22.02.2013 Views

computer aided design of textile structures and ... - Centrum Textil

computer aided design of textile structures and ... - Centrum Textil

computer aided design of textile structures and ... - Centrum Textil

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

„LibTex LibTex““<br />

Computer<br />

Aided <strong>Textil</strong>e Design<br />

Dana Křemenáková<br />

Brigita Kolčavová Sirková<br />

Iva Mertová<br />

Technical University <strong>of</strong> Liberec<br />

<strong>Textil</strong>e Faculty<br />

National research Center TEXTIL<br />

Czech <strong>Textil</strong>e Seminar Greece May 2005


1. Basic<br />

Prediction <strong>of</strong> geometrical <strong>and</strong><br />

mechanical properties <strong>of</strong><br />

fibres-yarns<br />

fibres yarns-fabrics fabrics<br />

module<br />

2. Module<br />

<strong>design</strong>


Applications<br />

� Technical <strong>and</strong> clothing<br />

<strong>textile</strong>s<br />

� Optimization <strong>of</strong> <strong>textile</strong>s<br />

construction<br />

� Virtual <strong>textile</strong>s for<br />

e- commerce<br />

� <strong>Textil</strong>es structure <strong>and</strong><br />

properties evaluation <strong>and</strong><br />

prediction<br />

1. version is oriented on the grey cotton dobby<br />

fabrics for technical <strong>and</strong> clothing use.


<strong>Textil</strong>e <strong>design</strong><br />

Raw material<br />

cotton<br />

Density<br />

Fineness<br />

Diameter<br />

UHM<br />

UI index irregularity<br />

L50 mean length<br />

Bundle strength Pressley<br />

Bundle strength HVI<br />

Fiber strength<br />

Break elongation<br />

Initial tensile modulus<br />

Friction coefficient<br />

Moisture regain<br />

Yarn<br />

One- two component<br />

yarn<br />

single ply<br />

Fineness<br />

Diameter<br />

Porosity<br />

Twist<br />

Fiber number in cross<br />

section<br />

Hairiness Uster <strong>and</strong> TUL<br />

CV Uster<br />

Strength<br />

Break elongation<br />

Initial tensile modulus<br />

Spinning technology<br />

Ring, compact, Novaspin,<br />

rotor<br />

Fabric<br />

weave<br />

Sett (warp /weft)<br />

Shortening (warp / weft)<br />

Interlacing angle (warp /weft)<br />

Yarn length in weave repeat (warp<br />

/weft)<br />

Thickness<br />

Areal mass<br />

Areal cover(warp/weft)<br />

Air permeability<br />

Roughness (warp /weft)<br />

Drape coefficient<br />

Creasing resistance (warp /weft)<br />

Strength (warp/weft)<br />

Break elongation (warp / weft)<br />

Initial tensile modulus (warp /weft)<br />

Bending stiffness modulus (wa /we)<br />

Shear stiffness modulus


Fiber – yarn<br />

prediction<br />

� Yarn packing density<br />

� Yarn diameter<br />

� Yarn hairiness<br />

� Yarn unevenness<br />

� Yarn tenacity <strong>and</strong> elongation<br />

� Prediction for these technologies:<br />

ring ring combed <strong>and</strong> carded<br />

compact compact combed <strong>and</strong> carded<br />

rotor rotor<br />

new new pilot pilot plant plant –<br />

Novaspin Novaspin combed <strong>and</strong> carded


⎡ ⎛ µ ⎞<br />

⎢1−<br />

⎜<br />

⎟<br />

⎢⎣<br />

⎝ µ m ⎠<br />

Yarn packing density µ [-]<br />

T [tex] – yarn fineness, Z [m-1 ] – yarn twist, ρ [kgm-3 ]–<br />

fiber density, M [m] - parameter <strong>of</strong> material <strong>and</strong><br />

