

MeOH + H + ⇔ Me + + H 2 O<br />

Me + + OH - ⇔ MeOH<br />

Jak widać roztwór buforowy rozważanego typu zawiera również pułapki dla<br />

wprowadzanych jonów H + i OH - .<br />

Szczególnie przydatnymi i często stosowanymi buforami są roztwory soli i wodorosoli<br />

kwasów wieloprotonowych. Na przykład w roztworze zawierającym kwas ortofosforowy<br />

H 3 PO 4 i jego jednopodstawioną sól ustala się równowaga:<br />

H 3 PO 4 ⇔ H + + H 2 PO<br />

- 4<br />

Równowagę tego procesu określa stała dysocjacji pierwszego stopnia dla kwasu H 3 PO 4 :<br />

K 1 =<br />

a<br />

H<br />

+ ⋅ H 2 PO<br />

− 4<br />

=<br />

a<br />

a<br />

H 3 PO 4<br />

c<br />

H<br />

+<br />

⋅<br />

f<br />

H<br />

+<br />

c<br />

⋅ c<br />

H 3 PO 4<br />

H 2 PO<br />

− 4<br />

⋅ f<br />

⋅ f<br />

H 3 PO 4<br />

H 2 PO<br />

− 4<br />

(7.45)<br />

W wyniku słabej dysocjacji H 3 PO 4 cofniętej dodatkowo przez jony H 2 PO 4<br />

-<br />

pochodzące<br />

z dysocjacji NaH 2 PO 4 można przyjąć, iż:<br />

c H 3 PO 4 ≈ c K<br />

Zaniedbując zmianę stężenia jonów H 2 PO 4<br />

-<br />

następującą w wyniku ich dysocjacji (K 2<br />

stała dysocjacji drugiego stopnia H 3 PO 4 jest o około pięć rzędów mniejsza niż stała K 1 ),<br />

możemy przyjąć, że:<br />

c − ≈ c H2PO4 S<br />

wobec tego równanie (7.45) przyjmuje postać:<br />

K 1 =<br />

a<br />

H<br />

+<br />

c<br />

⋅ c<br />

K<br />

S<br />

⋅ f<br />

⋅ f<br />

H 2 PO<br />

− 4<br />

H 3 PO 4<br />

(7.46)<br />

Po odpowiednich przekształceniach otrzymujemy wzór na pH roztworu buforowego<br />

złożonego z H 3 PO 4 i NaH 2 PO 4<br />

p a H = pK 1 - log<br />

c<br />

c<br />

K<br />

S<br />

⋅ f<br />

⋅ f<br />

H 3 PO 4<br />

H<br />

− 2 PO 4<br />

(7.47)<br />

gdzie: K 1 - termodynamiczna stała dysocjacji pierwszego stopnia H 3 PO 4 .<br />

111


Rozważany bufor przy c K ≈ c S<br />

powinien mieć wartość pH około 2, ponieważ K 1 dla<br />

H 3 PO 4 = 7,5⋅10 -3 .<br />

Dodatek mocnego kwasu lub mocnej zasady prowadzi w omawianym przypadku do<br />

reakcji:<br />

H 2 PO<br />

- 4 + H + ⇔ H 3 PO 4<br />

H 3 PO 4 + OH - ⇔ H 2 PO<br />

- 4 + H 2 O<br />

Jeśli jednak zmieszamy roztwory jedno- i dwupodstawionej soli kwasu ortofosforowego,<br />

np. NaH 2 PO 4 i Na 2 HPO 4 , to zgodnie z równowagą:<br />

H 2 PO<br />

- 4 ⇔ HPO<br />

2- 4 + H +<br />

stała dysocjacji drugiego stopnia H 3 PO 4 będzie decydować o pH roztworu.<br />

Zgodnie z równaniem (7.38), traktując jon H 2 PO<br />

- 4 jako słaby kwas, a jon HPO<br />

2- 4 jako<br />

sprzężoną z nim zasadę, możemy napisać:<br />

p a H = pK 2 - log<br />

c<br />

c<br />

H<br />

− 2 PO 4<br />

HPO<br />

2−<br />

4<br />

⋅ f<br />

⋅ f<br />

H<br />

− 2 PO 4<br />

HPO<br />

2−<br />

4<br />

(7.48)<br />

Oznaczmy początkowe stężenie NaH 2 PO 4 jako c NaH 2 PO4<br />

c Na 2 HPO 4<br />

, a stężenie Na 2 HPO 4 jako<br />

. Zaniedbując zmianę stężenia jonów H 2 PO 4<br />

-<br />

w wyniku ich dysocjacji,<br />

przyjmujemy, że [H 2 PO - 4 ] ≈ c NaH 2 PO4<br />

. Możemy również przyjąć z dobrym przybliżeniem, że<br />

jony HPO 4<br />

2-<br />

pochodzą tylko z dysocjacji soli Na 2 HPO 4 (liczba jonów HPO 4<br />

2-<br />

pochodząca z<br />

dysocjacji H 2 PO 4<br />

-<br />

jest znikoma w wyniku efektu wspólnego jonu), wobec czego [HPO 4 2- ] ≈<br />

c Na 2 HPO 4 .<br />

Równowagę reakcji H 2 PO<br />

- 4 + H + ⇔ H 3 PO 4 możemy zaniedbać, ponieważ stała K 1<br />

(dysocjacja pierwszego stopnia) jest o około pięć rzędów większa od stałej K 2 . Wobec<br />

powyższego równanie (7.48) przyjmuje postać:<br />

p a H = pK 2 - log<br />

c<br />

c<br />

NaH 2 PO 4<br />

Na 2 HPO 4<br />

⋅ f<br />

⋅ f<br />

H<br />

− 2 PO 4<br />

HPO<br />

2−<br />

4<br />

(7.49)<br />

Wartość stałej K 2 dla kwasu H 3 PO 4 wynosi 6,2⋅10 -8 , dlatego też bufor ten przy<br />

c ≈ c powinien mieć wartość pH około 7 (ponieważ p a H ≈ pK 2 ).<br />

Na 2 HPO 4<br />

NaH 2 PO 4<br />

112


W roztworze soli dwu- i trójpodstawionej np. Na 2 HPO 4 i Na 3 PO 4 zgodnie z równowagą:<br />

HPO<br />

2- 4 ⇔ H + + PO<br />

3- 4<br />

o pH roztworu będzie decydować stała dysocjacji trzeciego stopnia H 3 PO 4 . Zgodnie ze<br />

wzorem (7.38), traktując jon HPO<br />

2- 4 jako słaby kwas, a jon PO<br />

3- 4 jako sprzężoną z nim<br />

zasadę, możemy napisać:<br />

p a H= pK 3 - log<br />

c<br />

HPO<br />

2−<br />

4<br />

c<br />

PO<br />

3−<br />

4<br />

⋅ f<br />

⋅ f<br />

HPO<br />

2−<br />

4<br />

PO<br />

3−<br />

4<br />

(7.50)<br />

Bufor ten przy cNa<br />

2 HPO ≈ c<br />

4 Na 3 PO4<br />

powinien mieć wartość około 12, ponieważ stała K 3<br />

dla H 3 PO 4 wynosi 4,8⋅10 -13 ( p a H ≈ pK 3 ).<br />

Oznaczmy początkowe stężenie Na 2 HPO 4 jako c Na<br />

2 HPO , zaś początkowe stężenie<br />

4<br />

Na 3 PO 4 jako c Na 3 PO4<br />

możemy przyjąć, że:<br />

. Zaniedbując zmianę stężenia jonów HPO 4 2- , w wyniku ich dysocjacji<br />

c 2− ≈ c<br />

HPO4 Na 2 HPO4<br />

Podobnie, możemy nie brać pod uwagę równowagi reakcji PO 4<br />

3-<br />

+ H ⇔ HPO 4 2- ,<br />

ponieważ stała K 2 jest o około pięć rzędów większa od K 3 . Zatem:<br />

c<br />

PO<br />

3− 4<br />

≈ c Na3 PO4<br />

Ostateczny wzór (7.50) przyjmuje postać:<br />

p a H= pK 3 - log<br />

c<br />

Na 2 HPO 4<br />

c<br />

Na 3 PO 4<br />

⋅ f<br />

⋅ f<br />

HPO<br />

2−<br />

4<br />

PO<br />

3−<br />

4<br />

(7.51)<br />

Dodatek mocnego kwasu lub mocnej zasady prowadzi w tym przypadku do reakcji:<br />

PO<br />

3- 4 + H + ⇔ HPO<br />

- 4<br />

HPO<br />

2- 4 + OH - ⇔ PO<br />

3- 4 + H 2 O<br />

Tak więc wychodząc z kwasu ortofosforowego H 3 PO 4 i jego soli można przygotować te<br />

roztwory buforowe, wykazujące właściwości buforowe w trzech różnych zakresach pH.<br />

W podobny sposób wykorzystuje się właściwości buforujące układów pochodzących od<br />

innych kwasów dwu- i więcej protonowych.<br />

113


7.2.2. Pojemność buforowa<br />

Ilościową miarą zdolności roztworu buforowego do utrzymywania w przybliżeniu stałego<br />

pH mimo dodatku mocnego kwasu lub mocnej zasady jest pojemność buforowa. Wielkość ta<br />

jest określona jako liczba moli mocnego jednozasadowego kwasu lub mocnej<br />

jednowodorotlenkowej zasady, która dodana do 1 dm 3 roztworu buforowego zmienia<br />

jego pH o jednostkę. Przekroczenie pojemności buforowej powoduje znaczne pogorszenie<br />

działania buforu. Działanie roztworów buforowych jest najskuteczniejsze, kiedy pH ≈ pK.<br />

Taki bufor jest najmniej wrażliwy na dodatek mocnego kwasu lub mocnej zasady. Jak łatwo<br />

można zauważyć ze wzoru (7.38) lub (7.39) warunkowi pH ≈ pK odpowiada sytuacja, kiedy<br />

aktywność (stężenie) kwasu i sprzężonej z nim zasady są w przybliżeniu równe. Ze wzorów<br />

(7.38) lub (7.39) łatwo zauważyć, że jeżeli stosunek aktywności (stężeń) kwasu do sprzężonej<br />

z nim zasady zmieni się z wartości 1/1 do wartości 1/10 lub 10/1, to w obu tych przypadkach<br />

zmiana pH roztworu buforowego wynosić będzie około 1. W tabeli 7.5 pokazano<br />

przykładowo wpływ stężenia i składu buforu octanowego na ilość moli NaOH (x) i HCl (y)<br />

jaką należy dodać do 1 dm 3 roztworu buforowego, aby zmienić jego pH o jednostkę.<br />

Tabela 7.5. Zależność pojemności buforowej od składu roztworu<br />

c CH 3 COOH<br />

c CH 3 COONa<br />

c K /c S<br />

xNaOH<br />

[mol]<br />

y HCl<br />

[mol]<br />

[mol/dm 3 ] [mol/dm 3 ]<br />

0,100 0,100 1 0,085 0,077<br />

1,00 1,00 1 0,858 0,771<br />

0,100 0,500 0,2 0,066 0,427<br />

0,500 0,100 5 0,493 0,032<br />

Jak można zauważyć z powyższej tabeli, tylko w przypadku buforu, w którym c K /c S = 1,<br />

x, czyli pojemność buforowa względem dodawanej zasady, jest w przybliżeniu równe y, a<br />

więc pojemności buforowej względem dodawanego kwasu. W przypadku c K /c S = 0,2<br />

roztwór wykazuje dziesięciokrotnie większą pojemność buforową względem dodawanego<br />

kwasu niż względem dodawanej zasady, zaś w przypadku c K /c S = 5 ilość dodawanej zasady,<br />

potrzebna do zmiany pH o około 1, jest dziesięciokrotnie większa niż w przypadku<br />

dodawania kwasu. Na fakt ten należy zwracać uwagę podczas sporządzania roztworów<br />

buforowych dla konkretnych celów.<br />

Zauważmy, iż konsekwencją wzorów (7.38) i (7.43) jest fakt, że pH roztworów<br />

buforowych zmienia się nieznacznie podczas rozcieńczania tych roztworów. Stosunek stężeń<br />

kwasu do sprzężonej z nim zasady lub zasady do sprzężonej z nią kwasu pozostaje<br />

114


niezmienny, natomiast na skutek różnych ładunków jonów oraz różnej wartości a· B we<br />

wzorze Debye’a-Hückela współczynniki aktywności we wzorach (7.38) i (7.43) zmieniają się<br />

niejednakowo wraz z rozcieńczeniem. Fakt ten powoduje bardzo niewielkie zmiany pH<br />

roztworów buforowych podczas ich rozcieńczania. Natomiast pojemność buforowa maleje<br />

odwrotnie proporcjonalnie do stężenia roztworów.<br />

7.2.3. Sporządzanie roztworów buforowych<br />

Istotne znaczenie jakie dla nauki i życia ma możliwość utrzymywania stałości pH<br />

roztworu mimo zachodzących w nim reakcji chemicznych, czy mimo dodawania niewielkich<br />

ilości kwasów lub zasad sprawia, że dużą wagę przywiązuje się do właściwego sporządzania<br />

roztworów buforowych. Jak już wspomniano najlepsze właściwości posiadają bufory, których<br />

wartość pH jest zgodna z pK kwasu będącego składnikiem buforu. Z tego względu w<br />

przygotowaniu roztworów buforowych pierwszym etapem jest taki wybór składników, aby<br />

pK było możliwie bliskie żądanego pH, a w każdym razie nie różniło się więcej niż o<br />

jednostkę. Ten przedział jest granicą działania buforującego i gdy pH − pK > 1 zostanie<br />

przekroczone, efekt buforujący jest stosunkowo nieznaczny. Przy wyborze możliwych<br />

składników roztworów buforowych najlepiej posługiwać się tablicą stałych dysocjacji<br />

kwasów. Spośród na ogół wielu możliwości wyboru należy uwzględnić oprócz powyższego<br />

dostępność składników o odpowiedniej czystości. Ponadto należy rozpatrzyć, czy składniki<br />

buforu nie reagują z innymi składnikami roztworu. Sytuacja taka jest częsta, np. jon<br />

ortofosforanowy, który tworzy dogodne układy buforujące z wieloma jonami metali, daje<br />

trudnorozpuszczalne osady ortofosforanów.<br />

Następnym etapem przygotowania roztworu buforowego jest obliczenie stosunku stężeń<br />

kwasu do sprzężonej z nim zasady. To obliczenie wykonuje się, korzystając z podstawowego<br />

wzoru określającego pH roztworu buforowego. Znając już stosunek stężeń, należy przejść do<br />

ostatniego etapu, do obliczenia stężenia poszczególnych składników. Podstawą do takich<br />

obliczeń jest wartość pojemności buforowej, którą układ powinien wykazać. Kolejnym<br />

etapem jest zaplanowanie sposobu przygotowania roztworu buforowego. Roztwór buforowy<br />

można przygotować w laboratorium kilkoma sposobami. Najłatwiej jest użyć dokładnie<br />

odmierzonych ilości składników, zmieszać je i odpowiednio rozcieńczyć. Sposób ten jest<br />

niepraktyczny w przypadku, gdy nie dysponujemy oboma składnikami w stanie czystym. Jeśli<br />

np. chcemy przygotować bufor octanowy i dysponujemy tylko kwasem octowym, a nie mamy<br />

octanu sodowego, to korzystniejsze jest przygotowanie odpowiedniego roztworu kwasu<br />

115


octowego i zobojętnienie go roztworem zasady sodowej. Objętość dodawanego roztworu<br />

zasady sodowej możemy bądź obliczyć, bądź też zobojętnienie prowadzić tak długo, aż<br />

roztwór osiągnie odpowiednie pH (mierzone za pomocą pehametru). Ten ostatni sposób<br />

przygotowania roztworu godny jest uwagi z praktycznego punktu widzenia.<br />

Aby uniknąć mimo wszystko dość żmudnego obliczania składu buforów, w wielu<br />

poradnikach i kalendarzach chemicznych podano tablice zawierające składy typowych<br />

roztworów buforowych. Przez zmieszanie dwóch roztworów o określonym stężeniu i w<br />

odpowiednich proporcjach otrzymuje się roztwór buforowy o założonym pH.<br />

7.3. Hydroliza soli<br />

Hydrolizą nazywa się ogólnie reakcję związku chemicznego z wodą. Rozróżniamy dwa<br />

zasadnicze typy hydrolizy: cząsteczkową i jonową. W przypadku hydrolizy cząsteczkowej<br />

mamy do czynienia z reakcją cząsteczek związku chemicznego z cząsteczkami wody lub<br />

jonami pochodzącymi z dysocjacji wody. W przypadku hydrolizy jonowej jest to reakcja<br />

pomiędzy jonami powstałymi z dysocjacji związku chemicznego a jonami powstałymi<br />

z dysocjacji wody. Odwracalny proces hydrolizy niektórych soli jest przypadkiem szczególnie<br />

godnym uwagi.<br />

Hydrolizę soli definiujemy jako reakcję jonów powstałych z dysocjacji soli<br />

z jonami powstałymi z dysocjacji wody<br />

Sole są z reguły elektrolitami zdysocjowanymi całkowicie lub w znacznej części na jony.<br />

Ponieważ woda jako słaby elektrolit jest zdysocjowana na jony H + i OH - , to ewentualnymi<br />

produktami reakcji hydrolizy soli (zgodnie z warunkami zachodzenia reakcji jonowych) mogą<br />

być słabo zdysocjowane kwasy lub zasady. Tylko wtedy, gdy ich tworzenie jest możliwe w<br />

wyniku reakcji jonowej, może zachodzić hydroliza soli. Zaznaczyć należy, że są to słabe<br />

kwasy lub zasady w/g teorii Brönsteda, a zatem mogą być to także jony. Stężenia jonów H + i<br />

OH - w czystej wodzie są jednakowe. Zachodzące procesy hydrolizy mogą naruszyć<br />

wzajemny stosunek stężeń tych jonów, co może prowadzić do zmiany kwasowości roztworu<br />

hydrolizującej soli. Hydrolizę soli o ogólnym wzorze MeR można zapisać schematycznie<br />

równaniem:<br />

116


Me + + R - + H + + OH -<br />

hydroliza<br />

⎯⎯⎯⎯⎯⎯⎯⎯⎯→<br />

←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯<br />

⎯<br />

zobojetnianie<br />

MeOH + HR<br />

Nie wszystkie sole ulegają hydrolizie, sole mocnych, jednoprotonowych kwasów<br />

i mocnych zasad praktycznie nie hydrolizują (np. KCl, KNO 3 , KClO 4 , NaCl, BaCl 2 itp.).<br />

Miarą zaawansowania procesu hydrolizy jest stopień hydrolizy β, określony stosunkiem<br />

liczby cząsteczek (moli) zhydrolizowanych c h do liczby cząsteczek moli soli wprowadzonej<br />

do roztworu c 0 .<br />

β = c h<br />

c0<br />

Znajomość stężenia jonów wodorowych (pH) w roztworach hydrolizujących soli ma duże<br />

znaczenie w analizie ilościowej, a także w jakościowej chemii analitycznej. Prawidłowy<br />

dobór wskaźników miareczkowania w alkacymetrii podczas reakcji zobojętniania zależy od<br />

pH roztworów soli otrzymanych w tzw. punkcie równoważnikowym.<br />

Przebieg procesu hydrolizy, jak i jej stopień, uzależnione są od rodzaju jonów, na które<br />

sól dysocjuje w roztworze wodnym. Zasadniczą rolę odgrywają właściwości<br />

protonodonorowe i protonoakceptorowe jonów, będące pochodną ich ładunku, promienia i<br />

budowy. Chcąc opisać bardziej szczegółowo procesy hydrolityczne w roztworach, należy<br />

rozpatrzyć szereg różnych przypadków.<br />

7.3.1. Hydroliza soli typu MeR (gdzie Me + - jednododatni jon metalu,<br />

R - - jon reszty kwasu jednozasadowego)<br />

Do rozważanego typu soli zaliczamy sole metali I grupy układu okresowego oraz sole<br />

jonów Li + , NH + 4 , Cu + , Ag + , tworzone z kwasami takimi jak: HF, HCl, HBr, HI, tlenowe<br />

kwasy fluorowców (np. HClO, HBrO itp), HNO 3 i jednokarboksylowe kwasy organiczne, np.<br />

CH 3 COOH. Dysocjację tych soli opisuje równanie ogólne;<br />

MeR → Me + + R -<br />

Uwzględniając dysocjację wody, mamy sytuację, w której w roztworze występują jony<br />

Me + , R - , H + i OH - . Ponieważ wodorotlenki metali pierwszej grupy są mocnymi zasadami, nie<br />

zachodzi reakcja między jonami Me + i OH - . Reakcja ta jest możliwa jedynie w przypadku,<br />

117


gdy Me + jest kationem Li + , NH + 4 , Cu + lub Ag + , tworzącym słaby wodorotlenek. Reakcja<br />

między jonami R - i H + jest możliwa jedynie w przypadku, gdy kwas HR jest słabym<br />

elektrolitem. Najczęściej ma to miejsce, gdy R - jest anionem słabego, jednokarboksylowego<br />

kwasu organicznego.<br />

W zależności od tego, czy procesowi hydrolitycznemu ulega kation (łączy się z jonami<br />

OH - ), czy też anion (łączy się z jonami H + ), mówimy o hydrolizie kationowej lub<br />

anionowej.<br />

W przypadku, gdy oba jony ulegają procesom hydrolitycznym mówimy o hydrolizie<br />

kationowo - anionowej.<br />

Możemy też sformułować następujące wnioski dla omawianej hydrolizy soli typu Me + R - :<br />

• Hydroliza kationowa soli Me + R - jest możliwa jedynie w przypadku, gdy Me + jest<br />

kationem Li + , NH + 4 , Cu + , Ag + .<br />

• Hydroliza anionowa jest możliwa tylko wtedy, gdy anion pochodzi od słabego kwasu.<br />

• Hydroliza kationowo - anionowa soli typu Me + R - zachodzi tylko dla soli, gdy Me + jest<br />

kationem Li + , NH + 4 , Cu + , Ag + a anion R - pochodzi od słabego kwasu.<br />

We wszystkich innych przypadkach hydroliza omawianego typu soli nie zachodzi.<br />

Wspomnieliśmy już, że hydroliza soli prowadzi do zmiany kwasowości środowiska.<br />

Ocenimy ten problem ilościowo na kilku przykładach. W rozważaniach poniższych<br />

zastosujemy obliczenia przybliżone, oparte na stężeniowej skali pH, ich dokładność jest na<br />

ogół wystarczająca, co pokazano w rozdziale 7.2.1.<br />

7.3.1.1. Hydroliza anionowa soli typu Me + R -<br />

Równanie hydrolizy rozważanego przypadku można zapisać ogólnie:<br />

Me + + R - + H 2 O ⇔ HR + Me + + OH -<br />

lub<br />

R - + H 2 O ⇔ HR + OH -<br />

Przykładem może być każda sól metalu alkalicznego ze słabym kwasem<br />

jednozasadowym, np. CH 3 COONa.<br />

Stała równowagi powyższej reakcji przyjmuje postać:<br />

c<br />

K =<br />

c<br />

HR<br />

R<br />

−<br />

⋅c<br />

⋅c<br />

OH<br />

−<br />

H 2 O<br />

(7.52)<br />

118


Przyjmując, że stężenie wody<br />

cH 2 O<br />

w roztworze w wyniku zachodzenia hydrolizy<br />

praktycznie się nie zmienia, możemy napisać:<br />

cHR<br />

⋅c<br />

OH<br />

−<br />

K ⋅cH 2 O = Kh =<br />

(7.53)<br />

c<br />

R<br />

−<br />

Stałą K h nazywamy stałą hydrolizy.<br />

Korzystając z zależności K w =<br />

kwasu HR,<br />

K K<br />

c<br />

=<br />

H<br />

+ ⋅<br />

c<br />

c<br />

HR<br />

R<br />

−<br />

c<br />

H + ⋅ c<br />

OH<br />

−<br />

oraz z wyrażenia na stałą dysocjacji słabego<br />

otrzymujemy z równania (7.53):<br />

K cHR<br />

⋅ c<br />

W<br />

OH<br />

−<br />

Kh = =<br />

(7.54)<br />

K c<br />

K<br />

R<br />

−<br />

Zgodnie z równaniem hydrolizy, z każdego anionu ulegającego hydrolizie powstaje jedna<br />

cząsteczka niezdysocjowanego kwasu HR i jeden anion OH - . A zatem przy zaniedbaniu<br />

jonów OH - pochodzących z dysocjacji wody możemy napisać<br />

c<br />

HR<br />

≈ c<br />

OH<br />

−<br />

. Uwzględniając<br />

również, że przy małym stopniu hydrolizy (co jest często spotykanym przypadkiem dla<br />

stężeń, z którymi mamy do czynienia w praktyce laboratoryjnej)<br />

przyjmie postać:<br />

c ≈ c<br />

R<br />

− S , zatem wzór (7.54)<br />

K<br />

h<br />

2<br />

K (c − )<br />

W OH<br />

= ≈<br />

(7.55)<br />

K K cS<br />

Ponieważ z iloczynu jonowego wody wynika, że:<br />

c<br />

− =<br />

OH<br />

K<br />

c<br />

W<br />

H<br />

+<br />

to po podstawieniu powyższego do równania (7.55) otrzymujemy:<br />

K<br />

h<br />

=<br />

K<br />

K<br />

W<br />

K<br />

≈<br />

c<br />

2<br />

KW<br />

2<br />

+ ⋅<br />

H<br />

c<br />

S<br />

(7.56)<br />

Po przekształceniu otrzymujemy wzór na stężenie jonów wodorowych w roztworze:<br />

119


KW<br />

⋅ K K<br />

c + ≈<br />

(7.57)<br />

H c<br />

S<br />

W celu uzyskania wyrażenia na pH zależność (7.57) logarytmujemy i mnożymy przez (-1):<br />

1<br />

pH ≈ ( log − log − log )<br />

2 c S K W K K (7.58)<br />

Wzór (7.58) pozwala na przybliżone obliczenie pH roztworu hydrolizującej soli typu<br />

MeR powstałej ze słabego kwasu i mocnej zasady.<br />

Wprowadzając stopień hydrolizy do równania (7.54), wobec c HR ≈ c OH<br />

− ≈ β ⋅c S<br />

i c ( − )<br />

HR =<br />

1 β otrzymujemy:<br />

c S<br />

2<br />

K c<br />

K W β s<br />

h = =<br />

KK<br />

1 − β<br />

(7.59)<br />

Jeżeli β < 0,05 równanie powyższe przyjmuje postać:<br />

K<br />

Kh<br />

= W ≈ β 2 cs<br />

(7.60)<br />

KK<br />

skąd na stopień hydrolizy otrzymujemy:<br />

β ≈<br />

KW<br />

KK<br />

⋅cS<br />

(7.61)<br />

Jak widać ze wzoru (7.61) stopień hydrolizy:<br />

a) jest odwrotnie proporcjonalny do pierwiastka kwadratowego ze stężenia<br />

hydrolizującej soli c S (rośnie ze spadkiem stężenia);<br />

b) wzrasta ze wzrostem temperatury, ponieważ iloczyn jonowy wody rośnie silnie wraz z<br />

podwyższeniem temperatury (patrz Tabela 7.2), a stała dysocjacji kwasu K K zmienia<br />

się nieznacznie z temperaturą;<br />

c) ma on tym większą wartość, im mniejsza jest wartość stałej dysocjacji kwasu, czyli im<br />

słabszy jest kwas, z którego powstała sól.<br />

7.3.1.2. Hydroliza kationowa soli typu Me + R -<br />

Hydroliza tego typu soli jest możliwa dla soli pochodzących od kationów Li + , NH + 4 , Cu + ,<br />

Ag + i reszty mocnego kwasu. Równanie hydrolizy rozważanego przypadku możemy zapisać<br />

ogólnie:<br />

120


Me + + R - + H 2 O ⇔ MeOH + H + + R -<br />

lub<br />

Me + + H 2 O ⇔ MeOH + H +<br />

Stała równowagi powyższej reakcji wyrażona jest wzorem:<br />

c<br />

K =<br />

c<br />

MeOH<br />

Me<br />

+<br />

⋅ c<br />

⋅ c<br />

H<br />

+<br />

H 2 O<br />

(7.62)<br />

Korzystając z zależności K W =<br />

c − oraz z faktu, że H 2 O<br />

H + ⋅ c<br />

OH<br />

reakcji hydrolizy praktycznie nie ulega zmianie, możemy napisać:<br />

K ⋅ c<br />

H 2 O<br />

Me<br />

+<br />

c w wyniku zachodzenia<br />

K cMeOH<br />

⋅ c<br />

W<br />

H<br />

+<br />

= Kh = =<br />

(7.63)<br />

K c<br />

Z<br />

Zgodnie z równaniem hydrolizy z każdego kationu ulegającego hydrolizie powstaje jedna<br />

cząsteczka niezdysocjowanej zasady i jeden kation H + , a zatem przy zaniedbaniu jonów H +<br />

pochodzących z dysocjacji wody możemy napisać c MeOH c + . Uwzględniając również, że<br />

≈<br />

H<br />

przy małym stopniu hydrolizy<br />

K<br />

K<br />

W<br />

Z<br />

≈<br />

( c )<br />

H +<br />

c<br />

S<br />

2<br />

c ≈ c<br />

Me<br />

+<br />

S<br />

, zatem wzór (7.63) przyjmuje postać:<br />

i po przekształceniu:<br />

KW<br />

⋅ cS<br />

c + ≈<br />

(7.64)<br />

H K<br />

Z<br />

lub<br />

pH<br />

( log K − log − log )<br />

1<br />

≈ Z K W C<br />

2<br />

S<br />

(7.65)<br />

Wzór (7.65) pozwala na przybliżone obliczenie pH roztworu każdej soli typu MeR,<br />

powstałej ze słabej zasady i mocnego kwasu. Wprowadzając stopień hydrolizy do równania<br />

(7.63), wobec c ≈ c + ≈ β ⋅ cS<br />

c + = (1 − β)c<br />

otrzymujemy:<br />

MeOH<br />

H<br />

oraz<br />

Me<br />

S<br />

KW<br />

KZ<br />

2<br />

β c<br />

= s<br />

1 − β<br />

(7.66)<br />

121


Jeżeli β < 0,05, to powyższe równanie można napisać w uproszczonej postaci:<br />

KW<br />

KZ<br />

≈ β 2 cs<br />

wobec czego na stopień hydrolizy uzyskujemy równanie:<br />

β ≈<br />

KW<br />

K ⋅ c<br />

Z<br />

S<br />

(7.67)<br />

7.3.1.3. Hydroliza kationowo - anionowa soli typu Me + R -<br />

Hydroliza tego typu jest możliwa dla soli zawierających kationy Li + , NH + 4 , Ag + lub Cu + ,<br />

w których anionem jest reszta słabego kwasu jednozasadowego. Równanie hydrolizy<br />

rozważanego przypadku możemy zapisać:<br />

Me + + R - + H 2 O ⇔ MeOH + HR<br />

Stała równowagi powyższej reakcji dana jest wzorem:<br />

cMeOH<br />

⋅ cHR<br />

K ⋅ cH 2 O =<br />

c + ⋅ c<br />

(7.68)<br />

Me<br />

R<br />

−<br />

Po uwzględnieniu wyrażenia na stałą dysocjacji słabego kwasu K K , słabej zasady K Z i<br />

iloczynu jonowego wody K W możemy napisać:<br />

K ⋅ c<br />

H 2 O<br />

KW<br />

cMeOH<br />

⋅ cHR<br />

= Kh = =<br />

KZ<br />

⋅ K K c + ⋅ c<br />

(7.69)<br />

Me<br />

Ponieważ c ≈ c HR ≈β⋅<br />

cS<br />

R<br />

−<br />

MeOH oraz c = c = (1 − β)<br />

c<br />

Me R<br />

−<br />

S<br />

powyższych zależności do wzoru (7.69) otrzymujemy:<br />

+ , po podstawieniu<br />

KW<br />

K ⋅ K<br />

Z<br />

K<br />

2<br />

β<br />

=<br />

1 − β<br />

(7.70)<br />

Jeżeli β < 0,05 to możemy przyjąć, że:<br />

K<br />

h<br />

KW<br />

≈<br />

K ⋅ K<br />

Z<br />

Wobec tego:<br />

K<br />

2<br />

≈ β<br />

β ≈<br />

KW<br />

K ⋅ K<br />

Z<br />

K<br />

(7.71)<br />

122


Wprowadzając zależność na stałą dysocjacji oraz uwzględniając wyrażenie na stałą<br />

dysocjacji słabego kwasu HR oraz c MeOH ≈ c HR ≈ β ⋅c S , możemy napisać:<br />

K Z<br />

c + ≈<br />

(7.72)<br />

H K ⋅ K<br />

K<br />

W<br />

lub<br />

1<br />

pH ≈ (log −log −log )<br />

2 K Z K K K W (7.73)<br />

Z równania (7.71) wynika, że stopień hydrolizy soli typu MeR, złożonej z reszty słabego<br />

kwasu i reszty słabej zasady nie zależy od stężenia soli, lecz tylko od wartości stałych<br />

dysocjacji kwasu i zasady, z których ta sól powstała.<br />

Należy podkreślić, że wyprowadzając wszystkie powyższe zależności, korzystaliśmy ze<br />

stężeniowej skali pH. Zależności te nie uwzględniają oddziaływań międzyjonowych.<br />

