27.02.2013 Views

0 - FTP Directory Listing - Nato

0 - FTP Directory Listing - Nato

0 - FTP Directory Listing - Nato

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ADVISORY GROUP FOR AEROSPACE RESEARCH th DEVELOPMENT<br />

? RUE ANCELLE 92200 NEJILLY SUR SEiNE Ci74NCE<br />

ACARID CONFERENCE PROCEEDINGS 622<br />

-@- NORTH ATLANTIC TREATY ORGANIZATION<br />

I<br />

I<br />

Publlshed February 1993<br />

Dsfrrbulion and Avallabrliry on Back Cover


ADVOWRY GROW %OW AER0WME WESAWCW & CEVELOPMENT<br />

7 RUE ANCELLE 92200 NEUILLY SUR SEINE FRANCE<br />

I<br />

I<br />

i<br />

c<br />

I<br />

- North Atlantic Treaty Organization<br />

Organisation du Fait4 de I'AtIantique Nord


Acccorclinp tto 11s C”liirlcr. the mission of fit: \HI) is to hrinp together the lading personalities of the NATO nation?. in thc fields<br />

$of sclcncc ;ind tcchnolopy relating to +ice for thc following purposes:<br />

-- Hcccomnicncting cffcctivc w;iys for the nicmkr nations to usc their research and dcvelopmcnt c;ipahilitics for the<br />

coniniwl Iwtnefit of tht NATO commuiiity:<br />

- ProviJinp \,.icntific and tcchnica: advicc iind ;is istancc to thc Military C‘ommittcc in thc ficld nf acrospacc rcscarch and<br />

dcvcliiprncnt (with particular rcgiird t o it\ milit ’ry applicatiiln):<br />

- ( ‘oritiiiuiiusly stimulating ;idv;inccs in thc :icrio? i>;lcc scicnccs relevant to strcngthcning thc common dcfcncc posture:<br />

- imr,,ivinp thc co-opcr;ition iimconp ricnilwr n;i: ions in acrospacc research and dcvclopmcnt;<br />

-- Hcntlcrinp scientific ;incl tcctii!is:il ~i~wt;~iicc. :is rcqucstcd. to other NATO htdics and to nicmkr nations in aonncction<br />

uith rcwirch mil tlrvcllopnicy prohlcnis in the xrospacc field.<br />

lhc highest atit hiirity within ,IGt’\KI) is thc N;ition;il 1)cIcp;itcs Board consistiiig of officially ;ippointcd senior representatives<br />

from each mcmlw ii;iiiiiri. The miwit in of ACiARI) I\ c;irriid out through the Pancl\ which arc cnmpned of cxpcrts ;ippiiniccl<br />

ly thc Naticin:il I)clcptcs. thc C‘w\ult:int arid 1rrch;inpe Priogriimmc and the Aerospace Applications 9udic.s f’rogwnmc. The<br />

results of ACiAHl) work .Ire rcptrtcd 111 the rnemhr n;itions and the NATO Authorities through thc AGAR11 series of<br />

puhlicaticin5 of uhich this is one.<br />

f’3nicip;i;;on in AGARD activities iqi lly iiivit:hii\ only and is normally limited to citizens of the NATO nations.<br />

!<br />

Ihc ccontcnt of thi5 puhlication ha5 ken rcprtduced<br />

directly from m;itcri;il supplicd hy AGARD or the authors.<br />

Puhlished February I993<br />

Copyright 0 AGARD 1993<br />

All Rights Rcservec!<br />

ISBN 92-835-0700-2


I<br />

I<br />

Theme<br />

rcrynt l)c\t-:t Storm operatiom undcrccimvl the rswntial nrd for space system% to hght and win a thcatrc war. An<br />

cnil*rpiiip ccmcclrt lor spacc systems currently rcce*:-kF *.idcsprcrad attrntioii for Ihc Wh I\ characterizcd hy thc term 7:icSats"<br />

(;11s,i c;illctl


0<br />

Im oyi.rationr rcccntc\ *Tcm+tc du I~kcrt. on1 swlignC le : Wn vital de sc doler de splcmcs spatiaux susccptihlcs dc mcner<br />

ct de papncr tine purrrc de thciitrc:. tin nwVeaii ccmccpt de systirncs spatiaua pour lcs dnnies IVY(). qui suscilc hcaucoup<br />

d'inti.ri.1 i I'hcurc actucllc. CSI ciirhctcrii par IC tcrme rTacSatsm (apple aursi CheopSals. 1-ightsats, SmallSats ctc.). Ccs<br />

cysti.rnc\ son1 cari1ctt%\h par dc\ couts mlntiwmcnt rnrdiqua et des satellites Icgcn avec des performances Ctudiccs pour<br />

rcpondrc mix hcuiinr du ccinmandcmcnt du th6iitrc. par opposition DUX satellites Icwnls CI complexes dcstinCs i satisfaire aux<br />

hcstnns natiiinaux.<br />

I.C coriccpt a'IilcSatc. parait p;irticuIii.rcrncnt dnptc au c~~textc sctucI dc cornpwssic?n dcs hudpcts c k dcfensc nniirsnaic et de<br />

reduction de\ fiircc\ iirm&x I.cc caliaciti's offcrtr\ F.ir cc\ syrtcmcs puvcnt ttrc acquiscs dc faqon prriprc\sivc. ccintraircmcnt<br />

aux \y$ti*nic\ 4lwi;iux clawiqucs. qui son1 tcmpljcwru ;iccompagncs dc cohs additionncls. En outre. ils pcuvcnt Ctre mi5 sur orhite<br />

pJr de5 vi'hicuIc4 de lnnccmcnt plus pctils CI miiins cciuleux. commantl6s cventucllcmcnt par IC commandant du thcitrc Incal.<br />

Lcs TncS;Ii\ wrnhlcnt offrir unc solution i'concmiquc et scx~plc au prohkmc dcs hcsoins de I'OTAN cn mati.ricl Jc survciliance,<br />

de ti.li.rcrmrnunir;iticon~ ct dc comniandcrncnl CI tcvntrc'ilc pour Ics ann& YO. Ihns unc situiiiion dc forces r6duitcs. iI importc de<br />

wwir c i G IC% Iawr* cnncmic3 pcoicnricllc\ pnirr:tiuni Ctrc situccs. qucl CSI lcur nomhrc. qucllc cst lcur route etc. Ccs inforrn:itions<br />

\mi incli*;prn\nhlcc i~ tout iiiplnicincnt cflicncs tl'un nonihre rcduit dc troupcs. Lcs systkmcs cpatiaux offrcirt peu!-Ctrc la sculc<br />

pb\\ihilitC tl'r-ubtcr ccs fonctionc J'unc m;iriiCrc clticace. I>nns cc cas. des TacSats di.ve1nppi.s pour WTAN. ii un prix<br />

ahmhhlc. prrncitraicnt de contrcr unc mcnacc qui i.voluc. dans un mondc ou Ics budgets ct Ics stnrct3rcs des forccs wnt cn<br />

diminution.<br />

Systcmcr -7;icSat\*<br />

- Architccturc et inpi.niCrie de\ sy\tCnic\ OTAN<br />

- Concepts CI i'tudcs dc la ch;irpc uiik<br />

- C(onccpis ct itudcs dcs huvpwr vkhiciicc


Mail from Europe:<br />

ACiARll-CJrA N<br />

Aiin: AVI’ Exccutivc<br />

7. me Anccllc.<br />

92200 Ncuilly-sur-Scinc<br />

France<br />

PANEL EXEC‘tlTlVE<br />

I.TC H. Caripl;-, IAF<br />

‘LA: 33( l)47 3H 57 OH<br />

Tclex: 610176 (France)<br />

Tclcfiix: 33 ( I ) 47 38 57 99<br />

V<br />

Ijclpi u m<br />

Mail fmm US and Cnnsds:<br />

AGA RI)-NATO<br />

Aim: AVP Exccuiive<br />

Unit 21.551<br />

APO AI: 09777<br />

b


Theme<br />

'fieme<br />

0 -<br />

0<br />

Avionics Pencl and 'Technical F rqramm ('omnbiltcc<br />

Tactical SafclDitrc<br />

hy F.1 I. Ncurn:cn<br />

SESSI(9N I - TAIT'SAT CONCEPT ANI) REED<br />

Evolution OP Revolution - The Catch 22 of TrcSirts?<br />

hy ('J l:Ilii~t~<br />

1<br />

SESSUON II - 'TACSATS - ASPECTS<br />

Papcr S cancelled<br />

TacSat Ground Control and Dsta C'ollweiam<br />

hy (.' Ci ('ixtiranc<br />

Paper 7 cancclled I<br />

TacSal-Spacecraft Bus Conccpt and Deslgd: Aiyplir*rtion of a Multimission Bus for<br />

TatSat in LEO (English and Frcnch)<br />

hy G. Hichard<br />

A Model to Chnparafively Assess AltcmaPive Satellite Communications Systems Options<br />

hy J.F.. t3rou.n<br />

SESSION III - TAkSA'T APPLICATIONS - SYSTEMS<br />

Sgstcmc de Navigation par Satellites i Couvcrlure Europknne<br />

par t I.l!arangcr. 1. tkwchard CI T. hlichal<br />

TakticaI Satellites for Air Command and Control<br />

hy M.Crixhci. J.Cyrnhiilisia and I..l.cvcquc<br />

Concept of Small SunciIIance SeteIlitcs Boa the Context of an Overall Spice System<br />

\<br />

hy U.hI.Erict1, W.A. KriegJ and K.4.. Bitzcr<br />

Conccpts of Scnsors and Data Transmission for Small lactical<br />

Surveillance mnd Vcrification Satcllitea<br />

hy K.-I.. Iiiizcr. I4.(hil. K.tI.Zellcr nnd S.


SB:SSUON VI - I..\UNCI1 SYSTEMS<br />

Spacccrnlt and I.nunch Systems hr Tarsat Appl .rations<br />

I)! (' Ch;itlc. (;.I>. Hyc and RII. hlcuro<br />

SESSION VI1 - SPACECRAFT BUS<br />

QuickStar - S!citcm DesiKn, ('apehilitks and Tactical Applications<br />

of a Small. Smart Spacc System<br />

by T.l'.(;:irIiuin mid N.?'.i\ric!cruiii<br />

Alc'itudc- and Orhit Control Suhs! stem C'anccpts for TacSats<br />

by I I. 1i:ltnc.r. I!. tirudcrlc. hl. Si1r;iur.r ;inti Icl.Schwcndc<br />

Elcctric Propulsion lor I-ightsats: A Wcviarw of Applications and Advanlqcs<br />

hy Ci. I'crrtiii:~ and G.Cirri and ti. Matticari<br />

I<br />

SjES5JON l'lll- ADVANCEDTECIi;\;OI,


--<br />

Printed in Clawificcl puhlication CI'SZZ (Supplcmcnc).<br />

SESS96hi XI - PANEL DlSCllSSION<br />

viii<br />

Rrlcrrncc<br />

29.<br />

30'<br />

31<br />

32'<br />

33<br />

D<br />

-


8<br />

SU M MI A RY I<br />

Thc syniposium was high:. siicccssful in It:>! 11<br />

brought togcthcr a trmad spcclrum oI thr. NATO psc<br />

tcchnical community with quality papm or thc<br />

mistions. applicat'ws. and tcchnical ospcts cd<br />

TACSATs. Thc main iopics ccnerctl cm surncillaibcc<br />

and comniunica!ion sysicms. and thc issuc of<br />

clctcrmining rcquircmcnlq. At thc cmplction of thc<br />

symposium. it was clcar that statc-of-thc-arl tomi<br />

systcrns could hc built lhma would tw mpmasivc to hc<br />

thcatci' cominacdcr 31 a rcasonahlc cos[. Whilc hc<br />

lcvcl cf tcchnical dcLd varicd; thni is. morv cmphasis<br />

on ttic utzllitc options illan t h grtrunrl syatcmc. t.trrc<br />

was sufficirnt tlcuil to makc thc CJX f(n Lhc vnlioily of<br />

thc TPCSAT conccp as discus.wd in tPsc :;ympvium<br />

thcmc.<br />

Thc output from ihis syrnpo.:ium will ttc thc ccnlnl<br />

pint of ~k~rrtun: ftn thc Working Group I6 cffms o<br />

?hCSATc for NATO. In this rrpnl. Ihc symposium<br />

was an ouisunding succcss. I<br />

Thc synipxiiim was cqxncd with an ah!rcw by k hxt<br />

Dickman. 1lrigdi:r Gcncrd, USAF, who is thc Dcputy<br />

Chicf of Skiff fOr Phs at Air Forcc spxc Ctmnlmmd<br />

in Colorado Springs, Colorado. USA. His pnpxiivc<br />

was from the warfiightcr's pint-of-vicw within which<br />

hc challcngcd thc audicncc of mostly scicntists and<br />

cnginccrs to focus on thc nccds of thc uscr;<br />

cmphuixing. that if TACSATs an: U) ttc a paf of spacc<br />

in thc futurc. hcy mug bc mawrrd in lcrms of thcir<br />

uniquc concrihuiions IO mission succcss.<br />

To makc his pint, Gcn. Dickman cnprcswtl hc bclicf<br />

that spacc will hc a dominatc faclor in any futurc<br />

conflict; and. as a rcsult. will havc io improvc, not<br />

rlccm~, in thc futurc. tic cmphasimi tha: whilc this<br />

hclicl is wikly acccprd. in an agc of hmung<br />

rcsourccs. rcquircmcnis and affordability must comc<br />

iogcthcr. Thcrcforc, thc dcvclopcr must scck out hc<br />

yicw of thc warfightcr in an cffort to identify critical<br />

spcc dcficicncics. In this rcgrtrd. hc dcvclqwr will hc<br />

dcaling with a customcr who is smartcr. who will<br />

dcmwd nnlorc from spcc, and who will insist that ihc<br />

S ~ C C<br />

capahilitics hc lhcrc during hostilitics.<br />

To cmphasizc thcsc pinu. Gcn. Dickmm gavc a spacc<br />

"rcpon card' on Dcscn S m .<br />

Communication - ncvcr cnough, not mohilc<br />

cnough. and bc Wnninals wrrc in&qmtr.<br />

Wcathcr - dood information. hut ihc data<br />

disscmimtim was pr.<br />

Navigation - 3mr. hut MM cmgh rccrivcn.<br />

Itnagcry - a ccmlrovcrsial suhjcci. Whilc Ihcm was<br />

not crulugh swcillancc. it was xtu311y vicwcd as<br />

a failurc kcausc of rlisscmination pmhkms.<br />

AS a rcsu~t. hr OVC~II sprrcc rating can bc vicwcd as<br />

follows:<br />

Cspahilitv - grmt<br />

Payltmd hsbing - modcrac<br />

Disscrriination - tcnihlc<br />

T- I<br />

Hc wcnt on to cmphasix that thc rcawn for his "carz'<br />

rating gocs back to what thc warfighvr wants. tk<br />

wants: continuous availahility. flcxihility mi<br />

availahility to thc cnd uwr. hi anothcr way. from a<br />

combat pcrspcctivc thc wwfightcr will ask:<br />

-<br />

+<br />

Can I gct what I want whcn I want it?<br />

Can I distrihutc it U, my forccs?<br />

In closing. Gen. Dickman chdlcngcd thc symposium<br />

U, locus on Ihc dcficicncicc.<br />

I. lmprovc distribution<br />

2. lmprovc dm swms.<br />

j. Dcvclap ncw spacc systcms; but. avoid<br />

uniqucncss. conccnmtc on intcropcnhility. and<br />

cnsurc bat wc can cxcrcisc as wc fight.<br />

Thc challcngc for TACSAT will bc:<br />

- whaimIhcnocds?<br />

- What arc hc options?<br />

- What is possiblc now?<br />

- What arc h c "mcasurcs of cffcctivcncss?"<br />

Session I - TACSAT Concept and Need<br />

Thc inlcnt hcrc. was to "SCI thc stagc" - WHAT AHE<br />

WE TALKlNG AROUT?<br />

In h is sccsion, as with almost lhc cntirc symposium.<br />

two mission arcas rcccivcd thc most aiicntion -<br />

survcillancc (imagcry) and communications. Of tho=<br />

two mission arcas. survcillancc took thc "lion's .shim"<br />

thc group's aitcntim. with most of thc discussions<br />

ccnlcrcd on nsolulion.


1'. 2<br />

c<br />

From tplc four pafcn. thcrc wrm wvcral zmas d<br />

conwnwc. two arcac of dhcrgcn: ~pniclnc. :nd nnc<br />

miistanding i-uc.<br />

'Ihar T,I(.'SATs ran tw M W ~ in untlcm with cnrc<br />

cycicnir by: micing mission awn rcqwnl;ivcncss,<br />

wlccwp orhits to match thc thrtzt. ccmcntnting<br />

011 ;I


0<br />

Whilc the discussicns in thi? arcs prcscntcd ncw<br />

thinking in how COMSATs coirld contrihutc lo thc air<br />

campaign and. to somc dcgrcc, tollistic miwlc dcfcnsc:<br />

morc analysis is nccdcd 10 (1i:tcrminc Ihc v:iliic of<br />

TACSAS's as a spccific class o; wtcllilc. This IS<br />

consisknt with thc issuc rciiscd in Session I cconccniing<br />

thc tix of lnrgc .SI~CIL~CS 3s TACSATS.<br />

Surveillance<br />

This .ma rcccivcd thc most attcnihn in this scssion.<br />

appearing in thrcc out of thc four palms. I<br />

As with conimunic;itions. survcillancc salcllitcs wcrc<br />

prcscntcll i1S kcy clcnicnts in tlcvclorinp the Air<br />

Tasking Order and in supp)rtinp bal:islic miscil,:<br />

dcfcnsc. lhc function of swvcill;rncc sntclliics W;LF<br />

consitlcwtl prirnc in dcticting airhisc activation, cud<br />

dctcction. hunch-r dctcction. (',ctcction of miusilc<br />

launch pri*par;itic.n. and mic.-tlc 1;iuni.h dctccticm.<br />

tiowcvcr. cpciiic rcquircmcnls that ;illow for thc uw of<br />

TAC'SAT class swllitcs h;ivc yct to bc drfincrl.<br />

Sonic lime w w sprit on h c pitriiti;il roll*#: TACSATs<br />

niight play from :I systcnis pinl-of-v:cw. It' wac<br />

cniphasircd h:ii surwillmc I'ACShTc coultl:<br />

- Hctlucc systcin ccmplcniiy<br />

iicrc again arc thc piinis th;it IAUATs pla) k c t in<br />

xlivilicc that arc pcopraphically krcaliictl and hat<br />

rquirc qurh rcxtitm to a cltwiton.<br />

Hccolutionc sccmcd io fall in the 3-S mctcr<br />

rcgionc. with w uc cxi-urcionc to 1.4 nictrrs.<br />

- fht spwccrdt wighis ucrc in thr fa) IO 750<br />

kp mngc.<br />

- Surveil lawc tn'hn iqucs inc Iwkd chin ~)pcical<br />

ad synthetic apmurc r;bku (SAR)]<br />

I<br />

At iswc in this arc3 was thc xccphhlc mwltiLi(m. As<br />

always, thc uscr asks for thc kst; howcvcr. it was<br />

gcncmlly apwd that &SI in survci!'.mcc mciins largc.<br />

rxpcnsivc, and limikd in quantity. This ilcm rcmaincd<br />

as a contentious iscuc chroughoui thc symposium.<br />

i<br />

Thr oh;cclivz of this scssion was lo cngagc the<br />

audic~~c in xfilrcssing my isutcs and conccms [hat may<br />

R.wc comc up in thc pyior scsekns. Four major issucs<br />

wcrc dimwcd. allhough no rcsolutions wcrc agad<br />

upon. Thc issucs wcrc:<br />

- ttow m quircmcnLs to bc cstahlishcd?<br />

- Should TACSAT he slriclly thcatcr oricntcd?<br />

- Will TACSAT hc complimcnlary to thc major<br />

spec syslcms?<br />

- Whai bunch suatcgy is appmprialc?<br />

Thcsc issucs will tw a prirnc conccrn of Working<br />

Group 16.<br />

Thc vsluc of this scssion was not in thc dikcussions.<br />

hui in thc hrinpinp fonh of thc.sc four kcy iss)cs.<br />

Sessioit V - Communications Conccflts<br />

In this scscion thc rmphasis was on technology and<br />

how it might lcad to TACSAT lypc comrniinication<br />

.utcllitcs. Ihc niain cmphasis was on EttF; althwgb<br />

hcrc was w nc discuvsion of SHF.<br />

Thc Ilow of thc scssion was paniculvly wcll dwc wih<br />

Pr. lncc leading off wilh a discussim of' Working<br />

Group 13's efforts on NATO Sarcllitc<br />

Communications. which was swmd in 1986. In thc<br />

discussion. hc rcmindcd thc audicncc that our pst<br />

emphasis was oricncrd to thc suatcgic mission whcrc<br />

ihc systcms had to hc highly survivahlc, cnsurc<br />

continuity of scrvicc. pvidc ECCM. and pvidc low<br />

capacity communication for cmcrgcncics.<br />

DUI timcs haw changcd. Dr. lncc cmphacii.cd hat<br />

wcllilcs should hc smalicr and chcapcr. wlth latrncli<br />

flcxihility hy cmploying systcms siich as clusurcd<br />

utcllitcs. Itc also cmphasiicd wmc movcmcnt froni<br />

S t IF to Et IF. Most immruntly, Dr. lncc pmvidcd a<br />

listing of NATO actions -<br />

- Dcfinc NATO and National rcquircmcnlr<br />

- Dcvclop and agrcc rm an archimturc<br />

- Dcfinc hc tcchmlogics<br />

-<br />

Encouragc companics to join togclhcr<br />

Thc rcmaining p;&rs discusscd thc lcchnoloyics hat<br />

will makc smallcr EHF satcllitcs possihlc and .wmc d<br />

thc protlcms that might tic cxpcctcd at Chcsc<br />

Irqucncics. In gcncral. thc cmphasis was to pmvidc<br />

tcchnologics that would allow morc uscrs to lakc<br />

itdvanlagc of &IC AJ charactcristics 01' EHF while<br />

gcniing at mcdium dala rarcs ralhcr than low ctla


Talcs. Thc lcchnology emphasis wnr on variable<br />

bcamviidth antcnnmc. frcqucncy syntils!$izcri. and<br />

proct.xxws. In Ihc ca9c of lplc antenna mchmlogy. he<br />

objjcctivcs wcrc ior micr opcration in cllrptical o&iu<br />

and for casc of switching gcogmphic IIxEmtio;ls for<br />

satcllitcs in gcosutionary orbits. Fw frcghcncy<br />

synthcsi7t:rs and for processors. thc cmpiiasis was on<br />

significant wcight and power rcducliont that would<br />

allow for payloads in Lhc 100 hg and 290 w rcdimc's<br />

with tcrminal capcilics of 27 LDR channels PI 45<br />

kbit.9 and 17 MDR channcls at 3 mbiu.<br />

Othcr discussions includcd MDK EHF synchronitalion<br />

tcchniqucs for minimizing acquisition timcs und an<br />

examination of intcrfcrcncc from mountains and<br />

foliagc. ,<br />

Esscn:ially. this scssion vcrificd that thc tcchnology is<br />

availablc for TACSAT typc communication satcilitcs,<br />

par~L~larly at EHF. Thc qucslion rcmaincd conccrning<br />

thc aacquacy of such systcrns for military nccds.<br />

Ccminly, ihc capacity of such syslcnis can now bc<br />

dct-~ncxl with p u t confidcncc and no doubt Ihc . wc caul<br />

bc said for cost. Thc qucstion is. is thc tcrminal<br />

capacity dcscrihxi abow cost cffcctivc mln ;I mgc d<br />

SCCnariOS?<br />

Session VI- Launch Systems<br />

This scssion ccnfirmcd that ;I broad rangc of launch<br />

options will bc availablc aftcr 1995 to wpport<br />

TACSAT typc pa;loads as idcntificd in Scssion I.<br />

Thcse boostcrs, it: hcrcasing wcight carrying<br />

capability, arc: Pcgasus, Taurus, Dclla 11. MLV-3.<br />

Allas 11 and Arianc.<br />

Thc qucsiion that rcmains to bc addrcsscd is what<br />

dcploymcnt sualcgy will bc uwd for TACSAT. If thc<br />

boostcr is thc limiting factor, thcn stratcgics arc limitcd<br />

to thc following:<br />

t)oostcr Storc-on-Orbit Rapid Launch<br />

Pcgaws (1) X X<br />

Taurus (2) X X<br />

. Atlas II X<br />

-<br />

Arain: X<br />

.. .


- Low powcr arcjets ate thc bcst wdid2tc.s fm ohit<br />

aansfcr and raising.<br />

In gcncral, morc work is d d<br />

for clccvic propulsion;<br />

howcvcr, it should bc supportcd and cxamincd fw<br />

inlrnduction into any TACSAT program.<br />

Session VI11 - Advanced l’achondtagy<br />

This scssion was dividcd into two discussions -- thc<br />

DARPA (USA’ SPCC technology crrot-ts ~ IMJ CAMEO.<br />

Thc DARPA tcchnology discusion told oi significant<br />

suidcs king ma& to rcducc thc cost of doing husincK5<br />

in spacc. It is morc appropriate for thc rcadcr to<br />

cxnminc thc papcr than to prcsknt a dctiilcd summary<br />

hcrc. Howcvcr. a hricf summary is appprialc.<br />

This pmgnin includcs:<br />

Pcgaws<br />

TiurUS<br />

DAFY’ASA?‘ I<br />

Optical :cchnology for light ‘wcight sy.c.tcms<br />

Submarine law communic&ns Irchttology<br />

EHF tcchnology<br />

Salcllitc subsystems<br />

Common buscs<br />

An cxmplc of thc progrcss bcing ma& can bc sccn in<br />

Lhc EHF tcchnology work. This icchnology is on its<br />

way to lowcring spacccraft wcight and pwcr by >SO%.<br />

Thc ovcrall program will usc sniallcr salcllitcs to<br />

quickly validatc tcchnologics so largc saicllitcs can hc<br />

procurcd using mom advanced urhnology.<br />

A dcscription of CAMEO was pcscntcd. lu objcctivcs<br />

arc:<br />

- Multi-spcctral small sakllitc<br />

- DOD/civil cnvironmcnlal and wcalhcr<br />

- Dircct downlinking of dab<br />

- Usc of a cmmon bus<br />

During thc qucstion and answcr pcrid, thc swus of<br />

CAMEO was rcqucslcd. Thc msivcr was that funding<br />

was dcfcrrcd by Congrcss cvcn though it had thc full<br />

support of DOD.<br />

‘session IX - Radar Concepts<br />

As with thc following scssion. this scssion arldnr;scda<br />

spccific tcchniquc for battlcficld survtjllancc - using<br />

ydar in thc syntlictic opcnturc mock. TRc ppcrs WCIC<br />

in-liccping with thc gcncral approach of TACSAT, that<br />

bf supporting hcatcr opcraiions. This point w&s<br />

khown as pivotal in allowing a rcasonablc wcight<br />

spacccraft so that it fit thc smallcr class sakllitc<br />

calcgory. In gcncral. thc spacecraft wcights fcll in Ihc,<br />

500 to 800 kg rcgimcs. In thc past, most radar<br />

spacccraft wcighis wcrc in thc SO00 kg c1a.s; so why<br />

@c diffcmmcc? Basically, thc diffcrcncc was in thc sizc<br />

/<br />

of Ihc rcgion of cowem (2000 x 200 km), .#hich in<br />

tun1 reduced pfre duty cyclc (530%) which duced thc<br />

weight and. rn some cxteni, reduced the sizc of the<br />

antenna. ihhcr spacecraft paramctcrs icll into the<br />

following areas:<br />

x-band (M c-band<br />

300 to 5 0 km aldiudc<br />

200 Io 4c#) mbit &la rate<br />

6 to 8 .carcllik conslcllation<br />

FWud may anlcnna<br />

4 x 2 mcicr antenna<br />

2-5 mclcr rcsolution<br />

30 imagcs pcr pass<br />

Ttacrc was a unanimous call for a dcmonstraiion flight.<br />

Thc ovcrall fccling was that a SAR spacccraft, built to<br />

thc abovc .specifications. is slatc-of-lhc-an.<br />

Additional papcrs wcrc prcscntcd that discusscd<br />

lightwcight, stofc and forward microwavc applications,<br />

a maritimc application of a SLAR and an altimctcr to<br />

dctcrminc wavc hcighls.<br />

Session X - Electro-Optic Concepts<br />

T-5<br />

This discussicn followcd thc paltcm sccn ir, ihc SAR<br />

scssion. In gcncd it was bclicvcd that slau-d-thc-m<br />

E-0 TACSATs could bc built according to thc<br />

following:<br />

1 -5M resolutions<br />

250-450 km altitudc<br />

350 to 650 kg spacccrdt wcight<br />

200 to 300 mbs data ralz<br />

Thrcc additional points wcrc madc: (I) thc ground<br />

station could bc air transportablc; (2) a convincing<br />

dcmonsmtion could bc conducted for $50- 100M; and<br />

(3) a $5OM pricc pcr satcllik is achicvablc.<br />

As with thc r;pdarSAR. thc group fclt a dcmonsuation<br />

was absolutcly necessary to gci somcihing into thc<br />

hands of thc uscr.<br />

Session XI - Panel Discussion<br />

This scssion rcvicwcd thc outputs from cach scssion<br />

followcd by qucstions and answcrs with thc audim.<br />

Thc discussions ccntcrcd on t hm thcmcs - can wc<br />

achicvc thc TACSAT objcctivcs. how much resolution<br />

c;cl wc expcct from survcillancc systcms, and how do<br />

w idcntify rcquiremcnu.<br />

RECOMMENDATION:<br />

, .. ,c,<br />

From thc con!cW,of thc papcrs, it appcars that<br />

TACSAT i$b ‘.:Spacccrafi for survci~~!incc<br />

ad<br />

communications could bc of grcat valuc to NATO.<br />

‘t.*hilc such systcms will bc morc arrordablc than largcr<br />

more capable systems. they will not bc procurcd by any<br />

onc mcmbcr nation and lherefwe should bc appro3chcd<br />

as a pint international effort.


These arc three spccific fecornmen&tiom: (1) These<br />

papers should be uscd as thc foundation for Ihc<br />

Working Group 16 cffw. (2) Thc rcsulrr. of Working<br />

Group 16 should lhcn be bricfcd lo mcrnbcr nations<br />

and NATO hcadquarlcrs. (3) A NA'J0,min s~uld bc<br />

cslablishcd IO drvclop tcchnical and opcrationai<br />

options, with costs. to be rcportCa out lo NATO by<br />

early 1994.


ABSTRACT<br />

The concept of a Tactical Space System. "TAC{,jAT'<br />

is a means to provide a rapid, on deqand,<br />

abgmentation of thn backbone U.S. militav space<br />

sbslems. Such augmentation would be valuat$e to<br />

temporarily replace lost capability or in times of Crisis,<br />

to accommodate surge demands. Because<br />

augmntation needs are not always known a-prtori, it<br />

WeuM ba desirable Po be able to rapidly consiitute<br />

the appropriate paybad-satellite bus combination to<br />

accommodate the need for a specific space<br />

cbpability. To do this. one can envision a staridard<br />

bus capable of accepting a variety of payloads, or<br />

better yet, a single spacecraft designed lo perform<br />

sbveral different missions. Both options are<br />

ansidered. A number of potential missions exist in<br />

the areas of surveillance, navigation, environmental<br />

sensing and communications. Of these, two are<br />

presented as strawman concepts; surveillance and<br />

communication. For surveillance, an electro-optical<br />

payload is described that could be used for missile<br />

surveillance, theater targeting or wealher data using<br />

the same optics, focal plane and processor. The<br />

satellite orbit selected dictates which mission is<br />

performed. For communication. both SHF and EHF<br />

payloads are defined to provide theater coverage<br />

for the tactical user. The advantages and pen2lties<br />

that accrue to the use of a common bus are also<br />

explored. In addition, launch options are identified<br />

and a compdrison made between "launch-on-<br />

demand" and "launch-on-schedule" strategies.<br />

Potential timelines for rapid launch are shown based<br />

on parallel processing and checkout of spacecraft<br />

and launcher. This technique is compared with<br />

launching satellites on a routins basis and storing<br />

them in orkit. Energy requirements for<br />

repositioning these stored satellites after they are<br />

aLlivi;ted in time 01 need are delined.<br />

TACTICAL SATELLITES<br />

F.H. Newman<br />

The Aerospace Corporation<br />

P.O. Box 92957<br />

Los Angeles, CA 90009<br />

DISCUSSION<br />

3-1<br />

The purpose OS this paper is to put into context the<br />

role of the tactical salellits and present some sample<br />

applications in order to provide an introduction to<br />

the more detailed design and operations papers to<br />

follow. The Tactical Space Systern. commonly<br />

referred to as TACSAT, was envisioned as<br />

providing a space capability directly under the<br />

control of the military field commander. When<br />

needed, the spacecratl can be quickly assembled to<br />

provide the required mission capability and quickly<br />

launched or repositioned in orbit to provide the<br />

required coverage. The system would be<br />

compatible with, and operate within the larger in<br />

place space architecture, or as a stand alone<br />

capability. In either case, however, its operation<br />

would be transparent td the user; that is, the user<br />

would be able to use the same ground terminals<br />

already in use for interaction with the larger<br />

backbone satellite systems. The need for a<br />

TACSAT can arise from several circumstances. First<br />

wol!W be to augment the existing space<br />

infrastructure in order to accommodate changes in<br />

requirements that could be caused by changes in<br />

the military alert posture, e.g., as we go from peace<br />

to crisis to war. TACSAT could also be deployed if<br />

areas of military instability shift from one<br />

geographical location to another. ,It may, in fact,<br />

become necessary to cover ssveral geographical<br />

locations simultaneously. During Desert Storm, for<br />

exampie, space assets were refwsitioned to support<br />

operations in the Persian Gulf. Had a crisid or conflict<br />

occurred in a different part of the world at that same<br />

time, we would have been hard pressed to support<br />

operations in both theaters. As I will show later in<br />

this paper, space launch systems are not very<br />

responsive, nor are satellites stored in orbit<br />

generally designed to be maneuvered rapidly. If a<br />

failure occurs in one of the backbone space<br />

systems, then TACSAT could be used to provide an<br />

interllli capability until that backbons corrstellation<br />

can be restored. This situation occurred several<br />

times in the L1.S. military space program, particularly


when WO Rave gone from one'modsl satellitd to a<br />

redesigned or upgraded ono. If one looks at an<br />

actual supply/demand curve it can bo se0n that for<br />

the sako of efsnomy, most space systems are<br />

designod to provide a nominal capability. In geheral,<br />

this capability is less than the peak demand<br />

requirements. Also, as mentioned earlier, the<br />

capability may be reduced due to system failures.<br />

When a crisis occurs, the shflfall &tween dernand<br />

and supply could be quite significant.<br />

For TACSAT to fill this gap, it must possess lhrse<br />

main characteristics; flexibility, respnsivenesb and<br />

affordability. The first criteria for TACSAT, flei'ibility<br />

means PRat i9 must be capable of suppoding multiple<br />

missbn areas. These mission areas are generally<br />

defined as surveillance, commuPications, navigation<br />

and environmental monitoring. As 1 will discuss later<br />

in the paper, there are several ways to design a<br />

system that is capable of performing more than one<br />

of these missions. If we can achieve this Ilexibility,<br />

the number of TACSATs to be built will be<br />

maximized, and accordingly, the unit price will be<br />

minimized. Another element of flexibility, alludecl to<br />

earlier, is compatibility with the existing<br />

infrastructure. From the logistics and well as an<br />

economic standpoint. no TACSAT specific data<br />

receiving or processing equipment should be<br />

required. This is true not only lor the user<br />

ehuipment, but for the facilities required to control<br />

and monitor the space systeiiis as well. The final<br />

flexibility criteria is launch resiliency. Currently, the<br />

military spaco launch strategy does not include<br />

'launch lhrough failure". When a launch failure<br />

occurs, a significant downtime is generally<br />

experienced in order to troubleshoot and conduct<br />

the analysis necessary to determine the cause of<br />

the launch failure. Failure is rarely accepted in terms<br />

of its statistical probability but rather. because<br />

spacecraft and launch systems are expensive, the<br />

financial risk attendant to the next launch warrahts a<br />

thorough lailure investigation. The TACSAT<br />

concept, on Ihc other hand, is premised on quick<br />

response and low cost.<br />

Responsiveness is the second characteristic that a<br />

TACSAT system must possess. Responsiveness<br />

can be achieved in two ways. Thd first is to store<br />

sbacecralt and launch vehicles on the ground and<br />

then launch rapidly when the need arises.<br />

Depending on ihe location of the launch site, it may<br />

ba possiS!o to launch Into the inclination of interest<br />

ancl thereby obtain gerlinent data on the first orbital<br />

pass. Another means of obtaining responsiveness<br />

requires the capability Po reposition satellites already<br />

in orbit. This is a particularly attractive option for<br />

satellites in the geostationary belt.<br />

Of all the TACSAT characteristics, the one that is<br />

absolutely essential is affordability. If a low unit cost<br />

can be achieved the TACSAT concept can be an<br />

attractive option especially in this era of limited<br />

defense spending. TACSATs can be incrementally<br />

acquired allowing the user to purchase the capability<br />

needed at present and then add to that capability as<br />

the need arises.<br />

One method of achieving affordability is to maximize<br />

design commonality across the spectrum of<br />

missions to be performed. In the iJltimate, one<br />

would desire to have a single satellite design<br />

capable of performing any mission. This, of course,<br />

is not possible. This paper will discuss, however,<br />

combining similar missions. A second level of<br />

commonality would be to have a common bus and<br />

bus subsystems such as power, attitude control,<br />

and thermal protection. In this concept, the<br />

payloads would be different for each mission. The<br />

least degree of commonality would be achieved by<br />

having a common bus with subsystems and<br />

payloads tailored to the individual mission. Af!y<br />

amount of commonality will result in a larger unit Suy,<br />

theroby amortizing the RDTBE costs over a larger<br />

base and taking advantage 0: the production<br />

learning curve to reduce the mil cost. Second,<br />

affordability can be achieved by using the existing<br />

infrastructure. Operating with TACSATs should be<br />

transparent to the user: it must use the same ground<br />

terminals as the backbone space architecture. Also,<br />

because TACSATs will tend to be smaller and more<br />

proliferated than the backbone system, it will be<br />

necessary to make these systems more<br />

autonomous thereby reducing the need for satellite<br />

control and the costs attendant to that function. For<br />

those systems employing the rapid launch option,<br />

satellite to launch vehicle integration and test will<br />

have to be simplified to allow operation by military<br />

personnel without contractor support. Finally, the<br />

largest cost driver to space systems are the<br />

requirements themselves. As mentioned earlier,<br />

the TACSAT concept will allow the user the option<br />

to buy only that capability that is needed; the more


capability bought, the higher the cost. OEIior factors<br />

that will tend to reduce cost are limited coverage<br />

(theater rathQr than workhide) reduced lifotima, and<br />

a minimum of extras, such as heroic survivability.<br />

A number 01 potential TACSAT missions were<br />

studied. These in c I u d e d sur ve i I I a 'ice,<br />

communicalions, environmental sensing, nuclear<br />

detomtbn detection, space surveillame and space<br />

experiments. The first two missions were chosen lo<br />

be discussed in furlher detail in this paper because<br />

they illustrate two levels of commonality than can bg<br />

achieved. Tho use of a single satellite desip to<br />

perform two diflerent surveillance missions, thtiater<br />

surveillance and tactical missile tracking, was<br />

explored. Although these missions have different<br />

requirements, it will be shown that by selecting the<br />

@ proper orbits, both missions can be met with a<br />

conimon payload dasign. Theater surveillance<br />

involves looking at relatively small target areas in<br />

order to do target location and then bomb damage<br />

assessment. These rarameters are also required to<br />

allow the user to monitor the battlefield in order to<br />

determine deployment and strategies. To do this<br />

with reasonable size optics requires that tho satellite<br />

be flown at relatively low altitude. A 500 hm circular<br />

orbii was chosen lor this applicalion. Tactical missile<br />

tracking, on the other hand, requires cove# age over<br />

a larger area and the ability to ,detect and track<br />

missile launches from the infrared signature given<br />

off by the rocket plumes. For this application,<br />

satellites in geostationary orbits were postulated.<br />

The theater surveillance system uses an electro<br />

optical payload in the visible region lor imaging of<br />

the selected target areas. At 500km altitude, the<br />

payload would be able to acquire targets within an<br />

area of 2900 km in track and 1000 km cross track.<br />

Within this acquisition basket, the payload would be<br />

directly commanded by the user to image target<br />

areas up to 9 X 9 km. The data taken by the satellite<br />

would be trarlsmitted directly back to the user who<br />

would have the capability to do data exploitation in<br />

near real time. It is envisioned that the entire<br />

process from tasking of the satellite, acquisition of<br />

the data and downlinking to the user would take a<br />

minimum of 15 minutes. The maximum timeline is<br />

governed by the revisit time and is a function of the<br />

number of satellites in the constellation and tho orbit<br />

inclination. The theater missile tracking, system,<br />

deployed in a geostationary orbit, uses a scanning<br />

infrared sensor 00 dePm tadical missiles and after-<br />

burning aircraW in a 2000 x 2000 km area. Within that<br />

target area, iRe system is capable of processing up<br />

to TOO0 potential targets and, after processing,<br />

tracking up to 100 real targets simultaneously. For<br />

ballistic missiles, b lh launch and impact points can<br />

be predicted. These predictions could then be<br />

used to initiate a counterlorce strike or cue<br />

defensive systems.<br />

A single sensor that could do both the theater<br />

surveillance and tactical missile tracking missions<br />

was conceived and is shown in Figure 1. The<br />

sensor has common opiics far both missions and a<br />

*ai focal plane array to accommodate both the wide<br />

field of view and the high resoiution requirements.<br />

The payload was compact in design and weighed<br />

approximately 100 kg. It was now possible to satisfy<br />

one of our aftordability criteria; a single satellite that<br />

could do more than one mission depending upon<br />

the orbit into which the satellite was deployed.<br />

Once the spacecraft and its payload had been sized,<br />

a study was conducted lo determine whether the<br />

spacecraft could do missions other than those for<br />

which it was designed. Figure 2 shows that the<br />

missions of multi-spectral imaging and space object<br />

surveillance could also be done from a satellite in a<br />

500 km orbit and that the mission of cloud and<br />

ocean imaging could be done from geo. The<br />

imaging missions would ulilize both the IE and<br />

visible spectrum at the discretion of the use!'<br />

depending upon the operational and environmental<br />

conditions at the iime. The surveillance of space<br />

objects from spacc would be done solely in the<br />

visible band. To summarize the potential for<br />

commonality in the surveillance area, preliminary<br />

analysis has shown a minimum of five missions that<br />

corJld be accomplished hy a single satellite design.<br />

It is expected that a mwe ddtailed analysis could<br />

sudace even more potential missions.<br />

As noted earlier in lhis paper, a second level of<br />

commonality would be to have a common bus<br />

capable of accepting interchangeable payloads. To<br />

explore lhis possibility, a second mission area,<br />

communications, was selected for study. The study<br />

developed conceptual d3signs of satellites sized to<br />

provide direct communications support to tactical<br />

commanders. Design concepts at both SHF and<br />

EHF were formulated. The tactical users have<br />

idenlilied the need for small portable ground<br />

terminals that are lightweight, relatively inexpensive,<br />

3-3


3-4<br />

mggd and easily operated. This n~od for small<br />

ground terminals drives the satelliPe design to the<br />

use of high powered transmitters and high gain<br />

antennas. Tho SHF satellite was configured as a<br />

bent pipa in which little processlrrg 00 the signal is<br />

&ne on bard the spacecraft. The oommuniciations<br />

payload simply roceives the signal, shirts carrier<br />

frctguency orad retransmits it towards the earths The<br />

EHF sys?em, on the other hand, does much bre processing of the signal on the salellile. The signal<br />