technology, 5 µ m [-] =0,8 i.e. limit packing density<br />

2<br />

⎛ µ ⎞<br />

⎜<br />

⎟<br />

⎝ µ m ⎠<br />

3<br />

⎤<br />

⎥<br />

⎥⎦<br />

3<br />

M<br />

= 5<br />

2000µ<br />

m<br />

[ m]<br />

2<br />

ρ<br />

packing density [-]<br />

π<br />

[ ] −3<br />

kgm<br />

0,62<br />

0,60<br />

0,58<br />

0,56<br />

0,54<br />

0,52<br />

0,50<br />

0,48<br />

0,46<br />

0,44<br />

0,42<br />

0,40<br />

0,38<br />

⋅<br />

⎛<br />

⎜Z<br />

⎝<br />

[ ] [ ] 2<br />

1 4<br />

−1<br />

m T tex<br />

⎞<br />

3 8 13 18 23 28 33<br />

yarn fineness [tex]<br />

⎟<br />

⎠<br />

combed ring<br />

carded ring<br />

rotor<br />

Neckář [2]<br />

combed Novaspin<br />

carded Novaspin<br />

combed compact<br />

carded compact


ing<br />

Novaspin<br />

Yarn diameter D [mm]<br />

T [tex] – yarn fineness, µ- packing density,<br />

ρ [kgm -3 ] – fiber density<br />

rotor<br />

D =<br />

4T<br />

yarn diameter [mm]<br />

0,26<br />

0,24<br />

0,22<br />

0,20<br />

0,18<br />

0,16<br />

0,14<br />

0,12<br />

0,10<br />

0,08<br />

πµρ<br />

3 13 23 33<br />

yarn fineness [tex]<br />

combed ring<br />

carded ring<br />

rotor<br />

combed Novaspin<br />

carded Novaspin<br />

combed compact<br />

carded compact


elative error [%]<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

packing density [1]<br />

Relative error <strong>of</strong> prediction x<br />

95% confidence interval<br />

<strong>of</strong> mean value<br />

0,4<br />

0,35<br />

0,3<br />

0,25<br />

0,2<br />

0,15<br />

0,1<br />

0,05<br />

0<br />

0,01 0,04 0,07 0,1 0,13 0,16 0,19 0,22 0,25 0,28<br />

95% conf. int. lower limit 95% conf. int. upper limit<br />

combed <strong>and</strong> carded ring rotor<br />

combed <strong>and</strong> carded Novaspin combed compact<br />

7,23-28,46 tex<br />

D/2<br />

Radial<br />

packing<br />

density<br />

yarn radiusr [mm]<br />

9,43-29,42 tex<br />

19,43-29,48 tex<br />

7,35-20,05 tex<br />

relative error [%]<br />

15<br />

12<br />

9<br />

6<br />

3<br />

0<br />

-3<br />

-6<br />

-9<br />

-12<br />

-15<br />

Experiment<br />

95% conf. int. lower limit 95% conf. int. upper limit<br />

combed <strong>and</strong> carded ring rotor<br />

combed <strong>and</strong> carded Novaspin combed compact<br />

7,23-28,46 tex<br />

9,43-29,42 tex<br />

7,35-20,05 tex<br />

19,43-29,48 tex


100% cotton – ring yarn<br />

Yarn diameter – 50% hairiness function<br />

Hairiness function – integral under hairiness<br />

function in the interval (d/2; 3*d)<br />

R1 R2<br />

7,4 tex<br />

10 tex<br />

16,5 tex<br />

20 tex<br />

38 tex


100% cotton Hairiness Uster<br />

hairiness<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

compact 50% rotor 50% ring 50%<br />

2<br />

10 15 20 25 30 35<br />

yarn fineness [tex]