Stosować je możemy do przybliżonych obliczeń pH i stopni hydrolizy. Dla większości<br />

przypadków oraz dla stężeń, z którymi spotykamy się w praktyce laboratoryjnej, są to<br />

obliczenia o wystarczającej dokładności.<br />

7.3.2. Hydroliza soli słabych dwuprotonowych kwasów i mocnych,<br />

jednoprotonowych zasad<br />

Sole słabych dwuprotonowych kwasów i mocnych jednoprotonowych zasad wykazują w<br />

roztworze wodnym odczyn zasadowy (np. Na 2 S, Na 2 CO 3 ). Tego typu sole hydrolizują<br />

praktycznie tylko w pierwszym stopniu, ponieważ jony wodorotlenkowe cofają drugi stopień<br />

hydrolizy, który zaniedbuje się najczęściej jako znikomy.<br />

S 2- + H 2 O ⇔ HS - + OH -<br />

HS - + H 2 O ⇔ H 2 S + OH -<br />

Nadmiar jonów wodorotlenkowych powoduje odczyn zasadowy tego roztworu.<br />

Praktycznie nie powstaje wolny kwas siarkowodorowy, bo powstałe w pierwszym stopniu<br />

jony OH - cofają hydrolizę drugiego stopnia.<br />

7.3.3. Hydroliza soli trójprotonowych kwasów i mocnych jednoprotonowych zasad<br />

Sole trójprotonowych kwasów i mocnych jednoprotonowych zasad, np. KH 2 PO 4 ,<br />

K 2 HPO 4 i K 3 PO 4 w wodnym roztworze mają odczyn kwaśny lub zasadowy; np. KH 2 PO 4 ma<br />

odczyn kwaśny, ponieważ w roztworze znajduje się pewien nadmiar jonów wodorowych H + ,<br />

123


powstałych z dalszej dysocjacji jonu H 2 PO<br />

- 4 :<br />

H 2 PO<br />

- 4 ⇔ HPO<br />

2- 4 + H +<br />

Wprawdzie zachodzi hydroliza wg reakcji:<br />

H 2 PO<br />

- 4 + H 2 O ⇔ H 3 PO 4 + OH -<br />

jednak reakcja dysocjacji jest w tym przypadku przeważająca i odczyn roztworu jest kwaśny.<br />

K 2 HPO 4 ma w wodnym roztworze odczyn zasadowy. Wprawdzie jony HPO<br />

-2 4 dysocjują<br />

wg równania:<br />

HPO<br />

2- 4 ⇔ PO<br />

3- 4 + H +<br />

ale również hydrolizują:<br />

HPO<br />

2- 4 + H 2 O ⇔ H 2 PO<br />

- 4 + OH -<br />

H 2 PO<br />

- 4 + H 2 O ⇔ H 3 PO 4 + OH -<br />

Praktycznie w roztworze nie tworzy się kwas ortofosforowy H 3 PO 4 , ponieważ<br />

powstające jony wodorotlenkowe cofają hydrolizę trzeciego stopnia. W przypadku roztworu<br />

tej soli przeważa proces hydrolizy nad procesem dysocjacji. K 3 PO 4 hydrolizując w roztworze<br />

wodnym, daje odczyn zasadowy. Zachodzące reakcje hydrolizy możemy zapisać<br />

następującymi równaniami:<br />

PO<br />

3- 4 + H 2 O ⇔ HPO<br />

2- 4 + OH -<br />

HPO<br />

2- 4 + H 2 O ⇔ H 2 PO<br />

- 4 + OH -<br />

H 2 PO<br />

- 4 + H 2 O ⇔ H 3 PO 4 + OH -<br />

Ostatnia reakcja praktycznie nie zachodzi, ponieważ nadmiar jonów wodorotlenkowych<br />

cofa reakcję hydrolizy.<br />

7.3.4. Hydroliza soli mocnych jednoprotonowych kwasów i wieloprotonowych zasad<br />

Roztwory wodne soli mocnych jednoprotonowych kwasów i wieloprotonowych zasad<br />

mają odczyn kwaśny (np. MgCl 2 , AlCl 3 , FeCl 3 , NiCl 2 , CuCl 2 ). Hydroliza tych soli przebiega<br />

praktycznie jedno- lub dwustopniowo, bez wytworzenia wolnej zasady, ponieważ z jednej<br />

strony nadmiar jonów wodorowych nie dopuszcza do tworzenia się wolnej zasady, z drugiej<br />

zaś strony wodorotlenosole są z reguły trudno rozpuszczalne i opuszczają środowisko reakcji,<br />

wytrącając się w postaci osadów. Przykłady hydrolizy powyższych soli przedstawiono<br />

poniżej:<br />

Mg 2+ + 2Cl - + H 2 O ⇔ MgOH + + H + + 2Cl - 124


Al 3+ + 3Cl - + H 2 O ⇔ AlOH 2+ + H + + 3Cl -<br />

AlOH 2+ + H 2 O ⇔ Al(OH)<br />

+ 2 + H +<br />

Cu 2+ + 2Cl - + H 2 O ⇔ CuOH + + H + + 2Cl -<br />

Równowagi hydrolityczne komplikują się bardziej, jeżeli kation ulegający hydrolizie<br />

tworzy akwakompleksy (np. Al 3+ i Cu 2+ ). Tym niemniej często procesy hydrolityczne<br />

przedstawia się w formie uproszczonej (pokazanej powyżej). To uproszczenie pozwala na<br />

przewidywanie kierunku hydrolizy. Hydroliza soli pierwiastków V grupy układu okresowego<br />

zawiera w sobie pewne osobliwości prowadzące do powstania tzw. tlenosoli. Dotyczy to<br />

szczególnie soli antymonu i bizmutu:<br />

Sb 3+ + 3Cl - + H 2 O ⇔ ↓SbOCl + 2H + + 2Cl -<br />

4Sb 3+ + 12Cl - + 5H 2 O ⇔ ↓Sb 4 O 5 Cl 2 + 10H + + 10Cl -<br />

Bi 3+ + 3Cl - + H 2 O ⇔ ↓BiOCl + 2H + + 2Cl -<br />

4Bi 3+ + 12Cl - + 5H 2 O ⇔ ↓Bi 4 O 5 Cl 2 + 10H + + 10Cl -<br />

7.3.5. Hydroliza soli słabych jedno- lub wieloprotonowych kwasów i słabych<br />

jedno- lub wieloprotonowych zasad<br />

Roztwory wodne soli słabych wieloprotonowych kwasów i słabych wieloprotonowych<br />

zasad mają odczyn kwaśny, zasadowy lub obojętny - w zależności od wartości odpowiednich<br />

stałych dysocjacji kwasu lub zasady, z których można wyprowadzić wzór soli (np. Cr 2 S 3 ,<br />

(NH 4 ) 2 CO 3 , Fe(CH 3 COO) 3, Al 2 S 3 ).<br />

Fe 3+ + CH 3 COO - + H 2 O ⇔ FeOH 2+ + CH 3 COOH<br />

FeOH 2+ + CH 3 COO - + H 2 O ⇔ Fe(OH)<br />

+ 2 + CH 3 COOH<br />

W przypadku soli bardzo słabych kwasów hydroliza prowadzi ostatecznie do utworzenia<br />

słabej zasady i kwasu:<br />

2Al 3+ + 3S 2- + 6 H 2 O ⇔ ↓2Al(OH) 3 + 3H 2 S<br />

7.3.6. Hydroliza soli wieloprotonowych kwasów i mocnych jednoprotonowych zasad<br />

Roztwory wodne soli wieloprotonowych kwasów i mocnych jednoprotonowych zasad<br />

mają odczyn zasadowy (np. Na 2 SO 4 ).<br />

Pomimo, iż kwas H 2 SO 4 jest najczęściej traktowany jako mocny kwas, w wyniku<br />

istnienia dwustopniowej dysocjacji tego kwasu tylko pierwszy stopień dysocjacji jest bliski 1,<br />

125


natomiast drugi stopień dysocjacji jest znacznie niższy.<br />

Reakcję hydrolizy Na 2 SO 4 możemy zapisać:<br />

SO<br />

2- 4 + H 2 O ⇔ HSO<br />

- 4 + OH -<br />

Na zakończenie rozdziału poświęconego hydrolizie należy zauważyć, że procesy<br />

hydrolityczne w roztworach wodnych stanowią złożony zespół reakcji jonowych. Pełny obraz<br />

hydrolizy dowolnej soli możemy uzyskać, nakładając na siebie obrazy hydrolizy omówione<br />

przez nas dla przypadków granicznych. Jest to zagadnienie skomplikowane i jego<br />

rozstrzygnięcie wymaga znajomości właściwości chemicznych pierwiastków i ich związków.<br />

Nie zawsze jesteśmy w stanie przewidzieć prawidłowo przebieg procesów hydrolitycznych,<br />

gdyż dodatkowo zależy on także od stężenia roztworów hydrolizujących soli. Hydroliza soli<br />

jest wynikiem istnienia równowag jonowych w roztworze. Chcąc nakreślić jej rzeczywisty<br />

obraz, musimy zawsze brać pod uwagę wszystkie możliwe równowagi jonowe w roztworze,<br />

opuszczenie choćby jednej najczęściej wypacza obraz zjawiska.<br />

7.4. Równowagi w roztworach trudno rozpuszczalnych soli<br />

Każdy związek chemiczny ma ograniczoną zdolność do rozpuszczania się w wodzie. W<br />

przypadku jednego związku można rozpuścić setki gramów w litrze wody, podczas gdy<br />

innego tylko kilka miligramów. Ilość rozpuszczonej substancji zależy nie tylko od jej rodzaju,<br />

ale również od temperatury oraz od obecności w roztworze innych związków.<br />

W niniejszym rozdziale omówione zostaną równowagi, jakie mogą występować w<br />

heterogenicznym układzie składającym się z dwóch faz: trudno rozpuszczalnej substancji<br />

(faza stała) i wodnego roztworu zawierającego jony tej substancji oraz ewentualnie jony<br />

pochodzące od innych elektrolitów.<br />

Rozpuszczona substancja ulega dysocjacji – całkowitej, jeżeli należy do grupy<br />

elektrolitów mocnych lub – częściowej, jeżeli jest elektrolitem słabym. Poniższe rozważania<br />

odnosić się będą wyłącznie do trudno rozpuszczalnych mocnych elektrolitów.<br />

Proces rozpuszczania substancji zachodzi tylko do momentu, w którym nastąpi tzw.<br />

nasycenie roztworu. W roztworze nasyconym dochodzi do zrównania szybkości<br />

rozpuszczania substancji z szybkością jej strącania, co wynika z odwracalności tych<br />

procesów. Istniejącą w takim układzie równowagę dynamiczną pomiędzy substancją stałą,<br />

A m B n , i jonami pochodzącymi z jej dysocjacji w roztworze, można zapisać jako:<br />

A B ⇔ mA + nB<br />

m<br />

n<br />

p+ q−<br />

(7.74)<br />

faza stała<br />

roztwór<br />

126


Dla takiej równowagi można zastosować prawo równowagi chemicznej i wtedy stała<br />

równowagi powyższej reakcji będzie dana wyrażeniem:<br />

K =<br />

m<br />

( a ) ( a )<br />

A<br />

a<br />

A m B n<br />

gdzie a A , a B oraz a A m B n oznaczają aktywności odpowiednich jonów i substancji stałej.<br />

B<br />

n<br />

(7.75)<br />

Ponieważ aktywność substancji stałej jest wielkością stałą, dlatego wyrażenie (7.75)<br />

można pomnożyć stronami przez a A B m<br />

napisać, że:<br />

m<br />

iloczyn rozpuszczalności L ( a ) ( a )<br />

Wyrażenie (7.76) mówi, że:<br />

n<br />

. Oznaczając iloczyn ( K⋅<br />

a A mB<br />

n<br />

) jako L, można<br />

n<br />

= (7.76)<br />

A B<br />

w roztworze nasyconym trudno rozpuszczalnego elektrolitu iloczyn<br />

aktywności jonów tego elektrolitu, podniesionych do odpowiednich<br />

potęg zgodnie z prawem równowagi chemicznej, jest wielkością stałą.<br />

Powyższe sformułowanie jest słuszne tylko dla układu, w którym temperatura nie<br />

zmienia się. Równanie (7.76) jest definicją iloczynu rozpuszczalności. Wartości L dla<br />

różnych substancji, wyznaczone w konkretnych temperaturach, znajdują się w tablicach<br />

chemicznych. Na końcu tego podręcznika podano wartości L niektórych, najczęściej<br />

spotykanych trudno rozpuszczalnych soli. Warto pamiętać, że podawane w podręcznikach i<br />

poradnikach wartości L dla tej samej soli mogą się różnić nawet o kilka rzędów. Dlaczego tak<br />

jest, Czytelnik zrozumie po przeczytaniu tego rozdziału.<br />

Zależność rozpuszczalności związku od temperatury można przewidzieć, stosując regułę<br />

Le Chateliera-Brauna. Wynika z niej, że jeżeli proces rozpuszczania jest procesem<br />

egzotermicznym, rozpuszczalność będzie maleć ze wzrostem temperatury; jeżeli proces<br />

rozpuszczania jest endotermiczny, rozpuszczalność wzrasta z temperaturą. Ta druga sytuacja<br />

zdarza się najczęściej.<br />

Wytrącanie trudno rozpuszczalnego związku, AB, z roztworu jego dobrze rozpuszczalnej<br />

soli, AS, polega na dodawaniu do tego roztworu innej dobrze rozpuszczalnej soli, CB:<br />

AS + CB → AB↓ + CS<br />

W trakcie wytrącania, przechodzimy od roztworu nienasyconego soli AB do roztworu<br />

przesyconego tej soli. Jak wynika z wzoru (7.76), sól AB zacznie się wytrącać w chwili, gdy<br />

127


iloczyn aktywności jonów A i jonów B w roztworze będzie większy niż jego iloczyn<br />

rozpuszczalności.<br />

7.4.1. Rozpuszczalność substancji<br />

Wyznaczenie rozpuszczalności związku w roztworze wodnym wymaga uwzględnienia<br />

wszystkich czynników mogących mieć wpływ na tę rozpuszczalność. Należą do nich:<br />

− hydroliza jonów powstałych z dysocjacji trudno rozpuszczalnej soli,<br />

− pH roztworu,<br />

− obecność i stężenie jonów pochodzących od innych elektrolitów znajdujących się w<br />

roztworze.<br />

Procesy hydrolityczne wpływają na równowagę (7.74) poprzez wiązanie jonów A<br />

(hydroliza kationowa) lub jonów B (hydroliza anionowa) albo jednych i drugich (hydroliza<br />

anionowo-kationowa) z jonami H+ i OH - . Powoduje to przesunięcie równowagi (7.74) w<br />

prawo i wzrost rozpuszczalności soli.<br />

Równowagi hydrolityczne ulegają naruszeniu w wyniku zmiany kwasowości roztworu,<br />

co powoduje zmianę rozpuszczalności soli.<br />

Obecność jonów innych elektrolitów w roztworze może mieć dwojaki wpływ na<br />

rozpuszczalność. Jeżeli jest to elektrolit posiadający wspólny jon z daną trudno rozpuszczalną<br />

solą, wtedy obecność tego wspólnego jonu powoduje przesunięcie równowagi (7.74) w lewo,<br />

a tym samym obniżenie rozpuszczalności soli. Natomiast obecność innych elektrolitów, nie<br />

posiadających wspólnego jonu z trudno rozpuszczalną solą, zwiększa jej rozpuszczalność<br />

poprzez wzrost siły jonowej roztworu, a co za tym idzie, obniżenie współczynników<br />

aktywności jonów.<br />

Poniżej omówiony zostanie bardziej szczegółowo wpływ powyższych czynników na<br />

rozpuszczalność.<br />

7.4.2. Rozpuszczalność hydrolizujących soli<br />

W rzeczywistości praktycznie wszystkie trudno rozpuszczalne substancje ulegają<br />

hydrolizie. Rozpatrzmy ogólny przypadek soli ulegającej hydrolizie kationowo-anionowej i<br />

określmy wpływ tej hydrolizy na rozpuszczalność. Takie uogólnienie pozwoli na określenie<br />

rozpuszczalności również tych soli, które ulegają albo hydrolizie anionowej, albo kationowej.<br />

Weźmy pod uwagę trudno rozpuszczalny elektrolit A m B n , będący solą kwasu H q B i<br />

zasady A(OH) p , ulegający hydrolizie kationowo-anionowej. W roztworze nasyconym takiego<br />

elektrolitu występować będą następujące równowagi:<br />

128


p+ q− rozpuszczanie: A B ⇔ mA + nB<br />

(7.77)<br />

hydroliza kationowa: A + OH ⇔ AOH<br />

m<br />

n<br />

( s)<br />

( r ) ( r )<br />

p+ − ( p− 1)<br />

+<br />

( p− 1) + − ( p− 2)<br />

+<br />

AOH + OH ⇔ A( OH)<br />

2<br />

:<br />

:<br />

+ −<br />

A( OH) p−1<br />

+ OH ⇔ A( OH)<br />

p<br />

(7.78)<br />

hydroliza anionowa: q<br />

q<br />

B + H ⇔ HB<br />

( 1)<br />

− + − −<br />

( q−1) − + ( q−2)<br />

−<br />

HB + H ⇔ H2B<br />

:<br />

:<br />

− +<br />

H( q−1)<br />

B + H ⇔ HqB<br />

(7.79)<br />

dysocjacja wody: + −<br />

H2O ⇔ H + OH<br />

(7.80)<br />

Indeksy: s i r oznaczają odpowiednio fazę stałą i roztwór.<br />

Ze względu na to, że w omawianym roztworze stężenia jonów są bardzo niskie, przyjęto,<br />

iż współczynniki aktywności są równe 1. Dla reakcji (7.77) stała równowagi, czyli iloczyn<br />

rozpuszczalności, ma postać:<br />

m<br />

( ) ( )<br />

L = c c<br />

A<br />

natomiast reakcjom hydrolizy odpowiadają stałe dysocjacji dla odpowiednich etapów<br />

dysocjacji wielostopniowej, to znaczy pierwszemu etapowi hydrolizy odpowiada ostatni etap<br />

dysocjacji itd. Tak więc dla hydrolizy kationowej stałe dysocjacji zasadowej K z odpowiednich<br />

stopni będą miały postać:<br />

K<br />

K<br />

K<br />

zP<br />

=<br />

z( P− 1)<br />

=<br />

z1<br />

=<br />

c<br />

c<br />

c<br />

:<br />

c<br />

A<br />

c<br />

c<br />

⋅c<br />

B<br />

AOH<br />

AOH<br />

OH<br />

n<br />

⋅c<br />

OH<br />

A( OH)<br />

2<br />

A( OH)<br />

( p−1)<br />

⋅c<br />

A( OH)<br />

p<br />

Podobnie dla hydrolizy anionowej można zapisać stałe dysocjacji kwasowej K k<br />

odpowiednich stopni:<br />

K<br />

kQ<br />

=<br />

c<br />

H<br />

c<br />

⋅c<br />

HB<br />

B<br />

OH<br />

129


K<br />

K<br />

k( Q− 1)<br />

=<br />

k1<br />

=<br />

c<br />

:<br />

:<br />

c<br />

c<br />

HB<br />

c<br />

⋅c<br />

H2B<br />

⋅c<br />

B<br />

H( q−1)<br />

B B<br />

HqB<br />

W powyższych wyrażeniach c A , c AOH , ... c A(OH)p , c B , c HB , ... c HqB , c H i c OH oznaczają<br />

stężenia równowagowe odpowiednich jonów w reakcjach (7.77) - (7.80), natomiast P i Q<br />

oznaczają numery etapu dysocjacji zasady A(OH) p i kwasu H q B.<br />

Przyjmijmy, że miarą rozpuszczalności danego związku jest jego stężenie molowe w<br />

roztworze nasyconym. Jeżeli rozpuszczalność soli A m B n wynosi S, oznacza to, że w 1 dm 3<br />

jej roztworu nasyconego musi znajdować się m·S moli atomów A oraz n·S moli atomów B<br />

(przy założeniu całkowitej dysocjacji). Zgodnie z reakcjami (7.77) - (7.79) atomy A<br />

występują w roztworze w postaci jonów A p+ i jonów A(OH) (p-1)+ , A(OH) (p-2)+ , ... itd., a atomy<br />

B – w postaci jonów B q- i jonów HB (q-1)- , H 2 B (q-2)- , ...itd. Stąd można napisać bilans masy dla<br />

atomów A:<br />

m⋅ S = c + c + c + ... + c<br />

Podobnie dla atomów B można napisać:<br />

A AOH A( OH) 2<br />

A( OH)<br />

p<br />

n⋅ S = c + c + c + ... + c<br />

B HB H2B H q B<br />

Rozpuszczalność S związana jest więc ze stężeniami odpowiednich jonów następującymi<br />

zależnościami:<br />

lub<br />

( A AOH A( OH) 2<br />

A( OH)<br />

p<br />

)<br />

S = 1<br />

m c + c + c + ... + c<br />

(7.81)<br />

( B HB H2B H q B )<br />

1<br />

S =<br />

n c + c + c + ... + c<br />

(7.82)<br />

Z wyrażeń na stałe równowagi K z i K k można wyznaczyć potrzebne stężenia jonów,<br />

występujące we wzorach na rozpuszczalność, a więc:<br />

c<br />

AOH<br />

=<br />

c<br />

A<br />

⋅c<br />

K<br />

zP<br />

OH<br />

, cA( OH)<br />

2<br />

=<br />

c<br />

AOH<br />

K<br />

⋅c<br />

OH<br />

c<br />

=<br />

K<br />

A<br />

⋅c<br />

z( P−1) z( P−1)<br />

2<br />

OH<br />

⋅ K<br />

zP<br />

, .....<br />

ogólnie:<br />

oraz:<br />

c<br />

A( OH) p<br />

=<br />

c<br />

A<br />

⋅c<br />

p<br />

OH<br />

K ⋅ K ⋅...<br />

⋅ K<br />

z1 z2<br />

zP<br />

130


a ogólnie:<br />

c<br />

HB<br />

=<br />

c<br />

H<br />

K<br />

⋅c<br />

kQ<br />

B<br />

, c<br />

H2B<br />

=<br />

c<br />

K<br />

HB<br />

⋅c<br />

H<br />

=<br />

K<br />

c<br />

B<br />

⋅c<br />

k( Q−1) k( Q−1)<br />

2<br />

H<br />

⋅ K<br />

kQ<br />

, .....<br />

cB<br />

⋅cH<br />

cH B<br />

=<br />

q<br />

Kk1 ⋅ Kk2 ⋅ ... ⋅ KkQ<br />

Po podstawieniu powyższych wyrażeń do wzorów na rozpuszczalność (7.81) i (7.82)<br />

otrzymamy:<br />

1<br />

S<br />

m c<br />

⎛ cOH<br />

= ⋅ A ⎜<br />

1+ +<br />

⎝ K K<br />

zP<br />

c<br />

2<br />

OH<br />

⋅ K<br />

q<br />

cOH<br />

+ ... +<br />

K ⋅ K ⋅...<br />

⋅ K<br />

z( P−1)<br />

zP<br />

z1 z2<br />

zP<br />

p<br />

⎞<br />

⎟<br />

⎠<br />

oraz:<br />

1<br />

S<br />

n c<br />

⎛ cH<br />

= ⋅ B⎜<br />

1+ +<br />

⎝ K K<br />

kQ<br />

c<br />

2<br />

H<br />

⋅ K<br />

cH<br />

+ ... +<br />

K ⋅ K ⋅...<br />

⋅ K<br />

k( Q−1)<br />

kQ<br />

k1 k2<br />

kQ<br />

q<br />

⎞<br />

⎟<br />

⎠<br />

Z powyższych wzorów wyliczono c A oraz c B i podstawiono do wyrażenia na iloczyn<br />

rozpuszczalności. Po uwzględnieniu, że c OH = K w /c H , otrzymano wyrażenie na rozpuszczalność<br />

trudno rozpuszczalnej soli A m B n , w czystej wodzie (bez dodatku innego elektrolitu):<br />

L m n<br />

S = ⎛ m n<br />

k<br />

⎝ ⎜ ⎞ +<br />

⎟ ⋅ϕ<br />

⋅ϕ<br />

m n ⎠<br />

1<br />

a<br />

⎛<br />

gdzie: Kw<br />

ϕ k<br />

= ⎜<br />

1+<br />

⎝ KzP<br />

⋅c<br />

H<br />

2<br />

Kw<br />

2<br />

z( P−1)<br />

⋅<br />

zP<br />

⋅<br />

H<br />

+<br />

K K c<br />

p<br />

Kw<br />

p<br />

z1 ⋅<br />

z2<br />

⋅...<br />

⋅<br />

zP<br />

⋅<br />

H<br />

+ ... +<br />

K K K c<br />

⎞<br />

⎟<br />

⎠<br />

m<br />

m+<br />

n<br />

ϕ a<br />

⎛<br />

⎜<br />

⎝<br />

c<br />

K<br />

H<br />

= 1+ +<br />

kQ<br />

K<br />

c<br />

2<br />

H<br />

⋅ K<br />

q<br />

H<br />

c<br />

+ ... +<br />

K ⋅ K ⋅...<br />

⋅ K<br />

k( Q−1)<br />

kQ<br />

k1 k2<br />

kQ<br />

⎞<br />

⎟<br />

⎠<br />

n<br />

m+<br />

n<br />

W roztworze wodnym trudno rozpuszczalnego elektrolitu zmiany kwasowości roztworu<br />

wywołane hydrolizą są minimalne i mają mały wpływ na rozpuszczalność. Dlatego można<br />

przyjąć, że c H = c OH =<br />

K w i wtedy powyższe wzory będą miały następującą postać:<br />

L m n<br />

S = ⎛ m n<br />

k<br />

⎝ ⎜ ⎞ +<br />

⎟ ⋅ϕ<br />

⋅ϕ<br />

m n ⎠<br />

1<br />

a<br />

gdzie,<br />

131


ϕ k<br />

⎛<br />

⎜ Kw<br />

= 1+ +<br />

⎜ KzP<br />

K<br />

⎝<br />

2<br />

( Kw<br />

) ( Kw<br />

)<br />

⋅ K<br />

+ ... +<br />

K ⋅ K ⋅...<br />

⋅ K<br />

z( P−1)<br />

zP<br />

z1 z2<br />

zP<br />

p<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

m<br />

m+<br />

n<br />

ϕ a<br />

⎛<br />

⎜ Kw<br />

= 1+ +<br />

⎜ KkQ<br />

K<br />

⎝<br />

2<br />

( Kw<br />

) ( Kw<br />

)<br />

⋅ K<br />

+ ... +<br />

K ⋅ K ⋅...<br />

⋅ K<br />

k( Q−1)<br />

kQ<br />

k1 k2<br />

kQ<br />

q<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

n<br />

m+<br />

n<br />

(7.83)<br />

Rozpuszczalność w wodzie soli A m B n ulegającej hydrolizie kationowo-anionowej<br />

We wzorze (7.83) człon, który oznaczymy przez S 0 , określa rozpuszczalność w wodzie<br />

soli nie ulegającej hydrolizie:<br />

rozpuszczalność soli A mB n<br />

L m n<br />

S<br />

nie ulegającej hydrolizie<br />

0<br />

= ⎡ m n<br />

⎣ ⎢ ⎤ +<br />

m n<br />

⎥<br />

(7.84)<br />

⎦<br />

Należy pamiętać, że powyższe wyrażenie jest szczególnym przypadkiem wyrażenia<br />

(7.83), choć przez wielu autorów podawane jest jako uniwersalny wzór na rozpuszczalność<br />

soli, wyrażoną za pomocą iloczynu rozpuszczalności.<br />

ϕ k to człon reprezentujący wpływ występowania hydrolizy kationowej na rozpuszczalność,<br />

natomiast ϕ a reprezentuje wpływ hydrolizy anionowej na rozpuszczalność soli.<br />

Jeżeli sól A m B n ulega tylko hydrolizie kationowej, wtedy we wzorze (7.83) można<br />

zaniedbać człon ϕ a związany z hydrolizą anionową, zawierający stałą dysocjacji kwasowej,<br />

gdyż jej wartość dąży w tym przypadku do nieskończoności. Wzór na rozpuszczalność takiej<br />

soli przyjmuje postać:<br />

1<br />

rozpuszczalność soli A mB n<br />

ulegającej hydrolizie kationowej<br />

L<br />

S = ⎛ ⎝ ⎜ ⎞<br />

m n ⎟<br />

m n ⎠<br />

1<br />

m+<br />

n<br />

⋅ϕ (7.85)<br />

k<br />

Gdy sól A m B n ulega hydrolizie anionowej, wtedy stała dysocjacji zasadowej, K z , dąży do<br />

nieskończoności i można zaniedbać człon ϕ k równania (7.83), związany z hydrolizą<br />

kationową. Rozpuszczalność takiej soli wyraża się wzorem:<br />

rozpuszczalność soli A mB n<br />

ulegającej hydrolizie anionowej<br />

L<br />

S = ⎛ ⎝ ⎜ ⎞<br />

m n ⎟<br />

m n ⎠<br />

1<br />

m+<br />

n<br />

⋅ϕ<br />

a<br />

(7.86)<br />

Jak duży błąd można popełnić, jeżeli nie weźmie się pod uwagę występowania hydrolizy<br />

soli, ilustrują rysunki 7.2 i 7.3 Przy tworzeniu wykresów przyjęto, iż decydujący wpływ na<br />

rozpuszczalność ma pierwszy etap hydrolizy, któremu odpowiada ostatnia stała dysocjacji. Na<br />

132


ys. 7.2 przedstawiono wartość członu ϕ k związanego z hydrolizą kationową, dla różnych<br />

typów soli. Wykres ilustruje, jak zmienia się wartość tego członu w zależności od stałej<br />

dysocjacji zasadowej K zP . Natomiast na rys. 7.3 można prześledzić zmiany wartości członu ϕ a<br />

związanego z hydrolizą anionową, w zależności od wartości stałej dysocjacji kwasowej K kQ .<br />

Jak widać, im niższa wartość stałej dysocjacji, tym większa wartość członów związanych z<br />

hydrolizą. A więc silna hydroliza kationowa lub anionowa może spowodować wzrost<br />

rozpuszczalności soli nawet 10 6 razy i nie wzięcie jej pod uwagę prowadzi do popełnienia<br />

bardzo dużego błędu przy określaniu rozpuszczalności soli.<br />

Jednocześnie widać, że dla stałych dysocjacji większych niż 10 -5 (pK < 5) człony<br />

związane z hydrolizą przyjmują wartości bliskie 1. Pozwala to na sformułowanie<br />

ogólniejszego wniosku, że dla tych przypadków można zaniedbać występowanie hydrolizy i<br />

posłużyć się wzorem (7.84) w celu obliczenia rozpuszczalności soli. W przypadku, gdy<br />

wprawdzie zachodzi hydroliza kationowo-anionowa, ale jedna ze stałych K zP lub K kQ jest<br />

większa od 10 5 , można z dobrym przybliżeniem posługiwać się wzorami (7.85) i (7.86).<br />