coF;..rtg inPo the satellite is taken off uf the carric?r and<br />

shifted down to baseband where the bits the of<br />

digital message are available. The digital bits are<br />

routed lo Pheir destination, shilled up in frqudncy,<br />

put on the carrier ana retransmitted to the grcund.<br />

The SHF bent pipe system utilizes two<br />

lransponders each having a nominal capacity of 80<br />

MHz. A 61 element multi-beam antenna provides<br />

aoti jam nulling on the uplink and a 19 beam multi-<br />

beam antenna shapes the downlink coverage<br />

pattern to the theater. In addition, a spot antenna<br />

and an earth coverage horn are included in the<br />

downlink. Throe solid state powered amplifiers are<br />

incorporated in the design to provide redundancy.<br />

The spare power amplifier can be switched into<br />

either of the two active channels. The resultant<br />

payload weighs approximately 84 kg and requires<br />

225 watts 01 power to allow link closure with man<br />

portable terminals having an antenna on the order of<br />

0.6 meters in diameter. A capacity of approximately<br />

2000, 2.4 kbps channels would be possible using<br />

lhose man portable terminals.<br />

A 36 channel EHF payload was also sized. This<br />

payload was designed lo support EHF man portable<br />

terminals. The payload consists 01 32 low data rate<br />

communications channels and 4 channels for noise<br />

characterization/acquisition. Thc sample payload<br />

has a 61 beam multiple beam antenna with a nulling<br />

processor on the uplink. The fully autonomous<br />

operation of the processor represents the only<br />

design area that may be pushing the state of the art.<br />

The downlink includes a 19 element MEA, a spot<br />

antenna and an earth coverage horn. The design<br />

features fully redundant travelling wave tube<br />

amplifiers. Assuming there is one user per terminal<br />

and an average call duration of 4 minutes, the<br />

nbmber of terminals that can be supporlod can be<br />

calculated using message switching theory. With a<br />

5% probability of call cancellation or a 20%<br />

probability of call delay, approximately 400 to 500<br />

user terminals can be supported by this 36 channel<br />

system. The resulting payload weighs<br />

approximately 1.20 kg and requires 245 watts of<br />

power.<br />

In the previous section, we sized 3 payloads; a<br />

single payload that can accomplish two survelliance<br />

missions, an SHF communications payload, and a<br />

EHF communications payload. Payload weights<br />

ranged from 84 kg 13 118 kg and the power<br />

requirements were from 225 watts to 300 watts. If<br />

we now try to design a common bus, one that<br />

accommodates any of the three payloads, we find<br />

that the payload governing the design is that of EHF<br />

communications. It is the heavisst payload, has near<br />

maximum power requirements. a 10 year life and<br />

requires 45 kg of maneuver propellant (the reason<br />

for which will be discussed later). The resultant<br />

spacecraft weight, including payload, is 635 kg. In<br />

comparison with a unique spacecraft designed for<br />

each specific mission, the common bus spacecraft<br />

represents approximately a 30% weight overdesign<br />

for the theater surveillance mission and a 7 to 8%<br />

overdesign for the theater missile tracking mission.<br />

This basically comes about from the differences in<br />

satellite design life which governs the amount of<br />

propellant that must be carried for station keeping.<br />

In addition, the theater siirveillance mission is<br />

conducted from lower orbit and does not require tha<br />

45kg of maneuver propellant. In comparison to a<br />

satellite specifically designed for the SHF<br />

communications mission, the common bus design<br />

represents a 27% over design. This is mostly due to<br />

the lighter SHF payload weight and reduced power<br />

requirement. Penalties of this order of magnitude'<br />

must be accepted to take advantage of a common<br />

bus design. Not only does commonality achieve<br />

cost reductions as a result of an increased<br />

production buy and corresponding learning curve<br />

leverage, but it promotes the use of standard test<br />

procedures and test equipment. Payloads can be<br />

handled as black boxes and thereby, integration arid<br />

test times can be reduced. It is clear, however, that<br />

the more the payload weights and mission<br />

parameters diverge, the larger the penalty that must<br />

be paid by using a common bus.<br />

The surveillance and communications missions were<br />

then used to define the more complete set of bus<br />

design parameters shown in Figure 3. As expected,


these parameters vary both as function of misston<br />

and orbital parameters. In the area of Guidance,<br />

Navigation and Control (GNLhC) the ms1 stringent<br />

requirements (pointing and jitter) are dictdt@d by the<br />

electro-oplical misston from GEO. This mission also<br />

has the largest communications data rato demand.<br />

The requirement lor autonomy falls under the<br />

general heading of Command and Data Handling<br />

(CBDH) and can ba up to 180 days. To achieve this,<br />

it is thought that connectivity with the U.S. Global<br />

Pbsitioning System (GPS) would be roquired to<br />

provide ephemeris updates. The propulsion<br />

requiremonts are driven by the need for orbit<br />

reconstitution (on-orbit maneuvering). This will be<br />

discussed later in this paper. Finally, the bus will<br />

need to be protected from the natural space<br />

environment as a minimum. It is recognized that a<br />

truly Common bus design may compromise these<br />

requirements but to determine the extend of such<br />

compromise will require more detailed study.<br />

TWCI launch strategies have been considered for<br />

TACSAT application: launch on clemand and launch<br />

orl schedule. To understand rhe implications of<br />

these strategies, the launch vehicles available to the<br />

TACSAT must bo examined. In the currwt fleet of<br />

United States launch vehicles, the medl,lm launch<br />

vehicle (MLV), i.e, Delta 7925, is the one thal<br />

cqmes closest to satisfying tho TACSAT<br />

requirements. With a solid propellant kick motor, it is<br />

capable of placing approximately 9OOkg into a<br />

geosynchronous orbit. This represents a 40% over<br />

capacity for the 635 kg TACSAT described. Ail<br />

Atlas class MLV, will place approximately 1500 kg<br />

into GEO allowing TACSATS to be launched two-at-<br />

a time if such a launch strategy is deemed to bo<br />

advantageous. For low altitude satellite<br />

deployment, the Pegasus lift capability is about 400<br />

kg; somewhat shy for the satellite discussed in this<br />

paper. The Taurus, which is essentially a Pegasus<br />

on top of a Peacekeeper first stage, appears ideally<br />

suited to this application. This vehicle is, howdver,<br />

still in the development stage.<br />

Responsiveness is a characteristic generally<br />

associated with TACSATS. The capability to ra[)idly<br />

deploy tho satellite to the area in which it is needed<br />

is essential. When examining the rosponsivor ess<br />

of our current launch fleet, however, tho nominal<br />

tinie lrom the mating of the spacecraft to the launch<br />

vehicle until the launch can actually take place is 24<br />

days lor an Atlas II and 7 days for a Delta II. By<br />

streamlining the process. it may be possible to<br />

reduce this time down to 7 and 5 days respectively.<br />

Add to this the travel time to orbit and the spacecraft<br />

checkout time once orbit has been achieved and it is<br />

not clear whether the GEO based satellites can be<br />

responsive enough using a launch on demand<br />

strategy 10 tried user requirements. On the other<br />

hand, lor the low altitude satellites launched on a<br />

Taurus, it appears that, with judicious satellite<br />

design, response times on the order of 24 to 48<br />

hours may be possible. It should be noted that<br />

modifying the launch vehicle alone is not sufficient<br />

for rapid response. Today's spacecraft can require<br />

days or weeks of checkout after they achieve orbit.<br />

If surveillance data is to be obtained in the first orbit,<br />

for example, design features such as blowdown<br />

focal plane coolers and optics contamination<br />

avoidance systems must be incorporated.<br />

For the GEO based satellites, an alternate means of<br />

providing responsiveness has been studied. In this<br />

strategy, the satellites would be launched when<br />

available or on some predetcrmined schedule and<br />

stored in orbit. The satellites could be stored irt a<br />

dormant condition and activated when needed,<br />

thereby, minimizing satellite life degradation. The<br />

satellites could be stored at a convenient point in<br />

the GEO belt and repositioned to the area of interest<br />

as the need arises. Figure 4 shows that a 600 kg<br />

class satellite could be shifted up to 30" per day with<br />

the exponditure of no more than 45 kg of fuel. It is<br />

doubtful, however, that if several satellites are<br />

stored in this manner, there would be a requirement<br />

for this high rate of orbital shift. It seems more<br />

reasonable to anticipate maneuvers on the order of<br />

5" per day considering that crises or conflicts do not<br />

normally occur instantaneously but rather develop<br />

over some period of time. Under these conditions,<br />

the 45 kg of propellant could provide 4 to 5 such<br />

maneuvers per satellite without affecting satellite life<br />

on orbit.<br />

In summary, this initial study has shown that<br />

TACSATs can be used to augment the existing<br />

backbone space architecture by providing a<br />

capability that currently doesn't exist. such as tactical<br />

surveillance, or by adding to an existing capability,<br />

such as communications. In times of crisis or conllict.<br />

In this manner, it could also be used to provide an<br />

3-5


3-6<br />

interim capability should one or mre cl the<br />

backbone satellites fail. In order Po mahs the<br />

concept practical. however, the syc~Zems mist be<br />

affordable. One method of achieving such<br />

affordability is through maximization a0 COmrutonalQ.<br />

It has been shown that commonality can be<br />

achievod at least on WO levels; a singla Satellite that<br />

can padorm more than one mission or a common<br />

bus with interchangeable payloads. Respon-<br />

siveness, which is another key element of.the<br />

TACSAT concept, can also ba achioved in several<br />

ways. For low attitude satel!ites, rapid launch on<br />

demand is possiblg while for GEO salellfies, storing<br />

on orbi am on obil repositioning appears to make<br />

more svnse. To make either of Phese strategies<br />

work requires that the system has a low infant<br />

mortalily, i.e., when you turn it on, it works. Finally.<br />

the systeni hust be responsive to user demands.<br />

this means user control of the asset and direct<br />

transmission of data to the user terminal.<br />

In conclusion, the timing is right for the<br />

donsideration OS a TACSAT capability. With the<br />

recent (avopolitical upheavals, the focus shills from<br />

the anxiety of global nuclear war to regional, tactical<br />

areas of conflict. Such a shill leads to increased<br />

demands for information ana capabilities that can<br />

only be achieved from space. Furthermore, the<br />

areas of operation, although limited in size, are likely<br />

to be worldwide. The ability to bring assets to bear<br />

rapidly will be of paramount importance. Recer,:<br />

experience in Desert Storm has attested to this<br />

supposition. The value of space assets for<br />

surveillance, communications, weather and<br />

navigation was clear. System shortcomings, such as<br />

the inability to get some data directly to the user was<br />

also evident. Desert Storm also demonstrated the<br />

impact of a cooperative, coordinated, multinational<br />

effort. This trend is likely to continue in the future<br />

forcing requirements to be specified on a universal<br />

rather than a national level. These common<br />

concerns and needs, along with the severe military<br />

spending cuts that are facing individual nations,<br />

provide a greater opportunity for international<br />

cooperation in the development and use of space<br />

systems. The TACSAT concept is particularly<br />

attractive in this regard by providing the means of<br />

acquiring incremental capability on an as needed<br />

basis. If the degree of commonality and<br />

interchangeability discussed in this paper can be<br />

achieved, the TACSAT can provide a new way of<br />

deploying and operating space assets, one that<br />

gives the user direcl amtrol and the ability to receive<br />

critical data in a direct and timely manner.<br />

I


Theater<br />

Mission Surveillance<br />

Orbit, km 500<br />

Spctrcsrl<br />

Bands, pm 0.450.90<br />

Field of view/<br />

scan sate, data<br />

1.6" x 1.6"<br />

rate 274 Mbps<br />

optics<br />

Focal<br />

Piano,<br />

Arrays<br />

Pointing and<br />

Scannir,g<br />

45 crn aperture<br />

Wigl/blCp and OR<br />

Wide FOV Vocal plane<br />

- 3" x 0.5"<br />

F/7 o ~~-~xIs<br />

High resolution focal plane<br />

- 0.16" XO.16"<br />

- FA5 on-axis<br />

Aczactionless drives<br />

p 45" conicil field of regard<br />

Wide area coverage in 3" swaths<br />

Envelope 70 I( 900 x 100 cm<br />

Weight<br />

Power<br />

Downlink<br />

Data Rate<br />

112Kg<br />

370 w (600 w peak)<br />

0.03 - 308 MbIS<br />

(Mission dependent)<br />

Fig 1. f+kltknieslon eensor<br />

500<br />

Vll?lQU$<br />

Commwndable<br />

0.910.0<br />

3" x 0.1" swath<br />

2.5"Isec<br />

274 Mbps<br />

Rctvislt 12 Hours for one smtellite<br />

3-7<br />

Cloud/ Tactical L<br />

Space Objact Chmn Missitfa<br />

Surveillance Imaging Tracking<br />

500 35750 35750<br />

0.450.90<br />

VaPrious<br />

Commandable<br />

0.451 0.0<br />

2.7<br />

360" swath 18" x 18" 3" x 3"<br />

1.8"hec 8"/!mC 8"lSec<br />

20Kbps 70 Mbps 2OKbps<br />

- 1<br />

I<br />

I<br />

I I<br />

Continuous<br />

owr Area<br />

of Interest<br />

2 sec<br />

1 1 1<br />

Flg 2. Mukkniulon msor performance


OI~UI'IS<br />

MISSIONS I<br />

PAYLOAD TYPE<br />

-.-<br />

DUS PARAMETERS<br />

GNBC<br />

Stabilization<br />

SIC Puiiitiiig ( SWXJ<br />

cycles)<br />

cS001yr<br />

Stressing<br />

< 50 PPM<br />

01.1 1131<br />

COMM<br />

(I IIMJ mi)<br />

NAVIGATION<br />

3-arir<br />

.5 tu .I<br />

.5 10.02<br />

Noiic<br />

s. L, u111:<br />

4Kbp<br />

c 10.6<br />

Iiitcniiillciit<br />

NU<br />

I no<br />

Yo (+. .lOdcg)<br />

No<br />

No<br />

Ycs<br />

5 M I yr<br />

Mud io low<br />

< 50 PPM<br />

- --<br />

GEOSY NCIIIUlNOUS EAHTl I OHUITS<br />

ELECIHO .<br />

COMM<br />

01'11 CA L<br />

3-axis<br />

.l to .U1<br />

.I lO.oo01<br />

Nunc<br />

X. SIIF. U1F<br />

up to 274 Mbps<br />


e<br />

lDiscussiopa<br />

Question: To meet stated requirements for area coverage,<br />

how many spacecraft will be needed, given a 9km X<br />

9km IFOV? The issue is whether the total constellation<br />

size needed will drive cqsts beyond affordability.<br />

Reply: A single satellitti\ takes 9 X 9km snapshots<br />

anywhere in the acquisitdon area. The number of areas<br />

to be imaged and the dwell time on each target area,<br />

as well irs the revisit t1.m requirements and the orbital<br />

altitude, will dictate tne number of satellites required.<br />

Tradeoffs have not been conducted to assess afforaabllity<br />

as a function of requirements, but, as you observed,<br />

the requirements must be kept under control or<br />

affordability will be lost.<br />

I<br />

3-9


1 Int raduction<br />

The iiotcntial cxploitatinn of TACSATs 15 lirnitecl by a<br />

vicious circlc in which users tln not slwcify rc:qiiirrtn,ciii<<br />

which they hcli:vc til hr infcacihlc and ihc spec inthistry<br />

docs not nffcr radic~lly new solutions hccairsc it ;.crccivc<<br />

no dcrnantl. rhis is the Catch 22 of the titlr.<br />

Thi? papr Hinis to shou come of thc p1ssihililir.s if wc hrcak<br />

out tif t;int viciitus circlc. A private cic*ilian Enrih<br />

obscrvatinn nliFrion (ScaStar) is ailiiptccl as a b;isclinc. In<br />

cvdrr tit illiictratc what niight hc iwssihlc. niilitary<br />

paylonds for survcillancc. vcrificatian and C31 arc<br />

suppcstcd. tlcrivrd from land or air h;iscd 5ystcins ih?t cilkcr<br />

alrcatly cxist or arc known to Ix undcr ttcvclolimcni. It<br />

must hc apprcciaictl that thcsc are not lirrzriilctl :is iwpictd<br />

clcsignc. mcrcly as ;I kind of "existencc piiii1" fi ~ ',igIi<br />

pcrfiirmiincc arid IOW ccirt ~~~tcllitcs,<br />

I'Y<br />

CA. EIiioRt<br />

Sinith Sysrcm Engineering<br />

Sniitk Assixiafcs Lid<br />

Surrcy Rcscarch Park<br />

Guildford GUZ 5YY<br />

United Kingdom<br />

It is pissihlc. tin the hssis or thiz "csistcncc iiriwl-', lo<br />

cxplorc s~)iiic iif tlic iycrational conscqt~:nccs of tllc morc<br />

gcncriil iize d'1'ACSAI-s<br />

2 '' T r a d i I i o n a I " s p a ce P 11 i 11 k i n g<br />

Thcrc has hccn a dcvcltipmcnt in thc space proirt.i~ canid<br />

out in the USA and Europe from the carly days of simple.<br />

dcdicatctl and incxpcnsivc missions. thrciueh in thc prcscnt<br />

pisition where niost missions arc cornplcx. niiilti-purpose<br />

and cxpcnsivc.<br />

This is a rcsuli iif a positive fccdh;ick nirchaniwi' which<br />

systcniatically fLirccs spacc missions io hcconic niorc<br />

cxpcnsivc. takc lnnpcr to caccutc and fail itr xatisf) thc<br />

nccds of their uscrs. Thc pnsitivr. fccdhack mechanicin starc\<br />

with thc bclicf that space projccts arc cxprnsivc. The<br />

consciwcncc of this bclicf is that thcrc will not he many<br />

projects. Few projccts nican that:<br />

. they miist hc pliiniicd carefully to gct ihc hw out r:f<br />

thcm;<br />

- they must hc rcliatilc;<br />

- they nccd to he largc to achicvc a lot from cach<br />

projcct: I<br />

.<br />

thcrc will bc liitlc compctition (not only r.itiiimcrcia1<br />

compctiticin bctwcen supplicrc bui thcrc i. :ilso litllc<br />

room for compctilinn of itlcas).<br />

Each of these brings conscqucnccs for tlic ctwluct of the<br />

projccki. Planning C~IISCS dclays. High rcliahiliiy wticn not<br />

building many systems mcans that intcgrily must whicvcd<br />

by design. This prccludes the usc of the Iate


0<br />

e<br />

t<br />

1. ..- .. '<br />

I<br />

I t<br />

I '<br />

.I... . _J<br />

This no- points towards the rev~rl*Jtionnry approa\h.<br />

Miltory rpace missions could cnploit suh.~yatcms nlrcady<br />

dcvchpcd lor air or land based use and u.l~icvc i1:icgrity<br />

through rcclundnnry (many missions) nnd through thc<br />

hcncfits of a prmluction run :ather L!M onc-ofr huild. The<br />

rcduccd cu t of Ihc missitins would allow thrni to hc. trcared<br />

as tactical. rathcr than strategic. assc~s. The rmt of this papcr<br />

will look at snnir possible militnry iiiisric,ns for<br />

survcillnnce. verification and C31. bawd nn P strndard<br />

civilian Eort h nhccrv at ion bus.<br />

3 Wasdine for military m6ssions<br />

Olackgrou nd<br />

The SeaStnr misslnn. king cxeciitzd hy (hhiial Sclenccs<br />

end Hughr. Aernspnce provides a reference on which to<br />

hose polrrrl~le military missions'. It is n civilian eorLh<br />

observntion mission. designed to monitor the ncean colour.<br />

a rnrnsurrmcnt that is considered to bc nf Rrcnt value to<br />

cnvironmcntrl research and pssihly to bc of commercial<br />

value.<br />

ScaStnr is hascc1 nn the I'cgdtnr bus which olfrrs:<br />

.<br />

.<br />

.<br />

-<br />

.<br />

.<br />

.<br />

3 oxis stahilisaiinn to *I0;<br />

at Icost 170 W mean electrical power;<br />

up to 5 year life;<br />

up to 70 kg pnylovd moss;<br />

peylond


indicated hat an IR vcrsion of the 12" telescope is being<br />

considered. 256 element linear detector snay would<br />

allow imaging a strip -2.5 h wide with - IO m sp?tirl<br />

resolution in the 3-5prn band. This would dlow detwtion<br />

of, for exaniplc. thermal signaturcs on runways where<br />

aircraft have taken off or the detection nf hot spts on<br />

armoured vehicles causcd by the hiat of heir engines.<br />

Verlflcetlan<br />

Space-hascd vcrification system? rnny be used to cue<br />

ground or overnight inspections. A systcm with modcrate<br />

spatial resolution hut with 111c . flcxihilily to image<br />

frequently 2nd without warning might be +rll cffcctivc<br />

dctcrrcnt to brcachcs of a treaty.<br />

Thc opticnl systcrn tlcscribccl in Annex B would allow 2 km<br />

sqiiarc iiiingcs of any pnint to bc ohlaincd with n spatial<br />

rcsolution of 1 m. This is adcquatc for the clctcction of nll<br />

and rccognitioa of most ~ypcs of targct.7. TI^ s:ircllitc may<br />

he taskcd with a list of pints nf interest :incl can then<br />

autonomously collcct thc imagcs and eitticr hro;dcast thcni<br />

to a local rccciver or storc thcm on-board ani1 down-load<br />

whcn next passing ovcr hcadqu;irtcrs. Thcrc :ire several<br />

opportunities pcr day to image thc point of intbrcst with<br />

0 one satellite.<br />

C31<br />

Thcrc c c many aspects to C31 which might hc :idtlrcsscrl hy<br />

rnenns of satellitcs. Annex C considcrs thc fcacihility and<br />

performancc nf a rrtlar ESM systcrn usccl 111 tlctcct and<br />

idcntify pirlsc antl CW cniittcrs. Thc hasclinc cystcrn.<br />

Kestrel. is dcsignecl for airhornc usc :in11 cnn offcr<br />

significant tactical capability. pirticulnrly iC tlic satellite<br />

vcrsion of the multi-pon antenna has tiighcr gnin than that<br />

employed in thc airhornc version.<br />

One possiblc use of this systcm would bc tarticiil ESM. Thc<br />

systcm on-hinrtl thc wtcllitc would inclutlo tlic rapiihility<br />

to dcintcrlrnvc and track r:id:ir c1iiittcr.i :iii~I would<br />

broadcast its track table (possibly including radar<br />

identification) to tactical ficld units. Although ESM only<br />

gives an estiniatc of thc dircction of thc threat from thc<br />

rccciver but not its rangc. the rapid motinn nf thc satcllitc<br />

might make it possihlc to locatc tlic transmitter hy<br />

triangulation as the satellite passcs. The UFC of two or more<br />

satcllitcs has not bccn considcrcd hcrc but clearly this<br />

could providc morc irnmcdiatc antl rcliahle location.<br />

0 An cvcn more powcrful way of using two satcl:itcs<br />

coopcrativcly would hc to compare the time of arrival of<br />

individual pulscs at each satcllitc rather t!lm to compare<br />

the charactcristics of pulsc trains. This would not howcvcr<br />

bc within the capability of a conventional airhornc ESM<br />

systcm likc Kcstr-I.<br />

5 Operational implications<br />

The possible rnilitary missions suggcstcd indicate what<br />

might be possible. Thcrc arc two iniptirtani operational<br />

i m p I ic a t i o n s :<br />

- it is assumed that the satcllitcs would be launchcd on<br />

Jcmnnd to provide covcr nf slxcific pints of intcrest;<br />

- thc satcllitcs can communicatc dircctlv with Field<br />

units. allowing Ihc data hat is collcctctl 10 hc relaycd<br />

in real-tiiiic to uscrs and allowing thc USC-B to task and<br />

control the satellites.<br />

Launch on dcniand of a constellatiain of naiellitcs may seem<br />

.<br />

I<br />

to be an expensive option. However. it should be seen in<br />

the context of the COSIS of conventional survcillancc assets<br />

such as stnnd.off survcillance aircrnfi. It is clearly not<br />

appropriate to cnmpare directly the COSIS of TACSATs and<br />

aircral't srncc they offcr diffcrcnt capabilitics but<br />

surveillance hitcraft illustratc thr sums of moncy that cm<br />

bc allocated to tactical survcillance. vcrification or C31.<br />

The cost os operating a surveillancc aircraft is of the ordcr<br />

of S5000 . : irour. Thus, thc cost of 24 hour cover for onc<br />

year would bc of thc ortlcr of S40M. To this must be addcd<br />

the cffcctivc cost of tlic finitc prohahility that the aircraft<br />

may be lost duc to cncniy action.<br />

A constcllntion of 5 satcllitcs would providc covcr many<br />

h c s pcr thy and not hc wlncrahlc to air;to-air or groundto-air<br />

missiles nt a cost of no morc than S60M for one year.<br />

Thc financial cecc for satcllitcs is stmnger if the operation is<br />

rcquircd 10 continue for longcr than one year. For example,<br />

a drugs interdiction sQppnrt operation could use 3 satcllitcs<br />

to vicw Central America and thc northcrn coact of South<br />

America morc than 15 timcs per day at a cost of S30M per<br />

>;Car.<br />

Uircct communication with ficld units rcprcscnts a<br />

rcvolutionrry change in the operatima1 managcmcnt of<br />

spacc ~~SCIS. It rccogniscs hat TACSATs arc ti~~tic~ I asscu. to<br />

be dcploycd and exploitcd under the control of tactical<br />

commanders analogous to any otlicr tactical asset.<br />

It is inconccivahlc that spacc asbrts could hc considcrcd<br />

tactical unless they wcre much cheap-' to purchase and<br />

operotc than than current stratcpic asscts. Howcvcr. it is<br />

exactly this approach. which would lcad to protluction runs<br />

of satcllitcs comparable to thosc of. for examplc. fightcr<br />

aircraft. hat would cause h e spacc as.wts to be chcapcr.<br />

6 Con cl usio ns<br />

Thc argument has run full circle. This paper has picscntcd<br />

an approach to the provision of TACSATs based on three<br />

premises:<br />

thc use of an inexpensive standard bus;<br />

payloads using military sub-systems;<br />

dircct control and tasking of the satcllitc from tactical<br />

commanders in thc ficld.<br />

If these thrcc rulcs arc adoptcd. it is nrgucd that it will be<br />

possible to brcak out of the Catch 22 and achieve<br />

inexpensive opcrational TACSATs * which convey<br />

significant military advantagc.<br />

7 Acknowledgements<br />

references<br />

. and Acknowledgements:<br />

The author would likc to thank thc following fnr their<br />

assistance with thc prcparation of this paper:<br />

- Intcmational Dcfcncc Review. UK:<br />

~<br />

.<br />

Gulfsmarn Aerospace Corporation. USA;<br />

Orbital Scicnccs Corporation. USA;<br />

. Qucstar Corporation. USA;<br />

- Racal Hadar Dcfcnsc Systcms Lid. UK.<br />

Re re r e n re s:<br />

Rcf 1 Elliott CJ. "Cost drivcrs - why do conventional<br />

satcllites cost s!i much?". Symposium on "Systcms and<br />

scrvices for small satellitcs". CNES. Arcachon. June 1992.<br />

4-3


0<br />

4-4<br />

Ref 2 Lyon K G and M R Willnrd. "&con color rcrnotc<br />

sensing tlnin for Ihc 1990s", First Thcniatic Confcrmcc on<br />

Rcrnotc Sensing lor Mnrinc nnd Coasinl Enviroiirncnu.<br />

New Orleans. Louisiana June 1992.<br />

Rcf 3 Wnlicrschcid R L. "Solar cycle. cffccts on thc<br />

upper ntrnosphcrc: implicntions for sntcllitc drag". J<br />

Spacccraft 26. 6. Nov-Dcc 1989. pp 43Y-444.<br />

Rcf4 Wcriz J R nnd W J Larsori. "Spncc mission nnalysis<br />

nnd dcsign", Kluwer Acndcrnic. 1991, ISBN 0.7923-0971.<br />

5. pp153-1-55.<br />

Rcf 5 Rcsl C and W Swceirnan. "Fighter radar in the<br />

1990s". Intcrnntional dcfcnsc Rcvicw 8/1992. pp 744-747.<br />

Ref 6 Cjcssing D T. J Cljclrnslad pnd T Lund. "A rnul1i-<br />

frcqucncy nctnptivc rndar lor dcicction imd idcniification<br />

of objccts". IEEE Trans AP 30. 1982. pp 35 I 36-5.<br />

Rcl 7 "Minimum rcsolvcd ohjcct sixcc lor ieingcry<br />

inicrprcintion". STANAG 3769, Change 1.<br />

Ref 8 "Electronic support mcasurcs cquipmcnt lor<br />

rotary nnd fixed wing aircraft ~ Kcstrel Mk 11". Ref DRI 133<br />

lssuc 3. Rncnl Rndnr Dcfcncc Sysicrns Lid. Chcsiington UK.<br />

I i<br />

t


a<br />

0<br />

Annex A Radar system<br />

A. I Background<br />

It is possible to establish the feasibility in principle of<br />

opcrating a radar on a TACSAT. by examining in outline<br />

the pwcr budgets and hence signal/noisc ratio that might<br />

be achieved using an advanced airborne radJr. The model<br />

that will Dc uscd here is the Advanced Tactical Fighter<br />

(ATF) radar currently under development. A tlcscription of<br />

the this development programme5 included thc following<br />

quotations:<br />

- The USAF has pursued X-band AESA [Active<br />

Electronically Scanned AnayJ technology since, the<br />

early 1980s for three main rciuons: pciwcrlwcight rlitio.<br />

agility and rcliahility. With more than a thousand<br />

transmitlrcceive (T/R) modules. each capable of<br />

generating around IOW of powct, Ihc F.22 has a peak<br />

pwcr in the megawatt range. should that hc rcquircd.<br />

-<br />

Ultimately. a maintenance-free life of 20.0(N h . the<br />

lifetime of the airaaft - is possible.<br />

Synthetic apcrtiire radar (SAR) ... is not in ttic baseline<br />

but he hardware can do it ...<br />

A.2 Radar equation<br />

The following assumptions will be made:<br />

- number of T/K modules: , 4000<br />

* module plwcr: IOW<br />

- square anay. half-wave clement spacing<br />

- . wavelength: 30 nini<br />

Th,is indicatcs nn antenna gain of -39 dR and an cffcclivc<br />

anicnnr area of - 1 In2. If \he spacecraft is at 400 km<br />

altitude and a target of cross section Im2,is located 300 km<br />

from the satellite track. then the received power will bc<br />

-165 dRW. If a receiver noise figure of S dR bntl dctcction<br />

threshold of 10 dB arc assumed. then the integrating time<br />

will nwd to be - 3ms.<br />

The bcam width will hc - IS km at SW km range. An area<br />

of SO0 km square will cornprise of the ortlcr of 1000<br />

resolution cells. A transmitter power of 40 kW and<br />

integrating time of 3 ms pcr cell will r6quire - 0.1 MJ of<br />

transmitted energy. The total energy available ' to the<br />

payload is of the order of 50 MJ pcr orbit.<br />

A ;3 Operational modes<br />

AI; surveillance<br />

Any look-down radar suffers from ground clutter and the<br />

system dcscribcci here will be particularly badly affcc>cd<br />

bccsuse of the relfltivcly widc beam widh. Two techniques<br />

thai might be employed to improve the dctcclability of<br />

airborne targets are:<br />

- DopplCr hlTli<br />

- mntched illutnination.<br />

Doppler MTI may bc employed provided that thc radar is<br />

directed across track to detect targets with a significant<br />

velocity component towards the satellite. The pcrfnrmance<br />

of MTI with the widc beam of this 'radar needs further<br />

analysis.<br />

Matched illurninatibn uses modulation schemes matched to<br />

the characteristic dimensions and resonances of the target.<br />

This has been u:.cd to idrntify specific aircraft typcs6. No<br />

trials have been reported of the use of this technique to<br />

reject ground clutter but the selectivity shown'in he<br />

identification trials suggests hat it might be effective.<br />

Ground su rvelllnnce<br />

Ground surveillance to detect and locate vehicles could be<br />

carried out using spotlight SAR. Typical performance<br />

would be to form a SAR image of a single 15km diameter<br />

region (corresponding to the beam width) on each satellite<br />

pass. A synthetic apcrturc of 15 km (corresponding to 2 s of<br />

illumination) would allow a SAR image of I m resolution<br />

to be constructed.<br />

Current real-time SAR processors capable of this level of<br />

processing have a mass and power consumption suitable foi<br />

airborne use and might feasibly be carried on-board the<br />

satellite. Alternatively. the raw data could be broadcast for<br />

ground processing.<br />

,<br />

4-5<br />

:. $1<br />

*<br />

: I


44<br />

Annex p1 Optical system<br />

B. 1 Background<br />

This dcsign explorcs whnt might be achicvrd tising existing<br />

space or military quality subsystems to build a high<br />

rcsolution imaging systcm. The spacecraft has a space-<br />

qualifird vcrsion of a commcrcial tclcscopc rnountrtl such<br />

that it can bc rotatcd about an nxis aligned within - lo of<br />

the dircction of travcl. A lincscan imager is niountcd at thc<br />

focus of L)ic tclcscope. aligncd so that it swecps a swath<br />

along he direction of travel (puslibroom).<br />

The dcsign prcscntcd hcrc can provide 2 kin square imagcs<br />

with a spatial resolution of I m. The image region is<br />

selected by rotating thc tclcscopc for tlic acrosk-track<br />

dimcnsian and sclccting thc tirnc of rccording for he<br />

along-track dircction. Thc position of the satcllitc nlust be<br />

dcterminrd to - 50 m in all thrcc dimensions and the<br />

orientation of the tclcscoF to - I mrad in thrcc dirrctions<br />

to permit the centre of thc irnagc IO hc sclcctctl to an<br />

accuracy of - 0.5 km.<br />

a 8.2 Telescope and sensor<br />

The primary optical systcni is a spacc-qualirictl vcrsion of<br />

tile standard Qiicstar 12" telcscopc. Thc kcy piiraiiiclcrs of<br />

its specification arc:<br />

0<br />

-. rcsolution:<br />

. focal Icngth:<br />

- apcrturc:<br />

0.38 arc scc<br />

4.57 2 ni m<br />

30.5 iii rn<br />

- dimensions: -I ni long. -3.50iiiiii tliamctcr<br />

-<br />

~<br />

mass:<br />

vibration tolerance:<br />

-SSkg<br />

I0g<br />

I '<br />

- moterial: invar<br />

. price: - 5 200 k<br />

It is undcrstood that this tclcscopc has hccri iiscd on US<br />

military spacecraft.<br />

Thc baseline dcsign is to use thc Kcticon KAZO4HJ chargc<br />

coupled dcvicc (CCD) detcctor opc'rnting in timc delay<br />

intcgration (TDI) mode. It has to he'configcirctt so that its<br />

long axis of 2048 sensors is pcrpcndiculnr to tlrc track of<br />

thc spacecraft and the clock frcqucvcy in thc transvcrw<br />

(short) axis of M dctcctors is synchronous with t!ic velocity<br />

of he spacccraft.<br />

The signal'iioisc ratio of thc dctcctor. D. is giwn hy:<br />

D = r a A T s/N<br />

v/hcrc:<br />

r is thc radiance of the Earth. assumctl to be of thc<br />

order of I00Wm-2sr-1. (This figure is sufficicntly<br />

conservative la includc largc sun txriith anglcs<br />

cncountcrcd at high latitudes.)<br />

a is thc, area of yound ma pdd onto one pixel of thc<br />

dctccror (nssiI.,Icd to tx I ni $ ) 1<br />

A is the solid tin IC wbtcndcd by thc telescope<br />

aperture (0.45 x \b-f2st at an altitude of 4(H)km)<br />

T is thc integrating timc. dcfincd as the limc taken for<br />

1<br />

I<br />

the spacecraft to fly 64m (85ms)<br />

s is the smsilivity of the detector (480 nV I-')<br />

N is the detecm noise level (200 pV RMS)<br />

The signalhoise ratio is thus - 1OOO.<br />

The detector pixels arc appoximately 2Spm square. This<br />

requires the focal Icngth of thc optical tclcscope lo be 1Om.<br />

A sccondary lens will be nccdcd but this docs not have to<br />

be of particularly high optical quality. Thc type of lens<br />

used as a a2 tclcconvcrtnr for 3Smrn SLR cameras would<br />

probably be suitable.<br />

R.3 Navigation and positioning;<br />

If it is assumed that the nominal 2km square image must be<br />

ccntrcd on the target position with an accuracy of f 5OOm.<br />

it is necessary to know the orientation of the tclcscope to an<br />

accuracy of the order of 0.5 mrad.<br />

Navigation information will be derived from a GPS<br />

rcccivcr and oricntation is obtaincd from a star sensor.<br />

A possihlc iniplcmcntation of the GPS rcccivcr is to carry<br />

out thc signal acquisition ~ t l<br />

processing in software within<br />

the on-board proccssing system. A baselinc dcsign using a<br />

singlc.transputcr cxists and would mcct the rcquiremcnts<br />

with a power consumption of 4SW. It is likcly hat a more<br />

approprintc proccssor could he used to rctlucc his.<br />

The star scnror is mounted on thc tclcscope to cnsurc that<br />

thcrc is a constant angle betwccn the two. If it is assumed<br />

that the prapcrtics of the star scnsor are:<br />

. ficld of view: 25O<br />

- niimhcr of stars for rcliablc fix: 6<br />

(hcncc ncrd to iisc stars of 5th magnitudcj<br />

- spacccraft roll ratc: IO rnrad s.I<br />

(= - I revolution cvcry IO minutcs)<br />

. integration he: SO ms<br />

- flux from 5th magnitude star: 2.5 x IOl4 W<br />

- detector sensitivity and noise: as Kcticon abnvc<br />

- sensor apcrturc: 40 mrn diamctcr<br />

~ dctcctor<br />

array: 500 x 500 elements<br />

then it will bc capable of meeting the targct of 0.5 mrad<br />

accuracy if it is possible to intcrpolatc to onc half of a pixel<br />

with a signal/noisc ratio of around 70. This is considcrcd to<br />

bc well within thc pcrformnncc of currcnt interpolation<br />

algorithms. I


Annex C ESM system<br />

C.1 Background<br />

An airhornc ESM system might providc a suitnhlc basis for<br />

a tacticnl communications or radar monitoring satellite.<br />

The basrlinc that will he assumcd here is he Kcstrcl Mk fl<br />

madc by HncalR. This is a radar ESM. capablc of dctcclhg.<br />

drintcrlcaving nnd tracking radar emissions hetwecn c and<br />

1 hnnd.<br />

C.2 Detection capability<br />

Kestrel employs a six port amplitudc comparison recciver<br />

to nicnsurc signal bearing. The standard antennas givc 360'<br />

covcrngc in azimuth. 25O covcragc in clcvnlion. a typical<br />

pulsc scnsitivity of -60 dRmi and bearing nccuracy of 4.5O<br />

RMS. This would dctcct the main lobc of a 10 MW E\tP C-<br />

hnn:l rnclnr nt n rnngc of SO0 km. It would also hc pc";sihlc<br />

to locatc thc radar to nn accuracy of approximatcly 5Okm<br />

h; uackinp thc hearing of thc radar as thc sntcllitc pas?:s.<br />

Antrnnas with grcatcr gain could hc uscd ut, thc ci:st of<br />

sncrifiring thc 360° capability. This would, hc ninrc cnsily<br />

achicvcd at higher frcqucncics antl it might' bc appropriate<br />

to rcplacc thc Rand 3 antcnna (I !o J hand) $id1 a multiple<br />

fccd horn and rcflrctor. A rcflcctiw of thc ordcr of 500 rnrn<br />

in diamctcr might bc cxpcctcd to givc 20 clR iniprovcmcnt<br />

in scnsitivity and a factor of Ifl improvcrncnt in hcaring<br />

accuracy hut would not add grcally to thc mass iir cost of<br />

the sy


TACSAT @mognd ColpflmU anad Data<br />

Coktion<br />

by<br />

C.C. CocRriPne<br />

Matra Marconi Spacc UK<br />

Anchoragc Koad<br />

Portsmouth<br />

Hampshire PO3 SPU<br />

United Kingdom<br />

This paper will address the concept of a<br />

satellite based system serving the needs of<br />

tactical users for direct access to<br />

communications and various forms of '<br />

surveillance. Such a system must take<br />

0 account of the most effective methods for<br />

deplo ment and mainteiiance during its<br />

inten d ed period of operation.<br />

In terms of the mission need the Tactical<br />

Satellite System (TACSAT) is required to<br />

provide the services for tactical users over<br />

a relatively small region of maybe some<br />

1000 - 2000 km diameter. Also the<br />

concept is likely to involve relative1 short<br />

periods of operation of about i! to 6<br />

months for a typical operation scenario.<br />

The paper therefore addresses a system<br />

concept in which the emDhasis is placed<br />

on reducing the scale of the logistics<br />

involved in the deployment of TACSAT<br />

elements and simplifying the ground<br />

operations and facilities necessary for the<br />

users to - gain access to the services<br />

provided.<br />

The apcr will address a number of issues<br />

whic R arise such as:<br />

The need for 'launch on demand'<br />

I<br />

Tlie ossibility of launches being<br />

direct P y under the control of the area<br />

commander<br />

Operating concepts for TACSATs,<br />

comparing the approach of launch-<br />

via-residual-mass as part of a larger<br />

mission, not dedicated to the<br />

TACSAT mission with the approach<br />

of dcdicated, launch-on-demand.<br />

Identification of information flow<br />

requirements for TACSAT integrity<br />

and status evaluation and for<br />

surveillance data recovery<br />

6- 1<br />

- Determination of technical and cost<br />

B8;ivers inlfluencin the form and cost<br />

of ground instal f ation and logistic<br />

issues - Inteption of TACSAT facilities and<br />

services with other communications<br />

and surveillance systems available to<br />

the Tactical Commander<br />

- Investigation of techniques to<br />

mihimise the ground control and data<br />

collection overhead<br />

Introduction<br />

All TACSAT Systems are designed to<br />

provide a Tactical Commander with short<br />

term operational data in addition to that<br />

available via stratcgic resources. This<br />

paper discusses the interfaces between the<br />

space and ground segments of such<br />

systems. Because there is such variety<br />

amongst the various TACSAT systems<br />

concepts, it is on1 possible in a brief<br />

paper such as t h is, to discuss the<br />

roundhpace interface in general terms.<br />

hevertheless offering a eneralised<br />

structure around which s eci ic conce ts<br />

can be detailed is thoug R '<br />

t to be use P ul,<br />

especially where the concepts are unlike<br />

those of other types of space system that<br />

designers may be more familiar with. The<br />

paper therefore focuses on TACSAT<br />

system concepts that are not like classical<br />

geosynchronous or sunsync h r o no us<br />

missions.<br />

Mission Definitions<br />

For tactical o erations any system<br />

em loyed must 73 e able to support the<br />

mo i ility re uirement and operate from<br />

unpreparei and unsurveyed sites.<br />

Communications in difficult terrain, such<br />

as mountainous regions, coupled with the<br />

need to co-ordinate ground, air and sea<br />

forces, presents a corn a lex array of tactical<br />

communication nee s and information<br />

exchange requirements in a variety of<br />

articularly for an extensive<br />

tactical t i eatre of operation.<br />

Tactical Imaging missions will be<br />

targetted on small, mobile platforms (eg<br />

aircraft and tanks) as well as Qther key<br />

targets (e bridges, harbours). Mu1 tiple<br />

sensors wi P 1 be most helpful in enetratin<br />

camoflage of these targets. 8 or Tactica f<br />

Communications Systems, voice and data


e<br />

communications, point to point, point to<br />

hultipoint and netted arrangements tray<br />

be all required. The End Usen may wsh<br />

to call upon any or all of these sewices at<br />

,my time. In the tactical situation the<br />

un p r e d i c t a b i li t y of the operation a 1<br />

environment dictates that<br />

communications must be instantly<br />

available, reliable and trustworthy (in<br />

terms of a low probability of detection),<br />

have a high robability of timely<br />

connection,l and i! ave an appropriate level<br />

of information security.<br />

It is evident that the introduction of<br />

complex procedures for terminal<br />

operation, access constraints and rul :s<br />

requiring a high degree of user skill to<br />

understand and implement will detract<br />

from the usefulness of the system as<br />

perceived by the tactical user comnunity.<br />

TACSAT systems can be classified as<br />

providing either image data derived from<br />

spaceborne sensors or relay<br />

communications channels between sites<br />

on the ground, or both. Classically these<br />

requirements are met by standardised<br />

systems architecture as follows: I<br />

Image Data - High resolution,<br />

Sun-synchronous,<br />

polar, circular<br />

- Geostationary<br />

Communications - Geosptionary .<br />

As has already been stated, it is not<br />

particularly useful here to analyse the<br />

@ ground/space interface within such<br />

architectures, beyond stating that<br />

TACSAT applications in similar<br />

architectures are possible, principally<br />

because of excess capacity becoming<br />

available for tactical purposes within<br />

strate@ systems. For example, "sparc:"<br />

capacity sometimes becomes available<br />

when a spacecraft suffers a partial failure<br />

and can no longer meet the full strategk<br />

-equirement. When it is replaced by a<br />

cw spacecraft of the standard design, the<br />

degraded s acccraft cm then be operated<br />

as a TA 8 SAT. In another case, a<br />

standardised design of geosynchronous<br />

satellite has been deployed to three (or<br />

more) stations in the geosynchronous arc<br />

to provide a global system but strate ic<br />

conimunications requirements on one or<br />

more) of the stations do not call for such a<br />

f<br />

large s acecraft. "Spark" trmponder(s)<br />

on suc B under-utilised strategic comsats<br />

can hen be o erated as a virtual<br />

TACSAT. Final P y, it is sometimes the<br />

case that "spare" launcher payload<br />

into polar orbit becomes<br />

availab e because spacecraft desi n<br />

constraints were too conservative for t % e<br />

actual lamchet performance achieved in<br />

a parallel development, and small<br />

TACSAPS can be launched into similar<br />

polar orbits with this spare capacity. Ln all<br />

these cases the ground/space interface is<br />

similar to, if not identical to, the parent<br />

system. In some further cases, very<br />

similar mission concepts are chosen for<br />

purely tactical reasons. However, ic<br />

general, different mission concepts tend<br />

to be favoured because of the tactical<br />

military requirements for TACSAT<br />

systems, for example: .<br />

Flexibility under unsophisticated,<br />

local control<br />

Low cost<br />

Minimum revisit times<br />

Localized area of interest<br />

Surprise<br />

Seciecy<br />

but, most of all,<br />

Ease of use.<br />

Other papers in this series illustrate<br />

instances of this tendency. Here, a typical<br />

"novel TACSAT" mission may be<br />

sunimarised as:<br />

Intermediate orbit inclination,<br />

optlmised for target area coverage.<br />

Low altitude, for maximum resolution<br />

and/or link margins.<br />

Elliptical orbit, minimising<br />

geodymnic drag.<br />

1 iCHigRly manoeuvrable spacecraft to<br />

mbntam orbit alignment with respect<br />

+<br />

to the target area.<br />

Pre-programmed payload operation.


&ring the full novel TACSAT mission<br />

there will be the following, distinctly<br />

different, phases of operation.<br />

hunch Preparation Phase<br />

It is possible that there will be a choice of<br />

Launch Vehicle configuration. For each,<br />

there will be a complex trade-off betweed<br />

orbit parameters (especially orbit<br />

inclination), payload mass (oat<br />

functionalit and tar et area revisit<br />

periodicity. t ere iwill s so be a compled<br />

trade-off for the phasing of any particular<br />

orbit beweeh spacecraft constraints (e<br />

sun angle at injection), operationa<br />

coverage requirements and spacecraft fuel<br />

launches, ;is to the nature of the intended<br />

tactical support, especially phasing over<br />

t k target area. Finally, there may be a<br />

requirement to defend the TACSAT<br />

system against jamming.<br />

The trade-offs must be resolved and the<br />

1 au n c h e rl sp a ce cr aft c o n f ig u r a t i o n<br />

finalised (including programming of<br />

on-board computers) early In the Tactical<br />

Deployment when the Tactical Staff will<br />

have many other pressures to finalise<br />

deployment plans and logistic sup ort.<br />

However, since it cannot be assume B that<br />

these staff will be familiar with spacecraft<br />

operational constraints and speedy<br />

decision making may be of the essence,<br />

0 previous in-depth training in system<br />

operation will be a pre-requisite of<br />

successful TACSAT operations.<br />

Launch and Early Operations (LEOPS)<br />

Phrase<br />

Launch services would be provided by a<br />

specialist supplier requiring minimum<br />

interaction wth the Tactical IJsers. The<br />

boosted ascent and spacecraft separation<br />

will be pre-pro rammed. However,<br />

determination o B the initial orbit by<br />

ranging during first apogee will be<br />

necessary frord appropriately located and<br />

equipped ground stations. Note that the<br />

spacecraft ranging transponders may well<br />

need to be rotected by encxypters from<br />

ranging, an B /or from jamming, by enemy<br />

ground stations; hence digital ranging,<br />

9<br />

mi'itar<br />

6-3<br />

staff and cypher distribution<br />

channe s Will be preferred. For accurate<br />

early 'orbit determination, these ran<br />

stauons would be on a long (> 10o0<br />

baseline and must pass ranging data sets<br />

by communications links to a Central<br />

Control facility equi ped to compute the<br />

initial orbit. It wi P 1 be convenient to<br />

arrange €or this Centre to also compute<br />

necessary manoeuvres, predict the<br />

subse uent orbit evolution and, most<br />

proba 8 ly, execute the manoeuvre<br />

sequence in a manner consistent with any<br />

requirements for payload deployment/<br />

activatiodcalibration. To effect the<br />

manoeuvre/activation sequence, Trackin ,<br />

Telemetry and Command (TT and 8 )<br />

access would have to be provided via<br />

several, well-distributed Ground Stations<br />

if this phase is to be completed with<br />

minimum delay. In short, this entire<br />

hase could be under the control of the<br />

Lunch site, rovided with support from a<br />

network of appropriately equipped<br />

Ground Stations.<br />

However, in view of the military<br />

sensitivity of TACSAT missions, it is<br />

more likely that all Ranging, Telemetry,<br />

Manoeuvre Computation and<br />

Telecommand functions would be<br />

exercised by a suitably equipped and<br />

military-staffed Facility. For reasons of<br />

compatibility with Launch Site and<br />

back-up orbital support, TT and C<br />

functions could be conducted at S-Band<br />

usin the Space Ground Link System<br />

(SGh standard, but with encryption<br />

enabled shortly after successful injection<br />

into initial orbit. Ranging, Telerne<br />

Telecommand functions coul<br />

exercised by a 19 m S-Band Telemetry &<br />

Command Station (TCS , supplemented<br />

by relative1 small (3 m) b -Band terminals<br />

co-locate dy with selected permanent<br />

Ground Stations. Alternatively, the entire<br />

TT and C support could be exercised<br />

within the X-Band channel allocations for<br />

Milsatcorn and Earth Resource Downlink<br />

channels. In either case, TT and C<br />

baseband connectivity durin the periods<br />

of TACSAT visibility must %e provided,<br />

:. for example via orderwire channels<br />

'.* within permanent communications<br />

. accesses.<br />

7 7:<br />

*


(i-4<br />

TACSAT Operations Phase<br />

The TACSAT system is seen n phis paper<br />

as supplementin strategic C P rcsources,<br />

particularly w a ere communications<br />

requirements peak or imaging data are<br />

needed at short noiice. The oppoflunities<br />

to use TACSATS to best effect can<br />

thereforc only be recognised locally arid<br />

should put into effect by a local Control<br />

Centre.<br />

The Control Centre must be able to assess<br />

the effects of orbital manoeuvres, execd te<br />

manoeuvre$ romptly aild quickly corafiim<br />

the achieve. B new orbit. As has already<br />

been said, speedy and accurate orbiit<br />

determination can only be achieved with<br />

long, ie out-of-Theatre, baselines.<br />

Certainly for imaging missions, perigee<br />

will be over the tactical theatre; for<br />

communications missions this may also be<br />

true.<br />

The out-of-Theatre character of the<br />

control function for some missions is<br />

reinforced by the need to manoeuvre near<br />

apogee, where manoeuvre fuel usage is<br />

minimised and visibility to ground stations<br />

is maximised. The Control Centre may<br />

also have to call on spacecraft equipment<br />

designers and test configurations to<br />

resolve spacecraft performance<br />

anomalies. All of this tends to suggest<br />

that the res onsibility for TACSAT<br />

Control coul B be assigned to a Military<br />

S acecraft Control Centre supported byfa<br />

P<br />

gobal<br />

tracking network but with rdn<br />

excellent co-ordination interface t,o<br />

in-Theatre tactical operations staff. This<br />

latter requirement could be met b<br />

assignment of several specialists (wii. l<br />

recent spacecraft o erations experience)<br />

to provide a 24- R our service at the<br />

Tactical HQ. The Conuol Centre used<br />

during the earlier Phases could be used ta<br />

execute spacecraft control. However, a<br />

knowledge-based system located<br />

in-Theatre is likely to provide faster<br />

response and more consistent operations,<br />

This could be automated to minimise the<br />

number of operations staff and provide<br />

consistency during 24-hour operations. It<br />

would consist of the following elemcnts:<br />

Automated Mission Builds timeline<br />

Planning options<br />

Automated Library of Flight<br />

Operations Control Plans,<br />

Planning including Anomaly<br />

Contingency Plans.<br />

Computer Assisted Executes actual<br />

Operations control via Tracking<br />

Stations.<br />

Adaptive Training Creates and<br />

evalua: zs training<br />

sessions.<br />

Network Control is also required in the<br />

case of a TACSAT communications<br />

mission. It can be assumed that the<br />

communications transponder will be<br />

accessed only by in-Theatre force<br />

elements, using locally-assigned cyphers.<br />

In order to provide communications<br />

services compatible with the needs of<br />

tactical End Users, the way in which the<br />

network is managed and user access is<br />

granted and controlled must involve a<br />

minimum of "overhead" workload<br />

imposed on the End User. This can ran e<br />

from avoiding the need to point t a e<br />

antenna on his terminal<br />

simplicity of operation o<br />

to a mem of<br />

in the integrity of the system, and to its<br />

ability to provide the services required.<br />

Optimum use of the TACSAT capacity<br />

will be most easily achieved by a mture<br />

of frequency assignment and timeline<br />

planning issued by in-Theatre signals<br />

staff. Some tyges of TACSAT<br />

store-and-forwar communications<br />

mission will require quite complex<br />

space/ground protocols which must be<br />

transparent to the End User. Some<br />

classes of TACSAT will provide ima er<br />

or transponder configuration options t P iat<br />

are selectable by ground command. The<br />

in-p eatre specialist TACSAT operations<br />

staff will be best equipped to make the<br />

appropriate option selections, which could<br />

be implemented either by a local<br />

telecommand uplink or by a centralised<br />

Control Centre. In the case of in-Theatre<br />

jamming attacks, the former is likely to<br />

provide a far more successful ECCM<br />

response than the latter, provided it can<br />

counter any enemy jamming of the<br />

telecommmd uplink.<br />

The final stage of the TACSAT support<br />

will he disposal of the s acecraft, either<br />

into 3 higher parking or E it or a burn-up<br />

during re-entry. Once the in-Theme


authorities have confirmed that TACSAT<br />

support is no longer re Kired, they need<br />

have no further invo 9 vement in thc<br />

manoeuvre se uence. At this sta ’z<br />

eiecution an1 monitoring of t g :<br />

TACSAT disposal could be turned over<br />

to a central Control Centre.<br />

&)a 4a Coalectiow<br />

Modem spaceborne imagers produce very<br />

wide bandwidth data rates which qbickly<br />

saturate available spaceborne storage<br />

devices. Hence direct-to-Theatre<br />

downlinking is very attractk: for small<br />

TACSAT missions where data timeliness<br />

is of the essence. These dbwnlinks must,<br />

for obvious reasons, b,e encrypted.<br />

Because of the very high burst rates,<br />

spread spectrum downlink jamming<br />

rotcction is not practicdble; the on1<br />

F easible rotcction methods are Doiinlin<br />

User Xrrninal (DUT) location and<br />

minimisation of DUT antenna sidelobes.<br />

Some on-board storage buffers would<br />

allow greater flexibilitv in the deplo inent,<br />

and reduce the numbers, of in- -ay<br />

heatre<br />

DUTs. These DUTs must be connected<br />

by telecommunications links of various<br />

kinds to End Users. On-board<br />

preprocessing can be used to reduce the<br />

downlink bandwidth and reduce the<br />

complexity of the in-Theatre image<br />

processinf Sfunctions. However, some<br />

on-groun rocessing, including fusion<br />

with other ata sets, will be an essential<br />

element of the image assessment chain.<br />

In the reverse direction, the flow of<br />

information from the End Users €or target<br />

selection must conver e on at least one<br />

Telecommand Uplink B acility. Instrument<br />

settling times dictate that, for efficient use<br />

during each perigee, these telecomrnands<br />

must be uplinked out-of-Theatre during<br />

apogee.<br />

Simulation<br />

From the above discussion it is clear that<br />

deployment of a TACSAT system is a<br />

complex undertaking requiring<br />

well-trained operators and well-briefed<br />

operations stxff. AlthouFh the classic<br />

military process of reducing complcxity<br />

down to the minimum number of<br />

l<br />

6-5<br />

adequate operations and planning tools.<br />

Both must depend on comprehensive<br />

mission simulations for the Launch<br />

Preparation and TACSAT Operations<br />

Phases.<br />

Conclusion<br />

Clasically, Tactical Commanders have<br />

succeeded where they have made best use<br />

of the time available before tactical<br />

However considerable expertise is<br />

re uired to o erate any Satellite system<br />

an 1 any TAC k) AT Mission is likely to fail<br />

unless an adequate control system is<br />

created and worked up to a hi state of<br />

readiness before the Tactica P situation<br />

develops. An automated knowledgebased<br />

system, including ap ropriate<br />

simulation, will be essential to t 1 e success<br />

of TACSAT support, which in turn is<br />

likely to be decisive on future tactical<br />

battlefields.<br />

STATEMENT OF RESPONSIBILTY<br />

Any views ex ressed are those of the<br />

author(s) and B o not necessarily represent<br />

those of MM Government.


6-6<br />

w<br />

J<br />

><br />

a<br />

3<br />

v,<br />

[E<br />

' 0<br />

LL<br />

U3<br />

I-<br />

Q<br />

U3<br />

0<br />

<<br />

t-<br />

s<br />

U<br />

i- -<br />

rp<br />

a<br />

0<br />

a<br />

l-<br />

a v)<br />

U<br />

a.<br />

c<br />

W<br />

><br />

9


TACSAT-SPACECRAFT BUS CONCEPT AND DESIGN:<br />

APPLICATION OF A MULTIMISSION BUS FOR TACSAT IN LEO<br />

FROM A FEW LARGE SOPHISTICATED<br />

SATELLITES ...<br />

Bcforc describing thc way, a low carth orbit<br />

multimission Bus for tactic;rl application is<br />

dcsigncd, it is convcnicnt t,u ;in;ilysc in soti'c<br />

dctails w1i;it is a tactical s;itcllitc ns far as sur h<br />

satcllitcs arc vcry oftcn associated with tlic<br />

notion of chcap sniall satcllitcs.<br />

For 30 yc;irs tlic six, thc ni;iss. the coniplcxity,<br />

and the cost of thc satcllitcs haw hrcn<br />

incrcasing. Spacc prograninics, cspccially in tlic<br />

dclcncc arca, tend to usc hcavy ancl costly<br />

satcllitcs in a too small nunibcr of spccinicns<br />

comparcd with thc nccds of uscrs, thcy havc<br />

thcn to continuously monitor priority conflicts<br />

such as : budgctary conflicts to dccidc which<br />

programnic has priori!y, opcratioii;d usc<br />

conflicts whcn programming tlic niissinns of so<br />

Tcw spacccrafts.<br />

In thc tnday contcxt of budgctary coiistr:iints,<br />

raising again is thc wcll known syndrome "oiic<br />

aircraft, onc tank, onc satellite as uniquc fu!urc<br />

-equip ni c n t for dc fc n cc'.<br />

Thc spacccrafis number liniitation is thc<br />

conscqucncc of an inflationist spiral which can<br />

bc dcscribcd in lhrcc stages :<br />

a - unit cost incrcascs<br />

by<br />

Gcorges Richard<br />

Matra Marconi<br />

Espacc/Dircction dcs Programmes Militaires<br />

2.1. du Palays-RUC des Cosmonautcs<br />

I<br />

31077 Toulousc<br />

Frnncc<br />

b - thcn for a givcn budget, numbcr of<br />

opcrational units dccrcascs<br />

c - a lirnitcd number of spacccrafts lcads to<br />

pusch for mission optimitation with :<br />

- an incrcasc of in orbit lifc timc and rcliability<br />

rcquircnlcnts<br />

- tlir nccd lo group scvcral niissions on thc<br />

S;I 111 c spa cc c ra ft.<br />

- kxIini:*al sophistication<br />

- conscrvativc approach includiiig rncticulous<br />

:l~:vclopmcnt and compicx vcrifications<br />

- no risk approach, as thc unit cost of cach<br />

satcllitc is such a high stakc<br />

All thcsc points lcad to unit cost incrcasc and<br />

\)ring back to st;igc n iii tlic iiifl;itionist spiral.<br />

... TO CONSTELLATIONS OF NUMEROUS<br />

CIIEAP LIGIITSATS<br />

To brcak this spiral, somc cxpcrts sugcst a<br />

"Smart small clicap lightsats" conccpt. Thcir<br />

main idca is to drastically dccrcasc thc unit cost<br />

of thc spacccraft in orbit, this cost including thc<br />

satcllitc recurring cost itsclf, (hc launch cost and<br />

thc ground scgnicnt and opcrations costs.<br />

This conccp! is consistcnt with a system<br />

archi~cctiirc using constcllations of nunicrous<br />

satcllitcs oC liniitcd in orbit lifc timc and low


(1-2<br />

rcliabiliry pcrfornianccs, both of thcsc<br />

cliaractcristics should, in thcory, rcwcc strongly<br />

tlic recurring costs of 11ic spacccrafls.<br />

Such a conccpt is rcinforccd by advances in<br />

technology in the ficlds of pcrformances ;knd<br />

miniaturisation : thcsc advances arc madc<br />

possiblc by thc research and dcvclopmcnt<br />

programmcs led by DARPA and SDIO,thb.:sc<br />

prograinmcs arc also bascd on hrgh<br />

tcchnologics dcvcloppcd ogt of the spatial arca.<br />

For cxamplc :<br />

- digital computcrs<br />

- mass mcmory<br />

- ASIC with availability of dcdicatcd algorithmcs<br />

for digital proccssing<br />

- siliciuin and Ga As microclcctronics facilities<br />

whcrc heavy invcstmcnts for civilian or niilir:iry<br />

airborne applications givc new opportunitics To.<br />

spacc applications such as : optical detectors,<br />

radiofrcqucncy MIMIC which arc usuful to<br />

dcnign phasc nrray antennas for comiiiunication<br />

satcllitcs or synthctic apcrturc radar<br />

instruments.<br />

- ctc ...<br />

Tlic potcnlial advantagcs of such a 'Smarl small<br />

chcap lightsats' conccpt arc wry attractive for<br />

thc uscrs, this is particulary truc for tactical<br />

applications in low earth orbit :<br />

- rcpctilivity of thc passes<br />

- flcxibility in the ch.ricr nf I' A' nctcrs<br />

- share of risks 0' ~<br />

;<br />

I<br />

L' inch spacccraft and<br />

lower vulncrability of thc overall system<br />

- flcxihility in the way to usc thc systcm. In orbit<br />

mcam arc fittcd with the lcvcl of crisis with a<br />

continuum from stratcgic usc to tactical hsc<br />

- dedicated satcllitc for a givcn mission<br />

- salcllitc programing and usc dcccntralizcd to<br />

on the ficld theatcr uscrs<br />

- etc ... (list not cxhaustive)<br />

At this point we will not discuss if such a<br />

conccpt is technically rclcvant in fulfiling the<br />

rcquircmcnts of a pivcn sct of missions.<br />

. .<br />

I-lowcvcr, with thc payload bccing shared<br />

bctwcen a large number of small satcllitcs, we<br />

can assume that the total in orbit mass of thcsc<br />

satcllitcs to fulfil a mission would be obviously<br />

larger than thc total mass whcn the classical<br />

approach using hcavy satellites is followed :<br />

grouping differcnt payloads on a single satcllitc<br />

always sakes iilass.<br />

As a conscqucnce, a "Sinart small chcap<br />

lightsats" approach using sa!ellilcs with an in<br />

orbit lifc time 5 to 10 timcs shortcr than in a<br />

classical approach lcads to place in orbit a total<br />

nuss morc lhan tcn times hcavicr than tlic total<br />

mass ncctssary to fulfil the same mission on a<br />

big salcllilc.<br />

For a niission on a givcn pcriod of tirnc Fig. 1<br />

shows thc cvolution of thc Iau.nch cost and<br />

satcllitcs costs with rcspcct to thc largcltcd in<br />

orbit life tinic for c;ich satcllitc of tlic<br />

constellation.<br />

For a consmt launch unit cost, thc lotal launch<br />

cost (curvc 1) is thc invcrsc ratio of thc in orbit<br />

lifc timc.<br />

Thc satcllitcs total cost (curvc 2) is cocsistcnt<br />

with thc "Smart small chcap liglitsats"<br />

approach : whcn thc in orbit life timc dccrcascs,<br />

you savc more nioncy from thc satcllitcs unit<br />

cost dccrcasc than you loosc from thc incrcasc<br />

in the nuniber of rcquircd satcllitcs, thc nct<br />

rcsult is that thc 'otal cost decrcascs. (this<br />

conclusiolr is less valid for a vcry long in orbit<br />

life timc ind is no morc valid for a vcry short<br />

onc).<br />

With ;I launch unit cost of thc siimc ordcr of<br />

magnitudc than cach satcllitc unit cost (curves<br />

in contitiuous liiic) tlic overall cost (ciirvc 3)<br />

dccrciiws whcn lifc in orbit incrcascs. At<br />

cvidcnce thc opt,imum is to improvc thc<br />

reliability and thc in orbit lifc timc: it is thc<br />

present trend.<br />

A "Smart small chcap lightsats' approach would


only bccomc pcrtincnt if vcry cheap launch costs<br />

arc prolmcd'(curvcs in dottcd linc).<br />

A coI~,ciit way to dccrcasc thc launch costs is<br />

to aim for a "Smart small chcap lightl:iuncher"<br />

conccpt cutting dowii thc launc'r cost for a Kg in<br />

orbit by at lcast ten times.<br />

Unfortunatcly the cost pcr Kg in orbit for<br />

prcscnt or near tcrni heavy launchcrs is vcry far<br />

from this goal, lor -::;:ill launchers of the<br />

PEGASUS class with a cost der Ky 2 lo 3 tinics<br />

grcatcr than thc onc ofthc ARIANE V/TITAN<br />

class hcavy launchcrs it hccomcs niorc and<br />

niorc difficult to achicvc.<br />

A WISER API'ROACII I<br />

With the krck of cmcrgcncc of vcry cheap<br />

launchers, constellations of nunicrous clicap<br />

lightsats with short in orbit life tiiiic arc neither<br />

for thc short tcrm nor for the medium term.<br />

To opcn thc way io ncw missions -cspccially in<br />

thc lactical arca - thc only drivini; lorcc of<br />

intercst is, for a givcn mission, a niodcr:itc<br />

overall cost, consistent willi the pcrloriiianccs<br />

offered for a sct of sufficiently high priority<br />

o!)jcctivcc.<br />

In other words. tlir today raising of<br />

tcchnological t~rc;ikthrough i ri 1)crli)rni;incc aiid<br />

miniaturisation will tx used in two ways IO : ,<br />

I - enhance again tlic prcscnt performances cif<br />

1argc s;itcllitcs which will rcni;iin hc;ivy and<br />

sophisticatcd. This i,. iypically the c;isc in 1lic<br />

rcconnaissancc field wlicrc users pt!t<br />

coiitinously morc slringcnt rcquircmc its.<br />

2 - opcn thc door to ncw missions, able io satis-.y<br />

ccoiioniically new nccds through the usc of<br />

spatial means. New missions types will he<br />

offered wliilc reducing tlic mass, the sizc and<br />

I<br />

the overall cost ol satcllitc in orbit. This appears<br />

cspccially pertinent for tactical missions.<br />

CONSEQUENCES FOR THE BUS DESIGN<br />

Due to thc rcduccd number of satcllitcs for a<br />

givcn application, the reduction of the<br />

spacccrafi rccurrcnt unit cost is no morc the key<br />

clcmcnt to rcducc the ovcrall cosl.Thc cost<br />

rsduction has to be niorc focusscd on its non<br />

rcccuring part than on tlic recurring onc.<br />

As a conscqucncc, mass production savings will<br />

not bc eniricd from only onc mission, hut will<br />

have to bc gained from a multimission<br />

approach.<br />

I'issuiiiing that thc small satcllitcs potential<br />

ap,;!ic;rtiw~s arc not aimed at rc~lacing thc<br />

prcscnt hcavy nnd complex satcllitcs systems,<br />

thc overall pcrformanccs rcquircd from the<br />

spacccraft BUS would bc modcratc. This is vcry<br />

convenient with a modular multimission BUS<br />

coiiccpt hascd on :<br />

- stand;ird pay1o;id iiitcrkiccs<br />

- oversized rcssourccs for each nic..iulc (for C;ISC<br />

tlic sake of LI gc!od standardizat;,m)<br />

- llci!dc xcoiiiwkition of the diffcrcnt modu;.~<br />

on tlic BUS allowing on request i:iodulcs<br />

addition<br />

Fig. 2 shows thi. niudular multimission BUS<br />

concept ilcsigncci jcintly I; MATRA<br />

MARCONI SPACE and its north ;inicrican<br />

prtncr FAIRCI.1 ILD.<br />

In order to rcacli somc non recurrent cost mass<br />

production savings through scvcral applications ,<br />

it is possililc to add tu this modular ap1)ro:ich a<br />

ncw dcvclapnicnt plan concept based on<br />

concurrent cnginccring.<br />

Fig 3 smws the logic of SYSTEhlA .<br />

SYS'l'EblA is a concurrent cnginccring salcllitc<br />

dcsign tool dcvcloppcd by hlATRA MARCONI<br />

SPACE. AI thc center a comn-im data hsc<br />

contains Ihc current configural, n cif 1hC<br />

sa(c1litc hccing dcsigncd. At tlic periphery<br />

A-3


0<br />

8-4<br />

specific tools for each main arcas of cngincering<br />

design arc shown. They can be concurredy call<br />

on demand by the different experts working in<br />

parallel for trade off or validation on diflcrent<br />

fields : clcctrical, thermal, mechanical , orbit<br />

environment, attitudc and orbit contrbl,<br />

dynamic , propulsion, payload accomodatidn,<br />

mission; satellite programmation, ctc ...<br />

i<br />

Presently, SYSTEMA is uscd primarily in thc<br />

first part of the developmcnt process (fig 4).<br />

from phase A proposals, mission and s.\tclli!c<br />

layout tradc-offs to the end of ph?, * L with<br />

dctailcd satellite design optimisation . VI' up to<br />

proposals for a phase C activity. I<br />

If additional risks causcd by eventual flaws rjr<br />

bugs in numerical simulations arc acccptcd -<br />

these risks arc assumed to bc affordable far<br />

small tactical satellites with not vcly<br />

sophisticatcd missions -, phase C validation tjy<br />

mcans of such concurrcnt engiiieering only tools<br />

would saw not only thc major portion of the<br />

environmcntal tcsts costs (thcrmal, kacuum. suh,<br />

vibrations) but also would rcducc thc schcdulc<br />

induced costs.<br />

Such an approach has dcmonstratcd its<br />

cfficicncy through thc SSOT prograinmc (fig 5).<br />

S80T is a microsatellite launchcd this sunimcr<br />

as a conipanion of TOPEX - POSEIDON<br />

SPACFCRAR on ARIANE. SSOT has<br />

bcncfitcd from an intcnsivc use of SYSTEMA<br />

from thc first stage of dcsign to the dclivcry ;it<br />

the launch sitc. A programme conducted in a<br />

very short timc for a very competitive cost.<br />

I CONCLUSION 1<br />

The approch prcscnted above is far from a<br />

rcvolution. It is only an evolution.<br />

To be efficient suck concurrcnt engineering<br />

tools need to be validatcd and calibrated by<br />

refcrcncc to the data gathered during previous<br />

dcvclopmenl tcsts or during in orbit monitoring<br />

of opcrational spacccrarts. In that sense such an<br />

approach capitaliscs the whole cxpcrience<br />

acquircd by MATRA MARCONI SPACE<br />

through prcvious or currcnt low earth orbit<br />

programmes : SPOT 1,2,3 - ERS 1 and 2,<br />

HELIOS - SPOT 4 and Polar Platform.<br />

The SYSTEM\ usc built-in flexibility givcs thc<br />

opportunity to quickly update a current design<br />

and thus allows to follow cvolutions of<br />

technologics or accomodatc a newly availablc<br />

equipmcnt.<br />

SYSTEMA ;~llows a short rcaction timc and a<br />

quick acconiodntion on the satcllitc as soon as<br />

cmcrging rcquircmcnts arc formulated by the<br />

uscrs.<br />

~ll~iisimiiotts<br />

Jw rhis Seciion appear immediaiely<br />

afim ilte Fmrc~lt mnshiion.)<br />

i.


'DES CROS SATELLITES EN NOMIIRE<br />

LIMITE. ..<br />

Avant d'ahordcr la facon dc concevoir unc<br />

platc-formc multimission pour ' c~cs<br />

applications tiictiqucs cn orbitc bassc, il cst<br />

utilc d'analyscr de plus pr2s la notion dc<br />

satcllitcs tactiqucs qui cst souvcnt :issociCc<br />

aujourd'hui Q I'idCe dc pctits satcllitcs pas<br />

chcrs.<br />

I<br />

Dcpuis 30 ans on constatc que la t;iillc, la<br />

miissc, la complcxitf CI donc IC coilt des<br />

satcllitcs croisscnt. Lcs progrmnics spaliaux<br />

ct plus particulithcrncnt dms IC dorli;iinc de la<br />

dtfcnsc tcndcnt 3 utiliscr dcs s;itclli(cs lourtls<br />

ct codtcux cn nombrc jug6 nfccssaircmcnt<br />

trop limitc par dcs utilisatcurs qui rlaivcnt<br />

gfrcr cn pcrmancncc dcs conflits de priorilt :<br />

conflits hudgCtaircs pour clfcitlcr qucl<br />

programnic mcncr cn prioritf m:iic aussi<br />

conflits dc priorit6 cn utilis;ilkin<br />

opfrationncllc pour progriinimcr I'cniploi des<br />

moyciis.<br />

Dans IC contcxtc actucl des compressions<br />

budgftaircs on voit ainsi rcnaitrc IC synrlromc<br />

bicn connu 1 AVION 1 CHAR 1<br />

SATELLITE conimc sculc dotation A tcrrnc<br />

pour la dCfcnsc.<br />

Cettc limitation du nonbrc dc satcllitcs est la<br />

consfqucnce d'une spiralc inflationnistc que<br />

I'on peut dfcrire en trois ftapcs :<br />

a - augmcntation du cocit unitaire<br />

b - B budget 4-onstant diminution du nombrc<br />

d'excmplaires oiifrationncls<br />

c - B faiblc nombre d'excmplaires optimisation<br />

de la mission : i<br />

. rechcrchc d'une grandc durCe de vie ct d'unc<br />

haute fiabilitt<br />

I<br />

l<br />

I<br />

. rcgroupcment de plusicurs missions sur une<br />

SCUI satciiitc<br />

. complcxification tcchnique<br />

. mtthodcs de dtvcloppcmcnt conscrvatriccs A<br />

basc dc vCrifications complcxcs ct minuticuscs<br />

. rcfus de pccndrc des risqucs dcvant I'enjcu<br />

quc rcpttscntc IC coot unitairc dc chaque<br />

salcl lite<br />

cc qui cntrainc I'augmcntation du codt<br />

unilairc ct nous ramenc au p int "a " ... ctc<br />

... AUX CONSTELLA'I'IONS DE PETITS<br />

SATELLITES HON kIAHCtiE<br />

Pour sortir dc ccttc spiralc ccrtains proposcnt<br />

unc appr:,chc "Smart sniall chcap lightstats"<br />

dont la caractfristiquc csscnticllc cst de<br />

diminucr t1r;istiqucmcnt IC colit unitairc du<br />

satellite cn orbitc, cc cott comprcnant IC co3t<br />

rtcurrcnt du satellite, IC cocit du lanccnicnt, IC<br />

codt du mainticn rl poste par IC ccntrc de<br />

contrblc.<br />

Ccttc approchc cst cohCrcntc avcc une<br />

architecture systemc basCc sur des<br />

constellations dc nombreux satcllitcs dont la<br />

durCc dc vic cn orbitc cst lirnitfc ct dont la<br />

fiabilitC pcut Stre plus faiblc (droit A la<br />

pannc), ce qui cn thforic pcrmct de rfduirc<br />

fortcmcnt Ics coats rfcurrcnts des satcllitcs.<br />

Unc tcllc approchc sc trouve confortfc par Ics<br />

avancCcs technologiqucs en pcrformanccs cl<br />

miniatiirisation qui alimcntcnt aujourd'hui le<br />

spatial au travcrs des programmes de<br />

Rcchcrchc et Dfvcloppcmcnt mcnfs par la<br />

DARPA ou la SDIO, mais Cgalcment par<br />

syncrgie avcc !a haute technologic dfvcloppCc<br />

pour dcs applications autrcs quc spatialcs.<br />

Citons :<br />

- IC domainc du calcul digital<br />

8-5


0<br />

0


0<br />

0<br />

- les mtmoires de massc<br />

.. les ASIC de traitements numtriqucs avec la<br />

' dkponibilitd d'algorithmes sptcialisfs<br />

- le domaine des fonderies silicium ou As Ga<br />

OD dcs invcstissements trts lourds rent.abilisc?s<br />

par des applications civiles ou par I'aVior~quc<br />

militaire offrent au dnmaine spatial soit dcs<br />

dttcctcurs optiques soit les MIMIC<br />

nbcessaires pour les antennes reseaux d;:s<br />

satellites de communication et les radars A<br />

ouverture synthttique<br />

- etc..<br />

Les avantages potentiels de cette approche<br />

"Smart small cheap lights;lts"sont alltchants<br />

pour l'utilisatcur, particuliCremcnt dans le<br />

domainc tactiquc sur des orbites basses P<br />

dtfilcmcnt :<br />

- rtpttitivitt des passages<br />

- souplesse on choix des paramttrcs dcs<br />

orbites<br />

- rtpartition dcs risqucs unitaires dc pcrtc dc<br />

chaquc satellite et donc moindrc vulntrabilitt<br />

- !ouplesse d'cmploi : on ajustc scs moycns en<br />

orbite A I'ttat dc crisc, cc qui pcrmct un<br />

passagc continu de L'emploi strattgiquc B<br />

I'emploi tactiquc<br />

. - sptcialisation des satcllites 'par missiod<br />

- d~centralisation de la programmatiorl et dc<br />

I'utilisation du satellite sur IC terrain !<br />

- etc ... cette Iiste n'ttant pas exhaustive.<br />

Sans discuter ici la pertinence technique de<br />

cetle approchc pour satisfairc Ics<br />

performances des diverscs missions, on peut<br />

prtdire que IC fait de rtpartir la charge utilc<br />

sur un grand nombrc de satcllitcs fcra quc la<br />

masse totale en orbitc 'des satcllitcs<br />

optrationncls A un moment dolint sera<br />

certaincment suptrieure B cclle de I'approche<br />

classiquc par gros satellite. On a toujours une<br />

prime en masse pour le regroupcmcnt des<br />

charges ut ilcs. I<br />

I<br />

Avec dcs durtcs de vie de 5 10 fois plur<br />

courtes il faudra donc s'attcndrc avcc unc:<br />

approchc de type "Smart small cheap lightsats"<br />

A lancer une mase globale plus dc 10 fois<br />

suptrieure pour remplir une mission sur une<br />

durte dtterminte<br />

Pour une mission de dude donnte, on a<br />

reprfsentt ( figure 1 -courbe 1 ) I'tvolution en<br />

fonction de !a durte de vie de chaque satellite<br />

du coirt dc I'ensemble des lancements. La<br />

courbc 2 presente tgalement I'tvolution du<br />

cost de I'ensemble des satellites (coots<br />

rtcurrents).<br />

A coOt unitaire constant, le c6ut total des<br />

lanccments (courbc 1) est inverscmcnt<br />

proportionnel A la durtc dc vie.<br />

L'tvolution du c6ut total des satellites (courbe<br />

2) rcflCte I'effet escomptt de I'approche<br />

"Smart small cheap lightsats" : quand la duree<br />

de vie diminuc, IC gain dc coot unitaire<br />

compcnse largement I'augmcntation du<br />

nombre dc salcllites nCcessaircs et IC coiit<br />

global dccroit (cct cffct n'ftant plus vrai pur<br />

dcs durtes dc vic trts trts courtc ct<br />

s'atttnuant pour des durtes de vic longucs).<br />

Pour dcs cotts dc lanccment de I'ordre de<br />

grandcur des coots satcllitcs (courbcs en traits<br />

pleins) IC coot total (courbe 3) dfcroit au fur<br />

ct B mcsurc que la durte de vie. s'allonge.<br />

L'optimum est A I'tvidence d'amtliorcr la<br />

fiabilitt et la durte de vie : c'est la tcndancc<br />

actuelle.<br />

Pour quc I'approche "Smart small chcap<br />

lightsats' dzvienne cfficace, il faudrait que Ics<br />

coirts unitaires de lancement devienncnt<br />

beaucoup plus faiblcs (courbes en pointillt).<br />

Pour rtduirc dc facon cohtrente Ics coils de<br />

lanccmcnt il faudrait donc une approchc<br />

"Smart small cheap lightlaunchers" reduisant<br />

au moins par 10 IC coot du kilogramme lanct.<br />

Malheureusement lcs coiits du kilogramme en<br />

orbitc pour les lanceurs actuels ou en projct<br />

sont trEs loin de cet objectif et on s'cn Cloignc<br />

d'autant plus quc I'on clicrche A utiliscr dcs<br />

petits lanccurs de la classe PEGASUS qui


affichent un coot au kilo de 2 a 3 fois<br />

supCrieur 3 celui des trts gros lanccurs de la<br />

classe ARIANE V ou TITAN.<br />

UNE APPROCHE PLUS RAISOWNAQ1LE 1<br />

Fautr: de. voir Cmerger des lanccurs B trts 1<br />

coat, Ics constellations de nombrcux pi III<br />

satellites pas chers B faible durCe dc vie iic<br />

sont ni pour le court ni pour IC moyen tcrr .<br />

Lc seul critbe ite!!ement dimcntionnant pour<br />

voir Cmcrger de nouvellcs mission5 e,t<br />

particulitrcmcnt dans le domaine tactiqub<br />

sera plus ccrtaincmcnt d’avoir un coirt global<br />

de possession raisonnablc pour des<br />

pcrformanccs jugees suffisarrnicnt prioritaircs<br />

Dit cncore autrcmcnt, Ics avanctes<br />

technologiqucs en pcrformancc et<br />

miniaturisation que I’on voit poindrk<br />

aujourd’hui pousscnt dans deux voics :<br />

I<br />

I<br />

- P mfliorer encore Ics pcrformanccs actucllcs<br />

dcs gros satcllilcs qui rcstcront lourds cl<br />

complcxcs. C’cst typiqucnicnt IC domainc ob<br />

ICS bcsoins cxprimes par ICS utilisateurs vont<br />

toujours croissant. Par excmnilc la<br />

reconnaissance. 1<br />

- Ouvrir la voic vers de nouvcllcs missions<br />

pour salisfairc Cconomiquement de nouveaux<br />

besoins au moycn de systhcs spatiaux, cd<br />

offrant dcs performances nouvcllcs Ict cri<br />

rfduisant la massc, la taillc et donc IC dofit dr!<br />

posscssion en orbitc d’un satellite. Ccri csl<br />

particuli2rcmcnt pertincnt pour de!;<br />

applications tactiqucs.<br />

1<br />

CONSEQUENCES SUR LA CONCEITION<br />

DES PLATES-FORMES<br />

Comptc tcnu du nombre ntccssaicmcnt rCduit<br />

dc satellitcs pour unc application, la rfduction<br />

do coCt unitairc recurrent n’est plus I’fICment<br />

clef pour rfduire le cott global. L’effort de<br />

,I, I.<br />

reduction des coilts doit porter plus sur le non<br />

rtcurrcnt quc sur le rtcurrent.<br />

En corollaire, I’effct de sCrie n’etant plus<br />

suffisant sur une seule mission, Ies rtductions<br />

de coCt lites au effets d’tchelle doivent<br />

s’obtenir en jouant sur I’aspect multimission.<br />

Au plan des performances, dans la mesure oh<br />

Ics applications erlvisagtes sur petits satellites<br />

n’suront pas la prftention de remplacer les<br />

systtnrcs actusls utilisant des satellites lourds<br />

et complexes, I’enveloppe des performances<br />

dcmandtes B la plate-forme doit &tre plus<br />

modCrCe. Ceci rend particulitremcnt<br />

pcrtincnte une approche modulaire mettant en<br />

oeuvre :<br />

- des interfaces standards avec la charge utile<br />

- une surabondance des rcssources pour<br />

chaquc module autorisant une bonnc<br />

standardisation<br />

- un amCnagcmcnt souple favorisant I’ajout de<br />

modules compltmentaires, a la dcmande.<br />

Ccttc approche modulaire est reprksentte<br />

typiqucmcnt par les concepts dc BUS<br />

MULTIMISSION Ctudifs conjointcincnt par<br />

MATRA MARCON1 SPACE c,t iiotrc<br />

partcnaire nord amtricain FAIRCHILD<br />

(figure 2).<br />

Toujours,dans IC but de rechercher un effct<br />

d’Cchelle cntrc plusieurs applications pour<br />

rCduirc les coirts non rCcurrents, il y a licu<br />

d’adjoindre B cettc approche modulaire une<br />

nouvcllc conccption du plan de<br />

dkvcloppcmento baste sur une ingenicrie<br />

intCgrCe.<br />

La figure 3 prtsentc la logiquc de I’outil<br />

SYSTEMA utilis6 B MATRA MARCONI<br />

SPACE en ingenieric satellite.<br />

Autour d’une base de donnCe decrivant la<br />

configuration courante’ du satellite ttudiC, un


I<br />

I)<br />

U-8<br />

certain nombre d’outils sptcifiqucs pcrmcttcnt<br />

dc mcncr lcs etudes d’ingcnicric dc facon<br />

inttgrte dans lcs grands domainrs clnssiqucs<br />

dans la conccption de satcllitcs : unalyscs<br />

tlectriqucs, thermiqucs, mfcaniqucs ,<br />

J’cnvironncmcnt en orbitc, bontrdles<br />

d’attitudc et dynamiquc, propulsion,<br />

implantation dcs chargcs utilcs, analysc , de<br />

mission, programmation, ctc...<br />

Aujourd’hui, figure 4, ccs types d’ouiils<br />

d’hgcnicric inttgrte sont uti1if;ts<br />

principalcmcnt dans la prcmiErc pabtic d’)n<br />

dtvcloppcment depuis la proposition, Ics trdde<br />

off mission, la phase A , Ics coinprohis<br />

d’amdnagcmcnt jusqu’a la phase @ ct ICs<br />

optimisations fincs de la configuration.<br />

Pour rtduire cncore ICS coots non rCcurrcrIts,<br />

ct A condition d’admcttrc lcs risqdcs<br />

compltmcntaircs d’impcrfcction d’unc<br />

simulation numtrique - risqucs acccptablcs<br />

pour des applications pas trop complcxcs dc<br />

pctils sarcllitcs tactiqucs - la validation par<br />

simulation dc la configuration en utiIis.int<br />

I’outil en phase C dcvrait pcrmcttrc de rtdulrc<br />

cncorc Ires fortemcnt non sculcmcnl IC coot<br />

dcs cssais globaux (vide-solcil, rntcaniqdc,<br />

dynamiquc ...) mais surtout Ics tcmps dc<br />

d~vclop~icmcnt.<br />

Cettc apprcchc a dCj3 416 tcsttc avcc succes<br />

au travcrs de S8OT (figurc 5) microsatcllitc<br />

IancC A I’CtC 92 cn compagnon du salcllitc<br />

TOPEX POSEIDON par , ARIANE.<br />

L‘utilisation intcnsivc de S YSTEd dcpuis la<br />

i<br />

phase de conception jusqu’a la fin du<br />

dtvcloppcmcnt a permis de mcner ce<br />

ptogrammc a bon terme en trts peu de temps<br />

et pour un coot trts attractif.<br />

I CONCLUSION^<br />

L‘approche prtscntte ici est loin d’Etre unc<br />

rtvoiution, c’cst sculcment une tvolution .<br />

Elk capitalise au travcrs des outils<br />

d’ingcnicrie inttgrtc tout I’acquit dei platcs-<br />

formes multimission dCvcloppCes par MMS au<br />

travcrs dcs programmes SPOT 1, 2, 3; ERS 1 ’’<br />

ct 2 , HELIOS - SPOT 4 et plate-forme<br />

polairc.<br />

Ccs outils d’ingcnicric integrtc nc prcnncnt en<br />

cffct toute lcur cfficacitt qu’h I’aunc des<br />

cxptricnccs acquiscs et dcs analyses mentes<br />

lors dcs dtvrloppcmcnts ou aprts expertise<br />

des comportcmcnts en vol.<br />

Unc tcllc approchc, par sa s,~uplcssc dc misc<br />

en OCUYTC autorisc Cgalcrncnt unc conccption<br />

ouvcrte B I’Cvolution tcchnologique et B la<br />

prise en comptc rapidc des nouvcautts.<br />

Ellc pcrmct dc rtagir au plus vile am<br />

nouveaux bcsoins (ou B leur adaptation<br />

rapidc) dts qu’ils son1 cxprimts par les<br />

utilisatcurs.


I<br />

1 - CONSTELLATION LAIJNCHES COST<br />

2 - CONSTELLATION SATELLITES COST<br />

3 - GLOBAL COST<br />

IN ORBIT LIFE TIME<br />

FOR EACH SATELLITE OF<br />

THE CONSTELLATION<br />

GLOBAL COST OF THE CONSTELLATiON FOd A h4ISSION<br />

ON A GIVEN PERIOD OF 'TIME<br />

'<br />

8-9


n-tu<br />

T~RUSlER :61 PUOPELLANI IANK (7)<br />

\ /<br />

Class It multimission spacecraft<br />

CAPABILITY:<br />

SPACECRAFT FEATURES<br />

SUN SENSOR (41<br />

Mission life<br />

3 to 4 years<br />

Orbif altitudes : 200.1000 km<br />

Payload available mass : up to 200 kg<br />

Payload available power : 100 W mean, 200 W peak<br />

Battery capocity : 9or 1BAh<br />

28+/-4V<br />

VakY.<br />

Ani e painling ' ' accuracy : +/- 0.15 deg<br />

Data storage an board : 5 Gigabits<br />

Dolo transmission 2 to 8 Kbits/wc<br />

Encryplian : optional<br />

SATELLITE BUDGETS:<br />

Mass Power<br />

Payload :<br />

Platform : ____<br />

Hydrazine :<br />

( 4 years mission ]<br />

624- ._ . IIOW -.-a. n -<br />

1 BO Kg<br />

8 KCI -<br />

60 Wan<br />

-. .__<br />

Total : 250 Kg 170 Wan<br />

7 /<br />

RF ANTENNA I?)<br />

PAYLOAD MODULE<br />

/-<br />

L EARTH SENSOR<br />

The FAIRCHILD/MATRA MARCONI SPACE<br />

spacecrah is a light weight, lawcast slructure designed<br />

to accamadate a wide range of scientific and<br />

operational payloads . It provides a simple, efficient<br />

power system with a super-NiCd battery and a<br />

modular solar array thot can be adapted lo various<br />

orbit geometries and payload demands . The central<br />

data processor unit includes an embedded solid-state<br />

recorder and generous margin far growth . The<br />

attitude determination and conlral system and the<br />

propulsion system are bath designed for flexibility<br />

and long life ,


ls<br />

FIGURE 3<br />

6-11


I. !. I.<br />

...... . .... ...... ............... ..... ................ M.


a<br />

a


! ' ' I' I<br />

';, . ..


SYmME DE NAVIGATION PAR SATELLIT'ES A COUVERTURE EUROPEENNE<br />

1.SOMMAlRE<br />

Lbhjel de cclle prtscnlalion er1 de proposer un sysldme dc<br />

navigation lonciionnani suivanl IC mCme principe que IC<br />

syrldme GPS mais qui ollrirail un service pcrmancnl en<br />

Eump 5 hide dun nomhrc limit6 de snlelliler.<br />

H. naranpr, J. Bouchard, T. Mkhal<br />

Office Nalionrl dEluder el de Recherclier Atmrpatiales<br />

B.P. 12<br />

92 322 ChPtillon Ceder<br />

FRANCE<br />

L. constellation pdsenJe ici ne ntcessitc que 4 satellites<br />

comprcnant un gtoslationnairc el his ralelliles sur des<br />

orhilei gtosynchmnes d'inclinaison el dercenlricilt hibks.<br />

Ceiie constellahn pcnnct de couvrir lolalcrncnt I'Europ. IC<br />

Mnycn Oncnt el I'Alriqus. En ouve. I'ulilisalion de raielliles<br />

nlativemcnl simples ed cnrisageahle. En ellcl. lous Ies<br />

iacclliles Clan1 visihler en permanence depuir un mCme<br />

point du Glohc. il CSI possible de laisscr au s 11 I'horlnge<br />

ulka-slahlc qui lournit Ii rtftrcncc de tcm(~r pour Ies<br />

mesurer de dislance usagcr-ralellile.<br />

Ceric constellalion apparaissanl cornme prnmellcuse. une<br />

analyse plus pnusste est en cnun alin de jugcr de la<br />

laisahilifi dun lcl syribmr. En parliculier. Ies pmhlkmcs<br />

posts par la mise et IC mainlien b POSIC dune lcllc<br />

constellalion on1 dorcs cl dtjb 616 analyds. On prdrcnle ici<br />

pluricun lolulinnr cnvinageahlcs pnur la mire B pnsle. avec<br />

Imcemenls uniqucs nu mulliplca. 5 pulir dorhiles de<br />

transfen ilandard ou non. Alin de lournir une prcmidre<br />

Cvalualion du coDl de mainlien h pnsle, I'inlluencc des<br />

principalcs pcnurhalinns dbrhile sur IC service lourni a Cl6<br />

analystc. Quclqucs cxcmplcs de inailien b posic rnnl<br />

tgalcmcnl lournin.<br />

1. INTRODUCTION<br />

Lcs performances du syslkmc amfricain de navigation par<br />

salelliles (3's (Glohal Positioning System) mnt dfsormais<br />

hien cnnnues CI res applications pcwn!icllcs<br />

puliculikremcnl nomhreuses Ian1 dans le domains civ I que<br />

miliuirc. Bicn enicndu. I'ohlention dc ces Frfom ancc3<br />

(muverturc mondialc quasi pcrmancnte) ntcctriie la mise<br />

en ocuvrc dun nomhrc imporlant de salcllites complexes.<br />

11 nous a donc paru inltressanl d'examincr a'il csl possible<br />

Ue cnncevoir der sy&mcs dc navigation lonciionnant<br />

suivanl IC mCmc principe que GPS. mais avec un nomhre de<br />

salellitcs beaucoup plus riduit. Lc service orrerc ne<br />

dilkrcrait de celui lourni pm GPS que pu I'tlcndue de Is<br />

zone gtographique couverte par ccs syrlbmcr. Noun nnus<br />

sninmes plus p~~icuiitrcmcnt inlfrcrrfs b cler cwwcllations<br />

ollrpni une couvcrturc de I'Eumpe.<br />

Lea rtsultels dune prcmiirc tiude on1 ntnwrC qu'il CSI<br />

possible dasrurcr un scrvice permanent de navigation sur la<br />

m+um panic de I'Eumpc. IC husiri mCdilcnas6cn el<br />

I'Arriquc. wec une constellation d+ 4 tateI\iics. mh<br />

minimal rcquii pour line navigation de cyp WS.<br />

,<br />

Lcr rtsullata prlrenl€s dans cette communication concement<br />

unc prcmitrc analyse de la laisrhililt dun Iel rystbmc. CI en<br />

particulicr la capacilt 1 dtployer el maintenir en service la<br />

conslcllat; n de raulliles ulilistc.<br />

Tout dabord. nous rappcllcmns hridvemenl IC principe de<br />

lonctionncment du ryslbmc de navigalion GPS. Puis nous<br />

prtsenlemnr let principaler cuactCrisliques de la<br />

constellalion 5 4 salellilcs rclenue pour celle Clude. Lcs deux<br />

chapiuss ruivlnu wnt consacrtr rwpclivcment h la inire 31<br />

posle el au mainlien 5 posle de celle conrlcllalion.<br />

3. FONCnONNEMENT DU SYSTEME GPS<br />

Lc syrldme amtricain de navigation par salclliles GPS<br />

(Global Positioning System) perlnct i tout usagcr. dispmant<br />

du rtccpteur adqual dc delerminer presquc instanlaniment<br />

sa position. sa vilesse cl I'heurc locale. Ces calculs son1<br />

ellecluts avec une Meision intgaltc jurqul prtsent par 15%<br />

nutrcs syslbmea de navigalion. Le principe de navigation<br />

ulilisd. pu lriangulalion gtomltriquc rcdondanlc. impose 5<br />

tout usagcr du syrldme delre en visihilitt simullanfc dau<br />

moins 4 satellites de la conslellalion. Dana sa vcmion<br />

compl8lc. cellesi os1 cornposte de 14 aalelliles tvoluanl sur<br />

des orhilei circulairca inclinks dune +rinds de I2 hcurcr.<br />

Rappslons hritvemenl le principe de limctionnemcnl du<br />

syaltmc. Chaque silellile de la constellalion GPS Cmcl cn<br />

prmanencc un signal veri la Tcrrc. Cc signal cinlC criiilicat<br />

In dnle cxnetc de dfpart du signal. qui CSI dflcrniinfe pa1<br />

une horlogc atnmique emharqufc. et des Cphtmiridcs qui<br />

permellent de connailrc Irks prtcirtmenl la position et la<br />

vilcsse du satellite 1 ceI inslanl. Ainsi un rtccplcur<br />

appmprit. dolt dunc horloge. peul determiner la dislancc<br />

qui le stpare du aalcllile parlir de kan entre Ics dales de<br />

dfpm cl darrivte du signal. La :?:.G radiale du satellite<br />

par rappon au riceptcur peu~ fgalemcnl elre dttcriiiiiii.c par<br />

mcrum de IWet Doppler sur IC nignal. En principe. avec<br />

lmir satellites en visibililt sous un site minimal de 5".<br />

I'urager pourrail dtlcrmincr par triangulation sa posilion et<br />

sa vilesse.<br />

Un rysltme de conlrRle au sol permei de maintenir unc<br />

crccIIenlc synchronisation des horloges de grlndo precision<br />

dm satellites. Par con&. I'horlnge de I'mrgcr est hcaucoup<br />

moins slahla. En l'ahscnce de rccdages fr6qucnl.s. IC lcmpn<br />

qu'cllc indique fink par ilill6rcr nnlahlcmcnl du lcinpr dc<br />

rilfrcnce GI'S. CC qui intrwluil une loris crrcur danr la<br />

dClcrminalion des distances usager-raklliles: cellcs-ci<br />

dcviennenl alon inexploifahles.<br />

Lemur sur la dislance CII Io memc p ur lous lei salclliici<br />

ohncwda nn mEms instant lille peui dunc 8Irc eslimtc b<br />

partir dune mesurc sur un satellite supplCmcnlairc. Ainri. si<br />

un urager du syzldmc fail dei mesums sur 4 salellites i un


10-2<br />

instant donnt, il put dtlcnniner i In lois snn binis dhorlngo<br />

(par rapport nu temp GPS) ses lmis cmrdondes<br />

gingraphiques. el iventuellement lcs tmis compmanlcs de<br />

si vi~essc. Par la suite. il peul dilcrmincr ss pmition el sa<br />

vilesse ivec 3 salelliles seulemeol pendant 18 CnUrtC Nn0dC<br />

duranl laquellc son hiais dhorloge rcslc quasi constant.<br />

Fa dffinilivc. nn considfrcra qu'un usager di4 eke en<br />

virihililt simullonte d'8u moins 4 salelliles pur pllrvoir<br />

cmlculcr sa pnrilinn ct sa vitcsrc inrlantantcs. Cer. une<br />

condition strictc qui assure une exphilalion comctc des<br />

rignaux Cmis par Ies satellites. quelle que soil la qualitt de<br />

I'borloge de I'usagcr.<br />

lln usager est capahlc de ddtermincr sa porilion caaclc s'il<br />

connait la dirl:incc giomilriquc (mSmc hiairic) qui IC<br />

siparc de la prilinn dc chaque salellilc. La mcsurc<br />

de cctle dislancc est cnlachCc dune cmur risuilant der<br />

imperfections du traitcmcnl du signal, de la pmpag itinn<br />

almnsphiriquc ct des iphdmiridcs dos salelliter. Sn Ies<br />

tmun de incsurcs pur les diffirenls satcllitcr titilids rnnt<br />

indipendantes el de mCme nivcau. la pricisior. de<br />

Iocalixalion 3n. carclbririe par I'fcan Iypc dc I'crrcur<br />

d.Lstimatinn de la pition, est C ale nu pmduit dc I.6carl<br />

typc dcs mcsurcs el du PDoPl 9 I (I'osition Dilution of<br />

Precision). Ir I'DOP cst une quantitt sans dimension ne<br />

dipendant que de Is giomilric rclalive usager.saallilcs.<br />

Ir I'DOI' pcmict d'fludier la prfcisirm de Incaliratinn tlc<br />

toule constrllalinn de navipalion du typc GI5<br />

indipcndamincnt de In pricirion des mcsurcs. Aisri on<br />

considcrc usucllcinent que le service de naviptirm est<br />

arsuri 6 un inslant cl en un pnint donnfr si 4 rillcllitm rim1<br />

visihler cI si IC PDOP. calculi en cc pnint. er1 inffricur P h.<br />

4. cnNsmLi.xrioN OPTIMAI.E: A 4 SATEI.I.ITES<br />

Dam unc premihe fludc121. nnus awns rccherrhC des<br />

conrlellntinn~ a faihlc nnmhre de satcllilc* (rnlre 4 el 9)<br />

p. mellmt d awrcr un service de navipalinii du type GPS<br />

sur une rigion liniitic dc la Tern.<br />

A nomltrc de sntcllitci fixe. nnus avnns cherchf B mnxiifliscr<br />

l'airc de la prtion dc la surface lcrrcslre h I'inlClicut de<br />

:aquelle IC I'IX)Pcri en permanence infCrieur i h Cc critcrc<br />

nr6scnte de Irks nomhreux maxima Incaux. e'cst purtluni<br />

nous awns utilici une mClhnde dnptimiralion glnbalc h t<br />

le principe crt imc rcchcrchc aliatriirc adaprhc: Adaplivc<br />

Random Search (ARS). II s'agit d'unc mithndc initialcmcnl<br />

prop& par Bekcy ct Mnrri en. 19H3)31141. Iillc ne<br />

ndcerriie que IC scul cslcul critbe ci non celui de son<br />

gradient.<br />

hs parninrber oplimisis sonC pour chaque ratellilc. 5 dcs 6<br />

p8rmCtrt s indfpendants difinissanl son orhiie: crccnviciti.<br />

inclinnison. argument du @rig&. ascension dmitc du nocud<br />

ascendant et anomalie moyenne. En cffel. nous avnns choisi<br />

pour demi grand axe celui de I'orhite ginrtatinnnairc (42<br />

IM km). De la ronc. la mne survolic par chnquc ratclliie<br />

est enlihment cantwnCe i I'intiricur #uric fraction dc la<br />

surface dc la Tcm. ce qui est parliculi&rcmeni inf6rerrmt<br />

pour ohlenir un service de navigatinn riginnal. 1%<br />

d6finilivc. ie nnmhrc de parambuss op\imistn CUI cnmprii<br />

entre 20 ei 45~<br />

Pumi Ian conrlcllalioin ohcnius h I'irauc de CCIC Cludc. il<br />

cn est una prrticulitremcnt iniClsrsante qui permet de<br />

daliscr une couveI(urc ymanenie de I'Eumpe et de<br />

I'Afrique a'8ec reulcmsnt 4 satelliies (voir fig^^ I). ce qui<br />

e11 IC ncinhrc minimal requis. Cette conslcllation CSI<br />

cunstitule dun satellite giostalionnah et de trois satellites<br />

siluis sur des orbitcs giosynchmncs inclinier (i=18,3O) CI<br />

faihlcment ercentriques (e=O.lQ).<br />

Ln couv~nure permanents dc ccttc conslellalion reprisenie<br />

15% de Is surface ternstre.<br />

Lcs quam satellitci itant eonatammcnl virihler de tout<br />

point de In zone COUVC~C. cela pcrmcl dcnvisagcr un<br />

ryslkme de navigation simplifii uliliranl une horloge<br />

atomique nu snl. ICs satellites itant don munis d'un simple<br />

rip6lcur.<br />

Couverlure nominale de la constellation<br />

Indisponbilile journalitire (mn)<br />

1436'<br />

360'<br />

240'<br />

5. MtSE A POSTE<br />

la mise b pos~c dm satellite est I'op5ration qui perinct de IC<br />

placer sur son orhitc de aervlcc 1 parlir de la surface de la<br />

Terre. Ellc eat gtntralcment r6alisCc en deux Clapcs. sunout<br />

dana IC cas d'orhiles Clevics qui noun concerne danr celle<br />

Ctude:<br />

~ un lanceur injcctc IC salelli;8: sur une orhite inlermidiaire<br />

qui difkre de t vhik finale socliaitCe.<br />

- le ratellile effectue uti transfcn J: I'orhilc intcnnidiairc P<br />

I'nrbite finalc nu mnyen dun mnleur qui lui clil proore.<br />

Dans IC cas dune conrtcllalion dc satelliter. on pcul utiliser<br />

des Inncements mulliplcs afin de riduirc IC cntl glnhd de<br />

I'o$ralion: la premitre Ctape est faite simullsnfment polr<br />

dcua satellilcs ou plus.<br />

Ir trvnsfcrl d'un aalcllitc I pnrlir de I'orhite intermtdiaire a<br />

lnujoun CtC dCferminC dann cctlc ttudc de fagon i minimiser<br />

In qusntitt dcrgola ntcessairc h I'opiration. i massc finalc<br />

1'