Fiber Distribution <strong>and</strong><br />

Corresponding Yarn Simulation –<br />

influence <strong>of</strong> fineness


Fiber Distribution<br />

for Three Spinning Technologies<br />

<strong>and</strong> Corresponding Yarn Simulation<br />

Yarn- 20 tex


utilization<br />

Utilization <strong>of</strong> fiber in bundle<br />

fiber tenacity/bundle tenacity<br />

φ<br />

vs<br />

=<br />

⎛ 1 ⎞<br />

⎜ ⎟<br />

⎝ u ⎠<br />

= u<br />

exp<br />

u<br />

( − u)<br />

/ Γ(<br />

1+<br />

u)<br />

= u exp(<br />

− u)<br />

/ Γ(<br />

1+<br />

u)<br />

u=0,909<br />

v<br />

δ y<br />

variation coefficient


fineness [tex]<br />

Fiber fineness x different principle<br />

micronaire x vibroscope<br />

0,26<br />

0,24<br />

0,22<br />

0,2<br />

0,18<br />

0,16<br />

0,14<br />

0,12<br />

0,1<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

number <strong>of</strong> cotton type<br />

AFIS<br />

HVI<br />

Vibroscope


Fiber tenacity x bundle tenacity<br />

different principle <strong>and</strong> gauge length<br />

tenacity [N/tex]<br />

0,70<br />

0,60<br />

0,50<br />

0,40<br />

0,30<br />

0,20<br />

0,10<br />

1 2 3 4 5 6 7 8 9 101112131415<br />

number <strong>of</strong> cotton type<br />

fiber vibroskop<br />

bundle HVI<br />

bundle Pressley<br />

bundle stelometr<br />

HVI Uster


Bundle strength – Pressley (tensile impact<br />

strength), HVI<br />

Fiber strength – vibroscope<br />

bundle strength [N/tex]<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

HVI<br />

Pressley<br />

prediction based on the vibroscope<br />

Li á í (HVI)<br />

y = 1,8944x + 0,0396<br />

R 2 = 0,8572<br />

y = 0,8722x + 0,1229<br />

R 2 = 0,7622<br />

y = 0,6763x + 0,0257<br />

R 2 = 0,9622<br />

0,15 0,17 0,19 0,21 0,23 0,25 0,27 0,29 0,31 0,33 0,35<br />

fiber strength vibroscope [N/tex]


Yarn tenacity σ p [N/tex]<br />

σ v –fiber tenacity,σ s – bundle tenacity, φ vs –<br />

utilization <strong>of</strong> fibers in bundle, φ sp - utilization <strong>of</strong> fiber<br />

bundle in yarn, φ vp utilization <strong>of</strong> fibers in yarn<br />

utilization [-]<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

σ = σ φ = σ φ =<br />

p<br />

v<br />

vp<br />

s<br />

sp<br />

δ<br />

0 50 100 150 200<br />

Pan [4]<br />

Neckář [2]<br />

Solověv [2]<br />

twist coef. m -1 ktex 1/2<br />

v<br />

φ<br />

vs<br />

φ<br />

sp<br />

bundle- yarn Pan<br />

bundle-yarn Neckář<br />

bundle-yarn Solověv<br />

exp. - ring yarn<br />

exp. - rotor yarn<br />

exp. - Novaspin<br />

exp. - compact yarn<br />

fiber-yarn Pan<br />

fiber-yarn Neckář<br />

fiber-yarn Solověv


Yarn tenacity σ p [N/tex]<br />

σ HVI fiber bundle tenacity (HVI),<br />

µ packing density,<br />

∗ =<br />

σ = σ φ σ µ n<br />

c HVI sp HVI β<br />

utilization <strong>of</strong> fibre bundle in yarn [-<br />

0,53<br />

0,51<br />

0,49<br />

0,47<br />

0,45<br />

0,43<br />

0,41<br />

0,39<br />

0,37<br />

0,35<br />

0,33<br />

n<br />

∗<br />

β<br />

orientation factor<br />

0 5 10 15 20 25 30 35<br />

yarn fineness [tex]<br />

∗<br />

combed ring<br />

carded ring<br />

rotor<br />

yarn tenacity [cN/tex]<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

combed Novaspin<br />

carded Novaspin<br />

combed compact<br />

carded compact<br />

5<br />

0 10 20 30 40<br />

yarn fineness [tex]<br />

u tiliz a tio n o f fib e r b u n d le in y a rn [- ]<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

V f<br />

µ<br />

combed ring - finer<br />

counts<br />

combed ring - corser<br />

counts<br />

carded ring<br />

compact<br />

rotor<br />

50% Uster statistics<br />

0 50 100 150 200


elative error [%]<br />

Relative error <strong>of</strong> prediction x<br />

95% confidence interval<br />

<strong>of</strong> mean value<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