Porównując wyrażenia na rozpuszczalność soli nie ulegających hydrolizie oraz soli<br />

hydrolizujących, można wyciągnąć ogólny wniosek, że występowanie hydrolizy zwiększa<br />

rozpuszczalność osadów.<br />

ϕ k<br />

10 4<br />

10 3<br />

10 2<br />

A 2 B<br />

A 3 B 2<br />

AB<br />

A 2 B 3<br />

AB 2<br />

10<br />

5 10 15<br />

p K zP<br />

Rys. 7.2. Wpływ hydrolizy kationowej na rozpuszczalność soli. Zależność wartości<br />

współczynnika ϕ k , odzwierciedlającego wpływ hydrolizy kationowej na<br />

rozpuszczalność soli, od wartości stałej dysocjacji zasadowej K z .<br />

133


10 4 AB 2<br />

A 2 B 3<br />

10 3<br />

AB<br />

A 3 B 2<br />

ϕ a<br />

10<br />

10 2<br />

A 2 B<br />

5 10 15<br />

pK kQ<br />

Rys. 7.3. Wpływ hydrolizy anionowej na rozpuszczalność soli. Zależność wartości<br />

współczynnika ϕ a , odzwierciedlającego wpływ hydrolizy anionowej<br />

na rozpuszczalność soli, od wartości stałej dysocjacji kwasowej K k .<br />

7.4.3. Rozpuszczalność soli w roztworach mocnych elektrolitów<br />

Kolejnym czynnikiem mającym wpływ na rozpuszczalność soli jest obecność w<br />

roztworze innych, dobrze rozpuszczalnych elektrolitów. Te dodatkowe elektrolity można<br />

ogólnie podzielić na cztery duże grupy:<br />

• sole nie posiadające wspólnego jonu z trudno rozpuszczalną solą;<br />

• sole posiadające wspólny jon z trudno rozpuszczalną solą;<br />

• mocne kwasy lub mocne zasady;<br />

• związki zawierające kation lub anion zdolny do tworzenia połączeń kompleksowych z<br />

jonami trudno rozpuszczalnego elektrolitu.<br />

We wszystkich wymienionych przypadkach mamy do czynienia ze wzrostem siły<br />

jonowej roztworu, co zawsze prowadzi do wzrostu rozpuszczalności trudno rozpuszczalnego<br />

elektrolitu. W pierwszym przypadku jest to jedyny czynnik mający wpływ na<br />

rozpuszczalność. W drugim przypadku mamy do czynienia z tzw. efektem wspólnego jonu,<br />

powodującym obniżenie rozpuszczalności w wyniku przesunięcia równowagi (7.77) w lewą<br />

stronę. Trzeci przypadek uwzględnia wpływ kwasowości środowiska na równowagi<br />

hydrolityczne. W czwartym przypadku jony trudno rozpuszczalnego elektrolitu wchodzą w<br />

równowagi kompleksowe, co powoduje wzrost rozpuszczalności (równowaga (7.77)<br />

134


przesuwa się w prawo).<br />

Wpływ siły jonowej na rozpuszczalność<br />

Rozpatrzmy rozpuszczalność trudno rozpuszczalnej soli A m B n w roztworze dobrze<br />

rozpuszczalnej soli C r D t . Załóżmy dla uproszczenia, że sól C r D t nie zmienia kwasowości<br />

środowiska, czyli nie ulega hydrolizie. Siła jonowa roztworu, I, będzie w tym przypadku<br />

zależeć od jonów C i D, gdyż ich stężenie jest nieporównywalnie duże w stosunku do stężenia<br />

jonów A i B. Znając siłę jonową roztworu, można obliczyć współczynniki aktywności<br />

poszczególnych jonów lub skorzystać z danych eksperymentalnych.<br />

W omawianym roztworze występować mogą wszystkie równowagi opisane równaniami<br />

(7.77) - (7.80), jednak w wyrażeniach na stałe równowagi tych reakcji muszą się pojawić<br />

współczynniki aktywności poszczególnych jonów, gdyż są one istotnie różne od 1.<br />

Rozpuszczalność soli A m B n w roztworze innego mocnego elektrolitu będzie określona<br />

analogicznymi wyrażeniami jak w rozdziale 7.4.2, lecz zawierać one będą dodatkowo<br />

współczynniki aktywności jonów. Podajmy jako przykład wzór na rozpuszczalność nie<br />

hydrolizujacej soli:<br />

rozpuszczalność soli A mB n nie ulegającej<br />

hydrolizie z uwzględnieniem siły jonowej<br />

L<br />

S = ⎛ m n m n<br />

⎝ ⎜ ⎞<br />

m n f f ⎠<br />

A<br />

B<br />

1<br />

m n<br />

⎟ +<br />

(7.87)<br />

Współczynniki aktywności jonów w omawianych roztworach przyjmują na ogół wartości<br />

mniejsze od 1. Wynika z tego, że w roztworach o dużej sile jonowej rozpuszczalność<br />

osadów jest większa niż w roztworach, w których siła jonowa jest zaniedbywalnie mała.<br />

W celu zilustrowania, jaki wpływ na rozpuszczalność osadów ma siła jonowa roztworu,<br />

przedstawmy wzór (7.87) w postaci iloczynu dwóch członów:<br />

S<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

L<br />

m<br />

m n<br />

n<br />

⎞<br />

⎟<br />

⎠<br />

1<br />

m+<br />

n<br />

⎛<br />

⎜<br />

⎝<br />

1<br />

f f<br />

m<br />

A<br />

n<br />

B<br />

⎞<br />

⎟<br />

⎠<br />

1<br />

m+<br />

n<br />

Człon S 0 odpowiada rozpuszczalności w wodzie nie hydrolizującego elektrolitu,<br />

natomiast ϕ I odzwierciedla wpływ siły jonowej na rozpuszczalność.<br />

135


6<br />

4<br />

ϕ I<br />

2<br />

0<br />

0.00 0.02 0.04 0.06 0.08 0.10<br />

I<br />

Rys. 7.4. Wpływ siły jonowej na rozpuszczalność soli. Zależność wartości współczynnika ϕ I ,<br />

odzwierciedlającego wpływ siły jonowej na rozpuszczalność soli, od siły jonowej<br />

roztworu.<br />

Rys. 7.4 przedstawia, jak zmienia się wartość członu ϕ I wraz ze wzrostem siły jonowej<br />

roztworu. Wykresy sporządzono dla trudno rozpuszczalnej soli A m B n , znajdującej się w<br />

roztworze innego elektrolitu o sile jonowej I. Analiza tego rysunku wskazuje, że siła jonowa<br />

może spowodować wzrost rozpuszczalności soli maksymalnie 6 - 7 razy, czyli ok. pół rzędu.<br />

Efekt wspólnego jonu<br />

Rozważmy sytuację, w której trudno rozpuszczalna sól A m B n znajduje się w roztworze<br />

innego, dobrze rozpuszczalnego elektrolitu, posiadającego wspólny jon z solą A m B n . Możliwe<br />

są wtedy dwa przypadki:<br />

1. dobrze rozpuszczalny elektrolit posiada wspólny kation z A m B n ;<br />

2. dobrze rozpuszczalny elektrolit posiada wspólny anion z A m B n .<br />

Na początek rozpatrzymy pierwszy z wymienionych przypadków i określimy<br />

rozpuszczalność soli A m B n w roztworze dobrze rozpuszczalnego elektrolitu AD o znanym<br />

stężeniu. Oba elektrolity posiadają wspólny kation A. Aby zachować przejrzystość<br />

wyprowadzenia wzorów, zaniedbano wpływ siły jonowej i pozostawiono omówienie tego<br />

zagadnienia na koniec rozdziału.<br />

W omawianym roztworze występują równowagi opisane równaniami (7.77) - (7.80). Ze<br />

względu na stosunkowo wysokie stężenie jonów A pochodzących z elektrolitu AD w stosunku<br />

do jonów A pochodzących z trudno rozpuszczalnej soli A m B n , można z dobrym przybliżeniem<br />

136


przyjąć, że stężenie jonów A w tym roztworze jest znane i określone przez stężenie elektrolitu<br />

AD.<br />

Jeżeli wspólny jon jest kationem, to jest oczywiste, że rozpuszczalność można określić<br />

wyłącznie na podstawie stężenia atomów B w roztworze, czyli:<br />

1<br />

S =<br />

n c B<br />

+<br />

( c )<br />

przy założeniu, że jony B ulegają tylko pierwszemu etapowi hydrolizy. Stężenie c B<br />

można wyznaczyć, korzystając z iloczynu rozpuszczalności soli A m B n :<br />

c B =<br />

⎛ L<br />

⎜<br />

⎝ ( c A )<br />

m<br />

⎞<br />

⎟<br />

⎠<br />

1<br />

n<br />

⎛<br />

⎜<br />

⎝<br />

f<br />

HB<br />

m<br />

A<br />

1<br />

⋅f<br />

n<br />

B<br />

⎞<br />

⎟<br />

⎠<br />

1<br />

n<br />

natomiast c HB ze stałej dysocjacji:<br />

c<br />

HB<br />

=<br />

c<br />

B<br />

c<br />

K<br />

H<br />

kQ<br />

fH<br />

⋅ f<br />

⋅<br />

f<br />

HB<br />

B<br />

Podstawiając powyższe wyrażenia do wzoru na rozpuszczalność otrzymujemy:<br />

S<br />

=<br />

1<br />

n<br />

⎡<br />

⎢<br />

⎢⎣<br />

L<br />

⎤<br />

⎥<br />

1<br />

n<br />

⎡<br />

⎢⎛<br />

⎢<br />

⎜<br />

1<br />

f<br />

⋅<br />

m m n<br />

( c ) ⎥⎦<br />

⎢⎝<br />

⋅ ⎠<br />

⎥ ⎥⎥ A fA<br />

fB<br />

KkQ<br />

fHB<br />

⎣<br />

⎦<br />

Jeżeli kation A, będący wspólnym jonem, ulega nieznacznej hydrolizie (K z > 10 -5 ) lub w ogóle nie<br />

hydrolizuje, to można założyć, że pH roztworu minimalnie odbiega od 7 i w związku z tym<br />

c H = 10 -7 mol/dm 3 . Natomiast w przypadku, gdy kation A ulega znacznej hydrolizie, pH<br />

omawianego roztworu jest określone przede wszystkim przez tę hydrolizę, ze względu na<br />

duże stężenie jonu A w stosunku do hydrolizującego anionu B. Wtedy stężenie jonów H + w<br />

tym roztworze dane jest zależnością (założono, że jony A ulegają tylko pierwszemu etapowi<br />

hydrolizy - patrz rozdz. 7.2):<br />

⎞<br />

⎟<br />

1<br />

n<br />

+<br />

c<br />

H<br />

H<br />

f<br />

B<br />

⎤<br />

c<br />

H<br />

=<br />

c<br />

A<br />

K<br />

K<br />

w<br />

zP<br />

W rezultacie otrzymano następujący wzór na rozpuszczalność soli w roztworze soli o<br />

wspólnym kationie:<br />

137


S<br />

=<br />

⎛<br />

⎜<br />

⎝ n<br />

n<br />

L<br />

⎞<br />

⎟<br />

1<br />

n<br />

⎡<br />

⎢⎛<br />

⎢<br />

⎜<br />

1<br />

⎞<br />

⎟<br />

1<br />

n<br />

+<br />

c<br />

OH<br />

m m n A<br />

( c ) ⎠ ⎢⎝<br />

⎠<br />

⎥ ⎥⎥ A fA<br />

fB<br />

KzP<br />

kQ fHB<br />

fA<br />

⎣<br />

⎦<br />

K<br />

w<br />

1<br />

K<br />

f<br />

H<br />

f<br />

B<br />

f<br />

H<br />

f<br />

⎤<br />

(7.88)<br />

Zupełne pominięcie zjawiska hydrolizy soli, prowadzi do znacznie prostszego wzoru na<br />

rozpuszczalność soli w roztworze o wspólnym kationie, tzn.:<br />

rozpuszczalność soli A mB n<br />

w roztworze soli zawierającej kation A<br />

⎛<br />

S = ⎜<br />

(hydroliza soli pominięta) ⎜ n<br />

⎝ n ( c )<br />

L<br />

A<br />

m<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

1<br />

n<br />

(7.89)<br />

Rys. 7.5 ilustruje różnice rozpuszczalności chromianu(VI) srebra Ag 2 CrO 4 w roztworze<br />

azotanu(V) srebra AgNO 3 , występujące przy zastosowaniu wzoru (7.88) oraz wzoru (7.89).<br />

Rozpuszczalność Ag 2 CrO 4 w wodzie wynosi 1,69·10 -4 mol/dm 3 (obliczona wg wzoru (7.83)).<br />

Jak widać z rys. 7.5, dodatek elektrolitu o wspólnym kationie powoduje zmniejszenie<br />

rozpuszczalności chromianu(VI) srebra o 2 do 6 rzędów, zależnie od stężenia AgNO 3 .<br />

Jednocześnie, porównując linie a i b możemy się przekonać, że błąd, jaki można popełnić,<br />

jeżeli nie uwzględni się hydrolizy soli, wynosi dwa do trzech rzędów wielkości.<br />

S [mol/dm 3 ]<br />

a<br />

b<br />

0.0 0.2 0.4 0.6<br />

c s [mol/dm 3 ]<br />

Rys. 7.5. Rozpuszczalność Ag 2 CrO 4 w roztworze AgNO 3 o stężeniu c s : krzywa α -<br />

obliczona wg równania (7.88), krzywa b - obliczona wg równania (7.89).<br />

138


W analogiczny sposób, jak w przypadku wspólnego kationu, można wyprowadzić wzory<br />

na rozpuszczalność soli A m B n w roztworze elektrolitu CB, który posiada wspólny anion z<br />

trudno rozpuszczalną solą. Rozpuszczalność soli A m B n w takim roztworze można wyznaczyć<br />

wyłącznie na podstawie stężenia kationu A w roztworze, a więc:<br />

1<br />

S = ( )<br />

m c A<br />

+ c AOH<br />

przy założeniu, że jony A ulegają tylko pierwszemu etapowi hydrolizy. Stosując podobne<br />

przekształcenia, jak dla przypadku wspólnego kationu, otrzymujemy następujący wzór na<br />

rozpuszczalność soli w roztworze o wspólnym anionie, który nie hydrolizuje:<br />

⎛<br />

S=<br />

⎜<br />

⎝ m<br />

m<br />

L<br />

⎞<br />

⎟<br />

1<br />

m<br />

⎡<br />

⎢⎛<br />

⎢<br />

⎜<br />

1<br />

⎞<br />

⎟<br />

n m n<br />

( c ) ⎠ ⎢⎝<br />

⎠<br />

⎥ ⎥⎥ B fA<br />

fB<br />

KzP<br />

fAOH<br />

⎣<br />

⎦<br />

W przypadku, gdy występuje znacząca hydroliza anionu B, stężenie jonów wodorowych<br />

w tym roztworze określone jest właśnie przez tę hydrolizę (tak jak poprzednio, zakłada się<br />

występowanie tylko pierwszego etapu hydrolizy jonów B):<br />

c =<br />

H<br />

1<br />

c<br />

B<br />

K<br />

w<br />

K<br />

kQ<br />

1<br />

m<br />

f<br />

f<br />

H<br />

+<br />

OH<br />

c<br />

f<br />

H<br />

B<br />

f<br />

A<br />

f<br />

OH<br />

⎤<br />

a wzór na rozpuszczalność soli w roztworze elektrolitu o wspólnym anionie będzie miał<br />

postać:<br />

⎛<br />

S = ⎜<br />

⎝ m<br />

m<br />

L<br />

⎞<br />

⎟<br />

1<br />

m<br />

⎡<br />

⎢⎛<br />

⎢<br />

⎜<br />

1<br />

⎞<br />

⎟<br />

1<br />

m<br />

+<br />

K<br />

n m n<br />

( c ) ⎠ ⎢⎝<br />

⎠<br />

⎥ ⎥⎥ B fA<br />

fB<br />

cB<br />

zP fAOH<br />

⎣<br />

⎦<br />

w<br />

K<br />

kQ<br />

1<br />

K<br />

f<br />

A<br />

f<br />

H<br />

f<br />

B<br />

⎤<br />

(7.90)<br />

Jeżeli całkowicie pominie się hydrolizę soli, to rozpuszczalność soli A m B n w roztworze<br />

elektrolitu o wspólnym anionie, będzie dana wyrażeniem:<br />

rozpuszczalność soli A mB n<br />

w roztworze soli zawierającej anion B<br />

⎛<br />

S = ⎜<br />

(hydroliza soli pominięta) ⎜ m<br />

⎝ m ( c )<br />

L<br />

B<br />

n<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

1<br />

m<br />

(7.91)<br />

Rys. 7.6 ilustruje różnice, jakie wynikają z obliczenia rozpuszczalności trudno<br />

rozpuszczalnej soli w roztworze elektrolitu o wspólnym anionie według równań (7.90) i<br />

(7.91), na przykładzie soli Ag 2 CrO 4 w roztworze Na 2 CrO 4 . Jak widać, obecność elektrolitu o<br />

wspólnym anionie zmniejsza rozpuszczalność Ag 2 CrO 4 o ok. 1 rząd (linia a). Zaniedbanie w<br />

139


obliczeniach efektów spowodowanych hydrolizą soli powoduje wyliczenie rozpuszczalności<br />

chromianu srebra mniejszej jeszcze o 1 rząd (linia b).<br />

S [mol/dm 3 ]<br />

a<br />

b<br />

0.0 0.2 0.4 0.6<br />

c s [mol/dm 3 ]<br />

Rys. 7.6. Rozpuszczalność Ag 2 CrO 4 w roztworze Na 2 CrO 4 o stężeniu c s : krzywa α -<br />

obliczona wg równania (7.90), krzywa b - obliczona wg równania (7.91).<br />

Omówiony przykład odnosi się do soli typu A 2 B, czyli dla m = 2 i n = 1, i z tego wynika<br />

większy wpływ elektrolitu o wspólnym kationie na rozpuszczalność tej soli niż elektrolitu o<br />

wspólnym anionie zilustrowany na wykresach.<br />

Należy również pamiętać o tym, że ze względu na obecność elektrolitu o dość dużym<br />

stężeniu roztwór charakteryzuje znaczna siła jonowa. Dlatego otrzymane na podstawie<br />

wzorów (7.88) - (7.91) wartości rozpuszczalności należy zwiększyć w przybliżeniu tyle razy,<br />

ile wynosi wartość czynnika ϕ I dla konkretnej trudno rozpuszczalnej soli (zwykle kilka razy).<br />

Rozpuszczalność soli w roztworach kwaśnych i zasadowych<br />

Jak już wcześniej powiedziano, w roztworach kwaśnych lub zasadowych<br />

rozpuszczalność hydrolizujących soli ulega zmianie w stosunku do rozpuszczalności w<br />

czystej wodzie. Mamy w tym przypadku do czynienia z wpływem dwojakim, tzn. zarówno<br />

siły jonowej roztworu, która rośnie w związku z obecnością kwasu lub zasady o stosunkowo<br />

dużym stężeniu, jak i wpływem kwasowości roztworu. Oczywiście kwasowość roztworu<br />

może mieć wpływ tylko na rozpuszczalność hydrolizujących soli, gdyż tylko wtedy zostaje<br />

naruszona równowaga opisana reakcją (7.77).<br />

140


W roztworze trudno rozpuszczalnej soli A m B n , zawierającej mocny kwas lub mocn ą zasad ę ,<br />

ustalaj ą si ę takie same równowagi, jak opisane równaniami (7.77) - (7.80). W takim<br />

roztworze pH określone jest w rzeczywistości wyłącznie przez ten kwas lub zasad ę, gdy ż jony<br />

wodorowe lub wodorotlenkowe wchodzące w reakcj ę hydrolizy można pomin ąć, ze wzglę<br />

du<br />

+<br />

na ich nieporównywalnie małe stęż enie w stosunku do jonów H z kwasu czy jonów OH - z<br />

zasady. Możemy zatem prześledzi ć wpływ kwasowości roztworu na rozpuszczalno ść soli<br />

A m B n , korzystając z wyraże ń wyprowadzonych w rozdziale 7.4.2, :<br />

L m n<br />

S = ⎛ m n<br />

k<br />

⎝ ⎜ ⎞ +<br />

⎟ ⋅ϕ<br />

⋅ϕ<br />

m n ⎠<br />

1<br />

a<br />

ϕ k<br />

⎛ Kw<br />

= ⎜<br />

1+<br />

⎝ KzP<br />

⋅c<br />

H<br />

2<br />

Kw<br />

2<br />

z( P−1)<br />

⋅<br />

zP<br />

⋅<br />

H<br />

+<br />

K K c<br />

p<br />

Kw<br />

p<br />

z1 ⋅<br />

z2<br />

⋅...<br />

⋅<br />

zP<br />

⋅<br />

H<br />

+ ... +<br />

K K K c<br />

⎞<br />

⎟<br />

⎠<br />

m<br />

m+<br />

n<br />

ϕ a<br />

⎛<br />

⎜<br />

⎝<br />

c<br />

K<br />

H<br />

= 1+ +<br />

kQ<br />

K<br />

c<br />

2<br />

H<br />

⋅ K<br />

q<br />

H<br />

c<br />

+ ... +<br />

K ⋅ K ⋅...<br />

⋅ K<br />

k( Q−1)<br />

kQ<br />

k1 k2<br />

kQ<br />

⎞<br />

⎟<br />

⎠<br />

n<br />

m+<br />

n<br />

Rys. 7.7 przedstawia wartość członu ϕ k , określającego udział hydrolizy kationowej w<br />

rozpuszczalności w zależności od pH, dla kilku wartości stałej dysocjacji zasadowej soli typu<br />

AB. Wykorzystano związek między pH a stężeniem jonów H + :<br />

c H = 10 -pH<br />

Do konstrukcji wykresu przyjęto, że zachodzi tylko pierwszy etap hydrolizy. Jak widać,<br />

im bardziej zasadowy roztwór oraz im mniejsza stała dysocjacji, tym wartość tego członu<br />

większa, czyli tym większa rozpuszczalność soli. Widać jednocześnie, że wartość członu ϕ k ,<br />

dla poszczególnych stałych K zP , zaczyna znacząco różnić się od zera dopiero powyżej pewnej,<br />

granicznej wartości pH. Tę graniczną wartość pH można w przybliżeniu określić jako (14 ­<br />

pK zP ) i przyjąć, że przy wyznaczaniu rozpuszczalności soli hydrolizującej kationowo w<br />

roztworze o pH mniejszym niż (14 pK z ), można zaniedbać wpływ pH. Rys. 7.8 pokazuje, że<br />

dla soli o różnych składach, przy tym samym pH i dla takiej samej stałej K zP , wartość członu<br />

ϕ k , a tym samym ich rozpuszczalność, rośnie ze wzrostem stosunku m n we wzorze A mB n .<br />

141


ϕ k<br />

d<br />

c<br />

b<br />

a<br />

0 2 4 6 8 10 12 14<br />

pH<br />

Rys. 7.7. Wpływ kwasowości roztworu na rozpuszczalność soli ulegających hydrolizie<br />

kationowej dla różnych stałych dysocjacji zasadowej.<br />

e<br />

d<br />

ϕ k<br />

c<br />

b<br />

a<br />

0 2 4 6 8 10 12 14<br />

pH<br />

Rys. 7.8. Wpływ kwasowości roztworu na rozpuszczalność soli o różnych składach,<br />

ulegających hydrolizie kationowej.<br />

142


Z rys. 7.9 widać, że rozpuszczalność soli hydrolizujących anionowo jest tym większa, im<br />

bardziej kwaśny jest roztwór oraz im silniejsza jest hydroliza, czyli im mniejsza stała K kQ . Na<br />

podstawie tego rysunku można stwierdzić, że dla wartości pH większych (w przybliżeniu) niż<br />

wartość pK kQ dla danego anionu, wartość członu ϕ a jest bliska jedności. Tym samym przy<br />

wyznaczaniu rozpuszczalności soli hydrolizujących anionowo można zaniedbać wpływ pH,<br />

gdy pH > pK kQ . W przypadku soli o różnym składzie, lecz o takiej samej stałej K kQ , ich<br />

rozpuszczalność jest tym większa, im większy jest stosunek n m we wzorze A mB n (rys. 7.10).<br />

Wzrost lub obniżenie rozpuszczalności soli wywołane zmianą pH może być bardzo duże,<br />

nawet rzędu 10 10 razy.<br />

Pamiętajmy również, że dla dużych stężeń kwasu bądź zasady należy dodać efekt<br />

związany ze wzrostem siły jonowej roztworu i zwiększyć wyznaczoną wartość rozpuszczalności<br />

przynajmniej tyle razy, ile wynosi wartość czynnika ϕ I .<br />

d<br />

ϕ a<br />

c<br />

b<br />

a<br />

0 2 4 6 8 10 12 14<br />

Rys. 7.9. Wpływ kwasowości roztworu na rozpuszczalność soli ulegających hydrolizie<br />

anionowej dla różnych stałych dysocjacji kwasowej.<br />

pH<br />

143


e<br />

d<br />

c<br />

ϕ a<br />

b<br />

a<br />

0 2 4 6 8 10 12 14<br />

pH<br />

Rys. 7.10. Wpływ kwasowości roztworu na rozpuszczalność soli o różnych składach,<br />

ulegających hydrolizie anionowej.<br />

7.4.4. Rozpuszczalność soli w roztworach kompleksów<br />

Rozpatrzmy sytuację, gdy trudno rozpuszczalna sól A m B n znajduje się w roztworze<br />

zawierającym jony L - , zdolne do tworzenia kompleksu z jonem A. Jest to najczęściej<br />

spotykany przypadek reakcji kompleksowania. W takim roztworze, obok równowag<br />

opisanych równaniami (7.77) - (7.80), ustalają się dodatkowe równowagi kompleksowania.<br />

Załóżmy, że do roztworu wprowadzono duży nadmiar jonów L o stężeniu c L oraz, że kation A<br />

może skompleksować u ligandów L. Wtedy dodatkowo będą brane pod uwagę następujące<br />

równowagi:<br />

p+ − ( p− 1)<br />

+<br />

A + L ⇔ [ AL]<br />

[ AL] p 1<br />

+ L ⇔ [ AL2<br />

]<br />

( − ) + − ( p− ) +<br />

:<br />

:<br />

p− u+ 1 +<br />

[ AL( u−1)<br />

] + L ⇔ [ ALu<br />

]<br />

( )<br />

− ( p− u)<br />

+<br />

2 (7.92)<br />

Możliwość tworzenia przez jony A jonów kompleksowych powoduje, że równowaga<br />

reakcji (7.77) przesuwa się w prawo i obserwujemy wzrost rozpuszczalności soli A m B n .<br />

Wyznaczmy więc rozpuszczalność tej soli, która w opisanym roztworze będzie określona<br />

przez stężenie atomów B:<br />

144


S<br />

( B HB H q B )<br />

1<br />

=<br />

n c + c + ... + c<br />

(7.93)<br />

lub przez stężenie atomów A, występujących w postaci jonów A, zhydrolizowanych jonów A(OH) x lub jonów<br />

kompleksowych:<br />

S<br />

( A AOH A( OH) 2 A( OH)<br />

p AL AL2<br />

ALu<br />

)<br />

1<br />

=<br />

m c + c + c + ... + c + c + c + ... + c<br />

(7.94)<br />

Stężenia jonów zhydrolizowanych wyznaczono w rozdz. 7.4.2 a ze stałych nietrwałości<br />

K, odpowiadających reakcjom kompleksowania:<br />

c<br />

AL<br />

K<br />

cA<br />

c<br />

K1 = ⋅<br />

c<br />

K<br />

u<br />

2<br />

=<br />

=<br />

c<br />

:<br />

:<br />

c<br />

AL<br />

c<br />

c<br />

AL<br />

L<br />

⋅c<br />

AL2<br />

ALu−1<br />

ALu<br />

można wyliczyć stężenia jonów kompleksowych zawierających atomy A:<br />

2<br />

cA<br />

⋅cL<br />

c<br />

=<br />

AL<br />

⋅cL cA ⋅cL<br />

, cAL<br />

= = , .....<br />

K<br />

2<br />

1<br />

K2<br />

K1 ⋅ K2<br />

ogólnie:<br />

L<br />

⋅c<br />

L<br />

c<br />

ALu<br />

=<br />

c<br />

A<br />

⋅c<br />

u<br />

L<br />

K1 ⋅ K2 ⋅ ... ⋅ K<br />

u<br />

Tak wyliczone stężenia wstawiamy do zależności (7.93) i (7.94) na rozpuszczalność:<br />

S<br />

q<br />

1<br />

n c<br />

⎛ cH<br />

cH<br />

= ⋅ B⎜<br />

1+ + ... +<br />

⎝ K K ⋅ K ⋅...<br />

⋅K<br />

kQ<br />

k1 k2<br />

kQ<br />

⎞<br />

⎟<br />

⎠<br />

S<br />

p<br />

1<br />

m c ⎛ cOH<br />

cOH<br />

= ⋅<br />

A<br />

⎜1+ + ... +<br />

⎝ K K ⋅ K ⋅...<br />

⋅K<br />

zP<br />

cL<br />

cL<br />

+ + ... +<br />

K K ⋅ K ⋅ ... ⋅ K<br />

z1 z2 zP 1 1 2<br />

u<br />

u<br />

⎞<br />

⎟<br />

⎠<br />

Z powyższych wyrażeń wyliczamy c A i c B i uzyskane wyrażenia wstawiamy do wzoru na<br />

iloczyn rozpuszczalności:<br />

m<br />

( ) ( )<br />

L = c c<br />

A<br />

B<br />

n<br />

Wprowadzając założenie, że w wyniku hydrolizy nie nastąpi znacząca zmiana<br />

145


kwasowości roztworu i jego odczyn będzie obojętny, czyli c H = c OH =<br />

K w , otrzymujemy<br />

następujące wyrażenie na rozpuszczalność soli w roztworze zawierającym jony zdolne do<br />

kompleksowania kationu tej soli:<br />

⎛ L<br />

S = ⎜<br />

m<br />

⎝ m ⋅ n<br />

n<br />

⎞<br />

⎟<br />

⎠<br />

1<br />

n+<br />

m<br />

⎛<br />

⎜1+<br />

⎜<br />

⎝<br />

K<br />

K<br />

w<br />

zP<br />

+ ... +<br />

K<br />

z1<br />

( K )<br />

⋅ K<br />

z2<br />

w<br />

p<br />

⋅...<br />

⋅ K<br />

zP<br />

c<br />

+<br />

K<br />

L<br />

1<br />

+ ... +<br />

K<br />

1<br />

c<br />

⋅ K<br />

u<br />

L<br />

2<br />

⋅...<br />

⋅ K<br />

u<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

m<br />

n+<br />

m<br />

⋅ ϕ<br />

a<br />

(7.95)<br />

W powyższym wzorze czynnik ϕ a określa wpływ hydrolizy anionu trudno rozpuszczalnej<br />

soli i jest przedstawiony odpowiednim wyrażeniem w rozdz. 7.4.2 (wzór 7.83). Oczywiście<br />

wyrażenie (7.95) jest ogólne i uwzględnia zarówno hydrolizę kationu, jak i anionu trudno<br />

rozpuszczalnej soli. Jeżeli trudno rozpuszczalna sól nie ulega hydrolizie, wtedy z powyższego<br />

wyrażenia znikną elementy związane z hydrolizą i wzór na rozpuszczalność przyjmie prostszą<br />

postać:<br />

S<br />

⎛<br />

= ⎜<br />

⎝ m<br />

m<br />

L<br />

⋅ n<br />

n<br />

1<br />

m<br />

+ ⎞ n+<br />

m<br />

u<br />

⎞ n m ⎛ cL<br />

cL<br />

⎟ ⎜1 + + ... +<br />

⎠ ⎝ K K ⋅ K ⋅ ... ⋅ K<br />

1 1 2<br />

u<br />

⎟<br />

⎠<br />

(7.96)<br />

Wpływ kompleksowania na rozpuszczalność można rozpatrzyć, analizując wartości, jakie<br />

może przyjmować człon ϕ L wzoru (7.96), będący czymś w rodzaju poprawki, jaką wnosi<br />

właśnie reakcja kompleksowania:<br />

⎛<br />

u<br />

cL cL<br />

ϕ L<br />

= ⎜1+ + ... +<br />

⎝<br />

K<br />

K ⋅ K ⋅ ... ⋅ K<br />

1 1 2<br />

u<br />

m<br />

⎞ n m<br />

⎟ +<br />

⎠<br />

Na rys. 7.11 przedstawiono wykresy ϕ L jako funkcji tzw. skumulowanej stałej<br />

nietrwałości β u (β u = K 1·K 2·...·K u ):<br />

ϕ<br />

L<br />

( β )<br />

u<br />

⎛ c<br />

= ⎜1+<br />

⎝ β<br />

m<br />

u<br />

⎞ n m<br />

L<br />

⎟ +<br />

u<br />

⎠<br />

dla soli o różnych składach, przy założeniu, że mogą się tworzyć kompleksy dwuligandowe.<br />