du sntcllitc fixCe. Aucunc controinlc i1(n CIC prise cii compte.<br />

h pnrticulicr. In poussie du motcur est suppsic librcment<br />

oricntehlc.<br />

Les nianiwuvres nnt 616 modilis6cs par des impulsions.<br />

Dam ces criiiditions. lo mnsse d'ergols inc coiisoininCe par<br />

IJn transfcrt s'cxprimc simplemcnt par:<br />

avec:<br />

my : masse finale du sntcllitc: c'est la<br />

masse h I'issuc du transfer:. innssc tlu<br />

motcur comprise.<br />

AV: sommc des varintiniis (le vitesse du<br />

satellite impriinies par Ics divcrscs<br />

impulsions du transfcrt.<br />

V, : vitesse dijection du mntcur.<br />

0 Minimiser la quailtiti d'ergok consomink est donc<br />

iquivalcnt b minimiser la snmme des vorintinns (le vitcsse<br />

AV. Cc dernicr crith prCsentc I'iiitirtt d'ttrc intlipendnnt<br />

des perfnrniaiices du meitcur (V,) et de la inasse du satellite.<br />

C'est donc lui qui a effectivement 616 cmployi.<br />

c<br />

'<br />

Dans cettc Ciiitle. chaque trnnsrcrt est suppcisi rhlisi uu<br />

moyen de 2 iiiipirlsinns. ce qui cst le noinhrc iiiiiiiiiial rcquis<br />

pnur un transfert quclconquc (entre tics cirhitcs non<br />

sicontes).<br />

5.1 hlisc B poste du svtcllite R&xtationna/rt<br />

On suppisc qeic IC satellite giostatioiiiiaire ser.1 mis i poste<br />

par la prncidure stantlard suivante:<br />

- un lanceur AKlhNIi iiijecte le satclliic sur uiie rirliitc W O<br />

(Gcosialinnary Transfer Orhit) dnni les paraii;i.trcs cirhitaux<br />

sont apprcrxiiiiativeinciit Ics suivants:<br />

Ikmi grand axe:<br />

24 372 km<br />

Exccntriciti: 0.73<br />

Incliiiaisnii: U,"<br />

hrgciinent du p6rigie: I UO"<br />

Ascension tlroitc du nocud ascontlant: non rice<br />

(cllc est fcinction de I'instaiit de lanccrnciit)<br />

- IC sntellite est placf sur I'orhite finale au inriyeii d'uiic<br />

impulsinn unitpc clfectuic b I'apigie (le I'cirtiite (ilU. I1<br />

s'agil de son scul pnint d'intersection over I'orhite<br />

ghtatinnnnirc. hvcc Ics valeurs fournics ci-clcssus. le cnOt<br />

du transfcrt est:<br />

AV = IS09 inls<br />

Pour uiic viicsse d'i,jcction usuellc Vc= 3000 ink. IC<br />

thsfcrt niccssitc donc uiic quantiti d'crgcils igalc b:<br />

65% dc la masse Finalc.<br />

5.2 hllrc h pmtc cler autrer rrtelllter<br />

En cc qui coiiccriie In premikrc Ctapc de lo mise b pc~le.<br />

quatrc rolutionn ont iti cnvinogies:<br />

I<br />

a) lcs sntellilcs 8onI injectis initialcmcnt sur une orbitc CTO<br />

(SCS curnciiristiques non1 celler indiquCcn nu pnrngraphc<br />

prCcidcnt).<br />

b) ils son1 injcctis sur unc orbilc didiic h leur misc h pste;<br />

il s'agit d'une orhitc de paromtires orbitaux identiques a<br />

ceux dune GTO, B I'exccption de I'inclinaisnn, Cgalc b<br />

I'incliiiaison de I'orhite finale,<br />

c) ils son1 injeclis sur uric orhite dedi& i leur mise h poste;<br />

les pwamttres dc I'orhitc sont ditcrrninis de faqon a CC:<br />

qu'elle inccrsecte les 3 orhites finales; chaquc trnnsfert est<br />

rialist au moyen d'une impulsion unique cffcctuie en I'un<br />

de ces pnints.<br />

d) ils sont iiijcctis sur unc orbile did;& i leur niisc h poste.<br />

don1 les paremttrcs sont totalcmerit optimisis; plus<br />

prCcisimcnt, oii oplimisc coiijointcmcnt la trajectoirc de<br />

montic du lanceur et les impulsions perincitant de rtaliscr le<br />

transfert.<br />

Pour ICS deux prciiiitres solutions. nous awns<br />

dtudit dciir prtridurcs (le mise i poste:<br />

- chocun des 3 satellites est inject6 sipnrCrncnt par un<br />

lnnccur propre.<br />

Pour I'un des satellites, on ilitcrniinc nlws le transfcrt hi-<br />

iinpulsionncl opliinni qui perincl dc passer de I'orhite<br />

d'injection h I'orhite finalc. En rCalitC. I'orhite d'injcctinn<br />

ii'est pas eiiiiSrenicnt tlCfinie: I'asccnsicin tlrciitc (IC son<br />

nwud nscendant pcut prendre n'iinpnrtc qcrellc valcur sLlcin<br />

I'iiistant de tir. La tlitcrinination du transfcrt optimal tloit<br />

donc ttrc faite pnur toutes les valeurs de SIO coinprises cntre<br />

3 et ?I[. On peut alms tracer la courhe d'ivtilutinn du coot du<br />

traitsfcrt en foiiction de f20. OII eii dttluit la vdeiir nptimale<br />

tlc Q qui coiiduit au transfert "optiinuin optiniciriim".<br />

Pour Ics tleux nu1rc.r satellites. Ics courhcs se dicluiseni de I:I<br />

pricitlcnie par un simple tlkalage en no. Ce tlCc:ilagc cst<br />

Cgal h l'Cc:ir! aiigcilaire qui existe entre IC ntwud asccntlani<br />

tlu lirciiiier satellite et celui du satellice cnnsitl6rC. fin<br />

particulicr, IC transfert "optirnurii optiinciruin" a IC niSmc<br />

coot pnur les 3 salcllites. Pour pcwvriir I'utiliser<br />

clfcctivcnient. il suffit d'ajuskr pur chaquc satellite la<br />

valeur de 1% par IC hiais de l'inst~nt<br />

de Iaiiccincnt.<br />

- Ics 3 sutcllitcs sont injecth siiiiiiltiinCnient nu riioycn<br />

cl'un laiiccur uniqiic.<br />

I1 ii'cxistc alms qi;'uiie sciilc iirliiic tl'iiijcctiiin pour ICS 3<br />

satcilitcs. caractirisic par iiii rb tlriniii. 11' n'cst clone pas<br />

possible cl'utiliscr IC transfcrt "optimum crptiincirurn" pour<br />

chacun tl'cux. 1.3 coiisiiinmatitin tl'crgols est par ctiiisiqucnt<br />

tiicijours suphiclire iiu Cgalc b ccllc tlu cas prCci.tlcnt. 011<br />

tinificie par ccintre cl'iin cnOi de loiircmciit infiricur.<br />

Pour toutc valcur de Q nn pcut diduirc tic In cciiirhc<br />

ohlenue (lam IC cns pricidcnt IC coot du transfer1 riptimnl<br />

pour chacun des 3 sniellitcs. Ccs 3 coots permettent de<br />

cnlccilcr un coot ghhal piur len 3 tronrlcrts: nws ovcins<br />

chniai le AV du trundcri unique qui ccmsntnincruit unc<br />

rnosie Cgolc h lo masse totale d'ergols der 3 transferis. pur


ploccr sur nrhite In n ihc masse finale (3 Tois In masse tl'un<br />

sntcllitc oprLs misc pnstc). [,a vnleur de CC critkrc tltpend<br />

de In vitcssc tl'6,jcction des motcurs: nnus svcins chnisi la<br />

voleur Ve=7000 rids.<br />

Pour Ics dcux dcinikres solutions. scul le<br />

Inncement siniultenC clcs 3 satcllitcs a 616 CtucliC.<br />

5.2. I Tran.cjerrs ctcrprris une GTO<br />

La cnurhc de In figure 2 rrprtsentc IC cofit minimal (AV) du<br />

transfcrt hi-impulsionncl optimal dcpuis IWC ttrbitc GVO. cn<br />

fnncticin dc I'asccnsicn droitc Qo du nocud nsynd;int de<br />

cettc nrhitc.<br />

2900.<br />

1600 j V<br />

1200. - I - 7--l----7*<br />

0. 90 180. 270. 36<br />

deer<br />

Coirt du transfer( dun des satellites<br />

en fonclion de I'ascension droite du noeud<br />

ascendant de I'orbite d'injection (GTO)<br />

[.a cnurhc prtscntc dcux iniriinia si.pari.s tlc IOS" cn % 1.e<br />

plus petit cst allcint pwr %=lOf . sciit unc valcur p~ chc<br />

de ccllc tlc I'asccnsicirl clriiitc du ncrutl ascent1;int dc I'orhitc<br />

finalc (IO?..;i 6"). 1.c coht ccrrrcspintlnnt cst tlc:<br />

11M mls<br />

Avec unc viicsse cl'tjcction tlu itititcur tlc 3000 nilr. In III:LSSC<br />

d'crgols consoiiinii.c serait alors tlc M';c tlc la lli:i.i\c finalc<br />

niisc a pistc. ('cs rhltats sont trcs voicinc clc ccux tlu<br />

!.-anrfcrt pftistatic~iir!oirc cffcctui. tlans Ics iiii.nics ciinditiiins<br />

! IS09 mls. (15% 1.<br />

['our pwvcrir cffcctucr chaqw tr;insfcrt pur un coiit de<br />

14x4 mls. iI faut iiitpcrativcinent iitiliscr un lariccur pur<br />

chaquc salcllitc. l-'iiistant tlu prcinicr lanccnierit n'a itas<br />

d'imprtaiice pour la inisc a pistc. Par contrc. Icc dcux<br />

Ianccincnts suivanls doivcnt itrc faits b unc hcurr<br />

particulicrc clc la jiirirnfc (qui tltipcritl dc lii datc dc I'anntc).<br />

Si ICS 3 ratcllitcs siint injccttc siiiiultaiiinicnl par 1111 Ianrcur<br />

ilniquc. cin cvirc ccc cnntraintcs tlc tcinpr tl


0<br />

0<br />

'<br />

ml<br />

3200.<br />

2800.<br />

2400.<br />

2000.<br />

1600.<br />

1200. \<br />

0<br />

I<br />

90. 18i. 27i. 360.<br />

deer e<br />

Coiit des 3 Iransterls et coirt global<br />

en lonction de I'ascension droite du noeud<br />

ascendant de I'orbite d'injection<br />

(GTO dinclinaison rnodifiee) :<br />

Si par contre Ics 3 satcllites sont injectts sur une nieinc<br />

orhite h I'issue d'un lanccnicnt mulliplc. la situafioii est plus<br />

dcfavorahlc que daiis IC cas d'une iiijcctinn stir GIT). II<br />

existc 3 solutions nptirnalcs. poiir Q = ION", ??R" ct 348".<br />

Lcs coots correspondents sont:<br />

2797 mls, 2797 m ls et 1315 mls<br />

Ir AV maximal c5t trcs ncttcinenl cu+ricur i celui cniistatc<br />

dans IC cas d'une injcction sur GrO (2707 in/!. au lieu dc<br />

21fa m/s). lin outre. ~cs tniis AV ne snnt pad du tout t~u<br />

meme nivcau.<br />

&I conclusion. I'injcction sur GTO mnlifiGe n'cst<br />

ihttiressontc quc dans IC cas des lnnccmcnt sfpark. Elle<br />

+rmcl dc faire uiic petite economic d'crgnls (1601 par<br />

rsppnrt B uiic injection sur GTO standard. II rcste B ftbdicr<br />

si unc tcllc orhitc est acccssihle i un lanccur Aviane. 1.3<br />

GTO standard est en revanche unc orhite d'injeL!tion hien<br />

supiricun si Ics 3 satellites snnt lnncds cnscmhlc.<br />

5.2.3 Tmnsfrrls nuino-impulsionnrlr depuis une &tile<br />

d'injerlion CnriJnune<br />

Nous avnns recherche uiic orhite d'injcctinn intcrccplniit Ics<br />

3 orhites finales. de facon a pnuvoir rtaliser chaqlJc tradsfert<br />

au moyen d'une impulsion uniqoc. On cnnsidkre qcit les<br />

satellite$ sont tous Ics 3 situ& sur cctte .rirtritc aprts<br />

injection. ce qiii suppnsc cn pratique qu'ils on1 it6 lances<br />

cnsemblc.<br />

Un halayagc cxhaustif de toutcs les orhitcs (circu1air.s IIU<br />

clliptiques) interceptant les 3 orhites finales a dtC cffeutue.<br />

Pour chquc solution. nnui avnns calcult la sriminc d-s 3<br />

AV dcs impulsions. En difinitivc, il est apparu que la<br />

solution qui ininimisc ccttc soinrne cst uiic cirhite<br />

6quatorialc de demi grand axc:<br />

42 755 kin<br />

II s'agit donc d'une orhiie voisinc de I'orhite gtristatii)niiairc.<br />

don( le demi grand axe est 42 164 km. 'routes les impulsions<br />

sont Cgalcs et valent chwune:<br />

I I24 m/s<br />

I<br />

En pratique, on purrait cnvisager dinjccter dans un premier<br />

temps les 3 satellites sur GTO standard. puisqtie I'orbitc<br />

optinlate identifite est quasi giostntionnaire. 11s seraient<br />

ensuite trnnsfircs sur celle-ci ensemble nu individucllemcnt.<br />

pour un coot AV = IS30 rnls. Le coot global pur chaque<br />

satellite serail donc dc 2654 mls. snit heaucoup plus que Ics<br />

2160 mls nccessaires piur une mise h postc hi-<br />

impulsionnelle directc tlcpis line GTO. llne telle solution<br />

priscntcrait donc pcu d'iiitcrtt.<br />

S.2.4 0pirni.tn~ion muplir de Irr lrajerloire du lnnreur rI<br />

des 3 tmn.fcrts<br />

Nous dispnsons dun logiciel capahle d'optimiscr<br />

simultaniment la trajectciirc de niontic d'un lanceur donnt.<br />

plaqarit un nu plusicurs satelli,cs sur orhitc d'injcction. ct les<br />

transferts hi-irnpulsioiiiiels permeltant de placer ccs<br />

satellites sur leur orhitcs iinalcsI51. Plusicurs criltrcs sont<br />

susceprihlcs d'hc minin\i\


0<br />

10-6<br />

Ccst dans ce COS que le volcur mnxiinnlc des 3 AV CSI In<br />

plus petite. C'cst daiis cc cas Cgolemcnt qii'ils sont Ics plus<br />

voisins Ics uns tles outrer. Ccs rCsultots cnrrcspnndciit i des<br />

Pour IC cnlcul de la pression dc radiation. Ics<br />

caractCristiqucs physiques rctcnucr pnur lcs satcllitcs sent<br />

ks suivanlcs:<br />

I11Bsscs d'crgols consommics valant respcclivctncnt: surface cxpnstc: 3 in*<br />

masse: 500 kg<br />

cmfricicnl thcrino-optiquc glnhnl: 1.2<br />

97%. 97% et 918 dc la m a w fiiiale tl'un satcllitc.<br />

Par ropport B une mise 6 pnstc utilisant line CW) standnrtl.<br />

on nhscrvc uiic rCtluction d'cnvirnn 8% tlc lo innssc tl'crgols<br />

m nx i in nlc.<br />

6. MAINTIEN A I'OSTB<br />

Lonolysc tle pcrfnrinancc qui n pcrinis dc propnxcr In<br />

constcllntion Ctutlifc a CIC rdalisfe sans prcntlrc en cntiipte<br />

Ics principalcs perturhatinns naturcllcs apissaiit sur Ics<br />

satcllitcs tlc 1;i constellation. La prise en coiiiptc tlc ccllcs-ci<br />

est cn cffct inutilc pnur analysrr la prrnrinancc tlu systkine<br />

sur une tlurfe de 24 hcurcs. Ccpntlant. il est clair que le<br />

service ftiimi r-r IC systtiine cnvisagf n'a d'iiitirCt clue si<br />

celui-ci CSI dispsnihlc pcntlant unc dur& ncihiiiiale<br />

ditcntlant sur pliisicuis annCcs. 11 convicnt clc verifier tliic la<br />

constcllotioii prcipcosCc est viahlc vis i vis tlc cc crith. et<br />

qu'cn porticiilicr les pcrturhations suliics par Ics siiltllitcs<br />

coinpsnnt Io ccinstcIIatirin ii'impiscnt pas ties niiiiiocuvrcs<br />

(IC inninticn i pcistc trop friqucntcs (ou trnp ~riiltcuscs.<br />

la*6tutle c ~ u niainticn i poste a tloiic itt riiilisdc cd deux<br />

tcnips: tiiut tl'ahirtl. lcs principiilcs pcrliirhitiiiiis ueissaiit<br />

sur Ics s:itcllitcs tiiit 316 siniiildcs. et il'iiillucncc des<br />

ddgratlatiiinr tl'cirhitc siir la pcrfcirinaiicc tlii systi.inc ii iti<br />

. Cvaluic. Ihiis un tlcirxitiiie tciiips. pniir 1111 cycle de<br />

corrcctirin tl'orhitc choisi au vu tlc I'aiiulysc pr*:cdtlctite. (Ics<br />

maniKuvrcs de milintien h pcistc iriitiftf tliteriiiindcs ct IC<br />

coot gloh:il tlc in:iinticn i piste :I 616 iv:iIiid.<br />

Is satcllitc gCostatinniiairc n'a pas it& pris CI cciinptc pwr<br />

cctte analysc pour lcs raisons suivaiitcs: cioiniiic iI n itd<br />

incliqud cn iiitnducticin. la charge utile (IC riiivigatioii<br />

prnprcincnt tlitc scra tl'iin voliiine et tl'iiiic iiiaw liinitic. cc<br />

qui autnrisc soli atljonction stir iin satellite gdtrt:itiioiinairc<br />

~CVOIII i tine autre iictivitd principalc (tdI~c,~iiiiiiiinicatiliii<br />

par cxcinplc). Ihns ccr coritliticiiis. IC inniiiticn ii pcikie tlc cc<br />

salellitc scra fix6 par lcs exigciiccs (le I~iisitioiiiieiiictrt fin tlu<br />

satcllitc tlc tilfciimmuiiicatioii. Par aillciirs 4 I'on ciivisage<br />

d'utiliscr tin satellite gfostatirinnairc l~iiic~.1clit tlitlid h la<br />

missiw- tlc navipatinn. I'ciicoinlirciiiciit tlc I'cirhitc<br />

gioctatiiinnairc iiiipo.wra i cclui.ci uiic fcliCtrc (le<br />

stationircincnt Iiiii;tic. la respect t~c ' ccttc fcllCtrc<br />

nCccssitcra iin niainticn h pcistc cl'iin nivcau cciliipiirilhle i<br />

cclui tl'uii satellite giostatiotinairc ,(le ti.lCcciltriiiuliie;Itin~i.<br />

snit cnviron 50 nilslan cn tcrmc tlc vitcssc caractdristiclue.<br />

6.1 Usiire natitrclle dcs orhitcs<br />

Compte tencl de la iinturc tlcs orhites. Ics pctturh:ltinns<br />

principalcs qu'il convicnt de prcndrc cn cniiiptc sont Ics<br />

suivantcs:<br />

- dissyiiiflries tlii piotciiticl gravitiititriiiiel terrcstrc.<br />

- ottracticln gravitntionnclle de la I.irne et tlu Solcil.<br />

- pression tlc radiation solairc tlircctc.<br />

Le ptcntiel tcrrcstrc o CtC mcdClisC en prcnant cn cntiiptc<br />

Icn termcq 71~nniix<br />

el lcwfraux jusqu'h I'ortlrc cl IC tlegrd U.<br />

6.1. 1 InfCRrtrlion du Inofti'cmrnf drs sritc.//i~~s<br />

' L'annlysc tlc I'iisurc tlcs orhites sous I'influcncc des<br />

perturhntinns nnturcllcs U CtC rdnlisCc cn utilisanl un prcmicr<br />

logiciel dirvelnppd: B I'ONEHA qui perinct une integration<br />

rapide ct fiahlc du mouveinent orbital. Cc logiricl utilise le<br />

fnrinalismc dcs parainctrcs ccntrfs ((ru pararnktrcs moycns)<br />

qui pcrmct de supprimer lcs perturhaticins i hiiutc frtqucnce.<br />

qui n'nnt que peu d'influcnce sur I'Cvolutjon :? lnn,g tcrme de<br />

l'iirhitc. Ccla autnrisc ainsi I'utilisatinn tlc firands pas<br />

tl'iiitfgration (typiqucnicnt '(le I'ordre de la piriotlc orhitalc.<br />

snit 24 hcures ici). au lieu tlc quclqucs minutes si I'nn utilise<br />

les ClCinciits nsculatcurs tlc I'orhite (flimcnts iiistantanCs).<br />

Ccttc tcchniquc pernict dnnc de rtalixr rapitlcmcnt des<br />

intdgriitinns tlc longuc tlur6c.<br />

I'our analyser I'6vrrlutioii de la performance tlu systknie snus<br />

I'infliicnie tlcs pcrturhatirins naturcllcs, lcs parnincires<br />

cirhitatrx tlcs trois satcllitcs ccinsiddrfs snnt intCgrfs avcc le<br />

logicicl prfcfdcmiiicnt tlfcpit. I'dritditlucinciit. on rclkvc la<br />

valcur tlc ccs parainctres et on Ics utilise pur tlftcrniiner la<br />

.iiciuvcIle ciruvcrture tlu systkiiic aprks pcrturhation tl'orhilc.<br />

lin pratique. !:..: calcirls tlc ccwvcrturc oiit dtl rdalisc's lnus<br />

les 7 jiiurs cl lo duric glohalc tl';iiialysc ciiii?;Ccutive est de fi<br />

mnis. 1.3 clate tlc tlfpiirt (le I'analyse a Ctd fixdc ;NI I Jaiivicr<br />

ItNJ. ('cttc (late 'a uiie innuclice tiirccte stir IC rfsultat<br />

puisqii'cllc fixe la position re1:itive tlc la 'I'crrc et tlcs autres<br />

astrcs pcrturh;rtcurs. 1 hi: aiiiilysc pliis piussCc clcvrn donc<br />

Ctrc rdalisce. piiir dwluer niit:iinnicnt I'iiifliicncc tIc Iii (laic<br />

tlc lanceinerit.<br />

6.1.2 C'rrlcrtl tlr In coiivrrIiirr<br />

hfili de pruvoir cciniparcr correctcment la ccoiivcrturc tlc la<br />

coiistclliition "pcrturhec" avcc la cnuvcrturc iioniinalc. iI a<br />

it6 prtuitld (le la nianikrc suivuntc:<br />

- Le contour dc la zone de couverturc iiwniiialc a<br />

iti rntwlClisC apprcixiiiiativciticiit piir UII polygonc<br />

sphcriquc. quc l'tin pcut ohscrver sur la figure I.<br />

- IIn rfscaii tle pciiiits situCs h la silrf'ace dc la<br />

'I'crrc a 616 tltfiiii ii I*iiitdricur (IC cc pi~ygtinc. ccs<br />

piints stint rdpiirtis sur des p:iriiIIkIcs tlisprsds IIIUS<br />

lcs 2:' en latitutle. Sur chiiquc parallclc. Ics points<br />

snnt 6tlui-rfp;irtk en Iiiiigitiitle ct lcur ntimhre est<br />

chnisi tle tcllc fayirn que la tleiisiti surfacique tlc<br />

points soit :ipprrixiiiiativeincnt coilstante sur<br />

I'cnscmhlc tlu rdseau.<br />

- I.'aiialysc tlc cciirvcrturc cst rdalisdc cn intCgr;int<br />

la cciiistcll:iticoli stir 24 hcurrs (piirilnlc tlc<br />

rccouvrciiiciit tle la t:cinstcllnticiri iiiiiniiiiilc) et en<br />

tcstunt toutcs Icr 5 minuter In valcur tIu I'IX)Ii en<br />

chaquc pint du riscau. On tlfterininc ainsi IC<br />

pourccntoge dca points ou IC service tlc navigation<br />

cat ncccraihle en pcrmnnencc sur la durCc<br />

tl'inlCgrntinii. Ir rcrvicc crt clit occcssihli b un<br />

instant dcrrint? si il y o nu moins 4 rntcllitca visihlcs


A cct instant. ct si IC PDOP cat infCricur i 6.<br />

Comptr tcnu de la rtparlilinn des points du rSseau.<br />

ce pourcentage en1 aussi IC purcmtagc de la<br />

iurfrcc couvcnc. II est exretemcnt dc 9R.M pour<br />

la cnnstellation nominale. La performance de la<br />

connlcllatim ddgndCo a loujotin 616 chiffdc nu<br />

moycn de cet indicc.<br />

6.1.3 R4sultar.s dr I'annnlysr<br />

La figure 6 reprtrcnlc IYvolutinn du pi~urccnlagc


10-11<br />

I,'nnolysc du coot de meinticn B poste dnit 2trc rdallsi, en<br />

deux temps: tout tl'ahod il convient de ditcrminer quels<br />

sont les parmctrcs qu'il est ohsnlument niccssaire de<br />

cnrrigcr: iI cct en cffct pnssihle quc In scnsihilitd de ccrtains<br />

paromi.trcs sur IC scrvicc snit suffis:iinmcnt raihlc pwr quc<br />

I'm piissc sc pcrmettrc tlc ne pas Ics cclrriger sur tiiutc lo<br />

durfe du service. linsuitc, IC cc101 ilcs ccrrrccticiiis a rialiser<br />

doit 21rc cnlculi. Pour ccla. IC logiciel d'optimisation de<br />

manncuvrcs hi-iiiipulsinnncllcs. ddjb utilisi piur I'itude dc<br />

la mise ii poste. a de nnuvcau Cti mis en ocuvre.<br />

6.2.2 Mnnrirtrvres cir rrulinricn rt pr~fc<br />

tine ftiide cxhaustivc des pnssibilitfs dc mainticti i pislc de<br />

la cnnstcllntinn a 616 rialistc. en tcstant succcssiveincnt la<br />

nicessiti dc corripcr chacun (les paramktrcs orhitaux.<br />

Comptc tcnu de la vnlontC dc rialiscr des satellites siiiiplcs<br />

ct pii cobtciix. Ics prcmitres nniilyscri lint cii puir hut ilc<br />

vfrificr s'il dtait pnssihle de RC contenter de maiiiiciivres<br />

effcctuties scliin la vitcssc tlu satcllitc. nu B la rigucur tlans<br />

'. plan (le l'tirtiite, Is hut dtait .I'fviter si possihlc dcs<br />

I! 1 wvrcs cle nitdification du idan tlc I'orhitc. qui snnt<br />

cob,. 'ea ct qui impnscnt uiic pliitc-forme plus wmplcxc<br />

plwr le *kllite.<br />

('rq tests on1 iiinlhcurciisciiicii~ nioiitrk quc ccla n'cst pas<br />

pnssihle. 1.n rigiirc 0 rcprCscntc I'Cvciliititin $c la cciuvcrture<br />

du systcnic clans I'hypnthbsc tlc ctirrccticiris (Intis le plan de<br />

liirhitc sciilcnicnt (ctirrccticin tlii deini 1 pr:iiicl axe. tlc<br />

I'excciitricitd. dc I'argiiiiicnt tlu pirigtic CI clc I'aiiciinalic<br />

vrnic tlc I'orhitc) On coiistatc tine prtc prciprcssive tlc la<br />

cnuvcrture noiiiiiialc: ccllc-ci n'cst pas ti:taIi!iiiciit rticiilx!rCc<br />

i I'issuc de chaqiic maiitwu\*rc et la situation nc fait<br />

qu'ciiipircr avcc le tcinps.<br />

' I<br />

0. 21. 42. 62. 83. 104.<br />

s em8 i ne<br />

I<br />

Evolution du pourcentage de couverture<br />

en fonztion du temps.<br />

Corrections dans le plan de I'orbife.<br />

II s'avtrc time niccssaire dc rialiscr i.l;.aIcincnt des<br />

cnrrccticvis tlu plan de I'nrhite (inclinaistm et asccnsion<br />

droitc du nocud asccritlaiit). Iln cc qui conccriic ' ~ tlcrnicr e<br />

paramttrc. Ics mantvuvrcs rdalisfcs se cnntcntcnt d'assurcr<br />

~ U C Ics 3 plans d'cirhite cnnscrvcnt la clispositinn relative<br />

qiiilr avaient initialemcnt. fin cflct. wus I'inflcicnce dcs<br />

tcrmcs tcssPraiix tlu pitentiel gravitiitioniiel tcncstrc CI sous<br />

cclle de I'nttracticin luni-solnirc. In vitcsse de riitiitiiin dcu<br />

plans d'orhitc difkre suivant les satellites. In rcvanchc. la<br />

rotation d'enscinhle des plans.d'orhitc. due csscnticllcincnt a<br />

I'nplatisscmcnt de la Tern et qui aitcint cnviron 0.8" aprts 8<br />

scmaincs. n'cst bicn cntcndu pas corrigCe puiscju'il suffit de<br />

mcwlificr ligtrement IC dcmi grand tue initial der orhitcs<br />

pour que In longitude dcs nocuds nscendants par reppnrt b la<br />

Terre reste fixe. Des manwuvrcs de ce type cffcctuecs<br />

toutcs les R scinaines perinettent d'assurer unc couvciture<br />

qui rcste toujours suptrieurc h 90% de la couverturc initiale<br />

pendant Ics 7 annics de tlurie de vie envisagics pour IC<br />

systtme.<br />

6.2.3 CoCti tiic mninticn t3 posit-<br />

Cornme on vicnt de le voir. le mainticn i poste envisagi<br />

ndcessite de corrigcr la totaliti des paramttrcs orhitaux.<br />

Nfani:ioins. la correction des nncuds ascendants ayant<br />

uniquemcnt pour hut de mairitenir la disposition relative<br />

initialc des plans d'nrhitc. il suffit de inanneuvrer dcux<br />

satellites sur lcs trois pour rfaliscr cettc op6ration. L'identitd<br />

clcs satellites h manncuvrcr p i t Stre choisic de differcntcs<br />

fapiis. Pour cettc prcmitre analyse, 2 sctnaricis tlc inainticn<br />

it poste nnt Cti envisages:<br />

a) on permute rtgulitrcmcnt IC satellite qui ne<br />

maiincuvrc pas.<br />

h) oil inanoeuvre les satellites qui perinettent de<br />

miniiniscr la sommc totalc de variation ;ingulairc i<br />

rial iscr.<br />

I'our tester chnciine dc ccs optiniix. I'cnscinhle tlcs lngiciels<br />

rncnliiinnds julqu'h prfscnt a fti utiIisC:<br />

- intigriitiiin cn fleiiicnfr ccntrfg des orhitcs (le la<br />

ciiristcllatiiiii.<br />

- calcul tlc la pcrfcirinance avant ct aprts lcs<br />

nianwuvrcs dc ccirrccticin.<br />

. calcul du cciirt ininimal tics mantruvres de<br />

ccirrcctioii. iiitwli.lisfes par des transfcrts hi-<br />

impulsioiincls.<br />

[)ails IC calcul effcctuf. IC coirt tlcs manrsuvres (le phasagc<br />

clcs sntcllitcs (affectant I'anniiialie) a it6 nfgligi. II cst hicn<br />

cnniiu qu'il cst pcissihle d'ohtrnir IC phasagc ddsiri cn<br />

rfalisant unc Idgtrc mtdification du demi grand axe tlc<br />

I'cirhite. plapant ainsi le satellite sur une orhitc de derive.<br />

llne scconde mancviivrc, faite en scns invcrse de la<br />

prcmikrc. pcrmct de re-stabiliser le satellite uiic fnis IC<br />

tlfphasagc soubaiti ohtcnu. Le colit (le cctte manncuvre<br />

dipciitl hicn cntc'ndu tlc la durfe tnlirte pur I'nhtcntinn du<br />

phiisagc. I.cs prcmitres ivalualinns tdalisdcs tint mnntri<br />

qu'un tlilai tle 24 hcurcs perincl tlc reiiclrc IC coot du<br />

phasagc ndgligeahle vis b, vis du colit tlcs autres<br />

mantwuvrcs. c'cst pourquoi ce coot n'a pas 616 pris en<br />

cnmptc p x la suitc.<br />

hpri:s avoir test6 les dcux scfnarins de inainticn h poste<br />

iviyiiCs prCcCtlcnirnent, iI s'avkrc lngiquemcnt que IC<br />

second est le pliis Cconomiquc. De plus, c'est cclui qui<br />

assure la ineillcurc repartition des masses d'crgols<br />

consniiimfcs par Ics trois satcllitcs.<br />

1: coGt total du maintien h pnstc a CtC ivalui en rtalisant<br />

uiic siiiiulatiivi cciinplttc sur 7 nns. Lr.s rfsultats ohtrnus<br />

figiireiit danr le tahlcoii (le la figure 10.<br />

On cnnstale quc IC coot dc tnainticn B poste s'mtrc<br />

relativemerit plus ilevt que celui d'un satellite


giostationnaire (RS mlslnn contrc 50 pour un<br />

giostationnairc). Ce coat reste nianmoins tolirahlc. II<br />

convicndro de virificr s'il II'CSI pas pnssihlc. par un chnix<br />

adCquat de la position des ntuuds asccndonts initiailx. de<br />

limiter le nivcau dcs perturhatiolis difffrenticllcs afrcclanl<br />

Ics plans d'nrhitc et de riduire ainsi le COO\ glnhal de<br />

maintien 6 poste.<br />

1<br />

I 592<br />

1<br />

I , 592 I 546<br />

(mls)<br />

Masse totale tl'crgols<br />

(% masse Enale)<br />

22 22<br />

I<br />

20<br />

Figure 10: Coirt du maintien a poste sur 7 ans<br />

7. CONCLUSION<br />

Le hut de I'frude prcseiitte dans cct article Ctoit de ridiser<br />

une analyse de In faisahilitd d'un systtmc de naviealion<br />

fonctionnant suivant le principe du systtmc CI'S et nssurant<br />

uiie couverture perrnanente de I'liurope ci de I'AfriqUe P<br />

I'aide de 4 satellites sculemcnt dont un giostationnaire.<br />

Les paramttres orhitoux initioux de cctte constellot inn ann1<br />

issus d'unc itucie ontirieure121 cnnsncrie i la rechcrchc de<br />

constellations faihle nomhre de satcllitcs. La coiirtcll:itinn<br />

prisentic ici prCsente plusicurs caroctiristic\ucs<br />

intiressnntcs:<br />

. Irks rnible nninhrc de satellites (4 sotcllitcs cct 'IC<br />

minimum rcquis pour assurer UII service de<br />

navigation du ~ype CPS). I<br />

- tous Ics satellites snnt visihlcs cn pcriiiancnce de<br />

la memc station de cnnlr6lc; il est aiiisi pnssihlc<br />

utiliscr Ics satellites coinme de simples repdeurs<br />

d'un message de navigation ilahnrC ou snl.<br />

- orbitcs rclativemcnt "classiques".<br />

L'itudc de faisahiliti prdsentic ici s'cst surtniit attachCC i<br />

analyser les prohliiiies posCs par la mise ct le riiairiticri i<br />

0 postc d'une tclle constellation.<br />

L'itudc de la mise a poste a itf faite cii coiisitli-rail1 divcrses<br />

solutions:<br />

- Inncement individuel de chaque satelliic. nu lan-<br />

cement couple des 3 satellites nnii giostatinnnaires,<br />

- injcction pr-ilirninaire sur unc nrhitc G'TO standard<br />

(Geostationary Transfer Orhit) dilivrie par un Ian-<br />

ceur hrianc. nu injection sur uiie orhitc didiic a la<br />

mise a pnste de ccs satellites de novigatinn.<br />

II est apparu que I'orhitc GTO standard hrinnc coiistitue un<br />

Irks bon choix pour I'orhitc d'injcction. surtout si Ics 3<br />

satellites imn giosiationnaires son1 mis h poste 6 I'aide d'un<br />

lanccur unique. Dans cc cas. IC cnCt de chaquc transfcrt ne<br />

dipassc pas 2160 mls en vitcssc caractiristique. II est<br />

ccpcndanl heaucoup plus ilcvi que celui d'uii satellite<br />

gtostationnaire (I SO0 mls). Lorbite d'injcctioii qui permet<br />

de minimiser la consommation d'crgols des trnderts de<br />

mise A poste finale diffkre peu dc la GTO: elk conduit B tine<br />

iconomie modcste (8% en masse).<br />

10-9<br />

Dons IC ccs tru les satellites son1 injectis sur GTO<br />

individucllenicnt. IC crdt du transfcrt est Irks voisin de celui<br />

d'un satellite gcpstionnaire. lliie telle prncidurc de misc a<br />

pstc est cependant dilicate CY elk impose I'heure de tir<br />

dcs deux dernicrs satellites lancis.<br />

L'itudc du maintien b poste a necessiti dans un premier<br />

tcmps d'analyscr I'tvolutinn de la couvcrturc du scrvicc de<br />

navigation sous I'influencc des pcrturhations naturellcs:<br />

Ccttc analyse o prmis de monb-r qu'un mainticii i poste<br />

rclativcment frtquent s'impos-. (routes le 8 scmairies<br />

environ) pair assurer la pcrmanencc d'une coiiverture<br />

convenable.<br />

Le coot dcs manoeuvrcs de maintien 6 poste nicessaire a<br />

ensuitc it6 ivalut sur la hase d'une durie de vie des<br />

satellites de 7 ans. Cette prcmiire analyse scinhlc indiqucr<br />

que le coat annuel des manneuvrcs s'ilkvc environ 85 mjs<br />

(contri 50 mls pour un satellite g0ostatinnnaire).<br />

Pour parachcver I'nnalysc de mission d'un tcl systkmc. il<br />

conviendra disormais de virificr s'il cst possible de localiser<br />

de tels satellites avec une pricision surfisante pour fournir<br />

une pricision de navigation acceptable.<br />

I). Kromr, J. 1,andk. J. 1)ol)yne<br />

"Navstar Glohal Positioning Syslem (GI'S)<br />

Systcin characteristics - I'reliminary Oraft"<br />

STANAC 4294. Ilraft Issue 1. I August lW0.<br />

ti. Ilarlrngcr, H. I'ict-l,ahnnier, J. nouchard<br />

"Glohal Optimization of GI'S Type Satellite<br />

Constcllation"<br />

Papicr IAF-91-369.'<br />

(;A. Bckey, S.F. Mrsri<br />

"Handom search techniques fnr optimization of<br />

non-linear sysleins with many parainetcrs"<br />

Math. Coinput. Siiiiul.. lOX.1. 2.5. pp. 2 IO-? 1.1.<br />

1,. I'ronzatn,.E. Walter, A. Vrnnt,<br />

J. F. I ,e Iw ii chcc<br />

"A gcnerol. purpose glohal optimizer:<br />

implcineiit;:tinns and applications"<br />

Math. (:oin,iut. Simul.. 19x4. 26. pp. 4 12-42?<br />

I,. Zaobi, B. Crirtophe<br />

'Optimisation de lanceincnts multiples"<br />

hgard Symposium (Tacsats for surveillance.<br />

verificotion and C31)<br />

Bruxellcs, 19-22 Octohrc 1992.<br />

1


10-10<br />

Discussion<br />

Question: Please provide the definition of TACSAT<br />

as intended in the paper presentation.<br />

Reply: TACSAT is understood to be a theater satellite,<br />

that is to say, a system available where you want<br />

and when you wa,nt., This leads to.consequences not<br />

only on the space platform bct also on the ground<br />

support equipment.<br />

i<br />

I


0<br />

This pqxr is dividcd in lhrcc pat$<br />

following itcnis:<br />

lactical Satctlites for Air Command and Control<br />

- air command and conml functions and dcfficicncics.<br />

- contribution of TAC'ATS to air command arid<br />

conlro I,<br />

- opcrational improvcmcnu duc to TACSATS.<br />

1. AIR COMMAND AND CONTROL<br />

FUNCTIONS AND DEFFICIENCIES<br />

Air coiiiinand ind control functions arc dividcd in fotlr<br />

thcmcs:<br />

- survcillancc.<br />

- rc.wurccs managcmcnt.<br />

- air activity conlrol,<br />

- indligcncc.<br />

1.1 Surveillsnce<br />

Survcillancc inclutlcs thc g n ration and diss<br />

of Ihc Rccognixd Air P ick (RAP). Thrcc I<br />

M. Crochct - JI Cymbalisla - L. Lcvcquc<br />

AE~OSPATI ALE<br />

Espacc & DCfcnsc<br />

RP 2 78 I33 k s Murcaux Ccdcx Francc<br />

niination<br />

:y issu$s<br />

arc linkcd ti this function, thc'dctcction of low obsc1.-<br />

vablcs and low flying objccts, thc ballistic missilcs<br />

problcni and thc ndvcrsc satcllitcs tracking.<br />

a. &&x *tion of lo w obscrvablc. lo w f lvinr!m<br />

Thc currcnt solution to dctccl low flycrs is to u.sc thc<br />

contribution of radars on aircraft (AWACS). This typc<br />

of platform may maintain its position during about<br />

cight hours. and you nccd four- to fivc of thcm to<br />

maintain a round thc clock survcillancc capability.<br />

Thc dctcction of low obscrvablcs objccts is solvcd by<br />

dcvcloping a scnsing nct. using diffcrcnt frcqucocy rmgc<br />

capability (visual, acoustic. infrarcd or clccuornagnctic)<br />

alld difl'crcnt ilnglc of prc.wnlrition vcrsils thc p'ssihlc<br />

urgci. This lcads to a costly mulliplicniion of scnsors<br />

that hust bc in position on cvcry possiblc pcnclration<br />

conitlor.<br />

b. allistic mi .' .<br />

1'hi;ncw thrcaeto bc, includcd in thd RAP. In ordcr<br />

to do so, wc hive to dctcci thc missilcs in flight as soon<br />

as pclssihlc and uiick thcm during thcir flight.<br />

A ground systcin likc thc PATRIOT tins ii liiiiitctl<br />

dcicction capability cohcrcnt with tlic intcrccptor<br />

guidance.<br />

A currcnt satcllitc likc DSP (Dcfcncc Supprt Yrngram)<br />

was dcsigncd to dctcct a long rangc ballistic inissilc<br />

coming f rm a wcll known arca. It has limitcd capa-<br />

bility against a short rangc ballistic missilc coming<br />

from a country involved with missilc prolifcraiion.<br />

11-1<br />

c. Advcrscs&Lt& I'<br />

A thcatcr commandcr has to know thc location and<br />

covcragc of thc advcrse observation satellites.<br />

Today this function is pcrfomcd by thc Air Forcc and<br />

the satcllitcs tracks arc not includcd in he RAP, bccausc:<br />

this information is considcrcd as a basis for thrcal<br />

cvaluation or intclligcnce.<br />

Thcrc is a rcquircmcnt for hc European countries lo be<br />

ablc to fulfill this function with indcpcndcnt means.<br />

1.2 Resources management<br />

Rcsourccs managcmcnt is divided in thrcc thcmcs:<br />

- forcc managcmcnt.<br />

- airspacc m,uagcmcnt.<br />

- C2 rcsourccs managcmcnt.<br />

a. F- I<br />

Forcc managcmcnt includcs thc knowlcdgc of our own<br />

forccs statc, thc planning and lasking of air opcrations.<br />

Thc kcy issucs about this function arc thc intcrfaccs<br />

with a multitudc of othcr systcms, thc Air Task Ordcr<br />

(ATO) prcparation and disscmination 'and thc wcathcr<br />

forccasting.<br />

In ordcr to plan hc air opcrations, a thcatcr commmdcr<br />

has to gathcr a multitudc of informations coming from<br />

diffcrcnt systems likc:<br />

- thc cnncmy Ordcr Of Battlc (ODB) gcncratcd by<br />

intclligcncc systcm.<br />

,- his,:Qwn lorccs sutc gcncrated by Army, Navy and Air<br />

Foftc s y s LC m s.. .<br />

This lcads to a rcquircmcnt of conncction with a<br />

multitudc of othcr systcms and thc COirWt intcrprclrition<br />

of thc data collcctcd by thcsc systcms.<br />

Oncc $his proccss has bccn pcrformcd, thc Thcatcr<br />

commhndcr has to claboratc and dissemin;\tc thc AT0 to<br />

all thc rclcvant units. Thcsc units arc scaucrcd on thc<br />

Thcatcr and may bc conncctcd by National mcons or<br />

Alliul systems.<br />

t<br />

'Thc planning function supposcs for all thc military<br />

opcrations that yob arc ablc to forccast thc cnncmy<br />

opcrations, your own opcralions and thc wcathcr. For<br />

this purposc you nccd adcquatc informations on thc<br />

wcalhcr on thc Thcatcr and also outsidc thc Thailcr.


11-2<br />

b. m<br />

All thc air opcntions USC a common mcan that mhst bc<br />

sharcd. it is the airspacc. In ordcr to do so you miist bc<br />

ablc to collcct all thc rcquircmcnt!! in airspacc coming<br />

fmm thc diffcrcnt units (Air Spacc Rcqucst) and thssc-<br />

iiiinatc thc Airsp;icc Cw)rdination Ordcr (ACO) lo all<br />

thc rclcvant unit!$.<br />

This airspacc planning is coordinatcd with thc AT0<br />

planning and distributcd thrcc to four timcs a day 10 thc<br />

uniu, this rcprcscnt a hudgc amount of mcss;lgcs simad<br />

all ovcr thc Thcatcr.<br />

c. n<br />

T5c air opcrations arc pcrformcd usin;! opcrators,<br />

ground-air-ground communication ncLs, consolcs ...<br />

All thcsc C2 rcsourccs must bc allixatcd according to<br />

thc currcnt AT0 corrcsponding to thc Air Dirccrivcs.<br />

This suppscs a hudgc information cxchangc bclwccn<br />

the diffcrcnt C2 cntitics. Thc proccss of thcsc informa-<br />

tions. and thc planning of thc bcsl C2 rcsourccs<br />

allocation according IO thc Air Dirwuvcs. 1<br />

1.3 Air activity control<br />

Air activity control is dividcd in two functions:<br />

- air mffic control,<br />

. air inission control.<br />

a. A ir uaffic cond .<br />

Air traffic control suppscs first a flight rcgulahn, that<br />

is to sry an i1lIWtion of the corrcspcmding airspacc and<br />

C2 rcsourccs to thc traffic rcqucsts. This supposcs thc<br />

collcction of all thc flight rcqucsts, thc proccss of<br />

allocation in coordination with thc airspacc ninnagcmcnt<br />

lunction and thc disscmination of thc flight autorisations<br />

10 thc rclcvant units.<br />

In addition, air traffic conuol is in chiirgc of SGwh And<br />

Rcscuc (SAR) opcrations. mainly based on thc xcuratc<br />

location of thc fricndly crcws.<br />

b. Air mission CO ntrol<br />

Oncc an air opcration has bccn planncd according LO thc<br />

ATO, this opcration has to bc controllcd by air mission<br />

controllcrs. his supposcs a good coordination bciwccn<br />

forcc manbgcmcnt and air mission control funclion. that<br />

is 13 say a hudgc amount of informalion cxchangc.<br />

Thcrc is also an issuc linkcd with radioclcctric propaga-<br />

tion phcnomcna. it is control of low flying aircrafts.<br />

This supposcs a hudgc amount of antcnnac widc sprcad<br />

ajong thc thcatcr to offcr thc coinmunication means to<br />

air mission conirollcrs.<br />

dncc a mission has bccn pcrfomcd, thc mission rcpn<br />

must bc prcparcd at thc unit lcvcl and disscminatcd to<br />

thc rclcvant opcration ccntcrs for intclligcncc gathcring<br />

.-+ and force managcmcnt planning function.<br />

1.4 lntelligence<br />

Intclligcncc function is in chargc of cnncmy ODB<br />

awssmcnt and forccasting and damage assasmcnt. This<br />

supposes thc gathcring of all typcs of information:<br />

visual, electromagnctic ..., the fusion of these diffcrcnt<br />

infomiations and thc disscrnination of thc rclcvant<br />

information to opcrating centers or units sprcad all<br />

dong thc Thcatcr.<br />

2. CONTRIBUTION OF TACSATS TO AIR<br />

COMMAND AND CONTROL<br />

2.1 Surveillance<br />

For survcillancc function, TACSATS may providc<br />

qucuing to lhc currcnt Scnwr net by diffcrcnt mcans.<br />

First ELlNT or COMINT satellitcs may providc informations<br />

on, cnncmy airbascs activity and trigger thc<br />

AWACS cakc-orr.<br />

If thcsc informations arc not availablc, radars or clcctro-<br />

optics satcllitcs may providc cnncmy raids carly dctcc-<br />

Lion in ordcr to alcn the Theater scnsor nct and activatc<br />

thc rclcvanl sensors.<br />

For thc spccial casc of ballistic missilcs. launchcrs<br />

dctcction may bc providcd through radars or clcclro-<br />

optics satcllitcs. Missilc launch prcparation may bc<br />

dctcctcd through the usc of ELINT or COMiNT<br />

.mtclliLc:; picking-up thc corrcsponding clcctromagnclrc<br />

signals. In last rcssort. rnissilc launch dctcction may be<br />

dctcctcd by infrarcd satcllitcs picking-up llic plunics of<br />

thc incoming missilcs.<br />

2.2 Resources management<br />

For rcsourcc mnnagcmcnt. mctcorological satcllitcs may<br />

providc rhc rclcvant, information in ordcr to proccss thc<br />

24 to 48 hours forccasting ncccssary for thc planning of<br />

air opcrations.<br />

broadcasting TbiCSATS arc a good mcan to disscminatc<br />

thc AT0 mcss& .(torcc managcmcnt) and thc ACO<br />

(airspacc manag$r&t).m<br />

,<br />

all Ihc units widcsprcad on lhc<br />

#?.*<br />

Thcatcr. 4,;;y:,*<br />

t:i';...'<br />

Ground-to-ground TACSATS arc a good man to solvc<br />

thc opcrational rquircmcnu of:<br />

'.<br />

1,*# .'<br />

- othcr systcm: 'dg$$wc ".;,.. intcrrogation (forcc managcmcnt).<br />

* , .* *.<br />

I .<br />

e;.,<br />

".:+e<br />

- Airspacc Control Mcans rcquircmcnu diffusion (air-<br />

spcc managcmen:),<br />

- C2 ilssct~ availability (C2 rcsourccs managcmcnt).<br />

Thc tcchnical involvcd considcration arc thc quantity of<br />

information cxchangc aid the widcsprcad on thc Thca1r.r<br />

of thc diffcrcnt uniu involvcd in thcsc functions.<br />

2.3 Air activity control<br />

Navigation TACSATS (signal location typc) is hc<br />

most cfficicnt solution for aircraft localiiration. which is<br />

thc major dcfficicncy of starch and rcscuc opcdons.


0<br />

Grouad-air-ground communication TACSATS is a good<br />

mcan to solvc thc opcrational rcquircmcnt of closc<br />

conuol of low flycrs. that is mandatory IO allow an<br />

activc. control of low flying aircraft incrudcd in air<br />

mission conuol function.<br />

Ground-to-ground communication TACSATS inay<br />

solvc Ihc opcrational rcquircrncnts oT:<br />

- flight plans dissemination (air traffic conuol),<br />

- imrcdiatc airspacc convol mcans availability (air<br />

traffic control).<br />

- rapid rcallocation of planncd missions (air mis: ion<br />

control),<br />

- rapid atwk asscssriicnt (air mission control).<br />

2.4 Intelligence<br />

Ground-to-ground communication TACSATS ilrc a good<br />

mcan to solvc thc opcrational rcquircmcnt or timcly<br />

diffusion of filtcrcd inlormotion to thc rclcvant unit or<br />

opcration ccntcrs in thc Thcatcr.<br />

ELlNT and COMINT TACSATS arc thc orimary<br />

scnsors to providc thc cnncmy OD9 for SAM, radars,<br />

airbascs. FLOT location and activity.<br />

Radars or clcctro-optics TACSATS arc a complcmcn-<br />

city platforms to solvc Ihc opcntional rcquircnicnts of:<br />

- cnncmy ODB asscssmcnt.<br />

- bomb damagc asscssmcnt,<br />

- air campaign results cvaluation.<br />

3. OPERATIONAL IMI'HOVEMEN'I'S<br />

DUE TO TACSATS<br />

3.1 Surveillance<br />

TACSATS givc thc opportunity to implcmcnt il glohill<br />

cxtcndccl air dclcncc capability hid on:<br />

- Lctivc(IcicI~,<br />

- passivc dcfcncc,<br />

- countcrfirc.<br />

Activc dcfcncc is alcrtcd through thc dlcrt function<br />

dcrivcd from survcillancc and thrcat cvaluation, qucucd<br />

by thc inflight missilc track and controllcd through thc<br />

intcrccption arca prcdiction. A!] thcsc functions may bc L<br />

pcrformcd by dcdicatcd TACSATS which pcrformanccs<br />

m rclincd according lo thc Thcalcr ballistic Ihrcat.<br />

Passivc dcfcncc is alcncd through thc survrillancc<br />

function and convollcd through thc impact arc3 prcdic-<br />

lion. This control is mandatory in ordcr to implcmcnt<br />

passivc mcasurcs on limitcd arca locations and during a<br />

limited timc rclntcd with UIC impact timc prcdiction.<br />

Counlcrlirc is alcrtcd through thc survcillancc function<br />

and thc wcapon systcm queuing is pcrformcd through<br />

thc launch zone dclcrminaiion. Thc adcquatc launch zonc<br />

dctcrmination supposcs dcdicatcd TACSATS which<br />

pcrformanccs arc fincly tuncd according to thc Thcatcr<br />

ballistic threat c haractcristics.<br />

3.2 Force management<br />

Forcc managcrncnt proccss is a complcx and Icnghtly<br />

prtKcss going froin "gcncral objcctivcs" to "Air Tisk"<br />

and "Flight dtxumcnlation" production.<br />

i<br />

11-3<br />

The process that leads from gcl?eral objcctivcs to the<br />

AT0 is pcrformcd in an opcration ccnlcr using modcm<br />

mcms likd ;rrtifIcial inlclligcncc and knowlcdgcd bascd<br />

systems. Oncc thc AT0 has bccn claboralcd it must bc<br />

disscminaicd to thc different units in the Thcalcr. This<br />

rcquircs a hudge cxchangc of information bctwccn<br />

opcrations centers and units. Communication<br />

TACSATS is a good mcan lo pcrform this information<br />

cxchangc.<br />

Wih the ATO. hc pilols in thc units arc ablc to<br />

pcrfthn thc largct atlack prcparation whilc thc opcration<br />

officcrs in thc opcration ccntcrs may pcrfom the global<br />

mission preparation (doconfliction, flight routes ...).<br />

Oncc thc global mission prcparation has bccn pcrformcd<br />

thc pilots in Ihc units may procas thc dctaikd mission<br />

prcpanlion and issuc thc flight documcnts.<br />

Thcy arc rcady lo cake-off as soon as thcy rcccivc thc air<br />

lask from the opcration ccntcr.<br />

This short somnicnt about form managcmcnt shows<br />

that by using adcquatc communication mcans and<br />

adcquatc intclligcni prwcss. we may rcducc thc global<br />

timc rcquircd by thc function. Communication<br />

TACSATS may providc adcquatc mcans to rcducc thc<br />

timclincs involvcd in this proccss and drivc changcs in<br />

opcrational proccdurcs,.<br />

3.3 Airspace mhagenient<br />

Thc ACO is a complcx mcssagc that dcfincs thc diffc-<br />

rent arcas in thc airspacc. This mcssagc includes air<br />

routcs, transit corridors, low lcvcl transit roulcs, wcapon<br />

frcc zoncs. air basc dcfcncc zoncs, rcslrictcd opcrations<br />

zoncs, high dcnsity airspacc control zonc ...<br />

It is a lcnghtly proccss to claboraic this mcssagc and to<br />

disscminatc it to thc rclcvant units. TodiIy this nicsugc<br />

is distributed cvcry six to cight hours und valid for thc<br />

samc pcriod. Thc conscqucncc is that thc Army by<br />

cxaniplc hxs a dcdicatrd airspacc availablc for a six hours<br />

pcriod to pcrform its opcrations,This has bccn a<br />

problcm in thc Gulf War whcrc thc Frcnch Army had a<br />

radar on a hclicoptcr (HORIZON) that could not bc uscd<br />

with iu bcst pcrformancc bccausc of tlic limitcd night<br />

altitudc.<br />

TACSATS could providc tcchnical mcans that may<br />

inuoducc ncw opcrational proccdurcs likc dynamic<br />

allocation of thc airspacc.<br />

4. CONCLUSION<br />

This short analysis has shown that communication<br />

TACSATS arc nccdcd to pcrform all thc air mission<br />

comm'and and conmi functions.<br />

Diffcrcnt typcs of communicaiion TACSATS arc<br />

quiral:<br />

- broadcasting.<br />

- bidircctional.<br />

- ground - to-g nund ,<br />

- ground-to-air.<br />

Thc dcvclopmcni of TACSATS may changc thc current<br />

miliury proccdurcs (cspccially thc timAincs for AT0 or<br />

ACO).<br />

1


11-4<br />

TACTICAL SATELLEES FOR AIR COMMAND AND CONTROL<br />

AIR COMMAND AND CONTROL SYSTEM FUNCTIONS (1).<br />

AIR COMMAND AND CONTROL SYSTEM FUNCTIONS (2)<br />

TACSATS FOR SURVEILLANCE<br />

TACSATS FOR RESSOUReES MANAGEMENT<br />

TACSATS FOR AIR ACTWI lY CONTROL<br />

TACSATS FOR INTELLIGENCE<br />

OPERATIONAL IMPROVEMENTS FOR SURVEILLANCE<br />

OPERATIONAL IMPROVEMENTS FOR FORCE MANAGEMENT<br />

OPERATIONAL IMPROVEMENTS FOR AIRSPACE MANAGEMENT<br />

CONCLUSION<br />

[ AIR COMMAND AND CONTROL SYSTEM FUNCTIONS (1) ]<br />

~7<br />

FUNCTIONS KEYISSUES<br />

AIRSPACE SURVEILIANC E<br />

FORCE MANAGEMENT<br />

1<br />

LOW OBSERVABLES. LOW FLYING OBJECTS<br />

BALLISTIC MISSILES<br />

ADVERSE SATELLITES<br />

INTERFACE WITHTHE OTHER SYSTEMS (INTELLIGENCE,<br />

ELECTRON IC WARFARE -. .)<br />

AIRTASKORDER PREPARATION AND DISSEMINATION<br />

WEATHER FORECAST1 MG<br />

1 AIRSPACE MANAG EM ENT 'REALTIMFALLOCATION OF THE AIRSPACE<br />

1 'AVAIIABLP AIRSPACE DISSEMINATION<br />

C2 RESSOURCES MANAGEMENT<br />

INFORMATION EXCHANGE WITH C2 ENTITIES<br />

WORAPHl<br />

\


0<br />

a<br />

..<br />

. . .I<br />

AIR COMMAND AND CQNTROL SYSTEM FUNCTIONS (2)<br />

FUNCTIONS<br />

AIRTRAFFIC CONTROL<br />

AIR MISSION CONTROL<br />

INTELLIGENGE<br />

J<br />

i.<br />

FLIGHTS REGULATION<br />

KEYISSUES<br />

COORDlNATlON WITH AIRSPACE MANAGEMENT<br />

SEARCH AND RESCUE OPERATIONS<br />

INTERFACEWITH FORCE MANAGEMENT<br />

ACTIVE CONTROL OF LOW FLYING AIRCRAFTS<br />

MISSION REPORT PREPARATION AND DISSEMINATION<br />

ENNEWORDER OF BATTLE ASSESSMENT<br />

DAMAGE ASSESSMENT<br />

DISSEMINATION OFTHE RELEVANT INFORMATION<br />

WORAPH?<br />

DEF flClENClES I OPERqTlONAL REQUIREMENTS<br />

LOW OBSERVABLES,<br />

LOW FLYING OBJECTS<br />

WSTlC MlSslLES<br />

ADVERSESATELLITES<br />

..<br />

AI RBASES ACTIVATI 0 N<br />

RAIDS EARLY DETECTION<br />

LAUNCHERS DETECTION<br />

MISSILE LAUNCH PHEPARATION<br />

MISSILE LAUNCH DETECTION<br />

COMMUNICATION SATELLITES<br />

POSITION<br />

OBSERVATION SATELLITES<br />

COVERAGE<br />

TACSATS TYPE<br />

ELINTAND COMINT<br />

11-5<br />

RADARS OR ELECTRO-OPTICS<br />

RADARS OR ELECTRO-OPTICS<br />

ELINTAND COMINT<br />

INFRARED DETECTION


11-6<br />

!'<br />

i i<br />

[XCSATS<br />

FOR RESOURCES MANAGEMENT 1<br />

DEFFlClENClES<br />

__-I<br />

--<br />

INTERFACE WITH THE OTHER SYSTEMS<br />

AIRTASK ORDER PREPARATION<br />

AND UiSSEMlNATlON !<br />

WEATHER FORECASTING<br />

'REAL TIM E" ALLOCATIO N<br />

OFTHE AIRSPACE<br />

'AVAILABLE' AIRSPACE DISSEMINATION<br />

INFORMATION EXCHANGE<br />

WITH C2 ENTITIES<br />

DEFFlClENClES<br />

FLIGHTS REGULATION<br />

COORDINATION WITH<br />

AIRSPACE MA NAG EM ENT<br />

SEARCH AND RESCUE OPERATIONS<br />

_-- -<br />

INTERFACE WITH<br />

FORCE MANAGEMENT<br />

ACTIVE CONTROLOF<br />

LOW FLYING AIRCRAFTS<br />

MISSION REPORT PREPARATION<br />

AND DISSEMINATION<br />

OTHER SYSTEMS DATABASE GROUNDTO GROUND<br />

INTERROGATION COM MU N ICATIO N<br />

AIRSPACE CONTROL ORDER<br />

DISSEMINATION<br />

C2 ASSETS AVAl LA B I LlTY<br />

WORAPtl4<br />

[ TACSATS FOR AIR ACTIVITY C~JNTROL]<br />

OPEWTIONAL REQ U I REM ENTS<br />

~~ ~<br />

FLlGHt PLANS DISSEMINA?ION<br />

IMMEDIATE AIRSPACE CONTROL<br />

WANSAVAILABILITY<br />

AIRCRAFT LOCALIZATION<br />

RAPID REALOCATION OF<br />

PLANNED MISSIONS<br />

CLOSE CONTROLOF<br />

LOW FLYERS<br />

RAPID AIR AlTACK ASSESS lENT<br />

BROADCASTING<br />

GROUNDTO GROUND<br />

COMMUNICATION<br />

- .. . .. -<br />

TACSATS TYPE<br />

GROUNDTO GROUND<br />

COMMUNICA i'lON<br />

GROUNDTO GROUND<br />

COMMUNICATION<br />

NAVIGATION<br />

GROUNDTO GROUND<br />

COMMUNICATION<br />

GROUND/AINGRO U N D<br />

COMMUNICATION<br />

GROUNDTO GROUND<br />

COMMUNICATION


ENNEAAV ORDER OF BATLE<br />

ASSESSMENT<br />

DAMAGE ASSESSMENT<br />

DISSEMINATION OF THE<br />

RELEVANT INFORMATION<br />

..<br />

[ TACSATS FOR INTELLIGENCE 1<br />

OPERATIOW\LREQUlREMENTS I TACSATSTYPE<br />

-<br />

SAM, RADARS, AIRBASES. FLOT<br />

LOCATION AND ACTIVITY<br />

A in CAM PAI& N RES U 1-1s<br />

1 EVALUATION I<br />

ELINTAND COMINT<br />

RADARS OR ELECTRO-OPTICS<br />

RADARS OR ELECTRO-OPTICS<br />

_ _ ~ ~<br />

TIMELYDIFFUSION OF<br />

-<br />

-1<br />

I<br />

GROUNDTO GROUND<br />

FILTERED INFORMATION COMMUNICATION<br />

OPERATIONAL IMPROVEMENTS FOR SURVEILLANCE<br />

/ \<br />

IMPACT AREA<br />

PR E 0 I CTI 0 N<br />

I'


11-8<br />

I OPERATIONAL IMPROVEMENTS FOR FORCE MANAGEUENT~<br />

AIRFORCES<br />

PREPARATION<br />

--<br />

COMPLEXAND LENGTHY PROCESS REQUIRING HUGE COMMUNICATION CAPABILITY<br />

PERATIONAL IMPROVEMENTS FOR AIRSPACE MANAGEMEN<br />

RESTRICTED<br />

OPERATIONS ZONES<br />

€3 BASE DEFENSE<br />

ZONE<br />

WEAPON FREE<br />

0 ZONE<br />

WEAPON FRE<br />

OF THE AIRSPACE ]<br />

-


0<br />

0<br />

(CO")<br />

-COMMUNlCATlONTACSATSARE NEEDEU FOR ALLTHE AIR COMMAND AND CONTROL FUNCTIONS<br />

I<br />

- DIFFERENTTYPES OF COMMUNICATION ARE REQUIRED : BIDIRECTIONAL<br />

. II'<br />

BROAD CASTING<br />

GROUNDTO GROUND<br />

GROUNDTO AIR<br />

- DEVELOPPEMENT OF TACSATS MAY CHANGE THE CURRENT MILITARY PROCEDURES<br />

,<br />

WORIPHIO


CONSIDER4TIONS FOR NATO SATELLXE COMMUNICATIONS<br />

IN THE POST-2000 ERA<br />

1.The National Delegates bnrd of AGARD. upon<br />

recommendation by the Avlonics Panel of AGARO, spprovea in<br />

March 1986 ths establishment of WG-13 to study satdllite<br />

communicdtions for NATO under the direction of Prof. Or Nejat<br />

lnoq of Turkey.<br />

2.9me 14 scientists/engineers. from research Rnd indudrial<br />

establishments of Canada, France, The Federal Republik of<br />

Germany. Noway, Turkey. the United Kingdom. the United<br />

States of America as wnll as from International Military Staff of<br />

NATO and SHAPE Technical Centre, participated,in the work of<br />

WG 13.<br />

3.This paper 1s a brief summary'<br />

of the studies carried out by the group in the<br />

period 1988-1990 on the type of satellite Communication<br />

systems which NATO can have in the post-2000 era including<br />

the critical techniques and technologiea that need lo be<br />

developed fcr this purpose<br />

I<br />

4 In accordance with the Terms of &lerence.the Group<br />

considered a time period beyond NATO N and other natidnal<br />

systems now In the implementation or planning stage, wthh<br />

would cover a time span of 20-30 years, i.e 2CCO-2030 It was<br />

recognized the1 the earlier part of this period would be<br />

constrained by the eristing and planned assets but the later<br />

oart would be. and should be, more technology-driven the<br />

following assumptions are made which take into accolmt<br />

perceived trends and desirable attributes for future SATCOM<br />

systems:<br />

I) The area of interest for NATO will remain as is to-day end<br />

will include the polar region<br />

li) The use of SATCOM will be more pervasive particulerly<br />

for small mobile users (aircratt. land-mobile. ships And<br />

submerged submarines) to 6 ~pporC general purpose dnd<br />

modern 0 1 structures.<br />

SATCOM will be integrated with the future ISDN networKs<br />

now being planned and implemented In the nations dnd<br />

NATO. This may require SATCOM to have ImproJed<br />

effective performance 4th respect to such parameters as<br />

delay and echo.<br />

lv)Yhe need for increased survivability against bolh physical<br />

and jamming threat will continue.<br />

v)The use of frequencies In the EHF and optical bands lor<br />

greater capability (e.g. AJ capability and communicatidns<br />

with submerged submarine?) and smaller terminals hre<br />

foreseen.<br />

d)The future SATCOM systems will be required to be<br />

cheaper and more affordable.<br />

vll) Thoro wlll be the usual need for interoperabllity.<br />

5.The Group agreed that the above attributes could be taken as<br />

inputs and goals for the system architectures lo be developed<br />

for a future NATO SATCOM. In fact. these attributes were<br />

derivsd from the deficiencies of the present system which is<br />

no1 flexible enough with resped to growth In capacity and<br />

capabllity. and has a high degree of electronic end physical<br />

. . ,<br />

by<br />

A. Nejat Ince<br />

Marmara Scientific and Industrial<br />

Research Center<br />

EO. Box 2 I<br />

51470 Gchzc-Kmaeli<br />

Turkey<br />

14-1<br />

vulnerability dind does nM provide communications for the<br />

polar region ' and submerged submarines. TRe system<br />

development.."in the past has been based on successive<br />

discrete mstqh in capability and spending and each<br />

procuremih'?as contained an important cost element of R&D.<br />

Thsre has been R minimum of joint national RAD and use of<br />

the NATO system which resulted. among other things, in<br />

considerable interoperability problems.<br />

It was agreed that what was required for the coming decades<br />

which may be characterized by 'uncertainty' and "shrinking<br />

military budgets" was a very flexible. modular SATCOM system<br />

whose communication capacity and resilience to ECM and<br />

physical threat can be modified when operational requirements<br />

change, however, without having to undertake excessive RBD<br />

and total replacement of the space segment.<br />

6.For the development of system architectures to achieve<br />

flexible and highly cost-effective SATCOM optioris for NATO. a<br />

technical survey has been made and information collected on<br />

the satellite system concepts being considered nationally<br />

(Canada. France. FRG. UK and USA) and internationally (ESA.<br />

Intelsat. Eutelsat. INMARSAT) for both civil and military<br />

applications as well as on related technological R&O activities<br />

and operational aspects regarding threat and environmental<br />

factors such as propagation and the usage of frequency<br />

spectrum.<br />

7.TLe status of the follovring lechniques/technologies and<br />

conrapls which appear feasible and exploitable by future<br />

SATCOM systems and whicli are consequently being<br />

investigated nationally and internationally have been described<br />

in the report:<br />

i) multi.beam/phased-array antennas with adaptive spatial<br />

nulling and multiple transmit spot beams,<br />

ii) ECCM techniques,<br />

iii) flexible and programmable on-board signal processing<br />

and switching techniques and devices.<br />

iv) multi-frequency payloads.<br />

v) multi-satellite systems to create spatial uncertainty for the<br />

enemy.<br />

vi) USP of tethers in space,<br />

vii) laser and millimetre-wave communications. .for<br />

inter-satellite links,<br />

viii) blue-green lasercorn for submerged submarines,<br />

Ix)application of superconductivity. aflificial Intelligence.<br />

neural networks. robotics and of space-borne<br />

computers/r~ftware for slgnal processing and for manual<br />

and autonomous control of spatial and terrestrial<br />

resources.<br />

x)power generation in space,<br />

xi) spacecraft propulsion systems,<br />

xii) launch vehicles and space transportations.<br />

xiii) nuclear effects and hardening techniques.<br />

.


0<br />

0<br />

.<br />

14-2<br />

xiv)physical attack and protective measures against dirocted<br />

energy beams (laser, particle. RF) and ASAT etc..<br />

w)sensitive. light, long-life materials. Component9 nnd<br />

devices for sensing, power generation. amplilicaticn and<br />

control.<br />

&The speed of progress made in the above arras will be<br />

determined mainly by the urgency of the need for. and the<br />

amount of resources allocated to, them. These technologies<br />

and new production methods coupled with basically<br />

software-controlled processing transponders with a capability<br />

to continuously adapt to changing requirements are expected<br />

to lead to more flexible and reliable, lighter and less-power<br />

consuming and altogether more cost-effective satellites than<br />

the present ones. Moreover these satellites can be launched by<br />

a number of different launch vehicles. Further reduction in cost<br />

may be obtained by sharing the satellites (single an/or cluster)<br />

between NATO and the Member Countries.<br />

9.h can be stated generally and with confidence that in the time<br />

period in question it will be possible to design and build any<br />

satillite to meet almost any requirement. Technology exists or<br />

will be available for whatever communications perfcrmance<br />

and level 01 hardening is required as well as launch vehicles<br />

with capability to place the resulting satellite of whatever<br />

weight and power into any required orbit. The constraints will<br />

be the availability of orbital slots, frequency spectrum and, of<br />

course, funds.<br />

1O.The cost considare: ,IS have therefore been the driving loctor<br />

for the systems reported here. When assesslng different<br />

concepts for sate!lite designs and system architecture what is<br />

importanat is not so much their absolute but rather their<br />

relatlve costs. Accordingly a cost model of the satellite system<br />

has been established which takes into account:<br />

band used (SHF. EHF).<br />

- number of transponders,<br />

- spacecraft reliability,<br />

- RBDmSt.<br />

- power required.<br />

- weight.<br />

- launch cost,<br />

- recurring cost.<br />

- system availability.<br />

I - frequency<br />

11.Several SATCOM system architectures with the potentlal of<br />

meeting possible future NATO requirements Implied in the<br />

paragraphs above have been defined using different orbits<br />

(geostationary, polar, 12-2dhr Inclined at 63'.4 and Low Earth<br />

Orblt LEO) and a number of satellites with single and/or dual<br />

frequency transponders (SHF and EHF) whlch rad be<br />

configurod to meet any operational requirement. Table .l lists<br />

the architectures considered in the report and gives the<br />

number of active spacecrafl for full continuous coverage of tho<br />

NATO area includino the polar reglon as well as the total<br />

number of spacecraft needed for 7-years and 21-year periods<br />

for a certain given Gpacecraft reliabllity. Archltectures based on<br />

the use of LEO and a combination of geostationary and<br />

pola:-orbit satellites were eliminated from further considerhtion<br />

on cost grounds and the others were subjected to more<br />

detalled cost-padormance analysis using the cost model<br />

mentioned In paragraph 10 above.<br />

12.Table . -2 lists some twenty different promising architectures<br />

(Caseo) for a future NATO SATCOM and gives the associated<br />

RBD. recurring and total msts for differont spacecraft reliability<br />

and Wntinuous service availability for 7 yearr.The mmmon<br />

attrlbutes of these architectures are the fol!owing(see Fig. .lI :<br />

(a) I) The transponders have adapUvs receive (with<br />

steerable nulls) and multl-beam trsnsmll nntennas (1<br />

earth cover. 1 Europe m r . 1 polar spot and 2<br />

steerable spots).<br />

ii) A flexible channelization technique is used on board<br />

tho satellites at both SHF and EliF. At EHF. this is<br />

exploited in an omboard processing concept that<br />

prevents the satellite downlink transmitter from being<br />

loaded by the jammer and also to prevent<br />

unauthorized access to the satellite. For flexible AJ<br />

processing and ease of interoperability a full<br />

bandwidth (2 Giiz at EHF. 500 MHz at SHF) filter band<br />

is provided using perhaps different filter technologies<br />

to obtain different selectivities required (see Fig. E-\)<br />

where the channelization can be conlrolled by<br />

telecommand to avoid interference, to alter the<br />

satellite capacity allocated to various geographical<br />

areas and to adapt the specilic requirements due to<br />

restrictions in the tunability of the NATO cr national<br />

ground segment. At EHF. where the flexhie<br />

channelization technique is coupled with on-board<br />

protessing for AI purposes then switchi;lg between<br />

high-selectivity filter bank outputs (element filter<br />

output) will be performed at a high rate and controlled<br />

by an on-board transec equipment which can be<br />

programm3ble (in orbit) to support several<br />

simultuneous uplinks.<br />

The ground segment would consist 01 both SHF and<br />

EHF terminals. The SHF terminals would be those<br />

existing at the end of the NATO IV era and would be<br />

usod mainly to support common-user trunks. General<br />

transition rom SHF to EHF is foreseen to take place<br />

over the period covered In the study to support mainly<br />

mobile/transportable users many of which may have<br />

demanding AJ andjor LPI requirement.<br />

The EHF ground segment:<br />

i) has preferably non-synchronized frequency-<br />

hopped (because of its better performance in<br />

disturbed and time-variant propaoation<br />

conditions and betler suitability to small<br />

terminals than the direct sequence modulation<br />

system) terminals operating in FOMA with<br />

flexible data rates and redefinable codes,<br />

ii) consists of the simultaneous accesses (for<br />

system comparison purposes) given in Table<br />

-3.<br />

. #,<br />

The systems . :<br />

\) have the virtue of allowing easy transition from<br />

exlsting to future architectures,<br />

ii) Have minimum development. recurring and<br />

launch costs.<br />

. iii) are upgradable and expandabla on a scale to<br />

meet operational requirements.<br />

iv) defective and life-expired elements 01 the<br />

system are replaceable without man<br />

intervention,<br />

v) spacecrafl are capable 01 being refuelled<br />

without man intervention,<br />

vi) have virtually zero down-time at low cost,<br />

vii) make maximum use of orbital slot allocations,<br />

vlii) allow spatial dlstribv(kn of spaceuaft to reduca<br />

Uwir vulnscability to jamming and physical attack.


It should be noted that the data in Tables .2 (a) and<br />

(b) are for a 7-year period. hring the 21-y~ar total<br />

period, three stages of complete space segment<br />

replacement are expected to occur, which would allow<br />

for an update for changes in traffic or other<br />

requirements. For dual . frequency systems<br />

development cost will be incurred at each stage.Single<br />

frequency systems will not incur such costs since the<br />

Same designs of spacecraft would be used throughout<br />

the 21-year period: only the mix of EHF and SKF types<br />

would change. Provided military components are used<br />

in the design of the spacecraft it should be possible to<br />

maintain full availabilty over the 21.year interval<br />

t3.h examination of the data shows that:<br />

....<br />

P<br />

For geostationary operations the cost of<br />

interconnection of spacecraft is of the order of 3 % ,<br />

and is not more than 4.5 % for the inclined orbits<br />

(Tundra as the most expensive case).lnterconnection<br />

provides significant Improvement in service availability<br />

probability, ranging from 0.14 at the lower inherent<br />

spacecraft probabilities to 0.04 at the high end.<br />

Increasing the space segment availability by the<br />

amount given in (a] above without. however, using<br />

Inter-!Satellite Links ISL wou!d require launching more<br />

satellites and this would increase the system cost by<br />

about 25 %.<br />

Operation in Inclined orbits costs about 50 % more<br />

than the geostationary case for Ihe same sewice<br />

availability, but gives full NATO coverage including the<br />

polar region.<br />

The geostationary case 1 corresponds lo the NATO IV<br />

satellite as far as coverage and the nuniber of<br />

satellitcs and reliability are cuncerned. It is interesting<br />

to note, however, that the 7-year system cost of Case<br />

1 and that 01 NATO N (about -M) are almost<br />

identical even though Case t satellites have<br />

considerably more capacity (in SHF and EHF) and<br />

significantly greater resistance to jamming (on-board<br />

signal procebsing in EHF and adaptive nulling<br />

antennas).<br />

The system cost changes signlficantly with the 7-year<br />

service availabllity probability. How many Batelittes<br />

would be needed for a 21- year period without having<br />

excessive capacity would depend on this as well as on<br />

what residual capacity would remain at the end of<br />

each beven-year period and. how the change in<br />

requirements is introduced; abruptly at each 7-par<br />

period or progressively during the 21-year period. In<br />

the latter case, some reduction in the total number of<br />

satellites required and hence in total cost would be<br />

expected.<br />

14.The architectures which appear cost-affective and promising<br />

ma ghn In Table -4.<br />

The following comments can be made about theso<br />

architectures:<br />

a)<br />

b)<br />

An adequately wide range oef architectural options<br />

are presented from which the architecture best suited<br />

to the requirements, as they will be known nearer Ihe<br />

date of system implementation. can be snlerted<br />

Based on the assumptions made regardlng possible<br />

future NATO requirements. reli&bilitles of future<br />

electronic systems and wsts per kilogram of<br />

Payloads. Spaceaaft Platforms and Launches which<br />

have been used consistently for all of the candidate<br />

architectures. it can be concluded that:<br />

14-3<br />

' i) Procided NATO can accept the coverage<br />

provided by a geostationary only system of<br />

satellites, Architecture A is the lowest cost<br />

solution.<br />

ii) If polar coverage obtained by leasing,from the<br />

USA. costs less than Cost (H-A) or Cost (I-A)<br />

then Architectures A or B plus Polar leasing<br />

would provide the next .lowest cost options.<br />

Option B gives improved availability and AJ<br />

capability but at 33 % higher cost than the cost<br />

of A.<br />

iii) The lowest cost architecture which pidvides full<br />

coverage is Architecture H at a cost increase of<br />

50 %over geostationary only (Case B).<br />

iv) For a further 5 % increase in cost, an<br />

improvement from 0.95 to 0.98 in operational<br />

availability and an enhanced AJ capability can<br />

be obtained by using Architecture I. This<br />

architecture is probably the most cost-effective<br />

option of those considered. to all of the<br />

assumed luture NATO requirements.<br />

15.k is likely that cost will be the driving factor in determining the<br />

hoice of a future SATCOM architecture and it is therefore<br />

appropriate to consider the lhree dominant cost lactors (RBD.<br />

replacement and launch costs) and indicate what steps could<br />

bo taken to bring about cost reduction in each case.<br />

Economy in R83 costs could be obtained through<br />

NATO/National collaborgtion and by adopting a<br />

modular approach to system diversilication. and<br />

evolution. An effective way of achieving the latter<br />

would be to devplsp at the outset separate SHF and<br />

EHF spacecraft and use them, in GEO and TUNDRA<br />

orbits alike, in a mix delermined by the changing<br />

requirements.<br />

The use of smaller spacecraft, even though more of<br />

them may be needed, could lead to lower system<br />

costs because of the economies 01 scale. Such<br />

economies of scale would be further enhanced if the<br />

same Spacecraft types are used at all stages of system<br />

evolution over a period of, say, twenty years. They will<br />

also be enhanced if the aame spacecraft types ate<br />

bought for national as well as NATO use.<br />

Launch wsts can be minimized by reducing<br />

spacecraft mass. in particular through the exploitation<br />

of new technology. tt is also important to maximize<br />

compatibility with the largest possible range of launch<br />

vehicles.<br />

Interconnection of spacecraft increases system<br />

reliability and therefore tends to reduce the tolal<br />

number of spacecraft that need to be launched.<br />

finally. long-term planning is the key to achieving<br />

reductions in both RBD and recurring ccsts.<br />

'.<br />

t6.The NATO SATCOM systems sa far acquired have been<br />

based on national d&elopments adapted to NATO<br />

requirements and the %$tin& of service (not necessarily full<br />

service ) has been obtai#f.ed. by sharing or borrowing capacity<br />

Irom nntionsl sysleme. '?he national systems. In turn. have<br />

relied for continuity 01 service on the availnbility of capncity on<br />

the NATO system. Each procurdment has contained an<br />

important element of R&D costs and since successive syster.is<br />

have been developed almost independently of each other,<br />

R&Dcosts have been. like the replacement cost, also recurring.<br />

'-.