7,23-28,46 tex<br />

95% conf. int. lower limit<br />

95% conf. int. upper limit<br />

combed <strong>and</strong> carded ring (12)<br />

rotor (12)<br />

combed <strong>and</strong> carded Novaspin (12)<br />

combed compact (12)<br />

b d d d d i (9)<br />

19,43-29,48 tex<br />

9,43-29,42 tex<br />

7,35-20,05 tex


tenacity [N/tex]<br />

Blended yarns –<br />

prediction <strong>of</strong> packing density,<br />

diameter, tenacity<br />

0,55<br />

0,5<br />

0,45<br />

0,4<br />

0,35<br />

0,3<br />

0,25<br />

0,2<br />

0,15<br />

0,1<br />

( πµ ) ∗<br />

D T ρ<br />

∗ = 4 /<br />

Linear mixing<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0<br />

cotton mass portion [-]<br />

s<br />

relative error [%]<br />

7<br />

2<br />

-8<br />

95% conf 95% conf relative error<br />

-30,00<br />

0,20 0,40 0,60 0,80 1,00<br />

experiment<br />

cotton mass portion [-]<br />

linear mixing - fibers<br />

linear mixing yarn<br />

PETxPan<br />

linear mixing yarn Uster<br />

PES<br />

critical mass portion<br />

fibers<br />

critical mass portion<br />

yarn


Ply yarn appearance simulationdiameter<br />

<strong>and</strong> twist influence<br />

Diameter 0,18 mm<br />

Twist 750/m<br />

500/m<br />

600/m<br />

750/m<br />

900/m<br />

0,10 mm<br />

0,15 mm<br />

0,18 mm<br />

0,22 mm


Fabric weave<br />

Definition <strong>of</strong> the weave on the basic <strong>of</strong> structural interlacing<br />

models. In the fabrics exist only four structural interlacing<br />

models. The number <strong>of</strong> individual models can assume<br />

behavior <strong>of</strong> woven fabrics.<br />

Full<br />

interlacing<br />

A1 A2 A3a<br />

A4<br />

Partial<br />

A3b<br />

Double<br />

Full Float


)<br />

3<br />

(<br />

6<br />

1<br />

A )<br />

(<br />

6<br />

1 Z<br />

K<br />

DEFINICE STRUKTURÁLNÍCH MODELŮ<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

=<br />

2<br />

4<br />

4<br />

2<br />

2<br />

4<br />

2<br />

2<br />

2<br />

4<br />

2<br />

2<br />

4<br />

4<br />

2<br />

2<br />

4<br />

4<br />

2<br />

2<br />

4<br />

4<br />

2<br />

2<br />

4<br />

42<br />

2<br />

4<br />

4<br />

2<br />

2<br />

4<br />

4<br />

2<br />

2<br />

4<br />

4<br />

2<br />

2<br />

4<br />

2<br />

2<br />

2<br />

4<br />

2<br />

2<br />

4<br />

4<br />

2<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

=<br />

2<br />

4<br />

4<br />

4<br />

4<br />

2<br />

1<br />

4<br />

4<br />

4<br />

4<br />

2<br />

1<br />

2<br />

4<br />

4<br />

4<br />

2<br />

1<br />

2<br />

4<br />

4<br />

4<br />

2<br />

1<br />

42<br />

4<br />

4<br />

4<br />

2<br />

1<br />

2<br />

4<br />

4<br />

4<br />

2<br />

1<br />

2<br />

4<br />

4<br />

4<br />

4<br />

1<br />

2<br />

4<br />

4<br />

4<br />

4<br />

2<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A


Fabric cross section simulation<br />

Evaluation: 1. Shape <strong>of</strong> yarn-diameter, 2.shape <strong>of</strong> binding wave,<br />

3. Individual coordinates <strong>of</strong> binding weave for next<br />

approximation. Basic weaves – Fourier series, derived weaves –<br />

hyperbolic model<br />

Binding wave definition by using <strong>of</strong> Fourier series<br />

Plain weave<br />

Twill weave


Mechanical properties<br />

Tenacity [N] - weft direction<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Fabric strength [N/5cm]<br />

Fabric strength<br />

as function<br />

<strong>of</strong> warp <strong>and</strong> weft sett,<br />

yarn tenacity <strong>and</strong><br />

weave<br />

experiment<br />

calculation<br />

Lineární (calculation)<br />

Lineární (experiment)<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Plain weave Plain weave<br />