146


Przyjęto, że stężenie c L jonów kompleksowanych przez kation A w roztworze soli A m B n<br />

wynosi 0,5 mol/dm 3 . Z omawianego rysunku widać, że dla najczęściej spotykanych stałych β<br />

u, współczynnik ϕ L może osiągać nawet wartości rzędu 10 15 , czyli tyle razy może wzrosnąć<br />

rozpuszczalność soli w roztworze kompleksującym jej kation. Ogólnie, obecność w<br />

roztworze jonów zdolnych do tworzenia kompleksów z jonami trudno rozpuszczalnej<br />

soli, powoduje znaczny wzrost jej rozpuszczalności, mogący spowodować nawet<br />

całkowite jej rozpuszczenie.<br />

ϕ L<br />

0 10 20 30<br />

-log β u<br />

Rys. 7.11. Wpływ kompleksowania na rozpuszczalność soli o różnych składach. Zależność<br />

wartości współczynnika ϕ L od ujemnego logarytmu ze skumulowanej stałej<br />

trwałości, dla różnych typów związków.<br />

Przypomnijmy, że w dotychczasowych rozważaniach nie brano pod uwagę siły jonowej<br />

roztworu. Zgodnie z tym, co zaznaczono we wcześniejszych rozdziałach, duża siła jonowa<br />

może dodatkowo zwiększyć rozpuszczalność w granicach 1 rzędu.<br />

7.4.5. Rozpuszczalność wodorotlenków<br />

Wszystkie dotychczasowe rozważania dotyczące rozpuszczalności związków trudno<br />

rozpuszczalnych odnosiły się do soli będących mocnymi elektrolitami, czyli soli ulegających<br />

całkowitej dysocjacji w roztworze wodnym. Takie ograniczenie rodzaju związków trudno<br />

rozpuszczalnych pozwalało na skorzystanie z iloczynu rozpuszczalności, czyli stałej<br />

równowagi opisującej odwracalny proces rozpuszczania i strącania. Przypomnijmy, że iloczyn<br />

rozpuszczalności został zdefiniowany dla procesu rozpuszczania, w wyniku którego do<br />

147


oztworu przechodzą wyłącznie jony rozpuszczającej się substancji. Taka sytuacja ma właśnie<br />

miejsce w przypadku rozpuszczania związków, będących mocnymi elektrolitami, np.<br />

większości soli, będących elektrolitami rzeczywistymi. Nie można jej jednak odnieść do<br />

rozpuszczania wodorotlenków.<br />

Do wodorotlenków ulegających całkowitej dysocjacji możemy zaliczyć wodorotlenki<br />

kationów I i II grupy układu okresowego (z wyjątkiem berylu i magnezu), które jednak są<br />

związkami dobrze rozpuszczalnymi. Wszystkie wodorotlenki trudno rozpuszczalne są<br />

jednocześnie słabymi elektrolitami i przechodząc do roztworu, dysocjują w niewielkim<br />

stopniu. Dlatego w roztworach takich wodorotlenków, obok kationów i jonów<br />

wodorotlenkowych, występują również niezdysocjowane lub częściowo zdysocjowane<br />

cząsteczki. Precyzyjne odniesienie pojęcia iloczynu rozpuszczalności do wodorotlenków jest<br />

zatem co najmniej problematyczne.<br />

Tym niemniej w wielu tablicach podawane są wartości iloczynów rozpuszczalności dla<br />

wodorotlenków. Można przypuszczać, że dane te podają wartość iloczynu aktywności<br />

(stężeń) jonów A i jonów wodorotlenkowych: [c A· (c OH ) n ] w roztworze trudno<br />

rozpuszczalnego wodorotlenku, jednak trudno na podstawie tej liczby określić<br />

rozpuszczalność tego wodorotlenku, gdyż odnosi się ona tylko do jednej z równowag<br />

występujących w układzie.<br />

W przypadku wodorotlenków typu M(OH) p , które są słabymi elektrolitami, zapis<br />

równania dysocjacji w postaci:<br />

M( OH) ⇔ M + p OH<br />

p<br />

p+ −<br />

nie odpowiada prawdzie fizycznej, a dysocjacja takich wodorotlenków zachodzi etapowo. Nie<br />

są znane przypadki, aby kolejne etapy dysocjacji były całkowite, zatem zastosowanie dla<br />

wodorotlenków wyrażenia na iloczyn rozpuszczalności w postaci (7.76) nie jest uprawnione.<br />

Dlatego w niniejszym skrypcie zrezygnowano z obliczeń dotyczących rozpuszczalności<br />

wodorotlenków.<br />

7.4.6. Podsumowanie<br />

Przyglądając się wartościom iloczynów rozpuszczalności trudno rozpuszczalnych<br />

elektrolitów, zebranych w wielu różnych poradnikach i zbiorach zadań (także w tabeli<br />

zamieszczonej na końcu drugiej części niniejszego skryptu), łatwo zauważyć, że wyrażają się<br />

one na ogół bardzo małymi liczbami z zakresu od 10 -2 do 10 -100 . Wartości te są<br />

odzwierciedleniem znaczących różnic w rozpuszczalnościach związków. Warto w tym<br />

148


miejscu zauważyć, że wartość iloczynu rozpuszczalności nie informuje nas bezpośrednio o<br />

rozpuszczalności związku chemicznego. Dlatego błędne jest wypowiadane niekiedy zdanie,<br />

iż mniejsza wartość iloczynu rozpuszczalności odpowiada mniejszej rozpuszczalności. W<br />

definicji iloczynu rozpuszczalności danej równaniem (7.76), obok aktywności, występują<br />

także, w charakterze wykładników potęgowych, współczynniki określające liczbę atomów<br />

(lub grup atomów) danego rodzaju w cząsteczce. Przyjmując, że rozważamy rozpuszczalność<br />

trudno rozpuszczalnego elektrolitu w czystej wodzie (a więc przyjmując, że współczynniki<br />

aktywności są praktycznie równe jedności), możemy zapisać równanie (7.76) w formie:<br />

m<br />

A<br />

L = c ⋅c<br />

Łatwo zauważyć, że dla dwóch soli o różnych wartościach n i m, przy tych samych<br />

stężeniach kationów i anionów (c A i c B ), a więc przy tych samych wartościach<br />

rozpuszczalności, mamy różne wartości iloczynów rozpuszczalności. Jeżeli już koniecznie<br />

chcemy porównywać rozpuszczalności, korzystając bezpośrednio z wartości iloczynów<br />

rozpuszczalności, to możemy to robić, ale tylko porównując ze sobą iloczyny<br />

rozpuszczalności soli o tym samym typie wzoru cząsteczkowego (czyli o takich samych m i<br />

n).<br />

Nie jest to jednak jedyna pułapka, na którą możemy się natknąć, określając<br />

rozpuszczalność soli na podstawie danych, jakimi są iloczyny rozpuszczalności. Przeglądając<br />

zbiory zadań z chemii niejednokrotnie można się spotkać z obliczeniami rozpuszczalności<br />

trudno rozpuszczalnych substancji, w których wykorzystuje się wyłącznie uproszczoną<br />

zależność daną równaniem (7.84). W dodatku rozpuszczalność wyliczona z tego wzoru<br />

podawana jest z dokładnością do dwóch, a częściej nawet trzech (!) cyfr znaczących. W<br />

poprzednich rozdziałach wykazaliśmy przekonująco, że obliczenie “prawdziwej”<br />

rozpuszczalności trudno rozpuszczalnego elektrolitu nie jest problemem prostym i wymaga<br />

znajomości nie tylko iloczynu rozpuszczalności, ale i znajomości całej problematyki<br />

równowag jonowych w roztworze. Przede wszystkim wymagana jest znajomość stałych<br />

dysocjacji kwasu i zasady, z których powstała sól, będąca trudno rozpuszczalnym<br />

elektrolitem, a także znajomość składu chemicznego roztworu, w którym określamy<br />

rozpuszczalność. Tak naprawdę często nie dysponujemy danymi umożliwiającymi poprawne<br />

rozwiązanie problemu. Najczęściej zatem będziemy musieli się zadowolić przybliżonym<br />

określeniem rozpuszczalności trudno rozpuszczalnej soli. Jaka ma być jakość tego<br />

przybliżenia? Odpowiedź na to pytanie jest tylko jedna: jakość przybliżenia zależy od celu, do<br />

jakiego ma być użyty uzyskany w obliczeniu wynik. Nie istnieje jakaś jedna, narzucona<br />

n<br />

B<br />

149


zewnętrznymi prawami dokładność, chociaż istnieją granice narzucone zdrowym rozsądkiem.<br />

Przekonaliśmy się, że różne czynniki mają różny wpływ na rozpuszczalność elektrolitów.<br />

Przyjmijmy w podsumowaniu, że dla elektrolitu A m B n :<br />

S w -<br />

S e -<br />

oznacza “prawdziwą” rozpuszczalność w czystej wodzie.<br />

oznacza “prawdziwą” rozpuszczalność w roztworze mocnego elektrolitu nie<br />

zawierającego wspólnego jonu z A m B n .<br />

S 0 -<br />

S 0I -<br />

S 0H -<br />

S 0HI -<br />

oznacza rozpuszczalność w czystej wodzie, obliczoną z najgorszym przybliżeniem,<br />

czyli przy wykorzystaniu uproszczonego wzoru (7.84).<br />

oznacza rozpuszczalność w roztworze mocnego elektrolitu nie zawierającego<br />

wspólnego jonu z A m B n obliczoną z uwzględnieniem siły jonowej i przy braku<br />

procesów hydrolitycznych jonów A i B.<br />

oznacza rozpuszczalność w czystej wodzie obliczoną z uwzględnieniem procesów<br />

hydrolitycznych jonów A i B {czyli rozpuszczalność obliczoną ze wzorów (7.83)}.<br />

oznacza rozpuszczalność w roztworze mocnego elektrolitu nie zawierającego<br />

wspólnego jonu z A m B n obliczoną z uwzględnieniem procesów hydrolitycznych<br />

jonów A i B.<br />

Przeprowadzone rozważania upoważniają do wyciągnięcia wniosku, że:<br />

S ≈ S 0 oraz S S<br />

Jednocześnie:<br />

w<br />

H<br />

Sw<br />

1 < < 10<br />

S<br />

0<br />

6<br />

e<br />

≈ 0 HI<br />

Se<br />

oraz 1 < < 10<br />

S<br />

przy czym w praktyce lewe strony obu powyższych nierówności są zawsze >10.<br />

Mamy także:<br />

1 < S 0 I<br />

< 10<br />

S<br />

0<br />

0<br />

7<br />

Jak można zauważyć z powyższych zależności, nieuwzględnienie w obliczeniach<br />

efektów hydrolizy jonów pochodzących z dysocjacji trudno rozpuszczalnego elektrolitu<br />

naraża nas na bardzo poważne błędy w ocenie rozpuszczalności. W szczęśliwych dla nas<br />

przypadkach rozpuszczalność wyliczona z najprostszego wzoru (7.84) będzie różniła się tylko<br />

150


o jeden rząd od prawdziwej rozpuszczalności. Z reguły, różnica będzie znacznie większa i<br />

średnio będzie wynosiła ok. 3 rzędy wielkości. Pamiętajmy o tym, gdy będziemy chcieli<br />

obliczać rozpuszczalność trudno rozpuszczalnej soli, dążąc jednocześnie do prostoty obliczeń,<br />

mogącej wypaczyć obraz zjawiska. Może lepiej czasem nic nie liczyć, zamiast uzyskiwać<br />

wyniki różniące się od prawdy tysiące, setki tysięcy lub nawet miliony razy? Jaki z tego<br />

wniosek? Chcąc ocenić rozpuszczalność trudno rozpuszczalnego elektrolitu, zaglądajmy nie<br />

tylko do tablicy, gdzie zebrano wartości iloczynów rozpuszczalności, ale także do tablicy,<br />

gdzie znajdziemy wartości stałych dysocjacji kwasu i zasady, z których powstała sól,<br />

rozpuszczalność której zamierzamy obliczyć (lub raczej ocenić). Im mniejsze będą wartości<br />

tych stałych (szczególnie tych odpowiadających ostatnim etapom dysocjacji), tym większy<br />

wpływ na rozpuszczalność będą miały procesy hydrolityczne. Wyprowadzone w niniejszym<br />

rozdziale równania pozwalają się zorientować, kiedy uwzględnienie procesów<br />

hydrolitycznych w obliczeniach rozpuszczalności jest konieczne.<br />

Znacznie łatwiej jest ocenić wpływ siły jonowej roztworu na rozpuszczalność trudno<br />

rozpuszczalnych elektrolitów. Wzrost siły jonowej prowadzi do wzrostu rozpuszczalności.<br />

Jednak prowadząc obliczenia rozpuszczalności bez uwzględniania wpływu siły jonowej (a<br />

więc przyjmując wartości współczynników aktywności równe jedności), narażamy się na błąd<br />

nie przekraczający z reguły jednego rzędu wartości. Zwykle jest to błąd nawet mniejszy, gdyż<br />

przeważnie rozpuszczalność obliczona bez uwzględnienia siły jonowej jest kilka razy<br />

mniejsza od rozpuszczalności obliczonej z uwzględnieniem siły jonowej. Jeżeli zatem dla<br />

pewnej soli obliczyliśmy rozpuszczalność (biorąc oczywiście pod uwagę procesy<br />

hydrolityczne, ewentualny wpływ kwasowości środowiska czy efekt wspólnego jonu!) i nie<br />

uwzględniliśmy efektów pochodzących od siły jonowej (o ile oczywiście siła jonowa istotnie<br />

różni się od zera!), to możemy oczekiwać, że zaniżyliśmy ocenę rozpuszczalności i w<br />

rzeczywistości rozpuszczalność jest kilkakrotnie wyższa.<br />

Poważnym problemem, z którym możemy się zetknąć przy obliczeniach<br />

rozpuszczalności elektrolitów na podstawie wartości iloczynów rozpuszczalności, są<br />

rozbieżności w danych znajdujących się w różnych podręcznikach, poradnikach czy tablicach<br />

wartości fizykochemicznych. Przyglądając się tym danym, łatwo zauważyć, że różnią się one<br />

pomiędzy sobą czasem nawet o kilka rzędów wartości (!). Powstaje więc nierozstrzygalny<br />

problem: które z danych są “dobre”? Których danych należy użyć do obliczeń? Dodatkowo,<br />

autorzy podający wartości liczbowe iloczynów rozpuszczalności, ignorują czasem<br />

temperatury, dla których wartości te zostały uzyskane, co uniemożliwia również odpowiedź<br />

na pytanie: czy można zastosować podaną wartość dla konkretnej temperatury interesującej<br />

151


ozwiązującego problem? Wszystko to prowadzi nas do wniosku, że w praktyce najczęściej<br />

nie jesteśmy w stanie obliczyć rozpuszczalności na podstawie podanych wartości iloczynu<br />

rozpuszczalności. Naprawdę możliwe jest tylko oszacowanie rozpuszczalności. Pamiętajmy o<br />

tym szczególnie wtedy, gdy w różnych książkach czy zbiorach zadań znajdziemy<br />

rozpuszczalności obliczone z dokładnością do kilku cyfr znaczących (!), w dodatku przy<br />

wykorzystaniu przybliżonych wzorów.<br />

Powyżej wskazaliśmy na co najmniej kilka problemów związanych z obliczeniami,<br />

wykorzystującymi pojęcie iloczynu rozpuszczalności. Na koniec jednak wypada poruszyć<br />

jeszcze jeden z nich: sens fizyczny wartości rozpuszczalności uzyskanych w wyniku obliczeń.<br />

Podkreślmy to wyraźnie: chodzi tym razem o sens fizyczny wyników, a nie o ich<br />

dokładność. W rozdziale poświęconym roztworom wskazaliśmy, że sens fizyczny pojęcia<br />

„stężenie” jest ograniczony. Ograniczenie to wynika z ziarnistości materii i w konsekwencji<br />

pojęcie stężenia tylko tak długo ma sens, jak długo wielkości tzw. fluktuacji stężenia<br />

(odchylenia od średniej wartości stężenia) w poszczególnych elementach objętości roztworu<br />

są zaniedbywalnie małe w stosunku do liczby, będącej stosunkiem liczby moli substancji w<br />

roztworze do objętości roztworu reprezentującej średnie stężenie. W zbiorach zadań z chemii<br />

ogólnej i analitycznej można znaleźć wiele przykładów, w których ilustrując np. wpływ<br />

wspólnego jonu na rozpuszczalność, podaje się wartości liczbowe rozpuszczalności na<br />

poziomie mniejszym niż 10 -23 mol/dm 3 . Co właściwie oznaczają takie liczby, skoro liczba<br />

cząsteczek w jednym molu substancji jest rzędu 10 23 ? “Stężenie” na poziomie 10 -23 mol/dm 3<br />

odpowiadałoby zatem jednej cząsteczce związku w jednym litrze roztworu. Jest oczywiste, że<br />

wartości tej nie można traktować jako rzeczywistego stężenia. Trzeba pamiętać, że pojęcie<br />

iloczynu rozpuszczalności wymaga istnienia równowagi pomiędzy fazą stałą a jonami w<br />

roztworze. Nie ma żadnego sensu mówienie o jakiejkolwiek równowadze dynamicznej<br />

pomiędzy “roztworem” zawierającym 1 cząsteczkę w 1 dm 3 a fazą stałą. Dlatego samo<br />

pojęcie iloczynu rozpuszczalności traci w tych warunkach sens. Jeżeli więc, rozwiązując<br />

jakieś zadanie, uzyskamy w jego wyniku wartość rozpuszczalności < 10 -20 , to możemy być<br />

pewni, że liczba ta nie ma już sensu fizycznego stężenia a jest tylko wynikiem działań<br />

arytmetycznych. Działania te wykonane zostały co prawda zgodnie z wzorem, jednak<br />

zastosowanym poza zakresem swojej ważności, a więc nie będącym już zapisem prawa<br />

fizyki.<br />

Aby przybliżyć Czytelnikowi omawiany problem, posłużmy się pewną analogią. Jeżeli<br />

na ciało o masie m = 1 kg, które znajdowało się w stanie spoczynku, będziemy działać siłą<br />

152


F = 10 N w ciągu czasu t = 365 dni (24· 60 · 60 · 365 = 31 536 000 sekund), to ciało to,<br />

“zgodnie” z II zasadą dynamiki, powinno uzyskać prędkość: v = (F· t)/m = 315 360 000 m/s,<br />

czyli prędkość większą od prędkości światła (ok. 300 000 000 m/s), co jest sprzeczne z<br />

prawami fizyki. Gdzie leży błąd? Właśnie w zastosowaniu wzoru v = (F· t)/m, który traci<br />

swoją ważność w sytuacji, gdy prędkość poruszającego się ciała staje się porównywalna z<br />

prędkością światła. Uzyskany wynik ma więc jedynie sens arytmetyczny (po prostu dobrze<br />

pomnożyliśmy i podzieliśmy przez siebie pewne liczby). Dokładnie tak samo traci swoją<br />

ważność pojęcie iloczynu rozpuszczalności wtedy, gdy traci swój sens pojęcie “stężenie”, a<br />

więc gdy traci sens mówienie o równowadze faza stała - roztwór.<br />

Na zakończenie pragniemy zwrócić uwagę, że wartości rozpuszczalności obliczone przy<br />

wykorzystaniu pojęcia iloczynu rozpuszczalności, bez uproszczeń i z uwzględnieniem<br />

warunków istniejących w roztworze, praktycznie zawsze będą miały sens fizyczny.<br />

153


Rozdział 8<br />

Związki koordynacyjne<br />

8.1.Pojęcia podstawowe<br />

W wyniku reakcji rozpuszczania osadu chlorku srebra w nadmiarze wodnego roztworu<br />

amoniaku, znanej Czytelnikowi z analizy jakościowej I grupy kationów, powstaje trwały jon o<br />

składzie AgN2H6+. Jon ten nie wykazuje reakcji charakterystycznych dla jonu srebra ani dla<br />

cząsteczek amoniaku, lecz wykazuje specyficzne dla siebie reakcje chemiczne. Zachodzącą<br />

wówczas reakcję można zapisać następująco:<br />

AgCl + 2NH 3·H 2 O AgN 2 H + 6 + Cl - + 2H 2 O<br />

biały osad<br />

klarowny roztwór<br />

Badania strukturalne wykazały, że w jonie<br />

jon Ag + otoczony jest dwiema cząsteczkami<br />

NH 3 leżącymi na jednej linii prostej z jonem srebra. Dlatego wzór tego jonu ma postać: .<br />

Atom srebra występujący w tym jonie nazywamy atomem centralnym a połączone z nim<br />

cząsteczki amoniaku – ligandami. Jon zawierający atom centralny otoczony ligandami<br />

nazywany jest jonem kompleksowym. Związki zawierające jony kompleksowe nazywane są<br />

związkami kompleksowymi bądź związkami koordynacyjnymi. Istnieją również takie<br />

substancje, których całe cząsteczki stanowią obojętne kompleksy i które zaliczamy do<br />

związków koordynacyjnych, np. Fe(CO) 5 .<br />

Znane są kompleksy jednordzeniowe, zawierające jeden atom centralny, oraz<br />

wielordzeniowe, w których dwa lub więcej atomów centralnych połączonych jest ze sobą<br />

bezpośrednio lub poprzez ligandy. Ligandy otaczające jon centralny tworzą tzw. sferę<br />

koordynacyjną, a ich ilość wynosi najczęściej 2 do 8.


Liczbę atomów bezpośrednio połączonych z atomem centralnym nazywamy liczbą<br />

koordynacyjną. Ligandy, które łączą się z atomem centralnym za pośrednictwem jednego<br />

atomu, nazywamy jednofunkcyjnymi. Zajmują one w sferze koordynacyjnej metalu tylko<br />

jedno miejsce koordynacyjne. Ligandami jednofunkcyjnymi są np. cząsteczki NH 3 , CO, H 2 O<br />

czy jony Cl – , CN – . Tworzą one tzw. kompleksy proste, jak wymieniony już jon<br />

dwuaminasrebra, [ ( ) ]<br />

+<br />

Ag NH 3 2 czy np. jon tetrachlorortęci(II), [ HgCl 4 ]<br />

2− . W pokazanych<br />

kompleksach srebro ma liczbę koordynacyjną 2, a rtęć 4. W przypadku kompleksów prostych<br />

liczba koordynacyjna jest równa liczbie przyłączonych ligandów.<br />

Dany metal może przejawiać różną liczbę koordynacyjną zależnie od ligandów, z którymi<br />

tworzy kompleks. Na przykład jon niklu(II) w kompleksie [ Ni( CN ) 4 ]<br />

2− wykazuje liczbę<br />

2+<br />

koordynacyjną 4, natomiast w kompleksie [ Ni( NH 3 ) 6 ] ma liczbę koordynacyjną 6.<br />

Niektóre ligandy mogą łączyć się z atomem centralnym poprzez dwa lub więcej atomów.<br />

Takie wielofunkcyjne ligandy nazwane zostały ligandami kleszczowymi (z greckiego<br />

chelatowymi), a kompleksy zawierające takie ligandy – kompleksami kleszczowymi.<br />

Przykładem ligandu dwukleszczowego jest etylenodwuamina, H 2 N – CH 2 – CH 2 – NH 2 .<br />

[ ( ) ]<br />

2 2 2 2<br />

Poprzez atomy azotu tworzy ona kompleks z miedzią(II), Cu ( CH NH )<br />

2+<br />

. Miedź<br />

wykazuje w tym kompleksie liczbę koordynacyjną 4. Stosowany w analizie ilościowej anion<br />

kwasu etylenodwuaminaczteroctowego (EDTA) jest ligandem sześciokleszczowym:<br />

⎡ : OOC−CH 2<br />

⎢<br />

⎢<br />

⎣:<br />

OOC−CH 2<br />

. .<br />

. .<br />

N−CH 2 −CH 2 −N<br />

CH 2 −COO : ⎤<br />

⎥<br />

CH −COO : ⎥ 2 ⎦<br />

i tworzy z atomami wapnia lub magnezu kompleksy, w których atomy te wykazują liczbę<br />

koordynacyjną 6 (w powyższym wzorze kropeczkami wyróżniono atomy biorące udział w<br />

wiązaniu).<br />

Izomeria kompleksów<br />

Izomery to cząsteczki lub jony o takim samym składzie chemicznym, lecz o różnych<br />

strukturach. Różnicom strukturalnym izomerów towarzyszą różnice właściwości<br />

chemicznych i fizycznych. Zjawisko izomerii jest bardzo częste w przypadku związków<br />

155


kompleksowych. Rozróżnia się dwa główne typy izomerii związków kompleksowych:<br />

izomerię strukturalną oraz stereoizomerię.<br />

W przypadku izomerii strukturalnej poszczególne izomery różnią się składem jonu<br />

kompleksowego. Można wyodrębnić następujące rodzje izomerii strukturalnej:<br />

1. Izomeria koordynacyjna – pojawia się, gdy zarówno kation, jak i anion są jonami<br />

kompleksowymi, np.:<br />

trójszczawianokobaltan(III) sześcioaminachromu(III) Cr( NH )<br />

trójszczawianochromian(III) sześcioaminakobaltu(III) Co( NH )<br />

[ ] [ Co( C O ) ]<br />

[ ] [ Cr( C O ) ]<br />

3 6 2 4 3<br />

, oraz<br />

3 6 2 4 3<br />

;<br />

2. Izomeria jonowa – występuje, gdy jony mogą występować zarówno w sferze<br />

koordynacyjnej jako ligandy, jak i być samodzielnymi anionami. Typowy przykład<br />

izomerii jonowej to:<br />

siarczan pięcioaminabromkokobaltu(III) Co( NH )<br />

[ Br]<br />

SO<br />

[ ]<br />

i bromek pięcioaminasiarczano(VI)kobaltu(III) ( )<br />

3 5 4 (ciemnofioletowy)<br />

Co NH3 5<br />

SO4 Br (czerwony);<br />

3. Izomeria hydratacyjna – występuje w związkach, w których ligandy mogą być<br />

podstawiane przez cząsteczki wody, a same przechodzą do sfery anionowej, tak jak np. w<br />

chlorku sześcioakwachromu(III):<br />

[ Cr( H O)<br />

]<br />

( )<br />

( )<br />

2 Cl<br />

6 3 – fioletowy,<br />

[ ]<br />

[ ]<br />

Cr H O Cl Cl ⋅ H O – niebieskozielony,<br />

2 5 2 2<br />

Cr H O Cl Cl ⋅ 2H O – zielony;<br />

2 4 2 2<br />

4. Izomeria wiązania – może występować, gdy ligand posiada dwa różne atomy zdolne do<br />

łączenia się z atomem centralnym, np. w chlorku pięcioaminanitritokobaltu(III) ligand<br />

NO 2 − może być związany z kobaltem poprzez atom azotu, ( )<br />

przez atom tlenu, ( )<br />

[ ]<br />

NH Co − ONO Cl .<br />

3 5 2<br />

[ − ]<br />

NH Co NO Cl<br />

3 5 2 2<br />

, lub<br />

Stereoizomeria polega na różnym rozmieszczeniu ligandów wokół jonu centralnego. Ten<br />

typ izomerii występuje tylko przy liczbie koordynacyjnej równej lub większej od 4. Wyróżnia<br />

się dwa rodzaje stereoizomerii: izomerię optyczną i izomerię geometryczną.<br />

Izomeria optyczna dotyczy tzw. związków optycznie czynnych, czyli posiadających<br />

zdolność skręcania płaszczyzny światła spolaryzowanego. Przypomnijmy, że światło<br />

spolaryzowane to takie, którego wektor natężenia pola elektrycznego drga w jednej<br />

płaszczyźnie, tzw. płaszczyźnie polaryzacji. Optycznie czynne są związki, których cząsteczki<br />

156


nie posiadają płaszczyzny symetrii ani środka symetrii. Rozróżnienie dwóch izomerów jest<br />

łatwe, każdy z nich bowiem skręca płaszczyznę polaryzacji światła o ten sam kąt, lecz w<br />

przeciwnym kierunku (stężenie kompleksów i grubość warstwy, przez którą przechodzi<br />

światło muszą być takie same). Nazywa się je odmianą lewoskrętną i odmianą prawoskrętną.<br />

W roztworach zawierających równe stężenia obu izomerów skręcenia znoszą się wzajemnie.<br />

Mieszanina taka jest optycznie nieczynna i nosi nazwę mieszaniny racemicznej.<br />

W celu wyjaśnienia istoty izomerii geometrycznej posłużymy się przykładem<br />

[ 2 3 2 ]<br />

dwuaminadwuchloroplatyny(II), PtCl ( NH )<br />

. Związek ten ma strukturę płaską, co<br />

stwierdzono na podstawie występowania jego dwóch, nieczynnych optycznie, izomerów<br />

geometrycznych:<br />

NH 3 Cl Cl NH 3<br />

Pt<br />

Pt<br />

NH 3 Cl NH 3 Cl<br />

I II<br />

W izomerze I te same ligandy znajdują się obok siebie (odmiana cis), natomiast w<br />

izomerze II – w pozycjach przeciwległych (odmiana trans). Izomer cis wykazuje dwie<br />

płaszczyzny symetrii, a izometr trans trzy płaszczyzny i środek symetrii.<br />

W przypadku związków typu [Ma 2 b 2 ], do których należy dwuminadwuchloroplatyna(II),<br />

możliwa jest również struktura tetraedryczna, dla której istnieje tylko jeden sposób ułożenia<br />

ligandów. Związki tego typu o strukturze tetraedrycznej posiadają więc jeden izomer.<br />

Izomeria geometryczna występuje także w płaskich kompleksach zawierających ligandy<br />

dwukleszczowe. Takim ligandem jest jon glicynianowy NH 2 CH 2 COO – , który, koordynując z<br />

jonem Pt(II), tworzy izomery cis i trans o strukturach III i IV. Koordynujące atomy ligandu<br />

nie muszą być różne, wystarczy, aby obie połowy pierścienia chelatowego były różne.<br />

III<br />

IV<br />

157


Nazewnictwo związków kompleksowych<br />

Zgodnie z obowiązującymi zasadami nazwy kompleksów tworzy się, stosując poniżej<br />

wymienione reguły:<br />

o Tworząc nazwę kompleksu wymienia się w pierwszej kolejności nazwy ligandów, a<br />

następnie nazwę atomu centralnego. We wzorach kompleksów obowiązuje kolejność<br />

odwrotna.<br />

o Stopień utlenienia atomu centralnego podaje się jako cyfrę rzymską w nawiasach<br />

okrągłych, po nazwie kompleksu, analogicznie jak to ma miejsce przy tworzeniu nazw<br />

wszystkich związków nieorganicznych, np. [Ni(NH 3 ) 6 ] 2+ – jon<br />

sześcioaminaniklu(II).<br />

o W kompleksach anionowych do nazwy atomu centralnego dodaje się końcówkę –<br />

an, natomiast w kompleksach kationowych nazwa pierwiastka, będącego atomem<br />

centralnym, pozostaje bez zmian.<br />

o Obowiązuje alfabetyczna kolejność wymieniania ligandów (zarówno w nazwie,<br />

jak we wzorze).<br />

o Nazwy ligandów anionowych kończą się na –o z wyjątkiem H 2 O (akwa), NH 3<br />

(amina), CO (karbonyl) i NO (nitrozyl).<br />

o Liczbę ligandów określa się liczebnikiem polskim (jedno–, dwu–, trój–, cztero–<br />

itd.) lub greckim (mono–, bis–, tris–, tetrakis– itd.). Międzynarodowa Unia<br />