14-4<br />

There has been a minimum of joint national R&D and use of<br />

the system and each procurement has been preceded by<br />

lengthy negodations on production sharing which has not, in<br />

general, satisfied, at least some of the member counlries. As a<br />

result of having independent NATO and national systems there<br />

has been considerable intoroperability problems.<br />

h is believed that this trend, based on successive jumps in<br />

spending and capabilty wilh a minimum degree of general<br />

national participation should be mnd can be changed lo meet<br />

the needs of the coming decades which may be characterized<br />

by uncertainly and shrinking military budgets requiring<br />

affordable and flexible systems.<br />

The member countries have adequate experience within NATO<br />

end Europe and know Ittat under these circumstances it is<br />

newssary to resort to joint RBD, procurement and use of the<br />

system while ensuring edectiveness and compelitiveness for<br />

keeping the costs down.<br />

17.hhat needs to bo'done jOintly are:<br />

a) To define NATO an4 national requirements far satellite<br />

communications.<br />

b) To develope and agree on a system architecture.<br />

c) To delineate those technological areas which are<br />

critical and require RBD.<br />

I<br />

d) To encourage and support companies and RBD<br />

establishments to form research partnership for<br />

development and production to be carried out in a<br />

competitlve manner.<br />

tt Is believed that the archlloctures evaluated and<br />

recommended In ibis report form a good foundation<br />

for (b) above and ensure also that the satellite desigrs<br />

outlined that are flexible need not change basically<br />

over 8 period of some twenly years nr longer thus<br />

keeping the RBD and recurring costs to a mlnimum.<br />

The report outlines also certain critical lechnologies for<br />

(c) above which neod %D. Some of these RBD topics<br />

are common IO miiitary and civilian satcoms: some<br />

others which are specific to military, are likely lo be<br />

common lo both national and NATO systems and yet<br />

another category of topics will be NATO-specific. It<br />

would therefore be necesarry to make a more delailed<br />

assessment of the RBD topics and determine where<br />

RRD is a prerequisite and either can be relied upon<br />

present/tuture civilian developments or carried out<br />

iointly by member nations.<br />

18.Tne lollowing areas appear as first candidates for a NATO<br />

RBD effort because they would provide solutions to problems<br />

which are NATO-specific and can be made available within the<br />

time-frame considered lor NATO SATCOM systems'<br />

On-board flexible anti-jam signal processing which<br />

can be controlled by software to meet AJ<br />

requirements generally and to adapt to national<br />

modems and new modems introduced during tl,e<br />

lifetime of the satellite(s).<br />

Adaptive nu1lir.a AJ receive antennas tailored lo NATO<br />

needs and to keep costs down.<br />

Autonomous control of the spacecraft and O&M<br />

generally using techniques of artificial intelligence,<br />

neural ndtworks and robotics.<br />

Ry sporing RBD activities. limited to payload technology, in the<br />

member nltions even on modest scale. NATO can expect to<br />

get.a bener insight into and to make an impact on current<br />

technology developments carried out for civilian and military<br />

purposos.<br />

t9.h is believed that the collaborative approach outlined above<br />

for SATCOM acquisllion in NATO give tasks to all the exlstlng<br />

bodies in NATO such as NAClSq STC. DRG. IEPG, AGARD.<br />

etc., arid would probably not necessitate creating new<br />

structures. Cost and benefit anlysis carried out in Ihe report<br />

show that tqe architectures recommended can be<br />

implemented In the manner suggested above and could lead<br />

to systems which are considerably cheaper and much more<br />

effective than those we havo had so far.


RX de hop<br />

a) Non-lransparent satellite wilh aboul 50 MHz information bandwidth h?p&dacross 2000 MHz. All terminals hop<br />

in synchronism. There will be as many dehoppers in the satellite as th& ‘qe different nets with different codes.<br />

I<br />

I<br />

ACCESS 6 AJ<br />

COMR0L.L ER<br />

b) Transparent salellilo (full bandwidth) allowing operailon with nonsynchronised frequency-hoppd lerminals.<br />

*.<br />

.. )I<br />

.’ I<br />

, 4**’ .;<br />

44 4 . : . 2.<br />

Fig. -1 Two promising AJ satelllie designs wilh on-board processing and rOufl.‘iQ; ).-<br />

8 . 8<br />

14-5


Architecture<br />

TABLE -1<br />

Number of Satellites<br />

Required for different SATCOM Architectures<br />

No of Active S/C<br />

for full contiiiuous<br />

(a) Proliferated LEO 240<br />

(c) Indined Elliptical Orbit<br />

(cl) LOOPUS 9<br />

(C2) MOLNIYA<br />

3 x 12 - hrs<br />

(a) TUNDRA<br />

2 x 24 - hrs<br />

2 x 24 - hrs<br />

(a GEO 1 Baseline<br />

~-<br />

~~<br />

(e) Svstems of Satellites in more than one Orbit<br />

(el) GEO + Polar 1 GEO + 6 Polar S/C in GEO are<br />

(82) GEO +24-hr MOLNIYA<br />

dual frequency singk<br />

in Polar orbit<br />

(a) Dual freq S/C in 1 GEO GEO S/C have<br />

GEO +single in t 2 inclined EHF and SHF<br />

Inclined Orbit<br />

Inclined EHF or SHF<br />

(b) Single freq in 2 GEO GEO S/C are air<br />

both orbits + 2 inclined of EHF and SHF<br />

Inclined EHF or SHF<br />

(f) CLOUDSAT Receive S/C Numbers will depend<br />

with lOdB ECCM 20 GEO. 20 Inc. on jamming threat<br />

advantage TX S/C:- at the time<br />

relativu to (e2)b 2 GEO t 2 Inc<br />

I<br />

No of S/C<br />

for 7 years<br />

> 240<br />

27<br />

9<br />

G<br />

6<br />

3<br />

3 GEO<br />

+<br />

18 Polar .<br />

3 GEO<br />

+<br />

6 inclined<br />

6 GEO<br />

t<br />

6 inclined<br />

60 GEO<br />

60 Inclined<br />

6 GEO<br />

6 inclined<br />

(8) M ~ S The basic concapt applies lo all case (c) thro' (f)<br />

Total No of<br />

s/C tor<br />

21 years<br />

--<br />

> 500<br />

81<br />

27<br />

18<br />

18<br />

9<br />

9 GEO<br />

+<br />

54 Polar<br />

9 GEO<br />

+<br />

18 inclined<br />

18 GEO<br />

+<br />

18 inclined<br />

180 GEO<br />

180 inclined<br />

18 GEO<br />

18 inclined


0. l 6<br />

Table -2 (a) System Evaluation Data lor Geoetntlonary Operations ( 7 years)<br />

spacmn Pnylond Avallablllty Total No. System Costs<br />

CIW<br />

No/Orbll Frequency EMF SHF Connect S/C %Al<br />

operating<br />

Spscecran R I D Recur Launch Tolat<br />

1 2 Dual Y Y No 061 085 2 242 82 76 400<br />

2 2 Dual Y Y Ye 061 093 2 2C2 87 79 428<br />

3 3 Dual Y Y No 061 09d 3 242 163 115 520<br />

1 3 Dun1 Y Y<br />

Yes 061 098 3<br />

-<br />

4 Y V<br />

0 72<br />

4 Single NO 076<br />

4 292 % 92 478<br />

- I<br />

4 Y<br />

SqIlS Y I YO3 :;g 093<br />

- --<br />

6 Sq1e Y Y<br />

No<br />

0 72<br />

076<br />

096<br />

6<br />

.- --.___ -____ -<br />

e 6 Smgle Y V YCS 9;; om 6<br />

Y<br />

/<br />

14-7<br />

- -<br />

- -<br />

Table - 2(b) Evaluation Data lor 24-Hour TUNDRA Orbits ( 7 years)<br />

-<br />

262 173 118 553<br />

R6 D Recur bunch I Total<br />

223 221 126 570<br />

238 236 130 604


14-8<br />

Table - 3 : The EHF Ground Segment Assumed lor System Comparison<br />

Type of<br />

Termlnal<br />

_____--<br />

Ship- Borne<br />

- -- -.<br />

Aircraft<br />

Submarine<br />

-__.<br />

t<br />

--<br />

Land tronsportatle<br />

~ Dla.<br />

Antenna IT, pa<br />

:,n) OIW)<br />

-<br />

01<br />

--<br />

os 01<br />

-- -..-<br />

-----<br />

025 01<br />

--<br />

50 lo<br />

20 05<br />

05 001<br />

I<br />

Transmlsslon Number of slmul-<br />

Rate (Baud) taneous accesses<br />

4 x64oOO(') I 15<br />

(*) 16 W/s COOBCS (adapltve suo-band codlng) exist today with quality whkh equals that 01 the 64 kb/s PCM. I1 IS oxpeclorl that In the<br />

IlmOfrme COnSkWd In lhls repod lhera wlll be 8 kb/s 01 even lower-rate codecs available lor use In SATCOM wlh qualiiies comparable<br />

lolhatd64W/sPCMvo(ce.<br />

t<br />

1 Le<br />

J<br />

Carea No Total No of<br />

opeding<br />

rpa cecm n<br />

e 12<br />

TABLE -4<br />

COST-RELIABILITY COMPARISON OF CANDIDATE ARCHITECTURES<br />

FOR A SYSTEM LIFETIME OF 21 YEARS<br />

AvsllabllHy<br />

3 3 D 098<br />

" . q E I 0 I 097<br />

RLD<br />

3 * 242 -<br />

726<br />

3 x 262-<br />

7eG<br />

3.238-<br />

714<br />

3 = 238-<br />

714<br />

2ee<br />

9 I 3 I E €5 I 095 290 5<br />

-<br />

370 86<br />

Coal (21-year) (SM)<br />

665.519- 313.354- 2755<br />

1104 667<br />

I


ADVANCED TECMNOILOGIIES FOW LIGHTWEIGHT EHF TACTICAL<br />

@BMMUNICATP[ONS SATELLITES*<br />

David R. McEIroy. Dcan P. Kolha. William L. Cimnbcrg. ad Marilyn D. Scmprucci<br />

Lincoln Laboratory. Massachusettq htiiutc of Technology<br />

P.O. Box 73<br />

Lexington, MA 02173-9108 - USA<br />

1. ABSTRACT<br />

'The communicatiom capabilitics prdvidcd by-!iHF satcl-<br />

litcs can range from low data ratc scrviccs (75 to 2W' bps<br />

pcr channcl) to mcdiuni data ratc links (4.8 kbps to 1:>44<br />

Mbps pcr link) dcpcnding on thc payload configuratlon.<br />

Through thc usc of EHF wavcfonn standards. thc EHF<br />

payloads kill be compatible with cxisting and planncd<br />

EHF terminals. Atlvanccd tcchnologics pcrmit thc dcbcl-<br />

opmcnt 0; '.ighly capable, lightwcipht payloads which can<br />

bc utilizcd in a varicty of rolcs. 'Ric kcy payload IcAdol-<br />

ogics includc adaptivc uplink antennas; high spccd, ]ow<br />

powcr digital signal proccssing subsystcms: liphtwc\ght<br />

frcqucncy hopping synthcsizcrs; and cfficicnt solid-statc<br />

transmittcrs. Thc focus in this papcr is on thc sipal<br />

proccssing and frcqucncy gcncration tcchnologics and tlicir<br />

application in a lightweight El4 F p;tj.load for tactical<br />

applications.<br />

2. INrHODUC'I'ION<br />

A motivating factor for thc tramsition to EHF corrimunica-<br />

lions (i.c., 44 Gklz uplinks and 20 Gtf?. downliiiks) is thc<br />

rcquircrncnt for iinprovcd intcrfcrcncc protcctiw with<br />

small mohilc prwl rnancportahlc tcnninals for tiictical and<br />

stratcgic ucr~s. Enicrginp tcchnologics nllow El IF ctm-<br />

municatiom systcrns. which can s uppi both low data ratc<br />

(LDR) and medium data ratc (MDR) scrviccs, to tx implc-<br />

mcntcd in lightweight. low powcr configuration% Sbn-<br />

dad EHF payloads, utilizc both atlvanccd antcnna systcrns<br />

and on-board signal gcncration antl prnccssing tcchniqucs<br />

to improvc pcrformancc and protcction. A payload which<br />

utilizcs thcsc fcaturcs for a thcatcr covcxigc application is<br />

described in this papcr. The application of advanccd<br />

signal gcnnation and proccssing tcchnologics to this light-<br />

weight payload rcsult in a payload which can bc incorpo-<br />

rated into sstcllitcs of many sizcs, ranging from large,<br />

multiplc function satcllitcs to small, augrncntation satcllitcs<br />

1141.<br />

3. ANTENNAOFTIONS<br />

Advanccd antcnna fcaturcs for tactical applications can<br />

includc thc ahility to providc a variablc covcragc uplink<br />

spot hain pattcm, an autonomous nulling capability within<br />

the uplink spot bcam pattcrn, or both. Variable bcamwidth<br />

EIIF antcnnas can bc utilized in a varicty of applications<br />

as shown in Fig. I. For payloads in clliptical orbits, a<br />

variablc barn width fcaturc can bc utilizcd to maintain an<br />

essentially fixcd covcragc arca indcpcndcnt of satcllitc<br />

altitudc 141. In a gcosynchronous orbit application, thc<br />

bcam variability can be uscd to satisfy diffcrcnt covcragc<br />

and gain rcquircmcnis such as in supporting tactical<br />

thcatcn of varying sizc and capacity rcquircmnts. Onc<br />

approach to obtaining the bcam variability is by employing<br />

multiplc fwds in thc antcnna. Thcsc frcds arc combined<br />

wirh a vanablc pown conibincr nctwork hcforc going to<br />

thc rcccivcr. With 7 uplink fccds in thc anicnna. a $to- 1<br />

*This work was sponsorcd by thc Dcpmmcnt of thc<br />

Amy. thc Dcpartmcnt of thc Air Forcc. antl the Ihfcnsc<br />

Advanccd Rcscarch Projccts Agcncy undcr Air Forcc<br />

Contract FIWI~R-~O-C-OOZ.<br />

variation in bctunwidlh can bc achieved. whilc 19 uplink<br />

fccds givc a 5-10-1 variation. Ry incorporating both phasc<br />

and amplitude co~trol in thc hamforming nctwork and<br />

including a proccssor, thc variablc bcamwidth anicnna can<br />

also includc autonomous nulling [5].<br />

4. LIGHTWEIGHT SIGNAL GENERATORS<br />

In ordcr to providc cffwtivc intcropcrability. it is impor-<br />

tant for all thc EHF payloads to work with thc samc typc<br />

of uscr tcrminals. S:andard ELIF transmission formats and<br />

dynamic acccss/configuration control arc important fca-<br />

turcs in providing Lhis intcropcrability. Thc standard EHF<br />

wavcform rcquircs thc dchopping and clcmtdulation of<br />

communications signals on-board thc satcllite. As shown<br />

in Fig. 2, lightwcight frcqucncy hoppinp synthcsizcrs can<br />

bc irnplcmcnted using dircct digital synthcsis tcchniqucs<br />

along with high-spccd. hybridized bandwidth expansion<br />

circuitry. Thcsc advanccd frcqucncy gcncrators yicld<br />

alrnost an ordcr of magnitudc rcduction in wcight ovcr<br />

frcqucncy synthcsizcr subsystcms of thc carly 1980's whilc<br />

also rcquiring significantly lcss than hall thc powcr.<br />

Thc kcy clcsign critcria for a payload frcqiicacy synthcsizcr<br />

arc a low powcr cmifigurati(m which hiis thc aliility to<br />

gcncratc signals with low spurious frcqucncy cantcnt whilc<br />

mccting thc frqucncy switching spccdi cquircmcnt. Thcsc<br />

factors arc kcy in sclccting thc bancbidth expansion<br />

approach as shown in Fig. 3. A switchcd filtcr bank<br />

approach is a straightforward implcmcntatiori. flowcvcr.<br />

film sizc limits thc niimhcr of frcqucncics (N) which can<br />

bc sclcctcd for mixing with the dircct digital symthcsizcr<br />

(DDS) output. thus impacting thc amount of bandwidth<br />

which must bc gcncralcd by thc DDS. This advcrscly<br />

affccb both thc powcr and spur constraints by rcquirinp a<br />

highcr powcr DDS and by gcncrating largcr spurs. Tlic<br />

altcmativc afpoach shown in Fig. 3 was sclcctcd for tltc<br />

payload frqucncy synthcsizcr. This approach utilizcs a<br />

high spccd phasc-lockcd loop to gcncratc thc sct of N<br />

frqucncics which arc mix4 with thc. DDS output to<br />

expand thc bandwidth. 'Thc widc bandwidth of thr loop<br />

allows N to bc Inrgc. thus rcquiring a smallcr Dl>S<br />

bandwidth. Thc rcduccd DDS bandwidth allows thc usc<br />

of a low powcr, CMOS based DDS and rcsults in lowcr<br />

spur Icvcls. Thc kcy icchnology chdlcngcs in iniplcmcnt-<br />

ing thc widc bandwidth loop arc thc high-spcctl countcr<br />

and thc custim voltagc controllxi oscillator (VCO).<br />

Somc of thc tcst rcsults from a brcadboard synthcsizcr<br />

which utilizcs :'IC wick bandwidth loop for bandwidh<br />

cxpansion arc shown in Fig. 4. Thc brcadboard synthcsiz-<br />

cr mwts thc switching spccd rcquircmcnt by scttling to<br />

withit? 7.5" of thc final pha.sc in a littlc nvcr 0.8 pscc.<br />

Thc goal for spur lcvelr is also mct hy thc hrcntltward<br />

synthcsizrr. A typic;ll.ob'tpt spcctrum is shown iri Fig. 4.<br />

5. JII(;lI-SP1.:ED SIGNAL PROCESSORS<br />

High-spccd digital signal prtxcssing advanxs can bc uti-<br />

lizcd to providc lightwcight. low-power dcmtxlulaiors and<br />

signal proccssing subsystcrns capahlc of supporting many<br />

LDR and MDR channcls. In ihc carly 19HO's. ihc use of


0.<br />

16-2<br />

combincd analog and digital proccssing technologics<br />

providcd thc most cfficicnt implcmcntation for dcmodulat-<br />

ing thc LDR uplink wavcform. As shown in Fig. 5. thc<br />

frcqucncy dcmcdulation was pcrformcd by a siirfacc<br />

acoustic wave (SAW) dcmodulator followcd by a digital<br />

communications and acquisition proccssor. Now howcvcr.<br />

thc progrcssion of digital tcchnology has advanccti the<br />

staic-of-thc-nrt to thc pint whcrc an all digital approach<br />

is morc cfficicnt. Thc dcvclopmcnt of application spccific<br />

ICs (ASICs) which proccss thc st'mdard EHF waveforms<br />

will contribute significantly to thc rcduction in wcight and<br />

powcr rcquircd by thcsc subsystcms. For furthcr rcduc-<br />

tions in wcight and powcr, thc ASIC dcviccs c h be<br />

intcgatcd into multi-chip modulcs to achicvc ths bcticfits<br />

associated with a wafcr-scalc lcvcl of intcgration as shown<br />

in Fig. 5. In this comparison of zn LDR signal processor<br />

using multichip moclulcs with an I,DR signal procbssor<br />

from thc carly 1960's. an ordcr of magnitudc rcduction iii<br />

wcight is obtaincd while thc powcr is dccrcasrd by inorc<br />

than half for thc samc nlirnbcr or chanricls pmccsscd<br />

The digital Fast Fouricr 'Transform (FFT) dcmodulator is<br />

implcmcntcd wiih two ASIC dcsigns shown in Fig. 6. Thc<br />

samplcd signals arc first prcproccsscd bcforc ihc actud<br />

transform is pcrformcd. In this FIT prcproccssor chip, Ihc<br />

signals arc windowcd. cohcrcntly intcgratcd for iidjusimcnt<br />

of frcqucncy sample spacing, and storcd in mcniory. Thc<br />

hcart of thc dcmodulator is thc in-placc FFT rnip shown<br />

in Fig. 6. Thc data is storcd in mcniory, thc FrT buttcifly<br />

opcrations arc pcrformcd. and aftcr the transform is<br />

coniplctcd. thc 1 and Q sam~!ia arc coltvcrtcd to inagni-<br />

~udc valucs Tor Turthcr prr-cssing by thc uplink processor.<br />

Thc F1.T chip is dcsigncd for usc with (lata or :rccluisitiori<br />

channcls and can pcrfomi a traiisiorrn of up to 256 points.<br />

Thc ASIC for thc in-placc FFT, shown in Fig. 7,' has bccn<br />

dcsigncd, fabricatcd, and tcstcd. Thc FFT ASIC is<br />

dcsigncd to mcci thc priniary rcquircmcnts for a spacc<br />

applicatitm: radiation hardncss, high pcrfnniiancc, low<br />

powcr ccmsumption. mid high rcliability. A significant<br />

dcsign fcaturc in this chip which cnahlcs high pcrfonnancc<br />

in a low powcr configuration is [tic usc of on-chip rnchiory<br />

(RAM and ROM) for thc data bcing proccssctl arid fdr thc<br />

cbcfficicnts uscd in thc FlT. Thc amount of riiciiiory<br />

rcquircd is mininiizcd by employing an innovativc in-place<br />

algorithm using dual port RAM.<br />

Thc Fm chip, thc prcproccssor chip, and a coniniutiications<br />

uplink proccssor (CUP) ASiC can bc confiuurcd into<br />

a comrnunicaiions dcmodulator, which is capablt: of<br />

proccssing up to 16 channcls, as shown in Fig. 8. Thcsc<br />

ASICs, along with thc supprting chips (AA1 cnnvcrtcrs.<br />

CUP RAM, and mission ROM) can be packagcd irito a<br />

multichip modulc which is about 2" x 3" in six.<br />

A<br />

For MDR channcls, similar ASIC tcchnology is cxpcctcd'<br />

to yicld cfficicnt imp:cmcntations for thcsc higher data ratc ,<br />

channcls wcll. A prclirninary dcsign Tor a four channcl ,<br />

MDR subsystcm rcquircs thrcc individual ASIC dcsigns,,<br />

Four dcmodulator chips arc utilizcd in conjunction with a<br />

clock gcncrator chip and an MUR prcrccssor chip to form<br />

thc four channcl MUR suhsystcm. l'hc dcsigris for ihc<br />

clock Rcncrator chip onti thc MI1R pr(tccs?qr, $hip ollow<br />

cascading to support additional MDR dcm,wI,ulatyrs for . .. a*<br />

payloads with mwc than four channcls. , ... . ..' a,.<br />

..<br />

6. EXAMPLE EHF PAYLOAD FOR<br />

GEOSYNCHRONOUS ORBITS<br />

An cxample EHF payload, which utilizcs a pair of variable<br />

beamwidth spot bcam antcmias and bah LDR and MDR<br />

signal processing, is shown in Fig. 9. For this example<br />

payload, the uplink spot bcam antennas utilize 7 fceds<br />

cacli and the downlink bcams arc formcd using 1 ked<br />

each. Both LDR and MDR channcls are supportcd in the<br />

spot hams. In addition. the payload providcs LDR c h<br />

covcragc senticc through a pair of carth covcragc horns.<br />

The LDR proczssor supports 16 communications channcls<br />

in each of the bcams using thc EHF common transmission<br />

format. Thc MDR proccssor providcs a total of 4 channels<br />

of scrvicc in thc spat bcams with any mix bctwccn<br />

the two beams.<br />

Thc main coasidcrations in sclccling a spot bcam sizc arc<br />

thc rcquircd gain and llrc covcragc arca prtwidcd by the<br />

ham. Thc 1" :o 3" spot bcam sim in this cxamplc pay-<br />

load, along with thc 6 W solid statc transmittcr. will<br />

support 2.4 kbps scrvicc lo a small tcrminal (2'nw) whilc<br />

in thc widc bcam mode and will support 1 Mbps links to<br />

a mcdium si7x tcrminal (4'/12W) whilc in thc narrow<br />

bcam niodc. Thc payload in Fig. 9 is cstimatcd to wcigh<br />

about 200 Ib and rcquire about 290 W (thcsc cstimatcs in-<br />

cludc 20% margins).<br />

Thc 6 W transmittcr and thc 20 spot bcam antcnnas<br />

providc sufficient EIRP to support both LDR and MDR<br />

links in a varicty of modcs and daia ratcs with the total<br />

throughput for thc payload dcpcnding on thc mix of LDR<br />

and MOR bxnirials in a sccnario. An cxainplc loading<br />

scciiario is shown in Fig. IO. For this cxariiplc. thrcc<br />

typcs or tcrminals wcrc assunicd: a 6', 25 W ground<br />

tcrniinal; a 4', 12 W transpnrtablc tcrminal: and a 2', 2 W<br />

portablc tcrniinal. Thc ground tcrminal is supported by thc<br />

carth covcragc bcani in thc cxarnplc. Thc portable and<br />

transportablc tcrniinals arc supportcd in thc spot hcanis.<br />

Chc of thc spot bcmns is sct to a 3" bcainwidth (ahut<br />

1200 milc diarnctcr covcragc at thc subsatcllitc point)<br />

whilc thc othcr :pot bcam is sct to a 1" bcamwidth (about<br />

400 milc dianctcr covcragc ai thc subs:itcllitc point). in<br />

this cxamplc. 27 LDR networks and 17 MDR links arc<br />

supportcd for a total payload throughput of 3277 kbps.<br />

A range of payload capabilities can bc implcmcntd using<br />

the variablc hamwidth aitcnnas. nulling prtxxssors. and<br />

ttic othcr kcy tcchnologics dcscribd bricfly in Fig. 1 and<br />

2. Thcsc tcchnologics can bc uscd to implcnicnt small<br />

EHF payloads as in thc cxamplc prescntcd hcrc. Howcva.<br />

thc samc tcchnologics can also bc uscd in sccondiiry anti-<br />

jam payloads or multiple function anti-jam payloads on<br />

largc satcllitcs as shown in Fig. 11. In addition. many of<br />

thc smc signal processing and frcqucncy gcncration<br />

tcchnologics arc applicablc for improving El IF tcrniinals<br />

as wcll.<br />

7. SUMMAHY<br />

A kcy fcaturc fur thc flcxiblc usc of Ihc EHF payload is to<br />

providc thc ability to configurc the payload to providc a<br />

varicty of scrviccs. Suppming cithcr LDR. MDK. or both<br />

typcs of chonncls in a varinlk. hciunwitlth utitcririn ticllm<br />

provitlc itiis sort of flcxihility to nwct a troiitl raiigc of<br />

uscr rcquircmcnts. Dcvclopmcnt of the critical technologics<br />

for use in thcsc typcs of payloads hiLC bocn initiatcd.<br />

Thc tcchnology arcas includc variable bmwidth antcnnas.<br />

lightwcighl frcqucncy synthcsi7~~i!.,and high spccd signal<br />

processors for both LDR and MDR channcls.


0<br />

a ACKNOWLEDCEMENTS<br />

The concepts which m firesentad here wem developal<br />

hough the MILSATCOM concept a d tachnology<br />

development effaru of I!& lightweight EHP payload<br />

program 8.t MIT Lincoln Labontq. We thank the lil (li#k :' '<br />

individuals who have contributed IO this work. We<br />

cspecinlly thank John Drover for his work in devcloping<br />

the FIT ASIC and David Matma for his work in'lcading<br />

the design of he frequency syntheeizer.<br />

9.<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

REFERENCES<br />

D. P. Kolba. E. L. Jeromin, D. R. McElroy. and<br />

L N. Weiner, "Complementary Robust MILSATCOM<br />

Servica: A Significani Role for Lightweight Space-<br />

craft," Roject Report SC-79, MIT Lincoln Laboretoty<br />

(28 March 1989).<br />

D. R. McElroy, D. P. Kolba. M. D. Sanprucci,<br />

"Small EMF Military Satellite Concept for Augmentation<br />

and Restd," in AIAA 13th fnt. Canm: Sat.<br />

SYSIC~ Cod., Los Angeles, CA, (1 1-15 March<br />

1990).<br />

D. P. Kolba, William L. Grcmbcrg, D. R. McElroy,<br />

and M. D. Sempmcci, "Advanced EHF Tcchnoiogies<br />

for Light- weight Augmcntation / Restomtior, Com-<br />

munications Saicllites." in 4* AlWSU Conference<br />

on Small Satellites. Logan, Utah, (27-30 August<br />

1990).<br />

D. P. Kolba. D. R. McElroy, and W. C. Cummings,<br />

"Lightweight EHF Satellites for Augmentation of<br />

Anti-Jam Communications," in 14* AIAA Intcmation-<br />

a1 Communication Satcllite System Confcrcncc,<br />

Washington, JX!, (22-26 March 1992)<br />

-D. R. McElroy. W. C. Cummings. and D. P. Kolba.<br />

"Lightweight Adaptive hlCnMS for EHF Payloads,"<br />

in h4Il.COM '92, SM Diego. CA, (11-14 October<br />

192).<br />

' 8<br />

!<br />

I PARAflOlIC- 1<br />

.<br />

WE1ACONAL<br />

-.- i ELAN FEtD I<br />

I '<br />

. * I<br />

a<br />

;'<br />

16-3


flgurm 2. Frequency Synlhmrlur Aduclionr<br />

SWITCHED FILTER BANK PHASE-LOCKED LOOP<br />

FlL7ER REFERENCE<br />

BANK FREWENCT<br />

BPF<br />

STRAIGHTFORWARD IMPLEMENTATION<br />

. MMlC SWITCHES: SMALULOW POWER<br />

FILTER SIZE LIMITS N- LARGER DDS BW<br />

- nuinEn POWER DOS<br />

- LARGER SPURS<br />

FREO.<br />

- LARGE N -SMALLER DDS BW<br />

- LOWER WWER DOS<br />

- SMALLER SPURS<br />

LARGE LOOP BANDWIDTH<br />

FIXED<br />

FREO.<br />

* VERY HIGH SPEED COUNTER<br />

- POWER PENALTY<br />

CUSTOM VCO<br />

Figurm 3. Bandwldth Expandon Implementallon Options


I<br />

P\'~'~~~IzER PHASE<br />

IG TRhNSIENT<br />

(Mar lo Min Frequency)<br />

I I 1<br />

-200 800 (Boo<br />

TIME (ns)<br />

-90<br />

10 075<br />

TYPICAL OUTPUT SPECTRUM<br />

10 085 10.095<br />

FREQUENCY (GHz)<br />

flguro 4. Broadboard Synthdzw Performance<br />

* . I<br />

i' .


L n<br />

,<br />

JA. "<br />

Flguro 5. LlghtwolgM LDR Slgrvl Procwaor Impiomentatlon<br />

. : !"""" .................................................... ~<br />

im : : -CE CHlr<br />

i wemocEswn j i<br />

j CnP .. ::<br />

..<br />

.. . I ..<br />

:: ..<br />

-<br />

E<br />

U<br />

:<br />

!<br />

i<br />

i TOUR<br />

iwotxsson<br />

MAGNITUDE ,<br />

MmEmEn j<br />

i : .. I<br />

..<br />

:<br />

::<br />

co(ysM i<br />

::<br />

..<br />

..<br />

..<br />

non<br />

. i i ........ j<br />

DEUODUUTION FOR BOTH COUUUNICATIONS AND ACQUISITION<br />

LIG"WE!GHT IYPLEMEMATION<br />

ALLOWS UP TO 256.B.pOINl TRANSFORM<br />

flgun 6. Dlg11.1 FFl Drmndulrlor<br />

.<br />

..<br />

!


0-<br />

PREPROC<br />

PREPROC<br />

i<br />

16 COMMUI(ICATI0N CHANNELS<br />

ROM<br />

DOWNLINK<br />

PROCESSOR<br />

RESOURCE<br />

CONTROLLER<br />

FQun 8. Dunoduhtor and Upllnk Procouor ulllcchlp yodula Conflguatlon


GEOSYNCHRONOUSALTITUDEORBlT<br />

VARIABLE BEAMWIDTH<br />

ANTENNAS I<br />

1.0-3.0 dag<br />

u;L<br />

SPOT BEAM<br />

1.03.0 dag<br />

UIL<br />

SPOT BEAM<br />

EARTH<br />

COVERAGE<br />

UL<br />

PROCESSOR<br />

flguro 9. Exrmplo LDWMDR Payload<br />

2.0 d.9 (HPBW<br />

DIL SPOT BEAMS<br />

COVERAGE<br />

DIL<br />

-.<br />

- PAYLOAD SIZING<br />

EHFONLY -200lb -mow


MULTIPLE FUNCTION<br />

AJ PAYLOADS<br />

Figure 10. Eximplo LDWMDR Leadlng Sconrrlo<br />

a$,-<br />

SECONDARY<br />

AJ PAYLOADS<br />

WITH SIGNIFICA~<br />

CAPABILITIES '$<br />

,<br />

/'<br />

/<br />

./ . .."q-= '. i<br />

/<br />

I ' - SMALL SATELLITES<br />

1 FOR AUGMENTATION<br />

RESTORATION OF<br />

AJ SERVICE<br />

I 9<br />

I<br />

L<br />

,<br />

4 I<br />

IMPROVED EHF /<br />

TERMINALS /<br />

/<br />

Figure 11. Tochnoiogy Utlllly<br />

3<br />

169


I<br />

SYNCHRONIZATION TECHNIQUES FOR MEDIUM DATA RATE EHF<br />

MILSATCOM SYSTEMS<br />

SUMMARY<br />

I, rhc LIU or MILSATCUM. cmvlderahlc crrm is<br />

cvmntly bcing cxpcndcd om Ihe dwhpmcnl of systmr<br />

opcraling in UIC EHF frequency hmls and employing<br />

mbwd pmccx


e<br />

muior, MDR ryp &U nier up Io ud includins TI<br />

would bc rcquirrd<br />

Syuhrmiratim is me of the ty arcam of plential<br />

vulnerability in Ihe design ud oprratim of a<br />

MIUATCOM ystan. In R& tn met operational<br />

raquirancnh an MDR EllF MIUATCOM syslcm mu.%<br />

pvide a syrwhmnixalirm upability hat is 11 ICul U<br />

robust U Ihe uxnmunicatimr capability it sup-<br />

Synchmniruim cmsism ot hxh rquiritim d %ti%<br />

pmrcssm Thc~ p~reu~i involve adjwling the critical<br />

puuncim or spatial pointing. rmuency ud timing. It the<br />

g m d cemirul. It vnll k umwd that be payload is Ihe<br />

spem rcfmmr vi& rcgud to trcquency utd timing. md<br />

that UK gmund terminal must match iu timing uul<br />

rrcqumy to che DL roccivcd signals. Similuly it lnus<br />

cnwrc Ihal the UL signals urivc at the paylimd matched<br />

in tim uxl frcquency IO thau of Ihe paylord This papa<br />

cimimn chc systcm &sign consideration* for<br />

rynchmni7atim of EHF MDR systems u~iliring Tactical<br />

Satcllitcs (TACSATS). Thc anphmis of thr discussion<br />

will hr im pvformance capahilltics lo nrcl thcatrc<br />

rmand qummcnu.<br />

Thc paw is organi7ml as follows. Sccthm II ciamincs<br />

d<br />

rimc of the syricni chuacterirtics and asrumpli~ms which<br />

imp8ct Ihc dcsign or Ihe r)nchroni7alion pmfcsr. Srction<br />

111. 1V. mi V rraminc the hign or spatial. iimc a<br />

frcqumcy syicl~nimim aIpnithm.. mrpstivcly. Srrtim<br />

VI eranlines paramr~m ~d pcrlammcc mcuurrq kn UI<br />

ovrrall .ynrhnmiialam aI$irithn. Sccticm VI1 pr~ividcr a<br />

CorTIUslon to lhc papcl.<br />

2 MDR EllF SYSTEM CHARACTERISTICS<br />

2.1 Wavrtorm and Opmllonal Cnnsldrrallunr<br />

The rmmcd kcy wavcfnrm .nd opcralional characicristics<br />

thai are peninml io Ihe<br />

><br />

discussion in this papr arc<br />

outlid in Tahle I. These characteristics were conridcrcd<br />

hy the Canadian Dcpuune I of National Dcfcnce tor the<br />

currint MDR EHF MILSAT CM system design (21. As<br />

dmcusscd ahrve. the uplink h dwidth is 2 GI11 ceiitcrcd<br />

about 44.5 GHr. whrxas c dcrmlink hanlwdih is I<br />

GH7 ccntcrcd ahut 21 CIO. hquency lwpping is<br />

cmploycd to comhat jamming. with the hopping rate king<br />

on thc dcr of kllz. A typical systcm conliguration is<br />

illustratcd in Lgure I. in which L grixrnd lcnninal (CT) in<br />

I given hatrr of operation communicaics with a GT in<br />

the same or dilfcrcnt Ihcam. A tlravc of opcratim is<br />

dcfinal by Ihr salclliic antema hcam patton coverage.<br />

The salcllitc antenna CUI e i h h a fixed w slccrahlc 'put<br />

beam. or a multihcam antenna that can be dynamically<br />

slccrcd from one theme to another m a hop to 1 op or<br />

kame to Cram basis. In order to accommc&tc multiuscm<br />

and variable data rata. a hybid FDMA/TDMA frame<br />

svUcturc is employed on Ihe uplink as illur~rated in FsRure<br />

2. Usen arc rsw~ad capcity in terns or M ~CVSI whlch<br />

CUI be one or more m)nconcuncnt subtruncr in OK or<br />

mm uscr channels. The downlink employs a singlc<br />

channel TDMA wucture. The modulation assumed for<br />

r -<br />

UL frequency<br />

budwidth<br />

budwidth<br />

modulation I DPSK -1<br />

liopping ntc slow frequency hqrpina<br />

Diu Rates 32 kbm IO TI<br />

I<br />

Rocasing fwtim - coding: Mat or<br />

cmvolutiaul<br />

- divmily<br />

. inlcrleaving<br />

- timc oermutation<br />

I 11<br />

satellite abiu ~<br />

&lbibiuuy<br />

payload UItCnN 1 T-5'bcamwidIh<br />

26-34 dRi<br />

payload amplifier 5 W SSPA<br />

nnwnd terminal mcnm I un to 1.R m I<br />

ground tam;nrl up to 20 w<br />

bmplifia<br />

.\<br />

Figu:c I: Syslcm Configuraum<br />

purposcs ol his discussiim is DPSK. No pulx shaping has<br />

hcn as*umed. although Wmt studies idicalc lhal lhis<br />

may be useful for MDR applicatim 131. M-uy FSK could<br />

also he considend however given hat slow frequency<br />

I


-U<br />

I 1<br />

b I l l<br />

. . . .<br />

, Figure 2: UL FDMNTDMA f hc sln~clurc<br />

: :I<br />

: :i<br />

hopping is a.9sumed (i.e. he hop rate is lest Oian be G *.U<br />

rate). a DPSK rype dui.4on it rnwe amcnahlc to<br />

attaining the MDR data rata<br />

2.2 lmpalrmrnb<br />

In or& tn combat various channel impairments Such as<br />

athlitivc miw, fading. and scintillation LI well L% jamming<br />

hreau it is atsum4 that communication data pnrcssing<br />

tcchniqurs such as FEc ding. interleaving. divcrsiiy a d<br />

tim permutation of data hops arc implemcnicd in thc<br />

systcm. In acidition to thc above channcl and EChl' thrcats<br />

drc system must bc crpahlc of operating unclcr system and<br />

equipment iniluccd imprimcnts such as dopplcr cffctir<br />

due IO be relative motion bctwcc.cn the payload aod thc<br />

GT. rrlative payload to GT clock drift. RF pup &lay<br />

variatim. and RF frrqucncy respo~sc m the hnp-to-hclp<br />

rmplitudc varia!ion at a func:ion of frcqilrncy. rhcse<br />

impaimenla arc listd in Table II along with thr assurncd<br />

valucs for t.k pu'p~ct d discusqion in this pnper. The<br />

dopplcr effect is ncgligibte for geostationary orbiiq.<br />

however for non-geostationary. elliptical type orbits such<br />

as Tundra or Molniya. the dopplcr cffccm can bc ax scvcrc<br />

as documentnl in Toble 11. These wbi~r would he rquircd<br />

in a tactical theatre of operation ai northern latitudes.<br />

pmicularly in the Arctic.<br />

2.3 Llnk Budget Requlrernenb<br />

For a TACSAT EtlF system. it is awumal that a 5W<br />

SSPA is crnploycd on the payload. Largcr amplifiers<br />

would rcquirc the uw of a TWTA. which wwld irnpsct (RI<br />

the available si72 and wcight of thc payload. Thz antciina<br />

is asumcd to be a spot beam with a 5" bcaniwidth. For<br />

this size of amplifier on the payload, typical rcccivc C/N,<br />

lcvels at h c ground terminal will vary from 50 to 60 dB-<br />

k{z 'or a gWSlaliOEary orbit in clcar sky conlirions. It<br />

should bc noted that thc link budget must also<br />

accommodate rain fade margins on the UL and the UL.<br />

Depending on the desird fadc margin this could<br />

potatiallv restrict Ihe DL burst data rata unda given<br />

channct conditims.<br />

2.4 Inltlal Acqulsltlon Estlrnates<br />

The complexity of the ac.,uisition phaw of the<br />

synchronization proccw will dcpcnd significantly on the<br />

J<br />

Tabk 11: MDR System Impalrmenb<br />

Group Delay<br />

Variation<br />

Fnqumy Rcsponw<br />

Variation<br />

+I- ? dB<br />

laming I channel dcpendcni<br />

magnitude of the crrm in thc initial GT estimates of<br />

payload pointing. frcqucncy UKI timing.<br />

17-3<br />

2.4.1 Timinu Eshwtc<br />

The error in the initid time estimate is detmnincd by the<br />

availability of M accurate time mfemcc and the relative<br />

rate of drift of the time standard maintained by the GT<br />

with rc.spcct to Ihc reference time rtandzrd in the payload<br />

With the availability of single bard GPS rcccivcrs. an<br />

MDR tcnninal CM easily maintain time accuracies 017 "IC<br />

ordcr of microstcondq. If GPS or similar time rcfcrc c<br />

systcm.9 M MI available. the initial error in the cstii :e<br />

of the timc enor would likcly be on the ordcr f<br />

milliseconds. Givcn the current level of technology. '1<br />

MDR terminal ;an catily accommodate a rubidiL:ii<br />

standard. A typical vallrc of rclative drift rate for a<br />

rubidium standard is 5 x IO'* per day. Thc resulting cmr.<br />

evcn aftcr several drys of uncalibrated usc would still be<br />

less than a miaosccond. For pitrposcs of discussion, an<br />

initial hing mor is 50 millisccmds is asumcd.<br />

2.4.2 Spatial Pointing Esfimai:s<br />

Thc accuracy of the initial spatial pointing cstimall<br />

dcpcndcnt on three principal parameters; namcly, thc t<br />

in the GT's estimate of its own location. he initial tin<br />

estimate, and the accuracy of the GT's ephcn1cr.C<br />

algorithm. Thc dc~~ndcncy on the time estimate rcwlu<br />

from he fact that the GT's estimate of the satcllirc<br />

position is an outpul of thc cphcmeris algorithm. which<br />

employs !he currcn~ timc estimate as an input. If GPS<br />

avai!dbk. boUi the initial timc estimate, U well as .<br />

GT's position will be known to a high dcpe d accuruc .<br />

Furchcrmore. if the MDR bau station is fixed in a tactic-I<br />

theatre of operation. thc location of the CT will typicn .<br />

be h w n<br />

to within 10's of mclers, either from w r y<br />

navigational aids and an accurate time standard can


..<br />

0<br />

sdcly assumed In either of thc scenarios dcscribcd abr~vc,<br />

thc only effective e m will be due to the accuracy of the<br />

ephcmais algailhm. A wry qconwative estimate is Ihai<br />

the ernn canpnart in spatial poiwing duc to he<br />

cphcmais rlgc-ilhm will be known to wilhin O.l* in<br />

which c m spatial acquisitim may'nd be ncccsar)'. If<br />

GPS or similar timc stdads ue hot avrilahlc and the<br />

location of Ihc GT is not piscly knowil. thc conlribulion<br />

of he .sparid pointing mor due to thc mw in thc cstiniatc<br />

of the GT locatim will bcwmc significant. In a tactical<br />

field scenario the GT location will typically bc known to<br />

much bctter than IO km. mulling in a corilribution to thc<br />

spatial pinling e m of lcss than 0.1'. Thus the total<br />

pointing c m Jhould be lexs than 0.2.<br />

2.43 Frequency Esiitnatcs<br />

The initial ma in Ihc frcqucncy cstimatc will bc due to<br />

a combination of the accuracy of thc cphctncris aljiwihn<br />

in estimating motion induccd doppla cffccl~ and the<br />

rclativc frcqucncy drift bctwccn the timc standards of ihc<br />

payload and the ground tcrminal. For thc orhits rcfcrcnccd<br />

in scctim 2.2. Ihc worst case unrcsolvcd dopplcr crrm will<br />

be on the order of to 2 ktlz. Again acsuming thc<br />

prerncc of a rubidium Ftandard in the GT. the frrqucncy<br />

crror duc to rrlativc cltwk tbift will hc ncglipihlr Tor<br />

purpcscs of thc.sc discussions.<br />

3 SPATIAL ACQUISITION<br />

To achieve spatial wnchmni7ation, thc gmuntl tcrminal<br />

must he capable of acquiring and tracking thc pinting of<br />

thc antcnna typically io within an angle corrrywnding to<br />

a 1.0 dR loss in gain. In M MDR systcm thcrc arc scvcral<br />

factors that will impact on the spatial synchroniiation<br />

algorithm to bc sclcctcd If thc initial spatial pointing<br />

error is rclativcly largc. such as on [hc o rb of onc to two<br />

3 dR bcamwidlhs. spatial acquisition will likely havc to<br />

consist of two phaccs. a coarsc spatial acquisition phase.<br />

and a fine spatial acquisition phasc. Tlic coarsc spatiol<br />

acquisition phase can consist $.if a stcppcd or continuous<br />

scarch pattern. normally in srcps of onc 3 dR bcamwidth.<br />

out from thc hst initial estimaic as provikd by the<br />

cphcmcris algorithm.<br />

Siryc in MDR the DL is capacity limited, it is dcsi-abl:. to<br />

havc an antcnna vvih as high gain as practical. tlowcvcr<br />

igh gain antcnnns bin: narrowcr bcamwidths. rcsulting in<br />

larga attcnuatims for iic same crror in spatial pointing.<br />

Typical UL and DL MICW bcam charactcristics for EIF<br />

frqucncias arc givcn in Tablc 111 as a function of antcnna<br />

kunctcr. As discussed in section 2.4.2. the initial pointing<br />

error for an MDK'tcnninal is usually lcss than O.I", in<br />

which case a coarse spatial scarch stage is not rcquircd.<br />

For cxamplc. it can bc sccn that fob a 2.4 mctcr antmna,<br />

thot 8 pointiri~ error of 0.1' corrcqw)ntls IO thc 3 clII<br />

bcwnwidth. For a tactical cnvi.onment in which largcr<br />

initial pointing mm may bc incurred. the antcnna size<br />

will typically be smalla, on thc nrdrr of 1 mctcr. In such<br />

a scenario the pointing error of 0.2" discussed in 24.2 wiil<br />

fall within the 3 dB beamwidth In such caws spatial<br />

acquisition would only na4 to consist of thc finc spatial<br />

acquisr ion strgc Thc most commo~l dgailhm employed<br />

is a cmicd sun tracking loop about a 1 dB contour. Such<br />

I~ps can rapidly aqrire in AWGN in the order of<br />

slxdx fmm initial pointing arm within the 3 dP,<br />

contour of thc antcnna. This is diciert for most MDR<br />

EHF antmLv U dixu.ssal above.<br />

Tahlc 111: Typlcnl EHF Antenna Charocterbtlcs<br />

0.14 DL<br />

11 0.14 UL I 1.0 I 1.75<br />

11 1.0 DL I 0.3 I 0.53<br />

11 1.0 UL I 0.14 I 0.24<br />

1.8 DL 0.18 0.3<br />

1.8 UL 0.09 0.IR<br />

2.4 DL 0.13 0.21<br />

2.4 UL 0.06 0. I<br />

If Ihc initial pointing crror cxccds hc 3 dR contwr of thc<br />

anicnna. or if jamming or scintillation is prcscnt. it may bc<br />

necessary io cmploy a coarsc acquisition search. Spiial or<br />

stcppcd scarchcs may bc cmploycd, howcvcr thcre is an<br />

additional consideration for an MDR terminal. If thc<br />

pointing crror is mitsidc thc 3 dR region, it is possiblc that<br />

thc spatial search may point to a sidclobc at the payload<br />

In a high SNR cnvironmcnt a dctcc'tion may occur.<br />

rcsulting in a false locking of the spatial pointing on a<br />

sidclobc. Cmc solution is to collcct statistics from all<br />

possiblc scarch regions. howcva this impacts thc<br />

acquisition timc. An altcmatc approach is to cmploy a<br />

gimbal scan about a larger contour than that cmploycd for<br />

thc conical scan. Thc proccssing would bc idcntical. If thc<br />

contour of the gimbal scan is judiciously choscn with<br />

rcspcct to thc ovcrall search rcgion. thc gimbal scan will<br />

always encompass thc mainlobc of the antcnna. 3tiicr<br />

considmations includc the incrcascd scnsirivity of thc<br />

conical scan to pointing c m duc lo the highcr slopc of<br />

the bcamshapc in high gain antc~a~, as well as the cffccl~<br />

of frqucncy flatncss variation on thc stability of thc<br />

conical scan proccssing.<br />

4 TIME ACQUIS;TIO%N<br />

4.1 Overvlew<br />

Time acquisition is dividcd into two siagcs; namcly. DL


@<br />

& a time acquisition. Due to thc tactical raquirancnt<br />

that thc MDR EHF systn have a multiple access<br />

capability, it is ~CCUWY for Ihe p~ylod 10 dphcally<br />

assip &U hops and theatres Since a GT in a giv’a<br />

dou no( have knowledge of which hops hive<br />

actual data until Inc rcquisitim has bacn mpletad. bL<br />

synchronization is accompluhcd lhrough che usc of<br />

spccidized synduoruzui~ hops. These hops must ochr<br />

in known locations in Ihc dowrilink datalink structure. DL<br />

aquisition is achkvd by cktating the presence of the<br />

sphrcmizatim bps which vc periodiully transmilted to<br />

each cheatre of opemion. SiKe the detection of Ihew hdps<br />

clrtno~ take place un~ess the antema is pointing at ihe<br />

payropd. he time acquisition procns is perfnmcd<br />

concurrently with the spatial acquisition proccdhc<br />

derribod in scctim 3. As for spatial aquisitinn, the DL<br />

acxpisitia pmcea consists of I coam and fine stage. The<br />

c w ~ Stage e spchmniza Lhc DL timing to within I DL<br />

hop, providing the gmund terminal knowldgc of thc<br />

correct point in thc frqucncy hopping squcnce rclativc to<br />

the GT timc-ofday COD). A sccond fine stagc of DL<br />

time acquisition is mquircd to 8ltain the DL timhg to<br />

within a DPSK chip or spbl period.<br />

It should be notod that the u e of time pcrmulatinn to<br />

combat padd time jamming adds complexity and delay to<br />

he acquisition procxss. The psition of the pcrmutcd<br />

synchronizrtim hops must bc calculated had on thc<br />

estimated TOD and the hopping pattcm. Ihc atklitional<br />

Slay will bc on the orda of the period ovcr which the<br />

permutation takes place. for example a frm.<br />

4.2 Coarsc DL Tlmc Acqulsltlon<br />

Since the DL is in a TDMA format., the SNR in a hop is<br />

rclatcd to the rcquircd symbol SNR by the following<br />

relationship<br />

in which EJN, is the hopencrgy-to-noise-spectraldcnsity<br />

ratio, yN, is thc coded-symbolcnergy-t~noisc-spcclraldenqity<br />

ratio. & is coded symbol rate of a singlc channcl,<br />

q is the number of downlink TDMA slots corrcspnding<br />

to che number of uplink channels, add R, is Ihe hop rate.<br />

For data ccxnmunicatiw the specified valuc of Em, is<br />

fixed by Ihe required bit error rate. and the hop rate is<br />

typically fixed for a given system. Thus as the nunrber of<br />

uplink channels and/or the channel data rate is increased,<br />

the level of E,/No must be incrcascd to maintain thc samc<br />

level of EJN, Since MDR system. mbst support data rate..<br />

up to TI, the rwulting E& it high. A5 M cxarnplc<br />

suppose a MDR syste.~ has 8 channels, rate In coding. a<br />

hop rate of 10 kHz and a TI data rate. For a typical<br />

required system mor rate betwecn 10’ and 1. ‘, the<br />

requhd value of WO is rou~Jy 7 dB. For the values<br />

noted above, Lhe resulhig EJN, will exceed 40 dB.<br />

17-5<br />

Similar values can bc obtained for a junming envirmcnt<br />

Detection of the cxmsc DL synchnmiitim hops can thus<br />

easily bc made bn.& on mgy mcamuanentd. ’he famat<br />

or 111c c:o= ~~hroni;lwtim hops not be cmp~el,<br />

bul should be selected to allow 8 high proba6ility of<br />

detection (PJ, ancl a low Fobability of false alarm (P,).<br />

’I. is is a common radar problem, and numerous<br />

*avefonns can be selectad[4]. A simple example is I<br />

modulated CW tom.<br />

Fine DL lime acquisitich is nuaxwy to obtain the DL<br />

timing to within a symbol period, U well m to rocover the<br />

symbol rate clock. The DL liming ccmacy is dTccted by<br />

the following factors; satellite motion induced dopplcr<br />

effccu. relative clock drift bctwoar the payload rcfcrcnce<br />

clock and the GT clock. group &lay vuiatia introduced<br />

by che channel or the equipment, and the timing jitter<br />

intmduccd by the synchroni7ation process iLsclf. As<br />

discused in suction 2.4.3. the unrcsolvcd dopplcr can be<br />

up to 2 W4z. resulting in a timing variation on the odu of<br />

100 nscdm. Furthermore. the group delay variation can<br />

be on thc ordcr of 40 nut. Given the TDMA nature of the<br />

MDR downlink. and data rates up to TI, the bvst symbol<br />

rate of thr DL will typically be on the order of !O MHz to<br />

100 MH7- dcpeding on the numb 01’ sloc~. In the<br />

cxmplc given above the symbol period would be 40 nw.<br />

Fine timing on the DL can be achieved by .sending fine<br />

synchronizrtim hops consisting of 8 unique word which<br />

can be correlated at thc GT. The numba of finc<br />

synchronizotiin hops and the period bctwan arrival of<br />

fine synchrnni7ation hops is dictatd by magnitude of the<br />

timing mor lhnt a.rumulat~~q betwaen synchroni7adon<br />

hops. The numb of DL synchrcnization hops must be<br />

sufficient to allow for all thcatrcs of operation to be<br />

visitcd. Thc principal sourcc of timing error that will be<br />

rcmovcd by the fine synchronization hops is thc<br />

unpxoived dopplcr error as well as clock drift emr. Once<br />

fine timing has bccn obtained on the DL. he GT must<br />

track thc DL timing. Doppla and clock drift rnw bc<br />

lracked in ordcr Jiat Lhc DL and UL timing of Ihc CT can<br />

be adjusted to compcrwte for these effccts. The timing<br />

jitter induccd by the .gynchroni7ation algorithm is a<br />

function of the complexity of the feedback loop dcsign and<br />

can be separately minimizcd.<br />

4.3 DL Tlme Tracklng<br />

In addition to tracking doppln and clock drift. each DL<br />

data hop must be contpcnsatcd for the elTects of group<br />

dclay */ariation. At the M DR burst symbol ratc, chc group<br />

dclrv variation from one hop to thc next can be air or<br />

niorc symbol pcriods a5:discusscd in soction 4.2. Thus<br />

each data hop must Lc rc.uyrichronized to the DL timing to<br />

ensure that no data symbols arc lost or that Ihe symbol<br />

timing of the nccived symbols is not misrligncd. This can<br />

be achicvd by encoding a known pream!)le at Ihc start of<br />

mch data hop. The GT will correlate ‘the rcccivcd<br />

preamble against thc transmitted pmamble and align the<br />

liming to within half a symbol paid 9 dctccting the<br />

peak of the correlation process. The length of he unique<br />

word selected for the correlation process is a function of


e<br />

174<br />

in which P- is tk prabrbility of bit erro~ at the ohput<br />

of Lhe dunaJul~a.<br />

ud P- U Ihe probability of bit km<br />

of a DPSK modulated signal. U he danodulator is<br />

followed by divasity cumbining. he value of P, c8n be<br />

poor, and yet still allow dust performance. For exatnplc<br />

wuming a basic maprity logic combining approach. in<br />

which hops arc divcnifiad he RER at the output of the<br />

diversity canbindon circuitry will be givm by<br />

in which Pav is the probability of bit error at he output of<br />

hc diversity combination cui:hy. Plots of P, versus<br />

EJNo are given in Figure 3. It can be s en that even uith<br />

a modcst diversity of L = 11, thhpt a BER of less than 0.02<br />

CUI be obtained at low E& c:en for P, values a5 poor as<br />

0.7. This PER into a good FIX will give an overall RER<br />

of less than 10'. In an operational system. other more<br />

robust diversity combining techniques may be cmploycd.<br />

4A Unique Word &lectlon<br />

Qe probability of false alarm in the detection of UI<br />

cmmcous preamble is dicuted by the si7z of the sidelobes<br />

of Ihe unique word Unique word. with ideal mlation<br />

propaties such as Barka type codes can only be fourid for<br />

a few shorter length sequences. where ideal comclatib of<br />

8 uniqie word of length M shall is defined as hl for<br />

perfect alignment and +/- 1 elsewhat. By shortenink the<br />

decision window of the unique word and considcring,only<br />

sidelobes within the defined window, it is possible to<br />

attain a higha processing gain for L!C unique word. The<br />

widih of hc window must be long enough howevdr. to<br />

accOmmDdllte nny potential group delay variation and<br />

accumulated clbck &iR.<br />

45 UL T h e Acqulslllon and TracklnR<br />

When the GT initially beginq acquiring. the total :time<br />

uncertsinty is dominated by the e m in the estimate of the<br />

range 10 the satellite ud the error in the position of the<br />

GT. Acquiring the DL timing resolves one of lhese<br />

pu~metac. In order to resolve the second parameter, thz<br />

time at which the UL trrnmwsl * '~ocaumustbedjustai<br />

to uuun lblt the drt. hop urive at the payload wihin<br />

the pooaahg window far Ibs UL bop. Thir is but<br />

achieved by a clmd Imp pnrrea~ m which spaidid synchnmizalibn probts lllt tnnsminbd in baa wrvefam<br />

locations to he paylord Tbc payload detactr the positioa<br />

of tbc hopl relative to the rmnind loutions Md<br />

tnnsmirs spocirlir#l responswto IbsCT tb.1 contain the<br />

requid adj*mt of the GT UL hing in arda to<br />

ensure that the UL hopr trmmniaal by che GT urive at<br />

he payload with th m t limine. As is thecut fa the<br />

DL Liming, Ihe UL probes will coatah Unique words that<br />

xhould be judiciously dmun to alloar iar m qtinial value<br />

of P, and P,. relative to he size of the -eh window for<br />

UL Liming.<br />

in which T- is the UL timing hop mismatch, T, is the<br />

e m in the DL timing estimate. TI is Ihe wcust case pup delay variation. and T, is the residual enor in he UL<br />

timing from the previous UL timc cstimatc The residual<br />

UL arclr T, is no worn t h the ~ a c c v pvidcd by<br />

the come 01 h e DL synchroniution faponsu. For MDR<br />

sysiuns. T, will excad the paid of a DL symbol.<br />

rquiring that the 'JL dah hops have'prembla with<br />

unique words to pcnnit hop-to-hop comlation of the<br />

timing. The size of T- will dictate the size of the<br />

processing window in the payload and the size of guard<br />

bands in the UL hops.<br />

An additional concidaation in the design of an UL timing<br />

and tracking pro~ocol is the placement of the probes in the<br />

UL frune structurc. Robes CUI be assigned on eitha a<br />

channel basis over the entire frame, or on a TDMA time<br />

sla his, spanning some or all of he available channels.<br />

Both of lhesc approaches have advantages and<br />

disadvantagca UL probes assigned on a chand basis will<br />

provide m m Uuoughput to an assigned user, however. the<br />

payload must posscss separate frontcnd processing to<br />

detect pmbcs h m one theam of opcration whk it<br />

processes data channels from a separate heatre of<br />

operaticin. In contrast, if probes arc assigned on a TDMA<br />

time slot basis. the payload can detect probes from one<br />

heatre while rweiving data communications from another<br />

theatre 111 within Ihe same frunc. with no additional<br />

hardware. The disadvantage to this approach is that the<br />

amcunt of probe capacity available to the GT is more<br />

restricted than in the FDMA approach.<br />

5 FREQUENCY ACQUISlTfON<br />

The principal degradation in system performance due to<br />

frequency m will be due to ke accuracy of he hit<br />

timing in the DPSK demodulator of the M DR receiver. ln


6 SYSIXM SYNCHRONIZATION ALGORITHM<br />

In a mticd en- it is parunount thrt the ovdl<br />

synchroniutiaa time be kept to a minimum while<br />

simultaneously providing capacity to synchronize many<br />

users U axe Thb god CUI be rcannplis! hough a<br />

combination of judicious kip d the initid pumtu<br />

cstimatim caprbilitiw of the GT, selectiun of a robust<br />

synchronizaticm dgcnilhm and optimization of the<br />

puunetcrs of the synchmiutim algorithm Irrtrtirlg<br />

synchrcmiuticm limc Tk availability at be ground<br />

[ermind y~urue TOD urnition. an accunte<br />

ephemeris algorithm will PI& duce the spatialtemporal<br />

surch region, alloAg rapid acquisition<br />

Howeva the algorithm must be robiust in h scnu hat if<br />

ao~unte initial estimates arc available. the GT will still<br />

acquire the paylod In addition to minimizing he<br />

acquisition time, thc algorithm mut also simrlltmeously<br />

minimi7~ the probability of false synchroni7~tion<br />

Cansidering the DL md UL acquisition proce*ua<br />

separately. the overall probability of correct<br />

synchroniution and false synchroni7+tion ue given by<br />

in which PdJlL), PD(UL). PpA(DL), md PpA(UL) uc the<br />

probabilities of dcteaion and fa1.w alarm for he DL hnd<br />

tJL synchrdzation pmcessu. Figure 4 illusmuid a<br />

simplified stlie diagrun of the overall synchronization<br />

process. The design of the synchronization algorithm<br />

involves choosing the vdues of POL). P W), P,(DL),<br />

and PpA(UL) so w to minimize thc acquisition lime unda<br />

the desired tactical operating Ctditim.<br />

For the ovdl probability of dctection defined in quation<br />

(5). thc dcla~tion rtquirem~ CM be equally putitioncd<br />

to the UL and the 3L U a starting point in the design.<br />

Howeva, it may be dwirable to have a higher P, on be<br />

DL urd 1 Iowa Po the UL ~ d certain a operating<br />

conditions. A DL receive only mode of operation is an<br />

example of such a rrccnuio. T!w DL detectiori procew<br />

ilself is canyosed of the comae and fine spatid and lime<br />

rcquisithn ;*recesses described in sections 4 md 5 above.<br />

Thus P nL) un be pprtitimed into a function of the<br />

values of PD and P, fa thc individual conrsc and fine<br />

In aqkdon (6). the fvat tam cm be neglected. since it is<br />

extranely unlikely lhlt che m wil nrccusfully acquire if<br />

17-7<br />

the DL is not proply synchronized The daminant tam<br />

in the ovadl process is the d term, which is Ihe<br />

probability of frlse syldumizrtion of UL timing given the<br />

DL is correaly quid. 'Ibe third tam is d l in<br />

comph to Ihc Mcond tam if P,(DL) lnd P,(UL) ut<br />

nrsonably c& It should be noted th.1 cyen hough the<br />

rust term U negligible. a large vdue of PJDL) will<br />

significuuly impact llrc acquisition time, since Lhe DL<br />

acquisition p a s will bc dcpcndcnt on h e UL v s<br />

to detect false alums. which is obviously a poor design.<br />

In orda to be robust in the presave of junming, he<br />

CO= and fure sync dctcction processing will require a<br />

verification stage. The verification stage in genad will be<br />

an m choare n type of decision. in which m of n expected<br />

sync hops will have to be dctcclcd in ader for thc given<br />

stage of the dctection poce~s to be declued vdid It<br />

should be noted hac a high P, md low P, for the system<br />

docs no( neceasuily imply a requiremall for high a Po md<br />

low P, on individual colvsc or fine DL sync hops. For<br />

example. if he system requirts npid acquisition. Lhen the<br />

vrlw of P, ud P, for Ihe individual sync hops must be<br />

close IO the Po d the wcrlll system, to ennve thu lhere<br />

lre few Nse &teaionS. otherwise the synchroniution<br />

process will expaEd limc vaifying false dctcctioru This<br />

would require m md n chosen to be luge. Such an<br />

implementation would limit Iht number of sync hops that<br />

the system could support relative to its d.l. capacity. or<br />

limit the numk of theatres that the payload could provide<br />

synchronization hops to. On thc otha hand thc ovadl P,<br />

and P, could be met by Iowa values of m id n, which<br />

would result in morc false alrrnu and verification steps.<br />

md potcntially a Imger acquisition time. The design<br />

choscn will depend not d y on the capacity of the datalink<br />

structure to support the algaihn. but the siFe of the<br />

terminals. Acquisition by larger taminals in clear sky<br />

conditions can be s*ipported by M algorithm with low m<br />

of n, however maller taminrls will requirk longer<br />

acquisition times, pdcululy in a TACSAT enviraunent<br />

in which thc DL SNR is limited.<br />

7 CONCLUSION<br />

This paper has exarnined the systan design coruidtrations<br />

for synchroniution of an EHP MDR sysm employing a


17-11<br />

.<br />

IO"<br />

. .<br />

IO' 0 2 4 6 8 10 12<br />

WNo [dB1<br />

FiRurc 3: BER U a funclion of P,<br />

DL coarse yb fine<br />

acquisition acquisition<br />

successful sumssful<br />

UL time<br />

acquisition<br />

sucmssfui<br />

Figure 4 Simplified Synchnmlion Statc Diagram


TACSAT payload. Sptinl and time synchronization<br />

algorithms have barn pesentai and the tradcoffs in he<br />

ovadl acquisition md synchronization pdmmce have<br />

been discussed E 4 on Ihe tactical requirements of the<br />

lhera of opaation. the aysm deaigner must judiciously<br />

choose Ihe paramam of the algorithm to mure robust<br />

opadon while simulmly minimizing he acquisition<br />

lime.<br />

R EFERENCFS<br />

1.<br />

2<br />

3.<br />

4.<br />

5.<br />

Ravin, C. J., "Architbctural Trends in Military<br />

Satellite Communicatiorls Systems", ProcecdingS of<br />

the J.E.E.E. July 1990, pp. 1176-1189.<br />

.I r. 'C. .<br />

Boudrcau, a. E.. ud Keighdey. R. J., "FASSET: A *I<br />

Development Model for a Canadian EHF<br />

MILSATCOM SYSTEM'. Canadian Conferact on<br />

Electrical md Canpuu~ Engineering. 1990.<br />

McGuffin, E. F.. Clarke. K. C.. "Wavefm for<br />

Medium/High Rate W Satellite Connnunication..".<br />

The 14th International Communication Satellite<br />

Systcmr Canfcrence and Exhibit. March 22-24, 1992.<br />

WLShingIOn. Pp. 53.<br />

Banon. D. K.. Modem Radar hilysis, Artech House<br />

1988.<br />

'Cwdence with A. h~alarlry of Corn Dev Ltd,<br />

CUI&><br />

ACKNOWLEDGEMENTS<br />

I wwld like to acknowledge the help of hk. R. Keighlley<br />

md Mr. W. sead at the Defenct Rcsurch Establishment<br />

Ottawa for reviewing lhis papa and vwiding suggestioru<br />

fa iw iqmvanent<br />

I


,<br />

1 SURUMARY<br />

Thispa~rc:.amincscanmunic;1ioJls~vepmgc from five<br />

non-aemLationary sarcllitc orhiu. 'OAcsr orbits an:<br />

circulm inclined synchronouc. GPS. Molniya 12 and 24<br />

hour. d Turidrn orbit. It also shows t6rt itwca... in<br />

pnpBr?tbn lms dlbe io imgufar tcmioo rnd t k foliagc<br />

loss at mm wavcs. IS wcll as t k conhid effcct of tcmin<br />

and foliqe m SoVlliu vicw duration. Po cnmludcJ that<br />

coverrmqc calculations fcr EHF WICO~ earth terminals<br />

med to &e into account lcmih and foliqe IOSJCC.<br />

. drgtce<br />

2 LIST OF SYhlBOLS<br />

minuu<br />

AMSL hvc mcan sca lcvcl<br />

CIS circular inclined synctirnm<br />

rt fcrl<br />

GPS gbhnl positioning systcm<br />

kft kilo-fcet (IO00 It E 3W.8 m)<br />

km kilomcot<br />

mi mile (5280 h - 1609.34<br />

m)<br />

Mol I2 Mclniya 12 hour orbit<br />

Mol24 Molniya 24 hour orbit<br />

Tun& Tundraorbit<br />

WA Washington Stale. USA<br />

3 INTRODUCTION<br />

Gcwutionuy satcllitcs on cxpcnsive. affnrd pcmr<br />

visibilityand degradcd performance in ~k nmkm zortcs<br />

and may bc not have covcragc ovcr a specific theater.<br />

Lightwei8ht salcllius tactical salcllitea (TACSATS) in<br />

non-geoscationuyorbiUforuseovcro~iTrc thcataare<br />

M altanruivc.<br />

Salcllite "footprint' eslirnatiorl invm hbly ignorcs the<br />

effcctoftdn oncovcragcand comm"akt?rians'4'.'"''.<br />

This is justirublc whar the car(h tcrmid is in a bmcn<br />

hat Idn. and the mtclliu clcvatim' mnglc is high.<br />

However. lhcn my bc considmbh effect of the<br />

surrounding irregular (errain (mounmhs), in pmicular<br />

whcn L)rr mlcllik ekvation angle is mall, on<br />

communkauims wilh a manpack, B s h i m ur 81<br />

mnspasPnb!e mind. This paper will anmine the cfk'ect<br />

of 1-n and foliose on canmuhiccaimc3 covcqa or<br />

eanh terminals with ncm-geoscoti~ mw91iPer.<br />

Dr. M. JnmlB Ahmod<br />

Mm Tcltcch Lld.<br />

8 M W e l . Way, ~ Bumaby. B.C.. Cansda V5A 485<br />

,<br />

I<br />

16-1<br />

For w~~cal m m s . LRcrc is a necd for communication<br />

that is ovhilablc continuously. is secure. hac low<br />

probability of intctccpt. has nuclear survivability. is<br />

immunc to EMP. has anti-jam faturcs. and is rcliuble.<br />

Rcliability is dctcrmincd by sysren ovailubiliry (99.99%<br />

ctc.) and is dcfincd by he systcm spccifications.<br />

Although atmospheric absorption loss. cffccr of min.<br />

nuclcar evcnL jmiming, ctc. arc includcd in he "fade'<br />

margin. the eflccccu of tcmin and vcgcution arc usually<br />

ignored. Inclusion of tcmin. ohslruction and vcgecation<br />

lawswill dcthc sysicm spccificntions morccomplcu.<br />

so these losses m cxclmincd in this ppcr.<br />

4 NON-GEOSTATIONARY ORIRITS<br />

, Thc TACSATS may use polar ortit.


\ I<br />

..I , .. . .<br />

U'<br />

c L.<br />

rL<br />

50<br />

i<br />

!<br />

ml12<br />

781UiSi20<br />

21.36:m UTC<br />

3<br />

63.4"<br />

275"<br />

0.73<br />

-WO<br />

0.3"<br />

I.<br />

I WO<br />

0.0e +tu<br />

one .<br />

2656I.'d9 km<br />

-<br />

Time (Hours)<br />

m124<br />

78106120<br />

21:36:0 UTC<br />

4<br />

63.4.<br />

65 "<br />

0.73<br />

-90"<br />

o.oo<br />

One<br />

0.oc +oo<br />

ale<br />

42164 km<br />

Fig. 1. Elevation angle voriotion for different orbits.<br />

!<br />

I<br />

n<br />

U<br />

Valats rw<br />

Tundra Orhit<br />

tundr<br />

78/05/20<br />

21:36:00 UTC<br />

5<br />

63.4"<br />

20"<br />

0.374<br />

-90"<br />

0.0"<br />

One<br />

O.&+OO<br />

One<br />

42164 km


4fi<br />

2345 hm<br />

0830 hrs' 2245 hrs<br />

270.<br />

!<br />

I<br />

. .<br />

Fig. 3. Azimuth and eO@vation variation for the Molniya 12 orbit.<br />

10-3


It is IqmmtQlive of the ,wc.sa Cmst' of Nlmh<br />

America and Northern Eurnpc<br />

TRC sir has water. hat tarain. c7EIp rwunraimsls<br />

tcmin (Olympic Peninsular) in iLo vicinity<br />

Terrain daw (3 orc-second) is nvnikblc I<br />

The cmdirulcs of Scd Rock. WA FE /39*:43' N 0d<br />

122':53' W. A map of the ma in thr pnimily of W<br />

Rock. WA is shown in Fig. 4, and o twcbdiincnsd<br />

topgraphic plot with on tours is shown in FiB. 5.<br />

5.2 3-5 Vkn of Ttrrain Arta i<br />

A 3-dimensional plot of the arca (1 7x20 mi? shown in<br />

Fig. 5 presented in Fig. 6. Thc nmh-wmt vkw shows<br />

consmt - elcvation above mean sea kval (AMSL)<br />

contom. (Note that the vcnicd scdc is injeer, ant! &e<br />

horizond scala are in miles.) From tap9qical phu of<br />

Figs. 5 md 6 it cm k sccn hi thcm is water with a few<br />

isbnds to cast of LRC site, but Imd nmil s!ogp81y rising<br />

mountain3 to the wca The highcss mmnnim IC U, lDtr<br />

9.4 Eft?& ad YQ~TCI~Q on Covcrsnc<br />

The cflccl of Pmppcln mrinh on covcqc is shown in Fig.<br />

9 at M GWa. A rcghncwnutivc satcllir elcvation of 20'<br />

nn8 tmhd mlcnna clcva~on of I ft AMSL (e.g. for a<br />

wuhmauircr tmirind) wcm nssunocd. Radial tcnain dm<br />

as &scriM abvc was uscd. FacR cuwc is an qui-ficld<br />

sape~lgih ca;rat~. LSE Idh~ls of &C cmtour me rclativc<br />

walm in dB'o; lBte &duk volw is meulinglcss.<br />

Bullingum mtbd wm u.d IO compute the obstruction<br />

Ims. VOrr a@lh Ims is &Ecrmincd by tk degrcc to which<br />

obslplcction.~ pmmr tk Frevlcl 7me. Efrcct of tfre<br />

munuins (Olympic Rninsular) IO thc rranh-wcst of Scat<br />

Rock on pmpgmlion md coverage is cvidcnt fmc Fig. 9.<br />

rig. IO is similar lo Fig. 9, cxccpl that the anlcnna hcight<br />

kc k n irccmwd by 60 ft. A compmson of - 120 and<br />

-I 14 dB signal COI(NWI in Figs. 9 mnd 10 rcspcctivcly<br />

shows that signal lcwcl 81 givcn distance incrca.d by<br />

owximaacly 0 dB with LOIC incrca.. in antcnra hcight.<br />

AS expcclct9 CDLtrc is r ) relief ~ in propagation loss in the<br />

ronoI wesaerly diresib.<br />

YPIC field campmiam in Figs. 9 and IO do not include<br />

the CfkCls Obi?Iuh@Mh 0.r foliage. The signal pnhhility<br />

distribution will &pnd on the c;uLh terminal<br />

surroundings. Indad it is conjcclurcd that as the satcllik<br />

kgins U) cmc into view and riscs the signal statistics<br />

will cbngc from 1%-nml shadowing IO Hoylcigh to<br />

RQian p&ability disuibulions.<br />

To summarPi*. lDtz distant irregular bamrn lcrrain even<br />

w h it is s&?p h p m elevstim of IO' only and dots no(<br />

no~hwestorSealWock.~~someor~~~~~~<br />

6000 dwc L)rz Iloacllile wgulav (elevation) view. The<br />

It high.<br />

imgular termin however invoduces an obstruction loss<br />

as hwn in Figs. 9 md IO. Morc impomnl arc thc lcnain<br />

53 Ttrraia Radiola<br />

md foliage ckmrr&cs in LRe fmmrdiarr vicinity of<br />

For the pu-s of propag31ion mlyois it is nwwe<br />

thz! termsipid ontenria; eplecu of Lhcsc arc considatd in<br />

appropriate IO examine the lcrrain dam Ucw the relcvant<br />

Ihc following scclh.<br />

azimuths. (NoccO'orMO'a.zirndthc~~~~~Nonlh.


Flg. 4. Mmpd 8 d Rock, WA.<br />

-17-16-$4-12-11 -9 -E -6 -6 -3 -2 0 2 3 6 6<br />

28<br />

-16<br />

-17-~6-14-12-11 -9 -9 -6 -6 -3 -2 0 2 3 6 6<br />

MlIe#a<br />

L arm.<br />

.I<br />

Fig. 5. Topoanphlc contours ol tho Sod Rock, W11<br />

16<br />

14<br />

13<br />

11<br />

9<br />

7<br />

ti<br />

.<br />

4 u )<br />

2<br />

(D<br />

-<br />

4<br />

'<br />

-1<br />

Z<br />

-3<br />

-6<br />

-6<br />

-e<br />

-18<br />

-12<br />

-13


I'<br />

!'.