Plain weave<br />

212/167<br />

warp<br />

215/208<br />

warp<br />

weft<br />

215/243<br />

warp<br />

weft<br />

weft<br />

1 2 3 4 5 6<br />

real value 563,64 394,31 568,91 524,49 504,81 616,11<br />

calculated value 539,3 402,26 546,98 506,35 546,98 6,05E+02<br />

y = 107,32x + 160,41<br />

R 2 = 0,9753<br />

y = 122,29x + 113,59<br />

R 2 = 0,9703<br />

Woven fabrics<br />

Plain 88 Plain 130 Plain 170 Plain 218 Plain 230<br />

Fabric<br />

Plain weave fabrics<br />

with different weft<br />

setts<br />

100% cotton<br />

T=29.5tex


Bending rigidity [mNmm2/mm]<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Fabric bending rigidity<br />

as function <strong>of</strong> yarn bending rigidity <strong>and</strong> fabric<br />

weave<br />

experiment - warp<br />

calculation - warp<br />

experiment - weft<br />

calculation - weft<br />

Plain 16 Plain 20 Plain 24<br />

Fabric<br />

Leaf’s model<br />

Plain weave fabrics with different weft setts, 100% cotton, T=33tex


B[mN/mm/deg]<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

Shear stiffness<br />

modulus<br />

as function <strong>of</strong> warp <strong>and</strong><br />

weft sett <strong>and</strong> fabric<br />

weave<br />

K 1/4 Z<br />

A 1/5 (2)<br />

y = -1,1616x + 6,168<br />

Calculation<br />

Fabric<br />

B[mN/mm/deg]<br />

K 1/5 Z<br />

A 1/6 (2)<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

K 1/4 Z<br />

A 1/5 (2)<br />

y = -62,5x + 285<br />

y = -1,8269x + 9,1037<br />

R 2 = 0,9577<br />

K 1/6 Z<br />

Experiment<br />

y = -75,75x + 468,33<br />

Fabric<br />

R 2 = 0,9998<br />

K 1/5 Z<br />

A 1/6 (2)<br />

K 1/6 Z<br />

Twill weave fabrics<br />

Sateen weave fabrics<br />

100% cotton<br />

T=10tex


Thickness [mm]<br />

End use<br />

properties<br />

0,7<br />

0,65<br />

0,6<br />

0,55<br />

0,5<br />

0,45<br />

0,4<br />

0,35<br />

0,3<br />

Thickness<br />

Areal mass<br />

Areal mass<br />

190<br />

180<br />

170<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

0 20 40 60 80<br />

Weft sett [threads/1cm]<br />

K 2/3 K 2/4 K 1/6 K 2/5 A 1/5 (2) A 1/6 (2)<br />

Fabric<br />

Experiment -classical<br />

Calculation<br />

KES - F<br />

Calculation - plain weave<br />

Experiment - plain weave<br />

Calculation - twill weave<br />

Calculation - sateen weave<br />

Experiment - twill weave<br />

Experiment - sateen weave<br />

Fabric thickness<br />

dependence on:<br />

yarn diameter,<br />

waviness,<br />

fabric weave.<br />

When thread’s<br />

interlacing is decreasing<br />

then fabrics thickness is<br />

increasing


Roughness [mikron]<br />

Roughness<br />

Twill <strong>and</strong> sateen fabrics,<br />

100% cotton, T= 10tex<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

y = -0,2785x + 15,056<br />

R 2 = 0,9769<br />

y = -0,1278x + 9,1829<br />

R 2 = 0,976<br />

10 15 20 25 30<br />

Roughness [mikron]<br />

1,8<br />

1,6<br />

1,4<br />

1,2<br />

0,8<br />

Weft sett [threads/1cm]<br />

2<br />

1<br />

K 2/3 K 2/4 K 1/6 K 2/5 A 1/5 (2) A 1/6 (2)<br />

KES, T=20tex<br />

Calculation, T=20tex<br />

Fabric<br />

KES - F<br />

Calculation<br />

It is function <strong>of</strong><br />

structure elements -<br />

four pore types, yarn<br />

unevenness <strong>and</strong> yarn<br />

diameter<br />

Plain weave fabrics with<br />

different weft setts,<br />

100% cotton


Areal cover<br />

Cover factor [%]<br />

96<br />

94<br />

92<br />

90<br />

88<br />

86<br />

84<br />

Covering (cover factor)<br />

The coefficient <strong>of</strong> areal covering (cover factor) is the<br />

characterization <strong>of</strong> the degree <strong>of</strong> area covered by the threads in the<br />