Chemii Czystej i Stosowanej zaleca stosowanie liczebników greckich, jednak w<br />

polskim słownictwie chemicznym przyjęcie tej zasady nie ma logicznego<br />

uzasadnienia i dlatego w niniejszym podręczniku konsekwentnie stosuje się<br />

liczebniki polskie.<br />

Poniżej podano kilka przykładów tworzenia nazw związków kompleksowych:<br />

K 4 [Fe(CN) 6 ]<br />

– sześciocyjanożelazian(II) potasu<br />

K 3 [Fe(CN) 6 ]<br />

[Cu(NH 3 )4 ]Cl 2<br />

[Cu(H 2 O)2 (NH 3)2 ]Cl 2<br />

[Cr(H 2 O)5 Cl]SO 4<br />

[Cr(NH 3 ) 6 ][Co(C 2 O 4 ) 3 ]<br />

[Fe(CO) 5 ]<br />

– sześciocyjanożelazian(III) potasu<br />

– chlorek czteroaminamiedzi(II)<br />

– chlorek dwuakwadwuaminamiedzi(II)<br />

– siarczan(VI) pięcioakwachlorochromu(III)<br />

– trójszczawianokobaltan(III) sześcioaminachromu(III)<br />

– pięciokarbonylżelaza(0)<br />

158


Tabela 8.1. Nazwy ligandów nieorganicznych.<br />

H 2 O akwa I – jodo<br />

NH<br />

– 2<br />

amido CO karbonyl<br />

NH 3<br />

amina NO<br />

– 2<br />

nitrito–N<br />

NO<br />

– 3<br />

azotano ONO – nitrito–O<br />

Br – bromo NO nitrozyl<br />

Cl – chloro O 2– okso<br />

CN – cyjano SO<br />

2– 4<br />

siarczano<br />

F – fluoro C 2 O<br />

2– 4<br />

szczawiano<br />

H – hydro S 2– tio<br />

OH – hydrokso SCN – tiocyjaniano<br />

O<br />

– 2<br />

hyperokso S 2 O<br />

2– 3<br />

tiosiarczano<br />

NH 2– imido CO<br />

2– 3<br />

węglano<br />

8.2. Równowagi w roztworach związków komleksowych<br />

W roztworze wodnym, jon metalu zdolnego do tworzenia kompleksów występuje nie w<br />

postaci prostego jonu, lecz jonu uwodnionego, czyli tworzy tzw. akwakompleks w wyniku<br />

koordynowania cząsteczek wody. Np. roztwór soli miedzi(II) zawiera nie jony Cu 2+ , lecz<br />

[ Cu( H O)<br />

] 2 4<br />

2+<br />

. Tworzenie się kompleksów w roztworze jest w rzeczywistości wymianą<br />

ligandów H 2 O na inne ligandy. Podstawienie nowych ligandów odbywa się stopniowo, przy<br />

czym ustala się szereg równowag.<br />

Dla przykładu omówmy tworzenie się kompleksu czteroaaminamiedzi(II), w trakcie<br />

którego ustalają się następujące równowagi:<br />

2+ 2+<br />

[ ( 2 ) ] + [ ( ) ( )<br />

4<br />

3<br />

⇔<br />

2 3 3 ] +<br />

2<br />

[ ( 2 ) ( ) ] [ ( ) ( )<br />

3 3<br />

3 2 2 3 2 ]<br />

2<br />

[ ( 2 ) ( ) ] [ ( ) ( )<br />

2 3 2<br />

3 2 3 3 ]<br />

2+ 2+<br />

[ ( 2 ) ( 3 ) ] + [ ( )<br />

3<br />

3<br />

⇔<br />

3 4 ] +<br />

Cu H O NH Cu H O NH H O<br />

+ 2+<br />

Cu H O NH + NH ⇔ Cu H O NH + H O<br />

+ 2+<br />

Cu H O NH + NH ⇔ Cu H O NH + H O<br />

Cu H O NH NH Cu NH H O<br />

2<br />

2<br />

2<br />

2<br />

(8.1)<br />

Stałe równowagi dla powyższych reakcji mają następującą postać (przyjęto, że stężenie<br />

wody jest stałe):<br />

K<br />

1<br />

=<br />

2+<br />

[ Cu( H O) ( NH<br />

⎫<br />

2 )<br />

3 3 ] ⎬<br />

⎭<br />

2+<br />

[ Cu( H2O<br />

⎫<br />

) ] { NH }<br />

4<br />

⎬ 3<br />

⎧<br />

⎨<br />

⎩<br />

⎧<br />

⎨<br />

⎩<br />

⎭<br />

159


⎧<br />

2+<br />

[ Cu( H O) ( NH<br />

⎫<br />

⎨ 2 )<br />

2 3 2 ] ⎬<br />

⎩<br />

⎭<br />

⎧<br />

2+<br />

[ Cu( H2O) ( NH<br />

⎫<br />

⎨<br />

) ] { NH }<br />

3 3 ⎬ 3<br />

⎩<br />

⎭<br />

⎧<br />

2+<br />

[ Cu( H O) ( NH<br />

⎫<br />

⎨ 2 3 )<br />

3 ] ⎬<br />

⎩<br />

⎭<br />

⎧<br />

2+<br />

[ Cu( H2O) ( NH<br />

⎫<br />

⎨<br />

) ] { NH }<br />

2 3 2<br />

⎬ 3<br />

⎩<br />

⎧<br />

2+<br />

⎨[ Cu( NH3 )<br />

4 ]<br />

⎩<br />

⎧<br />

2+<br />

⎨[ Cu( H2O) ( NH3 ) ] { }<br />

3<br />

3<br />

K2<br />

=<br />

K3<br />

=<br />

⎭<br />

K4<br />

=<br />

⎫<br />

⎬<br />

⎭<br />

⎫<br />

NH<br />

⎩<br />

⎭<br />

Nawiasy {} oznaczają aktywności poszczególnych jonów. Stałe równowagi K 1 , K 2 , ... K 4<br />

reakcji tworzenia się kompleksów nazywają się stałymi trwałości. Wartość stałej trwałości<br />

informuje o trwałości danego kompleksu, np. im większa wartość stałej K 1 , tym większa<br />

[ 2 3 3 ]<br />

trwałość kompleksu Cu( H O) ( NH )<br />

2+<br />

[ ] 2 4<br />

w stosunku do kompleksu Cu( H O)<br />

2+<br />

. W<br />

roztworze wodnym współistnieją wszystkie jony kompleksowe występujące w reakcjach (8.1)<br />

i pozostają w równowadze z cząsteczkami amoniaku NH 3 i wodą. Często korzysta się z<br />

odwrotności stałej trwałości, określanej mianem stałej nietrwałości.<br />

Dla reakcji kompleksowania określa się także tzw. skumulowaną stałą trwałości β n , np.<br />

[ Cu NH 3 4 ]<br />

dla reakcji tworzenia ( )<br />

2<br />

[ ( 2 ) ] ( )<br />

4<br />

2+<br />

, którą można zapisać w następujący sposób:<br />

[ ]<br />

+ 2+<br />

Cu H O + 4 NH ⇔ Cu NH + 4 H O<br />

3 3 4<br />

skumulowana stała trwałości ma postać:<br />

⎧<br />

2+<br />

⎨[ Cu( NH<br />

⎫<br />

) ] ⎬<br />

⎩<br />

⎭<br />

2+<br />

[ Cu( H<br />

⎫<br />

2O)<br />

] { }<br />

4<br />

⎬ NH3<br />

3 4<br />

β 4<br />

=<br />

⎧<br />

⎨<br />

⎩<br />

⎭<br />

4<br />

2<br />

i jak łatwo zauważyć β 4 = K 1 ·K 2·K 3·K 4 . Podobnie można obliczyć np. stałą β 3 dla reakcji:<br />

2<br />

[ ( 2 ) ] ( ) ( )<br />

4<br />

[ ]<br />

+ 2+<br />

Cu H O + 3 NH ⇔ Cu H O NH + 3 H O<br />

3 2 3 3<br />

2<br />

160


⎧<br />

2+<br />

⎨[ Cu( H O) ( NH ) ]<br />

⎩<br />

2+<br />

[ Cu<br />

⎫<br />

( H2O)<br />

] { }<br />

4<br />

⎬ NH3<br />

2 3 3<br />

β 3<br />

= K 1<br />

⋅ K 2<br />

⋅ K 3<br />

=<br />

⎧<br />

⎨<br />

⎩<br />

⎭<br />

⎫<br />

⎬<br />

⎭<br />

3<br />

Porównując stałe trwałości dwóch różnych kompleksów o takim samym jonie centralnym<br />

można przewidzieć, który z nich będzie trwały w danych warunkach. Na przykład<br />

[ Cd NH 3 4 ]<br />

skumulowana stała trwałości czteroaminakadmu(II), ( )<br />

2+<br />

, wynosi<br />

β [ Cd( NH3) 4 ]<br />

2+<br />

= 1,32·10 7 , natomiast skumulowana stała trwałości czterocyjanokadmu(II),<br />

2−<br />

[ Cd( CN)<br />

4 ] , ma wartość β [ Cd( CN) 4 ]<br />

2−<br />

= 6,02·10 18 . Na podstawie wartości skumulowanych<br />

stałych trwałości widać, że kompleks cyjankowy jest znacznie trwalszy od kompleksu<br />

amoniakalnego. Wynika stąd, że po dodaniu roztworu zawierającego jony CN – do roztworu<br />

[ Cd NH 3 4 ]<br />

zawierającego jony ( )<br />

2+<br />

−<br />

[ ( 3 ) ] ( )<br />

4<br />

2+<br />

, ten ostatni ulegnie przemianie w kompleks cyjankowy:<br />

[ 4 ]<br />

2−<br />

Cd NH + 4CN ⇔ Cd CN + 4 NH<br />

3<br />

8.3. Trwałość kompleksów<br />

Udział każdego z jonów kompleksowych w ogólnej liczbie jonów, zależy, w przypadku<br />

[ Cu NH 3 4 ]<br />

kompleksu ( )<br />

2+<br />

, od stężenia jonów Cu<br />

2+<br />

oraz NH 3 . Z czysto statystycznego punktu<br />

widzenia należałoby oczekiwać, że względna liczba cząsteczek H 2 O i cząsteczek NH 3<br />

otaczjących jon Cu 2+ powinna być taka sama, jak ich udział w roztworze, tzn. jeżeli roztwór<br />

zawiera jednakowe liczby cząsteczek H 2 O i NH 3 , powinny występować głównie kompleksy<br />

[ Cu( H2O) ( NH )<br />

2 3 2 ]<br />

2+<br />

. Jednak w rzeczywistości taki statystyczny rozkład ligandów nie<br />

występuje. Jony metali wykazują wyraźną skłonność do pewnych ligandów, np. jon miedzi(II)<br />

chętniej koordynuje z cząsteczką amoniaku niż z cząsteczką wody.<br />

Jest wiele czynników określających, który ligand będzie tworzył trwalszy kompleks z<br />

danym jonem metalu, ich wpływ nie jest jednak do końca wyjaśniony. Można na przykład<br />

przewidywać, że najtrwalsze kompleksy powstaną z jonów o przeciwnych znakach oraz, że<br />

161


im większy jest ładunek jonu i mniejsze jego wymiary, tym większa powinna być trwałość<br />

kompleksu. Małe jony są uprzywilejowane, ponieważ ich środki mogą być usytuowane bliżej<br />

siebie. Ilustracją tego jest wzrost trwałości kompleksów wodorotlenkowych ze wzrostem<br />

ładunku jonu metalu:<br />

2 7 10<br />

[ LiOH ] + 2+ 3+<br />

[ MgOH ] [ YOH ] [ ThOH ]<br />

K = 2 K = 10 K = 10 K = 10<br />

oraz, dla tego samego ładunku metalu, wzrost trwałości kompleksu ze zmniejszaniem się<br />

promienia jonowego:<br />

2 7<br />

[ BaOH ] + [ CaOH ] + [ MgOH ] + [ BeOH ]<br />

+<br />

K = 4 K = 30 K = 10 K = 10<br />

Ważną grupę ligandów stanowią cząsteczki obojętne, takie jak H 2 O, NH 3 czy H 2 S.<br />

Przyjmuje się, z elektrostatycznego punktu widzenia, że ligandy te są związane z jonami<br />

metalu dzięki przyciąganiu dipola ligandu i jonu centralnego. Im bardziej polarny jest ligand,<br />

tym większa jest siła wiązania między ligandem a jonem metalu, a więc woda, jako<br />

najbardziej polarna z ligandów, powinna tworzyć kompleksy o większej trwałości niż inne,<br />

obojętne ligandy. Stwierdzono jednak, że większy niż polarność wpływ na trwałość<br />

kompleksu ma „siła zasadowa” ligandu, której miarą jest skłonność do wiązania jonów H + .<br />

Tak więc NH 3 tworzy trwalsze kompleksy niż H 2 O, która z kolei wiąże się trwalej niż H 2 S.<br />

Przewidywania te sprawdzają się w przypadku potasowców, berylowców (grupa II) oraz dla<br />

niektórych innych bardziej elektrododatnich metali, nazywanych często metalami klasy a.<br />

Stwierdzono, że pierwiastki klasy a tworzą trwałe kompleksy z ligandami zawierającymi O i<br />

N oraz z anionem fluorkowym, F – .<br />

Pierwiastki mniej elektrododatnie, takie jak Pt, Au, Hg, Pb oraz pierwiastki z<br />

niezapełnionymi powłokami d i f, zaliczane są do metali klasy b. Trwałość kompleksów<br />

tworzonych przez te metale można uzasadnić, opierając się na teorii pola krystalicznego<br />

ligandów, opisanej w dalszej części tego rozdziału. Np. niektóre pierwiastki z<br />

niezapełnionymi powłokami d i f tworzą bardzo trwałe kompleksy z takimi ligandami, jak CO<br />

i CN – , choć ligandy te słabo koordynują z pierwiastkami głównymi. Trwałość tych<br />

kompleksów przypisuje się stabilizacji pola krystalicznego, wynikającego z oddziaływania<br />

ligandów (zjawisko stabilizacji pola krystalicznego opisano w rozdziale 8.5).<br />

Ligandy chelatowe tworzą w zasadzie trwalsze kompleksy niż ligandy proste. Jeżeli<br />

nastąpi zerwanie jednego z wiązań pomiędzy atomem centralnym a ligandem chelatowym, to<br />

ligand ten nie może się jeszcze oddzielić od kompleksu, gdyż nie są zerwane pozostałe<br />

162


wiązania. W przypadku ligandów pojedynczych zerwanie jednego wiązania wystarcza do<br />

oderwania się ligandu od jonu centralnego. Zjawisko zwiększonej trwałości kompleksów<br />

chelatowych znane jest jako efekt chelatowania. Dla ilustracji tego w tabeli 8.2 podano stałe<br />

trwałości dla kompleksów niklu(II) z amoniakiem (ligand jednofunkcyjny) i etylenodwuaminą(en)<br />

(ligand chelatowy), w których poszczególne wiązania ligand–metal mają<br />

zbliżone własności (w obu przypadkach występuje wiązanie między jonem niklu a atomem<br />

azotu).<br />

Tabela 8.2. Stałe trwałości kompleksów niklu(II)<br />

Kompleks K 1 K 2 K 3 K 4 K 5 K 6<br />

[Ni(NH 3 ) 6 ] 2+ 5·10 2 6·10 4 3·10 6 3·10 7 1,3·10 8 1·10 8<br />

[Ni(en) 3 ] 2+ 5·10 7 1,1·10 14 4·10 18<br />

8.4. Reakcje związków koordynacyjnych<br />

Jak już wspomniano, równowagi reakcji kompleksowania cząsteczek NH 3 przez jon<br />

miedzi(II), przedstawione w rozdziale 8.2, są w istocie reakcjami wymiany ligandów z H 2 O<br />

na NH 3 . Szybkość wymiany ligandów waha się w bardzo szerokich granicach. Nie ma przy<br />

tym żadnego związku pomiędzy szybkością wymiany ligandów a trwałością kompleksów.<br />

Np. w roztworze trwałego kompleksu [PtBr 4 ] 2– jony Br – ze sfery koordynacyjnej są<br />

ustawicznie wymieniane przez jony Br – z roztworu, przy czym szybkość tej wymiany jest<br />

bardzo duża. Istnieją również nietrwałe kompleksy, w których wymiana ligandów zachodzi<br />

bardzo powoli.<br />

Kompleksy, których ligandy można szybko zastąpić innymi ligandami, nazywamy<br />

kompleksami labilnymi, natomiast te, w których wymiana ligandów zachodzi powoli –<br />

biernymi. Przyjmuje się, według Taubego, że w kompleksach labilnych wymiana ligandów<br />

odbywa się w czasie krótszym niż 1 sekunda.<br />

Rozróżnia się dwa możliwe mechanizmy wymiany ligandów. Pierwszy z nich, nazwany<br />

substytucją nukleofilową jednocząsteczkową, składa się z dwóch etapów: powolnego, w<br />

czasie którego od kompleksu zostaje odłączony ligand (reakcja 8.2), i szybkiego, gdy na<br />

miejsce odszczepionego ligandu zostaje przyłączony inny ligand (reakcja 8.3). W nazwie tej<br />

„substytucja nukleofilowa” oznacza podstawienie „nukleofilu”, czyli cząsteczki lub jonu<br />

będącego donorem pary elektronowej.<br />

163


[ 5 ] [ 5 ]<br />

[ ML5 ] Y [ ML5Y]<br />

ML X → ML + X<br />

(8.2)<br />

+ → (8.3)<br />

Drugi mechanizm wymiany ligandów również składa się z dwóch etapów, przy czym<br />

pierwszym, wolnym etapem jest przyłączenie nowego ligandu (reakcja 8.4) a w drugim,<br />

szybkim etapie, tak powstały kompleks rozpada się, odłączając dotychczsowy ligand (reakcja<br />

8.5). Jest to substytucja nukleofilowa dwucząsteczkowa.<br />

[ ML5X] Y [ ML5XY]<br />

[ 5 ] [ 5 ]<br />

+ → (8.4)<br />

ML XY → ML Y + X<br />

(8.5)<br />

Częstą reakcją, w jakiej biorą udział związki koordynacyjne, jest reakcja utleniania i<br />

redukcji. W reakcji tej może dojść do wymiany elektronu pomiędzy kompleksami, lecz<br />

ligandy pozostają bez zmiany – jest to tzw. mechanizm z udziałem zewnętrznej sfery<br />

kompleksu. Drugi z możliwych mechanizmów polega na chwilowym uwspólnieniu ligandu<br />

przez kompleks utleniany i redukowany i nosi nazwę mechanizmu z udziałem wewnętrznej<br />

sfery kompleksu.<br />

Rozpatrzmy reakcję utleniania i redukcji kompleksów na przykładzie powstawania<br />

kompleksów kobaltu(III). Substancją wyjściową do otrzymywania kompleksów kobaltu (III)<br />

jest zawsze sól kobaltu (II). Wynika to z faktu, że stopień utlenienia kobaltu w prostych<br />

solach wynosi zwykle 2, a także stąd, że kompleksy Co(II) ulegają bardzo szybkim reakcjom<br />

podstawienia. Synteza kompleksów Co(III) zachodzi na drodze szybkiej reakcji pomiędzy<br />

Co(II) i ligandem z utworzeniem kompleksu kobaltu (II), który następnie ulega utlenieniu do<br />

odpowiedniego kompleksu Co(III). Na przykład reakcja tworzenia związku kompleksowego<br />

[Co(NH 3 ) 6 ]Cl 3 przebiega prawdopodobnie z utworzeniem w pierwszym etapie kompleksu<br />

[Co(NH 3 ) 6 ] 2+ a następnie jego utlenieniem:<br />

[Co(H 2 O) 6 ]Cl 2 + 6NH 3 → [Co(NH 3 ) 6 ]Cl 2 + 6H 2 O<br />

jasnoróżowy różowy<br />

4 [Co(NH 3 ) 6 ]Cl 2 + 4 NH 4 Cl + O 2 → 4 [Co(NH 3 ) 6 ]Cl 3 + 4 NH 3 + 2 H 2 O<br />

różowy pomarańczowy<br />

Oddanie elektronu przez wysokospinowy (patrz: rozdz. 8.5) kompleks [Co(NH 3 ) 6 ] 2+ i<br />

164


utworzenie niskospinowego kompleksu [Co(NH 3 ) 6 ] 3+ wiąże się ze zmianą odległości metal–<br />

ligand. Zgodnie z zasadą Francka–Condona, wszelkie ruchy elektronu są tak szybkie w<br />

porównaniu z ruchami jąder atomowych, że można je uznać za praktycznie nieruchome w<br />

czasie potrzebnym na przeskok elektronu. Przyjmuje się więc, że zmiana długości wiązań<br />

następuje przed przeskokiem elektronu. W przypadku omawianej reakcji nakład energetyczny<br />

na zmianę długości wiązania jest stosunkowo wysoki i reakcja redoks jest powolna. Powyższa<br />

reakcja jest przykładem reakcji przebiegającej z udziałem zewnętrznej sfery kompleksu.<br />

8.5. Wiązanie koordynacyjne<br />

Istotę wiązania koordynacyjnego, jakie występuje pomiędzy atomem centralnym a<br />

ligandami, tłumaczą trzy teorie:<br />

− teoria wiązań walencyjnych;<br />

− teoria pola krystalicznego;<br />

− teoria orbitali molekularnych.<br />

Teoria wiązań walencyjnych, stworzona przez Linusa Paulinga (Nagroda Nobla – 1954),<br />

zakłada, że wiązanie koordynacyjne ma charakter kowalencyjny. Ligandy są donorami par<br />

elektronowych w tym wiązaniu, a wiec są zasadami Lewisa. Przykładami takich ligandów są:<br />

NH 3 , CO, H 2 O. Teoria wiązań walencyjnych może służyć do wyjaśnienia struktury i<br />

właściwości magnetycznych kompleksów metali, jednak interpretacja np. widm<br />

absorpcyjnych wydaje się prostsza na podstawie pozostałych teorii.<br />

Teoria pola krystalicznego pomija zupełnie wiązanie kowalencyjne i przyjmuje, że<br />

wiązanie między atomem centralnym a ligandami jest całkowicie jonowe. W przypadku, gdy<br />

atomem centralnym jest jon metalu z niezapełnioną podpowłoką d, konieczne jest<br />

uwzględnienie również wpływu pola elektrostatycznego ligandów na orbitale d atomu<br />

centralnego.<br />

Podstawy teorii pola krystalicznego zostały stworzone przez Bethego i Van Vlecka w<br />

latach 30 naszego wieku. Początkowo teoria ta rozpatrywała zachowanie kationów w polu<br />

elektrycznym otaczających je jonów, czyli w tzw. polu krystalicznym. Stąd pochodzi nazwa<br />

teorii.<br />

Teorię pola krystalicznego można zilustrować, rozważając wiązanie występujące w<br />

oktaedrycznym kompleksie [TiF 6 ] 2– (rys. 8.1).<br />

165


energia<br />

eg<br />

6 Dq<br />

4 Dq<br />

10 Dq<br />

t 2g<br />

d<br />

wolny jon Ti 4+ jon w polu o kompleks [TiF 6 ] 2-<br />

symetrii kulistej<br />

Rys. 8.1. Energie orbitali d w wolnym jonie metalu, w hipotetycznym kompleksie<br />

bez rozszczepienia pola krystalicznego (symetria kulista) oraz w kompleksie<br />

oktaedrycznym.<br />

Konfiguracja elektronowa wolnego jonu Ti 4+ jest nastepująca: 1s 2 2s 2 2p 6 3s 2 3p 6 , czyli<br />

orbitale d tego jonu nie są obsadzone przez elektrony. Wyobraźmy sobie, że 6 ujemnie<br />

naładowanych jonów F – zbliża się do jonu Ti 4+ wzdłuż dodatnich i ujemnych części osi x, y i<br />

z. W miarę jak ligandy się zbliżają i zajmują pozycje odpowiadające ich rozmieszczeniu w<br />

kompleksie, wytwarzane przez nie pole elektryczne coraz silniej oddziałuje na elektrony jonu<br />

centralnego. W wyniku tego wzrasta energia orbitali d. Gdyby sześć jonów fluorkowych,<br />

które otaczają jon Ti 4+ , było położonych równie blisko w stosunku do pięciu orbitali d<br />

wolnego jonu Ti 4+ , wszystke orbitale d miałyby tę samą energię (byłyby więc<br />

zdegenerowane), lecz o znacznie wyższej wartości niż w wolnym jonie Ti 4+ . W<br />

rzeczywistości znacznie bardziej wzrasta energia orbitali d skierowanych wzdłuż osi x, y, z,<br />

czyli orbitali d z<br />

2 i d x<br />

2 2<br />

− y<br />

, niż orbitali skierowanych pomiędzy osiami, czyli orbitali d xy , d yz i<br />

d xz . W polu elektrycznym wytworzonym przez ligandy poziom energetyczny orbitali d, który<br />

w wolnym jonie Ti 4+ jest pięciokrotnie zdegenerowny, ulega więc rozszczepieniu na dwa<br />

nowe poziomy. Niższy z tych poziomów oznaczany jest symbolem t 2g , a wyższy – e g .<br />

Zjawisko przekształcenia pięciokrotnie zdegenerowanego orbitalu d na dwie grupy orbitali,<br />

mających różne energie, nazywamy rozszczepieniem pola krystalicznego.<br />

Różnicę energii poziomów t 2g i e g oznacza się zwykle symbolem 10Dq. Można wykazać,<br />

że energia poziomu t 2g leży o 4Dq poniżej poziomu energii, jaką wykazywałyby elektrony w<br />

polu o symetrii kulistej. Wartość 4Dq nosi nazwę energii stabilizacji pola krystalicznego<br />

danego kompleksu. Energia poziomu e g jest natomiast o 6Dq wyższa od energii poziomu<br />

energetycznego w polu o symetrii kulistej.<br />

166


Zastanówmy się, w jaki sposób następuje zapełnianie orbitali t 2g i e g . W pierwszej<br />

kolejności zapełniane będą trzy orbitale t 2g , ponieważ mają niższą energię niż e g . Czwarty<br />

elektron może zająć jeden z pustych orbitali e g , co daje konfigurację (t 2g ) 3 (e g ) 1 , bądź jeden z<br />

orbitali t 2g , już zawierający elektron, co daje konfigurację (t 2g ) 4 . Konfiguracji (t 2g ) 3 (e g ) 1<br />

odpowiada obecność czterech niesparowanych elektronów, czyli jest to konfiguracja<br />

wysokospinowa. Konfiguracji (t 2g ) 4 odpowiada obecność tylko dwóch niesparowanych<br />

elektronów, a więc jest to konfiguracja niskospinowa. Kompleksy wysokospinowe powstają,<br />

jeżeli energia rozszczepienia 10Dq jest mniejsza niż energia sparowania elektronu.<br />

Kompleksy niskospinowe powstają natomiast wtedy, gdy energia rozszczepienia jest większa<br />

niż energia sparowania elektronu.<br />

Wartość 10Dq dla danego jonu centralnego zależy od natężenia pola elektrycznego<br />

wytwarzanego przez ligandy. Z widm absorpcyjnych związków koordynacyjnych<br />

wyznaczono wartości 10Dq dla różnych ligandów i ułożono je w szereg według wzrastającej<br />

wartości 10Dq w kompleksach. Szereg ten nosi nazwę szeregu spektrochemicznego:<br />

I – < Br – < Cl – < F – < C 2 O<br />

2– 4 < H 2O ≈ O 2– < NH 3 < NO<br />

– 2 < CN –<br />

Teoria pola krystalicznego daje możliwość zinterpretowania własności optycznych i<br />

magnetycznych związków kompleksowych metali d i f elektronowych. Jednak model jonowy<br />

kompleksu, na którym teoria ta jest oparta, można uważać jedynie za najprostsze<br />

przybliżenie. W rzeczywistości wiązania w kompleksach metali d i f elektronowych mają<br />

silniej zaznaczony charakter kowalencyjny niż jonowy.<br />

Model znacznie bardziej zadowalający a zarazem zachowujący wszystkie osiągnięcia<br />

teorii pola krystalicznego daje teoria orbitali molekularnych, stosowana szeroko do opisu<br />

wiązań w cząsteczkach. Jej omówienie wykracza jednak poza ramy niniejszej książki.<br />

8.6. Zastosowanie kompleksów w analizie<br />

Reakcje kompleksowania są często wykorzystywane do tzw. maskowania jonów<br />

przeszkadzających, w celu zwiększenia selektywności reakcji analitycznych w analizie. Pod<br />

pojęciem maskowania jonu przeszkadzającego należy rozumieć przeprowadzenie go w<br />

związek kompleksowy o dość dużej trwałości, w wyniku reakcji kompleksowania z<br />

odpowiednim ligandem. Związany w tej postaci jon jest niezdolny do reakcji zaburzającej<br />

prawidłowy przebieg reakcji wykrywania lub oznaczania innego jonu.<br />

Np. jeżeli chcemy wydzielić z roztworu, zawierającego jony Cd 2+ i Cu + , tylko kadm,<br />

strącając go w postaci siarczku, musimy najpierw zamaskować jon miedzi, ponieważ<br />

jednocześnie będzie się strącał siarczek miedzi(I). W tym celu dodajemy do roztworu np.<br />

167


KCN i wtedy tworzą się jony kompleksowe [Cu(CN) 2 ] – oraz [Cd(CN) 4 ] 2– . Stężenie jonów<br />

Cu + , uwarunkowane stałą trwałości kompleksu cyjankowego, jest mniejsze niż stężenie<br />

potrzebne do przekroczenia iloczynu rozpuszczalności siarczku miedzi, dlatego Cu 2 S nie<br />

wytrąci się w tych warunkach. Natomiast wytrąci się CdS, gdyż stężenie jonów Cd 2+ ,<br />

wynikające ze stałej trwałości kompleksu cyjankowego, jest wystarczająco duże do<br />

przekroczenia iloczynu rozpuszczalności tego siarczku.<br />

Przykładem innej reakcji, w której wykorzystuje się maskowanie jonów<br />

przeszkadzających jest reakcja wytrącania dwumetyloglioksymianu niklu z roztworu<br />

zawierającego, obok jonów niklu, również jony żelaza. Sytuacja taka ma często miejsce w<br />

trakcie analizy stali. Aby zamaskować przeszkadzający jon żelaza(III) dodaje się do roztworu<br />

kwasu winowego, w wyniku czego tworzy się trwały winianowy kompleks żelaza(III), który<br />

zapobiega wytrąceniu się wodorotlenku żelaza podczas analizy prowadzonej w środowisku<br />

zasadowym.<br />

Maskowanie odgrywa również dużą role w reakcjach redox. Na przykład podczas<br />

redukcji jonów żelaza (III) jonami jodkowymi te ostatnie utleniają się do wolnego jodu.<br />

Jednak w obecności jonów fluorkowych jod utlenia jony żelaza(II) a powstające jony<br />

żelaza(III) są wiązane w trwały kompleks fluorkowy.<br />

Możliwość tworzenia przez jony metali kompleksów kleszczowych została szeroko<br />

wykorzystana w analizie wagowej, czego przykładem niech będzie, wspomniana powyżej,<br />

reakcja strącania jonów niklu w postaci dwumetyloglikosymianu niklu czy też jonów glinu<br />

jako trudnorozpuszczalnego kompleksu z 8–hydroksochinoliną. W ekstrakcyjnych metodach<br />

oddzielania i zagęszczania pierwiastków wykorzystuje się z kolei dobrą rozpuszczalność<br />

kompleksów chelatowych w rozpuszczalnikach organicznych.<br />

Proste i kleszczowe kompleksy jonów metali d– i f–elektronowych często posiadają<br />

charakterystyczne barwy, co wykorzystywane jest w analizie jakościowej oraz w kolorymetrii<br />

(dział analizy instrumentalnej).<br />

Rozpuszczalne kompleksy EDTA stanowią podstawę ważnego działu analizy ilościowej –<br />

kompleksometrii. Wskaźnikami stosowanymi podczas miareczkowania roztworem EDTA są<br />

związki organiczne, które tworzą z jonami metali intensywnie zabarwione jony kompleksowe.<br />