C.<br />

c<br />

1--<br />

24<br />

U<br />

<<br />

L c<br />

0 - c<br />

i<br />

C -<br />

,9<br />

i<br />

L.<br />

5<br />

t-<br />

7<br />

e<br />

5<br />

4<br />

c 3<br />

2<br />

I<br />

, I IQ7<br />

. 0 5 IO I? 20 25 30<br />

DBSPiIttPt* from Scol Kock. WA (milcw)


v / I<br />

,p<br />

,


6x1 Cammm<br />

To mqienasclz:<br />

1 P 4<br />

lln kmmap eolwimmmr tRc useable clcvation angle is<br />

lmdl0scml<br />

Dis@ma oPMuanoircwss tamin docs not signifcantly<br />

dwe lpre M.&!z Bumion of thc wtcllitc<br />

hesatcc of vqesatitm. mcs specifically and<br />

WKU~PP~,<br />

in lDrr vicinity of &e tcrrccvial termid.<br />

dwc IkE M.&Ec duration of CRC .wtcllitc<br />

Tree coved rsw#snmimq lcrnin cxxcrbcc Itr.<br />

e&-c8 d mes by ducing Lhc uscahk duration of<br />

the wkzllits<br />

Manwk. Pmnylwn;lblc and Imd-mohilc tcrminals<br />

err aflccmf by lcrmin and mcs. hut thc airhmc<br />

!ermidsand shiphmc tcrminals at crpcn wa are not<br />

Jiectcd<br />

In h yc.wnccolvecs Ihc fading might change from<br />

log-ml shadowing IO Raylcigh to Rician a. thc<br />

moving satcllitc comc. into view and riscs<br />

Effect of foliage of diffcrcnt kinds and hcightc nccds<br />

IO bc studid<br />

7 SUMMARY & CONCLUSOONS<br />

Eacvlnaim mglcs fa salcllitCS in 5 diffcrcnr orbit* 81<br />

Scal Rack, WA bvc bccn elamid. Expctedly<br />

Ilct visibility of lpcE mlcllitcs in the 5 orbits is not<br />

identical. CIS Ma GPS clcvations anglcs arc low<br />

md LDEe wasllika am available for shomr duration.<br />

Molniya 24 has high clcvalion and it is visible lor n<br />

SUMM pan or ~hc day.<br />

Tcnain and covcwgc prediction z.,alysis has becn '<br />

dlone by cxmtin8 lcrrain from a 3 OIC-SCC d m bacc<br />

.wd using the Bullinpn rncthod for computing Ihc<br />

kid. Effect of mmin on propagation loss as wcll<br />

as the effect of raising (/lowering) thc antcnna<br />

clevl~tion been shown.<br />

VPerreisapaecityoPpropgation lcmsdala ingcncrd<br />

and h g h lolisge in pyricuhr til mm wavcs.<br />

M-lo d lo ke made (0 dctcnninc Lhc<br />

pubability dlistribrkm of the signals. Knowlcdge<br />

OC & BDCLi9ticq ofthe signal will aid in eclablishing<br />

dimic f&<br />

low.<br />

marain lhat is neither m u s nor loo


f<br />

I


0<br />

0<br />

18-1 1<br />

(91 Mayes. d&ri D.. Dycr. F.B.. nnd Curric, N.C..<br />

11-15 &Wcx. 1976. 'BscErwucr from Ground<br />

Vegcsatkun a Frequencies Beiwccn IO and 1 0<br />

CWz." in AP-S lnternaiional Symposium. (IEEE:<br />

URSII. M -S Session 3. pp. 93-96<br />

1101 tbycs. W&p1 D.. 9-1 I (9cmkr. 1979. "95 CHr.<br />

WIId Radar Raum.." in EASCON '79. IEEE<br />

Elrcrroraics 8r Aerospace Sy~tetns Conference. Parr<br />

It. pp. 353-356.<br />

I I I I HirnRla-Marchand. P. R., Bcrglund. C. D.. 3rd<br />

SICVCX~, M. L.. 1980. "Systcm dcsign and<br />

twRmlogy &vclcipmcnt for an EHF hcam-hoppcd<br />

salcllite&mlink.' WC.pp. 17.5.1 - 17.5.7.<br />

1121 McElmy. D. W. itd EAVCS. R. E., April 11 -24,1980.<br />

'EMF syacms fm mobile u.sm," AIM 8th<br />

Ct~~t~kgsio~t Saralliic Sysremc Confercncr,<br />

AIAA-#O-OSAI-CY. pp. 5W-515.<br />

1131 hbltrcsan. K. L.. August. 19H3. "Srt~llitc tactical<br />

communicotims 38 high altitudes." ProcrrdinXs 01<br />

r k IW Sypryo.ciun on Afilriury Space<br />

Commmirorions ond0prorion.t. Colordo: USAF<br />

Ac*my.<br />

I141 Nicsscn. C. W., IYH.3. "Mil.smom vcnds.' ICC.<br />

CI 3.1 -cl 3.5.<br />

I151 Ruddy. 1. h9.. JUN. 19Hl. "A novel<br />

nc~~-ge~tion;ory swllitc conimunicaiions<br />

sywm.' Cot@rnce Record Inicmuiionul<br />

Coq!erencr on Commwuraionr,<br />

54.3.1-54.3.4<br />

Cok)rado. pp.<br />

1161 Turn. A.E. and Ricc. K. M.. June 19M. The<br />

poscnaial in m-gmynchmnous orhit.' Surrllirr<br />

Commruoicaions. p9.27-3 1.<br />

9 ACKWOWLEDCERUENT.6


3. IAUWCUU SVSTEM SELECTION CRUQTXOA<br />

~lhcsats can ci:hcr Prc launched on dcmmt!. Inunchcd on<br />

schcdulc m primary p~ybdls. or launchd rs payloads of<br />

c.ppcwlunity(auxiliav payloads f l t w pir?Jkcfr on WpJlilrly<br />

schcdulcd flinhts) 'I'hc timat mission ntccnohc iswc ofsatisf'yina<br />

lnunch system dmitp rcquircmcntq thnt TIQY pwibly<br />

haw not h n satisrid or cmphasi7cd in Ihr p-ct. 'hditionnl<br />

launch otvj minilc sptcm dcsign driwm con h roughly<br />

divided into sin ~atcgorics: (a) p.rform?nuc. (h)c.t.<br />

(c) optmhility. (d) launch rc\pnnsiwms. (c) lwirrh Ikqibility,<br />

and (0 surviwohility. l'hc mcfnhn of k, tu;cc major<br />

I;lmilia of mninlinc LIS cxpcniliihk lnurrrh whirlcs; Atlm.<br />

Iklta. ond 'litnn, an: cxamplcs of pcr?orinnncr4rtvn<br />

dcsigns. 'I% IIS Spmx: Shuttlc MIS plenncd 111 tw a<br />

aat-tlrivcn sytcm hat. in wmmon wih nll lrriinch sptcms<br />

dcvctopcd up to thc prcscnt. did not ncliicm ita p 1 1 of Icw-<br />

alst G~XS In sp.~. Ihc IJS MvanarP inrinch Sptcm<br />

(AIS), now rcplaccd by thc NIS. U;LY a)mx.ivcd IH king<br />

both an qlcmhility-drivcn rind A uwdriwFc0 sptcm. 'I'hc<br />

solid pnlpcllant ballistic miwiks.such iu t k US Minutcmnn<br />

111 (IWM-91Q arc cxamplcs of launch rcsprinsivcncssilrivcrn<br />

systcms and thcrcforc nny spacc lnirnch dcriv:itiw!i of balla-<br />

tic missiks will inhcrit this dcsian chnrrctcrbtic l'hc<br />

i,ir-mobilc sptcms. such as thc US Pcgwiis and tlw prnpmd<br />

Commontwalth of Indtpcdcnt Statcs (CIS) Spacc ClipFr.<br />

rcpmcnt sptcms that pmvidc thc lriunch hihilily to sclcct<br />

a hcncficial Imlion for a specific mission a d an all-azimuth<br />

launch capahility.<br />

Survivability b an additional dcsign drivcr that hm histori.<br />

blly bccn of importancc to wapnn dcliwry sptcms. At<br />

prcscnt. survivability docs not +;car to be impironnt to txsat<br />

!aunch systems. but this factor could kmme more importtnt<br />

in thc futurc as morc dcvclnping nations gain ~CCCM to<br />

sophis!icatcd olfcnsivc wapm.<br />

4. REQUDREMENTS<br />

4.1 Mixshms<br />

The ovcrall tncsnt mission is chnmctcri7rc9 hy the nc:d to<br />

dugmcnt capital spacc i~ucts during times ofcritis: the nccd<br />

10 surgc at thc outhrcnk of a major conflict: nnd thc nccd to<br />

rccnnstitutc spacc srtcms that haw brcn damngcd or<br />

clcstroycd. ~;icsais satisfy a military nccd to providc spa=<br />

!iystcms that arc dctlicatcd to support tactical a)mma!&rs<br />

without inflictirg a hcavy logistic end adminktrntivc rckponsibility.<br />

Ideally. thc battkcommandcn rpecd theoperational<br />

control to task wtcllitcs as thcir own awto to ensure dircct<br />

and timely access to mal-time data and inPomation from<br />

spacc. Uw of thc spna: systcms should be on intrinsic part of<br />

nwtinc pacctinic military training mmi?cs and not<br />

brought into play only to rcspnd to an Wunl mrr-fighting<br />

emcrgcncy.<br />

It iswcn from Tablc 1 that thc orbits lor thc various missions<br />

fa11 into two gcncriil catcpics: (a) gccnynchronous (GEO)<br />

or highly clliptic for u)ntinuous covcriigc missions; and<br />

(h) lcw carth orbit ([.EO) sun-synchronous for all inclinations<br />

(to covcr any ptcntinl target arca) for Earth surwillancc<br />

mbions. ~f~gh~lt~ludcsatcll~tcswr~uld probnhlybc<br />

stnrcd on orhit prior to hostilitics. An attcmpt is made to<br />

quantify launch rcsponsiwncss rcquircrncnts. Satcllitc<br />

wights arc R;lred on wty prcliminaty tacsat dcsigns, and<br />

shwkl in no way be considcrcd firm rcquircmcnts.<br />

4.2 Constallotions<br />

Taat mnstcllations can rangc from singlc satcllitcs to cornpkrx<br />

multiple setcllitc global cnnstcllations. such RS an<br />

9 rirliu m -1 ikc globa I mm m u nicat ions mnstc I kit ion t hot<br />

includes nsatcllitcs in 7orbital plancs. Sincc thcrc could bc<br />

accnarim where multiplc t , ~ nccd a ~ to bc launclicd tit onc<br />

timc. potcntial launch options cannot necessarily bc cnnfincd<br />

to smell launch systcms. Opprtunitics for payload<br />

manifcstingmust~cxamincd inordcr to imlirovc cnstcffcctivcncss.<br />

It is conccivahlc. for instancc. for a whole plane of<br />

I1 Iridium-like tmats to be dcploycd on a single mainlinc<br />

launch whiclc.<br />

4.3 PnyDcaod MnRiksPiarJ<br />

For rnmtcllations with a larg number of small satcllitcs in a<br />

large numhr of orbital plana. manifesting on mainline<br />

launch vehkka io an attractive option. At low-trrmid inclina-<br />

tionn.tk mateffcctite meensofdistributk)n is to u.worhitol<br />

m[Jrension. Spacecraft am launchcd into a park orbit sepa-<br />

rated in allitudc from thc missbn orbit. Earth oblateness


mum (3 ~qnrlra;Og~m.or~~~n.olR6r?Qi""<br />

of drin h n fpPrnsbn U? the oititud't (fid k-'<br />

o&it. Thcq t h diCemntial pe-b r.*plT.' 'rxn lk? t'm<br />

omits pmit a phcsin3 ob the orbipn to trPm 3 " ' ~ : m~ tine.<br />

At tlw nmmprintc lime. with plnm fd;bm".!!. n oprn;?n<br />

&ti& for n erinin rino performs nn inarc-&rit t~nsfcr<br />

into its mgrccpiw mbbn orbit. R c p ~ TS'C~, h ttszwr,<br />

n;e r&d at hiah inclination ord. in F.1. >re zero for<br />

plar orbitq,. Thus. for high inclinotm m-!tdPntbn, Ihb<br />

appmh k mot prr;ctfrol.<br />

Lillisttc misilc&rimtivcs offer tlic pneibility of liirinchina<br />

in n mattcr of seconds if thcy arc mnintaintd on alert statun<br />

with thc~~tcllilc in thcsamcstatcofrcxdim~. Thisdtxsnnot<br />

sccm to tu! a ncccssary rcquircmcnt for trctttcnl situations. RI<br />

kirct in the near-term. sincc thcrc is a low pnhbility of thc<br />

rapid wntcrfora attack auumcd in t k ww of strategic<br />

ballistic misslb. A more rcmnahlc qpmh wr~lld tx to<br />

storc the whklcs umlrr conditions that wkl allcnw thcm to<br />

bc brought into R state of launch rcsdim in a matter of<br />

daysthcymldbc launchedondcmnndinomntterofhours<br />

ifdesircd.<br />

From the ultimate respnsivity of thc ballistic miwik-<br />

Ucrivatives, thc nat most mponsivc systcms arc the small.<br />

fkcd, rc!ocn!3blc. or mobilc launch sptcms. :It is ncticipntcd<br />

\hat thcserystcmscouldhe launchcd ina maltcrofdayswithbut<br />

a huge investment. Finally, the current medium and<br />

large launch vchicles haw long callup tima kmusc tky arc<br />

not dcsignd for high rcsponsivity or rccycb timcs. Tkrclorc<br />

itwM take n large inwstmcnt in launch sitc fdcililics lo<br />

bring their rcspnsivity into thc onc to two mck rang.<br />

S. MAUMILOWL BAWFJCH SYSTEMS'<br />

Thcrc arc presently four nation-states tho1 ollcr routine<br />

global mninlinc spzoc launch scMccs: the llnitcd ~;tatcs,<br />

Europe. the Commonwealth of Indcpndcnt Stntcs. and the<br />

Pcoplm Wcpuhlic of China. Tcchnially, hpnn ~lso<br />

hraa R<br />

mainline launch systcm. the ti-I. Hcwcwr. this vctkle is<br />

currently king ph& out in favor of tttc id-2 and mmlc its<br />

last flight in Fchruary. 1992. Whcn the MI-2 trcwmcs i?#rS-<br />

IionRI. five nation-stotcs will k oblc to prcivide mainlinc<br />

launch =rviscs. HaYtvcr. diffmrltic; bziq urpr e n d<br />

with the IE-7 cryogenic fint-stitgc cnninc ran&! &lay the<br />

prrdkted 1993 initial launch capability Qnoe.<br />

19-3<br />

Q n corn3 r-YI R?Y-Ilbm<br />

5. U. U Wroifd .''Ea (US)<br />

Thz amnt LE noh?h IWR& oy&m frmilb imt& the<br />

Atk. kh, tr:d EpCmn PmPiPies. 'wrz Atlm. kltm. and<br />

Titon DB me pmdiutn kumC01 GhWm, 4th payW apbiliab<br />

Qf bCb3lZfl6,~ Old n,m b (am arrd 9,091 kd to<br />

EO. Wenvkr lift mpbility iil provided by tk Commercial<br />

Titan KUP and thz Tieon PV, which can lin closc to 48,OOU Ib<br />

(21.818 kcI) tQ mo.<br />

This ~ g of launch , xhkb is thc mat viablc for the high<br />

A second strntcgy is to launch the spmcmfl inlo tkc wmc emqy taxit mixiom, ita0 only kcmuse of payload capaaltitude<br />

as th mibn orbit. but at a I ~ZP inrlinmttnn. thus bility, but b u x t k nugpted stom-on-orbil stratcgy for<br />

cstahlishinn a relative regression rnte brrd cm the differen- thz 8E0 mtellitcs b oonsbtent with thcir current low<br />

tial inclination. n# plnncchange mnmwm to injm t k mpnw tima Titan I1 an currcntly tu flm only<br />

spncccnn into the mbkm orbit is a high cvtccrgy mnhtuwr, from t k wat amt launch site at Vandenberg Air Force Base<br />

h.cvcr. nnd the crew rcquircd incrcmo rnpklly re^ t k (VAFy3) in California. lk Dclta I1 an dclivcr Z10D Ib<br />

magnitude of Ow planc changc incrcam. T k plmtwhnnge (910 k ~ and ) tptt Atlas 11,310 Ib (1,410 kg) to GEO. For a<br />

mancuver imples tRt use of pmpcllnnt. &kti reduces Lp# 1,OlXl lb(455 Ir&mtcl9ite. this translates into about $25 M per<br />

number of 5iilcllitcs tho1 can bc manifaWd on D :in@ payW I~uncW m QI n time on Delta or thrcc at a timc on<br />

launch. A h l a m hstwcn plene chan,v nniJ ccocptmbh Atlas. white for lSIlI 18 (63'2 kg) aotellitcs, thcse numbcn<br />

rcgressbn time must be established to mahe efkctive use of b m e abut $50 M for a sin&lc satellite on klta and $40 M<br />

thc launch systcm performam.<br />

CPSCR for two wtellitcs on Atla. The viahility of launching<br />

multipk satellita to GEQ would haw to be aucsscd by the<br />

4.4 IaeoPrDP ClaSp~ori*onesss<br />

uscm, but it wukl appcar to tx a remnable npproach since<br />

A funkr n>nsidcration is thc launch systcm wspncivcncs. thcrc arc thrcc GEO mbions idcntifwd. and. in any case,<br />

For tnmt mL.k>ns. tkrc is an impliciition oPhidh mponsiv- silcnt spam can be dcploycd if suficicnt cxwss bocxtcr<br />

ityofthcsatcllitcsystcm.hothonthcgmurrisan~loncc it kin capability cxists. Tk benefit of amtrolling satellite wight,<br />

orhit. In Mition to bunchingthc fin1 sstcllifc ritpdly, thcrc without cornpromking mission capability. is apparcnt.<br />

is thc issuc of Iauxh rcpctition ratc rquircmriiL5 (thc nccd<br />

to rcld thc sptcm) This may he sold with dditionarl<br />

Fiyre 1 summarim the payload apabilitics of the currcnt<br />

stomp. tcst and launch pad facilitics. or n) id recycling of<br />

US mcdium and largc mainline upcndablc launch !;hicks<br />

thc pad. or mat pmhably a aimhination o P kith. In cvcry to various orbib of intcrcst nd xvcral othcr characteristics.<br />

W. tDrc marc mponsivity rcquid. the hiBhcr tk .such as payload acmmmcdatiofi. rcliability. and cost per<br />

non-recurring cost for fxilitics and cquipmcnt nnd tk<br />

'flight. lsunch rate capacity circa 1995 U idso shown.<br />

highcr rccurnngcoat for manpcnvcr RMI mnintcnnnoe. 'li&<br />

studics ntcd to tu mdc when launch rcipnsivcncs.<br />

rrquircmencs arc bcttcr dcfincd.<br />

A<br />

a<br />

,:SI :z I ::E I a* I ::.z I<br />

Figure 1. Cumnt US Malnllne Launch Systems<br />

9.1.1.1 lklta /.mi?, of vehicles<br />

'Thc Dclta family of whiclcs was dcrivcd from Ihc Thor<br />

lntcrmcdiate Rangc Elallistic Missile (IRDM) by adding scv-<br />

eralsmall Solid Rocket Moton(SRMs)and thc l')clta sccnnd<br />

slaae. Deltas arc uxd to launch payloads into GEO and<br />

LEO from Eastern Tat Rangc (ETR) lnunch complcxcs<br />

IXJ-I'IA and K-17D; and to polar orbit from thc Wcslcrn<br />

Tat RmEe (W)spasc launch complex SIX-2 The apa-<br />

bilitlrn have atorw, through a wries of upgradcs. The primc<br />

conlrmor for tk klto family of whiclcs is McDonncll<br />

Douglas, Huntington Beach. California.<br />

TRS Ik:lla 11 wm wtecld M) the Air Fora Mcdium lnunch<br />

Vehick I (NUN-I) o d U cumntly used for launching the


19-41<br />

5.8.1.8 A/Im faniity of whicles<br />

Thc Atlno is a former Air Forcc Intcmn!iwntal 13allistic<br />

Missilc (ICBM) wcapn systcm mnvcrtcd foor ux 89 a space<br />

launch whfck. The Atlas D was man-rntd and flnv four<br />

suarssful mhions during thc Mcrcury pm7mm. including<br />

thc first U.S. manncd orbital flight by John Cilcnn. Ihc sys-<br />

tcm aomyt. now ovcr 30 ycan old. hm gone through a<br />

xricsofmc#lcrnizatinns and upgradcs. which haw enhanced<br />

iu paylox! ptrformana: cnpability comkkmhly. Thcrc arc<br />

scvcral Atlas vcnioru. misting and plnnncd. hut common to<br />

all is thc USE ofonc and a half liquid propcllant stagcs. bth<br />

stap ("hnstcr" and "sustainer") arc ipitcd on Ihc grnund<br />

and burn in parallcl. After thc bc#%tcr enzincs arc jctti-<br />

soncd. the sustainer cnginc aintinucs burning to orhit. 'I'hc<br />

prime conlmtor for thc Atlv hmily of woliclcs is Gcncral<br />

Dynamics Corporation. San Diego. California.<br />

AtlacE. Tltc Atlas E is a DOD launch vchiclc prcscntly uxd<br />

to launch smaller payloads to low polar orbit from spacc<br />

launch complex SIC-3 at Vandcnkrg Air Form Dax<br />

(VAnO). 'Thc vchiclcs are fonncr Atla lCllMs that haw<br />

bccn decommissmncd. rcfwbishcd. modikcl. tcstcd. and<br />

ccrtifird for spacc flight. Tbc Atlas E is primarily uxd tosup<br />

porl the Don hfcnsc MctcorolqiG?l !htcllitc Program<br />

(DMSP)and the National Occanic and Atmmphcric Agcncy<br />

(N0M)satcllitcs. Itcanplacc IRolh(BRl)kg)intokrupolar<br />

orbit. Only a fcw vchicks rcmain in invcntory. .<br />

Ailm 11. Thc Atliu I1 is uud for mmmunication satcllitc<br />

im~idtcs such as ~k rxkw Siltciiitc Communicaiions System<br />

(DSCS-Ill). It was sclcctcd as the Air Force hlcdium<br />

leunchvchick I1 (MLV-II)and isdcsigm1topedor.n 110<br />

and GTO missions. It consists of thc hocntcr and R Ccntaur<br />

uppcr stagc and can pl,ra 14.1oI1 Ib (6.410 kg) into IJiO duc<br />

cast. Sen#) Ib(2.W kg) into GI'O. or 3.100 Ih (1410 I:g) into<br />

GEO using a kick stagc.<br />

The Atl;~u mnlracttrr is offcring four venbns of thc Atlas:<br />

Atlas I. Atla 11. Atlas IlA, and Atlm llAS for launching<br />

NASA and mmmercial payloads. Thc Atlm HAS is an im-<br />

proved version ol the Atlas I1 that ha! solid atrap-ons and in<br />

which thc Pratt and Whitncy HI,-10 cngim in t k Ccntaur<br />

upper sta@ is incrcascd in thrust fmm 16,S!I!l Ih to 20.8aI Ib<br />

(7.5UO kg t09.4w kp). Thc Atlas IIAS payW to GTO will be<br />

7.700 lb (3.490 kg)<br />

Gcneral Dynamics Commercial Isumh !?xrvicCs hw pm<br />

pasod arrying wc;ilkd "companion" mtcllita ran&ng<br />

Ib 23% b(W& t~ XWkpJto EO at ~ . s k g<br />

on 1nuncl-m of pd,mmy p y w<br />

s.E.il.3 ~itmjkvdy O~L.&~CIU<br />

rh Etan fCMIJi!g, of whEcks io a of fir Force vehkb<br />

thct his ev~lved Pmm tk Titan ICBM system over t k pipst<br />

35 pa *FRP@~ mnin b~rtch whick confiprations pmntly<br />

&I: 'K%nn HB SpCOi? hunch &hi& (SLV), Titan 111 Cornmcrciral.<br />

and 'FiPnn w, with vanat.bns of each. All ha% m<br />

oorc a9t-w wins liquid propellants. a7~t IW IWO usc<br />

mcntcd SRI% for the initial stage to enhance pcrfonnance.<br />

Compiteu-2 SWP&(dcsipmA SRA4U)wilI soon replam<br />

thc ~tc~l-c.ad ~~ltgs (0 prodrk increcbxd ptrformancc.<br />

/+ddittO.d gXpfXd3 fop im& performancc include the<br />

UIX of IQuid CV-Wnic propellant hten. more and longer<br />

SWIMS. end more liquid cngiincs with strctchcd and/or largcr<br />

diameter core stwc tankage. The pnmc contrnctor for the<br />

Titan family of whicks is Manin Marietta Corporation<br />

Astmnautia Gnwp. Denver. ColoracO.<br />

Titan 11. 17rr Titan I1 spctcc launch vchiclc was concciwd by<br />

DOD to utilize an aristin~ rcsourcc and, at the same time.<br />

augment ihc dwindling Atlas E launch vchiclc invcntory for<br />

launching smaller payloads to plar orbit. Thc Titan 11<br />

vchiclcs(likc thc Atlas Evchic1cs)arc lormcr ICDM wcapon<br />

systems that haw brcn decommissioned. rcmovcd from<br />

thcir sila. ncfurbishcd. madificd. tcstcd. and ocrtificd for<br />

spacc flight. Thcrc wcrc onginally 55 Titan ICDMs in invcn-<br />

tory. and the Air Forcc has a continuing program to modify<br />

and launch thcx vehicles as rcquircd. The initial launch ca-<br />

pability of the Titan 11 was achicvcd in Scptcmhcr. 1988. Thc<br />

Titan IIcanplan:upto4,21#)lb(1.910kg)in 1.EOplarorbit<br />

fie 'vi \, JCC launch complm SIC4 (Wcst) at VAFH. Prop-<br />

ds for upgrading 'Titan II paformanu: includc dcvcloping a<br />

Cape Canavcral Glpahility. long duration circularization<br />

riurnswith addcdpropc;lants. and SRM strapns. Thc;Iddi-<br />

tion of ciaht Calor 1Vs. for cramplc. would launch 8.90 Ib<br />

(4.M5 kg) to LEO polar. Configuration studics includc thc<br />

addition of up to IO GEM solid rocket motor strap-ons.<br />

Titan 11, in ik ballistic missilc mnfiguration.can bc launchcd<br />

with lcss than one minutc ofvdrningsincc propcllant can be<br />

kft for long pcrids of time without dctcrioration of thc fuel<br />

tanks or the propulsion systcm.<br />

Cornmtrcial Titun 111. Thc Commercial Titan 111 is dcrivcd<br />

from thc 7qn WD with a strctchcd xcnnd stagc and a hammerhcad<br />

(largLrdiamctcr)shroud for dual or dcdicatcd payloads.<br />

'The tint commcrcial Titan 111 was Iilunc'lcd in<br />

1)cccmbcr. 19$9, and can launch 32.00 Ih (14.540 kg) into<br />

LEO. It is cnmpatiblc with thc Mclhnncll Douglas<br />

PAM-DII. the Martin Marictta Transtagc. and thc Orhilal<br />

Scicnar Corporation Transfcr Orbit Stagc (TOS) upper<br />

stagcs to provide WO capability of 40M Ib ( 1,850 kg). 3YK) Ib<br />

(4,320 kg), and 11.0 Ih (5.00 kg), rcspcctivcly. Performa<br />

m to GEO is appmrimatcly 5,500 Ih (2,500 kg) using n<br />

spacccraft kick motor. Marlin Marietta h;u cxamincd a<br />

number of paylod dcploymcnt schcmcs for hunching small<br />

payloads, both as auxiliary payloads and U multiplc primary<br />

payloads. but thcx dcsign options have not bccn cxcrci:~!.<br />

Titan IV. The DOD'sTitan IV dcvclopmcnt was hcgun as a<br />

complcmcnt to the Spaa Shuttle. but following the Chal-<br />

LcnEcr accident. thc program was arpandcd lo accomrndalc<br />

critical DOD payloads. Thc program was furtlicr cxpandcd<br />

in 19E17 8) thc full impact of the Shuttle dclays and cancella-<br />

tion of the Shuttk-Ccntaur propm bccamc cicar. '<br />

The Titan IV IWS citkr a 7-jcgmcnt SRM or a 3-xgmcnt<br />

SWMU. It is now capable of dclivcring 10.0 Ib (4.550 kg) to<br />

OEO with t k arrent 7-segri1cnt SRMs. When thc SMHU<br />

b l e w munrkrdeencbptncnt are available. thc Titan IV/<br />

Ccntour will k2 abk LO launch 12.7IID Ib (63% kg) to GEO.<br />

ThC Titan W/OUS is currently operational and is capablc of


-<br />

.d:<br />

5.1.2 EMlOP<br />

Eump is Pcpn:scntcol by thc Arianc 4 famiUy, vhkh pm-kka<br />

a ran@ of payl& fron 8.01#) td 2l&Q 1b (3.6Krl) to<br />

9.545 Ern) in IEO %??ere an: six rcrskm aXl Arinlrrt 4. wth (1<br />

mix of lkpriid ~nd did pmpcllant strapon hntcrs. Tkw<br />

' arc two !$ukatc\iite WMt'CS. thc SPE16)/4 (f,\NElUTC hr-<br />

lcusc Extcmc pur Lonxmcnt Ihuhlc Arinnt), Ikdiatcd<br />

Satcllitc ScMcc (SDSb and the Ariam: Stn~urc fnr Mil- inry PblylD& (ASAPL plus diffcrcnl t~mions Lbf rttc<br />

SI'ElBA payload fairing. In this wy. it cn?m to R wiilc<br />

rangc of pnylods. TRE vchiclcs arc launchnl I'rom il launch<br />

sitc at Koumu. Frrnch Guiana; a launch cviiiiuth rnnec of<br />

104rkdcgispmsihlc fmm.349.5 to93.Sdcg. TErrmt pcrflight<br />

for a sin@ GTO launch is bctwcn fMM onrl DSM.<br />

Fifty satcllitcs haw kcn launched using IgK' !W,ILi (Sys-<br />

tcmc di: lnnccmcnt Ikuhlc Arianc) or !~WI,l)/\ du:il<br />

launch copability. which has rcsultccl in B rntcllitc i!cploy-<br />

mcnt rote of nbut I2 pr.r Far. up from 7 tfi 0 lnunclics pcr<br />

ycnr prcvtnwly. The lounch limit for thc Arionc 4 is xt at<br />

IO flights ptr Far. which allom ftbr dclap or prohlcnvi.<br />

Thrcc mmmcwial micmatcllitcs haw ltcccn fltrm using thc<br />

ASAP, and nq many ~LP six ASAID iiIt;u!Ibnicnt points c:rn<br />

nccnmmtrdntc multiplc satcllitcs up t o nhwt 01 Ih (2Ul kg)<br />

cach. 'I'hc cntirc ASAP structure can Is. n:ww:d for<br />

hctwcn $7Ol).l##1 ancl WtO.lI)o. In ordcr 10 wtinfy c rstnm-<br />

cn'dcmands, n shortcncd wnion of S PWM, n:irncd SIX<br />

(SpckJa Ikdicatcd Satcllitc) is trcipg built by Ihiltsh Acrtr<br />

spi to mimmdatc a satcllitc in thc LSiln Ib (6.0 kg)<br />

clixss. plus nn idditional satcllitc orup toRM) !to. 'Thc capnbil-<br />

ilks of the Arianc 4 arc summarizcd in Figure 2.<br />

hriancspace. thc commcrcial o>n.wrtium that npcratcs An-<br />

hnc. predict5 thc minkatcllitc mnrkct (aimmcrcial and mili-<br />

tary) tooeach U, pcr ycar by 1993. and i's pnl is to cclpturc<br />

5070 of thc markct.<br />

5. I .3 Commonneulrh OJ Indquncnt Stutes (( 'IS)<br />

Thc availabilityofcx-Sovict IJnion lsunchsptcms is wmplC<br />

catcd by thc political changcs that arc lakinc plncc and thc<br />

faa that spacc awls arc no longer contrcilkd by a singlc authority.<br />

At 1ca.t fivc spacc agcncics (thrcc in Piusia) appear<br />

to hc cmcrgjng and at Icut thrcc mcmhrn of thc Commonwcnlth<br />

(Russia. Kazakhstan. and Ifkrain) arc laying claim to<br />

the potcntial hcncfit of marketing spam tcchnolc~ to thc<br />

wrld. Thc distribution of thc major CIS 8 p x awts arc<br />

shown in Figurc 3.<br />

Russia appcan to havc control of mtnt of the cx-.%viet amnal<br />

of launch systcms. including thc EncrgiiVRurnn. thc #*<br />

ma. t k Proton. thc Tsyklon. and thz %atO!~gYdMolniya.<br />

Hmvcr. the 2nit. which is thc only en-Wct whtclc<br />

built apcificnlly for a)mmcrcial launch om9 mny pmihly :r@<br />

launckd lrom the pmpcwd Cnpc Yo& Spa ibrt in<br />

Ouccnoland. Australia. is built by Yuzhmyc NPO in the<br />

Ukraine. 'Ihc Yuzhnoye Design Bureau h a h proping<br />

the air-launched Spacc Clippcr. which isditoiwd latcr. Tht<br />

launch capabilities af the ex-Smict unmend launch systems<br />

arc summarind in Figure 4.<br />

9.U.Q h$a P?.b-!K oj aim (PRC)<br />

The PRC b repw-erntd by .he lmn8 March family of<br />

whkk China'oopm Inuncliwviocsdeprndson a numkr<br />

of inte~in~oqynimtbm, emh of whish is responsible for<br />

Pp of t k lawnch ~~,owiOn p&a&. Tk China Gnat Wall<br />

!? rrdllsstsp, Coqmmtinn (CGWBC) k? responsible. under the<br />

Ministry of hotmn~uticn. for amdination hctwccn forcign<br />

mtomers and the olhr ekmcnts of lhc launch xrvices<br />

orpniatbn. Ih launch capabilitics of thc Imng Maich<br />

family arc alammerited in Figurc 5.<br />

9.2 Pm m 3opent ricl Plamswd<br />

Thm natbnQtms. t k Plnitcd Stela. Europe. and Japan<br />

haw ckarly InM aut plans to d end thcir mainline cxpnd-<br />

sbk launch whkk f kt.<br />

J.2.D United .%lata<br />

Medium Igupcch Vphicle 3 (IW1.V-3). ??IC 1JS Air Fnru: pliiw<br />

to numl a a>ntmct during fiscal par I993 for thc h4l.V-3.<br />

which would knmc available in 19% and has. as its primary<br />

mission. t k launch of GPS DIU& 1IW. 'The M1.V-3 is intcndrd<br />

to "bfdgc-the-gap" until thc PSIS is availahlc. and<br />

an:, prformam improvrmccts ..vi11 k financcd by privatc<br />

industry. This pmsurcmcnl could amflict with thc prtrurcmcntoftRcAI~S.nndsdccisicin<br />

may havc tohc madc inCongrcss<br />

to sckt one or tk othcr. Although no charactcristia<br />

of thc MI.V-IfI arc rclcasnhlc HI this timc, thc prmrcmcnt<br />

awld p~)~idR an oppwtunity to plan for dixrctionary iiuxiliary<br />

payload tlsploymcnt.<br />

National Laiinch .S,v:rtm (NI..$). I'hc NIS is using iin cwlutinnary<br />

npproach for thc dcwlcrpmcnt of ii family of hunch<br />

whiclcs and opcrntionnl infriistructurc with the ciipiihility to<br />

plncc a wIdc rangc of piiyloads into orbit at ii fraction of current<br />

CM~S. l'hc r)pcriibility gwls of NIS arc to niiikc spacc<br />

laimch activitks w rnutinc as thw of a long-haul trucking<br />

ampany.<br />

T?c NIS vchiclcs currcntly wrvina ns pints or rcrcrcncc<br />

ran@ from a smiill. twc~tagc vchiclc ciipiihlc of placing<br />

appronimatcly 2lMfKl Ib (9.090 ka.) into I.EO (thc immcdiatc<br />

focus); In a one and onc-half stngc vchiclc utilizing a Shultlc<br />

Extcrnal Tank (EI')dcriwJ tank section (cnmmon corc) for<br />

modcralc sizcd paybads to 1.EO. and capnhlc of hcing<br />

upgradcd to a two artd onc-half stag vchiclc (hy ndding an<br />

upper stage) with GEO cnpahility: to a hcavy lift configuration<br />

using N5WIWs NI strapon hatcn. the ajmmnn cow.<br />

and a Gargo transfcr vchiclc ((XV) for wrgo dclivcry to<br />

Spacc Station Frecdom (SSF). A ncw NIS uppcr stagc. u.xd<br />

with thc one and onc-half stagc vchiclc for GEO miaions. is<br />

alsokingconsidcrcd foruscasthcfinalstagc ofthc M.O(X)Ih<br />

(9.M kg) WlS-3) vchiclc to furlhcr providc common;ility.<br />

Vchiclcs with incrc,wd payload capability. attilincd vi;) mtdular<br />

grcwh to mcct heavy lift rcquircmcnts up to 124.00 Ih<br />

(56.360 kg), arc also udcr study. Payload cstim;itcs for the<br />

various mcmbm of the NLS family mcct hth NASA and<br />

DO11 rcquircmcnls Thc primary intcrcst of thc IIOr) in the<br />

oncandonc-halfstage istoplacc50.0 lb(22.730kg)intoan<br />

x 150 nm (148 x 278 km)orhit; NMKs intcrcsl is to usc it to<br />

dclivcr 55.@30 Ib (25.0 kg) of nct payroad to thc SSF. 'I'hc<br />

DOD plans to usc thc twtagc whiclc to dclivcr M.Oo Ib<br />

(!IO91 kg)toan 80a 150 nm (148 x 278 km)orbit. 40 Ih( 1.8 18<br />

kg) 10 GEO. or ci.0 Ib (3.636 kg) to GTO; NA!h would usc<br />

ittodclivcr 18.01#)Ib(8,1WZk~)ofnctpnyln:wl totlrcSSE 'I'hc<br />

tw onrl om-half ntow vchiclc wuld clclivcr 97.W) Ib<br />

(00,~ kg)totk61lx 1Mnm (148 x27R km)orbitor 1S.WoIb<br />

(4.818 hg) lo GEO; it could also dclivcr 83.000 Ib (37,730 kg)<br />

of~crcxag payload to the SSlE The HUW option could dcliwr<br />

135,O Ib (41,360 kg) lo the $0 x IS0 nm (148 x 278 km) orbit<br />

or 1zb.W Ib (56,364 kg) of g1oM paybed to the SSE


CURRLHT PRowcTKm N DEVELOPMENT<br />

"<br />

P<br />

n<br />

,,<br />

i II<br />

i<br />

,.<br />

-<br />

d U<br />

U fl .<br />

U


1<br />

6.1 Cumt ud NcwTcm, r*n.ri and Proposed<br />

61.1 United Stam (US)<br />

Sbk 2 lhcnn the eh.rr(cmciol of a number of mnali (bced<br />

or rebcllabk U9 hunch vch~b that abt oram in -fop<br />

mcnl. TheseoVt I.whkh. in anyme. hnrmntlymt ofprodl~nion,<br />

an only dclivv 8UJ to MO b (181 (0 273kg)<br />

pmyIw&tothe bwEuthorbi(rdinlercst. Thc Scout Iland<br />

I k Pcgmur dr.launsRcd boalcr han.appmrimaIcly tk<br />

am pprbnd e bility lo LRO in lhc 600 IOW0 Ib(273 lo<br />

% Rpw han the dnnlago of lkribk<br />

and all-dmuth capability. The Cow<br />

hunchen pmviaa a range of payload<br />

adding slnpan boosten lo thc bmle<br />

fcur-r~cnerhWe. llshouldbepointcdoutthnt thconly<br />

conrclpruian that ha Ilown U Conuiqs 1. which w-<br />

ti1111 I*r a suborbiul mbsion in 19BR The Conestoga IIA<br />

nnim dlnr 2 lo 3 lima the ylod capability of thc<br />

-1 I at thc m e pria @~O-G& -ding to the manufaaurer.<br />

The 'RUN* vhkh h urdcr dew.bpmcnl by Orbital<br />

sdcncu Gorp @SC) fa tk Deferae Mvanecd<br />

Racareh and Planning Orgnnimtion (DARm), pmvidu<br />

amidcnbk paybed capbilty U) Leo. In many cunu only<br />

one salellite pr ring k uid. but ccvcral rings propcrly<br />

spadtorhknmea wrap may bc nccdal. If ihh<br />

b the me. the additional capability d the Comatopa or the<br />

~UNI may b used 10 permit ermying CIEQ( propellant in.<br />

say. one of two ulellita to boat it to a highcr altilude and<br />

different indinrlmn in onlcr Io pnnle I diffemntbl nodal<br />

regmsion behccn Ihe ha utellite plana Nodal rem<br />

sbnofautellilepbne b b toforraacrledon Ihcutellile<br />

~uyd by the fMh'rob*temn TIKOC iaoatrnd torn&


.clrc;lih w m iua<br />

thc orhilot planc c~cctivcly prcces nhmt tl#: plar rmis of<br />

thc Emh. Wkn thc planc of thc ~~a~r#l oatcllitc Rin,<br />

mhicvcd thc desired scparntion from that of tbc first. a scc-<br />

OM! hurn of that satcllitc's ploplaion can Pn: uwd to rcturn<br />

thc satcllitc to Ihc Sainc altitude and rnclinotion m thc othcr.<br />

Inth~~~.thccacc~~hcmatcnpahililyoftIPc~Pkunis might bc<br />

uscd lo launch n silent sparc. It should ttC pbintcd out that<br />

thr:ljurusaystcm islreingdcsignrtl (11 tw rckntahlc fcirsurvivnhility<br />

rcxwns sin= it W.LI prilptwd for S;i;ur 1)cfcn.w<br />

Initiatinr(SI)I)uw. 'I'hc Sl)l-~RtUliit~d rcquircmcnt for thc<br />

sF1r.m WR~ to hc ahk lo cstnhlish n liiunch site in fivc drip<br />

nnd lnunchesatcllitcthrccd;~~ IiiW. Awinwryoftrucbcarrying<br />

tk appropriate cquipmcnt prcwtrkh this rap:ihility.<br />

Further study is rcquircd to dcicrminc if thh capability L5 of<br />

any bcncfit to thc lagat miuion.<br />

Scotrr I. *lk NASA Swiui whiclc hccarnc cipcmtional in<br />

IWl. ~9 of July 1991 only four vchtclcs rcmainctl. It is a<br />

four-slagc. solid prqwllant. .writs hurn rttdrct. 'I'hc Scoul<br />

can dclivcr 146 kp, to R sun-synchroncra phr orhit. Md) Ib<br />

(22f) kp,) ton 1,EO plar orhit (Iiiunchcd from ViinJcntxrg).<br />

or 571) lh(2.59 kg) to an c;utcrly(3~.7dcg)or~it Iailnchcd from<br />

Wallop IhxJ. Virginin. 'I'hc Scout iscascntially phnscd out<br />

;IS a 1JS launch whiclc nlthough it is anticipotrd that thc Italinns<br />

will support iin cnhanccd (Swwt 2) prqrani in cmpcration<br />

with IJS industry. The Italians.will launch from San<br />

Mnrco. off thc m;nt of Kcnya.<br />

'I'hc minimum Scout IiiuWh vchiclc-only uat IS quoted ni<br />

flflb4. which incrcxscr to $12-13M for lull launch wtcrvisC.<br />

This translaics lo fZ.fJl#) to S37,UIl) pr Ih (a55.tm to M2.m<br />

pcr he). which dirs not amparc I;lvoriihly with tk currcnt<br />

industry avcragc of 910.fm) to $1 1.m) pr 111 ($U.m to<br />

SUdHlO pcr kg) for dclivcring Iitrgc ccimmcrci:il ra;cllitcs io<br />

(;lo.<br />

.Ycortf2. An upgriidcd wrSton (Scout 2) has twcn studictl thnt<br />

can douhlc thc piiyhincl cap:ihility of SWNI~ I. Sirilpon solids<br />

nnd nn al#)~,cc hick motor ~ddcd to Ihc cmklinn nm whklc<br />

yrkl ihc CnhRnCCd pcrformancc.<br />

Tiitnu. 'H'aurus is a DAHBA dcwlopmcnc of ti Standad<br />

Small lsunrh Vchicle (SSIY) hhrd on the Pcpws with tk<br />

addition of 8 bcacckccprr fimt stagc. It 410 +:iwr 3.W Ib<br />

(1.364 kg) to I .EO or HdH) Ih (364 ka) to CIIEO. 'tiitinin will h<br />

gmuml-lrunckd ~ ml will tlcmcmstratc ik r~pid cstnhlish-<br />

PER LPW<br />

lcm, lMI0<br />

l?B IWU<br />

1N.D 1450<br />

1- 1150<br />

4.1 4.1<br />

0.9 0.9<br />

1.3 1.1<br />

mmo '20 rn<br />

PRO3 F A 03<br />

WAKEAO COAHEAD<br />

mcnt of a ground mobilc launch c;lpahility. A rcspnsc timc<br />

of 72 hnun From alert to lnunch is thc goal.<br />

I P.9<br />

C'orotst~u. '17iis is a cnmmcrcial dcvclopmcnt of Spacc Scrviiccs<br />

Incnpwstcd (SS?). whkh is nnw n division of EER. A<br />

NASA-fundcd effort cntillcd thc Commcrcial Elcpcrimcnt<br />

'f'ranspwlcr (COMET) usina cnmmcrcial husincss practiccs<br />

is undcrwny at Wcstinghousc Electric Corpration to dcmonslrnlc<br />

tk cconomical dcvclopmcnt of a rcliahlc launch<br />

rind pnyload rcuwcrysystcrn. SSI isprcividingthc launchscrqmcnt<br />

of thc prngram and is using rocket technology<br />

&@wlopd by Isrclcli Aircnifl lnduslry ( IN). rathcr than surplus<br />

LIS govcmmcnt moton. to incrcw rcliahility and<br />

r~duar insurance m(S. Thc familyof whiclcs isdcsigncd for<br />

cmlutinnary grcnvth.<br />

Cniiestqa I1 dclivcrs a payloiid of 7Ol) Ih (31H kg) to 250 nm<br />

(463 krn) polar orhit. or 4Cll Ih (182 kg) to 400 nm (741) km)<br />

polar orhil. Concstqn IV dc1iv.n paylo;ids of 2.fW Ih<br />

(W<br />

kg)md IsUOlh(f242kg). rcspcctivcly. 'I'hc vchiclc kimily<br />

is dmigncd to uw a rclwatahlc launch site. Iaunch is nominally<br />

from Wallops Right Facility. VAFH. or Whitc Sands<br />

Mis!ilc Rangc. In addition. thc vchiclcs arc also dcsigncd to<br />

k umpatihlc with pn~poecd Hawaii. Florida. or Capc York<br />

SpaCCprt!.<br />

Olhital l5pm.u. A contract his bccn awiirdcd to Intcrniitional<br />

Micr'ipacc. Onc. for launch scMccs for thc SI)IO's Miniaturc<br />

Scckcr lcchnology Intcgration (MSII) program.<br />

International Micrth'ipncc. of licrndon. Virginin. is offering<br />

its Orhital Exprcss ground-hxwd launchcr to dclivcr a pykuld<br />

of Ib (182 fq) into ii sun-synchronous orbit. 'l'hc<br />

Orhital Effprcss has cl


0<br />

0


19-10<br />

OcazO midm ~ r nof mp htb~rm ~ ~<br />

mm thCP FV m&y im jpdudkm imlsdc tlw Bu<br />

SJ:,X &,:ix:; (E'%) Ari:am Tbchpw~<br />

fu4m (MTEP), the F~mh<br />

in t k mmmcrcial<br />

Expriment T 88-<br />

Motre Ponus. the Italian Itabpct-<br />

Micra30t. nnd tk British Univcmity of Sumy UoSat,<br />

hilt by Surrey Sotellik RchnoEogy Ltd.<br />

6.8.2 lgassn<br />

k4-VSok.r. l?te fir01 of tk M Rmily dwhiclcs wrc eitkr<br />

lhm- OP fciur-aoge all moiid-propellQnt whicles msBc use of<br />

mmdyniamk art$ opin-otlabilizotbn oontrol techniques.<br />

Pnicr wmbm U& 1~~08lcliary Cue1 injection for thrust mor control in mpm to an on-board sutogibt. and eventually<br />

tRE edpntml opkm ww di@d to imremc control lq+c<br />

dagn flexibility and to &ucc psurcr ami wight needs. The<br />

cumnt pduabn .wsbn is thL' M-3S-11. wkmecharaacristics<br />

8rc listed in Figure 6<br />

6.U.3 India<br />

SLVSePieJ. The Aupented Spa02 ~ AIJ~C~ Vchicle (ASLV)<br />

can lift 330 Ib (1% ha) into LEO. The launch of thc Polar<br />

Satellitc l ~unth VehCrh (FSlW). planned for March. 1993. is<br />

mpcctcd to &liver 6.6Q1p Ib (3.000 kg) to IEO. The PSW,<br />

unlikc the ASLQ, which is crimped of four .solid slap and<br />

two strapnns. will use liquid sccntxl and fourth stagcs. The<br />

IJS hasplaccdsanctionoonthc IndianSpacc RcscarchOrganintion(9SWO)for<br />

buyingadvanccd mkct vchnology from<br />

Russia. Thecharactcristiaof the Indian vchiclcs arc listcd in<br />

Figure 8.<br />

cuznmn IM DEVELOPMENT<br />

CWCVKm I<br />

Figure 8. Cwml end Planned Indian bunch Systems<br />

6.8.4 isml<br />

Slrcrvit. Thc Shavit (which trandatcs to Comet) is a<br />

threz-ctnp mlko pmpllant vchick and is a mdificntion of<br />

t k Yckb P I Dntcnncdiate Ran@ IBollistic MiKqilc (IRIIM).<br />

Ths Jepicb io claimed to be capable of hunching a MO Ib<br />

(Sm, kg)wnrhccJ. A satellite. Offcq 2. wns launched success-<br />

fully on 1 April. 19%) into an clliptic;ll orbit with a pcrigcc of<br />

12.6 nm (210 hm) an4 an apogee of er#, nm (1.500 km). The<br />

onteliite weimt io estimated to be 352 Ib (160 kg) The LEO<br />

copccity in on eetirnoted 400 Ib (200 kg) into a retmgrade<br />

orbit.


6.2.2 UniEcd Kin~domlNonvay<br />

I-ii~lc lmimkrfor Low Emh Orbit (l.iiil.k'O}. '?k mm mcrcia1<br />

IittIXQ program is king undcrtakcn FpII GcRc~;~~ 'lcchnology<br />

Sptems Ltd and the NorwqianSp,?rrj: Ccntcr(Norok<br />

Romwntcr) to offcr a kwarrt and mlinhk n,cnnn of plasina<br />

small p3yln-A~ into hmth polar and sun-oynshrnnrws orhits<br />

from a Eumpctcn launch sitc. l'hc ljttl .EO i7 m wlid propellant<br />

vchEck:copnhlcofpliccinan 1,3~Ih((~hn)payIontl into<br />

a 243 nm (052) km) pilar orhit or 1547 19, (1d3 kc) i 110 a<br />

162 nm (3w) hm) polar orbit. It wuld trc 1aursI)cd froin the<br />

Andoya Wmftct RmRc (69 dcg 17 min M. 16 ckg 01 min E)<br />

Morc than rlM) souding rtrkcts hnvc hrcn I~i~rrchsd from<br />

this titc. littl.EO aiuY atso inr;;..fh 2.m Ih (312 kg) into a<br />

162 nm (SM) km) polar orhit fmm Itbly's San Mnrco launch<br />

site.<br />

6.2.3 Spin<br />

I<br />

C~pricomi~. Thc lnstituto Nacional Dc Tccnica Ac.rtap;tcinl<br />

(INI'A) has annnunccd a ncw rtrkcl &vclopmcnl. thc<br />

Caprimrnb. which is intcndcd to prodc Icw-cmt spm<br />

transportation for thc scicnlific and communicritions community.<br />

It is a Ihrcc-stagc all-sdid rnckct c:tpnb!s of placing<br />

I10 to 228 Ib(M to IOkg) into a 324 nm ((100 kti:)p)lnrorbit.<br />

Tcsu dl ttc mnductcd from El Arcncnilb (iluclm), a d<br />

thcrc arc plans lo build a future launch cnmplcx in thc<br />

Canary Islands.<br />

I<br />

6.2.4 Comnmtru~rulth of Indrprndrni Siatts (CIS)<br />

Spacc Clipper. Yuzhmyc NPO. bawd in the Ukraine, is proping<br />

an air-lnunchcdcnmmcrciill Iilunch Rystcm.spna.clip<br />

pcr. which is planned to hc availnhlc in 1W4. Thc srtcm<br />

cnnsists of an An-I24 canicr aircrdft and a chriicc ofscvcral<br />

thrcc- or four-stagc solid propellant launch whiclcr(krivcd<br />

from the SS-24 misdc) that arc launched from tl~c cargo hay<br />

nfthchn-124. Achoiccofsudiffcrcn1u)lid rmkct launchcm<br />

has bccn propcncd. 'I'hc b,wlinc systcm in cnpnhlc ofdclivcrina<br />

1,Iall Ih (500 kg) to I.EO and is mtdulori7rd to pttwidr<br />

six diffcrcnt wninns of thc vc!wlc ;Ind dapt In a wkk variety<br />

of orbital recpircmenu. Thc maximum tnlrcoff wight is<br />

392 tonnes. and the systcm is claimed to b phfr to opcratc<br />

from any sirftcld capabk ofscrvicing a ?kin3 747. 'ki avoid<br />

techmlolSy transfer reotrictions. thc inntnllafkin of the paykx4<br />

can bc ptrfwrr~ed on-bird the Antomot t k cu~tomer's<br />

eirftehs. Yuzhnoye plans to mcnlify two An-la aircroft,<br />

and them are more than 100 SS-tas in Inwntary. It Lo<br />

WACE CUPPEW (CIS)<br />

F M 0. Ab-- WlW Leunch Wkh<br />

19-11<br />

7. ~U.U.US'ITU@ MDSSOI&DKW'JVED IAWNCH<br />

RVSPlEMS<br />

l$S a mull of IDCe lJSlC9S Stratcgic Arms Hcduction Talks<br />

(START) a&rcemcnls. tk use of surplus stratcgic hallistic<br />

missiles for launchin8 12lsa(s nccds to be mnsidercd. Thcrc<br />

are. ofcou~. many ixsucs that must he addrcsscd in dctcrmininB<br />

thc prRcticiility and advantagcs of this option. Thc<br />

fixtors includr thr latcst trcnds in the arms rcduction talks in<br />

termsofdctcrmining thc Iyp and numhn of strategic bnl-<br />

Iistk mi%rilcs that might kccomc availablc and ;my trcaty<br />

rcslriclionson tkirulc twspacc Iaunchcn: the p;iyloidcapi\hility<br />

to typical orbits of intcrcst and thc payload mmp:irtmcnl<br />

dimensions; and cstimatcs of thc non-rccurring and<br />

rccurrina mls. With rcqxct lo Iiiunch rcspmsivcncss, thc<br />

1and-h.wi ballistic miuilc on alcrt status rcprcwnts thc ultimarc.<br />

with rcspnsc timcs in thc onlcr of rconds. 'I'hc cost<br />

and othcr issucs rclatcd to maintaining this typc of caphilit)<br />

prcrnls the limiling c;w of launch rcsp)nsivcncss.<br />

Thc trcnd in thc strategic nuclciir wrhcad rcduction tiilks is<br />

forbnth thc IJSand IhcCIS togo in twophnwsfrom thccur-<br />

rcnt total count for all thrcc Icg of thc Triad of somewhat<br />

mom than IO.QM) warhcads to 3.(MTr3.50 wirhcads by thc<br />

ycar Mn3. Thc first p hw rcduccs thc total numhcr of wilr-<br />

hcads lo 3,MO-4.2%1 in svcn ycars or lcxr from thc cxccu-<br />

lion datc of the trciity. Within thw ovcrall Triad limits.<br />

thcrc arc spccific 1imitsplacc.d on the Intcrcontincnlal nallis-<br />

tic Misilc (ICHM) and Ea launched Ilallistic Missilc<br />

(SI.IPM) forces. At Ihc cnd of the first phase. thc numhcrof<br />

ICIHWs cannot cxcccd 1.2tIO. and thc numhcr of SI.nMs can-<br />

mit cxucd 2161); for thc sscond ph,w 1hc.w limits arc 1.200<br />

and 1.756). rcspctivcly. In thc sccond phwc thcrc is illso a<br />

rcquircmcnt that all thc rcmaining ICHMs cnrty only one<br />

warhcad cach. whilc thc SLIMS can mntinuc toc:irty multi-<br />

plc warhcads.<br />

7.1 United Slates<br />

Within thc limiuoutlincd abvc. thcrc arc still n largc numk<br />

r ofpruiblc distrihutionsofspccific misdc rctluctions and<br />

thcrcforc of their availability for space launch. tlcnvcvcr. TA<br />

far (09 lis missilcs arc mnccrncd. 'lkhlc 3 show n gcncrally<br />

scocptcd rctircmcnt schcdule and indicatcs that. hctwcn<br />

m and thc year 2UlXb2bll)3. thc Minutcman lis (MM-11s)<br />

and the Navy W idon C-3 and Widcnt C-4 missilcs will bc<br />

rctimd and may bc available for othcr applications. Aftcr<br />

that time perkd. tk'Rccnty wll rcquirc Pcncckcepcr midcs<br />

8o Rs retircd kauw of NJulltpk Ittdritrndcntly-Tar~ctcd<br />

RcentryVchkk(M1WV) limitations and spccificdc-MIRVing<br />

rub The cx~ct number of Pcscckecpcn that would be


19-12<br />

0 'I% whicles must PW: lnunchcd from minting 1csI "nnges<br />

or apax launch facilitics. including up to ))o morc than<br />

sewn new launch pds at thc cnirIin8 sitcs.<br />

0 The vchiclcs cannot bc lnunchcd from mohilc launchers.<br />

0 'rtw whiclcs cannot hc lnunchcd from on nirplanc or any<br />

watcrhmc platform, othcr thnn a submarine.<br />

Iclcmctty must k tronsmittctl uncmvyptcd. and n t.y*<br />

supplid to the othcr party to t k Pmaty. cxccpt For<br />

I I mission3 per year using fully rctiml vchiclcsthat may<br />

rcturn cncry~tcd data.<br />

Figurc IO shtnvs thc pcrformanck of t k Rnllistic misrilc<br />

dcrivatim to four typical orbits.. AlthrruQh it currcntly dms<br />

not appear likcly that the MM-Ill Ik! will bc retired,<br />

MM-ill data is prcsentcd hccauk thc ammcrcially avnilahlc<br />

Orhus third stage wnvcrts MM-II performance to that<br />

of MM-Ill. It is seen that the MM-II and thc Poxidon C3<br />

havc fairly limitcd performance. whik t k MM-OfIOrRus has<br />

c7pability that is c k r to thc tam1 ranpp of intcrcsl. Thc<br />

Pcacckccper has fairly significant capability but may not tx<br />

amilablc for othcr applicaiions until BO3 and hcpnd with<br />

the poasibk clrccpthn of thc 50 miwiles mcntioned earlier.<br />

Thc volumc available for the pnylod is mmcwhat smaller<br />

lhan that of othcr small launch vchicles. hit prcliminary<br />

in-house Acrcmpacc studies of small Pcmxkccpcr-launchcd<br />

s;itcllitcs with no modifcation to the cxtcmr~l dimcmions of<br />

thc launch vchiclc (so it could still bc launcltcctl frnm a sib iC<br />

survivability is an issue) indiatc it is fc,?sibk to package<br />

viable satellites. For casts whcrc survivability is not an issue.<br />

the payload fairing can be cnlargcd to prraridt morc rmm at<br />

the cqxnoc of some perfcmnance. Other brctorn that must<br />

bc studied in morc dctail includc thc fcmibility of dcrigning<br />

satellites to withstand the morc scvcrc Inuncli cnvironmcnt<br />

pmduad by ballistic missilcs. that is, the 19 ~ ' mlcratbn<br />

s<br />

of Pcaockeepr. Again. vcry prcliminaPpl cstirnatcs indicate<br />

this should not br a problem. Finally. the rmu. which Raw<br />

becn prwiilcd by thr Air Forcc Multi-!kkcc lsunch Systems<br />

(MSBS)organimtbn, are wen th be m!mirkrably Imr<br />

than thw of the R ~US and Smut 98 ~:hklm preMntcd<br />

earlier on a dollan per pound to orbit bt3. onsl n h t the<br />

mmc as tr#: Taupus. Qnrm: again. mntrnlling satcllitc might<br />

and sim is sccn to pn~vidc largc dividends in Imwr launch<br />

cclls.<br />

An option that his not ken chcckcd for viability or cost is to<br />

laurrch trmats from a submarinc at the South Pole. The satcllite<br />

m!d be in orbit kforc it crowd thc equator. In the<br />

ca.%? olSIBMs tk treaty mnndata: (a) retiring submarina;<br />

0)<br />

rcducin8 the numkr of warheads ptr tuk; or (c)sailing<br />

with cmptv tubes. IF thc empty-tuhe option wrc sclcctcd.<br />

thc empty t ub could pcrhnps bc used for tacsa! launchcs.<br />

Minitfernan fkriwfives. Martin Mariclln lriunch Systcms.<br />

Iknvcr, Colordo. hrrrr kcn wmrdcd A S133M Air Force<br />

amtract lo mtrdify 44 MM-lls for spacc launch. 'rhe basic<br />

contract is for twr, launchcs at 830M. with optkm for 42<br />

morc. 'I'hc MM-II hnsthrcc stnacs. Martin Mnricttnwill ndd<br />

a fcunh slagc (the Orbun. built by Acmjct). bringing itsapn-<br />

hility up to appmimatcly thc samc as MM-111. and a ncw<br />

guidance syslcm that would govcrn the cntirc hocater. First<br />

launch is cxpcctcd frnm VAFlI in 1994. lsunch mts a x<br />

cxpcctcd to bc about ESM lo UIM per launch. with a future<br />

reduction to WM pcr launch.<br />

~afljlTndcnfl.~seirlon Derivatives. Imkhccd Missilcs nnd<br />

Space Company (I.MSC) has propcncd using thc Pwidon<br />

C-3 submarinc missile as a small spacc launch vchiclc that<br />

coulddcli~r7[#)lb(31$kg)toa270~270nm(500~500km)<br />

70 dcg orbit.. l'hcrc arc ahnut 60 C-3 vchiclcs in staragc.<br />

Other options includc the Tridcnt I C4 and thc Tridcnt II<br />

11-5. The C-4 muld deliver I##) lb (545 kg) to I,EO: thc 11-5<br />

coulddclivcr 2DOOIb(91)9 kg). ltshould bc noicd that. at this<br />

time. it docs not appear that thc 1JS Navy will make suhmarinc<br />

mQilcs available Tor mnvcnion and. in fact. has<br />

plans lo dcstroy any surplus hardware rcsulting from treaty<br />

negotiations.<br />

7.2 CQ~IRIQUDQYQ~~~<br />

OB Independent States (CIS)<br />

The CIS hassurplus ballistic missile hardwarc it would likc to<br />

cxchangc for hard currency. The cr-Swict spacc organizatbn,<br />

Glavkoamcla. has rcorganixd to market joint Husqian-<br />

Kazakhistnn space launch scrviccs (uwpcration is ncedcd<br />

a i m the Dnikonur Cmmtdrome is bmtcd in Knzakhstan.<br />

which has formcd its own national spacc ngcncy) and has test<br />

flarn B conwrtcd SI9 missilc; thcre are about 30 S!!-19<br />

missiles in inwntory, each capabk of carrying six nuclear<br />

wrkds. TIE smallcr S-25 can carry only a single wark&d.<br />

but tkre are more than 300 in thc military's inventory.<br />

The world's mat pcxerful YCDM. thc SS-IR, has also becn<br />

prqmwl rn n opcrca: lnunch =hick. This vchiclc can lnunch<br />

up to a doacn rmell (IWm Ih or 45-91 kg) salcllitcs into


7.9 Fmmp<br />

1.9.1 Unitrd Kingdom (U0<br />

Malcolm Wilkind, a kfcncc sccrctary in tk Writihh Ministry<br />

of p)clcrwc. anmumd on Junc 15. 1!?22 thnc thc orly nu-<br />

clcarwopns nritain will rctain will be a hnnnlful of WE-ln<br />

gravity bomb (as pan of its commitment 10 NATO) and its<br />

strategic Folaris misib. Thcre is adcbak cnncrwht. if any-<br />

thin& should hc about the Polnris-replttcing Trkknt<br />

program that is schluled to cany 128 nucbr warheads on<br />

16 Trident misiks. If the Tridcni prc~mm h continued as<br />

prcscntly sclfcdukd. it is p ihlc that some surplus nritish<br />

Polaris mkik cnmpnents will kmmc nvaihhk, although<br />

they will pmhably become pan of thc t )S inmntnry.<br />

1.3.2 Fmc<br />

France hm mt rclccucd a policy aiatcment on the futurc of<br />

any Frcnch surplus ballistic missilcr.<br />

7.4 mbaa<br />

It ispcnsihkthat hithChinannd thc(.'ISawW.inthcfuturc.<br />

markct ballistic missib to dcvcloping nation?. The futurc<br />

will pmhnbly scc (I prolifcratiim of hallistic mis.qib through-<br />

but thc vmorld. China, for instancc, has o Iarp invcntory.<br />

which it has shown M) inclination lo rcduoe. Othcr smtillcr<br />

muntrics that fccl thwatcncd hy their ncifihbm arc marc<br />

likcly toadd to. n:kr than rcduce. thcir inwntcrry of ballistic<br />

miuila. Tk wide a+dilbility of thw weapons cnukl<br />

cnmuragc the rix of dangcrous dcslwtic rep.inics anywhcrc<br />

in thc wrld. and establishes a strong case for conducting<br />

Mctaikd tmat studies.<br />

8. FAR-TERM IAUNCDI SYS'FEMS<br />

Thc emphasisof this paper ison currcnt or near-term launch<br />

systcm options. Hmvcr. taoat studia a b nccd IO look<br />

into thc next ccntury. whcn the nccd for such systcrns may<br />

intensify. A numhcr of advanccd systcrns arc king investi-<br />

gated that may haw application to future tamat misions.<br />

8.1 United States<br />

8. I. I Singit-Stagc-To-Orhit (S,'jTO)<br />

A singk-stage-to-orhit vchiclc hm long ken thc dcsirc of<br />

hnny space transportation planncn hcause of its potential<br />

br rctlucirg opcrational cornplcxity and wt. nnd providing<br />

hunch-onQcmand capability for critical military sy:tcms.<br />

Thc SDI0 ha5 cxamincd a numhcr nf SSTO a1nfigur3tions<br />

losatisfy pstulatcd SDI0 miKqion launch requiremcn:s. and<br />

sclcctcd thc Mcnonncll Douglns Iklta Clipper for further<br />

study. 'Ihc Single-Stage-Rozkct Tcchndqy (SSRT) Pw gram is now undcrwy at hlc1)onncIl I)


8.3 Uniad KingdodWussia<br />

Inrtn'm HOTOI,. A joint Ilritish/Husvan dcwlopmcnt to fly<br />

an intcrim wnion of thc Ilritith HOTOI. on thc Husian<br />

Antom-225 'MPIR" hcavy lift aircraft is undcmy. Sumssful<br />

wind-tunnel tats at simulatctl spec& of Mach 10.5 a d<br />

14 have ken conducted at the Ccntral kmhylrdynamio<br />

institute(%AGl)in theirT-128wind tunml in [Wmtaw. The<br />

three orpni7~tions haw signed agrccmenu among thcm-<br />

sclva (ps wll as with #heir respectin: gmmmcnt.. . nritish<br />

htmsyax is defining the Acmpaceplanc and airhnrnc<br />

supprl systems. Ijmitcd TCSOUT~: are awilahk. but the<br />

Eumpe~nCommunityCom~:,ission hasbtcn appmhcd by<br />

British Acmpace for support sine the commission has said<br />

it WM entertain joint Europcan6ovkt (now CIS) BCW<br />

space nntum.<br />

Thc vchkk is planncd to carry a paybad of 15.400 to<br />

17.600 Ib (7.OOlJ to 8.0 kg) into IEO aftcr king launched<br />

from thc An-225 at an altitude of abut 28m It (U km) Tk<br />

An-225 quires the addition of tvm extra .%het D-18<br />

engines. Rolh Roya replacement cn@m 6xrc cnnsideml<br />

to amid installhg additional engines but wm rejected am not<br />

R ccgteffcctin' modificatbn. l'hc cnnacpt is illustmted in<br />

Figure 12<br />

8.4 Wosr<br />

Thc assViet Uninn has cnnCucted aidvamrd partia!ly and<br />

fully hllashk nhick rcsearch and testing Urn many yeam In<br />

Nonmtur. 1991. for instance. thr Centml Imtitute of Aviation<br />

Moton. M-,d.ims to haw anr~ucaed the nnt test<br />

9. RAUN6w 911w: WSODERATUOWS<br />

The orbit quimmcnts for thc GEQ and [EO missions discus&<br />

carlkr an h mct by laumhinp fmm thc tw main<br />

launch sites in t k US, Cap Canaverid in Florida. end Van-<br />

3tnBsrg in California Fipm I3 ss#pcm tht orbit inclinations<br />

that ire ahkmblt hm eesh of thz two sitcs. All targcts at<br />

irrclinat~mo~aaaltoorftrothen573tgcanhc rcached from<br />

Cape Cenowml. whik ik hiBkr inclination orbits , includingpolar<br />

end oasn-smhmr#rus. are r;awsibk from Vandcn-<br />

FQm 12. 'bicumm3rc?tOalo<br />

ZzgcZtm<br />

bcr&Tktc Atlrrcrorklte bnatcnvmld launch the GEOsatcliiics<br />

due easi a t of Cepe Cannwml. while sinek I.EO<br />

I<br />

0.2.2 United Kingdm !<br />

satcllita could k laumkd on tk small launch which or<br />

hllistk mksikdcrivaticncs fmn either launch site. large<br />

Monmld Tdit-Qfl and landing (IIOT(Pl.). 'I'hc original<br />

mu'!i-satcllitc c~nstcllat~ns. such as Iridium-litc amcepts<br />

ambitious BBOTOL gqram is currently unfumlcd. The<br />

cnuM bc launckd by hlta or Atlas II out of Vandenberg.<br />

cnginc mmpt for tht )POTOl.&vclqd artd patcntcd by<br />

An Atlas I1 pid is kingbuilt at Vandcnbcrg. For the ballistic<br />

Alan hd ha ken dcclauifikd. but th !%olbRoycc<br />

missik4cr;vintives. thc launch sitc at Capc Canaveral wukl<br />

RWSO hi3n is still kld pmpiictnrg.. Ilk enair# is a<br />

haw to br re-activated. and dcdicetcd launch sites would<br />

preumhd. air-hrenthing mckct that utikm air cntcring<br />

nccd to he atahlished at Vandcnhcrg. Th: cstimatcd<br />

thrtwgh B V-rvnlgcd intake. Thc air isskEDTd drm t05uh<br />

a t for an akovc-grwnd hallistic misilc4crivativc spacc<br />

wnic spx& and p a ! through R rrfts d kilt pchanwn<br />

launchcr pd is about DSM. Thc air-mobilc Pcgm~s offcn<br />

and turkmmprcss4m until it reachcs rcrthet chamhcr prcslaunch<br />

platform survivability and thr maximum flcxibility in<br />

sum liquid h,vdnqcn and liquif6d air Pucl the fiat phmof<br />

launch sitc location and omit inclination. An advantagc of<br />

cnaintflinhtuptoIW~hS.5at nnahitudxoI93.4M)It (Mkm)<br />

the Bcga.tus i+ that for target nrc,w et latitudcs hwr than the<br />

Onbd liquid oxygcn and hydrn@n is U& for the rcmein-<br />

28 dcg of Cap Canaveral. launching at inclinations equal to<br />

der of the flight. HOTOLsharcs icchnn!qp ntcds with thc<br />

thc targct latitudc provides an orbit that alltnw thc satellite<br />

US NASP but its future is unoertain. It is illustrated in<br />

I<br />

more mnxcutive p,wcs m r thc targct than thc two tima<br />

Figure 11.<br />

pcr day achievablc if it were launchcd from Cape Canawral.<br />

It should bc noted that a cost penalty is incurred to exploit<br />

this advantage.<br />

'lihlc 4 lists the mrdinatcs nf mint of thc spacc launch si:cs<br />

that mist (or in some cam arc planned or arc inactin:) in the<br />

wrld. and Figure 14 s b their distrihution. The fluid<br />

global environment that is bund to exist in the future and<br />

thc fa0 that tscsat mision will moat likely be multinational<br />

in naturc (end pcrhap a UN responsibility) rcquire thc mnsickration<br />

of sharing launch facilities. The Italian sitc at San<br />

Marax. off tk mt of Kenya. thc French siie i ~t Kourou.<br />

Frcnch Guiana. and the nrazilian sitc at Alcantara arc intcrcstingbccause<br />

they affod thedircct launch inclinationorbits<br />

for h r latitude targcts. The mlocatablc laurus wuld be a<br />

candidate for using non-IJS launch sitcs but. again. a<br />

custtffectinncu analyxis would need to bc carricd out. The<br />

US. Pcgasus. ',he propd CIS Spacc Clipper commercial<br />

orbital injcction sptcm. thc lJWCIS Interim HOTOL, and<br />

the German Sangcr could also bc launchcd from multiple<br />

launch sites<br />

IQ. @ONCI~USBONS/WF~OMM&NDATIONS<br />

While it is ncrt to impamihlc to predict with ccrlainty the<br />

environment oP thc future and what peacckecping mililnry<br />

capability will be demanded in that environment , thcre are<br />

some things that. in the long-term, appear incvitabk:<br />

There will k a pmlileration of high technology weapon<br />

spa(cm5 mnd thc world in thc hands of nntionatntes<br />

that hiuf no( prcvbusly had aaxm to such wapons.