fabric. A light microscope <strong>and</strong> system <strong>of</strong> the image analysis LUCIA G is used<br />

for this measurement.<br />

Experiment<br />

Calculation<br />

Lineární (Experiment)<br />

Lineární (Calculation)<br />

y = 1,2674x + 64,095<br />

R 2 = 0,9927<br />

y = 1,1852x + 64,251<br />

R 2 = 0,9997<br />

82<br />

10 15 20 25 30<br />

Weft sett [threads/1cm]<br />

Plain weave fabrics with<br />

different weft setts,<br />

100% cotton, T=33tex


Fabric air permeability<br />

Calculation R[m/s]<br />

1,2<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

Fabric air permeability as<br />

function <strong>of</strong> structural<br />

elements, sett <strong>of</strong> fabrics<br />

<strong>and</strong> yarn diameter<br />

AP-Ps<br />

AP-PG<br />

y = 0,7263x + 0,1146<br />

R 2 = 0,8258<br />

y = 0,5881x + 0,1887<br />

R 2 AP-PH Plain weave fabrics with<br />

different weft setts,<br />

= 0,8553<br />

100% cotton, T=33tex<br />

y = 0,3832x + 0,2497<br />

R 2 = 0,8605<br />

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6<br />

Experiment R[m/s]<br />

When thread’s interlacing is decreasing then fabrics air permeability is increasing<br />

R[m/s]<br />

1,6<br />

1,4<br />

1,2<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

Experiment<br />

Calculation - model 1<br />

Calculation - model 2<br />

Calculation - model 3<br />

14 16 18 20 22 24<br />

Weft sett [threads/1cm]


Fibers <strong>and</strong> yarn properties<br />

100 % cotton 20tex x 100 % cotton 29,5tex<br />

fiber fineness<br />

index uneveness 150 fiber length<br />

CV Uster 50% 125 fiber tenacity<br />

100<br />

yarn elongation 75<br />

yarn fineness<br />

50<br />

fiber utility factor<br />

25<br />

0<br />

twist coefficient<br />

yarn tenacity<br />

yarn strength<br />

hairiness Uster 50%<br />

hairiness TUL<br />

yarn twist<br />

fiber number<br />

yarn diameter<br />

packing density<br />

predicted<br />

data<br />

real data


Fabric properties<br />

100 % cotton 20tex x 100 % cotton 29,5tex<br />

Selected properties<br />

The same areal cover<br />

strength <strong>of</strong> fabric (wa)<br />

length <strong>of</strong> yarn (we)<br />

length <strong>of</strong> yarn (wa)<br />

roughness <strong>of</strong> fabric<br />

strength <strong>of</strong> fabric (we)<br />

shortening (we)<br />

shortening (wa)<br />

plain weave<br />

200<br />

150<br />

100<br />

50<br />

0<br />

interlacing angle (we)<br />

yarn diameter<br />

limit square sett <strong>of</strong> fabric<br />

warp sett<br />

weft set t<br />

areal cover <strong>of</strong> fabric<br />

thickness <strong>of</strong> fabric<br />

interlacing angle (wa)


2D Fabric visualization<br />

Influence <strong>of</strong> weave on fabric appearance<br />

Plain weave Twill weave Satin weave<br />

Hopsack Derived from twill weave Derived from satin weave


2D Fabric visualization<br />

Influence <strong>of</strong> yarn fineness on fabric<br />

appearance<br />

warp: 20 tex<br />

weft: 29 tex<br />

warp: 20 tex<br />

weft: 20 tex<br />

warp: 29 tex<br />

weft: 20 tex


2D Fabric visualization<br />

Influence <strong>of</strong> surface cover on fabric<br />

appearance<br />

100 % 80 % 60 %<br />

Areal cover <strong>of</strong> the fabrics for both direction


Thanks for your attention…<br />

attention

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!