Duże znaczenie ma tworzenie się kompleksów podczas rozpuszczania takich odpornych<br />

chemicznie metali jak złoto, niob, tantal czy cyrkon. Ich rozpuszczenie jest możliwe tylko<br />

dzięki powstawaniu odpowiednich, trwałych kompleksów fluorkowych, chlorkowych,<br />

cyjankowych itp.<br />

168


Rozdział 9<br />

Analiza wagowa<br />

Analiza wagowa ma na celu ustalenie, w jakiej ilości oznaczany składnik występuje w<br />

związku chemicznym lub mieszaninie. Oznaczanym składnikiem może być zarówno<br />

pierwiastek, jak jon lub związek chemiczny. Tą metodą można np. oznaczyć zawartość miedzi w<br />

stopie miedzi i cynku, masę jonów SO<br />

2- 4 w roztworze lub zawartość wody w hydracie MgCl 2 .<br />

Metoda wagowa ilościowego oznaczania danego składnika polega na jego wyodrębnieniu z<br />

układu poprzez strącenie go w postaci trudno rozpuszczalnego osadu i zważeniu osadu. Np.:<br />

jony SO 2- 4 , wchodząc w reakcję z jonami Ba 2+ tworzą trudno rozpuszczalny związek siarczanu<br />

baru, a jony Cu + , reagując z jonami tiocyjanianowymi SCN - , tworzą trudno rozpuszczalny<br />

związek tiocyjanian miedzi(I). Oba te związki mogą być wyodrębnione (strącone) z roztworu w<br />

formie krystalicznego osadu, którego masa jest podstawą do określenia masy oznaczanych<br />

jonów (atomów).<br />

Procedura stosowana w analizie wagowej składa się z szeregu następujących po sobie<br />

czynności, z których najistotniejsze są:<br />

o strącenie osadu, w skład którego wchodzi oznaczany składnik;<br />

o odsączenie osadu od roztworu;<br />

o przemywanie osadu;<br />

o suszenie lub przeprowadzenie go w inny związek (najczęściej przez prażenie w<br />

wysokiej temperaturze);<br />

o ważenie osadu.<br />

Na podstawie znajomości masy osadu, w wyniku obliczeń stechiometrycznych można<br />

ustalić:<br />

– zawartość oznaczanego składnika w mieszaninie wyjściowej;<br />

– wzór chemiczny analizowanej substancji.<br />

Wyniki pomiarów i obliczeń chemicznych trzeba opracować, szukając źródeł popełnianych<br />

błędów i obliczając ich wartości. Jedyny pomiar, jaki jest dokonywany w trakcie analizy<br />

wagowej, to pomiar masy - stąd konieczność obliczenia lub oszacowania błędu oznaczenia masy.<br />

Zawartość oznaczanego składnika określa się za pomocą współczynnika zwanego mnożnikiem<br />

analitycznym (bywa także nazywany faktorem chemicznym), który jest funkcją mas<br />

169


atomowych. Mnożnik analityczny służy do przeliczenia masy otrzymanego (ważonego) osadu<br />

na masę oznaczanego składnika. Zagadnienie to omówimy na następującym przykładzie:<br />

Oznaczamy jony żelaza Fe 2+ , strącając je w postaci Fe 2 O 3 ⋅ nH 2 O, który po wyprażeniu<br />

przechodzi w Fe 2 O 3 . Przyjmijmy, że masa zważonego osadu Fe 2 O 3 wynosi 0,5267g. W jednym<br />

molu Fe 2 O 3 znajdują się 2 mole jonów żelaza Fe 2+ . Jeżeli przez m(Fe) oznaczymy liczbę<br />

gramów Fe 2+ zawartą w 0,5267g Fe 2 O 3 , to mamy:<br />

M( Fe 2 O 3 ) ⎯ 2M(Fe)<br />

0,5267g ⎯ m(Fe)<br />

stąd: m(Fe) =<br />

2 M( Fe)<br />

⋅0,<br />

5276<br />

M( Fe O )<br />

2 3<br />

Ułamek<br />

2 M( Fe)<br />

M( Fe O )<br />

2 3<br />

nazywa się mnożnikiem analitycznym oznaczenia żelaza w postaci<br />

Fe 2 O 3 . Jak widać, mnożnik analityczny jest stosunkiem masy molowej pierwiastka lub związku,<br />

którego masy szukamy, do masy molowej związku, którego masę oznaczamy. Mnożnik<br />

analityczny wyraża zatem zawartość oznaczanego pierwiastka lub związku (w gramach) w 1<br />

gramie ważonej substancji.<br />

Przykład 1<br />

Podać mnożnik analityczny, służący do wyznaczenia zawartości miedzi w próbce mCu (g)<br />

na podstawie zważonej masy osadu siarczku miedzi(I), m(Cu 2 S) .<br />

M(Cu 2 S) - 2M(Cu)<br />

m osadu -<br />

m(Cu)<br />

mCu (g)= 2 M( Cu)<br />

M( Cu2S) • m osadu(g)<br />

gdzie: M(Cu), M(Cu 2 S) - masa atomowa miedzi i masa molowa siarczku miedzi(I).<br />

Mnożnikiem analitycznym jest ułamek<br />

2 M( Cu)<br />

M( Cu S)<br />

2<br />

Przykład 2<br />

Z roztworu zawierającego jony I - strącono osad PdI 2 , który następnie zredukowano do<br />

170


metalicznego palladu i w tej postaci zważono. Jaki jest mnożnik analityczny do oznaczania<br />

jonów jodkowych na podstawie zważonej masy palladu?<br />

W tym przypadku ważony osad nie zawiera oznaczanych jonów. Masa osadu zależy<br />

pośrednio od masy jonów I - . Poszczególne etapy analizy są następujące:<br />

2I - · PdI 2 · Pd<br />

Aby mógł powstać np. 1 mol metalicznego palladu, potrzebny jest 1 mol PdI 2 - do<br />

powstania którego z kolei roztwór wyjściowy musiał zawierać 2 mole jonów I - . Stąd mamy<br />

następujący mnożnik analityczny tego oznaczenia:<br />

F = 2 M ( I )<br />

M ( Pd)<br />

m I (g) =<br />

2 M( I)<br />

M ( Pd)<br />

· m Pd (g)<br />

Wartość i dokładność obliczenia mnożników analitycznych ma wpływ na błąd oznaczenia<br />

wagowego. Wartości mas atomowych, koniecznych do wyznaczenia mnożników, można znaleźć<br />

w tablicach umieszczonych między innymi w tym skrypcie.<br />

Wpływ procedury, według której postępujemy w analizie wagowej, jest również bardzo<br />

istotny. Rozdział 7 opisuje częściowo ilościowy wpływ na rozpuszczalność strąconego osadu<br />

takich zjawisk, jak hydroliza, efekty solne lub tworzenie związków koordynacyjnych. Jednak<br />

dokładny opis wpływu tych wielu czynników na końcowy wynik oznaczenia jest niemożliwy.<br />

Przepisy analizy ilościowej są tak określone, aby w miarę możliwości eliminować pojawienie się<br />

błędów procedury. Znaczy to na przykład, że możliwe jest całkowite strącenie badanego<br />

składnika, a roztwór do przemywania osadu z zanieczyszczeń jest tak dobrany, aby błąd<br />

związany z rozpuszczaniem osadu podczas tego procesu był minimalny. W związku z tym<br />

wszystkie przykłady, omawiane w tym rozdziale, bardzo skrótowo opisują procedurę analizy<br />

wagowej. Jeżeli oznaczanie jest dokonywane wielokrotnie, to znaczy, że eksperymentator<br />

kilkakrotnie, w miarę dokładnie, powtórzył w ten sam sposób oznaczenie.<br />

Zatrzymajmy się teraz na obliczeniach błędów wyników pomiarowych. Teoria błędów<br />

pomiarowych wyróżnia następujące rodzaje błędów:<br />

- błędy maksymalne B N ;<br />

- błędy przypadkowe B P ;<br />

- błędy grube B G.<br />

171


Błędy maksymalne w analizie wagowej są spowodowane graniczną zdolnością<br />

rozdzielczą wagi użytej do oznaczania masy osadu. Oznaczane są najczęściej symbolem m, a<br />

ich wartość nie wynika z obliczeń (tak jak ma to miejsce dla błędów przypadkowych), lecz z<br />

szacowania. Na przykład waga analityczna stosowana powszechnie w studenckich laboratoriach<br />

chemicznych, która waży z dokładnością do ± 10 - 4 g, jest źródłem błędu ∆m = ± 10 - 4 g i wynik<br />

pojedynczego ważenia podajemy np. m = 0,1253 ± 0,0001g. Podaje się również drugą postać<br />

błędu maksymalnego - błąd względny δ m , określony jako stosunek błędu bezwzględnego do<br />

wartości wyniku pojedynczego ważenia. Mamy więc:<br />

błąd bezwzględny ± ∆m, błąd względny δ m = ± ∆m/m<br />

W praktyce analitycznej najczęściej mamy do czynienia z pomiarem złożonym. Ważymy<br />

przeważnie różnicowo, tj. wyznaczamy zarówno masę ważonej substancji łącznie z naczyniem<br />

(łódeczką, tygielkiem, naczyńkiem wagowym), oznaczaną jako m a , jak i masę samego naczynia<br />

m b . Masę substancji ważonej obliczamy następnie z różnicy m = m a - m b . Błąd bezwzględny<br />

maksymalny wynosi ∆m a +∆m b . Jeżeli chcemy wyznaczyć błąd względny δ m oznaczania m z<br />

różnicy dwóch ważeń, musimy zastosować wyrażenie na błąd różnicy:<br />

∆m<br />

+ ∆<br />

a mb<br />

a<br />

b<br />

m =<br />

m<br />

m<br />

δ = δm<br />

+ δ<br />

m a - mb<br />

m a - mb<br />

m a - mb m<br />

a<br />

b<br />

gdzie wyrażenia ∆ oznaczają błędy bezwzględne pojedynczego ważenia. Analizując to<br />

wyrażenie widać, że jeśli m a jest bliskie m b , błąd δ m znacznie wzrasta. Ponadto, ponieważ w<br />

praktyce analitycznej stosuje się wagi, których zdolność rozdzielcza nie zależy praktycznie od<br />

obciążenia, tzn. ∆m a = ∆m b = ∆, mamy:<br />

błąd bezwzględny ± 2 ∆m, błąd względny δ m =<br />

2∆<br />

m − m<br />

a<br />

b<br />

.<br />

Przykład 3<br />

Policzmy, jaką najmniejszą masę możemy ważyć na wadze analitycznej (∆m = ± 10 -4 g) i<br />

półmikroanalitycznej (∆m = ± 5⋅10 -5 g), aby przy ważeniu różnicowym nie powstał błąd<br />

maksymalny względny większy niż 0,5%.<br />

Przyjmując, że dla małych wartości m błędy bezwzględne pojedynczych ważeń są równe,<br />

mamy ∆ ma = ∆ mb = ∆, a dla wagi analitycznej ∆ = 10 -4 g, wobec czego szukaną masę<br />

wyznaczamy z nierówności:<br />

172


δm<br />

=<br />

2 ⋅10<br />

−4<br />

< 0,005<br />

m<br />

czyli: m > 40 mg<br />

Dla wagi półmikroanalitycznej ∆ = 5·10 -5 g, wobec czego szukana masa spełnia nierówność:<br />

2 ⋅ 5 ⋅10<br />

−5<br />

δ m = < 0,005<br />

czyli: m > 20 mg.<br />

m<br />

W praktyce za pomocą wag analitycznych niejednokrotnie określamy masy mniejsze niż 40<br />

mg. W takim przypadku musimy liczyć się z możliwością popełnienia większego błędu, nawet<br />

przy zachowaniu wszelkich reguł poprawnego ważenia.<br />

Błędy przypadkowe, zwane często losowymi, z którymi mamy do czynienia przy<br />

pomiarach wielokrotnych, są spowodowane różnymi przyczynami, często nie znanymi<br />

prowadzącemu pomiary. Powodują one rozrzut wyników pomiaru, a miarą tego rozrzutu jest<br />

tzw. błąd standardowy, wyrażony w postaci odchylenia standardowego σ. Jest to błąd<br />

bezwzględny, którego wartość określa wzór:<br />

σ =<br />

∑ ( x - x)<br />

n-1<br />

2<br />

gdzie x, x - wyniki kolejnych pomiarów i średnia arytmetyczna.<br />

Prawie każdy kalkulator posiada odpowiedni program do liczenia odchylenia<br />

standardowego σ, jak również np. wartości średnich x . Błędy przypadkowe względne określa<br />

się jako stosunek błędu bezwzględnego do wartości średniej arytmetycznej. Mamy więc:<br />

błąd bezwzględny ± σ, błąd względny δ m = ± σ x .<br />

Przykład 4<br />

Oznaczanie masy jonów Sb 3+ w roztworze.<br />

Badany roztwór, zawierający jony Sb 3+ , rozcieńczamy do 200 cm 3 . Pobieramy za pomocą<br />

pipety pięć razy po 20 cm 3 do pięciu prób. Następnie do każdego roztworu dodajemy<br />

tioacetamid i podgrzewamy. Strącamy w ten sposób jony Sb 3+ w postaci siarczku antymonu(III),<br />

zgodnie z reakcją: 2Sb 3+ + 3S 2- = Sb 2 S 3 .<br />

Po odsączeniu, przemyciu i wysuszeniu, powstały osad ważymy. Po powtórzeniu<br />

pięciokrotnie tej samej procedury otrzymano następujące wartości masy osadu: 0,1721, 0,1733,<br />

0,1714, 0,1722, 0,1728 g. Obliczyć masę jonów w badanym roztworze i podać dokładność<br />

173


oznaczenia.<br />

Średnia masa osadu i błąd standardowy wynoszą: 0,1724±0,0007 g.<br />

Zważona masa osadu w pojedynczym oznaczeniu zawiera jony Sb 3+ pochodzące z objętości<br />

20 cm 3 , która stanowi 1/10 objętości całego badanego roztworu. Wobec tego całkowita masa<br />

jonów antymonu zawarta w analizowanym roztworze wynosi:<br />

m(Sb) = 2 ⋅ M( Sb)<br />

⋅ m<br />

M( Sb2O3<br />

)<br />

osadu ⋅ 10<br />

Podstawiając tablicowe wartości mas atomowych liczymy najpierw wartość mnożnika<br />

analitycznego:<br />

2⋅ M( Sb)<br />

M( Sb O )<br />

2 3<br />

2⋅ 121,<br />

757<br />

= = 0,7168<br />

339,<br />

712<br />

zatem:<br />

mSb (g)= 0,7168 ⋅ 0,1724 ⋅ 10 = 1,236 g<br />

Liczymy błędy oznaczenia:<br />

∆M(Sb) = ± 2⋅0,001 ∆M(Sb 2 O 3 ) = ± 6 ⋅0 ,001 ∆m osadu = ± 0,0007<br />

δM(Sb) = ± 2 ⋅10 -5 δM(Sb 2 O 3 ) = ± 2⋅10 -5 δm osadu = ± 41⋅10 -4<br />

δ całk. = Σδ = ± 45⋅10 -4 = ± 0,0045 δ całk. (%) = ± 0,45%<br />

∆ całk. = δ ⋅ m Sb = ± 0,0045⋅ 1,236 = ± 0,0056<br />

m Sb (g) = 1,236 ± 0,0056 g<br />

Należy podkreślić, że pomiar masy jest obciążony jednocześnie obu rodzajami błędów, ale<br />

w zależności od czułości wagi oraz czynników zewnętrznych, na ogół jeden z tych błędów<br />

wyraźnie przeważa i staje się przedmiotem obliczeń lub oszacowań.<br />

Błędy grube, zwane trafnie pomyłką, są w pomiarach wielokrotnych łatwe do zauważenia.<br />

Wyniki te wyraźnie odbiegają od pozostałych. Powstaje jednak problem, jaką wielkość<br />

odstępstwa wyniku wątpliwego od pozostałych można uznać za istotną. Skorzystać tu można z<br />

tzw. kryterium "3σ", które jest jedną z wielu zasad statystycznej weryfikacji wyniku wątpliwego.<br />

Jeśli różnica:<br />

⏐wynik wątpliwy - średnia arytmetyczna liczona bez wyniku wątpliwego⏐ ≥ 3σ,<br />

to wynik uznajemy za wątpliwy i odrzucamy go.<br />

174


Przykład 5<br />

Oznaczanie procentowej zawartości wody krystalizacyjnej w hydracie BaCl 2 ·nH 2 O.<br />

Hydrat o znanej masie m n = 0,1445 ± 0,0002 g suszy się w temp. około 110 o C do stałej<br />

masy. W pięciu próbach otrzymano następujące masy hydratu m s po wysuszeniu: 0,1240, 0,1229,<br />

0,1225, 0,1232, 0,1265 g. Oznaczyć zawartość wody krystalizacyjnej w badanym hydracie.<br />

Ostatni wynik pomiaru, tj. 0,1265g wydaje się być wątpliwy. Dla sprawdzenia tej hipotezy<br />

obliczmy najpierw średnią arytmetyczną oraz błąd standardowy dla czterech wyników pomiaru z<br />

wykluczeniem wyniku wątpliwego.<br />

0, 1240 + 0, 1229 + 0, 1225+<br />

0,<br />

1232<br />

x śr = = 0,1232 g<br />

4<br />

σ m = 0,0006 g<br />

Korzystamy teraz z kryterium " 3σ" weryfikacji wyniku wątpliwego, a mianowicie, jeśli:<br />

|wynik wątpliwy - średnia arytmetyczna liczona bez wyniku wątpliwego ≥ 3σ, to wynik<br />

uznajemy za wątpliwy i odrzucamy go.<br />

W naszym przypadku mamy:<br />

0,1265 - 0,1232 = 0,0033 ≥ 3 ⋅ 0,0006<br />

Wynik ważenia 0,1265 uznajemy za wątpliwy i nie bierzemy go pod uwagę przy dalszych<br />

obliczeniach.<br />

Procentową zawartość wody w hydracie wyznaczamy ostatecznie z zależności:<br />

%H 2 O w hydracie = m m n<br />

−<br />

s<br />

−<br />

⋅ 100% =<br />

0 , 1445 0 , 1232 ⋅100%<br />

m<br />

0,<br />

1445<br />

n<br />

= 0,1474 ⋅100% = 14,74%<br />

Policzmy błędy oznaczenia:<br />

∆m n = ± 0,0002 ∆m s = σ = ± 0,0006<br />

δm n = ∆m m<br />

n<br />

n<br />

= ± 0 , 0002<br />

0,<br />

1445<br />

= ± 0,0014 δm s = ∆m m<br />

s<br />

s<br />

= ± 0 , 0006<br />

0,<br />

1232<br />

= ± 0,0049<br />

δ całk = Σδ = ± (0,0014 + 0,0049) = ± 0,0063 = ± 0,6%<br />

∆ całk = % H 2 O w hydracie ⋅ δ całk = ± 0,09<br />

% zawartość wody w BaCl 2 ⋅ nH 2 O = 14,74 ± 0,09% .<br />

Przykład 6<br />

Oznaczanie zawartości glinu w stopie glinu i magnezu.<br />

175


Po roztworzeniu w kwasie solnym naważki stopu glinu i magnezu, m n = 2,7185 ± 0,0002 g,<br />

powstały roztwór rozcieńczono do 100 cm 3 i pobrano z niego trzy próbki po 20 cm 3 roztworu.<br />

Strącanie jonów glinu z pobranych próbek przeprowadzono za pomocą 8-hydroksychinoliny w<br />

słabo kwaśnych roztworach. Metoda ta pozwala strącić jony Al 3+ w obecności jonów Mg 2+ .<br />

Krystaliczne osady 8-hydroksochinolinianu glinu odsączono, przemyto i wysuszono, a następnie<br />

zważono, uzyskując następujące wyniki: 0,9245 g, 0,9258 g, 0,9263 g.<br />

Strącanie jonów Al 3+ zachodzi zgodnie z reakcją:<br />

Al 3+ + 3 C 9 H 6 ON - = Al(C 9 H 6 ON) 3<br />

Oznaczyć procentową zawartość glinu w stopie MgAl i podać dokładność otrzymanego wyniku.<br />

Obliczamy średnią masę osadu i odchylenie standardowe: m osadu = 0,9255 ± 0,0009 g.<br />

Wyznaczamy mnożnik analityczny dla tego oznaczenia, podstawiając tablicowe wartości<br />

mas atomowych:<br />

F =<br />

M( Al)<br />

26,<br />

982<br />

= = 0,05873<br />

M[ Al( C H ON ) ] 459,<br />

44<br />

9 6 3<br />

Ponieważ pojedyncze oznaczenie jonów glinu przeprowadza się dla próbki, której objętość<br />

stanowi 1/5 objętości badanej mieszaniny, wzór na masę jonów glinu w całej próbce przyjmuje<br />

postać:<br />

m Al = F ⋅ m osadu ⋅ 5<br />

% zawartość glinu w stopie = m m<br />

Al<br />

n<br />

⋅ 100% =<br />

F ⋅m<br />

m<br />

osadu<br />

n<br />

⋅5 · 100%<br />

% zawartość glinu w stopie =<br />

0, 05873⋅0,<br />

9255<br />

⋅5⋅ 100% = 10,0%<br />

2,<br />

7185<br />

Policzmy błąd oznaczenia: ∆M(Al) = ±0,001 ∆M[Al(C 9 H 6 ON) 3 ] = ±52·0,001<br />

∆m osadu = ±0,0009 ∆m n = ±0,0002<br />

δM(Al) = ±4 · 10 -4 δM[Al(C 9 H 6 ON) 3 ] = ±10 -4 δm n = ±7 · 10 -5<br />

δm osadu = ±97 · 10 -5 δ całk = Σδ = ±0,00121 = ±0,1%<br />

∆ całk = δ całk ⋅ % zawartość glinu w stopie = 0,09997 ⋅ 0,00121 = ±0,0001<br />

% zawartość glinu w stopie = 10,0 ± 0,1%<br />

176


Przykład 7<br />

Oznaczanie wzoru chemicznego analizowanej substancji.<br />

Określić wzór tlenku niklu(II) na podstawie ilościowej analizy wagowej, w której nikiel<br />

strąca się w postaci osadu dwumetyloglioksymianu niklu.<br />

Z czterech jednakowych naważek badanego tlenku, wynoszących m n = 0,1325 ± 0,0002 g,<br />

otrzymano na drodze kolejnych operacji analitycznych osady dwumetyloglioksymianu niklu(II),<br />

które po przemyciu, wysuszeniu i zważeniu dały następujące masy osadu:<br />

0,8340 g, 0,8325 g, 0,8331 g, 0,8333 g.<br />

Strącanie osadu przebiega według następującej reakcji:<br />

Ni 2+ + 2C 4 H 8 O 2 N 2 = (C 4 H 7 O 2 N 2 ) 2 Ni + 2H +<br />

Aby wyznaczyć wzór tlenku, trzeba określić zawartość niklu w osadzie, a następnie w<br />

badanym tlenku. Ilość oznaczanego niklu w osadzie dwumetyloglioksymianu niklu obliczamy ze<br />

wzoru:<br />

m Ni =<br />

M( Ni)<br />

⋅<br />

M[ Ni( DMG) ]<br />

2<br />

m osadu<br />

Tablicowe wartości mas atomowych, potrzebnych do obliczeń, są następujące:<br />

M Ni = 58,693, M H = 1,008, M C = 12,011, M N = 14,007, M O = 15,9994.<br />

Średnia wartość masy osadu i odchylenie standardowe wynoszą:<br />

m śr = 0,8332 g, σ = ± 0,0006 g.<br />

Wzór tlenku niklu zapisujemy w postaci Ni x O y , stąd otrzymujemy następujące zależności:<br />

m Ni = x M(Ni)<br />

m n = xM(Ni) + yM[Ni(DMG) 2 ]<br />

Po przekształceniu trzech powyższych relacji otrzymujemy wzór na szukany stosunek x/y:<br />

x<br />

y<br />

mosadu<br />

⋅ M( O)<br />

=<br />

m ⋅ M[ Ni( DMG) ] − m ⋅ M( Ni)<br />

n<br />

2<br />

osadu<br />

x<br />

y =<br />

0, 8332⋅15,<br />

999<br />

0, 2175⋅288, 916 − 0, 8332⋅58,<br />

693<br />

= 0,9566<br />

Otrzymujemy w ten sposób następujący wzór tlenku niklu: Ni 0,9566 O, co może odpowiadać<br />

wyraźnej niestechiometrii, realizowanej jako deficyt metalu w tlenku.<br />

Teraz należy sprawdzić, jaki jest błąd ∆(x/y) naszego oznaczenia, ponieważ skład Ni 0,9566±∆<br />

O może odpowiadać składowi stechiometrycznemu, jeśli 0,9566 + ∆ = 1. Policzmy błąd<br />

177


oznaczenia x/y obliczając najpierw błędy bezwzględne ∆ poszczególnych członów wzoru na x/y:<br />

∆m osadu = ± 0,0006 ∆m n = ± 0,0002 ∆M Ni = ± 0,001 ∆M O = ± 0,001<br />

∆M[Ni(DMG) 2 ] = ± 31⋅0,001<br />

Uwzględniając wzory na błędy względne: δ m =<br />

∆m<br />

m<br />

lub δΜ = ∆M M<br />

i δ całk = Σδ mamy:<br />

δm osadu = ± 0 , 0006<br />

0,<br />

8331<br />

= ± 7 ·10 -4 δm n = ± 0 , 000<br />

0,<br />

2175<br />

= ± 9 ·10 -4<br />

δM Ni = ± 0 , 001<br />

58,<br />

693<br />

= ± 2 ·10 -5 δM O = ±<br />

0,<br />

001<br />

15,<br />

9994<br />

= ± 6 ·10 -5<br />

δM[Ni(DMG) 2 ] = ±<br />

0,<br />

031<br />

288,<br />

916<br />

= ±1·10 -4 δ całk = Σδ = ± 18· 10 -4 = ± 0,0018<br />

Całkowity błąd bezwzględny ∆ całk oznaczenia jest:<br />

∆ całk = δ całk ⋅ ( x ) = ± 0,0018 ⋅ 0,9566 = ± 0,0017<br />

y<br />

Wzór tlenku niklu(II) jest następujący: Ni 0,9566±0,0017 O i ten zapis rozstrzyga, że badany<br />

tlenek jest tlenkiem niestechiometrycznym. Przykład ten potwierdza, że bez znajomości błędu<br />

popełnianego przy analizie nie można oceniać znaczenia uzyskanego wyniku.<br />

9.1. Koloidy<br />

9.1.1. Charakterystyka ogólna<br />

Układami koloidalnymi (koloidami) nazywamy układy dyspersyjne, najczęściej<br />

dwuskładnikowe, o wyglądzie układów fizycznie jednorodnych, chociaż w rzeczywistości<br />

składniki nie są zmieszane ze sobą cząsteczkowo. Składnik tworzący fazę o rozproszeniu<br />

cząsteczkowym nazywamy ośrodkiem dyspersyjnym lub rozpraszającym, drugi zaś - fazą<br />

rozproszoną lub składnikiem rozproszonym. Składnik rozproszony składa się z cząstek<br />

o wymiarach od 1 do 500 nm, przy czym zakres ten ma charakter arbitralny. Jeżeli cząstki<br />

fazy rozproszonej mają jednakową wielkość, układ nazywamy monodyspersyjnym lub<br />

izodyspersyjnym, gdy zaś różnią się wielkością – układem polidyspersyjnym. Układy<br />

koloidalne, które spotykamy w przyrodzie, mają najczęściej charakter układów<br />

polidyspersyjnych. Nauka o koloidach jest nauką interdyscyplinarną; pole zainteresowań<br />

obejmuje chemię, fizykę, biologię, inżynierię materiałową i szereg innych dyscyplin.<br />

178


Układy niejednorodne o wymiarach cząstek fazy rozproszonej większych niż 500 nm<br />

nazywamy układami o rozdrobnieniu mechanicznym, natomiast gdy średnice cząstek fazy<br />

rozproszonej są mniejsze od 1 nm - układami o rozdrobnieniu cząsteczkowym lub<br />

granicznym (W. Ostwald). Te ostatnie odpowiadają już roztworom właściwym. W ten sposób<br />

układy koloidalne graniczą z jednej strony z układami o rozdrobnieniu mechanicznym, z<br />

drugiej zaś z układami o rozdrobnieniu cząsteczkowym.<br />

Należy podkreślić, że między układami o rozdrobnieniu koloidalnym i cząsteczkowym<br />

nie ma ostrej granicy. Znamy bowiem wiele związków chemicznych tworzących układy o<br />

rozdrobnieniu pośrednim między koloidowym i cząsteczkowym, a zatem i pośrednich<br />

właściwościach. Dla tej grupy związków W. Ostwald wprowadził nazwę semikoloidów lub<br />

pseudokoloidów. Należą do niej liczne barwniki, dekstryna, toksyny, fermenty, peptony,<br />

mydła itd.<br />

Stan rozproszenia koloidalnego jest bardzo rozpowszechniony zarówno w świecie<br />

przyrody ożywionej i nieożywionej (np. glina, kurz), jak również wśród związków<br />

otrzymanych sztucznie (np. siarka koloidalna, siarczki i wodorotlenki metali). Oprócz tego<br />

znamy szereg związków, tzw. makrocząstek, których cząsteczki mają wymiary<br />

charakterystyczne dla cząstek koloidalnych, a ich roztwory wykazują właściwości zbliżone do<br />

właściwości układów koloidalnych. Substancje te nazywamy eukoloidami lub koloidami<br />

cząsteczkowymi. Do grupy tej należą roztwory rzeczywiste związków chemicznych o<br />

wielkich cząsteczkach, np. białek, polimerów (tworzyw sztucznych), skrobi, celulozy,<br />

kauczuku, keratyny, kollagenu, miozyny, glikogenu.<br />

Z roztworami koloidalnymi mamy często do czynienia podczas analizy ilościowej<br />

siarczków i wodorotlenków metali I – III grup analitycznych. Podstawowym problemem jest<br />

tu ilościowe strącanie i przemywanie osadów tych związków. Strącanie osadu koloidalnego<br />

w niezdefiniowanych warunkach może zachodzić w sposób niepełny, lub w ogóle nie ma<br />

miejsca. Z kolei przemywanie osadu koloidalnego jest często kłopotliwe, ponieważ z jednej<br />

strony wykazuje on tendencję do zaklejania porów sączka, z drugiej natomiast – użycie<br />

niewłaściwego roztworu przemywającego może prowadzić do rozpuszczania otrzymanego<br />

osadu. Ilościowe oznaczanie substancji koloidalnych wymaga od analityka znajomości ich<br />

podstawowych właściwości. W odróżnieniu od roztworów rzeczywistych i zawiesin, można<br />

podzielić je na trzy zasadnicze grupy. Obejmują one właściwości kinetyczne, optyczne<br />

i elektryczne. Zostaną one omówione w dalszej części tego rozdziału.<br />

179


9.1.2. Podział koloidów<br />

Klasyfikację układów koloidalnych można przeprowadzić w różny sposób, w zależności<br />

od ich właściwości fizycznych bądź chemicznych. Najpowszechniej przyjętym jest<br />

zaproponowany przez Ostwalda podział oparty na stanach skupienia ośrodka dyspersyjnego i<br />

fazy rozproszonej. Wynika stąd możliwość istnienia 8 rodzajów układów koloidalnych,<br />

ponieważ mieszanina gazowa tworzy zawsze roztwór właściwy. W tabeli 9.1 przedstawiono<br />

podział układów koloidalnych w zależności od stanu skupienia ośrodka dyspersyjnego i fazy<br />

rozproszonej, ich nazewnictwo i przykłady.<br />

Najbardziej rozpowszechnione są układy koloidalne z ciekłym ośrodkiem dyspersyjnym.<br />

Nazywamy je zwykle roztworami koloidalnymi, liozolami, lub najczęściej - zolami. Jeżeli<br />

ośrodek dyspersyjny jest wodą, mówimy o hydrozolach, jeżeli alkoholem - o alkozolach,<br />

benzenem - o bezenozolach, gliceryną - o glicerozolach. Układy koloidalne, w których<br />

ośrodek dyspersyjny jest cieczą organiczną nazywamy ogólnie organozolami. Jeżeli ośrodek<br />

dyspersyjny jest gazem mówimy o gazozolach. Koloidy trwałe jedynie w wyższych<br />

temperaturach nazywamy pirozolami (np. złoto w stopionym boraksie lub kadm w stopionym<br />

chlorku kadmowym), zaś układy trwałe jedynie w temperaturach niższych – kriozolami (np.<br />

lód w chloroformie, w temperaturze -20 o C). Często układy koloidalne są ciałami stałymi bądź<br />

galaretowatymi, chociaż ich ośrodek dyspersyjny jest cieczą. Tego rodzaju układy nazywamy<br />

żelami i zależnie od ośrodka dyspersyjnego określamy je bliżej jako hydrożele, organożele<br />

itd.<br />

Tabela 9.1. Podział koloidów wg stanu skupienia ośrodka dyspersyjnego i fazy rozproszonej.<br />