Many of thnw splcms and platforms will haw the capa-<br />

bility to deliver dcvi@cs of mas.. dattuabn. i.c.. chcmi-<br />

al. bb!ogcal. and nuckar d eb.<br />

Many of ~ltc countries that ha& such wnp'ns will haw<br />

national goals Ihid arc in conflict with to#: inlcrcsts c:f thc<br />

IJS. its NATO alliu. and olhcr nations dcdicatcd to<br />

wnrkl pew.<br />

Some of tk awntrics who hitw such wnlwns will hc<br />

dediratcd to w rU :errorism ahJ/or militilry attack. on<br />

thcir ncighhon odor intcrnai ciwl strifc dcstructiw to<br />

thc intcrcsts of wrld peace.<br />

19-1s


1P.16<br />

'II-tcx chen@ngcnvimnmcntal conditions which are am@-<br />

turcd to evolve oyer the next thirty yeem p!%c increasingly<br />

dcmnndin8 requirements on twtxtiral cwbllnl systcms and<br />

henot on responsive launch rrvtccs. TIE intcgrotcd hted<br />

for launch mviccs, mnging from small currcnt launch<br />

which. such ~1 Scout. to advamd futum Ivunch systcms..<br />

in t k linht of tk ntptctcd<br />

such as NASIP, must trt BSJCS~ ncar-term and rar-term trxtical r+hn quimmcnts. This<br />

papcr chrpmterizcs the ringc ol'launch ecwiacs that mukl<br />

satisfy t m t needs and dwmcnts !he hrot o.wilabk information<br />

on the cornpiding Iaur\ch systernt.. It kcnncludtd<br />

thi-t tRc twwt missioi.s idcntificd hcrcin con kc Rilcquatcly<br />

supported by IJS lnunch vchicla In~nckd frnin the amti-<br />

nentnl US. Hourwr. numcmus other optionn arc nmilahlc<br />

and lyteB careful study by thc ti?&at dainncr or planner. A<br />

bibliography is pmvidtd to idcntily addi\kn;il F m n r ma!cri-<br />

GI on some of the launch systems.<br />

I..<br />

2.<br />

3..<br />

4..<br />

5..<br />

6..<br />

7..<br />

8..<br />

9..<br />

I<br />

I.rmru ofrk Fimt Space War. lntcravia $paw Markcts<br />

4419991.<br />

!<br />

Fdcwmon. Frank. "Tactical Sntcllitcs". hscntcd ill thc<br />

North Atlanttc Trcaty Organization (PdA'I'O) Mnuq<br />

Gmup for Acmpacc Hcscarch end Ikwlopmcnt<br />

(hGAWD)Avionio Panel Sympiumon TACSATS/or<br />

Siirwillance, finfiation and C.31. his5ch. flclgium.<br />

19-uoct. 1992<br />

Gipn. Mclirula, and Richard nucnnckc; Jr. Mkmspace<br />

knuuwnce Pasha Publicatiom k., 1616 N. R.<br />

Myer Dr.. Suite IOOO. Arlington. VA 22209-3109. 1992<br />

Fiks. W. S.. "IJnitcd States Air Fom spm Systems<br />

Division launch Roprems." Parer ?AF-92-4?825. 43ra<br />

Con- of the Intcmathnai astn)nautbl Fcdcration.<br />

"ahington. D C!. USA. 28 Aug.-5 kp. I!f92..<br />

MI-V /munch Slmrqy Siridy I.'inol Nalporl. Prcparcd by<br />

The Aerrapacz Corporation Spacc launch Opcmtions<br />

Programs Group for Space Systcms I)i\.isEon. Air Fora:<br />

Systcma Command. Acrmpaa Report No.<br />

TOR-~~)I. IS April I992<br />

Adas rifirrion flanturr Guide. &. I. March 1989. Gcn-<br />

cral Rnamia Commerciid launch !hvks, Iw, 9444<br />

Balbos Avenue, Suite 200. San Diem CA 92122. USA.<br />

Commlcial 11 User Manital. Juty IQRP. Mchn-<br />

ne11 hglm Commcrcinl Dclta. Inc. 5301 hoha Ave-<br />

nue. Huntington kach. CA 92607. USA.<br />

Wmd Uxn Guide Titan 11 Spjcrr ~ A I M ~ Vchulc. I<br />

Aupst 1986. Titan II Spaa: I ~~nch Vchicle h p m ,<br />

s p Launch Systems Division, Martin Morictta Corporntion.<br />

kmr Acrospacc. PO. lEoll7'9, Iknwr.CO<br />

m1. USA.<br />

'lirgn 111 C~mmrn~iol lrnttch &W!C~S Ctbstomr Wandbooa<br />

1- No. 1. December 1937. Martin Marietta<br />

.. ,,.-.-";., .,.,. , .- "I..<br />

-<br />

1.<br />

Cainsp69mioI Titan Inc. LO. Bar 179. Denver,<br />

mm USA<br />

IO.. Etan WUwrs Ppondhk. June 1%7. Titan IV Spa=<br />

I.aunch ?pterns. Martin Marittie; Denver Aerospace,<br />

PO. b 179, knw. CO 80231. USA<br />

1 I.. htemia Space DirsCtoty (Brcviously Janc's Spaceflight<br />

<strong>Directory</strong>) 191-92 FAitcd by Andrew Wilson. Janc's<br />

lnlormetbn Group. !kntinal Mrwsc, 163 Brighton<br />

Rod. Coulsdon. Sumy. CRS 2". UK.<br />

12. Intemntbd &femrwe Guide to Space launch System.<br />

1991 Edition. hpnradbyStcvcnJ.Isakcnvitz inooopcratfcln<br />

with t k AOAA Space Tlmqxmation Systems<br />

Tkchnical Committee. published and distributed by thc<br />

American institute of Aeronautics and &tmnaurk,<br />

TpIc Acmpacc Ccntcr. 370 CEnfant htncnadc SW.<br />

Washington. Ipt' ao2A-2518. USA.<br />

13.. Woglicvina. Robin. et al. "Survcy of Foreign Launclr<br />

Vehicb" ANSEW. 1215 Jcflemn Davis Highway,<br />

Arlington, VA 22202 Space Ttchnology Division Note<br />

SO'DN 91-17. Octobcr 1991<br />

14.. Anam 4. Ariancsp;Eoe. Inc 1747 Pcnnsylwnia Avenue.<br />

N.W.. Suite 875. Washington. DC 20806. Arianc Launch<br />

Vchicks. NC Soljcnitsyns. 91ow) Eny. Francc.<br />

IS.. .%vir/ 1autd-r Pmton. Cilanxlsmos. 103030. Miacow<br />

Krasnoproktankaya 4r.. 9. Russia.<br />

Vchick. Spacc (:omn,:rce Corporation. 69th Floor.<br />

Suite 6W. Xxas CornmciL- lkr. 600 Travis Strcct.<br />

Houston. 'Tx 77002<br />

17.. I.ong Mmh Fami?, of I.armch Yrhicles. China Grcat<br />

Wali Industry Corporation. 319 hlta Vcrdcs Illvd 0318,<br />

Rcdonrlo Ikach. CA 90277. IJSA. China Grcat Wall<br />

Idustry Corpcwatbn. No. 17, Wcnchang Hutong Xi:<br />

dan. PO. Ikn $47. kijing, Peoplcs Republic of China.<br />

matsu-cho-2-chomc, Minato-Ku. Tokyo 105: Japan.<br />

19.. Nationat Laiirrrh System (N1.S) Poyoad Planning Hand-<br />

W. Volumes I-VI. Prtparrd by Inckhccd Missiles<br />

and Space Company. Inc Spacc Systems Division. PO.<br />

ku 3504, Sunnyvak. CA. !MQ83-3504. Rcport No.<br />

IMSC-~X'I. 17April 1992<br />

20.. Scoiit Planning &'de. May 1986. LTV Aerospace.<br />

Vought Mbsilcs and Advanced Programs Division. PO.<br />

I)ox 65Nl3. Dallas, TX 75265-(1003. USA.<br />

2 1.. Imkhecd Standard Laiimh Yrhick Misinn Planning<br />

Guide. 20 Dcccmbcr 1%. Prcparcd by lnckhccd Mis-<br />

siles B Space Company, Inc. PO. Bor 3506 Sunnyvale.<br />

CA !34#8-3504.<br />

22. R?3ipnu 1prrp.road Usen Guide. Mvanccd Projccts Office.<br />

Orbital Scknecs Corporation. lu00 Fair lakes Cick.<br />

Fairfax. VA t2833. USA<br />

2.. Kniffccn. R. J. ond E


25.. NFQ %&myr* Spcrcc Clipper. Camtcn: Y.A<br />

Srnctonin. Kriprorothskeya Str 3. Dq~pmpetmb.<br />

3BIl59. Ukmim, SSR. Tcl: (0%)42 29 21. Tckx:<br />

127 OREKH SU, Far (0562) 4.2 20 21.<br />

26.. SpcKc CI~~JWC Comrmrriol orbit01 It&crion systctn.<br />

Mirrcipl Tcchniml Characteristiax "Yurhl,oye"<br />

kip Offa. 191.<br />

27.. Neiland. V. Ya., Central Acrohydrdynnmks 1ns;itute<br />

(IMGI) Zhukowski. Russia. and R. C. hrkinson. Brit-<br />

ish Aemg;ta Spxe & Cornrnunicltbna ktd.. $ :eve-<br />

nage. UK. 'Thc An-aS/lntcrim kllotol Ir inch<br />

Vehfck. Rper No. IAF-91-197, bmted at thc 02nd<br />

Con- of thc international AstronWkaI Fcfcra-<br />

tion. Montreal. Canada Oct. 5-1 1. 1991.<br />

19.1 7<br />

28.. Eindley. C. A and J. Renn. The Aerospace Corpora-<br />

thn. El Sewitdo, CA USA. "Combirred ExdEndoat-<br />

mmpkris'i)snspm Alternatives". Wper IAF-92066J.<br />

43rd Coriptm of thc International astronautical Fedcr-<br />

ation. Wmhington, D C. USA. 28 Aug-5 Sep. 1992<br />

29.. Wertz. James R. a d WIky J. Lanon (editon) Space<br />

MissiortA&sirmdM~. Khrwzr Academic Publish-<br />

ers. Dordrecht/Emton/Londn. 1991.<br />

38.. $pace Tqddion .4dysk and Lkrign. Acmpace<br />

Corporation Report No. TOR-92(2464>1. Prepared by<br />

the AEWOSPACECORPORATION. ElSegundo.CA<br />

90245-4591.7 August 1992<br />

31.. National Academy of Sciencu. Navy 21 Study.


SPACECRAIT AND I.AIJNCII SIISlT.MS FOR TACSAT APPLICATIONS<br />

1. SWfbUMARY<br />

Theabilityofn~ticnlraaUik(TACSAT)apcc~nyr~mto lulfill<br />

its mission cpplicotion with the deskd cnpnhility. responsiveness.<br />

rcliability and survivability. while at tb m e lime ochieving<br />

low cost ohjectivcs. is a trrmendow chdlrnne thnt can only<br />

be met if 011 of tho system scegmentn - launch ope hnd ground -<br />

conlrihute to meeting mission unique requiremenlo. Tlte emerging<br />

CO~KPF~E Pm the dcvekymenf deployment o d bperntion of<br />

cost-effectiw TACSAT iystems are enpxinlly dependent<br />

on tab flexibility and operability of their launch lvchklc anJ<br />

spacccrnn bug systcms. Omital Sciences Cmpotion (OS<br />

* '<br />

' ;!<br />

2. INlT2ODWCIION 1: : .<br />

The world today is a different and chdging plecc. charactcrikd<br />

by dramatic and rapidly evolving new geoplitkol. ecomic and<br />

national security structures and relationship. In reaponm. the<br />

United States' and its allies' national militmy ntrategicr and<br />

nationnl security infmshuclurer that sup+ @cm must now<br />

depm fm the principks that have shaped ban since the end of<br />

WorldwarXL Tbs+ :tratcgksandinfrartturerz, whichevolved<br />

Ir, contain Ihe sped of Communism and &tar Soviet aggression.<br />

must now shin dramatically to focus on regional crimr and wan.<br />

The threats of this new world can he hot chorccteri~~d M<br />

unpredictable andcomplex -where will theywcw. b w fast must<br />

he the rapre. what will he the sophisticotion lcvcl of Ihc<br />

wcapons. who are the cornhatants. whnt ure tlae political a d<br />

militarygoals,etc? TheUni~dStater'miIitcr1,~~orceobucturr for<br />

employment rgrinrt these threats will ',e chmctterixed by fcwcr<br />

in number. more cost-effective ryrtcins. fewm forward-basal<br />

cknmts. and much lower utiveduty manpower.<br />

hopcrationd iinperatives to aresvd in &,&filoymcntof<br />

these forces will be chmckritcd by: (I) "ooJn~~'w'.you are"<br />

conllict wenarioa: (2) renponse to rapidly unPolCk$&im wi!h<br />

a few critical cngogcments; (3) long-range application of power;<br />

CRrin Scb&<br />

GilM D. Rye<br />

Rolrpm PO. Memr<br />

OrMtnl Scienccn CorgornibdSpw Systems<br />

141 I9 suiiyriErf Circb<br />

P.O. Box IWO<br />

Cbantfily. VA 22021<br />

20- 1<br />

(4) high kvels of responsivewrs and flcxihility for nll systems;<br />

(5) situationd awvareneoo on n non-linear battlefield: (6) maneu-<br />

verability: (7) coupling of national and thcatcr lcvcls of com-<br />

mand. control. and intelligence: and finally (8)joint international<br />

operations.<br />

Some of our first insights into this new world of tomorrow's<br />

conflicts come from analysis of results of Ihc Gulf War. One of<br />

the most dmmstic wns thc importance of spacc systcms to all<br />

aspects of Ihc planning. execution. and succcss of this war.<br />

Current rpocc systema. which had evolved in supprt of the cold<br />

war and strategic requiremcnLs. were called upn to provide<br />

direct suppod to lactical wnrfighters. Mnny high-lcvcl mililary<br />

ond civilian le&s characterized the conflict as thc first "space<br />

war" - a war in which space systems were ahsolutcly csscntial to<br />

both the execution of the conflict and its success.<br />

The copabiliticsof thcse cumnt spce systems to support n broad<br />

spcctnm of wtical warfare mission arcas was impressive can-<br />

sidcring their heritage. Rut in many cases. their lack of flcxil~ility<br />

and msponaivcnesr imprdd their prformahcc. If the six months<br />

prior to the conflict had not hccn avnilnhlc to significantly adjust<br />

and mndify their rpncc-hasd architccturcs and ground systcms,<br />

the level of support would have ken significontly dcgrdcd.<br />

Also. if the conflict had cxtcndd in time. somc spacc nssck<br />

would have prohahly necdal iinmedialc rcphccmcnt - which<br />

would bave hacn very difficult due to the rcspnnsivcncrs and<br />

availability of spacecraft and launch vchiclcs.<br />

These and other lessons from thc Gulf Wnr on space systems<br />

suppod to the tactical user will he the rtimulur for the entire<br />

national security community to re-evaluate thc warfighting rc-<br />

quiremcnts for future spaa systems and the infrastructurc nccdcd<br />

to mcct these requirements. Thc resulting futurc spacc systcms<br />

will no doubt include TACSAT systems that will ernphasi7~<br />

flexibility. responsiveness and cost-cffcctivcncss in mccting thc<br />

changing US. and Allied national security rcquircriicnh. Mnny<br />

of the otkr papers in thir symposium will prohohly wldrcss thc<br />

wchitcctures. rquiremcnts. BEnSOr syatcm. ground sySlCmS and<br />

employment strekgicr for Uicse systems. Orhitil Scienccs Cor-<br />

porrlion hae developed two launch vehicles nnd o spacccraft-hu.u<br />

tho1 will provide flcxihle. responsive and costeffcctive launch<br />

and on-orbit prfonnnce for future TACSAT systcms.<br />

3. PBGkWS<br />

3.1 Uatdcocgba<br />

XK flight-proven Pegorus air-launched space bster (Figure I ;<br />

pvides n costiffective. reliable, niid flenihlc means for dcliv.<br />

hunted at the AGARD Avionics Panel's Sympmium on 'TACSATS I*)R SURVEII.L.ANCR. VERIIICATION ond C.71".<br />

DNI~I. Belgium. 19 - 22 October. 1992.<br />

I


Figvn 1. Pegorus kjligh.<br />

1


c<br />

Firvn 4. Horimld vrhiclr andpayload inrrpuion.<br />

3.4 Iruncb OpermlIOlm<br />

Pcgaiua launch opratinu comhino launch vehicle and Urnan<br />

oprubnr wilb emphub on iimplicily. flerihilily. and opera.<br />

timl dlriplinc. The launch location lkrihiiity inhrnl in<br />

Peguuic.n iignificanlly imue pybd caphilily and orhiwl<br />

IkrIbiUly by climin.tin# many of UK launch uimulh resVKlioN<br />

ollm lmpabd by fired launch iita. Afur invgration. maling lo<br />

aBJZaLIOI I crrin?irrpfl andps.flighlle~tin~.thswhicb<br />

LcrridbIh.Iaunch~~~hkhunho'vlluallyanydii~nm<br />

fmm Ih. inte;nlion lq&Ul;. 'or launch. Rguui L carried U, a<br />

nominal kvel.flight todillon of 12.200 m (40.000 ft) at<br />

high subaonk vebcily. Afur tekue. lhe whiclc fwc falls U,<br />

ckrlhourriaaimah whibcrrculing a pilch-upmuleuverlo<br />

hbw lhe pper Stituds fa mM Ignlhn. Afkr Stage I<br />

Ignitbn. ~h. vchkb foUun M autommoudy guided. lining.<br />

mnt ~n)ectau o Omit. Future mluicni will incorporate GPS<br />

bm Ute CnCUng Ud guiduva iystm of Peguui resulting in M<br />

w(On0mw nqa cplbilicy.<br />

4


Wilbpflamed pailbnin6ofrrbkk1mdfrilil*h aPe6um<br />

launch could bo called up in ham. mt dap . U, new<br />

operaIbndnahorraauWuIbnolM~hnUL Simm<br />

pd refurbilhment h requid. quick munwvld in b. ml<br />

monlba ~ b alwprrihle. Udngmmlbanawr.Rinabaanand<br />

intcgntion fwility would albw swga of multipb lwncher in a<br />

single day if quid. All of theu rcnrbs for oprslional<br />

empbymmlcuuldbc ro~mplbhed byrmallmililry orconlrac.<br />

Pegasus' Omai-hull~ll~n lunch capbdity (upaWly wing<br />

OSC'rul~~lM~ecooccp)pvkkI<br />

unique lkrihilily lo<br />

mss( miuion mquinmancl md alimlnrs doslegs. thus impmv-<br />

in6 pybd pfonnmc4 I) dit. mu upahiiity alto p vida<br />

for llnt pu mvarye of my point on Ur e h . Alu, of key<br />

opr*bnd impmtncr it cb. minimal impact of weather on<br />

'Ik Pe.5uut bunch system pvidcr national muily npw<br />

system ruae&i~U ud plannen wilb unique capahiiilies which<br />

w h combinsd with evolving undl spacecraft ~ U and R sensor<br />

lccbnobgies.uo cnahk flcaihie. rcsporuivc.a~il.effective snd.<br />

in wmecucs.undrumodofsuppt? tothe wutightcn inmeeting<br />

new ud evolving national ~ urily quirrmcnb.<br />

4. TAURUS<br />

4.1 Imtmducllw<br />

'Ibc Tvl~'" space hoosler hat been developnl lo provide a<br />

sqmbilily loquickly MdcffiiienUy inregralealounchvchiclc ud<br />

pylod for the rapd launch of nmoll rutclliter from either a<br />

remote or rued Iaumh site. %is gmund IranRpo~ahlo louneh<br />

system is erectable within five days of urivol .I a 'dry pod'<br />

launch tite .nd. sIler ut-up. respond lo a Iauneh-on&mnnl<br />

quiremcnl within 12 houn. Initui launch capohility of Ihe<br />

Thelinl<br />

fligbl ofthe Tawt SUndrd Small launch Vchiclc (SS1.V) h<br />

, Tauurl~unehsyslcmwillacurinthe~nthslfof1493.<br />

3 v


H<br />

8p~nwmd by DARPA ud will dcliwr8 DoD payload to a bw<br />

Er(b Ubk Iho lnncb vrbkle nd ryltem devslopd to 88liIfy<br />

lbor DOD q m n u hu dm bcca designed to repd to<br />

ammac*lluncb rrvi98&*Yions~g kncrrespnw<br />

to mss( outet nppontriitka and with ku boltom lim impd.<br />

Mas capbb T~INI mnflgur*bns me king devobpd In<br />

Inlrodu*ion io 1994.<br />

OSC bu e n d u d to develop user-friendly ekcwicd a d<br />

meeb~icd paybd inhf8as which frililate integ*on of 8<br />

vido vmiely of pylodr. "he Taunu vehicle's simpk. dust design enums m8aimum rdiihily and signifiunUy reduces<br />

liuncb site manpvcr lcning 8nd iuppac infnivucture requiremenu.<br />

llprizonul integntion mclhods greaUy simplify vehick<br />

-hly ud paylod integra~ion.<br />

"he Tauus spre hoostcr launch system cunently in develop<br />

mcnl u I& SSLV for DARPA is a four-slap solid-fuel design<br />

compd of the fllghl-proven Peeasus motor stack and avionics<br />

nounledon lopof rTl~il*olTU.~(Peace~eper)rolMmckct<br />

motor. (AThiukdCutor 120molor.nowmtert. wiilbeudon<br />

he cnmmcrnalT8urus). 'hTaurw SSLV system is compred<br />

of 8 llrghl vehicle Md &round bUppon equipment designed for<br />

cay kulrpruhillty and nfid vtup 8nd launch from M unim-<br />

pmved aincrete pad or from a modrrl filed pantry. All propul-<br />

sion ekmcnu of Ihe DARPA Taunu vehicle have heen flipht-<br />

proven on the Pegasus or Peveknpcrprogrunr. Tlw remaining<br />

Taws subsystems M vinually idcnt8cal In Ihnu iucccrrfully<br />

flown on UK Paguus vehicle.<br />

'Ibc slvldud vehicle design. shnwn in RgllrC 7. inmrpralcs sia<br />

majorckmcnb: fourniidfueled~taga.8payload rairingandan<br />

ivionia amcmhly. Ihe Peganus-&rived molora retain their<br />

Slap I. 2 8d 3 designations from Ihat program: the Thiokul<br />

Casta 120 is designated Slagc 0. Ihe vehicle is designed to he<br />

integnted ud lasted at a launch site integration facility afkr<br />

completion of di ahpc.leni 8ucmhly and testing 81 Ihe factory.<br />

mi pmcedure Is less compka and more cost-cffectivc than the<br />

pmeedures mquircd for luger ground-launched vehicles which<br />

mad Ihrougha full integnted f.ctoty system test fnlbwcd hy<br />

duumnhly'' Ages fashipment 8nd suhscqucnl reaivmhly<br />

ud wmnG Inlcy.lcd I~IICM test at Ihe launch pad. With final<br />

intCg~8lbn ud tuting only it I ~ C I8unrh integration site, the<br />

T81mu -&sb minimiDs Ihe h8ndling of Ihe miid rockel<br />

molonwhilcrimullarrolulyrlrrMlining the vehicle acceptance<br />

Wlpmear. Exvnrivo fvumy testing by hothOSCand iu vcdon<br />

ern~sllYt8U budwue Lredy f~fli~lonceilrerhnthe~d.<br />

A complete ICI of sundud uld opcion8l ~crvicu ia 8v8ilahk U)<br />

suppl specific paybd quiremenu including: inenial orienlalion<br />

pbr (0 rpmtion: dum duwdink of critical payload<br />

tekmctry during pelwneb OperaIions 8ml Iauncl?: eieclrical<br />

pmcrfapayladh.candolhrrpybd oomponcnuduring<br />

prrbuncb opcnhl; pybd rdring meis dwn ud Radio<br />

PqvcKy (RF) Windowl; filmd. dilbnod 8k nd dry<br />

niUDgm fa pge of U* pybd envimnnwnl during launch<br />

intepnIILm8.


payload upruiun syucm is availnhle. Tb opciorul HAPS<br />

pmvidu up lo 73 4 (160 Ib) of Nz14 fa ohil rabi3.g and<br />

adjuskncnl. Wbcncombind wiul theTaUUStlmdudor .bud<br />

Glohnl Positioning SysIcDI (GPS) h'aeiva. IIAPS p viks nu-<br />

IDIY)IIKIY erion dit injedion c.phility. she o?lional<br />

PcgaS~u<br />

inlcgnlcd sp8aCnn bus wiU ho dbcusud lam.<br />

IhcTauruavinnlssystom issimple. mhua and rrliahle. Allor<br />

k hudwlrr cornponenu a idmlld lo lbDE UIcdOn PCgUUl.<br />

with thc eiccplion or Ihe addition of a ream gym prkag,: to Iha<br />

bucofSlIge I udhrmcumodirKationsto~)mmod.l~:SUIc<br />

0. shes~nw~poyrmucidm~iedernpclor~hadd~tionof<br />

sup 0 function and mhslm pculiu modikations.<br />

43 Veblck Inlqrm8lm<br />

Tauus field idcyalion Is skaighlforvud and rcquhs 4 minimumoflaunchsupponoq~~nt(LSE)andfrililicr.<br />

Alloflk<br />

ISE b kM~poruhleadcap.hleolselup~ EmOlC 8USlcre SllcS.<br />

she vehicle is inlcgnlcd horuonldly a1 a mnvcnirnl wotking<br />

hcighl which dlowsery CWI formmpnncnl inslallalion. le11<br />

and impclion. lln uu of sumlnnl scrid RS.422 communica.<br />

tion purob IhNughnuI simplifics vehicle winng. alrcalnlincs<br />

avionics lcsling andinlcpalion Md rignirKmnlly ndwcs lcsl and<br />

culkm LSE requirements. The in1c;ratinn and lest pass<br />

CNURS Ihu dI vehicln compnncnls and suhsyrlcmr uc lhnoughly<br />

l ~vd kbn and dlcr final flighl cmmclions uc m.adc.<br />

Several "fly to orhit.' simulations eacrriw 111 ~ I U P aI ~ d<br />

plcchnic ioitiation oulpuu. Taurus louyuk,n rlivilks us<br />

eonlrollodbyacom~hcnsiverclofWakPrtages(WRIand<br />

Rnccdunl Guides (PGs). which Jcurik uddncumcnlindelil<br />

every upal of inlegrating UK vehicle uul ill paylod<br />

4.4 launch Opratlon<br />

TsuuslaunchocanhemndwIed fmmcilkrofthrkpYkIWnl<br />

or Ddmuc's Eulcm or Wesim Ranges (ERIWR) U well U<br />

fmn the Nuiond ~nautinuwlSpvc Adn~iniuraliunINASA)<br />

Gawud Spnce I3rghl fenkr's GWf) Wallqm llighl Frilily<br />

(WW)Rangc inVir6ini.. IhofinlTauNs Iwnch forOARPAi1<br />

uhedulnl for Uw fin1 hdf of 1993 fmm Vndmhurg AIB onlo<br />

&e Westcm Range using only a rimpk concrrIe pad to wt up<br />

WI VUI~leIauncbsu~r(cquipmenl. OSf'smMncrcia1<br />

Taum Iauncb w#vk will he codwlcd utilizing a mdcsl<br />

filed gmky with a muting vrviut slrwim. OX?r primary<br />

?ipn IO. Taunu ron/ilurufimu'prfloormrrnrr to W'<br />

indinorinn<br />

mmmislTaurus launch facilities WillhcrrlnhlirhaJaIlmunch The TnUNs vehiek offers n numkr Or Slmdud ICIVkcs. 'Ibc<br />

rim optimum for Ihe pmiculr mission king - sIanduJ I .6m 163 in)diunelcrTnuNI~ylo~f~rin~of~alovcr<br />

Vurlrnhurg AFB. CA Wdbp Irland. VA nd Cape faluvad 5.15m' (17s ft') fur p.yl0.d use. Iho firing U designed lo<br />

am likely locations.<br />

encapulalc Ibc psylud rn a pylod integration fxilily following<br />

cherkoul. A CIMI 10.000 envimnmcnl can k mainlid<br />

A Taurus paybad inlcrlnce chrcluiul facility U availshk as a inridc Wi cncapulrlcJ cnrgo clemeiii (ECE) I all ha fmm<br />

slandud K N ~ C a1 OSC's Fairfu. VA cnlinaring facility fur encapulnlion Ihmugh ECI! kMspun vchick inlcgralion ud up<br />

initial payload lo launch vehicle functional INI nnct chakout. until launch. h I ~IluYInrd ICN~CC. 0% pmviJes one ILinch<br />

I~OUling~nmginemnglcI(mudcloluleTauNs avioninwmbly<br />

nnd a complclc YI of arionin nnd paybd le11 cquipmcnl.<br />

quam ncau dour in ench hdf or Ik fairing. located lo Ihe<br />

rryuiremcnu of UK pybd. shew dmn pmvidc dI Ur sacs&<br />

Ihi~VebicleSy.lcmsIn~ey~ionI.M(VSIL)willb.uudfwiha including lale acass on lhe p ~ ~ lo y UK . py bad once cncynudeveb~nlolrniuion<br />

pculiulauncb vehKk wftwam.quali- Ialionbwmpklcd. ~.noplion.OSCcMrrp~silioniho.sclu<br />

liemion of miuion pculiu avionics vnias ud vddatim or<br />

paybdinugntionpaodvrraudflighlchalllsls. 'Ibc rrility<br />

doors, povidc IMgCToraddihnal rcrssdoon or RF-VMSFU.<br />

en1 pnela. she payload mahanldly mounl, lo lha sundud<br />

Will 410 be equippod romnduct launch vrhkk mbsion sirnulahm<br />

wilb payload badwa ud wham in dn bop.<br />

Tauul rpnfion syskln vi. 60 futcrm abwt a 38.814nch<br />

diunclrr bollclck.<br />

I<br />

DARPA TauNs<br />

orbit Capability<br />

250 nm. 28". 2450 Ibs<br />

(Orion 38 Slg 3) (1114 kg)<br />

Geosynchronous 860 Ibs<br />

Transfer (STAR 37 PKM) (391 k3)<br />

Fipn 9. NRPA Taunu rapnbiliy.


'ThcTauNt prylodckcoicwl inlnlactt uc cllahlithcd through<br />

throcconncclon .powcrud tignal, pym. ml RP. 'Thcpownand<br />

tignd conmlor pmvidct nu pylod putkught (pior lo<br />

Lunch).eighl pybddimv wmmandh lowpybddimls<br />

ulkhrkt and a paybd sepr8lion HNing hcakwim. Sbc<br />

power and tignal conlycuIT a h tuppont an opiond paylod<br />

RS422 wktn*ry twm. 'Ibe pym conmm can iniliau up lo<br />

five rcdundatu pylod pyrotechnic cwnu. In addition. he RF<br />

con- t u r n pybd RF bntmution via Lha eluting<br />

Taw. nonm tyuem. Dcuilal inlunnation on pybvl YIvice[<br />

andpybdcovimnmenltpvidcd hy TauNtcan he found<br />

in UU TUIM Usen Guide availahlc on requctl lfom OSC.<br />

4.6 Taurr Opn(bu1 Flcslblllly for TACSAT Applk-<br />

Ilom<br />

'ThcTaUNt launch rytum. hatatuihutet fcr flenihle. mtpntiw<br />

and cotlillr*ive launch lu heyund eaitting launch tytwms.<br />

With ilt gmund mobilily d cornpatihilily with air usnipon.<br />

Tawt un yovide rigninunl kvds of tuvlvahdily lhmugh<br />

disprrul. Thitugzeallycnhmccd hythclwcIhuTurrutcanhe<br />

~aunchcd from M "unimpmvcd dry p d . i.e.. ihe end or a<br />

mnway. 'ThcTauNt syrcem hu ken designad and will demontblc<br />

mecllng DARPA'a requiremenla lor a launch tils and<br />

vehicle ta.up or kts Ib.0 fin dap ml I8uncha1demand<br />

within 72 houn dlcrtU.up. Sbcvehukcanlumainuincd in Ihu<br />

72-hour launch rcdy condition lor mnIht U required lo mnl<br />

aytwm opnuionrl mqukmenlt. Tummund t h lo erm and<br />

launch umlk vehicle U meuumd in &yt. MI monlht. pvid."<br />

ing signikatu awae uphilily. Vinally. ~h Taurut fairing<br />

encapulation tytkm &owt lor flcrihk plaunch paylod<br />

inIegnIbn and Ihc capbilily lo tLom Lha encqnulaod pylod<br />

for Ions prWt awiling UU Lunch.<br />

- -<br />

110'<br />

\<br />

All of UU .how caphilitiin can suppnC LEO U wll N CEO<br />

miuiona. T h ~ ~ T ~ ~ ~ ~ rmiquecaphililiescu l ~ ~ h s y t l lu ~ m<br />

eaploivd Lodcvclop and wpportinmvative. flcrihk. mrpontiw<br />

and cottmStive spre aytumt lo meel Lb. new world roquiromcnlt<br />

or rutum tpre tytcem.<br />

5. YEGASTARN<br />

5.1 lntdudba<br />

In 1989. OSC began work on sewn1 lowca~ multi-purpose<br />

tpacccraftpmjab. Oncolulcu. Lha Peg.Sluinlcgralcd tpmcrafl<br />

hi U dcsigd lor w witb Peguut and Pcguw.derivcd<br />

launch vehickh including TUIM. PcgaSW U a key clunenl of<br />

Ihe company's ability w, oRer comprcknrive spre launch and<br />

tuellilo wim. Uting many or (bo tun0 tytuma lhrl opcrao<br />

IhePcguuiveNcle.Peg.SIuuheinghuih~undthc~irdt~ge<br />

of Peguut iminlu cho molor which 11 tcpuavd aflr UUining<br />

orhit) lo pmvllb Ihe "bouse-keeping" tervicct mccsl.ry Lo<br />

tupporc 0% U cutlomer-povidcd intuumenb. wmmunicatio~<br />

dcvicct and other ~CNOII onorbit. In culy 1991. OK enmed inlo a muad witb (bo US. Air Fora Spvc Tctl<br />

Pmgrvnfatkpoductionola sun-pointing PegaSurtpcann<br />

lo t u p 1 uwrwl Air bee acicnlik elprimenu. U well U M<br />

envimnmcnlrl monilodng&uconlraclwitb NASAGoddud la<br />

chc pmvitionofoccan cobrdala uting an inkumcnlmounted on<br />

a ndir pointing PegaSW tprcmn.<br />

5.2 Vehlda Dacrlplba<br />

OSC's PegdW integntcd satellite (Pigum 12) apprh POvida<br />

lor mol0 clficient ute of tho volume d mus available<br />

from8 PoguworTauNt I8unchcomprod lo8 vpvahls tauliils<br />

dctign. Bycliminuingcho weighludcosl~tuylopmvide<br />

tepmlo avwnkt. control. ~ ~rue~unl nd &U tytvms on bocb &e<br />

pylodudluncbwbsb. Pcg.SuwiUmableauterloplrt


APEX<br />

1993<br />

247 kg<br />

375w<br />

3 Axis, 0.5'<br />

Tmnsm(nm SEand<br />

Propulsion None<br />

mil GPS<br />

Determination<br />

Notes<br />

1 Year Desigr<br />

3 Year Goal<br />

DoD HDBK<br />

343 Class c<br />

64 mB& Data<br />

Recorder<br />

In Test<br />

Fi#un 13. Prxdtor rpornr@ ropabiiirirr<br />

SeeStar<br />

1993<br />

245 kg<br />

!%ow<br />

3Axis, 0.10<br />

1.23 mrad<br />

Knowledge<br />

2 S Band<br />

2LBand<br />

Autonomous<br />

GPS lo whn<br />

1 OOm<br />

5 Year Design,<br />

10 Year Goal<br />

Fully Redundan<br />

1.25 GBI Data<br />

Recorder<br />

2.6 Mbps Down<br />

link<br />

In Fabricalion<br />

tn UIC lo(d system cksiy, of fulm ape systcmn. Working<br />

closely wilh the senior &si#mn m develop slrndanl and com.<br />

paihk inletfwa. lhne m yll"8chcs'lo mnr/spacccnfI<br />

inteylion wukl hve dranrtic payoffs in Ihc devebpncnt and<br />

ckploymcnl of Ikxihlc. mpnnsive and cod-cNectivc KPDTC sys-<br />

knu lo pmvid suppall la lbo wufighler.<br />

6 APPLICATIONS<br />

TACSAT syitrms CM pmvnk impor(ml knrfik in rnililuy<br />

engagemenu ranging from mvul operations to regional and<br />

gbhd battks. llrro errmplcs arc now provided for lhe use of<br />

flighl-rcdy TACSAT Icchnolngies in a relstively inexpcndve<br />

Uelical svvcillnn *yslem. a commercial TACSATcomrnuni-<br />

ution mlwd and a mmplemcnluy TACSAT fkel lhd would<br />

workinconcell wilhcxitlingmiliuyaaICllilcs lomllalimpor-<br />

Unl Lbulcr mlromhgy dah.<br />

6.1 SuwrUhna<br />

TrCkd an*5illancc saklliaa inknded primuily lo support


20-10<br />

(hcntercoaunnndma have ben discwoad for n( Iccot


countries for several years. Coupled with dug@i ccoiomic<br />

conditions. the U.S. is curtailing militmyenpd~rrs at unprcedrnted<br />

raws. From a 'good newdhd news. ppcctivc. tbe bad<br />

news is this will likely duce rignirihncly the Punding nvnilnbls<br />

for any new system development Md.nudlcction. But che good<br />

news is TACSAT system wen conceived in port lo meet thc<br />

challenge of declining military budget8 ad therefore do not<br />

require signifcant investment lo bring chem to frition. It U in<br />

facl arguable that lbcse TACSAT system might well flourish in<br />

difficult economic timcs.<br />

Second. Ihe widely distributed h a t environment of loday and<br />

tomorrow strcngthens the case for systcm whirb am responsive<br />

to MW tical and qtralegicndities. TACSATspvidenotonly<br />

the focus nbcdod for regional conflict md monitoring. hut the<br />

low-lkth orhib common to such syitems pinil an nbit-hyorhit<br />

reallocation of uwta to WOMI for ever changing priorities.<br />

The pace of technology is such that hth the cnpahilily and<br />

Discussion<br />

20-1 1<br />

c~tyb6adMreos~Idwide hot-~pacrirrvailable from nsponsivc<br />

spacc systems like Pegaslar. Peguur gnd Taurus.<br />

FinDly. aa with all new wdighting capabilities. Ule introduction<br />

ofnovel app~oacbeslomectingtbe~squirementsof the battlefield<br />

bave onen met with some resistance - such has been the case with<br />

TACSATs. Now that a few system have been flown and mon<br />

hportancly now that che commercial market is finding applica-<br />

tions for such syotems. Ihe introduction of TACSATs into the<br />

na~ocrdrefurilysystem architecture will rapidly expand. Whereas<br />

prim to the Gulf War such TACSATs could be ignored as<br />

unproven. now there isdopmentedevidence of the valueof these<br />

sptems and tbe users arc beginning (0 identify additional appli-<br />

cations where an augmentation in capability, or an entirely new<br />

function, can he fulfillcd with a TACSAT. Just as the hatlle tank<br />

and the airplane needed lo he proven, CO too must the TACSAT<br />

e m ib place on the baitlcficld. Having earncd that place.<br />

TACSATs will hecome essential components of future milimy<br />

infrastructures and strategies.<br />

Question: OSC said tt-st the corporate goal is to<br />

penetrate the coni;?ercial market. Of the 76 PEGASUS<br />

orders, how many are governmental and how many are<br />

free market?<br />

Reply: Until now the priority is governmental (8531,<br />

but in the future OSC believes it can increase the<br />

commercial percentage.


RESUME<br />

Puisque ks futun lanceun permetmnt I'cmprt d'une charge<br />

utile de plus en plus lourde. il est possible d'imqincr des<br />

lancemenlr de plusicurs petits satcllitea sur des orbites<br />

diflfrentcs. Cgndrnt pour diminucr autnnt que possible IC<br />

coilt des manocu~res de transfert de ces satellites, iI est<br />

casentiel de dCtcnniner I'orbitc &injection optimalc qui ,<br />

minimise par exemple la masse d'ergolr nCcessaire A ces.<br />

transleru.<br />

La mdthode utilise% pour rdsoudre ce probl&me<br />

d'optimisation complexe est I'algoriil:i?e du grndient<br />

pmjett ghCralisf. iI pennet de trbuver I'oibite d'injection<br />

o;?timale et In trajcctoire uccnsionnc:!- mcqmdnntc qui<br />

rpnimircnt le coJt lout en rcqxctant laa contrainter<br />

imposCcs A la trajectoirc de month et aux trmsferts.<br />

rkux excmgles d'application aeront expods.~ Ld premier est<br />

I'optimiootion d'un lancemcnt double veri deux orbiter<br />

dinclinaimnr difltrentes. le second conceme la mise A<br />

poste d'une conatellation positionnCe aur dm orbiter de<br />

mudr MC~M~S diffCrents.<br />

Since future lounchen deliver more an8 more payload mass.<br />

it is possible to imagine multiple Irunches of small<br />

satellites into noticeable different orbits. Yet. so as to<br />

dkcreese possible high cost of srtcllitc transfers. it ir<br />

etsentiol to deiermine the optimal injection orhit that<br />

niinimizn for instme he ergo1 mass ns. mary to these<br />

transfers.<br />

OPTIMISATION bE LANCEMENTS MULTIPLES<br />

par L ZZOUI et B. CHICSTOPHE<br />

Office Notikal B'Etudks et de Recherches ACrospalinles.<br />

BP 72. W22 Chiitillon Ceder. FRANCE<br />

The method used to solve this complex optimization<br />

i<br />

problem is the generalized gradient algorithm. It dlows to<br />

find the opiimal injection orbit that sotirfies the<br />

miKelluKous constaintl rpplied to the laurrchcr and its ~ 3 -<br />

Jeclory. rrd thr minimizer the cost function. At the same<br />

time control laws and parameters of iacent phase and<br />

Uuufers ue optimized.<br />

This method rpplication will be shown on two exomplea.<br />

tl!e first concerning a dual launch on two differently<br />

iik:ined orNu: the ulhcr one conc~s I constallation of<br />

d&emt wending node positions.<br />

1 INTRODUCTION<br />

21-1<br />

Riisque let futurs lanceurs - comme Ariane V,- auront In<br />

pcisiibilit4 dcmporter de plus en plus de chiu$e utilc. on<br />

peut imaginer des Inncements multiples de petits satellites<br />

sur des orbiter diflfrentes. En particulicr, IC lanccmcnt<br />

sirnultnnd de plusicurs satellites d'unc constcllation de<br />

radiolocalisation. ou de deux satellites aux missions<br />

diflfrentcu sur leurs orbites rcspectives; pcut constituer une<br />

solution intdressantc malgr6 IC coGt prpbablcment important<br />

der manoeuvres de transferts aprEs I'injcction.<br />

En consfquen-e. il est essentiel de dftcrmincr I'orbite<br />

&injection qui minimise lei masses d'crgols ou les<br />

incrbments de vitesses nbcessaires nux irnnsferts des<br />

s.mllites sur lcurs orbiter.<br />

La mfthode ulilisfe pour rfsoudrc ce probltmc complcxe<br />

d'optimisation fonctionnellc et paramftriqac est<br />

I'a!:orithme du gradient projett gtnfrnlisf [ 1 J. Cette<br />

mfthudc. dfveloypde A I'ONERA. permct de favnriscr la<br />

sntisfnction des contraintcs lots der ittrations, et donc de<br />

trouver une trajectoire optimale les rcspcctnnt mCinc si la<br />

trajectoire initinle en h i t loin. Ccs contraintcs pcuvcnt<br />

3trc courantcs (flux thermiquc mrximal). intermfdinircs<br />

(retomb& dun &age) ou finales (paramPtres orbitnux).<br />

dfgelitf ausi bicn que d'infgalitf. En out:e. unc fonction<br />

coOt est minimisfe cornme la masse d'crgols ou les<br />

incrfmcnts de vitcsses nfccssnirer nux manocuvres dc<br />

traderts des ratellitcs. Lcs lois de contr6le du lnnccur ninsi<br />

que des parunPtra p t ~ sur t le trajectoirc dc montfc et sur<br />

les manoeuvres des srtelliks son1 optimisCs. Ces<br />

manoeuvres peuvent atre mono ou bi-impulsicnnclles et<br />

elles induiscnt lcurr proprcs contrainter.<br />

La DrmiPrc partie conccrne lo reprCscntntion utilisCc pour<br />

cc probkme physique: modflisation du mouvcment du<br />

lanceur et des srtellitcs. lois de contrfle ct pararnktrci<br />

optimisbs. coot A minimiser et contrainks A setisfnire. La<br />

deuxiPmc pnrtie i!lustre Ics potentialitfs de I'outil<br />

doptimisation: lanccment double vcn~ des orbiter de mZmc<br />

altitude mnis d'inclinaisons dillCrentcs; mise ?I poste dune<br />

constellation doni les orbiter ont des noeuds ascendants<br />

diflfrcnts. Drru cltaque cas, I'intCr2t de I'optimisalion de<br />

I'orbite d'injection acra dCmontrf.


21-2<br />

2 POSI'6"ION DU PROBLEME<br />

2.1 Mouvcmcnt du lrnccur et dos satcllltcr<br />

2.1.1 Mdiirolior, du mouwnenl ah Ictu.w<br />

mu-q<br />

Lea loio de commrnde choisics pur dftcrmincr<br />

I'oricntotion du lanceur wnt l'assictta 0 ct I;aziniut v.<br />

exprirnts d m un repbe inatiel. On suppone que le lanceur<br />

vole sann dtraprge, I'mgle de roulir 0 est &nc fonction de<br />

8 et r. PI est clair que Ir connaisrance da I'oricntation du<br />

lmeur prmct la dCtcrminrtion complPte do In direction et<br />

du module &E forces .frodynamiquc et propulsive. En ce qui<br />

crmccme lo phase rtmosphCrique. IC vol s'effoclw A azimut<br />

incrticl constant et i incidence quosi-nulle aprh IC<br />

buculcmcnt du lmceur. Le mouvcmcnt du lnnccur dons<br />

I'aunosphtrc est donc dCterminC par trois paramPtres:<br />

ozimut incrtiel. vitesse de brrculement et dude du<br />

hwhment. t<br />

uc sysbme diffkrentiel p6ccdent put donc IIC mctue sous Ir<br />

forme suivmte:<br />

X(t) - f(X. U. A. I)<br />

oh U est k vecwur de commmde et A lo vac(eur constant du<br />

parunltres optimisrbles.<br />

2.1.2 ModClisation du mowcmen~ des .t&cIIitcs<br />

Le mouvement des srtcllites est cntibcment dCtcrminC par<br />

la six purvnLtrcs orbitaux sriivants: IC dcmi-grimd ale nod<br />

a. I'excentricitC e. I'inclinaison i. I'rrgumcnt du nocud<br />

wendant n. I'ugumcnt du pCrigCe (0 et I'nnorhrlie 8 raie v.<br />

Cu paunhrcs obciuent aux lois de Kepla.<br />

2.2 Cbronologle<br />

Lc vol du lmccur CM LmrillC d'une dric dYvtncmcntr<br />

particulias comme le lorgage des Claner vidu ou de la<br />

ad'fe. inooduisant des dimtinuitb dnr Ir muse et Icr<br />

fma propulsive et rtrodynunique. De plus, Ir chrono-<br />

Ioaia de ces 6whementa a t I priori inconnua. Pour traiter<br />

ces discontinuit&. il eat nbccrsoirc de considCrer des<br />

rcctionr de urjactoirar. ts pmsoge d'une section i I'ruue<br />

est &tamin6 par le changement de 6ig11C d'un ccrtun<br />

criQrc. diffhent suivmt les Lvtnemcnu.<br />

2.3 Fonctlon coot<br />

Etent donnC que leo cornctCristiques du lanceur. les<br />

conditions initinles et les ClCments orbitaux finaux son1<br />

connus. si I'on nfglige le temps de rtpnse du syrt&me de<br />

contrble d'rltitude du lanceur. le probllrne consiste b<br />

dCtermincr Ics lois d'rssiette et d'azirnut optimales<br />

procurant IC coiit minimal tout en respectant lei<br />

contraintcs.<br />

23.1 FJpressicm du corir<br />

Le cool b minimiser p ut Stre I'incrbment total de vitctses A<br />

roumir pour [XrmCttrC ICs transfcnr:<br />

oh AVi cst I'irnpulrion du ihmc setellitc.<br />

On pcut nwsi choisir de minimiser I'impulsion maximale<br />

dcs motcurs d'npogCe de chaque satellite:<br />

V, = Mpx I AVi I<br />

I<br />

Dons cc TU. IC programme tend A fgrlcr Ics difffrentes<br />

impulsions rlc trnnsfcrt.<br />

La fonctiu:! pcut aussi concerner lcs mosses d'crgols<br />

nkessnircs Four cffcctucr les trmsferts d'orbites. masse<br />

dagols rccl:'isc pour In i'me mnnmuvre est:<br />

05 mi CSI 11 mosw furale du ibme srtellitc.<br />

lspi so-. impulsion spkifiquc. exprimkc en sccondes.<br />

Lea caractiristiqua du moteur d'apagbe correspondant.<br />

capable dc lotirnir -tie impulsion gricc A sn masse d.'crgols.<br />

scront ccllcs tfc la gnmme de motcurr MACE (Isp de 310 I).<br />

En outre. ufin de simplifier IC calcul de la masse sPchc du<br />

motcur. on considtrero un coefficient de structure constant<br />

de 109b (rnp;w)rt de In masse dchc sur In masse d'agolr).<br />

Comme prfcCdcmmcnt, le coGt peut Ctre exprime pu:<br />

1ntCrcoronr.nous maintenant le crlcul de I'impulsion de<br />

witesse dnm IC cas de manoeuvres mono ou bi-impul-<br />

sionnellc.q.


. 232 CdcJ du IIIOIWYHI?~<br />

Mmoeuvm mono-impulsionnelle<br />

.\fin de dbterminer OD r'cffcctue h mmciivro sur I'orbite<br />

d'injection. un parimbtrc<br />

--<br />

supplfrhentnire optimiscr est<br />

pris en compte: le temps sfparant I'injection de la<br />

manoeuvre.<br />

\<br />

- Figurc 1-<br />

Iinj et Ir;, sont rcspcctivcmcnt Ics vcctcurs inclinnisono sur<br />

I'orbitc d'injcction et finalc: Vinj CI Vfin sont<br />

rcspcctivcmcnt let vitcsres sur I'orbitc dinjcction et sur<br />

I'orbitc fin& au point de mmoeuvre,M (w:r figure 1).<br />

Pour unum quc le point M appnrticnt prkisCrncnt A I'orbite<br />

fin& deoirc'e. deux conuaintcs hqqh5ncntnircr doivent<br />

Cue rjoultes conccmint l'altitudc et la latitude de M. Si<br />

clles ne m t pns srtirfaites, I'orhitc finale CRI modifife de<br />

!IUJI~&~C !I pouvou calculer le codt (voir $2.4.1 1. '<br />

Aprbs In modification Cvcntucllc $, .I!prl>itc finale. la<br />

; :*a:<br />

vilasa Vfin et donc AV son! facilcrnoni,~~,eulablcs.<br />

:,;:.:. ..i<br />

*'b*6%<br />

Manoeuvre bi-impulsionnclle I<br />

Contraircment A la mmoeuvre mono-impulrimncd. une<br />

manoeuvre bi-impUlSiOMClh est toujours possible. mais<br />

requiat un plus grand nomtne de parambtru A opiimiscr.<br />

aQbuyIcrrn<br />

- Figure 2 -<br />

I<br />

21-3<br />

Le rateIIite eoi injd ea €41 &pia I'mbitm d'injection sur<br />

u1t2 orbitdl inlePma8iaias &ante A I'orbita finale. Au point<br />

dintcrsection M2. uno 00conde impulsion est donnb pour<br />

placa le rntellita sur son orbite fide (voir figure 2).<br />

Afin de dffinir complblement ce h.nrfert, trois parunbtru<br />

mnt optimisbs:<br />

- un pnrametre ~OMIUII lo position de M 1 sur I'orbite<br />

dinjcction. On choisit I'rscenrion orbitrle vraie. qui est<br />

I'~,gle brisf:<br />

v1 =SA1 +a1 +VI<br />

OD QI cst In longitude du noeud asccndant,ol est<br />

I'nrguhent du p6rig6e. et VI I'rnomalie vraie du<br />

satellitb sur I'orbite dinjcction.<br />

- un param&tre doMan1 la position de M2 sur I'orbite<br />

finale. ~2<br />

- un punrnltrc dftcrmhnnt lo formc de l'orbite<br />

inturmddiaire. joignnnt MI et M2. Par deux points non<br />

alignfs nvcc IC ccntre de la Tcne, passe seulcrncnt une<br />

orbitc KCplCricnnc de paramhe fix6 pr. pr sera choisi<br />

cornme troisibme p~nmPtrc.<br />

Dcux nuires parnm&trcs pounont aussi Etre pris cn compte<br />

(s'ils nc son1 pas conlrainls): I'argumcnt du p6rigCc et dli<br />

nocud asccndnnt dc I'orbite finale.<br />

Connnissont la pisition dc MI CI M2 et le pnramPtrc pr. il<br />

est possiblc de dCtcrmincr Ics autrcs tlfrncnu de I'orbitc<br />

intcrm6dioirc. nfcessnircs pour le cnlcul des vitcsscs Vi2 et<br />

V21, rcspcctivement nux points hll et M2. En particulicr.<br />

il existc dcux solutions iT et -iT pour IC vcctcur inclinnison<br />

dc I'orbitc inlcrmfdinire. concspondnnt rux dcux scns de<br />

pnrcours. et donc chnngcnnt v 12 el v2 I en kurs opposfs.<br />

La solution edoptfc sera cclle conduisant A une impulsion de<br />

vitcsse minimale.<br />

2.4 Contralntcs<br />

Lcs contrainto L rcspcctcr concc:ncnt nusri bien Ir<br />

trajcctoire de monlee que les divases manoeuvres. Eller<br />

sont donc de dilftrcnu types.<br />

2.4.1 Controintrs ~ ~MICS<br />

Conlraintcs sur le lanccur<br />

La contrainter finnlcs sur le lnnceur pcrmeilent &assurer<br />

que I'orbitc dinjcction est attcintc nu temps final (dCterminC<br />

pnr I'Cpuiscrnent des ergolr). Une premiPre contrainte<br />

d'inCgnlil6 porte sur I'rltitude du ptrigfe de I'orbitc<br />

d'injcction nfin qu'clle soit viable pendant plusicurs<br />

rbvolutions ($2 200 km).<br />

Contraintcs sur ler salelliter<br />

Un jeu de contrainter dfgalitb impose IC rcspcct der<br />

ClLmenu orbitaux finaux (a. e, i et dventuellement n. a, et<br />

v) des diffhenu satcllitcr.<br />

Dcr contrainter d'intgalit6 suppltmentaires sont lctivter<br />

rekm k type de mmoeuvre.


214<br />

Dens le cas ."un aanslen bi-impulsiohnel. scu'~? unc<br />

contrainte dinfgrlitb est njoutCe pur assurer in vintilitf de<br />

I'orbite intermMiaire (altitude de phi& supfricure A 200<br />

km).<br />

2.4.2 Cmraituu cowantes<br />

Unc seule contrainte courante scrn'prise cn compte. Ellc<br />

pone sur Ir eojcctoue uccnsionncllc du lonccur. ct assure<br />

que le flux thmique maximal rep pm In chnugc utile aprts<br />

le Iargrac de In coiffe n'cxckdc par 1135 W/m2. b flux<br />

lhemiqw est modClid de fnpn simplifite par:<br />

3<br />

W n P V ,<br />

oil p est la dcnsitt ntmosphfriquc et U, Ii vitesse<br />

rtrodynmique du Imccur.<br />

2.43 Cotulrainirr interddiaircs<br />

Les contraintes intermCdiaircs prfvucs dons IC code. tellc<br />

que In contrinte de rctombCe dun Ctrge (121). ne scfont par<br />

prises en compte dans Ics cas Ctudifs rfin de rirnplificr le<br />

probkme. I<br />

3 RESULTATS<br />

L'outil pitsenid prfcbdemment pcrmet de trouvcr la<br />

"meilleure" trajcctoire dc montfe (nu sen, dun COG:) rinsi<br />

que la "meillcurer' manoeuvres. grke k unc optintisotion<br />

cauplfe. De plus. il est possible de considtrcr lo mise A<br />

poste simultanfe de plusicurs satellites sur des orbites dif-<br />

Itrenter. 4.'<br />

. i .<br />

-8<br />

La cappcitb du code A trniter dcr problbmes 'varifs sera*<br />

dCmontrCe tin let deux excmples suivnnts: le premier<br />

concerns deux satellites k injecter sur des orbites<br />

dinclinaims diffCrentcs et le second le mine A poste dune<br />

Constelluion de uoir srtcllites sur der orbites de mCme<br />

kliruWn mait dont ks noeuds ycmdantr mnt rtpubs de<br />

120'.<br />

!<br />

Considboru deux ratclliter dont le8 C8r8CIbnsliqlieS sont<br />

la SUiVMtes:<br />

- satellite 1 : mnsie: 250 kg (motcur drpogts compris)<br />

orbite vide : 7aOf700/98"<br />

- satellite 2 : muse: 1000 kg (motcur d'apogte compris)<br />

orbite vide : 700~Ct0/8O0<br />

Le lnnceur considkrb est Ariane 44LP tquipe5 de si coiffe<br />

longue ($15 kg). du rupport extane Spcler (420 kg) et de<br />

I'adnptateur Arime (50 kg).<br />

Plusieurs solutions peuvent itre envisigCes pour effectua<br />

cc lancement double.<br />

La premibre consistc A injecter direclement I'un des<br />

satellites sur son orbite finale ct deffectuer une manoeuvre<br />

pour le second. Dnns cc cas. la masse nfcessnire pour cctte<br />

manocuvrc put dfparser lcs cnprcitts dcmport des motcurs<br />

dapogfe existant actucllcmcnt.<br />

Une autre solution pcut donc Otrc d'injcctcr lcs deux<br />

satellites sur une orbite de transfert et d'cffectucr une<br />

manocuvrc pour chnque sntcllitc. Cctte orbitc d'injcction<br />

scre optimisfe ou scns d'un coat (pnr cxcmplc. la mini-<br />

misation des masscs dcrgols dfpcnsfs).<br />

3.1 .I Vrbite d'injcction f ie<br />

Puisquc Ics orbitcs vish de chnque satellite 01 et 0 2 ont<br />

mtmc nllitudc (700 km). I'impulsion dc vitcssc nfccssaire<br />

nu transfer: d'unc orbitc h I'nutrc requiert uniqucmcnt tin<br />

rattrappngc d'inclinoison dc 18'. sous rfscrve quc la<br />

monwuvrc oit licu A I'un des nocuds. La valcur minimalc de<br />

I'impulsion est dims CC cas 2350 m/s. On suppose que lcs<br />

deux sntcllitcs sont bquipfs du mhc type de motcur<br />

dnpogfc dont lcs caractfristiqucs son1 bnsfcs sur ccllcs de<br />

In gnmmc MAGE (Isp = 310 s. rapport dc la masse skhc sur<br />

lo masse dcrgols de IO %).<br />

La table 1 donne lcs mmscs nfccssaucs A mctac h poste sur<br />

I'orbite dinjcctian pour lcs dcux types dc manoeuvres (01<br />

vers ct @ vcrs 01) compnrfcs avec l a pcrfOfmMCeS<br />

dAriane 44LP.<br />

Masses (kg)<br />

orbitc d'injcction<br />

Spcltra + adapwtcur 410 470<br />

Sntcllitc positionnf 2500 1000<br />

Satcllitc A positionner 1000 2500<br />

masse dergols nfccssairc 1165 2910<br />

3.'<br />

I<br />

Muse h I'injcction 5135 68HO<br />

Performance Arinnc 44LP 5520 6065<br />

comprenant Ir masse &he du motern d'apogbe<br />

- Table 1 -


En rcvnnchc, m ce qui concemc la pernitre strattgie. lo<br />

pmformnnce dArianc 44LP est suffisonte. rnnia le lransfen<br />

du sntcllite 2 vets son orbite finale regriiert un moteur<br />

d'apcrg6c puvant contenir 1165 kg d'cr8ols, moteur<br />

n'existmt pas jusqu'l maintenant.,<br />

3.1.2 Opthisation de I'orhilr dinjnchn<br />

Le scul moycn de rfalisa cc Inncement double est donc<br />

doptimisa I'orbite d'injection de tellc fqon que lu deux<br />

setelliter soimt tquipts de moteum depolgb r6nlistes. Deux<br />

colculs d'optimiration raont cffectuCs avec des cohs<br />

diffkrents.<br />

Le premier indice de coot A minimiser est le maximum des<br />

impulsions de vitcsre. Ct CIU dc calcul fvident ne fait que<br />

dbmontrer Ier capocitfs du code. et par consCquent, on ne<br />

tiendra p compte des rCsuItats concemont I'cxistencc des<br />

moteura d'opogtc requis. Avec cette fonction coOt.<br />

I'rlgorilhma tend A fgola les deux impulsion$. en chcrchanl<br />

A miniism la plus grande. 11 est clnir que I'nrbitc dinjcction<br />

optimola dcvra tire inclinCC A 89". Effcctivement.<br />

I'orbita d'injection optimale @ lrouvCe pa I'dgorithmc est<br />

la suivonk: 070/720/e9°. On peut notcr quo Ics mnnocuvres<br />

ont lieu aux noerrdo UCC~~MIS des orbites d'injection et<br />

Tu, des. ce qui minimise le cott puisque seul un rollrepage<br />

saictement en inclinison est A effcctuer. b)E plus, I'orbile<br />

d'injection s'est dtformCc par rapport B I'initielisntion<br />

(700/100M)"). diminuant son Cnergie En cffet. puisque l o<br />

manoeuvres iont mono-impulsionnelles. elles on1 toutes<br />

lieu A 704) h daltitude. L'incrfmcnt de 4tessc est minimal<br />

ti IC module de la vitcssc sur I'orbik d'injection I une valeur<br />

ICghement infkrieurc h celle sur I'orbite finale.<br />

Ler figures 3 et 4 prbscntent respectivcment les tvolutions<br />

au cours &a itkratioru des impulsions dc vilesscs et des<br />

masses dergob nCcessaircs aux manoeuv'reo. Qn r'aperqoit<br />

qu'A putir de I'ittration 50, I'optimum est presque rtteint.<br />

bim que I'initirlisation m roit loin.<br />

"1 #or1<br />

t ~--.--u1~ '<br />

- Figure 3 -<br />

IA table 2 donne le dcuil de 1. muse ntcessaire aur I'orbite<br />

d'iajcction w.<br />

i<br />

- Figure 4 -<br />

Ce Inncement est possible avec Arinne 44LP puisque sa<br />

performance sur cette orbite dinjection est de 5680 kg.<br />

La seconde fonction de coiit prise en compte est le<br />

maximum dcs masses d'crgols nfcessaires nux manoeuvres.<br />

coGt qui permet d'bquilibrer les masses dcrgols des deux<br />

moteurs d'apogie. L'orbite d'injection optimale 04 obtcnue<br />

piu IC code est la suivmte : 695/100/92.3".<br />

Cctte valeur de l'inclinaism plus forte que prfcfdernment<br />

est due nu fait que. puisque le, deux satellites doivent<br />

dCpcnser autant d'ergols. I'orbite d'injection est<br />

naturellcmcnt plus proche de celle du satellite le plus lourd<br />

(ici I'orbite inclinfc h 98').<br />

La figure 5 donne I'fvolution de I'inclinaison de I'orbite<br />

dinjection (initialisCe P 90") nu cows des itfrations.<br />

b' I<br />

- Figure 5 -


21-6<br />

,...-. ".._ . + . I..<br />

0 8 IO IS 10<br />

! /f&s:'ans<br />

- Figure 6 -<br />

J--fI-{ 1<br />

'--e e<br />

- Figure 7 -<br />

A I'initidisation. les muses dergols n&cssaires Ctnicnl dc<br />

9500 kg pour le satellite 1 et de 5650 kg pour le satcllite 2.<br />

Grice A I'optimisation de I'orbite d'injection. ccs valcurs<br />

on1 Ctt considCrablemcnt rCduites pour lniver L des masses<br />

rCdistes (700 kg).<br />

L table 3 fournit le dtuil des dilfCrentes mwcs sur I'orbite<br />

Sinjection 04.<br />

-Table 3 -<br />

La capocite dkmpori d'hime 44LP pur cette mission est<br />

de 5512 kg.<br />

I<br />

D~5.10 CM du Immeslt double. I'optimisstion couplk &<br />

lo trnjectoire de mmr& el des manoeuvres 1 conduit A una<br />

orbite J'injcction qui prnnct de metue h poste ks deux<br />

satcllitcs avcc des ~ UKS dergols dmlistes.<br />

3.2 Lancement d*uk constellation<br />

Conoidkrons une conotellnlion de rodiolocalisrtion 131<br />

composfe de uois sotcllitcs. de 500 kg chacun, dont lea<br />

orbilcs finales ont pour ClCmcnts orbitrux :<br />

n = 42164 km<br />

(hp = 27733 km et h, 0 43840 km)<br />

e = 0.191<br />

i = 18~345'<br />

o = 254,887'<br />

plus unc difftrcnce de nocuds ascendants de 120" entre<br />

les orbites.<br />

Le lanccur utilisf pour CC lanccmcnt uiplc est Arionc V.<br />

&qui# dc la soiflc courlc (IR70kg) et du support exteme<br />

Speltrn (900 kg). Lei trnnsferts sont dc type bi-impul-<br />

sionncl ct Ir fonction coht A minimiscr est la sqmrnc des<br />

impulsions de vitcsses des trois manoeuvres. Comme<br />

prckctdcrnmcnf on considPrcra tout dabord une Ics transfcru<br />

A partir d'iine orbite d'injcction fiaCe qui sera IiMrCe par la<br />

suite din dobscrvcr les nrnfliorations apprtfes par le<br />

cdc. Enfin. dnns l o deux cas. unc contrainte supplt-<br />

mentoire pouna irtrc activfc afin dusurcr un bcn fquilibre<br />

massiquc entre Ics satellites. La satisfaction de cctte<br />

contraintc moteur pcrniet de limiter A 5% I'Ccart entre la<br />

masses d'crgols nCcessaircs A chaque satellite ct lcur valeur<br />

moycnnc.<br />

3.2.1 Orbitc d'injection fude<br />

L'orbilc d'injection considfrte CSI une GTO classique<br />

inclinfe A 7' d'oltiludc #rigCC 280 km et dopogfe B 35786<br />

km daltitude.<br />

Choisir une orbite d'injection dfjA inclinfe A 18.345' peut<br />

scmblcr au prcmicr abord plus intfrcssant en tr.rmc de colit,<br />

puisqu'il nc rcslcrait plus qu'un rottrapagc de noeud<br />

ascendant A cffcctucr. Nfanmoins. lei changements de<br />

nocud ascendant entraineraicnt obligrtoircment des<br />

modifications d' inclinaison (sad pour IC sstcllite don1<br />

I'orbitc finale a le mSmc noeud ascendant que I'orbite<br />

dinjection). ce qui conduirait h un colit uti important.<br />

Cette orbite GTO scrvira d'initialiaation pour Ics<br />

optimiwtions suivantes.<br />

Dcua colculs on1 ftf mcnCs pour la mise A poste h pnrtir de<br />

cctte orbite J'injcction. la contraintc rnotcur n'ftont sctivte<br />

quc dnns un dcuaikme Icmps. Ricn entcndu, In coht cst plus<br />

important dims ce cas (7071 m/s contre 6631 m/s).<br />

La tablc 4 ~ OMC Ics rfsultats de I'oplirnisation dms IC cas<br />

ot aucunc contraintc n'est imporCc sur lcs masses d'crgolc.<br />

II est A notcr quc Ics valeurs des nocuds asccndnnts ne son1<br />

que relatives. En cffct. IC tcmps initial corrcapnd arhi-<br />

traircment nu moment oh y50 pasac A Crecnwich. Pour<br />

modifier le nocud ascendant de I'orbite dinjcction. il ruffit<br />

donc drjustn I'heure de lir.


Lea masses d'ergoh pour les trois ontalliiea sont trbs<br />

diffkntes. Pour &ita ces Ccuts. on ectivc Ir contrrinte<br />

moieurr.<br />

Orbite rmde 1<br />

- Table 4 -<br />

LJ table 5 rCsumc Ics modifications induites pu I'acdvation<br />

I<br />

de cette contrrinte.<br />

Orbite finde 1<br />

Du fait que Ics maws dergols dcs deux dcrnicrs sn;cllitcs<br />

Cioicnt du mCme ordre de grandeur. I'elgorilhrnc n'a foit que<br />

&grader Is oafit de Ir manoeuvre du premicr saicllite.<br />

3.2.2 Optimisation de I'orbite dinjecrion I<br />

Contraink moteuis dfsaciivCe<br />

b poini de dfpan de I'optimisoiion est ifsurd dnns In inblc<br />

4. En pnrticulier. la somme des incr6ments de vitcsse<br />

nfcessaircs mux transfcrts dcpuis iinc GTO 7' est de 6631<br />

mls. Aprir 300 itfrations. clle esi possfe A 5934 mls. ct<br />

I'inclinaison de I'orbite d'injcciion est pasCC B 13.8" ct<br />

I'argumeni du noeud wcndani A 147,3O. De plus. I'fnergie<br />

de lbrbite r eugmeniC lcs sltiiudes de @rig& et d'apgte<br />

pusant rcspectivement de 280 km b 61 I' km el de 35786<br />

lun A 40586 km. I<br />

On peut noter qu'ou court des itfrotions. I'dccvt rclatif des<br />

noeudr u~mdpnts der orbites finales demeure Cgal A 120'.<br />

cet~ conurinte reitant rrtislniic plv In suite.<br />

La table 6 compare Ics orbiter &ire I'iniiialisntion ei Ir<br />

convergence.<br />

I<br />

1 Masse J'crgols I 414'588/614 I 385/280/773 I<br />

(kg)<br />

1 I<br />

coat 663 1 5934<br />

-Teblc 6-<br />

Les figures 8 et 9 lournissent plus de dCtnils sur les<br />

changcmcnts iirtcrvenus au -ours des ittretions. Elks<br />

prbscntent respectivement les Cvolutions des ncseuds<br />

rsccndants et des inclinaisons des orbites d'injection.<br />

intermfdiaires et finales.<br />

"i<br />

0 &e---<br />

-* ---- * ---.- -__m<br />

N I O ~ IM too aw 100<br />

I1)nllons<br />

- Figure 8 -


21-8<br />

Cea finurea montrant qul le convmognncn. leo orbitintemedliaina<br />

et h ~ Idu e srkllitc 2 on1 grrsli7uement mtm inclinaioon et nwud rscendant. conuoiroment A l'initinlitetion.<br />

Ln fip~e 8 monbe en particuliei quo CQ noed<br />

ascaidnnt commun nux orbites intmMdlinire et finale est<br />

aussi celui CL? l'urbite dinjeclion. ce qui expliqiie 1s foible<br />

coDt des mnnoeuvres cffcctutes par la sotcllit: 2. La<br />

trnnafert est en fait quasi mono-impu1sionnc.l (lhe<br />

impulsii?: 1278 ds, 2nde impulsion: 77 YPJO), lo pernih<br />

impulsion permeltmt un rrltropage glow en &neri:ie et en<br />

inclinaison.<br />

Pow le sntcllite 1. on constate unc Cvolution relal .vement<br />

minime des orbiter finale et intermCdinire ei,.tre ler<br />

itbrtbno 0 et 300. russi bicn en t ern &a mud ascendant<br />

que dinclinnisan. Comme pur le satellite 2. le trmfert est<br />

qunsiment mono-impulsionncl (lLre impulsion: 1662 dr.<br />

2nde impulsion: 75 ds).<br />

Enfin. Ics ecoru en inclinaison CI en noewf ascendant entre<br />

Ics orbite dinjcction. intcrmtdiaire et finale du sntellite 3<br />

on: smoiblement ru8mcntC au cours de8 it6rations. Pnr<br />

cons&pmt. CC uansferc est bcnucoup plus coilteur que les<br />

deux autres (773 kg dcrgols rcquis conwe 385 el 280 kg<br />

pour les ratelliter 1 et 2). L'fvolution den matscs dergols<br />

est illustree sur la figure 10. On ubtcne la diminution des<br />

masses d'ergols du salcllile 2 pennettant unc mdiorrtion<br />

du COOL aimi que la dtgrdrtion de Ir menoeuvre du srkllite<br />

3.<br />

Coneainte motcurs activfc<br />

Les rtsultats pfcfdcnts montrcnt unc sensible diminution<br />

du cost global. mais au dfirimcnt dc IXquilibre entre les<br />

masses d'ergolr des difffrents satellitco. Pour asrurer Ir<br />

symEtric de Ir constellalion, A partir de I'idrntion 390. unc<br />

strie de 300 itCrntieia suppltmentaircs I et6 effcctde en<br />

rctivant Ir convainte motcurs.<br />

La table 7 compore les rfsultats des deux converqcnccs<br />

ruivwit que lo contraink motcurs CII active OLI non. Comme<br />

on pouvait le prfvoir. IC tespcci dc.cctte contrainte cntrnine<br />

une augmentation du coir1 total. Ceite valeur obicnue est A<br />

cornparer In avec celle concspondant nu C'LP de I'orbite<br />

dinjxtion Fixfc h UM GTO 7", contrninie moteur active<br />

(13.2.1). 06 I'on constate une nette mClimation. le coot<br />

passmi de 7071 m/s A 6526 m/s.<br />

AV (ds) 1737/1355/2842 2095/217812233<br />

Masse ergols (kg) 305/280/773 49615241549<br />

- Tlbl~<br />

7 -<br />

Lu figure 11 donne le8 t%olutions des masses dergols de<br />

chnque satellite nu cours dcs iterations.<br />

On note que sculcs 50 itfrations sont ntccssaires A Ir<br />

satisfaction de le contrrintc motcurs. les misses dergols<br />

rquises gardrnt quasiment lea mCmer vrleurs par Ir suite.<br />

Io0 1<br />

i<br />

- Figure 11 -<br />

Lei figures 12 et 13 dtcrivent respectivement les<br />

fvolutions des noeuds ascendants et des inclinaisons des<br />

orbites d'injcction. intermtdiaircr el finales.<br />

'O t<br />

....**-*.e .-.............<br />

...<br />

- Figure 12 -


- Figure 13 -<br />

Les orbiteo intermedirite et finale du sntellitc 1 ont mhc<br />

inclinaimn et noeud ascendant. ct on1 tr&s pcu varit! par<br />

rapport A I'itbration 300. En revanche, I'incrtmcnt de<br />

vittrse a augment6 du frit l e la plus grande difffrcncc entre<br />

les inclinoisonr des orbiter d'injection et internitdinire<br />

(voir Figure 13).<br />

En ce qui conceme le satellite 2. C t ~ donnt t quc son<br />

emsfen h i t aupnravnnt IC moins coiiteun. I'octivation dc<br />

la conaainte ne pouvoit que le dfgrader. Ainsi. alors qu'A<br />

l'itdrrtion 300 Ics orbiter intcrmtdiaire et linnlc avaicnt<br />

m6me inclinairon et mud ascendant. Ics 3 0 itdrations<br />

suppl6mmtnires ont conduit A unc dilfdrence de 72' sur Ics<br />

nocuds orcendanlt et 12.8. sur les inclinaisons. En<br />

condqucnce. et de mmitre A rattrrppcr ccs Ccarts. la<br />

reconde impulsion n'est plus ntgligerble (le transfert est<br />

ettc fois rkllcmcnt bi-impulsionncl). Lc cott du trcmsfert<br />

est donc mieux rtputi enme les deux impulsions.<br />

En revanche. la sydtrie entre Ics trois salellitcs impsfc<br />

par la contrminte motcurs conduit A unc baisoe du coir1 dc<br />

transfcn du satellite 3. Comme IC monrre la fiaure 12. d&s<br />

IO SO premitres ittrrtionr. Ics orbiteo d'injcction et<br />

btermMirirc ont mLme nocud ucendnnt. qui pw le suite se<br />

rrpprochc de plus plus de cclui de I'orbitc finalc. Quant aux<br />

inclin.isons. ccl!c de I'orbik intcrmtdiaire 5e ropprochc. au<br />

COLTS der ittrrtions. A Ir fois de I'orbite dinjection et de<br />

~elle<br />

de I'arbite inteddirire.<br />

Bien Cvidemment. le respect de la controinie motcurs<br />

impose que Ics masses d'agols des trois satellites soient<br />

sensiblcmcnt identiqucs, comme l'illustrcnt lei valcurr<br />

porttU duu la table 7.<br />

Ler figures ruivmtes prtsentcnt des &volutions globnles au<br />

cours des 600 itlrrtions effectuCer. le rnccord A 300<br />

ittrationa rnarquant I'activation de la convainic motcurs.<br />

La figure 14 dhit IYvolution de la lonction coGt (c'est-A-<br />

dire de la somme dcs impulsions de vitdre).<br />

110<br />

bo00<br />

IO00<br />

moo<br />

1 M O<br />

0<br />

i<br />

IP<br />

- Figure I4 -<br />

21-9<br />

Lc co5t dfcroit rdgulitrement jusqu'A I'itfrrtion 300. touter<br />

lcs contraintes tiant dfjA satisfoites. Puis. B I'activation de<br />

la contrainte motcurs. il augmente rapidcmcnt puis dfcroit h<br />

nouveau rtgulitrcmcnt une fois que la contrainte est<br />

shfaite. La valcur uouv6e aprts 600 itfrations est bien<br />

cntcndu supdrieure A cclle de I'itfration 300.<br />

Les figures 1s et 16 donnent rcspcctivemenl I'fvolution de<br />

I'tncrgie et de I'altitude de p4rigCe de I'orbitc d'injcction.<br />

i<br />

- Figure 15 -<br />

CIans la prcmikre pnrtie (de 0 A 300 itfrations). Icr valcurs<br />

de I'altitudc de pfrigfc et de I'fnergie de I'orbitc d'injcction<br />

croissent afm de se rapprochcr de cellcs des orbitcr finales.<br />

ptrmcttant ainsi BU coot de dirninuer. Lorsqu'on activc la<br />

controintc motcurs. I'fncrgic dfcroit fortement. en porallklc<br />

avec I'augmcntntion du cotit. Cctte baisre d'fnergic pcrnict<br />

de dfgradcr les mnnoeuvres Ics moins co0tcuscr (sotellitcs 1<br />

et 2). Cependant. elk n'cmpiche pas pour rutant<br />

I'rmfliorotion du trnnrfcrt du satellite 3. due<br />

easenticllcment A In diminution des rettropogcs en<br />

inclinnison et cn noeud Prcendnnl A cffcctuer (voir figures<br />

12 et 13). Unc fois la controinte sotisfmite. la valcur dc<br />

I'dnergic revient b son nivcau prfctdent. et I'optimisation<br />

~f pursuit avec une diminction du CoGt global. Notons que<br />

I'dtitude du pCrigCe de l'orbite d'injcction n'r cor6


21-10<br />

d'iugrnmter nu cours des itdrntions. favorinant ninsi une<br />

baisw du coat au dtriment de la masse totalc de chugs<br />

utile p ldc tur cette orbite.<br />

4 CONCLUSION<br />

-Figure 16 -<br />

Ceo deux cxemples ont monvd l'inttrit doptirniser de f40n<br />

couplh lo rnontte et lei manoeuvres dons le cas de<br />

1.ncanmu multiples.<br />

Dms lo cas du lrncement double. I'optirnisation a pcrmis<br />

deffacw la mim A poste de deux satellites dobscnation au<br />

moyen de motews drpogte rdilistes. 1<br />

Pow 10 hnmmnt b la amtcllation. on a pu gngner. grke<br />

h Ibptimisntion. mLtT& 7 et 10% par rapport A la mise A<br />

posle depuis me CiTO 7' Clansique.<br />

Grb b la divereit6 des contrninteg -fncilernent activablcs-<br />

er nux nomhuscn fonctione collu. M grand nomhe de cas<br />

peuvent Ctre trait& pnr le programme. Linttrit de cctte<br />

mtlhode dopimisation repose sur le fait qu'elle put gtrcr<br />

un grand nomh de porm&tres (pticulihement dans le cas<br />

des manoeuvres bi-imgulsionnellcs). Cvifarit ainsi un<br />

balayage futidieux de IOUICS Ics combinaisons possibles.<br />

111<br />

(21<br />

[3]<br />

C. Aumrr~son. Ph. Landiech: "MCthodc itCrative de<br />

type gradient projet6 gCnCralisC pour I'optirnisation<br />

pnrarndtriquc et fonctionnelle de systkrnes<br />

dynuniques soumis B des contiaintes."<br />

N.T. 1988-9 ONERA<br />

Ph. Landicch. C. Aumasson: "Month optimale du<br />

tnncew Arione V-W avcc contrainte de rciomMc du<br />

prrmim Ctnge."<br />

R.T. no 21/61 15 SY - ONERA 1986<br />

H.Bnmng.er. 1. Bouchard. T. Michal: "Systkrne de<br />

nrvigntion par srtellites A couvcrtuie europCennc."<br />

Communication AGARD 1992, B~~ellci Session<br />

111: TacSrt applications- System<br />

Question: My question concerns the eqtivalence constraint<br />

you use in order to limit to 5% the gap between each<br />

satellite propellant mass and their average value.<br />

Is it possible to minimize the maximum value of the<br />

propellant masses instead of activating this constraint?<br />

Reply: The cost index (.i.e., minimizing the maximum<br />

of the propellant masses) may be considered as it<br />

is presented in the paper, and could have been Lsed<br />

in this case instead of trying to minimize the criterion<br />

(sum of the delta v) while activating the equivalence<br />

constraint. Never the less, the 5% margin allows a<br />

respective balance between the three satellite niasses<br />

without making them exactly equal (which might be<br />

too strong a constraint in this complex system where<br />

the launcher ascent phase and three bi-pulse maneuvers<br />

are simultaneously optimized).