Ośrodek<br />

dyspersyjny<br />

GAZ<br />

CIECZ<br />

CIAŁO STAŁE<br />

Faza<br />

rozproszona<br />

Przykłady<br />

Nazwa<br />

Ciecz mgła, chmury, kondensujące się pary mgły, aerozole<br />

Ciało stałe kurz, dym gazozole, aerozole<br />

pęcherzyki gazów w cieczy, np. w<br />

Gaz<br />

krytycznym obszarze skraplania gazów, piany, zole<br />

piana mydlana<br />

Ciecz<br />

mleko, emulsja tłuszczu w wodzie,<br />

liozole, (emulsje<br />

roztwór żelatyny, białka<br />

koloidalne)<br />

Ciało stałe<br />

zole metali, siarczków, tlenków<br />

liozole, (zawiesiny<br />

i wodorotlenków metalicznych<br />

koloidalne, suspensje)<br />

Gaz pumeks, okluzje gazowe w minerałach piany stałe<br />

Ciecz<br />

kwarc mleczny, kryształy z okludowaną<br />

wodą hydratacyjną<br />

emulsje stałe<br />

szkło rubinowe, perły fosforanowe,<br />

Ciało<br />

zole stałe<br />

kryształy chlorku sodowego zabarwione<br />

stałe<br />

przez koloidalne cząstki metaliczne<br />

9.1.3. Koloidy liofobowe i liofilowe<br />

Podział na koloidy liofobowe i liofilowe, wprowadzony przez Lottermosera i Kruyta,<br />

180


opiera się na różnicach w oddziaływaniu fazy rozproszonej z ośrodkiem dyspersyjnym. Jeżeli<br />

cząstki fazy rozproszonej łączą się z cząsteczkami ośrodka dyspersyjnego koloid nazywamy<br />

liofilowym, natomiast w przypadku braku takiego oddziaływania – liofobowym. Zjawisko<br />

łączenia się cząstek fazy rozproszonej z ośrodkiem dyspersyjnym nazywamy solwatacją, a w<br />

odniesieniu do ośrodka wodnego – hydratacją. W odniesieniu do koloidów rozproszonych w<br />

wodzie używamy również terminów hydrofilowy i hydrofobowy. W wyniku solwatacji<br />

(hydratacji) cząstki fazy rozproszonej zostają otoczone cząsteczkami ośrodka dyspersyjnego,<br />

a wytworzone otoczki przeciwdziałają zlepianiu się cząstek przy zderzeniach. Z kolei<br />

roztwory liofobowe stabilizowane są głównie dzięki absorpcji jonów elektrolitu z roztworu.<br />

Do koloidów liofilowych należą m.in. białka, tanina, żelatyna, do liofobowych zaś zole<br />

metali, niektórych wodorotlenków i soli. W tabeli 9.2 zestawiono wybrane właściwości<br />

charakterystyczne koloidów liofobowych i liofilowych. Niektóre z tych właściwości zostaną<br />

opisane szczegółowo w dalszej części.<br />

Poza podziałem koloidów na liofobowe i liofilowe istnieje wspomniana już grupa<br />

substancji, nazywanych koloidami cząsteczkowymi, które rozpuszczając się w niektórych<br />

rozpuszczalnikach, tworzą układy fizycznie jednorodne. Koloidy cząsteczkowe wykazują<br />

brak wielu cech charakterystycznych dla typowych układów koloidalnych, m.in. cząstki fazy<br />

rozproszonej są niewidoczne w ultramikroskopie, charakteryzuje je nikły efekt Tyndalla itd.<br />

Trwałość koloidów cząsteczkowych nie wymaga stabilizującej obecności jonów, a ich<br />

stabilizacja polega na hydratacji, np. grup –OH w przypadku polisacharydów, grup –COOH i<br />

–NH 2 w przypadku protein bądź solwatacji grup –CH 2 –CH 2 – w rozpuszczalnikach<br />

organicznych.<br />

Tabela 9.2. Właściwości koloidów liofobowych i liofilowych.<br />

Właściwość Koloidy liofobowe Koloidy liofilowe<br />

Otrzymywanie<br />

metodami dyspersji lub<br />

kondensacji<br />

można otrzymać przez zwykłe<br />

rozpuszczanie<br />

Struktura cząstek<br />

przeważnie agregaty zwykłych<br />

cząsteczek<br />

makrocząsteczki, czyli<br />

cząsteczki - olbrzymy<br />

Stężenie fazy rozproszonej na ogół nieznaczne może być duże<br />

Ruchy Browna występują wyraźnie często bardzo niewyraźne<br />

Efekt Tyndalla wyraźny niewyraźny<br />

Barwa układu często zabarwione najczęściej bezbarwne<br />

Ładunek elektryczny cząstki są zawsze naładowane ładunek nieznaczny lub brak<br />

ładunku<br />

Lepkość nieznaczna znaczna<br />

Tworzenie piany nie tworzą piany łatwo tworzą pianę<br />

Pęcznienie nie pęcznieją pęcznieją zwiększając objętość<br />

Tworzenie galaret nie tworzą galaret łatwo tworzą galarety<br />

Wrażliwość na działanie<br />

elektrolitu<br />

koagulacja pod wpływem<br />

małych stężeń elektrolitu<br />

mała wrażliwość; pod wpływem<br />

dużych stężeń elektrolitu<br />

następuje wysalanie<br />

Wrażliwość na działanie<br />

nieznaczna, występująca przy znaczna przy dużych stężeniach<br />

środków dehydratujących dużych stężeniach<br />

Charakter koagulacji nieodwracalna odwracalna<br />

181


9.1.4. Metody otrzymywania koloidów<br />

Ponieważ cząstki koloidalne mają najczęściej wymiary 1 - 100 nm, tzn. większe od<br />

wymiarów cząsteczek i jonów, a mniejsze od cząstek makroskopowych, istnieją dwie metody<br />

prowadzące do otrzymania układów koloidalnych:<br />

1. Metody dyspersyjne, polegające na rozdrabnianiu cząstek makroskopowych do<br />

momentu osiągnięcia rozmiarów charakterystycznych dla koloidów;<br />

2. Metody kondensacyjne, polegające na skupianiu cząsteczek lub jonów na większe<br />

agregaty, aż do osiągnięcia rozdrobnienia koloidalnego.<br />

Do metod dyspersyjnych można zaliczyć:<br />

a) rozdrabnianie mechaniczne w młynach koloidalnych;<br />

b) rozdrabnianie za pomocą fal ultradźwiękowych (otrzymywanie zoli grafitu, siarki,<br />

metali, tlenków i siarczków, białek, celulozy itd);<br />

c) naświetlanie metali zanurzonych w ośrodku dyspersyjnym promieniami<br />

ultrafioletowymi lub rentgenowskimi;<br />

d) rozpylanie termiczne, polegające na rozpylaniu w ośrodku dyspersyjnym rozżarzonego<br />

drutu (otrzymywanie hydrozoli miedzi, złota, srebra, cyny);<br />

e) rozpylanie elektryczne – rozpylanie metali w łuku elektrycznym – metoda Brediga,<br />

rozpylanie metali przez prąd zmienny – metoda Svedberga, rozpylanie katodowe;<br />

f) rozpylanie mechaniczne (aerozole, mgły);<br />

g) peptyzacja – działanie na trudno rozpuszczalny osad roztworem elektrolitu,<br />

powodującego stopniowe przechodzenie osadu w stan rozdrobnienia koloidalnego.<br />

Do najważniejszych metod kondensacyjnych należą:<br />

a) zmniejszenie rozpuszczalności – składnik, który chcemy otrzymać w stanie<br />

rozpuszczonym, przenosimy z ośrodka, w którym jest łatwo rozpuszczalny do<br />

drugiego, w którym się nie rozpuszcza (np. hydrozol siarki można otrzymać wlewając<br />

do wody alkoholowy roztwór siarki);<br />

b) kondensacja pary metalu, wytworzonej w wyniku katodowego parowania, w<br />

odpowiednim ośrodku dyspersyjnym;<br />

c) utlenianie – powstawanie układów koloidalnych przez utlenianie zachodzi wówczas,<br />

gdy w procesie utleniania powstaje substancja trudno rozpuszczalna (np. koloidalny<br />

roztwór siarki można otrzymać przez utlenienie tiosiarczanu sodu kwasem<br />

siarkowym(VI) );<br />

182


d) redukcja. Przez redukcję rozcieńczonych roztworów soli metali szlachetnych można<br />

otrzymać ich zole (koloidalne złoto, srebro, platynę);<br />

e) hydroliza – przez hydrolizę roztworów soli na gorąco można otrzymać hydrozole<br />

wodorotlenków i tlenków metalicznych;<br />

f) wymiana – układ koloidowy powstaje w wyniku reakcji wymiany, prowadzącej do<br />

wytworzenia substancji trudno rozpuszczalnej (hydrozole siarczków metali, tlenków,<br />

wodorotlenków, kwasu krzemowego itd.);<br />

g) polimeryzacja;<br />

h) polikondensacja.<br />

9.1.5. Metody oczyszczania koloidów<br />

Układy koloidalne, niezależnie od sposobu ich otrzymywania, są zawsze zanieczyszczone<br />

przez domieszki elektrolitów. Całkowite uwolnienie koloidów od domieszek elektrolitów jest<br />

niemożliwe, ponieważ pewna ich ilość jest niezbędna do zapewnienia trwałości zolu.<br />

Oczyszczanie koloidów od domieszek ciał stałych i elektrolitów przeprowadzamy najczęściej<br />

za pomocą następujących metod:<br />

o dializy;<br />

o elektrodializy;<br />

o ultrafiltracji;<br />

o elektrodekantacji;<br />

o adsorpcji wymiennej na jonitach.<br />

Poniżej omówimy je pokrótce.<br />

Dializą nazywamy zjawisko dyfuzji cząsteczek i jonów zawartych w roztworze<br />

koloidalnym przez błonę półprzepuszczalną, rozdzielającą roztwór i czysty rozpuszczalnik.<br />

W wyniku dializy następuje oddzielenie zolu od czystego ośrodka dyspersyjnego (zwykle<br />

wody). Cząsteczki i jony dyfundują przez błonę do wody i zostają w ten sposób wypłukane,<br />

natomiast duże cząstki koloidowe nie mogą przenikać przez błonę i pozostają w roztworze.<br />

Do zatrzymywania cząstek koloidalnych można stosować różnego rodzaju błony (membrany),<br />

zarówno naturalne, jak i sztuczne, np. pergamin, pęcherze zwierzęce, błony nitrocelulozowe,<br />

celofan itd. Urządzenie wykorzystujące zjawisko dializy do oczyszczania koloidów<br />

nazywamy dializatorem.<br />

Elektrodializa – proces dializy można znacznie przyspieszyć przez połączenie jej z<br />

elektrolizą. Urządzenie pozwalające na przeprowadzenie elektrodializy nazywamy<br />

183


elektrodializatorem.<br />

Ultrafiltracja i elektroultrafiltracja jest to metoda oczyszczania i zatężania koloidów,<br />

polegająca na filtracji roztworów koloidalnych przez porowate błony lub sączki o bardzo<br />

małych średnicach porów, nie przepuszczających cząstek koloidalnych. Błony sporządza się<br />

z nitrocelulozy, arkuszy celulozowych, acetylocelulozowych, celofanowych,<br />

papieru<br />

pergaminowego. W celu zwiększenia wytrzymałości mechanicznej błon osadza się je na<br />

nośniku, np. na bibule filtracyjnej lub porowatej porcelanie. Sączki sporządza się ze<br />

specjalnych gatunków spiekanego szkła. Ultrafiltrację prowadzi się pod zmniejszonym<br />

ciśnieniem.<br />

Elektrodekantacja stanowi połączenie elektrodializy z dekantacją. Proces oczyszczania<br />

zolu prowadzi się przy wykorzystaniu elektrodializatora.<br />

Adsorpcja wymienna na jonitach – przepuszczając oczyszczany zol przez kolumny<br />

kationitowe i anionitowe (najczęściej w formie –H dla kationitu i –OH dla anionitu), można<br />

drogą wymiany usunąć zanieczyszczające go jony, znajdujące się w roztworze.<br />

9.1.6. Właściwości układów koloidalnych<br />

W 1827 r. R. Brown zauważył, że bardzo małe cząstki o wymiarach mikroskopowych<br />

pozostają w ciągłym ruchu, wykonując szybkie ruchy oscylacyjne i translacyjne.<br />

Matematyczne wyjaśnienie tzw. ruchów Browna zostało podane niezależnie od siebie przez<br />

A. Einsteina i M. Smoluchowskiego. Wykazali oni, że istnieje pewna, dająca się zmierzyć<br />

wielkość, związana z kinetycznymi ruchami cząstek, mianowicie średnie przesunięcie x .<br />

Przesunięcia x, obserwowane dla tego samego czasu t, różnią się znacznie od siebie,<br />

natomiast wartość średnia przesunięcia x dobrze charakteryzuje szybkość ruchu<br />

brownowskiego. Wielkość przesunięcia x oraz współczynnik dyfuzji D (np. układu<br />

koloidalnego) można oznaczyć doświadczalnie, a z jego znajomości obliczyć prędkość ruchu<br />

brownowskiego i promień poruszającej się cząstki. Einstein i Smoluchowski wyprowadzili<br />

równanie wiążące średnie przesunięcie z czasem jego trwania i współczynnikiem dyfuzji D:<br />

x 2<br />

= 2⋅<br />

D ⋅ t<br />

(9.1.1)<br />

Współczynnik dyfuzji D można wyrazić równaniem Einsteina:<br />

D<br />

=<br />

RT<br />

N<br />

A<br />

1<br />

⋅<br />

6πηr<br />

(9.1.2)<br />

gdzie: η - współczynnik lepkości ośrodka,<br />

r - promień cząstki,<br />

184


N A - liczba Avogadra.<br />

Z równań (9.1.1) i (9.1.2) otrzymujemy<br />

_<br />

RT t<br />

x = ⋅ (9.1.3)<br />

N 3πη r<br />

A<br />

Ponieważ cząstki fazy rozproszonej w ośrodku dyspersyjnym znajdują się w ciągłych,<br />

chaotycznych ruchach, wykazują również zdolność do dyfuzji, podobnie jak gazy i ciecze. Z<br />

równania (9.1.2) widzimy, że współczynnik dyfuzji D, a więc i szybkość dyfuzji, są odwrotnie<br />

proporcjonalne do promienia cząstki dyfundującej. Wynika stąd, że oznaczając dla badanego<br />

układu koloidalnego współczynnik dyfuzji D, możemy z równania (9.1.2) obliczyć promień<br />

cząstek. Ponieważ masę cząsteczkową można w przybliżeniu opisać wzorem:<br />

gdzie d - gęstość substancji,<br />

4<br />

M = π ⋅ r<br />

3<br />

3<br />

⋅ d ⋅ N<br />

A<br />

zatem:<br />

M<br />

d RT<br />

= ⋅ ⎛<br />

N ⎝ ⎜ ⎞<br />

2 ⎟<br />

162( π)<br />

ηD⎠<br />

A<br />

3<br />

(9.1.4)<br />

Powyższy wzór został wyprowadzony przez J. Perrina. Jest on szczególnie użyteczny do<br />

wyznaczania mas cząsteczkowych substancji wielkocząsteczkowych, o różnym stopniu<br />

agregacji, takich jak np. polimery.<br />

Do podstawowych zjawisk różniących roztwory rzeczywiste od roztworów koloidalnych<br />

należą:<br />

⎯ zjawiska optyczne (efekt Tyndalla);<br />

⎯ zjawiska elektryczne (elektroforeza, elektroosmoza).<br />

Badania optyczne układów koloidalnych pozwalają wnioskować o wpływie<br />

rozdrobnienia na niektóre właściwości cząstek koloidalnych, np. szybkość koagulacji,<br />

działanie ochronne zoli liofilowych na liofobowe, umożliwiają wyznaczanie współczynnika<br />

dyfuzji itd.<br />

Jeżeli przez układ koloidalny przepuszczamy wiązkę światła, to patrząc na niego z boku<br />

można zaobserwować jasną, opalizującą smugę. Zjawisko to zostało nazwane efektem<br />

Tyndalla (1869). Jego teoretyczne wyjaśnienie zostało podane przez J.W. Rayleigha. Jeżeli<br />

na kulistą cząstkę fazy rozproszonej o objętości ν pada strumień spolaryzowanego światła<br />

o natężeniu I o i długości fali λ, to natężenie światła rozproszonego I, obserwowanego<br />

185


w kierunku tworzącym kąt α z promieniem padającym wyraża się równaniem:<br />

⎛ ⎞<br />

ν<br />

2<br />

⎜ n<br />

2<br />

− n<br />

2<br />

⎟<br />

I = K ⋅ I ⋅<br />

1 2<br />

⎜ ⎟ ⋅ sin<br />

2<br />

o<br />

α<br />

λ<br />

4<br />

⋅ y<br />

2<br />

n<br />

2<br />

+ 2n<br />

2<br />

(9.1.5)<br />

⎝ 1 2 ⎠<br />

gdzie: K - współczynnik liczbowy;<br />

n 1 - współczynnik załamania światła fazy rozproszonej;<br />

n 2 - współczynnik załamania światła ośrodka dyspersyjnego;<br />

y - odległość cząstki od obserwatora.<br />

Intensywność efektu Tyndalla jest tym większa, im większa jest różnica między<br />

współczynnikiem załamania światła fazy rozproszonej i ośrodka dyspersyjnego. Pomiar<br />

natężenia światła rozproszonego przez układy koloidalne stanowi podstawę nefelometrii,<br />

pozwalającej na oznaczanie stężenia fazy rozproszonej i obserwację przebiegu koagulacji.<br />

Efekt Tyndalla został wykorzystany w konstrukcji ultramikroskopu, którego istota polega<br />

na obserwacji oświetlonego układu koloidalnego. Światło rozpraszając się na cząstkach<br />

koloidalnych pozwala na ich dostrzeżenie w postaci błyszczących punktów na ciemnym tle.<br />

Możemy zatem stwierdzić istnienie cząstek koloidalnych i śledzić ich ruchy.<br />

Interesującą cechą niektórych układów koloidalnych jest ich barwa, spowodowana<br />

absorpcją i rozpraszaniem światła na cząstkach koloidalnych. Zależy ona od wielkości,<br />

kształtu i sposobu agregacji cząstek. Ten sam układ koloidalny może mieć różną barwę<br />

zależnie od stopnia rozproszenia. Na przykład koloidalny roztwór złota otrzymany przez<br />

redukcję soli złota aldehydem mrówkowym jest czerwony, po dodaniu zaś chlorku sodu lub<br />

innego koagulatora zmienia barwę na niebieską.<br />

Czynnikami stabilizującymi układy koloidalne są;<br />

1) ładunek elektryczny cząstek koloidalnych,<br />

2) solwatacja (hydratacja) cząstek.<br />

Pierwszy czynnik odgrywa dominującą rolę w koloidach liofobowych, drugi zaś w<br />

liofilowych. Ładunek elektryczny cząstek koloidalnych powstaje w wyniku adsorpcji jonów<br />

elektrolitu z roztworu. Jony określonego znaku adsorbowane są na powierzchni cząstek,<br />

tworząc powłokę wewnętrzną, czyli adsorpcyjną, jony zaś przeciwnego znaku, przyciągane<br />

elektrostatycznie, umiejscawiają się w pewnej odległości powierzchni adsorpcyjnej, tworząc<br />

powłokę zewnętrzną, czyli rozmytą. Jądro koloidalne wraz z zaadsorbowanymi jonami i<br />

186


przeciwjonami powłoki rozmytej nazywamy micelą. W ten sposób micela upodabnia się do<br />

kondensatora kulistego, którego potencjał można obliczyć ze wzoru:<br />

ϕ<br />

=<br />

z( r1<br />

− r)<br />

ε ⋅ r ⋅ r<br />

1<br />

=<br />

z⋅d<br />

D⋅ r( r + d)<br />

(9.1.6)<br />

gdzie z oznacza ładunek powierzchniowy, ε - przenikalność dielektryczną ośrodka, r -<br />

promień sfery wewnętrznej, r 1 - promień sfery zewnętrznej, d = (r 1 - r) - grubość podwójnej<br />

warstwy elektrycznej.<br />

H. Helmholtz, a następnie J. Perrin wyobrażali sobie podwójną warstwę elektryczną<br />

w postaci elementarnego kondensatora, którego wewnętrzna okładka znajduje się<br />

bezpośrednio na powierzchni fazy stałej, zewnętrzna zaś, utworzona z jonów o przeciwnym<br />

ładunku, znajduje się w roztworze, w odległości d (równej promieniowi jonów) od pierwszej<br />

(rys. 9.1). Potencjał takiej podwójnej warstwy elektrycznej jest jednocześnie potencjałem<br />

między fazą stałą i ciekłą, ma więc charakter czysto dynamiczny. Termin „powierzchnia”<br />

oznacza w tym przypadku powierzchnię fazową w sensie chemicznym, a nie geometryczną<br />

granicę. Powierzchnia geometryczna stanowi obszar, a nie grubość, podczas gdy<br />

powierzchnia chemiczna jest regionem, w którym właściwości zmieniają się przy przejściu od<br />

jednej do drugiej fazy. Granicę faz należy zatem rozumieć jako pewną grubość, zmierzającą<br />

do zera przy opisie geometrycznym.<br />

ϕ<br />

_<br />

+<br />

0<br />

d<br />

Rys. 9.1. Podwójna warstwa elektryczna według Helmholtza:<br />

d, ϕ - odpowiednio grubość i potencjał podwójnej<br />

warstwy elektrycznej<br />

187


Zależnie od tego, jakie jony są adsorbowane na powierzchni jądra miceli, cząstka koloidalna<br />

może być naładowana dodatnio lub ujemnie (rys. 9.2). Hydrozole metali ładują się najczęściej<br />

ujemnie, a wodorotlenki metali - dodatnio. Sterując stężeniem i rodzajem jonów obecnych w<br />

roztworze można wymuszać przewagę adsorpcji określonych jonów na powierzchni jądra,<br />

ustalając w ten sposób znak ładunku cząstek koloidalnych. Ten sam koloid, w zależności od<br />

sposobu otrzymywania, może mieć cząstki naładowane dodatnio lub ujemnie. Na przykład<br />

koloidalny jodek srebra w roztworze zawierającym jony srebra jest naładowany dodatnio, zaś w<br />

roztworze zawierającym jony jodu - ujemnie.<br />

a) +<br />

b)<br />

+<br />

_<br />

_<br />

+<br />

_<br />

_ + + + _<br />

_<br />

+ + _ +<br />

+<br />

_ + +<br />

+<br />

+ +<br />

_<br />

+ _ _ +<br />

_<br />

+<br />

+<br />

+<br />

_<br />

_ _<br />

+<br />

_ _<br />

_<br />

_<br />

Rys. 9.2. Budowa cząstek koloidowych: a) cząstka naładowana dodatnio,<br />

b) cząstka naładowana ujemnie.<br />

Teoria Helmholtza-Perrina nie dawała odpowiedzi na pytanie, dlaczego obok potencjału<br />

termodynamicznego ϕ występuje również potencjał elektrokinetyczny ζ różniący się od niego<br />

wielkością, a niekiedy również znakiem. Częściową odpowiedź na to pytanie dała dopiero<br />

koncepcja G.L. Gouya, który założył, że podwójna warstwa elektryczna ma charakter dyfuzyjny.<br />

Jony powłoki wewnętrznej są przytrzymywane bezpośrednio na powierzchni fazy stałej, nadając<br />

cząstkom koloidalnym odpowiedni ładunek elektryczny. Z kolei jony znajdujące się w powłoce<br />

zewnętrznej pod wpływem ruchów termicznych i wynikającej stąd dyfuzji przenikają na pewną<br />

odległość d w głąb cieczy. Stężenie tych jonów maleje więc ze wzrostem odległości od<br />

powierzchni fazy stałej, osiągając w pewnej odległości b średnią wartość ich stężenia w<br />

roztworze. Odległość b należy uznać za granicę podwójnej warstwy elektrycznej.<br />

Z teorii elektrolitów mocnych Debye’a-Hückela wynika, że wokół każdego<br />

pojedynczego jonu tworzy się dyfuzyjna atmosfera przeciwjonów, a średni promień r tej<br />

atmosfery maleje ze wzrostem siły jonowej w roztworze, zgodnie z równaniem:<br />

r = 3,08⋅10<br />

-8<br />

∑<br />

1<br />

c z<br />

i<br />

2<br />

i<br />

(9.1.7)<br />

Sytuacja taka występuje również w przypadku, gdy atmosfera jonowa zostaje<br />

188


wytworzona wokół naładowanej elektrycznie granicy dwóch faz. Wynika stąd, że grubość<br />

warstwy dyfuzyjnej powinna być tym mniejsza, im większa jest wartościowość jonów w<br />

roztworze i im większe jest ich stężenie.<br />

α<br />

< ∆ ><br />

A<br />

d<br />

d ,<br />

><br />

><br />

d ,,<br />

ϕ<br />

ζ ,<br />

><br />

B<br />

ζ<br />

><br />

b '' b ' b<br />

Rys. 9.3. Spadek potencjału termodynamicznego ϕ i elektrochemicznego ζ przy różnych<br />

grubościach podwójnej warstwy elektrycznej (d, d’, d’’); AB – powierzchnia<br />

poślizgu oddalona od powierzchni fazy stałej α o odległość ∆.<br />

Na rys. 9.3 krzywe αb, αb’, αb’’ odtwarzają bieg spadku potencjału termodynamicznego<br />

ϕ przy różnych grubościach podwójnej warstwy elektrycznej. Przy wystarczającym stężeniu<br />

elektrolitu warstwa dyfuzyjna może być całkowicie ściśnięta do grubości molekuły; podwójna<br />

warstwa elektryczna będzie wówczas identyczna z warstwą Helmholtza.<br />

Obecność ładunku elektrycznego cząstek koloidalnych powoduje, że cząstki te mogą<br />

poruszać się w polu elektrycznym. Zjawisko to, należące do grupy tzw. zjawisk<br />

elektrokinetycznych, nosi nazwę elektroforezy. Podczas elektroforezy micela ulega<br />

rozerwaniu; jądra koloidalne razem z adsorbowanymi na nich jonami wędrują do jednej<br />

elektrody, swobodne zaś przeciwjony do drugiej elektrody. Rozerwanie podwójnej warstwy<br />

elektrycznej następuje nie bezpośrednio przy samej powierzchni fazy rozproszonej, lecz już<br />

w cieczy, wzdłuż tzw. powierzchni poślizgu AB, oddalonej od fazy stałej o odległość ∆<br />

189


(rys. 9.3). Odległość ta jest rzędu wymiarów cząsteczek. Z rozważań tych wynika, że dla<br />

zjawisk elektrokinetycznych, którym towarzyszy ruch obu faz względem siebie, miarodajny<br />

jest nie cały potencjał termodynamiczny j między fazą stałą i ciekłą, lecz potencjał<br />

elektrokinetyczny ζ, który występuje pomiędzy cieczą nieruchomo związaną z powierzchnią<br />

fazy stałej, a ruchomą częścią warstwy dyfuzyjnej.<br />

Potencjał elektrokinetyczny ζ zależy silnie od charakteru i stężenia elektrolitu w<br />

roztworze koloidalnym. Ze wzrostem stężenia elektrolitu następuje zmniejszenie grubości<br />

podwójnej warstwy elektrycznej, a w ślad za tym zmniejszenie potencjału<br />

elektrokinetycznego ζ, podczas gdy potencjał termodynamiczny ϕ pozostaje bez zmiany. Przy<br />

odpowiednim dodatku elektrolitu możemy obniżyć wielkość potencjału elektrokinetycznego<br />

do zera, dochodząc do tzw. stanu izoelektrycznego. Następuje to wówczas, gdy pod<br />

wpływem dodatku elektrolitu warstwa dyfuzyjna zostaje ściśnięta do grubości ∆. Potencjał<br />

elektrokinetyczny zolu zależy również od wartościowości jonów warstwy podwójnej, przy<br />

czym istotne znaczenie mają jony przeciwnego znaku (przeciwjony).<br />

Potencjał elektrokinetyczny można obliczyć ze wzoru wyprowadzonego przez<br />

M.Smoluchowskiego:<br />

ζ =<br />

χ⋅<br />

η⋅<br />

u<br />

H ⋅d<br />

(9.1.8)<br />

gdzie: η - lepkość ośrodka dyspersyjnego,<br />

u - prędkość poruszania się cząstek koloidalnych w polu elektrycznym o gradiencie<br />

potencjału H,<br />

ε - stała przenikalności dielektrycznej ośrodka dyspersyjnego,<br />

χ - współczynnik liczbowy zależny od kształtu cząstek koloidalnych; dla cząstek<br />

cylindrycznych χ = 4π dla kulistych χ = 6π.<br />

Potencjał elektrokinetyczny koloidów zmienia się zazwyczaj w granicach 20 - 100 mV.<br />

Zjawisko odwrotne względem elektroforezy, polegające na ruchu ośrodka dyspersyjnego<br />

względem nieruchomej fazy rozproszonej pod wpływem pola elektrycznego, nosi nazwę<br />

elektroosmozy.<br />

Zarówno elektroforeza, jak i elektroosmoza posiadają duże znaczenie praktyczne.<br />

Elektroforezę wykorzystuje się m.in. do oczyszczania gazów z domieszek ciał stałych i<br />

ciekłych (elektrofiltry), rozdzielania emulsji (wody w nafcie), w produkcji kauczuku i<br />

barwników, odwadniania różnych ciał stałych. Elektroosmozę wykorzystuje się głównie do<br />

przyspieszenia procesów odwadniania i filtracji, oczyszczania wody od różnych domieszek i<br />

190


elektrolitów oraz do nasycania odpowiednimi substancjami materiałów porowatych, drewna<br />

lub produktów garbarskich.<br />

Poza elektroforezą i elektroosmozą do zjawisk elektrokinetycznych zaliczamy:<br />

• potencjał przepływu – jest to zjawisko polegające na występowaniu różnicy<br />

potencjałów podczas przeciskania cieczy przez kapilarę. Potencjał przepływu jest<br />

odwróceniem elektroosmozy;<br />

• potencjał ruchu cząstek, czyli efekt Dorna, polegający na powstawaniu różnicy<br />

potencjałów podczas ruchu cząstek fazy rozproszonej względem nieruchomego<br />

ośrodka dyspersyjnego. Stanowi to odwrócenie zjawiska elektroforezy.<br />

Z rozważań nad strukturą podwójnej warstwy elektrycznej wynika w zasadzie budowa<br />

cząstki koloidalnej. Według R. Zsigmondy’ego i G. Wiegnera składa się ona z następujących<br />

elementów:<br />

⎯ trudno-rozpuszczalnego agregatu, stanowiącego jądro miceli,<br />

⎯ wewnętrznej powłoki jonów,<br />

⎯ zewnętrznej powłoki jonów.<br />

Jeżeli do nadmiaru rozcieńczonego roztworu KI dodajemy roztworu AgNO 3 ,<br />

otrzymujemy żółto zabarwiony, ujemnie naładowany hydrozol AgI, stabilizowany przez jony<br />

jodkowe, stanowiące powłokę wewnętrzną. Są one bardzo dobrze adsorbowane, ponieważ<br />

faza rozproszona posiada te same jony jodkowe w swojej sieci przestrzennej. Przeciwjonami<br />

będą w tym przypadku kationy potasowe, tworzące powłokę zewnętrzną. Ponieważ jednak<br />

powłoka zewnętrzna ma charakter dyfuzyjny, pewna część jonów potasowych przedostanie<br />

się poza powierzchnię poślizgu, stanowiącej granicę powłoki wewnętrznej i zewnętrznej<br />

(linia przerywana na rys. 9.3) i w czasie anaforezy (ruch cząstek fazy rozproszonej ku<br />

anodzie) będzie wędrowała razem z fazą rozproszoną w kierunku anody. Budowę takiej<br />

miceli można przedstawić schematycznie w sposób następujący:<br />

{(AgI) m nI - ; (n - x) K + } + xK +<br />

Z przytoczonego przykładu wnioskujemy, że jądro miceli utworzone zostało w wyniku<br />

agregacji m pojedynczych cząsteczek jodku srebrowego i że jest stabilizowane przez adsorpcję n<br />

jonów jodkowych, tworzących wewnętrzną powłokę jonową. Do nieruchomej powłoki<br />

wewnętrznej należy jeszcze (n - x) jonów potasowych. Podczas elektroforezy x jonów potasowych<br />

będzie - x) < x.<br />

191


Jeżeli zol wędrowało w kierunku katody, zaś (n - x) w kierunku anody. Oczywiste jest, że (n<br />

jodku srebrowego otrzymujemy przez dodawanie rozcieńczonego roztworu jodku potasu do<br />

nadmiaru azotanu srebra, otrzymujemy mniej trwały hydrozol dodatni o następującej budowie:<br />

{(AgI) m nAg + -<br />

; (n - x) NO 3- } + xNO 3<br />

W obu przypadkach jądro miceli ma jednakowy charakter chemiczny i identyczną budowę.<br />

Zarówno zol ujemny, jak i dodatni, są trwałe w obecności wystarczającej ilości stabilizującego<br />

elektrolitu, różnią się jednak właściwościami. Na rys. 9.4 przedstawiono schematycznie budowę<br />

ujemnego hydrozolu jodku srebrowego, z wyraźnym rozgraniczeniem nieruchomej powłoki<br />

wewnętrznej i ruchomej powłoki zewnętrznej (powierzchni poślizgu).<br />

. . .<br />

I I I<br />

. . Ag Ag Ag . . I -<br />

I I I<br />

. . Ag Ag Ag . . I -<br />

K + I -<br />

I I I<br />

. . .<br />

Rys. 9.4. Schematyczna budowa ujemnego hydrozolu jodku srebra,<br />

stabilizowanego jodkiem potasu.<br />

Ciekawym przykładem zolu ujemnego jest zol kwasu krzemowego, którego ładunek<br />

elektryczny może pochodzić nie tylko z adsorpcji elektrolitu, lecz również z dysocjacji własnych<br />

cząsteczek. Cząsteczki SiO 2 znajdujące się na powierzchni jądra miceli, reagując z wodą tworzą<br />

kwas metakrzemowy H 2 SiO 3 , który ulega słabej dysocjacji. Budowę hydrozolu kwasu<br />

krzemowego możemy przedstawić następującym schematem:<br />

2-<br />

{[SiO 3 ] m nSiO 3 ; 2(n - x)H + } + 2xH +<br />

Budowę takiej miceli przedstawiono na rys. 9.5.<br />

192


H +<br />

SiO 3<br />

- - H +<br />

SiO 3<br />

- - H +<br />

(SiO 2 ) m<br />

SiO 3<br />

- - H +<br />

Rys. 4.5. Schemat budowy miceli kwasu krzemowego.<br />

9.1.7. Koagulacja koloidów<br />

Koagulacją nazywamy proces polegający na łączeniu się pojedynczych cząstek roztworu<br />

koloidalnego w większe skupienia - agregaty. Na skutek procesu koagulacji rosnące agregaty<br />

mogą ulegać sedymentacji dotąd, aż nie nastąpi całkowite rozdzielenie się fazy rozproszonej<br />

i ośrodka dyspersyjnego. Przebieg koagulacji uwidacznia się w różny sposób: zmianą barwy<br />

(np. roztwór koloidalnego złota ma barwę niebieską lub fioletową), zmętnieniem,<br />

wydzielaniem osadu lub tworzeniem galaretowatej masy. Przebieg koagulacji koloidów<br />

liofobowych i liofilowych jest odmienny. Aby koagulacja mogła przebiegać, należy osłabić te<br />

czynniki, które warunkują trwałość zolu, a więc ładunek elektryczny w przypadku zoli<br />

liofobowych, oraz ładunek elektryczny i solwatację cząstek w przypadku zoli liofilowych.<br />

Koloidy liofobowe są z reguły bardzo nietrwałe. Rozpoczęty proces koagulacji prowadzi<br />

zawsze do wypadania całej fazy rozproszonej w postaci osadu. Proces ten może być<br />

wywołany różnymi czynnikami: działaniem elektrolitów, zmianami temperatury, zmianą<br />

stężenia, naświetlaniem promieniami ultrafioletowymi lub rentgenowskimi, ultradźwiękami,<br />

wyładowaniami elektrycznymi itd.<br />

Pod wpływem elektrolitów następuje obniżenie wartości potencjału elektrokinetycznego<br />

ζ. Jeżeli osiągnie on wartość mniejszą od tzw. potencjału krytycznego, który dla wielu zoli<br />

wynosi poniżej 30 mV, rozpoczyna się proces koagulacji powolnej. Przy pewnym stężeniu<br />

elektrolitu następuje całkowite rozładowanie cząstek fazy rozproszonej i ich potencjał<br />

elektrokinetyczny ζ spada do zera. Od tego momentu rozpoczyna się koagulacja szybka,<br />

niezależna od dalszego wzrostu stężenia elektrolitu. Zgodnie z regułą Hardy’ego-Schultzego,<br />

193


działanie koagulacyjne elektrolitu zależy od jonów przeciwnego znaku względem znaku<br />

cząstek koloidalnych, przy czym zdolność koagulacyjna „przeciwjonu” rośnie wraz z jego<br />

ładunkiem.<br />

Koagulacja może również zachodzić podczas ogrzewania oraz (rzadziej) oziębiania<br />

koloidu. Np. podczas ogrzewania koagulują hydrozole Cu[Fe(CN) 6 ], AgCl, AgBr, As 2 S 3 .<br />

Podczas oziębiania hydrozoli woda stopniowo krystalizuje, a w pozostałym roztworze<br />

następuje zagęszczenie zolu i obecnych w nim elektrolitów. Może to prowadzić do<br />

rozładowania cząstek koloidalnych i koagulacji zolu.<br />

Z koagulacją koloidów związanych jest szereg zjawisk, które poniżej zostaną pokrótce<br />

omówione.<br />

Jednym z ważniejszych rodzajów koagulacji koloidów liofilowych jest wysalanie. Polega<br />

ono na wydzielaniu się fazy rozproszonej pod wpływem większych stężeń elektrolitu.<br />

Dodatek elektrolitu musi być stosunkowo duży, ponieważ poza efektem rozładowania cząstek<br />

działa on głównie jako środek dehydratyzujący. Do wysalania koloidów nadają się zwłaszcza<br />

dobrze rozpuszczalne sole o jonach ulegających silnej hydratacji, np. (NH 4 ) 2 SO 4 , MgSO 4 i<br />

Na 2 SO 4 . Elektrolit może być zastąpiony przez substancje działające desolwatyzująco, np. w<br />

roztworze wodnym – przez alkohol, aceton, sacharozę, w roztworze alkoholowym – przez<br />

wodę.<br />

Zdolność wysalająca zależy od charakteru zarówno kationu, jak i anionu soli, a także od<br />

wielkości promieni jonów metali i reszt kwasowych. Ze względu na działanie wysalające<br />

możemy uszeregować kationy i aniony następująco:<br />

Li + > Na + > K + > Rb + > Cs + ; Mg 2+ > Ca 2+ > Sr 2+ > Ba 2+<br />

SO 4<br />

2-<br />

> Cl - > Br - -<br />

> NO 3 > I - > SCN -<br />

Szeregi te noszą nazwę liotropowych.<br />

Wysalanie prowadzi czasem do wydzielenia się agregatu ciekłego, a nie stałego, przy<br />

czym nie dochodzi do wyraźnego rozgraniczenia faz lecz do wydzielenia licznych lepkich<br />

kropel o różnej wielkości. Zjawisko to nazywamy koacerwacją.<br />

Synereza polega na wydzielaniu się z żeli ośrodka dyspersyjnego po dłuższym czasie.<br />

Najprostszy przykład stanowi wydzielenie się serwatki z kwaśnego mleka. Zjawisko synerezy<br />

przejawia się często w ten sposób, że w czasie wydzielania ośrodka dyspersyjnego objętość<br />

żelu staje się coraz mniejsza, zachowując jednak kształt pierwotny, np. naczynia w którym się<br />

znajdował. Zjawiska synerezy są bardzo rozpowszechnione i mają duże znaczenie<br />

przemysłowe.<br />

Tiksotropia polega na przechodzeniu żeli w stan ciekły pod wpływem działań<br />

194


mechanicznych (mieszanie, wstrząsanie). Otrzymane w ten sposób zole po pewnym czasie<br />

ulegają ponownie koagulacji w żele. Zjawisko tiksotropii stanowi więc izotermiczną<br />

przemianę odwracalną:<br />

zol ↔ żel,<br />

przebiegającą pod wpływem czynników mechanicznych. Przykładami mogą tu być<br />

wodorotlenki metali, glina, zaczyny cementowe. Zjawisko tiksotropii można przedstawić<br />

efektownie na przykładzie roztworu koloidalnego Fe(OH) 3 . Galaretowaty roztwór tego<br />

wodorotlenku podczas wytrząsania w probówce przechodzi w ciecz, która po przerwaniu<br />

wstrząsania zastyga, tworząc żel.<br />

Duży wpływ na szybkość koagulacji wywiera temperatura. Podczas gdy koloidy<br />

nieorganiczne są dość odporne na działanie temperatury, organozole łatwo ulegają koagulacji<br />

podczas ogrzewania. Największe znaczenie posiada koagulacja podczas ogrzewania<br />

niektórych białek. Następuje tutaj proces koagulacji nieodwracalnej, zwany denaturacją,<br />

w którym białko wydziela się w postaci nierozpuszczalnej.<br />

Koagulację koloidu można wywołać przepuszczając przez niego prąd elektryczny. Zole<br />

koagulują wówczas na elektrodzie o znaku przeciwnym do znaku ładunku cząstek koloidu,<br />

tworząc osad proszkowaty lub galaretowaty.<br />

Naświetlanie zoli promieniami ultrafioletowymi, rentgenowskimi lub promieniami γ<br />

może wywoływać różne procesy chemiczne oraz jonizować cząstki roztworu. W efekcie<br />

następuje zmiana trwałości układu, przy czym stwierdzono zarówno działania koagulujące,<br />

jak i stabilizujące.<br />

9.1.8. Peptyzacja koloidów<br />

Peptyzacja jest procesem odwrotnym do koagulacji, polegającym na przechodzeniu<br />

skoagulowanego żelu w zol. Peptyzację możemy spowodować przez:<br />

- dodatek elektrolitów,<br />

- przemywanie,<br />

- dodatek substancji powierzchniowo-czynnych.<br />

Proces peptyzacji cząstek o budowie krystalicznej za pomocą elektrolitu można objaśnić<br />

w oparciu o zjawiska adsorpcji. Na przykład peptyzacja nierozpuszczalnych soli fluorowcowych<br />

srebra może być przeprowadzona przy użyciu niewielkich ilości AgNO 3 lub soli<br />

fluorowcowych (KCl, KBr, KI). W przypadku nadmiaru jonów srebra otrzymujemy zol<br />

naładowany dodatnio, w przypadku zaś nadmiaru jonu fluorowca – ujemnie.<br />

195


Z praktyki laboratoryjnej znamy wiele przykładów, kiedy podczas przemywania osadów<br />

wodą osad przechodzi przez sączek. Zachodzi tutaj zjawisko peptyzacji osadu. Osad<br />

wytrącamy zazwyczaj przy dużym nadmiarze elektrolitów, który zapobiega tworzeniu się<br />

roztworu koloidalnego, ale podczas przemywania osadu wodą dochodzi do silnego<br />

rozcieńczenia elektrolitu stabilizującego żel i w efekcie – do powstania hydrozolu.<br />

Jako przykład peptyzacji wywołanej substancjami powierzchniowo-czynnymi można<br />

podać peptyzację uwodnionego tlenku żelaza(III) za pomocą olejanu sodu lub uwodnionego<br />

tlenku glinu za pomocą alizaryny.<br />

196


Rozdział 10<br />

Analiza objętościowa<br />

Konsekwencją stechiometrycznego przebiegu reakcji chemicznej jest, między innymi,<br />

możliwość jednoznacznego określenia proporcji pomiędzy ilościami reagentów biorących udział<br />

w tej reakcji. Rozpatrzmy reakcję zachodzącą w środowisku wodnym pomiędzy dwoma<br />

roztworami. Załóżmy przy tym, że są znane (zmierzone) objętości obydwu roztworów oraz<br />

stężenie jednego z nich. Dodawanie małymi porcjami (miareczkowanie) roztworu o znanym<br />

stężeniu (titranta) do drugiego roztworu prowadzi do zajścia odpowiedniej reakcji chemicznej<br />

pomiędzy rozpuszczonymi substancjami. W przypadku całkowitego (ilościowego) zajścia tej<br />

reakcji objętość zużytego titranta jednoznacznie określa stężenie, a co za tym idzie także ilość<br />

substancji w roztworze badanym. Tak przeprowadzony proces jest ogólnym opisem analizy<br />

objętościowej (miareczkowej).<br />

Reakcja chemiczna, będąca podstawą analizy miareczkowej, musi spełniać kilka warunków.<br />

Oprócz wymienionej już stechiometryczności musi ona przebiegać dostatecznie szybko, zaś<br />

substancje biorące w niej udział muszą być trwałe w warunkach przeprowadzania procesu.<br />

Dodatkowym kryterium jest możliwość wyznaczenia końca reakcji z dostatecznie dobrą<br />

dokładnością. Jak wynika z powyższego, reakcje znajdujące zastosowanie w analizie<br />

miareczkowej muszą prowadzić do wyraźnej zmiany parametrów fizykochemicznych roztworu<br />

w punkcie odpowiadającym końcowi reakcji. Warto również zastanowić się, jakiego typu reakcje<br />

można uważać za odpowiednie w analizie ilościowej. Jak wiadomo każda reakcja przebiega do<br />

momentu osiągnięcia przez układ stanu równowagi, określającego jednoznacznie stosunek<br />

ilościowy poszczególnych reagentów. Można zatem stwierdzić, wyjąwszy pewne szczególne<br />

przypadki, np. wtedy gdy jeden z produktów jest gazowy i opuszcza środowisko reakcji, że<br />

teoretycznie nigdy nie będziemy mieli do czynienia z reakcjami zachodzącymi do końca (ściśle<br />

stechiometrycznymi). W praktyce warunek ten nie musi być dokładnie spełniony. Warunkiem<br />

wystarczającym jest, aby stężenia substratów w warunkach równowagi odpowiadającej<br />

stechiometrii reakcji były odpowiednio niskie. Jednocześnie stała równowagi takiej reakcji<br />

będzie decydowała o minimalnym błędzie oznaczenia ilościowego substancji. W konsekwencji<br />

powyższego, w analizie objętościowej możemy korzystać tylko z tych reakcji, których stałe<br />

równowagi są odpowiednio wysokie. Typy tych reakcji stanowią jednocześnie podstawę<br />

197


zwyczajowego podziału analizy miareczkowej. Są to:<br />

1) Metody alkacymetryczne, wykorzystujące reakcje zobojętniania zasad kwasami<br />

(acydymetria) oraz kwasów zasadami (alkalimetria);<br />

2) Metody redoksymetryczne, oparte o reakcje utleniania-redukcji, przy czym titrantem jest<br />

utleniacz (oksydymetria) lub reduktor (reduktometria);<br />

3) Metody kompleksometryczne, z zastosowaniem reakcji tworzenia trwałych kompleksów;<br />

4) Metody strąceniowe, reakcje powstawania trudno rozpuszczalnych związków.<br />

Podstawowym problemem w przebiegu analizy miareczkowej jest określenie momentu<br />

stechiometrycznego końca zachodzącej reakcji, noszącego nazwę punktu równoważności<br />

(PR). Znalezienie tego punktu jest jednoznaczne z dokładnym określeniem ilości oznaczanego<br />

składnika. W praktyce analitycznej, moment miareczkowania, wyrażony konkretną ilością<br />

dodanego titranta, uznany za koniec reakcji, nosi nazwę punktu końcowego (PK). Oczywistym<br />

jest, że w przypadku idealnego miareczkowania teoretyczny PR pokrywa się z praktycznym PK.<br />

Najbardziej popularnym sposobem określania końca miareczkowania jest stosowanie<br />

wskaźników, substancji zmieniających zabarwienie w okolicach PR reakcji. Zmiany zabarwienia<br />

wskaźnika wywołane są jego reakcją z titrantem lub też zanikiem reakcji pomiędzy wskaźnikiem<br />

a substancją oznaczaną. Oprócz zmiany barwy sygnałem końca miareczkowania może być<br />

również powstanie trudno rozpuszczalnej substancji wywołującej zmętnienie roztworu.<br />

Generalnie, wskaźnik danego typu reakcji powinien wchodzić w reakcje tego samego rodzaju; i<br />

tak np. wskaźniki stosowane w alkacymetrii są słabymi kwasami lub zasadami, zaś wskaźniki<br />

kompeksometryczne substancjami kompleksotwórczymi.<br />

Ze względu na sposób przeprowadzenia reakcji metody miareczkowe podzielić można na<br />

metody: bezpośrednią, odwrotną oraz pośrednią. Zagadnienie to prześledźmy na poniższych<br />

przykładach.<br />

Miareczkowanie bezpośrednie wykorzystuje reakcje, w których oznaczany składnik reaguje<br />

wprost z titrantem a jego ilość określa się na podstawie ilości zużytego roztworu<br />

miareczkującego. Rozpatrzmy reakcję pomiędzy zasadą sodową a kwasem solnym.<br />

Przykład 1<br />

Na zmiareczkowanie 20,00 cm 3 kwasu solnego zużyto 23,40 cm 3 roztworu wodorotlenku<br />

sodu, o stężeniu 0,0100 mol/dm 3 . Jakie jest stężenie kwasu solnego?<br />

198


Obie wymienione substancje reagują ze sobą zgodnie z równaniem:<br />

HCl + NaOH = NaOH + H 2 O<br />

a więc w stosunkach równomolowych. Oznacza to, że ilość moli wodorotlenku sodu, zawarta w<br />

23,40 cm 3 roztworu o stężeniu 0,0100 mol/dm 3 odpowiada ilości moli kwasu solnego zawartej w<br />

20,00 cm 3 jego roztworu. Ze stężenia NaOH równego 0,0100 mol/dm 3 wynika, że w 1000 cm 3<br />

rozpuszczonych jest 0,0100 mola, czyli że w 23,40 cm 3 znajduje się:<br />

x =<br />

23,40 ⋅ 0,0100<br />

1000<br />

= 2,34·10 -4 ± 0,01·10 -4 mola<br />

Taka sama ilość moli kwasu solnego znajduje się w 20,00 cm 3 jego roztworu, tak więc<br />

stężenie miareczkowanego roztworu wynosi:<br />

− 4<br />

2,<br />

34 ⋅10 ⋅1000<br />

C HCl = = 0.<br />

0117<br />

20,<br />

00<br />

± 0,0002 mol/dm 3<br />

Wartość stężenia można łatwo przeliczyć na masę oznaczanego kwasu lub na inny wymiar<br />

stężenia. Błędy obliczonych powyżej wielkości oszacowano metodą podaną we wstępie do II<br />

części niniejszego skryptu przy przyjęciu, że ostatnie cyfry danych są cyframi znaczącymi.<br />

Miareczkowanie odwrotne zazwyczaj stosuje się w przypadkach, gdy reakcja pomiędzy<br />

titrantem a roztworem oznaczanym przebiega wolno. Polega ono na zadaniu roztworu<br />

oznaczanego roztworem miareczkującym w ilości przekraczającej ilość stechiometryczną,<br />

stworzeniu warunków do zajścia reakcji a następnie na odmiareczkowaniu nadmiaru titranta<br />

innym mianowanym roztworem. Klasycznym przykładem analizy tego typu jest<br />

kompleksometryczne oznaczenie glinu. Rozpatrzmy następujący przykład.<br />

Przykład 2<br />

Próbkę roztworu soli glinu rozcieńczono w kolbie do ok. 100 cm 3 , po czym dodano<br />

dokładnie 50 cm 3 roztworu EDTA o stężeniu 0,05 mol/dm 3 . Amoniakiem ustalono pH roztworu<br />

do odczynu słabo kwaśnego, dodano bufor octowy i ogrzewano go do wrzenia, utrzymując w<br />

tym stanie przez 3 minuty. Po ostudzeniu odmiareczkowano nadmiar EDTA, zużywając 17,95<br />

cm 3 roztworu siarczanu(VI) cynku, o stężeniu 0,05 mol/dm 3 . Jaka jest zawartość glinu w<br />

próbce?<br />

Z 50 cm 3 roztworu EDTA, biorących udział w reakcji, 17,95 cm 3 zostało odmiareczkowane<br />

przez siarczan(VI) cynku, tak więc w reakcji z jonami glinu udział wzięło<br />

32,05 cm 3 EDTA. Ponieważ stężenie tego roztworu wynosiło 0,05 mol/dm 3 , w 32,05 cm 3<br />

199


zawartych było:<br />

± 0.1·10 -3 mola EDTA<br />

Ilość moli EDTA odpowiada bezpośrednio ilości moli jonów glinu związanych w kompleks<br />

z EDTA, tak więc ilość moli glinu wynosi również 1,6·10 -3 mola. Wielkość tę można łatwo<br />

przeliczyć na masę glinu:<br />

1,6·10 -3 · 26,9815 = 0,0432 ± 0,0001 g glinu,<br />

na masę odpowiedniej soli lub, znając objętość próbki, na odpowiednie stężenie.<br />

Miareczkowanie pośrednie polega na dobraniu takiej trzeciej substancji, która reaguje<br />

stechiometryczne z oznaczanym składnikiem z ilościowym utworzeniem nowego związku,<br />

reagującego następnie stechiometrycznie i szybko z titrantem. Oznaczeniem tego typu jest<br />

analiza zawartości azotu w materiałach organicznych metodą Kjeldahla.<br />

Przykład 3<br />

Naważkę substancji organicznej o masie 2,1161 g analizowano na zawartość azotu metodą<br />

Kjeldahla. Próbkę poddano mineralizacji stężonym kwasem siarkowym, związki azotu<br />

przechodzą wówczas w wodorosiarczan(VI) amonu, po czym zalkalizowano ją roztworem<br />

wodorotlenku sodu. Powstający w tej reakcji amoniak pochłonięto w 50,00 cm 3 roztworu kwasu<br />

siarkowego o stężeniu 0,350 mol/dm 3 . Nadmiar kwasu odmiareczkowano zużywając, 31,25 cm 3<br />

roztworu wodorotlenku sodu o stężeniu 0,650 mol/dm 3 . Jaka jest zawartość azotu w<br />

analizowanej próbce?<br />

Kwas siarkowy reaguje z wodorotlenkiem sodu zgodnie z równaniem:<br />

H 2 SO 4 + 2 NaOH = Na 2 SO 4 + 2 H 2 O<br />

Ilość moli wodorotlenku sodu zawarta w roztworze zużytym do odmiareczkowania<br />

nadmiaru kwasu siarkowego wynosi:<br />

± 0,001 mola NaOH<br />

co oznacza, że zgodnie z zapisem powyższej reakcji, odmiareczkowany nadmiar kwasu<br />

siarkowego wynosi 0,0102 mola H 2 SO 4 . Ponieważ całkowita ilość kwasu siarkowego wynosiła:<br />

± 0,001 mola H 2 SO 4<br />

na reakcję z wydzielonym amoniakiem, przebiegającą zgodnie z równaniem:<br />

200


H 2 SO 4 + NH 3 = NH 4 HSO 4<br />

zużyto 0,018 - 0,010 = 0,008 mola H 2 SO 4 . Jak wynika z zapisu reakcji odpowiada, to takiej<br />

samej ilości amoniaku, a co za tym idzie również takiej samej ilości azotu w próbce. Tak więc<br />

analizowana próbka zawiera:<br />

0,008 mola N = 0,008 · 14,0067 = 0,112 ± 0,001 g azotu,<br />

co oznacza, że jego zawartość wynosi:<br />

0,112<br />

⋅ 100%<br />

2,1161<br />

=<br />

5,29 ± 0,03% azotu.<br />

Z przytoczonych powyżej przykładów wyraźnie widać, że ilości poszczególnych substancji<br />

określane są na podstawie wielkości stężeń ich roztworów oraz na podstawie pomiaru objętości<br />

cieczy. Tak więc o dokładności oznaczenia decydują rzetelność określenia stężenia oraz pomiaru<br />

objętości. Wpływ czynników zewnętrznych na stężenia omówiono w trzecim rozdziale<br />

niniejszego skryptu, w tym miejscu rozpatrzmy ich wpływ na określenie objętości. W analizie<br />

miareczkowej wykorzystuje się miarowe naczynia szklane o ściśle określonej objętości.<br />

Kalibracji tych naczyń dokonuje się, ważąc wypełniającą je wodę destylowaną o temperaturze<br />

20 o C. W praktyce, ze względu na warunki zewnętrzne, często wykonuje się pomiary w innych<br />

temperaturach. Aby uwzględnić zmiany objętości wynikające z różnic w rozszerzalności cieplnej<br />

wody, bądź roztworów, oraz szkła należy wprowadzić odpowiednie poprawki (Tabela 10.1).<br />

Tabela 10.1. Poprawki w ml na 1 dm 3 objętości wody oraz roztworów wodnych<br />

w różnych temperaturach ( o C).<br />

Temperatura Woda 1M HCl 1M NaOH Temperatura Woda 1M HCl 1M NaOH<br />

11 + 1,16 + 1,60 + 2,29 21 -0,19 -0,22 -0,29<br />

12 + 1,09 + 1,45 + 2,06 22 -0,38 -0,44 -0,59<br />

13 + 0,98 + 1,30 + 1,83 23 -0,59 -0,67 -0,90<br />

14 + 0,88 + 1,14 + 1,58 24 -0,80 -0,91 -1,21<br />

15 + 0,76 + 0,97 + 1,33 25 -1,03 -1,17 -1,52<br />

16 + 0,63 + 0,79 + 1,08 26 -1,26 -1,43 -1,84<br />

17 + 0,49 + 0,61 + 0,82 27 -1,51 -1,70 -2,17<br />

18 + 0,34 + 0,41 + 0,55 28 -1,76 -1,92 -2,50<br />

19 + 0,17 + 0,21 + 0,28 29 -1,99 -2,26 -2,87<br />

20 0 0 0 30 -2,30 -2,55 -3,19<br />

Przeanalizujmy to na poniższym przykładzie.<br />

201


Przykład 4<br />

Naważki analityczne, zawierające dokładnie 1 mol kwasu solnego oraz 1 mol wodorotlenku<br />

sodu, przeniesiono ilościowo do kolb miarowych o pojemności 1000,00 cm 3 i uzupełniono do<br />

kreski. Jakie jest rzeczywiste stężenie roztworów, jeżeli operacji tych dokonano w temperaturach<br />

różnych od 20 o C?<br />

Z tabeli 10.1 wynika, że aby otrzymać dokładnie 1000 cm 3 w temperaturach różnych od<br />

20 o C, należy do zmierzonej objętości dodać, gdy temperatura jest niższa od standardowej, lub<br />

odjąć, gdy temperatura jest wyższa, objętość cieczy równą odpowiedniej poprawce. Tak więc<br />

objętość cieczy w kolbie uzupełnionej do kreski jest w rzeczywistości mniejsza lub większa o tę<br />

właśnie poprawkę. Dodatkowo objętości te są różne dla różnych roztworów. Rzeczywiste<br />

objętości oraz stężenia roztworu można znaleźć w tabeli 10.2.<br />

Tabela 10.2. Temperaturowe zmiany objętości i związane z nimi zmiany stężenia<br />

jednomolowych roztworów kwasu solnego i zasady sodowej<br />

Roztwór<br />

1 M HCl<br />

1 M NaOH<br />

Temperatura, o C<br />

11 15 18 22 25 30<br />

Wielkość<br />

Rzeczywista 998,40 999,03 999,59 1000,44 1001,17 1002,55<br />

objętość, cm 3<br />

Rzeczywiste 1,0016 1,0010 1,0004 0,9996 0,9988 0,9975<br />

stężenie, mol/dm 3<br />

Rzeczywista 997,71 998,67 999,45 100,59 101,52 103,19<br />

objętość, cm 3<br />

Rzeczywiste<br />

stężenie, mol/dm 3 1,0023 1,0013 1,0006 0,9994 0,9985 0,9968<br />

Osobnym zagadnieniem jest dokładne określenie pojemności używanych naczyń<br />

miarowych. Jak już wspomniano, metodą na to jest ważenie, w stałej temperaturze, wody<br />

destylowanej zawartej w naczyniu. Pojemność kolby miarowej określa się ważąc różnicowo<br />

wodę wlewaną do naczynia, zaś w przypadku pipety wodę wylewaną. Często stosuje się w<br />

analizie określony zestaw szkła miarowego, np. kolbę o pojemności 250 cm 3 wraz z pipetą o<br />

pojemności 25 cm 3 . W takim przypadku wystarczy określić wzajemny stosunek ich pojemności<br />

zwany współmiernością kolby z pipetą. Przybliżmy to pojęcie przy pomocy następującego<br />

przykładu.<br />

Przykład 5<br />

Zważono różnicowo wodę destylowaną zawartą w kolbie miarowej o pojemności 250 cm 3 ,<br />

uzyskując następujące wyniki: 249,18, 249,37 i 249,92 g. Podobnie zważono wodę zawartą w<br />

202


pipecie o pojemności 25 cm 3 , uzyskując: 25,0114, 25,0099 oraz 25,0310 g. Wszystkie pomiary<br />

wykonano w 22 o C. Jak jest współmierność użytego zestawu szkła?<br />

Pojemność kolby miarowej wynosi:<br />

(249,18 + 249,37 + 249,92) : 3 = 249,49 ± 0,39 g<br />

zaś pipety:<br />

(25,0114 + 25,0099 + 25,0310) : 3 = 25,0174 ± 0,0118 g<br />

tak więc współmierność wynosi:<br />

249,49 : 25,0174 = 9,97 ± 0,02<br />

W praktyce oznacza to, że przy przeliczaniu ilości analizowanego składnika na jego<br />

całkowitą ilość w 250 cm 3 roztworu, wynik uzyskany w pojedynczym pomiarze mnożymy nie<br />

przez 10, a przez wyznaczoną współmierność 9,97. Z przedstawionych wyników można<br />

jednocześnie określić rzeczywistą (zmierzoną) pojemność kolby i pipety, które wynoszą<br />

odpowiednio:<br />

V kolby = 249,49 : 0,9968 = 250,29 ± 0,40 cm 3<br />

oraz<br />

V pipety = 25,0174 : 0,9968 = 25,10 ± 0,02 cm 3<br />

Wartość 0,9968 jest gęstością wody w temperaturze 22 o C.<br />

Obok niedokładności określenia objętości roztworów istnieje szereg innych czynników<br />

mogących być źródłem błędów w analizie miareczkowej. Zagadnienie to zostanie rozwinięte w<br />

II części skryptu.<br />

203


Literatura<br />

Literatura ogólna:<br />

[1] Bielański A.: Podstawy chemii nieorganicznej. Warszawa, PWN, 1994<br />

[2] Obliczenia chemiczne. Zbiór zadań z chemii nieorganicznej i analitycznej wraz z<br />

podstawami teoretycznymi. Praca zbiorowa pod redakcją A. Śliwy. Warszawa, PWN, 1979<br />

[3] Ćwiczenia rachunkowe z chemii analitycznej. Praca zbiorowa pod redakcją Z. Galusa.<br />

Warszawa, PWN, 1993<br />

[4] Barrow G.M.: Chemia fizyczna (tłumaczenie z j. angielskiego). Warszawa, PWN, 1978<br />

[5] Chemia fizyczna. Praca zbiorowa. Warszawa, PWN, 1963<br />

[6] Glasstone S.: Podstawy elektrochemii (tłumaczenie z j. angielskiego). Warszawa, PWN,<br />

1956<br />

[6] Minczewski J., Marczenko Z.: Chemia analityczna, cz. 1 i 2. Warszawa, PWN, 1985<br />

Literatura do rozdziałów:<br />

Rozdział 2<br />

[1] Nomenklatura związków nieorganicznych (tłumaczenie z j. angielskiego). Polskie<br />

Towarzystwo Chemiczne, 1988<br />

Rozdział 3<br />

[1] Pigoń K., Ruziewicz Z.: Chemia fizyczna. Warszawa, PWN, 1980<br />

Rozdział 7<br />

[1] Hulanicki A.: Reakcje kwasów i zasad w chemii analitycznej. Warszawa, PWN, 1992<br />

Rozdział 9 i 10<br />

[1] Basiński A.: Zarys fizykochemii koloidów. Warszawa, PWN, 1977<br />

[2] Hamilton L.F., Simpson S.G., Ellis D.W.: Obliczenia w chemii analitycznej (tłumaczenie<br />

z j. angielskiego ). Warszawa, WNT, 1973<br />

204

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!