SVMMARy<br />

-<br />

rution inonly I5 monh.<br />

Quickstar<br />

System Design, Capabilities and Tactical Applications<br />

of a Sinall, Smart Space System<br />

hK QuitStr pgun rrpcmu a Miqua Crppommiry b<br />

puf0rmcritic.l mission, whik uing tho crecuclp.bili$a<br />

Of ~p~0ming McDOM~U CUU@U DelU 11 ISW~S.<br />

QUiikSlu, 7hc Compku SyUm-, povidu a hishly<br />

clpable. lowa~l ~pIceCru\ immmnlinr a llicht-woven<br />

kiln la fus reliibk YSUI IO &ace afiaUn;h cdu. much<br />

below the capeclcd m.<br />

'Il!oma, P. Gnrriwn.<br />

Kcal T. Andason+<br />

Ball Spnec Syslems Division<br />

P.O. Box 1062<br />

Bouldcr. Colado 80306<br />

USA<br />

-<br />

Small amrc .yawnu CUI rcvolutimiw the way govsnment<br />

md mmnaxi.l intcruu implonat muuch strategic, mid<br />

The QuickSllr Syitan b MI a mnapt-it is a flighbpnvm<br />

desi@. QuickSta is a andl highly cqmblo. bwask light.<br />

weight s v h uiq modem desi;" whdqva thu cm nm ustical space ryaIcM. To && tho implcmcnution of<br />

cq ~lic~~~incospace~.umhorhamt~rc~~~<br />

such system hu bocn inhibid by ha widely hcld<br />

much Mer .nd mom d y rpre ryrrsnr. Syrm daim PsCcptDn Ihr small rytmnu IC IY)( likely lo be useful.<br />

rrlevMt tahmlogics, pybd uplbiitier (mm, power. dum rrlilble. 01 eodcffslive. Thia negative plccphn hut<br />

rat+ pointing, volume). .nd tactid mission rFplicatioru of small systems cm only bs mmxai by a ryslcmUic apprh his light.wcighl salcUilc at described. AI pan or the overall which dbuw specific omcam ud pml~ mission<br />

rmdl srlcllitc sywm uchitsnuo. aporuble. hwcost multi- utility. To r k c thin d. Bdl Amspace in 1988 initid<br />

ppwe gmund swion to support palu~tia~ VIL launch m inurnally funded cfTffl cded TECHSI'ARS. The<br />

ud abit opentionr of tho spec segment U dm availabk. objective ol ha TECHSTARS proRrm wu UI ermine tho<br />

The vnwtilify ud truuponabiliry buiit into the pund syrvm uchiMWa .uociued wilh amdl ryrlemr md b<br />

rution allow plsccmrm U my govemmmt inudlation a<br />

-<br />

hrporue the advured Icchnologia required lor the 19901<br />

field rite.<br />

lo pduce light.wcight rpve ryrtem h t ue highly clpable<br />

md yet cM be poducd U bw mrf<br />

The pr~type QuiikStu spye segment wu dcvclopal to<br />

ride U a uarnby pybd on a McDomell Douglu Delu ll Quickssu is a pogm thu ylcs Ihe qprh md knowledge<br />

aeries capendable launch vehicle (ELV). With lht eau8 rn rm cha TECH~TARS erroh<br />

prformmce pvidcd by the Dclu II o( o k ELV of aimilr<br />

configuration. U mmy U four ruellita could hc orbited U<br />

om lime In addition, tho pqm dcscriba a QuickSW<br />

ratclliv diguruion, incorgorating he ruw subs)nlcm<br />

TIE QuickSur daign is a derivuive of the U. S.<br />

ud caplbiliticr U he pololyp QuickStu. dctigmd fa s~ldom ELV (Scout or Peguus) launching#.<br />

(iovammcnt-lundcd pl~yp rpscandk LOSAT-X.<br />

Flgun 3-1 U a piclure of LOSAT-X in thc clem mom U 8.U<br />

jut pior<br />

The pogrun schedule far tho daigh<br />

UI rhipmcnt lo Cqc Cuuveral Air Face Station<br />

fabrication, md test of<br />

a QuiikSur riullite syum rcflecu the lut.pccd<br />

Delu hunch Complea 17. LOSAT-X wa~ the result of a<br />

mvimnmmt ol a bvsou p~m. Minimal p'pr ud<br />

much amcumt engineering gar into a schedule hi pmidca a fliphlu-rudy spxcraft urd rupprting pud<br />

22.1<br />

pvcmmml push lo dncbp. lab lumch ud operate rMll<br />

apaacrh ud complemrnury tahnologiu.<br />

Designed by Bdl Aercapsce, tho LOSAT-X spsccndt<br />

included M integrated avioniu suite built murid two 8x86<br />

pmnwn. a 0.25-Gbit rryy memory. Bddcvebped<br />

rculpn w k k ad a new widc rKld-ol-vicw (WR)V) SUI<br />

umc~ hip &ivm diculsd Ihu lhir mmplicavd<br />

rpvOmn fii within a vay :null envelope on a McDomll<br />

DOU& Dclu n mcka U L vcondpy paylod ud still be<br />

mphiskatcdcnw~o*ranplihmL*mlcimcc<br />

ObjaCtiW.


I -<br />

-<br />

AI with Ihr cue of LOSAT-X. OUikSta U I~unchal .I a<br />

12-1


I<br />

f igun 5-1 QulrUfar spcun@ syslrm conerpi<br />

USUAL SMALLSAT<br />

LIMITAllONS<br />

QU!CKSTAR<br />

CAPABlUTlES I<br />

COMMENTS<br />

I I<br />

lrmrpndvr mnd dmpb<br />

Io bulld.<br />

Conlrdlmd by Ihm<br />

1 N.M mallon *I&<br />

c.


Thc ADACS provido *ti!dc &lamhh ud rOnCm1 for<br />

the QUK~SW rprscnh Ile ADACS udsu of I sur<br />

caner& a 3.uU gym puk.ge, WO sun YM* I 3.uu<br />

magneromcter. three reaction whl nmbliea ad drive<br />

elecuonia. ud hrm que mdt. Attitude dctrrminui.m b<br />

wcomplihd =in; inpuu from a undl. vidr4lcld.ol-~ icw<br />

(WFOV)rol~-sutsswc~vn(viaIhcAfCPmd DMA)<br />

when in the inulial pointing nIode ud the 3.uis WO<br />

prkqe during uuking opetitiom. AttitUds conuol U<br />

achieved usin; the nrtion vhcels while magnetic loquin;<br />

U u d U) dump uod momentum in the whal.<br />

The WFOV aur cuma yea reecntiy nncqing Ccchnoh~gica<br />

in WFOV I-U md r=al piMC naitcning. n= resuit is<br />

greatly simplified d bwscost IW Camera. Using the<br />

marc eipbh IIU canen in lieu of E d nd sun M~OR<br />

rcsulu in a simplified attitude determinition ami conuol<br />

aubsystrm. With the rcluively simple ch.r;cd couplcd<br />

device (CCD) 111 camera along with a mmpki loftwuc<br />

pgrsrn he five brightest 11u8 ue send in the ficld,of.<br />

VKW uul mavhrd ton m-boucl (tu cualng in cmpuie M<br />

attitude solution. Usmi the new WFOV camer% the ADACS<br />

ea wide wit& hwledgc to brtter thm 0. I degrees in<br />

dl aaci. In additim. ita WWV capability allow he on.<br />

bud UI caulog 10 bs under JW stus. t:ss minimizing onbnud<br />

ilorsga and pnu rtq.liremcnu and rdurin;<br />

processor biding.<br />

During mrmal operations. QuickSur U maintiid in i Sun<br />

Poiit MO& in which the molar panelr are positioned normal<br />

IO he mn.linc for optimum pwcr outpu. In hi mode the<br />

%UT cmwi is used f r ptimuy attitude deiaminaim.<br />

Durinl main prcdctamined times, however. the Ipcmdt<br />

ca k commuded Io on of wvad pointiw mode type,<br />

such U 7rwk- or "Inmid-. In Track-. tho sprccrdt slevs<br />

w hit the +X lab kvkr 8 pnlctennincd Erth fiacd or<br />

orbitd pitia Win; Wi tima thc 111 c u ~ dua a U<br />

unsvailsbk so spccnrlt attitude ia dctermiiud by using the<br />

~ym<br />

is a refnmcc. Attilde munlainlies mtinue to<br />

~umulrte due 1O ~yro drift until (he end of he slrw and a<br />

stu mncra updatc becanes available. The Trrk mode<br />

opcrra with any good** laah vhclhcr m the fwc d Ihs<br />

W w U ahiul altindr In Inertial: Ihs spcmllt is<br />

pointed abng a mnnundsd lied bvnial VCMI. During hii<br />

mod* the gym munairu M bodyaais raw. Aft- each<br />

Trrk'a Inaid' maKuver. QuickSlr iC rnumal to 'Sun<br />

Wit'.<br />

Brk-up inindc determinuion U available using i 3-iais<br />

~;neIometer uul tho IW nun sensors. Using Mual Eah<br />

Tuld lii nJ aun dimtiau. sprecrdi hrfyub ittirudo<br />

mluhru vi& uxuma on Ihs ordm or I Io 1 de;- y.<br />

available.<br />

An 0Pion.l clement of Ihc QuickSw ayalms b d m<br />

m*li+yld rcqukemmu, is a lightweifit poprlsim<br />

&pm dui@ 10 pufwm delu-webci~ mmers io<br />

FIpun 6-1 QulekSWoprmUoonolgroro~nd station


?- I


.-<br />

I


* Snull ground conlrol VMS<br />

1s.a.a<br />

FIgm 7-6 VHFISUFIEHP eommmlcadonr<br />

22-11


12-11<br />

Spacecraft Family<br />

Carrying Typical<br />

hvw<br />

QUICKSTAR<br />

SCOUT CLASS I PEGASUS CLASS


..<br />

1. INTRODUCTION<br />

Attitude- and Orbit Cootrol Subsystem Concepts for TACSATS<br />

The technical pcrforrnancc spccifications ;ind<br />

rcquircrncnts for Attitude- and 01 lit Control<br />

Subsystcrns (AOCS) for satcllitcs arc Jictatcd by n<br />

large numbcr of boundary conditions:<br />

- The payload rcquircrncntS (c.g. poiiitiny accura-<br />

cy, LOS-stabiliLy)<br />

- Thc perturbation cnvironrncnt. Imh caernal<br />

and intcrnal, i.c.:<br />

Gravitational-, solar prcssurc-. air dras-, rna-<br />

gnctic disturbancc torcjucs<br />

Rcaction jets, whccl wobhlc, payload opcra-<br />

tion<br />

. - Easc of opcrability (command structure and scqucnccs)<br />

- Onhoard autonomy (cornm;ind-. clilta and cornmunication<br />

links)<br />

- Opcrational lifc tirnc / rcliabilitv<br />

- Maintainability, storahi!tv ant1 so on<br />

For the class of spacccraft undcr discussion hcrc.<br />

mass limitations. which will not allow major orbit<br />

changes. and thc diffcrcnt typcs of pny1o;ids for<br />

survcillancc. vcrification and C31 as well 3s str;itc-<br />

gic aspccts call for cxtrcrncly high flcnbility ol' thc<br />

AOCS-concept IO enable:<br />

- 'Last minute * sclcction of the opcraiional or-<br />

-<br />

bits according to the actual nccd<br />

Adaptation to the rcquircrncnts of diffcrcnt<br />

typcs of payloads (passivc: Optical. infrarcd;<br />

active: k-wave)<br />

- Compatibility with a Iwgc dynamic rangc oi<br />

plant pararnctcrs (e.g. largc / small solar arrays<br />

and structural flexibility dcpcnding on clcctrical<br />

power requirement)<br />

H.l'!ittner, E.Briiderlc<br />

MSvraucr, MSchwcnde<br />

DASA/MIBB<br />

Space Comm. and Prop. Syst.Div.<br />

D 8OOO MUNCHEN 80. P.O.Box 801169<br />

Modularity of the AOCS in tcrms of typc and ar-<br />

rangcrncnt of cquipmcnt. (sensors, actuators),<br />

control laws and operational scqucnccs (OBC-capa-<br />

city and algorithms) thcrcforc has to be a prcdo-<br />

rninant fcaturc. It is cxpcctcd thar the flexibility for<br />

adaptation to spccific mission requirerncnts and thc<br />

rn.duluity of thc AOC subsystcm cnvisagcd will<br />

contributc to a low cost but still highly efficient<br />

tactical satcllitc systcm.<br />

On thc basis of cxpcricncc in Attitudc- and Orbit<br />

Control Systcrn dcsign, analysis, acccptance tcsting,<br />

and in-orbit opcrations support for communication<br />

satcllitcs (INTEISAT V, TV-SATRDF, TELE-X.<br />

DFS-KOPERNIKUS. EUTELSAT II), earth OIJSCr-<br />

vation satcllitcs (MOS-I. ATMOS), and scientific<br />

satcllitcs (ROSAT, EURECA. ASTRO-SPAS).<br />

suitablc AOCS-concepts arc discusscd in thc papcr.<br />

2. REQUiREhlENTS AND CONSTRAINTS<br />

In addition to scniccs alrcadv gcricraliy available.<br />

tactical satcllitcs of the typc in quc::ion hcrc arc<br />

supposed to provide on sbon noticc and particular<br />

rcqucst irnprovcd and cfficicnt scrviccs in at Icact<br />

onc. prcfcrrably scvcral of thc following fivc mi;sion<br />

arcns:<br />

- communic:itions, e.g. from. to md bctwccn<br />

mobile units on ground or bctwccn satcllitcs<br />

- wcn:hcr, i.c. dctilcd actual wcathcr conditions<br />

and prediction in dcfinitc local weas<br />

23-1


23-2<br />

.<br />

- missile wnrninq, e.g. against tactical h\Iistic<br />

missilcs, to possibly improve thc cfficicncy of<br />

dcfcnsivc actions<br />

- nnviir.ntion_ to contributc to thc provision of<br />

-<br />

highly accuratc navigation data<br />

ohscrvntion. survcillans and verificatinn, c.5. to<br />

chcck disllrmamcnt trcaty tiolation or - in a<br />

battlc ficld sccnario - to monitor [orcc dcploy-<br />

mcnts and to provide target rccognition. tbcatcr<br />

targctins and vcrification<br />

As a conscqucncc of thc gcncral mission objcctivcs<br />

oiillincd abovc, opcratiod rind performancc rc-<br />

quircrncnts. cncironnrcntal conditions and son-<br />

straints arc imposcd on thc Attitude- and Orbit<br />

Control Systcm. which arc subscqucntlv outlincd to<br />

establish thc gcncral framc for thc AOCS.<br />

2.1 hllssinn rind Faylaad Kcquiremcnls<br />

For varinus rcisons likc launch cost. in;m in orbit.<br />

imasc rcsolution or powcr rixpircmcnls of obscrvntion<br />

payloads thc spacecraft undcr discussion<br />

will hc injcctcd into rclativciy low cnrth orbits<br />

(about 300 to 1Mn) km). In gcncrd near pol;ir. sunsynchronous.<br />

cirulw orbits arc prcfcrrcd, which arc<br />

charactcrizcd by thc condition that lhc .product of<br />

three orhit paramctcrs, i.e. orbit scmi-mnjor ;~l(is.<br />

cxccntricity, and inclination has a spccific numcri.<br />

cal vduc. cntrining thc orbit node to rotatc t\ith<br />

onc rcvolution pcr ycar. For optical obscwation<br />

pavlaods "dawn orbits' arc particularly suited. In<br />

this casc the S/C will always view thc surfacc of thc<br />

carth at any given latitud: at thc siunc local time<br />

(sce e.g. rcf. 1, p. 68). A graphical rcprcscntation<br />

of thc orbit pararnetcrs 'inclination" (in dcg.), rhc<br />

"orbit pcriod" (in minutcs) ;ind thc "SIC velocity"<br />

.(in rnfscc) as a function of altitudc (in km) for<br />

circular sun synchronous orbi~s is givcn in ligs.<br />

2.1-la to 2.1-lc of Anncx I. r,:spectivcly.<br />

For such orbits thc revisit period of spccihc tcrrc.<br />

strial locations in equatorial regions or ot law earth<br />

latitude for ;I sin& S/C m;iv bc unaccctahlv long<br />

for tactical earth obscrvation rcquircmcnts. whcrcas<br />

the rcvisit pcriod in mostly unintcrcstiny polar<br />

regions in principle equals thc orbit rcvoltltion<br />

pcriod. This situation can tic improved as follows:<br />

- For obscrvation of a particular re+n on earth<br />

the SIC is launched into n dcdicatcd orbit. thc<br />

revohtion period of which is an intcgcr fraction<br />

of 24 hours. Thc revisit limc will then bc at<br />

lcasl mcc or cven scvcral limes a clay. For in-<br />

stance (ref. figs. 2.1-la and -1b) a satcllitc in<br />

-<br />

sun-synchronous orbit of (about) 570 km altitudc<br />

and 97.6 dcg inclination will have an orbit pe-<br />

riod of 96 min aid p~ over the same area<br />

cvcry 15'" revolution. 16 orbits per 24 h (orbit<br />

period ol M mh) would cvcn allow to revisit the<br />

same targct cvcry 12 hours (in thc descending<br />

N/S and ascending SM orbit crossing) but rcqui-<br />

re an altitudc of 275 km (inclination 96.56 dcg)<br />

and the S/C would experience sigificant air<br />

drag as wil? bc discussed latcr (fig. 2.1-3, AMCX<br />

1).<br />

A numbcr of payloads can provide large ranges<br />

of "sidc looking" capability, cnabliag observation<br />

of a local arc3 undcr different aspect angles in<br />

succcssivc orbits. Exccpt when phased am/<br />

antcnnas arc crnploycd this generally rcquircs<br />

nicch;inical slcwing of optics, mirrors ;rnd/or<br />

rcflcctors and in turn inay givcn risc to sipifi-<br />

cm intcrnnl torques and associated attitude<br />

pcrturb;itiocs.<br />

- Selection of low inclination orbits instead of<br />

quasi-polar orbits with inclination angles covc-<br />

ring the rqc of gcographical latitude of parti-<br />

-<br />

cular intcrcst.<br />

Pkicing ii sufficicnt numbcr of satcuitcs into<br />

appropriatcly inclined. mutually synchronizcd<br />

orbit to cnsurc r,hc dcsircd covcragc probability.<br />

Thc rchtionship lictwccn thc numbcr of satcllitcs<br />

rccjuircd to cnsurc continuous coveragc from any<br />

point on thc carrrh undcr a local elcvatim andc of<br />

at Icast IO dcg as a function of circular orhit dtitu-<br />

dc is shown in fig. 2.1-2 (rcf. 2 ) of Anncx 1. Pro-<br />

per sclcction of orbit inclin:ition and phasing of thc<br />

cirbitiny satcllitcs is rcquircd. Particular cxamplcs of<br />

Low Earth Orbit (LEO) Communication Satcllitc<br />

Systems c.g. MOTOROLNIRIDIUM or TRW-<br />

ODYSSEY rcquiriny 77/19, satellites at 735/10350<br />

km dtitudc arc schematically indicated in this hgu-<br />

rc. Thc numbcr of satcllitcs Jccrcascs, of course if<br />

poliir covcraqr is not rcquircd. In any casc orbit<br />

inclination ;ind phasing of individual SIC forming<br />

p;irt of a satellite syctcm hnvc to bc rclaincd or<br />

respectively corrcctcd in c;rsc of dcvintions from<br />

nominal during opcrational lirc timc.<br />

For thc asscssmcnt of the amount (m,) of rnono-<br />

propellant hydrazinc rcquircd to maintain a circular<br />

orbit of givcn, rclativcly low altitudc, rcfcrcncc is<br />

made to Eg. 2.1-3 (Anncx l), where thc drag factor<br />

(9 pcr day (d) and unit cross-sclcctional iirca (0)<br />

of thc S/C is plottcd. The propellant mass is thcn<br />

givcn by


m, = f*U*d<br />

Whcn liquid bipropellant cngines providing hi&r<br />

spccific impulse are used, thc propellant mass is<br />

:rbut 23 5 lower. In addition to altitude corrcc-<br />

tions inclination corrections may ham to be pcrfor-<br />

mcd. The inclination drift at allitudcs bctwccn BO/<br />

km and 3'90 km amounts to about 0.2 dcdycar U?$,.<br />

requires approxhntcly 27 dscc velocity incrcmcnbi,; a<br />

for corrcction.<br />

:;$:'<br />

I ;.\<br />

22 Sprtcecnft Physicul Chnmcteristics ,<br />

:.;,*.!$<br />

' .: . '<br />

It is, of coursc not the objcctivc s)f this papct to<br />

claboratc on TACSAT rncchanical, struct~ral.<br />

powcr and payload dcsign Ccaturcs. In vicw of.thc<br />

fact, however, that thc AOCS is thc S/C subsyskrn<br />

with thc largcst numbcr of funciion:rl ;itid hardwa-<br />

rc intcrfaccs with othcr subsvstcms ;is wcll ;IS siitcl-<br />

Iitc opcraiional prcxcdurcs. it is rcprtlcd ncccssa-<br />

ry to cstnhlish at least a rouyh framc of thc cxbcc-<br />

tcd SIC physical charactcristics:<br />

- Thc S/C mass targctcd Tor ccmsidcratiod in<br />

TACSAT missions is bctwccn 200 and 70(1 kg<br />

i.c. within thc payload ranpc of dcdicatcd Iiiun-<br />

-<br />

-<br />

chcrs like YEGrISUS. TAURUS etc.<br />

Onboard clcctrical powcr gcncration capabilitv<br />

of about 1 k W is rcgardcd necessary to ;daw<br />

for half orbit cclipsc pcriods and<br />

opcration of microwave pavloads (SAH typi-<br />

cal avcragc powcr 500 W. peak powcr about<br />

10 kW/pulsc)<br />

Conscqucntly a solx array surfacc ;ma of<br />

about X to 10 rn' will bc rcquircd corrcsponding<br />

to a mass contribution of about 16 to 20 kg if ;I<br />

tlTicai weight factor of 2 kgtn' and usc of convcntional<br />

silicon solar cclls arc assumed.<br />

solar cells providing about 30 '.T incrcasc in<br />

power output per unit surfacc a m will Iiavc to<br />

he cxcludcd for cost rcasons.<br />

S/C gcornctricd configurations arc gcncrallv<br />

detcrmincd by the constiaints irnposcd by<br />

thc launchcr cargo bay hncnsions. shape<br />

and acceleration load. .<br />

thc payload rcquircmcnts (including poucr).<br />

If thc fundamental configuration shall bc riqained<br />

for thc diffcrcnt mission applications as<br />

outlined under section 2, thc gcometrical requircments<br />

associated with<br />

optical observation payloads i.e. telcscopcs<br />

of sufficicnt f d length, operating in the<br />

visible and infrarcd region, and requiring<br />

cooling of the detector mays (e.g. Liquid<br />

helium dcwers) andlor<br />

microwave payloads (SAR) with large area<br />

(p,-wavefecd or phased array) antennas suffi-<br />

ciently cnended in long track direction<br />

arc cxpcctcd to be the dcsign drivers. Some<br />

squarc-shaped. modular ccntral body truss struc-<br />

ture with triangular, rectangular or hexagonal<br />

cross-scctional area seems to be principly ade-<br />

quate and will provide the necessary free surfa-<br />

ces for the housing the folded solar arrnys and<br />

cnsurc unobstructcd field of vicw for flttitudc<br />

measurcmcnt scnsors and frce spacc for attitude<br />

and orbit control rcaction jets.<br />

Ouitc 3 numbcr of clcisting dcsings (e.g. LAND-<br />

SAT 6 - ref.3, MOS-1, sec sccrion 3.2) are<br />

cquippcd with a single wing solar array giving<br />

risc to Iargc (solar) disturbancc torques and<br />

clisturbancc torque changcs during cclipsc tran-<br />

sitions. due to thc unsymmetrical configurat ion.<br />

From the AOCS point of view a symmetrical<br />

configuration as generally adopted for gcosyn-<br />

chronous communication satellites is of course<br />

highly dcsirablc. In vicw of thc rcquircd flcxibi-<br />

litv for frcc sclcction of thc orbit inclination<br />

according to thc tactical rcquircmcnts thc solar<br />

array is assumed to be oricntahic not only as<br />

usunl around its axis of spmciry, but aLco about<br />

an axis pcrpcndicular to the first iixis of rotation.<br />

hlotor drivcn dcployrncnt mcchmisrns iis for<br />

instancc implcmcntcd in EUTELSAT I1 can bc<br />

casily modificd to allow scrvo-controllcd uticu-<br />

lath of the solar array at the yokc junction to<br />

cnabk oricntation of thc solar array surfacc to<br />

thc sun for a largc rangc of orbit inclinations.<br />

Morcovcr by controlling thc solar array rotation<br />

about two axis, solar pressure torque compcnsa-<br />

tion tcchniqucs can bc applied to irnprovc attitu-<br />

dc control pcrfarmancc and onboard angular<br />

morncntum rnanagcmcnt. -<br />

In lis. 2.2-la (Annex 1) such a variable solar array<br />

configuration cap;ibility is schcmatical!y indicated.<br />

Unsymmetrical dcflcction of oppositc solar arrays<br />

w.r.1. the sun dircction will gcncrrrtc solar prcssurc<br />

torqucs about an Luris pcrpcndicular to thc sun<br />

incidcncc plmc, counter-rotation as shown in Fig.<br />

2.2-lb will give risc to "wind mill torques" acting<br />

around the sun line.<br />

23-3


234<br />

L -'*.<br />

f . .<br />

23 AOCS Opntioncrl und Perl'ormtlncc Rc-<br />

quircrntnU I<br />

From thc mission and payload requirements the<br />

detailed functional and performance rtqukements<br />

are dcrivcd.<br />

Typical attitude control accuracy and linc-of-sight<br />

stability requircments for the missions out-lined in<br />

scction 2 iuc sumarizcd in table 2.3-;1.<br />

Furthcrrnore AOCS relatcd Data Managxncnt and<br />

Control (DMC) tasks havc to bc pcrformed, in<br />

particular:<br />

- Surucillance and control of subsystems likc thcr-<br />

mal- and powcr monitoring and control<br />

Fault dctcction. isolation and rccovcry<br />

- Mission- and operational tclcmctry and tclc-<br />

command data handling .<br />

Operational tasks to be covered by the AOCS ;ire<br />

for instancc<br />

- provision of complctc onboilrd autonomy during<br />

periods of no gound station contact.<br />

- orbit corrcctions on time tagcd commands.<br />

- updating and propagation of orbit modcl para-<br />

mctcrs ;md corrclrrtion with instantnncous atti-<br />

tudc data.<br />

3. ATTITUDE- AND ORRlT CONTROL<br />

SI'STEhl CONCEPTS<br />

Subscqucntlv the chuacrcristic fcaturcs of cnnucn-<br />

tional A0C.S for communication- and application<br />

satcllitcs wiU be outlincd. altcrnativc equipment<br />

and conccpts for attitudc measurcmcat and control<br />

will be discusscd and thcu fcasibiiity for applica-<br />

tion in TACSAT missions will be i~~scsscd.<br />

3.1 Typical Conventional AOCS Charrtcteristics<br />

AOCS tcchnology and conccpts of most S/C prcsenti?<br />

opcrationnl or in production arc very simihr.<br />

In particular the thrcc-axis attitude stahilimtion<br />

principlc is ycncrally applied. primwilv in vkw<br />

ol thc growth potential of ttjcsoiiboard power. subsystem.<br />

For casc of rcfcrcn$e the discussion of<br />

convcntionnl AOCS charaCtei)hljq..to follow wil<br />

k based on satellite families.d6i .which the AOCS<br />

design authority was with DASA (Deutsche . aero-<br />

, 2<br />

. :


sensors, gyros) intorporated in the AOCS. the<br />

3-axis stabilization tcchnology fo: transfer orbit<br />

operations aod during (repeated) apogec boost<br />

maneuvers has been established using for the<br />

fist time a died Liquid bipropellant propul-<br />

sion systcm for attitude control, orbit control<br />

and Apogee Boost Maneuver (ABM). Furthcr-<br />

more these SIC arc equipped with a coarse<br />

bodv control and M additional antenna fine<br />

pointing system based on RF-sensing and con-<br />

trol of the TX-antenna beam orientation \k.r.t.<br />

it ground beacon to an accuracy bcttcr thatl 2<br />

0.025 dcg cach axis. Spccial reacquisition don-<br />

ccpts in case of attitudc loss or battcry fa!!urc<br />

(recovcry after ilipsej havc bccn incorpor3tcd.<br />

All attitude mcasurcmcnt. data updatinp. for-<br />

matting, monitorinv, mock scqucncing and<br />

control futctions, cxccpt antenna (struclbral<br />

flcxibilitv) stabilization havc bccn implcmcntcd<br />

in ;I ccnlral. diytd. intcrnallv rcdundant onbo-<br />

ardcornputcr. TV-SAT FM1 had to bc dcor-<br />

bited bccausc onc solar array wing failcd to<br />

deplov in GSO and simultancously hlockcd dc-<br />

ploymcnt of an antcnna rcflcctor. Thc rotut-<br />

ness of the AOCS dcsign upcrating then utndcr<br />

most ahtiorma1 conditions,. was. howcvcr, tin-<br />

intcntioually dcmonstratcd. as wcll as its flc:5bi-<br />

lity offcrcd by in-orbit rcprogamming of thc<br />

onboard computer, whcn for dirfcrcnt attempts<br />

of rescuc maneuvers. additional control modcs<br />

and scqucnccs have been implemcntcd.<br />

DFS-KOPERNIKUS a smaller class S/C family<br />

of different geomctricd conligurat.icn ("rabbitear.<br />

antcnna arrangement. liquid bipropcllant<br />

tanks in ABM dicction) is 3-axk stabililcd in<br />

TO and GSO. the solar arrays being fdlv deployed<br />

drcadv in transfcr orbit and during<br />

(repeatcd) liquid bipropellant Apogce Boost<br />

Maoeuvcrs. For this operational motlc the<br />

AOCS dcsign has to cope with panel oscillations<br />

and proFcUant sloshing phcnorncna in<br />

ovcrlappin): frcqucncy bands. the sloshing dynamics<br />

cxpcriencing pole-zcro inqersion during<br />

thc mancuver. Concepts and provisions for in<br />

orbit gyro calibration have becn.incorporated to<br />

also ensure compatibility with midnight launch<br />

conditions.<br />

As compared to the previous communication<br />

satellite in the EUTELSAT I1 AOCS the follo-<br />

Wiag innovations have been incorporated:<br />

The capability to acquire thc earth MY time<br />

of the day<br />

A S/W safe mode for minimitation of outage<br />

duration in GSO<br />

An optimum Nutation and Angular Momen-<br />

tum Control concept to ensure higher yaw ac-<br />

curacy (as compared to WHECON) io pre-<br />

sence df high disturbace torques (NM row-<br />

yaw control)<br />

The capability to perform orbit corrcctions<br />

with yaw refercnce from gyro, i.c. my time<br />

per day (also io colinearity regions)<br />

High pointing accuracy during station kee-<br />

ping maneuver (SKM) trmsients<br />

In-flight recording of the thruster firing .<br />

history for propellant budget monitoring<br />

3.12 Eodt obseniarion und scientific application<br />

satellites<br />

World wide a lrtrgc variety of IOW carth orbit satel-<br />

lites for all typcs of tcrrcstrial and environmental<br />

obscrvation as wcll as scicntific and research pur-<br />

poses havc hccn dcsigncd. dcvclopcd and lawched<br />

within thc national progams of the rcspcctivc<br />

countries or by intcrnational agencics (c g. LAND-<br />

SAT. SWSAT. SPOT, ERS ctc.). Thcy arc cquip-<br />

pcd with dcdicatcd, optical. infrarcd. multispectral<br />

or microwave payloads, their AOC being tailored<br />

for thc individual requirements. Subsequently a<br />

short rcvicw of thc typical AOCS characteristics of<br />

this type of SIC will be given on thc basis of satelli-<br />

tc examples. the attitudc and orbit control subsy-<br />

stems of which have been developed undcr DASA<br />

rcsponsibility.<br />

Table 3.1-3 gives a rcvicw of these satellites, their<br />

dcvcloprncnt pcriocl and launch schedule. Tablc<br />

3.1-4 summarizes their attitude control conccpts<br />

and performances characteristics<br />

- The AOCS for MOS-1, the fist Japanese Mari-<br />

ne Obscrvation Satellite was designed and dcve-<br />

loped up to and including the levcl of dcvelop-<br />

mcnt model hardware implemcntation and clo-<br />

sed loop subsystcm functional- and performancc<br />

testing in a joint GcrrnidJapancsc development<br />

and training progm. Engineering- and flight<br />

modcl manufacturing and acceptance testing has<br />

then been performed under responsibility of<br />

Mitsubishi Electric Cooporation. The SIC wcre<br />

launched into about 900 km circular sun syn-<br />

chronous orbits. Orbit correction capability (and<br />

back-up wheel unloading) is provided by B set of<br />

hydrazine thrusters. Normal mode control is<br />

performed by two momentum wbecls in V-codi-<br />

234


i3-6<br />

yuratiori. Whcel desaturatioo is nominally pcr-<br />

formed usiog magnetic torquers in quarter orbit<br />

cycling.<br />

- ROSAT, dcvcloped within a German, UY US<br />

scientific satcute program operates in a 5% km<br />

circular orbit, inclined by 53' w.r.t thc equdtori-<br />

a1 plane. Attitude reference is established by<br />

high prccision star Sensors and a set of 4 inte-<br />

grating gyros (one skcwed). A coarsc SUO sen-<br />

sor asscmbly with 4-w FOV providing two axis<br />

attitudc rcfcrencc is used for initial and einer-<br />

gcncv sun acquisition. For thc scicntific migsion<br />

two operational mcdcs are forcsecn:<br />

In scanmodc the S/C rotiitcs about tllc sun<br />

linc and the telcscopc mountcd pcrpenUicu-<br />

I;ir to thc axis of rotation performs witbin o<br />

months a completc sky suncv for dctcction<br />

cif ncw X-ray sources<br />

In pointing mode thc tclcscopc is rotatsd to<br />

dircctions sclccicd by thc groundstatioh ior<br />

dcdicafcd sourcc observation<br />

In both n;odcs of opcration ,inertial attitude<br />

refcrcncc is dcrivcd from star scnsor rneasurc-<br />

mcnts and star identifications with i\n ooboard<br />

storcd stnr cataloguc. A sct of 4 rcnction wheels<br />

in skcwcd arrangement gcncratcs tlic ncccssary<br />

control torques. A thrcc axis magnctomcrcr 2nd<br />

3 mqnctic torqucrs arc urd rcspcctivcly for<br />

-<br />

-<br />

dctcrmination of the carth mnbmetic ticld vcctor<br />

and whcel uiloading. Duc to'cquipmcnt f7.1 ,i urcs<br />

emergency stratcgcs for attitudc gcncration<br />

from mapctomcter mcasurcmcnts and an<br />

carth mapctic field modcl onboard of the S.'C<br />

had to be dcvclopcd and implcmcntcd.<br />

EURECA. the EUropcan P.€tricv;lblc CArricr.<br />

dcvelopctl by DASA under ESA contract. shall<br />

be the platform for 5 diffcrcnt scicntific missions.<br />

whcrc thc first mission (launch and rcturn<br />

by shuttic) performs c,xpcrimcnts under ,U-y<br />

conditions. Thc AOCS (a coopcration bctwcen<br />

DASA. MATRA. GALILEO. LABEN) is able<br />

to pcrfoim orbit chmyc mancuvcrs (boost-up.<br />

boost-down, inclination corrcction) suo and<br />

earth acquisitions with a. hydrazine thrustcr<br />

systcm and is suo oricntcd in normal opcration<br />

with a low level cold gas system supported by<br />

mapnetic torquers.<br />

ASTRO-SPAS is a reusablc satellite platform<br />

built by DASA udcr DAM contract. which<br />

shall fly once per ycar, beginning in 1993.11 w i l l<br />

be launched with the US Space Shuttle. sct frec<br />

in orbit ind also berthed from the snnie shuttle.<br />

Its ACS is equipped with a rate integrating gyro<br />

packagc, d high precision star sensor, a GPS<br />

rcccivcr and a sct of cold gas thrustcrs. Similiar<br />

to the ROSAT mission two principle modes of<br />

operation can be performed<br />

In pointing mode the telescope is oriented<br />

into ground selected orientations<br />

lo scanmode earth atmospherc observations<br />

arc performed whcrc the earth refcrencc<br />

information frame is obtained from the GPS<br />

receker.<br />

As io ROSAT, in both mides inertial attitude is<br />

obtaincd from star sensor measurcmeots and<br />

star catalogucs.<br />

32 AOCS Alternatives, Trade-offs and Trends<br />

Whcn discussing AOCS altcrnativcs for TACSAI'<br />

;ipplications. the ;ispccts associatcd with attitudc<br />

rcl'crcncc gcneration. forcc- and torque generation<br />

and attitilde control conccpts including thc relatcd<br />

cquipmcnt and software havc IO bc adrcssed.<br />

32.1 ..lrti!ude rcference generation equipment<br />

The gcncral rcqucst for low cost solutions irnplics<br />

th;tt attitudc mcasurcmcnt equipment should bc<br />

uscd. which just satisfics the subsystcm performan-<br />

cc necds. In vicw of thc large vnricty of mission<br />

objcctivcs and associatcd pcrformancc requirements<br />

(sec tablc 2.3-I), however. equipment of cquivalcnt<br />

mcasurcmcnt quality standard\ (and costs) has to<br />

bc sclcctcd. Conscqucotly the AOCS concept niust<br />

providc thc ncccssary flexibility to tie-in different<br />

kinds of mcasurcrncnt dcvices as rcquested by the<br />

application case. Thc typcs of cquipment io quc-<br />

stion arc of coursc Infra-Red earth Sensors (IRS),<br />

Precision Sun Scnsors (PSS), STar-Sensors (STS)<br />

and Ratc Integrating Qwos (RIG). Apart from<br />

convcntional dcsign performancc chxractcristics.<br />

ncw dcsiys arc of particular interest. For the typi-<br />

cal performance data. rcfcrmce is made to table<br />

3.2- 1.<br />

322 Force and torque generation rechnolom<br />

Spacccraft dircctly injcctcd into targct orhi:s with<br />

Limited orbital accuracy deinands and/or or rclati-<br />

vely short operational lifc time may not rcquirc<br />

orbit corrections anti conscqiicotly also no propul-<br />

sion subsystem. In gcocral, however, orbit COITCC-<br />

lions will be nccesmy to ilchicve and maintain the<br />

desired operational orbit. In view of aspccts likc<br />

inherently different propellat utilivtioo efficiency,<br />

I


th: burn-our (or dry) mm and subsystcm complc-<br />

xity, the most appropriate solution prim;:rily<br />

dcpcnds on thc total velocity incrrment to be<br />

gcncratcd for the &ion in question.<br />

In tablcs 3.2-2 and 3.2-3 characteristic parameters<br />

of catalytic, monopropellant hydrakc- and liquid<br />

bipropcllant thrusters respcctivcly arc summarizcd.<br />

For casc of rcfcrcnce. again equipment available<br />

from DASA in-house manufacturiug has bccn dscd<br />

as a basis of comparison. The parameters of the<br />

liquid bipropcUant rcaction jcts rcfcr IO "sccbnd<br />

ycncration" thrusters. Thcy diffcr from prcviious<br />

snd convcntional design in that thc combustion<br />

chambcr is made of Platinum-Rhodium dloy,<br />

which allows highcr opcrational tempcraturcs and<br />

bettcr cfficicncy than thc classical rcgcncrarivc<br />

chamber cooling principlc. High pulsc rcproducibi-<br />

litv is cnsurcd by the swirl iitomizcr injection in-<br />

stcad of cnnc injcction principlc xed.<br />

The diagrams of fiy;lrcs 3.2-1 and 3.2-2 show thc<br />

spccific impulse and impulse hit sizc rcspccitvclv<br />

of thc DASA ION and 4N 2"' gcncration thrustcrs<br />

in pulscd modc of opcration as function of thrustcr<br />

ON-time in cornpanson to convcntional rcaction<br />

jcts. Smilll minimum impulsc bit six (and ;iccurim<br />

rcproducibilitv) are particularlv important fcaturcs<br />

from thc AOCS point of vic~.<br />

Figure 3.2-3 shows the graphicai rcprcscntation of<br />

tradc-off rcsults, performed to idcntify thc bcncfit<br />

of liquid bipropellant propulsion subsystcm total<br />

mass including tanks. propellant. piping, and thru-<br />

stcr systcm for a satcllitc with 8 small AOCS-thru-<br />

sters as compared to mono-propellant tcchnoloq.<br />

It turns out that thc liquid biprooctlant tccli~iolog<br />

is alway supcrior and offcrs incrcasing m m bcnctit<br />

ovcr monopropellant systcms for incrcasing total<br />

impulse (Ss) to be gcncratcd.<br />

While during orbit corrcction mancuvcrs thc di-<br />

sturbancc torqucs cncountcrcd during AV-genera-<br />

tion duc to SIC ccntrc of mass offscts arc usually<br />

rclativcly high and ncccssitatc countcr;iction by<br />

(thc samc) IhrJstcr systcm in ON- or OFF-modu-<br />

latcd operation. cacrnal torqucs for attitudc con-<br />

trol or momentum manayemcnt in normal opcra-<br />

tion may also be gcncratcd by magcto-torquers.<br />

Thc rclativcly high magnctic ficld strcngth of thc<br />

ewth at low orbit altitudes is particularlv suitcd for<br />

magnetic torquing.<br />

Table 3.2-4 summarizes the most important para-<br />

metcis of torquc rods as manufacturcd by ITHA-<br />

CO. I-iigh pcrformancc attitude control anti stabili-<br />

zlltion of all SIC axes in the neccssary dynamic<br />

range is bat accomplishcd by angular momentum<br />

storsgc deviccs i.c. rcaction- and momentum<br />

wheels. Fig. 3.2-4 givcs a small selcction only of<br />

possible wheel arrangements and combinations for<br />

gcnerathg (idternid) control torques about one or<br />

several S/C 3x6 andlor bias momentum perpendi-<br />

cular to the orbit plane. As already mentioned with<br />

the typical AOCS concepts of section 3.1 the bias<br />

momentum principlc offcrs particular advantagcs if<br />

attitudc reference about all thce S/C ruciS is not<br />

continuously available. Therefore momcntum-/rex-<br />

tion whccl combinations arc expectcd to cover most<br />

applications. A summary of characteristic paramc-<br />

tcrs of off-the-shclf cquipmcnt (manufacturer:<br />

TELDIX) is given in tablc 3.2-4 of Annex 2.<br />

23-1<br />

323 Fcusibilify assessment of control co..tcepts for ,<br />

TACSA 7 missions<br />

From thc prcdous discussions of mission objcctivcs.<br />

control concepts, altcrnativcs and cquiprncnt trade-<br />

offs and thc AOCS rcquircmcnts as summarized in<br />

tablc 1.3-1 it becomes obvious that<br />

- thc classical bias momentum systcm with two-<br />

rvd.; attitudc rcfcrcnce and WHECON control<br />

can only satisfy thc nccds for communication<br />

missions. whcrc no particularly stringcnt rcquirc-<br />

mcnts arc imposcd on thc Linc-of-Sight (LOS)<br />

stability.<br />

- In thc case of wcathcr satcllitcs, for thc limitcd<br />

periods of ..:arming or picture-taking adcquntc<br />

LOS-stability must bc eacurcd. absolute attitudc<br />

pointing accuracy is not so critical<br />

- For carth obscntation missions. depcnding on<br />

thc obscrvation payload concept (push-broom.<br />

dctcctor array, scan mirror, mul!i-spcctral dc-<br />

compnsiiion) and ground rcsolution both accura-<br />

te pointing and LOS-stability bccomc incrca-<br />

singly important. Payload operation'will have to<br />

he intcrruptcd during orbit coh?ction ;i'nd trnn-<br />

sicnt pcriods. In normal modc whccl control<br />

about 311 three axcs accompanied with high<br />

prccision altitude rcferencc has to bc forcsccn.<br />

Suntcillnncc and vcrification bciny also carth<br />

obscrvntion tasks ncccssarilv imposc at Icast the<br />

siunc rcquircmcnts on the AOCS pnrtlv cvcc in<br />

prcscncc of payload-induccd perturbation envi-<br />

rocmcnt. p-wavc payloads additionally rcquirc<br />

highly accuratc orbit data (GPS), LOS stability<br />

and accuratc attitudc rcconstitution ovcr lor:<br />

pcriods (minutcs). Payload data proccssing and<br />

payloadhttitudc data fusion is gcncrally rcquircd<br />

cotraining high dcmanh on onboard computa-


23-8<br />

tional and storzge capacity aad TM-lwiority<br />

during ground station contact.<br />

4. AOCS BASELINE CONCEPT<br />

In the past SIC design has oftcn been pcrformed<br />

with thc emphasis placed primarily on mecltankid<br />

and structural configurdtion aspccts wit bout taking<br />

into account thc impact on othcr subsystems to the<br />

ncccssary cxtcnt. As far as the AOCS is concer-<br />

ncd. it is of course understood that its SIC intcrnal<br />

and cncrnd communication- and ~CCCSS capahili-<br />

tics can providc the ncccsary flcx&ilitv for adapta-<br />

tions to a givcn environment hut disrccarding<br />

ccrtain demands from thc AOCS on thc S.'C hus<br />

and cquipmrnt configuration would entrain thc<br />

nc+cssiiy to establish a dedicated A( ICS-concept<br />

;ind mnkc ;I special dcsign hir cnch misTicm Ihicc-<br />

live and associatcd payload undcr cliscussion hcrc.<br />

Thc approach outlincd suhscqucntiv .time ,I! rna-<br />

king hcct possiblc usc I)! the inhcrcnt Ilcubilitv<br />

fcaturc\ of thc AOCS for Ihc bcnctit id thc ovcrall<br />

systcm and is c.rpcctcd to rncct thc different mis-<br />

sion rcquircrncnts without rn;ijnr modifications.<br />

tkncral Ccaturcs of the concept in cluestion arc:<br />

a The AOCS shall hc dcsiuncd to incorporatc<br />

scnsor and actuator equipmrn! altcrnalivclv o r<br />

in cornhination as rcquircd to mccr the pointinp<br />

and LOS sthilitv pcrform;incc of labl:: 3 - 1 .<br />

The Data ,Managcmcnt and Ccintrol (DMC)<br />

functions of section 2.3 shall he intcarntcd with<br />

thc AOCS (Intcgratcd Control and Data llrrna-<br />

-<br />

-<br />

pcmcnt System - ICDSI.<br />

Data transmission within :hc SIC shall 1% pcr-<br />

formcd hv mcans of a tiiy.itai scriai iI:ita hus.<br />

HAV and S/W implementation shall bc b:iscd.<br />

Thc capability of pcrforminu ortiit c!orrcctions<br />

shall be prcwidcd.<br />

Payload Ja~a managcrncnt (and prcproccwnc).<br />

which rnav nccesitatc cxtr-mclv high cornputd.<br />

tional and storage efforts is rcpardcd ;IS ;I lark<br />

complctcly scpruatcd from the ICDS.<br />

4.1 Srnsnr Conngumlon<br />

It is undcrstood that the wholc scale id ni. *ssions<br />

under discussioo hcrc cur bc best scmcd. if the<br />

highest pcrformancc attitude mcasurcrncni quipmcnt<br />

is xlcctcd. i.e. prccision star scmors a1.d ratc<br />

inlegratin8 gyros in strapdinvn mdc of opcration.<br />

This will. however. bc thc most cxpcnsive<br />

solution and rcprcuni M ovcrdcsip Cor less omhitious,<br />

e.g. communication applications. Subscqucnt-<br />

i<br />

ly the attempt is made to dcfme a sensor configu-<br />

ration. which could cover dl situations, but incvita-<br />

bly imposes restrictions on the system layout.<br />

It is assumed that TACSATS on request of strate-<br />

gic demands shall operated in bctwcen near polar<br />

(sun synchronous) down to near equatorial low<br />

earth orbits. the sun incidence mgk with rcspect to<br />

thc orbit normal also possibly varying between zero<br />

and M". If it is furthermore iusumcd that thc array<br />

dcsign provides thc double axis orientation capabili-<br />

ty discusscd earlier, an orientation of the solar<br />

array axis of rotation approximately parallcl to the<br />

dircction of motion is favourable (see fig. 4.1-la)<br />

for vcry low altitude orbits (e Soc) km) due to<br />

-<br />

air drag (sce fig. 2.1-3)<br />

if the sun is in 3 region around the normal fo<br />

Ihc orbit planc (say 2 45 dcg)<br />

- hi low inclinations of thc orbit planc w.r.1. thc<br />

cqu;l(Or<br />

An owntation ol thc SA. xis of rotation pcrpcn-<br />

ilicular to thc dircction of S/C motion (parallcl to<br />

the earth surface) is more favourablc (sec fig. 4.1-<br />

Ibl<br />

- for high altitude. high inclination (near polar)<br />

orbits<br />

- lor low sun incidcncc angles w.r.1. the orbit<br />

planc<br />

Thc highest flcxibilitv would bc cnsurcd. if - for<br />

rcspcctivc application orbits - the SIC orientation<br />

w.r.1. flight dircction could be sclcctcd cithcr way<br />

.id thc payload (pointins in nabr dircction) alter-<br />

nativclv rotatcd by 'XI dcgrccs around its line of<br />

si*t in the S/C.<br />

A icasiblc uranpcmcnt of all (optical) ;il!itudc<br />

rnc3surcrncnt cquipmcnt. is schematically indicatcd<br />

in fig. 4.1-2. The S/C axes arc dcnotcd bv x. y, z<br />

(roll. pitch. yaw). whcrc the yaw-axis is always<br />

nadir-pointing. Thc schematic of optical scnsor<br />

;irranpcrncnt on thc S/C body surfacc of fig. 4.1-2<br />

shall not postulate that all scnsors indicatcd hmc to<br />

hc available simultancouslv in thc s;imc S!C. For<br />

ccimmur.ication missions e.g. thc cxpcnsivc sensor is<br />

not rcquircd. in hi@ performance missions with<br />

stcllar-incrtial rcfcrcncc on the other hand thc IRS<br />

is obsolctc.<br />

Thc conical scan IRS points 'into S/C y-direction<br />

(or opposite to it. depending on thc sun incidence<br />

angle w.r.1. the orbit). which is tbc dircction of<br />

motion in fhc CSC of fig. 4.1-la and scans thc earth<br />

undcrneath wdcr 0 JS dcg cone angJe. Thc star<br />

sensor is mounted on the -z face (nwoy from the<br />

earth) inched into the pducction (or opposite IO<br />

it) scanning the sky as the S/C rotates around its X-<br />


23-10<br />

between the modulator output g md the thruster<br />

activation 3 are stored in the on board computer<br />

memory accordhg to t;iblc 4.2-2.<br />

Forcc Gencration<br />

According lo figures 4.1-1. there are two diffcrent<br />

S/C orientations in orbit. Fur 50th cases, table 4.2-<br />

3 summarizes the nominal and redundant thrustcr<br />

sets. which are used for orbit corrections in normal<br />

and tangential direction.<br />

423 Momennrm and -reactioa whee,<br />

The preferred wheel arrangement a. shown in fig.<br />

4.2-2 ronsists of<br />

Two flywhcels in a V-configuration in a plane<br />

rotated about thc y-axis by an ;ingle q<br />

Two rcilction whccls alonq thc x- and L - ~ C S<br />

In the nominal contip~ration only ohc tl~u.hccl<br />

(cither FMW I or FMW 2) and hoth rcaction<br />

whccls ilrc in opcration. all running ;it bias speeds<br />

such that a residual bias angular momcntum Gector<br />

is nominallv perpcndiculx to the orbit pland.<br />

In cse of a failure of one reaction whccl thc resi-<br />

dual rcaction wheel and hoth flphcels udll bc<br />

used.<br />

If 00 the other hand the ‘nomind‘ flywheel fails.<br />

the cold redundant futcd momentum whccl id acti-<br />

vated.<br />

43 AOCS HIW and SnV Impletneatation<br />

Prcsentlv. based on a cooperation agrcerncni bet-<br />

ween DASA. Acrospatialc. md Alenia Spado joint<br />

ciforts arc bein8 undertakcn io devclop and qualify<br />

an ‘Intclpatcd Control and Data Al;ina~cmcnt<br />

System’ (ICDS) for nem gcncration communication<br />

and application satellites. within the so-called ‘Spa-<br />

ccbus Improvcmcnt Program‘ (SIP). This prayam<br />

also incorporates devclopmcnt and qu;ilificaiion of<br />

advanccd components like the precision sun sensor<br />

(tablc 3.2. I), second generation liquid bipropellant<br />

thrusters (table 3.2-3) and in particular aLw ;I po-<br />

werful Onboard computer Unit (ORCU) and the<br />

associated operational and application SW. The<br />

ICDS in question (see ref. 10) is to the largest<br />

cment directly suited or easily adaptable for the<br />

case under discussion here. The main difference to<br />

the concept favoured for communiwtion SIC ap-<br />

plications consists in that for TACSAT missions a<br />

‘two computer solution“ insicod of a nnc ctnval<br />

compute approach is regarded absolutely necessiuy<br />

in View of the flexibility- and computational requi-<br />

rcments of thc different payloads. The amount of<br />

payioad data to be transmitted to ground within<br />

short ground cantact intervals will furthermore<br />

necessitate direct priority link to the telemetry<br />

system. Subsequently only the AOCS part of the<br />

ICDS concept, which then can be regarded largely<br />

indcpcndcnt from the payload data management<br />

systcm will be shortly outlined.<br />

Hardware<br />

Fig. 4.3-1 shows the ICJIS hardware configuration<br />

(without rcdundmcies) i.e. not only the AOCS-, but<br />

also the DMC hardwarc units are represented.<br />

Thc functional sharing of these units and comments<br />

on thc notations within ligure 4.3-1 arc listed in<br />

table 4.3- I.<br />

Thc serial OBDH Data Bus is Ihc link within a<br />

modular cxpanda1)lc t\OCS.<br />

As Iar ;is newly devclopcd cquipmcnt and signal<br />

conditioning clcctronics arc conccrncd (e.g. sun<br />

sensor clcctronics. UPSE), t hc intcrfaces are de-<br />

sipncd such as to directlv match the data bus IF<br />

rcquircmrnts. Thc signal conditioning for classical.<br />

off-thc-shelf equipment (earth sensors. gyros.<br />

whcels. star scntors) to thc OBDH data bus format<br />

is performed in the Platform ‘Interface Unit<br />

(PRU).<br />

The ccntral component of the ICDS hardware is<br />

t’lc On Board Computer Unit (OBCU). It has<br />

functional interfaces with the ground scpcnt and<br />

all on-board S/C subsystems for the distribution of<br />

commands and thc acqi:isition of data. Figure 4.3-2<br />

shows the blockdiagram of the OBCU. The<br />

functional units arc:<br />

- processor Modulc (PM)<br />

16 bit processor. MIL-STD 1750 A instruc-<br />

tion set ruchitccrurc<br />

processing power at least loo0 kips lor DAIS<br />

MIX (Digital Aeronautics Instr. Set -<br />

ZOhlHz)<br />

RAM 123 kwords of 16 bits<br />

ROM 96 kwords of 16 bits<br />

- Telccommand Dccodcr bModulc (TC)<br />

- Tckmcrry Modulc (TM)<br />

- Reconlipation Modulc (RM)<br />

supports autonomous satellite failure detcc-<br />

tion. isolation and recovery (FDIR)<br />

functional elements: Alarm Level Manage-<br />

ment, OBCU Reconfiguration Commands.<br />

0 B D H - bus R e c o n f ig u r H t ion CO m m a n d s,<br />

Thruster On-Time Control<br />

- Safeguard Memory (SGM)


contains thc H/w systcm configuration data<br />

,and dynnaric S/W pcuamctcrs<br />

- Prccisiou Clock Module (PCLK)<br />

. Powcr Converter Modules (PCV)<br />

provides necessary voltages for the OBCU<br />

modulcs<br />

provides central on board reference time<br />

countcr<br />

Sofnvarc<br />

Thc complctc AOCS and related DMC-sofdvarc<br />

(SIW) will bc cxccutcd in thc redundant ICDS-on<br />

board computer and runs fully automatic and<br />

autonomously under normal circumst:inccs.<br />

Bcfore thc mission. the S/W will bc (prc-) stbrcd<br />

in the PROM and copied into the RAIM ;iftcr.itk<br />

first activation in the orbit. This allows modiii+.<br />

tions - ;is fat as thc 3ppticatii)n SAV is concertrcd -"<br />

;it any timc via tclccomrnands ("mcmorv load'). It<br />

is also possiblc to adapt important svstcm t,hlcs<br />

and the S/w configuration from ground.<br />

Telcmctry and tclccomrnand S N parts arc iniplc-<br />

mcntcd according to thc Est\ "standard p;ickct<br />

TMITC'.<br />

A ccntrai rolc within thc on hixird S/W plavs ttic<br />

XtOSES I t operating systcm, an updated vcrsion of<br />

thc MOSES opcrating systcm uscd in thc shuttlc<br />

pallet satcllitc (SPAS)-progsm. It is cspccidlv<br />

dcsigncd for the I<br />

- managcment of piudlcl proccscs and ;is!chro-<br />

nous cvcnts under rcal-timc conditions<br />

but can also meet the requirements of<br />

- strictly synchronous operation modcs. e.g. sen-<br />

sor data acquisition activation of thc UPS.<br />

The maintainability and adaption capability of Ihc<br />

SflV-systcm ncccssitatc J transparent modular<br />

functional structurc. hicrarchichlly oruanixd and<br />

properly dcfincd intcrfaccs not only within thc<br />

opcration system. but also to the application S/W<br />

modulcs.<br />

The application SN-parts (johs arc dividcd into<br />

one or scvcral tasks. Additiimallv, ihcrc arc spc-<br />

cific error tasks. which can be att;ichcd to a<br />

jobltask. Thcy will bc activated automaticailv by<br />

the opcrating system in cast of a failurc (exception<br />

handling),<br />

4.4 Attltudc- and Orbit Control Loops<br />

4.4.1 Acquisition connol<br />

Bemuse of the short visibility periods of low carth<br />

orbiting S/C from individual ground stations onbo-<br />

ard autonomy of fundamental opcrational functions<br />

is cxtremeiy important. Automatic acquisition,<br />

reacquisition and safety procedures ensuring initial<br />

orientation and S/C survival (power & thcrmai<br />

conditioning) ia case of attitudc loss arc such fun-<br />

damental functions. Classical, well proven concepts<br />

consisting in a rcoricntation of a prcfcrrcd S/C axis<br />

(and the active surfaces of thc solar arrays) to the<br />

sun are dso applicable hcrc and will lhcrefore not<br />

be discussed in dctail (see e 5. refs. 4 to 10).<br />

5.52 On-orbit conrml loops<br />

23-1 1<br />

In classical satcllitc attitude and orbit control conccpts<br />

clcar distinction is made bctwcen attitudc<br />

control during orbit correction maneuvers and in<br />

normal rrrodc (NM), thcsc modcs of operation<br />

employing csscntially diffcrcnt control principlcs<br />

(c.s. rcaction jet control and kW1 wheel control).<br />

For the ICDS concept under discussion hcre ;i<br />

common control approach is regardcd supcrior.<br />

The mcst obvious advantagcs arc:<br />

- lnhcrcnt back-up c:ipabilitics uing diffcrent<br />

types of actuators if rcquircd.<br />

- Modular 3wis attitudc mcasurcmcnt cstimation<br />

-<br />

and rcfcrcncc ycncrntion principle throughout.<br />

Smoot h transitions bctwccn diffcrcnt operation31<br />

conditions due to continuous statc propagation<br />

of cstimation and control vafiablcs.<br />

- Activation of combined actuators c.g. for fccd-<br />

forward cornpcnsation in case of hcavy prcdicta-<br />

ble (payload) disturbanccs<br />

A schematic blockdiagram of thc on-station attitudc<br />

control modc is shown in fig. 4.4-1.<br />

Thc raw srnsor data from sun scnsors and earth<br />

scnsors (in casc of low accuracy pcrformancc mis-<br />

sions) or star sensors and ratc intcyntinp: gyros for<br />

high pcrformoncc mission3 arc procc.zscd to'gcncra-<br />

te attitudc information (I$*, 8'. 9'). Based on<br />

systcm modcls orbit paramcler updatcs from<br />

ground and additional mcasurc:ncnts (whccl<br />

spccd), optimal cstimatcs nf systcm statc variables<br />

H, (prop. ~r), E!, (prop. 4). e. w,, U,. (w., prop.<br />

U,), H., H, and 8 are gcncratcd. In application<br />

cascs. whcrc attitudc rcfcrcncc is gcncratcd from<br />

earth and sub scnsors onlv. during cclipsc rcpions<br />

yaw attitudc is propagated by means of the obscrvcr<br />

equations of tbc angular momentum in orbit<br />

coordinates Jupprcssing the nutation by adequate<br />

fdtering.<br />

Under normal modc conditions attitude stabilizaticrn<br />

is pcrformcd by controlling the flywheel and<br />

rcaction whcels in torquc mode. in order to com-


23-12<br />

.<br />

pcnsatc for thc imbact of limitcd rcsolution in the<br />

torque commands as wcll as unknown iotcrnal<br />

whcel friction torque. contribution of cross-axk<br />

aogular momcntum components and cxtcrnd disturbaocc<br />

torques undcr eclipse conditions, a rnodel<br />

following loop is incorporated to match the<br />

wheel control torqucs to thc corrrcct valucs. This<br />

tcchnique as used for closed loop AOCS dynamic<br />

knch testing with red hardware at DASA is well<br />

provcn. In vicw of tbc fact that in thc whcel control<br />

conccpt in qucstion hcrc the whccl spccd<br />

variation cxcccds thc usud rmgc considcrably, a<br />

nonimcar friction torqac compensation loop is<br />

additionally superimposed. Iqordcr 16 imprtwc thc<br />

pointing accuracy and stability to the lcvcl rcquired.<br />

disturbancc torquc cstimation and cornpcnsalion<br />

is applied. Thcsc cstimatcs Curt hcrmorc cnsiirc.<br />

that thc necessary yaw attitudc prctliction accuracy<br />

during cclipsc p:issagc is achicvcd.<br />

Stcllar-inertial attitude rcfcrcncc gcncration tvhcn<br />

using r;itc intcgnting g~osc(ipsc in str:ip-down<br />

mode and updatcs from &yo drift Lornputcd by<br />

onho;ird Kalmm liltcr usiny obscncd star transit<br />

times h;is to rcly on upto-d;itc satcllitc cphcmcris<br />

and rclcrcncc star catdog data storcil in thc onhoard<br />

computcr. Thcsc data haw to hc pcriodic;ilIy<br />

uplinkcd togcthcr with corrcctions of the onboard<br />

timc rcfcrcncc. A typical cxamplc of ;I star idcntification<br />

pattcrn ovcr a period of 12 min. ;:s Tor instance<br />

cncountercd during ROSAT mission in sun<br />

modc is shown in fig. 4.4-2. lo wsc nf largc payload-induced<br />

disturbancc torques feed-fonvard control<br />

has to be applied to ensure thc ncccssary<br />

pointing stability for high performancc missions.<br />

JS Prcliminnry AOCS hs.c und I'ower Budget<br />

For th; AOCS conccpt and implcmcntation appro-<br />

ach outlined abovc preliminary mass and powcr<br />

budgcts for thc individual I-LW-itcrns ha\v bccn<br />

summarizcd in tablc 45-1. Assumins th:rt ftir 1<br />

particular mission r.01 all but only the necessary<br />

equipment will simultancouslv be intcgratcd into<br />

thc SIC (31 principly thc locations indicatctl in tig.<br />

4.1-2) the total AOCS budpcts for rcspechc application<br />

C~SCS can be composed.<br />

For typical mass of a propulsion systcm dcpcnding<br />

on thc totd LnpuL~c to be provided rcfcrcnce is<br />

made to figure 3.2-2. The burn-out mass including<br />

12 four Newton bipropcllmt thrusters. tank. piping,<br />

residual Helium in a blow-down sysfcm amounts to<br />

approldmntcly 18.5 kg.<br />

5. CONCLUSION<br />

On thc basis of morc than 29 years of cxperience in<br />

AOCS dcsign and development for communication-<br />

and application SIC in the papcr undcr discussion<br />

here the attempt has been made to identify the<br />

configuration, the cquipmcot and tcchnology of rn<br />

AOCS, which cm provide thc necessary flexibility<br />

for :,crving the large variety of TACSAT mission<br />

objcctives ond the associatcd performance requirc-<br />

mcnts.<br />

6. LIST OF REFERENCES<br />

I.R.Wcrtz: "S/C Attitude Dctcrinination and<br />

Control', Kluwcr Acadcmic Publishcrs, 1378<br />

DASA-Study: "Networking Rcquircmcnts for<br />

Uscr Oricntcd LEO Satcllitc Systcms"<br />

ESTEC Contract No. 973U!VNURE<br />

E.W.Mowle ~1.31.: "The LANDSAT-6 Satclii-<br />

IC: An Ovcrvicw", IEEE AES Systcms Majy.inc.<br />

June IWl<br />

H.Bittncr ct.31.: "Thc Attitude and Orbit<br />

Dctcrmination and Control Subsystcm of thc<br />

INTELSAT V Spacecraft". EFA AOCS -<br />

Conicrcncc, Noorclwijk, i977-ESA SP- 1 W<br />

H.Bittncr c1.d.: "The Attitudc and Orbit<br />

Control Subsystcm of thc TV-SATTTDFI<br />

Spacccraft'. Proc. of thc 9th IFAC Symposium<br />

on Automatic Control in Spacc, Noordwijkcrhout.<br />

July 5-7, 1982<br />

W.Schrcmpp et.al.: "Design and Tcst of the<br />

ROSAT-AMCS'. IFAC 10th Tricnneal World<br />

Conycss. Munich. FRG. 1987. pp 81-NI<br />

P.Bourg etd: Thc Attitude Measurement<br />

and Control Systcm of EURECA". IFAC<br />

10th Tricnncd World Congress. Munich.<br />

FRG. 1987. pp 49-56<br />

H.Bittncr ct.al.: 'The Attiludc and Orbit<br />

Control Subsystcm of the DFS KOPERNI-<br />

KUS'. lOth IFAC World Congress. Munich.<br />

I9R7,<br />

H.Bittncr ct.aI.: 'The Attitudc and Orbit<br />

Control Subsystem of thc EUTELSAT-2<br />

Spacccraft', 11th IFAC Symposium on Auto-<br />

matic Control in Spacc. Tsukuba. Japan. July<br />

1989<br />

MSuraucr c1.d.: 'Advanced Attitudc- i d<br />

Orbit Controi Concepts for 3-Axk-Stabilired<br />

Communication and Application S;itcllitcs".<br />

12th IFAC Symposium on Automatic Control<br />

in Acrospncc, Scpr. 7-11. 1392. Ottobruno.<br />

GcrlDWl;


Figs. 2.1- la-2.1- IC:<br />

Parmeters for sun-synchronous orbits<br />

figs. 2.2-1a/b: Principle Sic-solar rurav<br />

configural ion<br />

I<br />

i<br />

-w w<br />

fig. 2.1-2:<br />

23-13<br />

IO0 1001<br />

-(Y<br />

100000 IOOOOOO<br />

Number of LEO satellites required for<br />

global coverage (10" elevation from ground)<br />

Fig. 2.1-3: Drag' factor versus altitude<br />

100000 200000 100000 400000 500000 600000<br />

Fig. 3.2-3: Trade-off mono-hipropellant thrgster<br />

cfficicncy versus total impulse


23-14<br />

e I w 11 n IS n n a 41 U 9s M 6s n n m II w,*s IN<br />

-1- Id<br />

Fig. 3.2-1: Specif~c<br />

bipropellant thrusters in pulsed mode (comparison)<br />

impulse of 2- gcocration liquid<br />

I /'<br />

Ad--- - *<br />

Fig. 3.2-2: lmpulse bit of 2- generation liquid<br />

bipropellant thrusters in pulsed modc (cornparisoo)<br />

Examples of momeotum-/rextioo u-eel anmgcmcou<br />

f "q.-c)


Fig. 4.1-1 a/h: SIC orientation U2 in orbit<br />

4 '* f<br />

Fig. 4.1-2: Schematic of opiicd sensor arraogcmeot Fig. 4.2-1: Location a d onenlation 01 reaction Jcrs<br />

I<br />

23- 15


23-16 /<br />

Fig. 4.3.1: ICDS principle block diagram for scpuatcd AOCS and paylaod DIM<br />

Fig. 4.3-2: Block diagram of the OBCU


4<br />

2<br />

0<br />

-2<br />

-4<br />

t<br />

.<br />

.<br />

.<br />

I "W<br />

Fig. 4.4-1: Schematic block diagrm of on-orbit control loop<br />

: b<br />

:. .:<br />

b<br />

4 . ............................................ . , .................<br />

&'<br />

. . .<br />

60 63 66 69<br />

star identification in scan mode<br />

stars in orr-board catalogue<br />

+ stars not in on-board'catalogue<br />

Fig. 4.62<br />

Star identification pattern in (ROSAT) scan mode<br />

X<br />

I<br />

-<br />

-<br />

23-17<br />

ww w--<br />

Wheel<br />

I \ I<br />

1<br />

+<br />

I<br />

7<br />

z<br />

Fig. 4.2-2:<br />

Y<br />

p<br />

/ I<br />

#'<br />

57- \.; t - - - - -<br />

Momentam- and reaction wheel arrangement


23-18<br />

Communication<br />

Weat her<br />

-<br />

Operational Pbase<br />

Orbit Correction<br />

Scan Phase<br />

Normal and SK-Mode<br />

Normal Mode<br />

Enlironmcntal<br />

Monitoring Re- Positioning<br />

High Rcsolution<br />

b .- .<br />

'Normal Mode<br />

Re- Positionina<br />

Tablc 2.3- I: Typical AOCS perforrnancc rcquircments<br />

Geostationary Communication Satcllitcs<br />

SMYPHONIE<br />

INrELSAT V<br />

TV-SAT 1, 2<br />

TDF 1.2<br />

TELE-X<br />

DE-KOPERNIKUS<br />

EUTE~AT t<br />

2 flight models<br />

IS flight models<br />

13 Satellites in operation.<br />

FM 9 Rr FM 14 1031 due to launchcr failure<br />

2 flight modeh<br />

FM 1: one SG failcd to deploy, dcorbited<br />

2 flight models<br />

1 flight model<br />

protoflight model<br />

FMZ FM3<br />

PFM = m1<br />

ma m3, m4, FMS.<br />

Table 3.1-1: Review of geostationary communication satellite examples<br />

Dewl. AOCS<br />

Fhf Qual.<br />

1- - 1970<br />

1976 - 1987<br />

1980 - 1987<br />

17110 - 1987<br />

1387<br />

1983 - 1989<br />

19P6 -<br />

Launch Dims<br />

A: 19.12.84.<br />

6: 27.08.72<br />

mil' : 7.1290<br />

FM2 : 24.05.81<br />

FM3 : 15.12.91<br />

FM15: 27.01.89<br />

FMl : 21.11.87<br />

FMZ : 08.08.90<br />

m1 : 28.10.88<br />

FM2 : 17.07.90<br />

FM1 : 29.03.89<br />

PFM : 05.06.89<br />

FM2 : 17.07.90<br />

FM3 : .12.10.92<br />

FMI : 31.08.90<br />

FM2 : 16.01.91<br />

FM3 : Dec.91<br />

FM4 : 10.07.92


Control Accuracy 1 Control oncep pis<br />

! Ideel<br />

I I<br />

Half Cone Yaw (dcgl<br />

INTELSAT V 0.12 0.52 . Wheel control in Pitch NM<br />

. Whccon control in RolVYnw (rued bias momentum wheel)<br />

- Spin-stabili7.cd apogee hoost manc.t:cr<br />

1 1 TELE-X<br />

Beam<br />

TV-SAT. 0.22 1.2 - Wheel control in Pitch (NM)<br />

TDF I<br />

- Coarse body control in RoWaw (Whccon with fixed bias<br />

DFS<br />

ELTELSAT 11<br />

Pointing<br />

Tx *-' Rx<br />

momentum wheel)<br />

- Fine mtema pointing system using RF-sensors .<br />

- h c c axis stabilized apogce boost maneuver with partidy<br />

Whcel control in pitch<br />

- ibhecon hody control in RolVYaw Ihcd bias momentum wheel)<br />

. three-axis stabilized apogee host maneuver with fully deployed<br />

sblar pcncrators<br />

-<br />

. Wheel control in pitch Kht<br />

. Fine body control system NAAMC (Optimum Nutation dlr angular<br />

rhomenrum control) for riormd modc RolIRaw<br />

. thrcc-yris stabilkcd ipoRcc boos[ maneuver with partially de-<br />

dioved solar gcncratnrs<br />

Table 3.1-2: Communication sntcllitc AOCS features QL performancc (DASA-AOCS)<br />

Low earth orbii ObscrvadowScicatiTc Saiellites AOCS Devclopmcnt & Launch dates<br />

Qualification<br />

MOS-1 (Marine 1 cncjnccring modcl 1983<br />

Obsenwion Sat.) 1 fligbt modcl Fhll: 1987<br />

FM2: 1990<br />

ROSAT (Riintgcn- 1 cnginecring dodel i9M - 1986 01.6.90<br />

Satcllitc) 1 flight model 19%<br />

EURECA (Europe- 1 flight model 1988 - 1310 31.792<br />

Retricvablc Carrier) ,<br />

ASTRO-SPAS (Shuttlc '1 flight modcl 1988 - 1992 June 93, carly 94<br />

Pallet Satellite)<br />

Table 3.1-3: Review of low ciuth orbit satcllitcs (DASA-AOCS)


23-20<br />

r - .-_ -- - -. --_.._ I<br />

U<br />

i<br />

Lw8:tt?l riccuracy<br />

.----- -- ---I-<br />

--<br />

. __-<br />

Normal Modc Control Cunccpls<br />

-<br />

MOS-1 ( Mu~c Pointing Dircctioa: 0.1" Two bias momentum wheels in V-<br />

Observation Satellite) Stability 0.00l0/sec arrangement with magnetic unloading<br />

of accumulated angular momentum<br />

ROSAT Pointing mode: 3' Reaction wheel control with ma-<br />

(Rontgen-SateUite) Meas.Accuracy: 10" gnetic unloading of accumulated<br />

San Mode: 3' angular momentum<br />

ASTRO-SPAS Pointing moue: S* Riorf body control with cold gas<br />

(Shuttle Pallet Satellite) Scan Mode: 80" 1.' : of GPS for Earth ref. frame<br />

determination<br />

EURECA 0.9" cach axis for Cold gas control supported by<br />

normal mode magnetic control with disturbance<br />

torque compensation<br />

-<br />

Tablc 3.14: EartWscientific satclliie AOCS fcatures and performance (DASA-AOCS)<br />

Tablc 3.2-1: Typical characteristics of attitudc mcasurcment equipment<br />

Pouw<br />

4 .J<br />

Manufact wer<br />

FERRAKn<br />

+<br />

A<br />

2.1 - 2 TPD<br />

GALLEO<br />

DASA<br />

WO. baffle<br />

DASA


0.75 - 0.2<br />

2 - 0.6<br />

6 - 1.85<br />

IO - 3<br />

24 - 7.2<br />

350 - 110<br />

.-- --<br />

0.19 5Rs<br />

0.20 St1<br />

0.22 SI337<br />

0.24 5/24<br />

0.35 ut3<br />

1.80 301-<br />

!<br />

Table 3.2-2: Characteristic parameters of (DASA) catalytic monopropellant hydrazine thrusters<br />

Table 3.2-3: Characteristic parameters of DASA T generation liquid bipropellant thrusters<br />

Table 3 24 Characteristic parameters of magnetic torquers (ITHACO)<br />

23-21<br />

'Wwn o ainile winding ir used. power doubler.


23-22<br />

I .a * .o.s<br />

8.2<br />

am3<br />

c 0.012<br />

a..?<br />

s60<br />

163<br />

7s<br />

2.7 ... J.4<br />

ne..a<br />

0.2<br />

mm<br />

c 8.013<br />

2.J<br />

c&b)<br />

2a<br />

w<br />

3.5 ... 6.0<br />

14 ...a<br />

8%<br />

mm<br />

c 0.013<br />

2...10<br />

c 100<br />

Jw a<br />

120<br />

5.0 ... 8.0<br />

Table 3.2.5: Chdrxlcristic paramctcrs d momentum and reaction wheels (TELDIX)<br />

- and z-componeot<br />

Tablc 4.2-1: Thrust levels. thrwcr locations and orientations<br />

Location<br />

w..m '\<br />

.02<br />

6006<br />

c 0.m<br />

3...15<br />

c Is0<br />

500<br />

1%<br />

7.5 ... 12<br />

1on the corners of the ccn-<br />

trd cube<br />

on the edges of the<br />

padcl to tbc S/C y-axis


abic 4.2-2: Corrcspadaucc bcwccn torque requucmcnts and thruster activation<br />

raidd pitch dircrtrb.acr loqm rmp-ed by c<br />

Table 4.2-3: nYutcr activation for orbit corrections<br />

I<br />

23-23


PRW mrms lottrfrsa :<br />

UDir<br />

Bnterfscc A[prdm lo AoCS<br />

sensors<br />

OdOff distribution for PF wits<br />

Acquuitioo d PF uaiu tcmpzra-<br />

tuues<br />

Panr &ribunion and praccrim<br />

nf PP U&<br />

e n of the wWe SIC<br />

LF with KU (Power Condih-<br />

&q Unit)<br />

Bnatery poteaion HW<br />

BF beater (relays)<br />

Power distribution and prmec-<br />

tion of Pt'L wit<br />

PA unit temperature acquisition<br />

P.2 beater relay<br />

Onloll diurihtioa to P:L unit<br />

fable 4.3-1: Fundwcrl .sharimg and notation of ICDS W units<br />

Equipmat<br />

1 OBCU<br />

1 Prrm<br />

1 WSE<br />

1 PSSA<br />

1 PFDU<br />

1 IRS<br />

1 RIGA<br />

2FMw<br />

2 RW<br />

lsrS<br />

Torque-rob<br />

0<br />

Supplier Remarks<br />

H E High Level<br />

Priority<br />

Re~~aligurr.<br />

[ion Commands<br />

SADA Solar &ray I Drivc k m .<br />

DASA intcdy redundant<br />

SEXTANT iotcmdy redundant<br />

AL internally redundant<br />

hmB internnlly redundant<br />

SlEXTANT ialedy redundant<br />

GALILEO<br />

m 4gyra& one &<br />

TElLDLx reduodant set<br />

TELDJX red- set<br />

DW.<br />

FOPMER 3 coil& inc redundant,<br />

t 350 Am'


lpnpQR rOYi0WS the QdVOUItQ~OQ and<br />

liaitoeiom OR OlQCtriC pnowlalon for<br />

1 iqlhemaa che roctar i zed by o nnunch inam<br />

ln tho DO0 to 100 Rg ran$@. 'Bna coneidyra?d<br />

dyotooa include ion propuioion, nrcjvee,<br />

and ntotionary plasma thruntorn eor<br />

Bitfornone applications GUC~ ne drmg<br />

coopnnneion, orbit raisinq, Pdnrlr ?rimming<br />

of orbital parameters, and variauo crbit<br />

tranofors.<br />

ElQCtrk propuloion provldaa nubstnntiel<br />

oann onviqo nm3 turna out eo bo on<br />

onablbmg tochnolbgy for ceetnln I lightoat<br />

aiseiono. TRO conatrainte reoirlPIn9 eron<br />

DC ~ V O R linitations onbomrd small<br />

@gtolllktQQ QrO dincuseod, QlOw W i t h the<br />

inplicotiono on candidate tochnoloqios and<br />

systoa aolutlons. A review ol nenr terra<br />

prooptivoa of lou power ion Phrueatero.<br />

lor lightmats applications, concludes the<br />

paper.<br />

1. I~WCTIOW<br />

Rscont adtvencsa in electric propu?sion<br />

hsvo finally lad to consider Len une POP<br />

coanorcinl qoootationary communication<br />

satallitss etationkeeplng. For rsuclz<br />

function, ion thrusters, statlonary pleme<br />

thruotera (SpT) and arcjete ore currently<br />

boing planned on board uavnrel now<br />

setollitea. Tho main at?rtiction of<br />

eloctric thruitoro lice In their hiqh<br />

OXheU8t VQlOCity which 15 aovorel ti%iiOS<br />

that oP convent.iona1 chemical thrurstero.<br />

"he najor benefit is represontad by tho<br />

gropllant mass reduction for orbit<br />

control eaeko. I<br />

Eleceric propuleion is QAOO being<br />

tonnidlorad for other near earth propulsion<br />

bpglicotions, 000 n.9. (I], in pareicular<br />

for orbit tranefer .and manoauvering of<br />

large spcecraftr and for scientific and<br />

interplanatary BiO8ione.<br />

Tor what concern8 the ulectrlc propulsion<br />

appliceelona to liqhtsats, norno initial<br />

work raoulto from the open literature, BB)B<br />

e.g. [I], but no specific plana ora known<br />

to tho authorQ about actually inplononting<br />

electric propuleion onbomrd lightmato.<br />

Thio io quit0 surprising bocmuocr, in viov<br />

of tho specific conetreinto of s~all<br />

satollito@, electric propulaion may be<br />

conoidorcpd an *enabling* eochnology<br />

without which a number of appltcatlonm<br />

would br alnomt unfoamibla.<br />

Ubat:erfc Propuleion for Lightoato:<br />

A R~MIoQ! of ?$plicotionka and Mvantaqes<br />

6. mrrotea<br />

Alhnbo 8pQXiO 8.p.A.<br />

via BQCCO!PUPO a4, 00131 w-, Italy<br />

C. Cirri, C. Matticeti<br />

Proel Industria<br />

v.10 Machiav$illi 29, 5017q ril'enze, Italy<br />

24- I<br />

Tho paper rsviown the koy features of<br />

oloctric peopuloion in the specific<br />

context bf DC-power limited liqhtsats<br />

cheractorlzod by a launch mess rnnqe in<br />

tho 300 to 800 K9, which is most<br />

eppropnieeo for Q number of 'professional*<br />

applications, including clvil and defense<br />

ones.<br />

Tho nein reason to consider electric<br />

peopuloien le to reduce the total<br />

oubnyeten mass for propuls1m-related<br />

tnoka, tho iaaximizlnq the payload to<br />

leunch DblDQ ratio while stayinq within the<br />

leunch mas8 bounda otated above. However,<br />

oloctric propulnion can be a viable<br />

appeoach only Lf the power requirements<br />

aPQ 8100 compatlble with tho DC power<br />

lioitationa, conoiderinq that the liqhtsat<br />

pow0r plane is normally dcslqned to<br />

oupport the payload operation in normal<br />

ado. WO will llait our conelderations to<br />

throo E. R. technologies: ion propulsion,<br />

Stationary Plasma Thrusters, and arcjets.<br />

Yn tho low-power ranqe of Interest for<br />

lrghtoats, typical performance arc given<br />

@ in Table 2.-1 which envelopes the<br />

characteristice of a number of existing<br />

devicoo. WO main Electric Propulsion<br />

applications are considered:<br />

- orbit kaeping, which incluCos drag<br />

conpnaotion, fine trimming of orbit<br />

prnraooeoeo and, for liqhtsats in<br />

oynchronous orbit, etation-keepinq. These<br />

gropuloion tasks are normally concurrent<br />

with payluad oporation. Therefore 2. P.<br />

oppllcotione aro mainly power limited,<br />

bssides being a100 mass limited in order<br />

to rsoult conpatitive with chemical<br />

propulsion. To exemplify, we will assume<br />

to slloceto 30 Kg and 300 W to such E.P.<br />

functionmi<br />

.'+- orbit lbnoouvering, which includes orbit<br />

s!~jr8ioing,<br />

circular to e1 1 iptical orbit<br />

.tronofer, and orbits c!rcularization.<br />

Thooo . propulsion tasks are performed<br />

outoido payload operation. Therefore the<br />

full lightoat DC power, normally used to<br />

supply tho payload in normal mode, can be<br />

wade availabla, for Eloctric propulsion.<br />

TypiC8lly, ono pay allocate 60 Kg and up<br />

to 1200 W of DC p e r to E.P. functions.


24.2<br />

CJ6Qh ion pl'b;pPelaion tho applied thrust<br />

IWs'olO QPG Cl000 to the drag force<br />

avoragexi durinq one orbit porlod, i.e.<br />

k?lroo 3 eo t5 aM Pot B typical mall SAR<br />

aoeellieo ineondodl to Ply at orbit<br />

aAt6tudw km low eo I00 M. Thrusts of<br />

thio ordou can $s modularly achieved by<br />

puttinq low power (< 10 mN) ion thrusters<br />

in parsllol end implementlnq throttling or<br />

on-off modulatlon accordlnq to the<br />

requ I red duty .<br />

.-----.I --.--. --cons~dcring<br />

typacnl values from Tnhle<br />

2.-1. it can bo necn that , lor orbit-<br />

Orbit Drag f.cs Delta-V Delta-V<br />

keeping teaks. nrcjctn<br />

height avgd. ov8r<br />

Rrn S C I V ~ P C power<br />

6 mo. 5 years<br />

~ ~<br />

limited nnrl are ttrrthor pennli7wl by the (Km) 1 orbit(nN) (m/s)<br />

poor lop value. SfTe qc~d f.vntc?n*.lc.rs<br />

a) b) a) b) a) b)<br />

to ion thruntarr, in that thcry cin provide<br />

hlqhor thrusts for the snmo I#: pc>wer at a<br />

lmor moo, but the lover lop valuo can bo 275 30 15 1155 185 11550 852<br />

critical for long-duration whnnlono. For 300 2l 10.5 815 272 8150 2721<br />

orbit ~nnoeuvaring tho cpvn61rrbis OC powor 350 14.2 7.1 551 184 5508 1840<br />

&a juot at the llait where ~rcjoto bacon0 aoo 11.7 5.9 457 152 4752 1522<br />

intonooU~ng: but SPTn nlno orpear to bo 4 50 8.9 4.4 145 119 3452 1152<br />

qodl cautaidlmtsrP, In vieu oe eho bettar Iop<br />

500 7 J.5 270 90 2700 902<br />

they con offer. Other coneidorntione. ouch<br />

an tho tine to transfer./ muo?. then b@ Asounptions:<br />

taken into account, in t.h@ nygtcn trade- case a) : s/C crosmction 4 m"2,<br />

OfPS, e0 choose the riqht<br />

drymirnn 400 K9:<br />

PQChnr)ltwly.<br />

cane b): S/C croeoectlon 2 rn-2,<br />

J,TII!fC&L-E,P., AP_F_LI.ICATI O?tS*.TU I.fC.tfTSATS_<br />

drymaso 600 Uq;<br />

Q worst year nun activity:<br />

>,a, ~rlpqla- co?Jng!>-on. - for- . Obn@rvEAk?!~<br />

seeollitso-<br />

Cone-olfoctivs observat ion mission:& can bo<br />

concoivod with individuinl ncit.eII itcn,<br />

leunchd on-dcmand, or bancd on emall<br />

ontollitao conatellations c?rr)'inq f.AR [I]<br />

or optical sensors. In both C.PBQPB the<br />

oioaion roquiroa very low orbit mleleudos,<br />

ooy in tho 200 to 600 Kn rmgo, to<br />

onhowce tho optical ground rooolution or,<br />

in the SCUR cmo: to reduce tho transnitted<br />

per compatibly vith ehca limited<br />

resources available on a small ~neolllte.<br />

At thene altitudes tho residual<br />

stheongheric drag beromen the Ilmitlnq<br />

factor for thO mlssion duration. Even<br />

aasualg o slender platform daslgn and an<br />

orientation of tho appendaqen (I.e. solar<br />

arrays, antenniao) such as to axhibit a<br />

mininun cross omtion In the dlrecsion of<br />

tho flight path, tho dolta-velocity<br />

recpirQd to counteract the roaldual drag<br />

becowo rapidly unmanageable with chatnlcal<br />

propulsion for dosion dureeionn greatarr<br />

than a Pew months: see Tablo 3.1-1. which<br />

is rolwent to two typical liqhterat<br />

configurations. The determining fmtor<br />

bscowa the propellant mass, given the<br />

launch maes limits.<br />

Tho high specific impuloo of ion<br />

propulnion allows reducing, by a factor of<br />

about 10 w.r.t. chemical propuloion, tho<br />

propallant nasn required to inpart a given<br />

tots1 volocity incremont. AS a<br />

consewonco, mission lifetinan of 'J year0<br />

can ba achieved, which is inatrummtal to<br />

iwplesnant small satellite conneallationa<br />

for sprnanents observation ninaione. Itn<br />

coaperiaon, the other E.P. tachnologion do<br />

not porform woll in thia Qgglicetion<br />

cheractorized by very high required<br />

velocity increments.<br />

Table 3.1-1 Drsq forces vs. altitude and<br />

rcqu i red del tn-volocit ies for<br />

their compensation<br />

Table, 1.1-2 qives propellant mass and DC<br />

power requircmants OP ion propulsion vs.<br />

orbit altitudo lor a prospective small SAR<br />

oaetsllite. For the consldered thr?rst<br />

lOV015, tho CC powor requirements are<br />

coapatiblo with spacocraft allocations. In<br />

concluoion, ion propulsion has to be<br />

conoidorod an enabling technology to<br />

isplonont long duration observation<br />

missions in vary low Earth orbits.<br />

W0VorthQleeQ the operating time, Of the<br />

order of 40000 hours, is OP concern and<br />

ohould bo properly addressed by further<br />

dovelopmonta. E?'orts to further Improve<br />

tha efficiency OK low power thrusters are<br />

also strongly raccornended.<br />

Orbit Propell. Thrusters N'/ AVge DC<br />

heiyht mass avqe orb.duty power<br />

(h) (K9)(1) (W) , (2)<br />

-<br />

275 90 248m~. 1.94 450<br />

300 62 248mN/0.66 320<br />

390 41 8NW/0.88 240<br />

400 34 8mM/O. 7 4 200<br />

450 25 0mN/O. 55 150<br />

500 20 0mN/O. 4 4 120<br />

Nota 1): boo0d on 2800 e. Isp<br />

Note 2): based on 30 W/mN<br />

Table 3.1-2 Dtag compensation ion<br />

propulsion requirements for<br />

system b) of Table 3.1-1<br />

.-


3.2 P A tuimira ~ ok c~,~~a~aellonaorbiea<br />

po~a~oto~o<br />

An inceoonlng numbar of omall oatollrtoa<br />

conaeollationo IQ being propcowl (a] for<br />

advancod comnunication and renoto noneinq<br />

applicntiono: aost conotollatlono havo<br />

nultlplo natollltes in ono ou Rultiplo<br />

orbltoll plonoa: low altItubo onbito,<br />

typically 000 to 1900 Km, Q ~ O<br />

noentally<br />

envioacgod, with a few c e~eo conoidoritq<br />

altitudloe, as hlqh as loOD0 Kn.<br />

Wi8nag!?Q thQW.7 COmpl€?X SyUeemS Will<br />

xoquirs copylng vIth tho launch nystenn<br />

orbit injoction disporniona, 8s wQlt ibo<br />

m$intainingl eh0 satallitao relative<br />

pRoobng durIngl the orbleal lieeelno<br />

atpinot oneornnl distuubsncna. Tho<br />

qhntiaation of these eefacea, in eerrns oe<br />

propolllone amso, doponde stroqly from tho<br />

launch wohicle cha~actoriatico, orble typ<br />

and oloalon duration, and vlbll not bo<br />

nttorslptcd ~QE~P. Tho gush towouch launch<br />

coat sduction ~lqht probably lqly, in<br />

tho nwor Puturo, the usa of looa nccueaee<br />

L.V. a d groator injection Bioporoiona.<br />

There Lo a100 a clear trend to require<br />

longer orbital lifetinos.<br />

-eh Pnceoro vi11 tend to Incr@ase tho<br />

propellant mass allocated ffor orbit<br />

control: ehis vi11 impact nqcntivsrly tho<br />

oyatoa ocononico, also in view of th0<br />

multiplying oeeoct due to tho Iti~ge number<br />

oc ooeolliesa In those conotallations.<br />

Clectrlc propulsion may be connldorod in<br />

alt~rnetlva to chamlcal propulalon for tho<br />

potsntlol masdl naving it1, can provldo,<br />

spoclollly in presence ol hlqh orbie<br />

Injoction dloprolons and loncg orbital<br />

'ilotimo. ConetollatIon phaobncg is not a<br />

tino-llaitod propulsion task, whlch will<br />

enablo uah9 low thrust, high speclfic<br />

iFiYpI1b0, C.P. syetoms. suitable neraeogiee<br />

for conneallation phasing msineananca can<br />

be concoivod, poesibly aided by nutonomous<br />

navigatlon systems, to fully exploit the<br />

E.P. characteristics.<br />

Stuall oetollites in qooetationary orbit<br />

can poreorm useful1 conntrnication,<br />

meteo~ological and observation mlnsiono.<br />

Clusters of two to four npacncraft can<br />

form a Bietributed satelllte syatem havlng<br />

enhanced performance w.r.t. 61 single<br />

Aatollite of an identical total mass.<br />

Assuainq the availability of a launch<br />

vehicle capable of d:rectly injecting the<br />

saesllieos in synchronoue orbit (such as,<br />

Q.Q. tho Ruesian Proton rock&) small<br />

sgacocrale relying exclusively on E.P. can<br />

be concoivced.<br />

The absence of a bulky apoqee motor<br />

greatly ex>anda the spacecraee design<br />

freodon, including the positioning and<br />

orisntaeion, or canting angle, of tha E.P.<br />

thrustera. Spacecraft incorporating<br />

eevoPa1 ne6111 thrusters may impl@nent both<br />

orbit Control and entornc;lll torquo.<br />

cospnsation for attitude control.<br />

Tabto s.3.-1 qlivoo tho eeorontisls oP em<br />

Bniithol ccancopt Pou a high prfonaanco<br />

onell goootaeionery eatallite. Basic<br />

Boaturea nra tho low potfer/lov thrust ionthrustera,<br />

tho reouleing overall low E.P.<br />

OY~P~~PR moo, tho high ach'wable payload<br />

to oatslllte launch mass ratio, the<br />

eboonco of any kInd of .chemical<br />

propulsion.<br />

Satollito launch mass (Kq):<br />

Q Payload aass (Kg)<br />

* Payloed/launch,mass ratio :<br />

Orbital lifetime, years :<br />

Wqrd. total velocity<br />

incromene (ra/n) W-SIS. K. .:<br />

E-W/S.K.:<br />

Ion thruotors nurnbQr<br />

'FhrUQt 169VelS(W) w-s/s.E(.:<br />

E-U/S.K.:<br />

Q Total prop.rncPse (Kg)<br />

Avge dayly thrusting time<br />

N-S/S.K.:<br />

E-W/S.K. :<br />

4 E.B. oyoten einm (K9)<br />

* E.P. peak DC power (W) :<br />

Q Deyly e.rergy nosdsIKWh) :<br />

Foaoiblr! control torques<br />

in pitch,roll,yev<br />

600<br />

240<br />

> 0,4<br />

15<br />

700<br />

70<br />

10 to 12<br />

OmN (2.4mN)<br />

4mN (2.2mN)<br />

< 18<br />

2.66 hour8<br />

32 min.<br />

YO (est.)<br />

240<br />

0.7<br />


48 iao<br />

4.b 11<br />

8.2 19.3<br />

26.5 88.6<br />

C l e 1<br />

76 178<br />

51 iao<br />

11 50<br />

190<br />

17<br />

29.6<br />

100<br />

c1<br />

270<br />

100<br />

75<br />

--.- .-_ 7-<br />

1) 400 ~ fn initial circular omti 2) 600 KQI opa.:ecraft<br />

3) thwot lL.** la: ion- 40 Rw:<br />

SPT- 60 mP(:<br />

arcjote- 150 nM:<br />

4) 1ogr2QO a: 5) 188-2806 cut ,<br />

6) XQBp 1500 S; 7) Isp~500<br />

0: ,<br />

Tablo 3.4- 1 kloctr ic Yropulolon-oyst@mo<br />

for OrbIt Raising<br />

---.------- -I, .-I -.-<br />

roble 3.4-A ShWS that IOU powor arcjots<br />

OPO goad candidates for Rlcgh altiruae<br />

d! eeoroneioio, provi~ing 9~ ROW OSV~~JO<br />

with aoanonable, tranofor ticno. On tho<br />

conerany. ion Phruetorrs , and !;mu arc?<br />

Dorqjiml and can bo only conaidered tor<br />

aooAl oleleudo Lncromenro, oehoarvieo too<br />

10- eranror t1r;tao will nonult. In<br />

concluoion. IOW Phruet olectnic propuleIon<br />

can $3 ccnoidarod for circular orblt<br />

rnioirrogl of amell metolllt~o whan (P short<br />

tranetor ti- Ia not mandatory. I<br />

Whoer oabie ralolrrcg must b@ laplononeed in<br />

a vouy mort tiao, as for ~~o~-ple with<br />

aotollitao launched on-demnd, 'thon<br />

chaoiccal propulmion 1s still tho preferred<br />

approach.<br />

Circular toalliptical orbit tranefero<br />

tlliptic~l Inclined orbits nro being<br />

conr~ldord with increasing interoat for<br />

numrwo applications, and thoro arQ plans<br />

to roalino omall satellite conatelletionn<br />

olrpploiting tho gsrtIcular foaturm of such<br />

orbito. However, the injection capability<br />

of anal1 launchera in elliptical, hlgh<br />

onorgy, orbits is ncrmally rather pQor,<br />

and one has , again, to rely on boost<br />

mtora to Inploaent the final vrblt<br />

tranofor, for which two inportant<br />

considerations apply.<br />

h .(<br />

@ -'<br />

ti"k00, V€#q high d@l~-VOlWitiQU are<br />

mp i wx-1, mm Pig. 3.5-1. SOCORB,<br />

C@L29311Q 1 Q 1 comuwication ustolliten<br />

iRj&cd tn olligtical orbltm can ba<br />

t33~1n~Od ah AeulrPchod mlZ in advanco of<br />

ma0 ~c$dGitO. Pn>q tnip times aro, thua,<br />

wlotbbdly uninpogtant but 8i8SiOn<br />

cacplorziity, cooto, reilabil lty and<br />

opaationol conoidorationm may put an<br />

upwr RmuM to the maxiBus accaptablo trip<br />

eim.<br />

Eloceric Propulsion alternatives to<br />

chooicol arb SBTa and arcjets, with the<br />

oow chartceoriueics given in Table 1.4-1.<br />

!3i~plbfid conputatlono POP transfers of a<br />

500 Kg opdscocralt. in trsnsfer orbit from<br />

an initial 400 tta circular orbit to three<br />

Qootinetbon alliiptical orbits of 8, 12<br />

and 24 hour6 priodn were porformod.<br />

c~oae-idecai trenoeor vas uimulated by<br />

firing ~RICUS~OPO eor a/4 oP the orbit<br />

p~pho61 awue eh@ prigses until the final<br />

opqoo wan reached, ehen firing the<br />

Phpuotora Sou 1/6 of tho orbit period<br />

until tho final prigoe WQD also reached.<br />

aropollant Q~OB required by SFTs and<br />

arcjots are roported in Table 3.5-1.<br />

- DOltQ'V.<br />

- T.O.neoe/<br />

** Id001 Tranfor:<br />

Dastination Orbit (1)<br />

a) b) Ci<br />

(WO) : 2350 1550 3450<br />

peopolA.maoe<br />

(W) (1) 1<br />

cPIoaical 1157/657 1:'; !,'*I43 1714/3214<br />

arcjet 800/300 R '/3J2 996/496<br />

SPT 379/78 '. '06 620/120<br />

- T.O. DBBD/<br />

propoll.taaes<br />

44 !ion-Idoel Tranmfer, A rc '*t:<br />

(K9) (3) :<br />

- Trip ti-<br />

058/358 B93/399 l105/605<br />

(days) 36) 334 530<br />

-<br />

Characteristics of Destination Orbits:<br />

a) Apaqoo:32430 EOsr Perigoo:8107 Km;<br />

Porlod: 81 hours:<br />

b) Apocaoe:45150 #m: Perigee:7968 Km:<br />

Poriod:li! hourQ:<br />

c) Apoqoo:59030 KIP: Perigee: 25298 Km:<br />

Period: 24 hours:<br />

Moto 1) Starting orbit: civ Inr, 400 Km:<br />

2) Satellite drymass: I O Kq<br />

3) Inzluding Delta-V 1i':rement (15%)<br />

for non ideal transfer<br />

-<br />

Tablo 3.S-1 E.P. alternativrs to chemical<br />

peopuleion for circular to<br />

elliptical orbits tranfers<br />

POP ths arcjet cane, a non-ideal transfer<br />

wan ala0 oimuletod, and tho propellant<br />

mu@ recomputed taking into account a 15 8<br />

worsening in tho delta-voloclty required<br />

duo to the non-idoal tranfpr conditions.<br />

A@ can Bo moon the trip tlrms are quits<br />

high in all caaoo: a 30 8 rclucticn can be<br />

achlsved incromsinq the arclnt thrust to<br />

220 L", which would nevertheless imply the<br />

availability of 1.8 Kw @C power. This<br />

sight necceeitete an auxiliary array in<br />

the E.P. boost section, impacting costs.


Thoro are sovoral additlonal positive, and<br />

neqativo factors, to bo V.T)ten ' into<br />

acccrunt, vhlch may affect thn trip time:<br />

but in conclusion the PMslbiltty of usinq<br />

low power arcjets irl potmr limited<br />

liqhtante Cor lov altitudo circular to<br />

elliptical orbits coplanar trennfers ha0<br />

to be considered still problemntic.<br />

3.6 o~b_lc~-ci rcu la r i LA t Ion-<br />

Thio propulsion task refers to sdtellituo,<br />

injected in elliptical transfer orbit by a<br />

I..v., whom final dentination otbit is<br />

circular with a radius normally coincident<br />

vith the T.O. aygee. Typica1 cases are<br />

goostatlonary orbits anti medium altitude<br />

circular orbits of about 10000 Km as<br />

envlSm$@d, for example, by TRW's Odyssey<br />

and ESh'o MGSS-14 constellntion [5).<br />

Electric propulsion is ~onpnrcd to<br />

chemical in Tnble 3.6-1. for thnno tua<br />

typical mlsnions. Arcjetn nre found to<br />

perform acceptably well in this case,<br />

olnco trlp tlmos around 200 dayn cnn be<br />

achieved lony with niqniflcant mass<br />

oav,Inqn w.r.t. a chmlcal propulsion<br />

alternative. The bQttQr mnsn envinq<br />

achievable with SPTs Is, Instead, piid<br />

wlth an excessive trip t inn dur;rt Lon.<br />

___.I_____.. --_.--.-. ..."..-. . - -.- _.-.I<br />

4. T.0. chnracterlstlcn:<br />

- Periqee (Kn) C679 6778<br />

- Apqao (Kn) 42164 I 7 2 M<br />

** DostInation Orbit<br />

characteristics:<br />

- Radius (Km) 42164 16728<br />

- Voloclty incromont,<br />

idartl trnnnf.(a/s): 1476 1174<br />

** T. 0. mass/propel 1 . miss<br />

(W) (1)(2):<br />

- chnnlcal R44/144 '1 G o/ 2 6 0<br />

- arcjet 700/200 655/155<br />

- SPT 555/55 544/ 14<br />

*4 Trip tines (days):<br />

' -<br />

- chenlcal /1 1<br />

arcjet 227 1R2<br />

- SPT n.a. 453<br />

Note I): Satellite drymase 500 Kq;<br />

" 2): Including a 15\ increnno In delta<br />

velocity due to non-Ideal tranfern<br />

Table 3.6-1 E.P. alternativee for Orbit<br />

C1 rcular I zat ion ,<br />

4,RE;'XEW OF SYSTEM NEEDS<br />

Prom thip ovorviev two E; P. technologies<br />

appbar to have a future 'on power limited<br />

lightsnts:<br />

- small ion thrusters for drag<br />

compensation, limltod orbit raining, orbit<br />

circularization and fine trlmming of<br />

orbital parameters of small satellites.<br />

The required thrust lov0lo ara in tho 2 to<br />

10 mN range. a modular approach anablinq<br />

parallol operation oP thruetcra is also<br />

required. Full thrust control, over a 30%<br />

to 120 a range of the design thrust leveA,<br />

is an important design requirement. An<br />

Ovorall specific power of 40 w/mN maximum<br />

(30 W/mN as a goal), and a spoclPir: system<br />

mass of less than 1 Kq/mN maximum (0.7<br />

Kg/mN as a goal), including power supply<br />

24-5<br />

end lgic should be sot as near tern<br />

dovo~oprnont objectives. Isp valuos bettor<br />

than 3609 sec., and very .on9 lifetimes,<br />

aP the ordar of 40000 houra, are also<br />

pr imary roqu ironenta:<br />

- IOW QOWQr arCjOtS in the I to 1.2 KW<br />

ranqe. for orbit mnnoeuverinq tnnks. For<br />

such UOVICQS oflorts should tn! dcvotcd to<br />

possibly brlnq the Isp closer to 600 sec.<br />

for thrusts in the 150 to 2r~0 nl.J ranqe,<br />

vith an overall speci:ic pover better than<br />

8 W/mN includinq power supply.<br />

On the other hand stationary plasma<br />

thrusters do not Seem to have a clear role<br />

for liqhtsats, at least in their present<br />

power and thrust level ranqe. Scaling down<br />

SPTS to lov thrust vnluos (say below io<br />

nl'), while keeping unchanged thnir<br />

ex:ellent parformance, in particular<br />

efficiency and simplicity, is yet unproven<br />

but miqht be worth beinq investlqatcd.<br />

For the considered thru-t ranfin, new<br />

devices bused on tho Electron Cyclotron<br />

Resonanco (ECR) (2) are presently under<br />

evnluation, nimfnq to further improve the<br />

1 on thruster's per formancc .<br />

The ECR tect iiquo nllowe oporatinq over a<br />

vider thrust ranqe by chanqing the mass<br />

flow rate in tho diocharqa ch;imber<br />

enhancing the electrlcal efficiency and<br />

qaa conoumption over a widor pressure<br />

ranqo than tho conventlonnl RF nnd Knufman<br />

techno 1 oq les . pn r t 1 cu 1 n r 1 y<br />

ECR appears<br />

indicated for sinal: sIz@ Ion thrusters,<br />

for which it io aloo onaler to achieve the<br />

optimum static maqnotlc flold necessary<br />

for resonance.<br />

The ECH technique consists in applying a<br />

ntatlc magnetlc field I orthoqonal to the<br />

direction of an oscillating RF field, so<br />

that electrons are forcod to rotate within<br />

the thruster's discharqe chamber, around<br />

the magnetic field lines at a cyclotron<br />

frequency givon by: Fc- eB/2nm. The mean<br />

energy per collision, transferred to an<br />

electron, is:<br />

Wc- (e*E1/4m)(1/(4nI (F-Fc)+(l/il)), with:<br />

0- magnetic Pield; e- olectron charqo:<br />

m- electron mass; E- applied electric<br />

field peak amplitude: 7- mean time between<br />

two consecutive collisions, inversely<br />

proportional to gas pressuro; F- frequerlcy<br />

of the appliod RF field.<br />

At re60nance F=Fc, and the quantity WC<br />

assumes its maximuin value: Wc - (cEi)'/4m,<br />

which depends only on collision interval<br />

and electric field peak value. Clearly the<br />

maximum bonoeitn of tho ECR effoct is<br />

achieved in the low presouro ranqo, being<br />

the col~ision fi-squency proportional to<br />

the operating qas pessure.<br />

For a ion propulsion system in the<br />

millinowton range a RP excitation in the<br />

V"p range proves advantageous for the<br />

rollovinq considerations:


I<br />

I<br />

!<br />

I<br />

i<br />

~<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

!<br />

I<br />

I<br />

I<br />

I<br />

i<br />

I<br />

I<br />

I<br />

I<br />

I<br />

0'<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

.eI<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

'<br />

I<br />

I<br />

!<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I


- it is possible to use 8 low level static<br />

magnetic field to rench the resonance<br />

condition, e.g. 36 GausB for resonance at<br />

100 me. A lower thruster mass can be thus<br />

ach ieved :<br />

.. slnco the ~avelcnqht 10 much hiyher thar<br />

the chamber dimensions, problems arisinq<br />

pram energy propagation into plnsna can LU<br />

avoided. In case of VllF oxcitation, plasma<br />

generation Is infact achieved through a<br />

"noar field" mechanism so that no cut-off<br />

frequency exists:<br />

- it is possible to use coupling<br />

olactrodeo. for the VHF RF field, outside<br />

the discharqr? chnmbcr, clue to the lini'ced<br />

rwor losses for irradiation > 1/~, i.6 about 2 UHZ connidcrinq<br />

a pressure of 10'-4 Torr and nn alcctron<br />

energy of 13eV. This condltion ensures<br />

that electrons turns around the magnetic<br />

field many times between consecutive<br />

collisions:<br />

2) R 1 cm, whore R~is the qyration<br />

radius of the electron in presence of a<br />

magnetic field dirocted nlonq tha chamber<br />

axis. This condition enquros that the<br />

electron trajec'ories are conta,iriwl in the<br />

#<br />

+ischarge chamber;<br />

3) EM field wavelcnqht >' 3+5 cm. Tnis<br />

condition avoids propnqation problems in<br />

the plasma.<br />

In summary, the ECR technique IR expccted<br />

to provide substantial Lmprovenenta in low<br />

power ion thrusters pcrformanca, enhancing<br />

the advantages of traditions: RF tcchnlqes<br />

in combination with qthers typical of the<br />

Kaufman technoloqy. The main fotsturcs of<br />

the ECR technique are summarized as<br />

Io1 lows :<br />

- ECR sources do not have components<br />

subjected to wearout, as cathodes or<br />

accelerating electrodes, l.n the plasma<br />

charber. I ,<br />

Problems of sputteriny erosion inside the<br />

chamber are thus eliminated, impac; ing<br />

positively the thruster lifet ime.<br />

Moreover, it is possible to realize the<br />

discharge vessel with materials having<br />

high secondary electron emission<br />

coefficients, scarcely sensitive to<br />

erosion and capable of reducing electron<br />

losses from plasma towards tho vessel<br />

walls.<br />

- T:.e plasma produced by the ECR 1s hiqhly<br />

uniform, both in density and t-mperature.<br />

Achievable ulec'ron densities ar@ of the<br />

order of 10'12 electrons/cm'3 at pressures<br />

in the range of 10--4 + 10A-5 Torr, thus<br />

facilitatinq beam extraction optimization.<br />

- The ECR technique is specially<br />

advantageous for ion thrusters operating<br />

at' low thrust levels ( 2410 mN) where it<br />

reduces considerably the Instability<br />

phenomena inside the plasma. Low thrusts<br />

ere related to small chamber dimensions,<br />

which eimpliliee tho realization of a<br />

uniPom magnetic fielc! in tne dlscharge<br />

vessel, and requires less Dc power.<br />

A small chamber also requires small<br />

electrodes for electroinaqnetic energy<br />

tranwfer, with lower losses due to EU<br />

irradiation and vessel walls absorption.<br />

Furthermore, for constant average beam<br />

current densities, thruster throttling is<br />

accompl isiied keeping the mass flow rate<br />

to beam area ratio constant. A reduced<br />

flow rat& is associated with a pressure<br />

regime within the discharge chamber where<br />

ECR proves more efficient and stable than<br />

other traditional excitation techniques.<br />

- Tho yrid extraction syetcn can be<br />

dcsigncd and optimized on the basis of the<br />

enhanced plasma characteristics typical of<br />

the ECR technique. In this direction PROEL<br />

Is investigatinq also new technoloqies<br />

(patent pcn-llng) for the realization of<br />

qrids with a qcnmstry having a hiqh<br />

transparency factor to ions, while<br />

maintaining good nechanical rcsistnnce and<br />

the capnbillty to survive to sputtering<br />

erosion.<br />

The USQ of ti hiqh melting point refractory<br />

material, coa t ed with sui table<br />

anti?putterlng protcctlon layer, is the<br />

solution to long lifetime requirements.<br />

6,CONCLOS IOttS<br />

Electric propulsion, and in particular<br />

advanced ion propulnlon. is an enablinq<br />

technoloqy for the feasibility of very low<br />

Earth orbit missions, in power-limited<br />

liqhtsats, where drag in the doninant<br />

effect.<br />

Furthermore, low power ion thrusters are a<br />

good system alternattve for propulsion<br />

tasks requirinq tho stoady application of<br />

low thrust levale ovcr extended periods of<br />

time to implement a qiven velocity<br />

correction. Nevertheless very lon9<br />

lifetimes, of the order of 20000 to 40COO<br />

hours, must be reliably demonstrated.<br />

Improvements In mass and power efficiency<br />

of such low power tiiusters wou!d a!so<br />

benefit the liqhtsats design.<br />

Lov power arcjets, in the 1 Kw ranqe, have<br />

also promisinq applications for certain<br />

orbit manoeuvering tasks, and their<br />

development s:iould be further pursued.<br />

REFERENCES<br />

(11 J. Reale "A low altitude Lon-prop-IIf*d<br />

remote sensing spiscecrnft ": 27nd<br />

IEPC; Viaregqio, October 1991:


[ Z ] C. Purrotta, M.Bieconi, A. Bicci,<br />

H.Capacci,C.F.Cirri,G.M~tticnri: I' Ort ita1<br />

control and manoeuvering of lightsats /<br />

synchronous natellites: assecww?t or new<br />

ion propulsion technoloqioo b m 4 on tho<br />

Electron Cyclotron Resonnnce pherrsrnanon to<br />

Improve thc poreormancc of thrusters in<br />

tho mill iHawton ranqc": 27nd IEPC,<br />

Viareqgio, October 1991:<br />

[3) C. Pcrrottn SAR wnsors an tACSATS:<br />

a eeasibiiity assessment" : this<br />

Conference:<br />

i<br />

(41 C. Perrotto Emerqing new concepts<br />

for non-CEO satellite networks: a review*:<br />

ICCC '92; Genoa, October 1992;<br />

[5! J. Oonodicto, J. Fortuny, P. Rostilla<br />

PACSS-11: a medium altitude global<br />

mobilo 133tQllitQ system for personal<br />

communichtiono at L-bandn: ESA Journal<br />

Vo1.16 N' 2, 1992.


I .<br />

Ihfcmc Advanced RcJcuch hojccts Agrncy<br />

Advanced Systcms Technology Ofkc<br />

3701 North Foirlon Drive<br />

Arlington. VA 22203-1715<br />

Am Overview OP DARPA's<br />

Adwumdl Space TccBowo~ogy Program<br />

I. P SP w 0 r) c CT IO s<br />

In the rhrcc dccdes thmt have clapcd rime the beginning<br />

of the spuce aae. satellites have incronscrl in prrkirmrncc<br />

ond cspohility hy orders of magnitutk. Dcniantls for more<br />

copocity hnve. in many cases. ken met by merely<br />

increasing the sire and wight of h satclli\cs. with more<br />

channrls for communication or mote mrmciry or mnrc<br />

proccsring capability, but still reprcscntotive of thc<br />

clisring stoic-of.the.ut. In general. the Dire of satrllites<br />

hns grown sianificantly ovcr the early irail.hla?cr<br />

vcrsinns with their admittedly limited capobiiitics. Yet.<br />

thcre are indicaticms that we still hnve n Ion8 way to go<br />

klt,rc he ultimate limits ue rcochcd in "mating thing*<br />

small."<br />

In the present economic climate. it amwar* ccrtnin that<br />

there will he significant cutbackr in most arras of the<br />

dcfcnw htljict. including militory rpace ay*!rmq. fhc<br />

I.kputrncnt id Dcfcnsc (DoD) and thc dcfcntc iritlintry will<br />

he eapecied to design oncl field more MJVMCC~I and mcirc<br />

efficient spnre systems. These newer systenu must, mit<br />

will. make even more use of miniaturircct hifih technology<br />

components thnn are incorporated in our current stable of<br />

satel;ites. Using this philosaphy. future syctcmr cnn he<br />

e~pcctcd to hove cqual. if not grratcr. capabilities thon<br />

most ol he current systems on a unit wciBht hnsis. Upon<br />

implemcntntion ol this philosophy of reductinn in the size<br />

md cost of huth satellites UKI lhcir tnorter rockets. we<br />

wiil hove made major steps toward synergistically<br />

satisfying cmcrging national nccds for retponsive and<br />

reconstitutoblc space systems.<br />

The Defeme Advanced Research Projccls Akrncy (DARPA)<br />

is the ccntrnl research and development orgnnir.niion ol the<br />

DoD and. as such. has primary re*pnsibility lor the<br />

maintenance of U.S. technological superiority over<br />

potential adversaries. DARPA's programs locus on<br />

technology development and proof-of-concept<br />

demonstrations of blh evolutionary and revolutionary<br />

epproaches lor improved strategic. conventional. rapiddeploymcnt<br />

nntl sea ;mwer forces md on the scirntific<br />

investigotion into adv~ced basic tcchnolngics of the<br />

future. DARPA cnn move quickly IO exploit new idcar md<br />

c,oncepts hy working directly with industry and<br />

universities.<br />

For four years, DARPA's Advanced Spocc Technology<br />

PIOgrmr (ASTP) htu addressed various ways to irnpve the<br />

pCrfO~MCe of small sate~~ites md launch vehiclcs. The<br />

advanced iC%hnologies lhaI are being md will be developed<br />

by DARPA for small satellites CM Se used just N easily on<br />

luge Sakiliter. The primary objective of the ASTP is lo<br />

Col E. NicatriI and 1. l)nld2*<br />

2. The Arroqpre Corpornlion<br />

Suite 7WO<br />

955 LEnfant Plaza. S.W.<br />

Washington. 1I.c. 20024.2174<br />

25-1<br />

enhance support lo opcrnlional commanders by<br />

devcloping and applying advanced technologies that will<br />

provitlc wst.elfcctivc. timely. flcxihlc and rrspcinsive<br />

spxc systcms. Fundamcntal to the ASTP cffort is finding<br />

new woys to do business with the goal of quickly ictcrting<br />

new tcchnoltrgics into DoU space systcms while rcr,ucinp;<br />

cost. In our vicw. thcw nwthods arc ;wime cxnmples of<br />

uhat may tw tcrmed "technology leveraging."<br />

The ASTP is a muliidisciplinary technology development<br />

cfkirt aimed at quickly exploiting dvanccd tcchnologie3.<br />

lncludcd in the program ue:<br />

Sponsorship of the initial launchcs of the<br />

Pcgarus Air.Launched Vchiclc (ALV) ond thc<br />

ilcvrlopmcnt of a Standard Small Launch Vrhicle<br />

(SSLV);<br />

Dcvclnpmrnt of cnohling tcctiniilngicc<br />

tubdividcd into sntellite support suhsyetcrns.<br />

SAlCllile poyloads UI~<br />

communication terminals:<br />

Development and launch of small satellitcs lor<br />

demonstration to and evaluation by the military<br />

Services. lncludcd in this area arc the Multiple<br />

Access Communications Satellite (MACSAT)<br />

program uid the Microsat program:<br />

Development of standdired. multimisrion<br />

common bus undcr the Advanced Technology<br />

Sundnnl Satellite Bus (ATSSR) program; and<br />

Development of two advanced technology<br />

satellite demonstrations scheduled for lnunch in<br />

the mid-1990s. The Advonccd Satellite<br />

Technologies for EtIF Communication (ASTEC)<br />

program will develop and launch two EIIF<br />

payloads. The Collahorotion on Advanced<br />

M u I i i s pe c ti a l E ar I h 0 bse rv at i on (CA hl EO )<br />

program will develop and launch a multiple-use.<br />

remote scnsing, multispectral payload.<br />

The ASTP has initiated ovcr SO technology projccts. many<br />

of which have been coniplctcd and transitioncd to uscrs.<br />

The objectives arc to quickly qualify these hiRher risk<br />

technologies for use on furJre programs and reduce the risk<br />

of inserting rhese technologies into mojor systctns. and to<br />

provide the minieturizcd systems that would cnahlc smaller<br />

satellites to hnve significant -- rather than limited -.<br />

capability. Only few of the advanced technologies can<br />

be describcd here. Ihc majority of which are applicable to<br />

both luge and small ratellites.<br />

The authors wish to acknowledge &e valuable contributions of LTC Robert J. Bonometti. DARPA. and John bairn.<br />

Spre Applications Corporation.<br />

.


I<br />

23-2<br />

2. ):SADLISG TF.CIISOLOGY PRo(;wAM\as<br />

2.1 Subsystem9<br />

A sigriificant purcion of the ASTP effort is clcvotrd to tho<br />

dcvclopmcnt of satellite subsystem tcchnologics.<br />

Suhs)stems such as pwer suppliks. attitude tlctcrminolion<br />

and control devices. comm,unicotionq. computer<br />

prcrcessing and memory storoge. propulsion units for<br />

stnti:,nkccping rnd repositioning ore. of necessity.<br />

prcscnt on virtually every satcllitc (whrtlirr "light" or<br />

"heavy"). All of these items contriburc to tlic weight of<br />

the snteilite nn-orhit; thus. niajtir reductions in wcigltt and<br />

cost not only hcncfit the soteIIite. hut nIso aid in reducing<br />

the sire nnd Coli of the booster vchicles that pul t h h in<br />

orhit. The ultimate ohjcctive is to minimile the six and<br />

maRioiire the efficiency of launcher vchiclcr and the<br />

satellite bus so that the "business end" of the the space<br />

systrm -. thc payload -- comprises o much morc significant<br />

frat-tinn of the ovcroll satellite weight.<br />

2. I, I LiRkrwcifihr Rcarrion U'hrzl<br />

ne Lightweight Wrartion Whccl (LHW) is a magnclicdly<br />

rusprnded reoction wheel with rrdundarit elcctronics that<br />

will provide five timer the mnmcntum of erirting units at<br />

the I me weight, with growth potenlid to ten limes the<br />

momenturn. hy using rnognctic bcoringr in lieu of boll<br />

bearings and fastcr rotational speed. The LRW requires<br />

U percent lcrs power and can hc used nn all sntellite,: its<br />

higher speed 4 rrduccd bearing vihration pntrntially CM<br />

hcncfil oprraticin of onhoud scnsors (e.g.. lcss "bluning"<br />

of a scnwr's imrgc). This cfron is aimal at ihr design and<br />

delivery of a prototype LKW for testing a?d siihrcquent use<br />

on a satellite. The prototype LKW will he flown on an<br />

upcoming Air Force Space Test I'mgram llight.<br />

2:l.Z Aliniaurc Global Positionin# Sy.strm Rtrtivrr<br />

This effort ia a technology devclnpicnt project to design.<br />

fabricate. develop. deliver and demonstrate. in an<br />

apcrotional cnvirnnment. a spncc.qunlificd. niultic!innncl<br />

Global Positioning System (GPS) rcceivcr lhan can bc uscd<br />

to support autonom~us navigation onbnard spacecraft<br />

(Figure I). The GPS receiver will enahle the simultaneous<br />

reception of mulliple CPS navigation sipnals. therehy<br />

providing p:ratrr psition accurory in cottiparison with<br />

cunrntly ovailahlc rcccivers that sqricntially receive the<br />

miiltiplc GI'S navi~atinn signals. The IIW cif gallium<br />

arsenidc (GaAs) tc#:hnology has ennhlctl this morc<br />

"pwcrful" rccciver to fit in a much more compact package<br />

(one-tcnth the siic of previously space-qualified<br />

receivers). The GI's rcccivcr is scheduled to "fly" on<br />

several space rnissinns hr4;inning in 1993.<br />

2.1.3 Artitndr Dricrminnlion. Control and Nuvigaiion<br />

S y.5 tcm<br />

A single. fully inrcgratcd guidance. navigation and control<br />

system is hcing dcvclopcd under the Attitude<br />

Dctcrminotion. Cnn:rol and Navigation Systcin (AWNS)<br />

projcct. It will IIW low cost stu trackers. fihcr optic<br />

gyro*. gencric VllSlC space-borne coniprrirrs nnd the<br />

ASTP-dcvclopcd GPS rcccivcr (sec parogrnph 2. I.?). The<br />

strap-down star tracker is designed to determine attitude by<br />

recognizing stnr pntirriis via an acquisition search pattern<br />

(a slow attitude chnnge maneuver) and mnintnin that<br />

attitude dctcrmination in ony orientetion via ncorly<br />

continuous star tracking. Low cost, high!y reliable fiber<br />

optic gyros provide attitude determination during high<br />

slew rate rnnncuvcrs. smoothing between aiai sighlings<br />

wid rnte stabilin~tion. Spocccraft autonomy is maintained<br />

by using L h GPS lor navigational updates. AdvPnlagCs of<br />

this' project include a star pattern recognition algorithm<br />

that r\iminkcr he nmd lor U\ initial altitude acquisition<br />

scnsor (i.e.. no sun or wth scnsor is required) and generic<br />

applicability to all three-axis. stabilited spacecraft.<br />

- \/<br />

-LI. ..,<br />

'.<br />

//.<br />

Figure 1. Miniature GPS Receiver<br />

2.1.4 /nJ?atahkc 'Torut Solor Array 'ferhrvhgy<br />

Solar arrays typicolly provide spocecraft power. At<br />

present. as the omount of power required increases. the sire<br />

and wcight of the solar arrays incrcaw _- n situation that<br />

rieccssnrily constrains the capabilities of poyloads r ,<br />

small satrllitcs. The ASTPs lnflatahlc Torus Solar Array<br />

Tcclinology (ITSAT) prnjcct amis to ni:ike pssihlc spacc<br />

missions that are othcrwisc imlwssiblc hy providing<br />

incrcawd ovnilahlc pwcr while niaintnining vmall launch<br />

vrilurrie and wright. An inflatnhle. srlf-rigidizing torus<br />

striicturc ruplwris :he solnr ccll hlonkei. The inodulilr<br />

design allows for cosy insertion of new solar cell<br />

tcchnology including thin film arroyq. Thc current ITSAT<br />

under dcwlopmcnt hog dcsign goals of 100 watts/lcg and<br />

120 wai.s/m2.<br />

2.15 Atiniaturizcd, Lav. Pavtr Parallel Processor<br />

The basic goal of the Miniaturized, Low-Powcr Parsllrl<br />

Processor technology dcvclopment prajrct is the<br />

rcduction. hy an ortlcr of m:ignitutlc. of onhurd pror essnr<br />

sire. weight and pnwcr consuml)tion for s~iarc..h:isc~l<br />

scnsor systenis. Such proccn.cors must cmphiy niazsivcly<br />

parallel architrcturcs with lorgc numhcrs or processing<br />

elements in order to actiicvc thc high throughputs required<br />

(up LO tens of billions of operations pcr sccond or more).<br />

The appronch for achieving this goal is to use threc-<br />

diinensional. hyhrid wafer scale intcrconnect aiid<br />

pacia~iiig technology. In this conccpr. individual<br />

modules with multiple. unpockaged seiniconductor chips<br />

are compactly intcrccinncctcd intq a high dctisity packagc<br />

with substantial weight and power saving5 over cxisting<br />

packaging appoachcs (Figure 2).<br />

2.1.6 hlugnetic Disk Macs Mrmnury<br />

Hotuting disk mcmory subsystrrns have becn n leading<br />

technology product for many years. Allhough not widcly<br />

applied to space applications. they represent statc-of-thc-<br />

art for high tlcnsity. mechonicrl mcniory suhsystcm~.<br />

They arc less complex and hnve fcwcr potential mechanical<br />

failure pints then troditionol spacchornc talx recorder<br />

systems. Thc objcctive oi thc Magnetic Disk Mass<br />

Memory project is LO dcvelop a magnetic rotating disk<br />

mcmory suhsystem that will provide up to 1 Cigobyte of<br />

high-speed data storage. The effort will rcvicw availohle<br />

optical and rnibnetic disk equipment. detcrmine the


-<br />

physical and mvirnnmmtal rrquiremcntr ktr npcratitsn<br />

ahrud a .p.crcrdt. url design uul fahricarc nn mclnsurr<br />

suitable lor rpare flight<br />

1.2 Fm)load lechnoloplrr<br />

In additton tn providing more rmm lirr payloads nn<br />

satcllitcs. cc intcnd w increase the nunihrr ul hits or<br />

pixels per pnund for communicatinn. and optical<br />

paylods. Se .rial p ~ects have ken inilintcd lo clo just<br />

hi. In IM mtim. we discurs snmc 01 ow EIIF. UHF md<br />

kaur mmmuni'atbn initiatives and several i4 our olitical<br />

tcchnoli~y~cs Inilialiver.<br />

2 2 I Ellf<br />

2.2 1.1 Psrylmd ctmctp<br />

The mnst promiwnK. new. near-trrm ieclindngy lor<br />

protected cnmmuniralions employs :he EllF hand<br />

(apprnxm.tcly &I Ctlt uplinks MJ approaimmly 20 Gllr<br />

duwnlink.). The ASTP hu several tcchnolv&y yrojku<br />

underway that syncrgisticallv complrmenl and support<br />

other Do0 work in the ENT arena. including the<br />

applictlim of advanced technnlngies that ruuld<br />

significantly rrduce the site. weight. volume MJ p~rwcr<br />

requtrrmmu 01 exisling EllF sysicms. We ue striving lor<br />

a hS percent rrhction in quL4 pnwer compunl with the<br />

present tcchnntopy hase. Within five years. further<br />

lechnology mdrances should provide an dditiunal<br />

30 prrccnt reduction in weight MJ pnwcr. hescntly. our<br />

audoes indt;alc a payload weigh1 01 ipprnximalely<br />

67 purds br a 15.rhanncl. low data raw (LDR) EllF<br />

package IS pssihle (compul tn the eai%ting 225.pnund<br />

package). A highly efficicnl. 2 walls. 20 Cllr<br />

IrUIsrI.illmg. high.powcr amplifier yields on overall<br />

eI!iciency ol at leas1 35 percent; it USCI a rsctntly<br />

deweloped (DARP Spnnsored) CaAs permeahlo hase<br />

umsism?. AI&# developed for thit pnject ire a<br />

high-spcrd signal proensor. lightweight signs1 generator<br />

ud lighlweight scanning anlenna. The U Ollr vulning<br />

amna hms a variahle brunwidh. making it capable of<br />

operating in elliptic. U well U circulu. orbits.<br />

2.2.1.2 Sphrriral Lew AIVewsa<br />

The Sphcricml Lens Antma prsjcct has as its ohjcclive<br />

the development of a wide licld-of-view (WFOV).<br />

elcctmnic scmning. multibum EHF mmna cspahlc of<br />

nulling interfering sqnds md operating in a vuiciy of<br />

orbiu. inludin8 those that arc highly elliptical. The<br />

munna's radiatinp apenure is 8 splm of Mlid dielectric<br />

Ih.1 provides a graduated index ol refraction la furm the<br />

ractating .p*tum. Fsedhorru 10 VrMgcd with equal<br />

~p~:hg on a concwo spherical awfica adjacent to he<br />

dielectric sphere. TO lorn .n electronically scmcd<br />

UIVNI% any one of a luge number of fee& b ercited<br />

hhmugh UI interleaved. switched lrm network, which CM<br />

combine c l u r of ~ horns 10 perform complex nulling or<br />

CUI 5c wed for simple swivhcd beam operations. The size<br />

or the lens dcpcnds on lk minimum gain requirement<br />

(0.8.. for 2.5 38 minium gain, cha lens would measure<br />

apparimately 2.5 inches in dimeter at a fryucncy of<br />

44.5 GHt). The estimated sirs or lk uuenna (lens.<br />

horns md switch U-) h 12-inch dimeter cylinder and<br />

rJ inches long.<br />

2.2.2 UllF<br />

The mosi widely used d. unfomnutely. most vulnerable<br />

mililuy satellite communication (MJLPATCOM) frequency<br />

band is UHF. The Multiple Path, Beyond Line-of-Sight<br />

(MUBL) Communication effort is aimed at providing<br />

interference-resistant voice communications among<br />

affordable. handheld UHF terminds having appmaimatcly<br />

5 warn of RF OUQul. The concept provides a singlc.hop<br />

capability (U seen by the user terminal): it may be lhought<br />

or U M amplifying ionosphere. No salel~ile crntrlinlring<br />

is contcmplated. When more t h one ~ satellite is in view<br />

of the communicating terminal pair. there are multiple<br />

popagation pah. "be modulation nnd coding system is<br />

designed W sdppon this and resist interference from other<br />

satellites. In addition UI satellites. MUBL CUI ba mounted<br />

on high altitude balloons. mountaintops or unmanned<br />

aerial vehiclh. Successful implementation of these<br />

concepu could rubsumtially alleviate shortcomings noted<br />

in che went Dcmt Storm operations.<br />

2.2.3 SatrlliteiSubmarine Laser Communications<br />

Initiatives<br />

A number of laser communicarions studies and<br />

demonslrrlions are underway or have been completed by<br />

rhe ASTP. n\ec common objective is U) dcvelop reliable.<br />

two-way luer communications systems. For submarines<br />

having OlpMded operational depth and speed envelops.<br />

laser communications povidcs the plential for timely<br />

message delivery at wdul umsmission rates. Current<br />

submuim communications can be enhanced through the<br />

use of bluegem laser technology. Submarine laser<br />

communications sysmnu will require small. lishtwcight.<br />

pime power cllicient laser5 Md nmow spccaal blnd wide<br />

t3ld.c.f-view optical fillen. The ASTP h u scverd blue-<br />

]Ireen laser Pmjccts that address these challenges. AI<br />

pesent. here development efforu focus on he Cesium<br />

Atomic Relonmce Filter (Cs 4RR md alternste narrow<br />

handpass filters. as well as several laser umsmitter<br />

technologies. All cr there technologies ue being<br />

developed for rapid insertion ino ..aididate spaceborne<br />

luer communisations systcmr.<br />

223.1 CeJiwm Alm'c ReJoMnre Filter<br />

The Cs ARP pm~~ct U desigmd w investigate enabling<br />

technologies IO support srlellile-to-submarine laser<br />

communications. Specific ueu of investigation are<br />

satellite system concrpt delinition and uplink rrceiver<br />

kcadboud design ckvelopncnl ud testin& The Cs ARF<br />

raciver a p u h utilims a unique side-znupled Cs ARF U<br />

h buis fur he 4.rell anay ('igmc 3). This approach<br />

porrJcs very gomi hoadbmd signal rcjcctinn wtlh<br />

erc..plionally high mband sipnal throughout. Our<br />

Iimdings w-date have resulted in an order of magnitude<br />

improvement in cell efficiency fra 4 percent to over<br />

47 percent.


124.1 PhwdAwmy Mimv.~tnhbkL.u#eApn(ur.<br />

Apmure si- of pent space.IHwd oplud systrms is<br />

limited by c0.t md rrlilabiiity of a vch*k IO launch a<br />

logr. massive. prim mina. The Phsd Anmy Mi-.<br />

Eitendahle Large Aperture (PAMELA) project is<br />

devclqnng Ihe Icchnnlo~ IO build a mim mmpKd of<br />

lighlwci#hl lcgmenu Ihu CUI be folded fa launch and<br />

auimatically spacedeployed IO form a luge aperture.<br />

(5- Filum 4). The rchnology will dwclnp md mtrgrste<br />

srgmenr Sensors and position 8clunIora with conlrol<br />

algoiilhms for accuram remote dcploymrnt and active<br />

N~U. mml. Minimm wnms on dI djaccnt edges<br />

YI)Y reluive w;ment offwt. %se acNon, CONidnnl<br />

key IO Ih tochnob#y. have bccn denmnrhmsd<br />

p- .*.HI -q<br />

Fipunl. PAMELA<br />

ML wmiIIIc<br />

2 2A.2 Inmid PseudoS~w Rr/nrr. Unir<br />

The lncnid Puud0-S~ Ref- Unit OPSRU) pc:a 1 is<br />

developing a sin;le unit for pecision pointin; and<br />

subiliuliol of 0pic.l pqlods. It will uwnp~u for<br />

nuwhMicd hwa! mov.(~ota. thanby albwin; Ih<br />

uuorpa.tion or la# stiff and lighter smrtuea. Th.<br />

,<br />

LI &-I- 0-<br />

Fgun5. PSRU<br />

-.<br />

2.1 43 Elccmm Turnfin# Se-<br />

Sensors for a wide range of signals are nf primary<br />

impmtmue for d v m d lyrtcms in acmspwr RlIihIcc<br />

rmd conuol. mbotin. tuget imaging and oihcr trnpmmt<br />

applications. The ultruensitive cl~cvon tunnel .crun.<br />

recently dcvclopcd at lct Prnpulrion Lahnrsimy. has<br />

applicalionr in adrmued arcclemmrtcrr. hydmphnnes.<br />

ma~netometers and rwm.tcmpraiure infrared daccttm.<br />

The Nnnel smsor is bard an Ihe quantum mcrhanicd<br />

elwlron tiinncling merhanim used in thc sranntng<br />

turncling microscope. which won Ihr 198b Nokl Prim<br />

for Phy-ics. A armpvt ti*mI sensor wilh he size .nd<br />

mu: of a penny has been micromachid from a silimn<br />

wafer. Recause tha tunnel arnm can be fabricated ii<br />

silicon. it is possible to fully inteflaie Ihc tunncl sensor<br />

6th iu nkmclecmicn in a dithii silicon pekap.<br />

5.3 MILSATCOM Terdnal TeebmoloBy<br />

Developmeat<br />

DARPA’s IMPACT(hmion into MlLSATCOM &duns<br />

olAdvrPsd Cornrn~~k~~P~ Tahmbgin) Fvogrun is a<br />

mullidiuipliny tsclaology development clfon limed at<br />

phased insertion of advanced technologies into<br />

MILS/.~M tamind syuenu. Tho fundanmid god of<br />

lhis p orn in IO reduce ha lifa cyclo cost of the<br />

MLJATCOM U nnid segrnnru with umciited reduciiav<br />

in unhal sim. weigh1 d pmwr consumption and<br />

Onhnsenrnu in pcrlonnrra. nliabilily and capbilities.<br />

lb pOpElI MldTUSel bod IshnolO&y effON hat Ipu,<br />

dI MILSATCOM terminal po;wna with iechnnlogy<br />

insation initiatives. reuotiu ad upgrades. as well as<br />

enabling ucblogy developnonis in sumrt of neat-<br />

pnaatian Mminals.<br />

MlLJATCOM qyatems cumally encompass a diverse<br />

mollind. -I tmnin.l 01.1 ue designed IO inlcrfvo wiUi<br />

mcrd differem m a of saullita operating in three<br />

MILSAXOM brdr Eah brstay b.nd offm pniculu<br />

d~~tagcs ad complmentuy chuvteristics to Ihe<br />

orardl dormu rpa rchicocm<br />

In lddition IO his diversity. IIU urminal populatinn<br />

brapa.us numeroo1 distinn aystcm implementations.<br />

lncludiy nunpek ud man-porubb Immidr: mobile


IMPACT rill work cbuly wilh thr MILSAXOM lamiul<br />

community nd with 1echnolo;y devsloprs. B<br />

conducting m intr;raa coherent C N IMPACT ~ wit<br />

synergistically bvmage ongoing wak within this<br />

mnnlmily md Wilkin inbuy IO rh*r*IL* puducc- nd<br />

vraicrud ;a& d I& mrm.<br />

IMPUX wiu m e a mm md mte mndtiip0lrnr far<br />

ths new m of defense rqvisiiim i6 which budgetary<br />

collruaim messwe raked f&img d m-w I Y I ~ nd<br />

Ereus anphrU in plued m meach md dnebpnmi.<br />

This pgrm will pioneer Ih. leveragin# of RAD IO<br />

uppd.. .o.uin ad modemin existing rrldsd equipwnta<br />

in order IO nunlain Ih. cnmptilive uhmlcSical<br />

MIVMII~O that the US. now powasus in defcnse<br />

capbiliun.<br />

1. LIGIKSAT COMMCMCARONS<br />

TECHSOLOGY DEMOSSlRATlOSS<br />

Amhr driy &ud by th ASR b.h rnul onorbit<br />

dernoruuah of compln~ rysms. This prwides<br />

-pof of ttm pdding- far all thc parodivy pha of RAD<br />

effm in mums sdh. md wWstcm ad eompnent<br />

developmrml in he form of conclusive on-orbit<br />

operalions.<br />

3.1 MACSAT<br />

The initial wnstellation of DARPA liJlw WP launched<br />

01: a SFOII hur m May 1990. two- rlh ~ rmpd<br />

ch. pmm. It includd two UHF nm-ad.forrud<br />

suellitm Ih. MACSATs. 11 IU p l d IO demm~tru<br />

thew opr~ion IO ucticd wmmudan b U realistic<br />

enviromncns U pouible. Th. drmorW.lioru would<br />

duplay gbbdnwuye relay for mvlpct *ra*u*. IO b.<br />

wsopmb* with existing guipnem.<br />

The MACSAT whdula demonnuaid ml accelerated<br />

mpOnM d developwnl lima wilh more<br />

convenlional synmn. The Mx performed<br />

communiuliona operuioru in suppon of Opratiolu<br />

kvrC Shield md DM( Slan (for th US. Mrin<br />

capx md were urd in uaining demommliaa far th<br />

AnnY md Ih. Navy nd fa Anuretic mppon far hr<br />

N.liorul Science Fotlndrinr Nunemus Clnwnsuatiau<br />

including Uuumisshn of diaitized phomvaplu hare<br />

bm -inbed. 7h physical c h d h d Ih.<br />

MACSAT# m I f0lb.l.:<br />

I<br />

The MACSATa am p l d in a nea polar circulu nbit<br />

(89.9 drpa inclinuion) 370 mlical mile altitude. Up<br />

to 1.024 'mailboxes may be accessed. The<br />

wnununiSUi0ns prkage operates with UHF frequency<br />

shift keying (FSK) receivers and either a IO-watt<br />

8.mminer OT a Wwm hi;h porn msmitter. The<br />

nad.rd 3.u rate U 1.4 Kbm allhough dannu~ationr U<br />

4.8 Kbp hair been .ccomplUhed. 7%. electric F e r<br />

Nhystcm IIU. a body.moonlcd Y-.olu all may ad a<br />

144.wUt.h mmmcrrial nickel cuJmiun (NiCd) Luuy<br />

prk. operuing in ml I8.VOll Dc bus.<br />

3.2 Mlrraal<br />

A reumd nm~ellalion of lcvm canmwicatim satellites.<br />

wei@.hmg 50 pounds euh. wem launched on a single<br />

Pegrslv ALV on July 17. 1991. Th. saielliua (known as<br />

Minosus) vac deaiRnd I, vide intra-!heater voice M<br />

di;iul cm~nunic~io~ don; wih me sune.md.faaud<br />

digilal &U m-kr. The electric pm sysm includrd<br />

I8 wlu ;neb I. *. 50-watt-han commercial NiCd<br />

buuy pet. a 5-volt I ~ regulaIOr U ud a 5/15 volt<br />

DcW amvmer. The utiiude coruml sysurn imluded a<br />

uzh swua ad magmomem for reference. loqw mdr<br />

fur spin-up and a 1.I.liter nitrogen tank for<br />

U.lidecping. The communications nylm dlnved fnr<br />

eilher analog or digital communications. A digitally.<br />

mn~~lled UHF FSK lawrlt umuminer u*l FSK receiver<br />

allowed voia canmunicatinru or up IO 4.8 Kbps di;ital<br />

data raw. 0nmidircctim.l b!da mmnu rem deployed<br />

an ~III sidn or chc npucrdt. Microuu hd chc following churteristics:<br />

12.silw<br />

19-kh diuneter. 7.5.inch height<br />

Dcployahle antennas<br />

Spin stabilized<br />

Niww cold gu propulsion<br />

The Minaam were designed IO bc ejated from Ihe curiagc<br />

in such I mum. U IO plrc them in a single Mhilal plrne<br />

with 400 naulical mile altitude ci?culu orbits. Allhough a<br />

lwrrh vehicle anomaly resulted in a much lower nrhilal<br />

altitude. !he -I mnclination ud satellite spscing was<br />

rhievd. A v y suocesnful demauush pogrun was<br />

canpkted before Ih. sawlliia re-entered !he ~UIIM~~CE<br />

qp~~imalrly sir monh afm Iatmch.<br />

4. ADVANCED TECHNOLOGY<br />

DEMONSTRATIONS<br />

Cmsiscent wilh lhe new LhD Science and Technulogy<br />

Sua*-~v. DARPA hu initiued a numb of new pgruns<br />

IO ~u1~1LIy develop nd apply dvancn( iechnoln~ies inln<br />

echro1o;y demonsuationr. The purpose of there<br />

~ V M C tedmology ~ demorutrations is IO ensure we<br />

Wnlinue to purnue the advancemen1 of enablin8<br />

uchmlo;ia<br />

:gv.<br />

ha may b. requbal in our future wenpns<br />

r)lIenu #&U, reduce the risk,,lor incaporaying these<br />

. fuwn sysums. demonstratinu<br />

Peguq d.T.uur launch vehicles<br />

nd &.*l IUW pVkU lb b#imonsuale advanced<br />

wllita uC*lolo;*l fa conmunicuioru ud remote<br />

u+sing.


Lulrhd durimilr NASA md Navy p*bd on<br />

8 sinrk launch aiubn:<br />

hmhed lcven Microuu on I 8- lsnch<br />

miuion: a d<br />

- hided 1h8 fir11 damnNuatiOn of a GPS<br />

receiver operating on a cprcr<br />

launch vrhiclc during Ih. boai @.U<br />

U.jUIOty.<br />

ucmt<br />

FolWi Ih. rvlt laud of Peg&, umu pdonnnsr<br />

upgrade8 rm inenparaled for Ih. Lcond bunch in<br />

luly 1991. Although ch. second Pqaru :aunch<br />

expaicncd 1'10 8ipliIicm1 inflight nomdiu n8uhing<br />

in<br />

-<br />

a Ima-t)un-inlmdsd orbit injmim aliituda, Ihe faa<br />

chat it Nmrrfully nbiud UK wm Hianlo 18 8 vbibk<br />

meum of ch mbusmaa of iu mumemmm pidmce and<br />

control 8yrlem and ultimate capabillly., Design<br />

mOdXkUbm ID Ih p b h 8 hrr krd.rebpd<br />

nd m in Ik prom8 d being qudirak<br />

4.11 T w u<br />

The Tamm SSLV will pride the capMlity to Imnch<br />

appiimmly five linvl Ihe cqaci~y of Pmanr from 8<br />

~round~IranipuIahle ry.cnm. 11 consiu of P8guu8<br />

wichoul winE. and a brier Idring nWng atop a<br />

Perekecpnr fir81 8Inga. Th. mlta lumh splcrn i8<br />

Umsprmbk nd cm k opcrucd fmm bm bas% lunch<br />

tile eUaMi8hnunl is complad within five dap d<br />

i<br />

p.yloada CI ba 1.rCbd rlw 11 b.n d 1.-<br />

lolificaticn.<br />

Tho current TIUW design cm place approximately<br />

2.000pounds inlo MO nautical mile, 286deyr<br />

inli Omit. 11 in expectad &a with modirwuh<br />

(i.e., ddiwnel 81rap.on mown ud a new apogee ti<br />

motor). Taunr8 will ba able 10 place small 8nle~liler<br />

(6oo.poud Clnu) inlo gO0.wiony nbiu.<br />

4.2 Advanced Trcbaology Standard Satrllllr<br />

Ban<br />

The ATSS8 pojccl will deiign and devefop<br />

mul1imis8ia1capble. small. UUrLrd rprrcrah bur hi<br />

incapam a new -ah CO building utellita hi cn<br />

accommodnlo differen1 lrpca of 'boll-on" mirsion<br />

pylodr. The boll.on CO"- cn hell bo dcvrikd U a<br />

ryltcm having an irulnml payload 8llached 10 8 high<br />

performance. lightweighl bun employing ndvmd<br />

lrchnoby h g h a single. rudrd intduc (Rgun 6).<br />

The ATSSB will br capahk of uceping there Lnli.on<br />

p8ylod8 from a voicly of candidate mirsion areu<br />

including meleoro~. commun*aliosu. 8lwcih~e and<br />

arking. u g a l0cum.r md Nvigah.<br />

Paybad8 employing Ih 8lMdrd bur w111 he Inmchmblc<br />

fmm hoch mall nd lrge hunch vchicln and clplhk of<br />

palming in a ruiefy d ahiu. Thr ATSSR F V ~ I will<br />

povidc &ri#ns fur a renntile bus hi rill allow rtngc<br />

c&ly nd cy. in rrcmriiiurim of SF U-.<br />

Th. key fealura of Ih. common hur mr8 r;vahiliiy.<br />

.rTadabili~y md kaihili1y. Cqhlity rnnn biainly hy<br />

mrnploying newer Iechnologie8' enshim; g:rrier<br />

prfOnnnCa in malla prkJgC8. Autnnnmu8 nht nd<br />

UtiNdo dnermilution will mabk srrlliu supnisnm. #I<br />

well U ulalliu maintenonce. Th. nummmms miisim~<br />

pluming function will ultimately enable the rylpnt of<br />

Iuticnl Uler8' immediate larking rcquircmenlr. The<br />

dlordability of 111 auclliw iyrtrrm is Iar#ely n function<br />

of mal sa~llite (and alainrcd brmm) weight. U well U<br />

thm number of uniu procured. Obviourly. the non.<br />

d g<br />

00.u will demeum when eah satellite ceua ut<br />

k a quxid design cue in itself. In additinn. che<br />

hiibility of Ih. bi1.m COnqN nylwm CUI en8hla quick<br />

htegration ud chmga out. if necr8ry. immcdinuly<br />

pia (0 Immch.<br />

TIN mnrnOn brr paida ckn #uClllrd 8drC with I<br />

Umdrd ckcuicd inlerfms o m.u rilh a wide r qe of


!<br />

--- ----FE-<br />

UICLIEASWO SAIEI Ill€ WkH&!l#!<br />

Figuro 7. Pnybd Msaa Frmbno. Cunm Spokms<br />

and Futt~n Gods<br />

The p dmance requiremenu lor he ATSJCQ indude: ( I)<br />

suppon to payloads of up to !MM lpounrnb ;requiring:<br />

400.600 wmo of pnk power. (2) rhmo-anib nltitudc<br />

canlrol. (3) atadarcl communicatim linlrm. (a) propulsion<br />

for orbit rnaintmas\ce. nd (5) a three.yem oniaaion lifc.<br />

The partla uill emphaoire Ihc UDC of c mmm industry<br />

rtnndmds mal will be scalable to WFpoft OOOO-pnund<br />

paybods with a revcn-year milrion life.<br />

4.3 AStE@ QQlOOQO~rOlhn<br />

This 1)AWPA.led joint DoD pronrnm iate~rotcs the<br />

advanced EWF communications and satellits suhystcm<br />

tcrhnoktgico urrdit Cevcbpmrnt m DARPA/W@ md flight<br />

dcmonrtratco two experimental. lightweight. EllF small<br />

satellites. T)M ~oals of he program MC to supprt the<br />

joint DoD Global Surveillance and Communication<br />

(CSBC) dcmonrtration objectives: I<br />

Develop. space-quolily and transition lvlvnnccd<br />

technologies IO support the mid- 1990's<br />

. MILSATCORI modernization decision milestows<br />

ud integrated CSBC demonstrations:<br />

ASWSI the utility of small satellites IO: (1)<br />

augment IPrp,cr backhnne sr.tcllitcs; (2) cnahlc M<br />

cvolutionrrylalfordable approach to<br />

MILSATCOM procurcment/maderniartion;<br />

(3) provide quick reaction IW~C md specidixcd<br />

communications ovpporc: md<br />

Smc 111 m wquisitinn management t ctW rimed<br />

at towering ccsu md redwing "time to mrkcr"<br />

fa new srtcliitc systems.<br />

The gwrd ptDflun approach cdis for Iha 6vakqment.<br />

launch rid 8cmonstration of two technology ac%,0lites in<br />

geosynchronous orbits. Satellite 1 incvatcs he<br />

prototype ATSSB a d the Massachusetts Urnotiauie of<br />

Tcchb8ylLincoln L.bauory-developsd EMF payload<br />

I<br />

4 '<br />

2s-7<br />

Figure I) shows IRr functional layout of he core payload.<br />

Th corn of koa pnylodo is M EHF communications<br />

pxkarJQ lhrl pvidea 32 MIL-STD-1582C LDR chmls<br />

d two MILSITD-1810 MDR chnnrerls. The data rate fm<br />

the LDW chnnnela io 75.960 bpr and for the MDR<br />

chmnncls. 4.1-1638.0 kbps. The core EHF<br />

communicatipna pnckagc will provide a variable<br />

kcanwidth antenno ant wes a dichroic lens to support<br />

bth uplink ~scd downlink with a single reflector. Two<br />

earth covcrogm Promo nrm included. The payloads will<br />

perform all riBnol paeeaoing rquired to maintain the<br />

MIL-STD-1512C and MIL-STD-1810 transmission<br />

formats. As a &sign gool. the pmylods will have a<br />

dulcu dcsiun bu dbw early l~hrrolo~y uppoder. U well<br />

00 scalability. for increased channel crpacity and ertra<br />

8D0l beans.<br />

Figure 8. ASTEC EHF Peybad<br />

Thc technology ~ VMCCS goid U a rcsult of the ASTEC<br />

technology demonstrations will greatly impact future<br />

MlLSATCOM systems through the introduction of new<br />

coyrbiliiies. incorporation of new advanced tcchnologies<br />

and demonstration of new implemcntation altcrnatives<br />

such t) small sotellitc mugmentotion. The ASTEC payloads<br />

implement he following new MILSATCOM KIyiciv:<br />

First on-orbit MIL-STD-1810 (EHF MDR),<br />

capability<br />

- Supports 4.8-1638.0 k b data transmission<br />

- indudes four channels on Payload 1 and<br />

eight ch.mwls on Prylod 2<br />

Unprocessed (i.e., transponder). VHDR EHF<br />

capability (Poylood 1 only)<br />

- Supports rintillati~-rcsistant lclivcry of<br />

widebad data Wkom rcmots k ations<br />

- Supportr &U rnm wp to 274 Mhps from a<br />

IO-foot, 500-watt transmit terminal. hough<br />

cha AnEC VMDR WMS@~,<br />

receive terminal<br />

lo 2O-fOOt<br />

!


2s-a<br />

The paylord concept is distinctly diffmowtt front typical<br />

"dud UM- approcxhco. Rather Ihw chEaahp n mum LRnc<br />

CM he wed only for P single purport by "&id w s " (ia..<br />

t:loud imaginc for DoD and civil d a ) . Qb goa[gmm will<br />

develop dvmccd ~ ~lol uxhnology dapcfda U) mnltiple<br />

plrp0-a by muldipl. usm.<br />

SgmiTic t esW a%$xJvao m L#<br />

Dove: '8 and apace.qualify an advanced.<br />

multiopced. remota payload for small<br />

satellit6o;<br />

-trona mh.mimim wage of ATSSB for<br />

.mina pyb& in tow earth orbil; md<br />

!&vel& aid dmonrttnta Common Data Link<br />

(CDL) s ~ i d - d ~Anology fa mall satellites<br />

end dimst dormlinlt comw4vity to mobile earth<br />

taminmls.<br />

OIlr first Ectivity W(U IO identify Ihe DDD and civil remote<br />

tensing requirements and needs that could bc met best by a<br />

multispcclrd paylocd. EIistinC DoD requirements urd<br />

mensurmrenrt rarcds mmcintcd with civil programs such U<br />

Lartcdan~, NASA's Earth ObPming System (EOS) and the<br />

Strotegic Environmental Research and Gevelopment<br />

Progm wew nrweycd, from which emerged clcu area of<br />

ovnlop in qwc~rol coverage. spectral resolution. etc..<br />

hat indicate mmy rcguiremenll could h ~ddresscd using<br />

an intogratad multisgsctral payload. The requirements<br />

frrr.cwmk wu U& lo &fine llw general churctcristia of<br />

a paylord d m in-how atudy wm conducied to define I<br />

point desion. This design proved feasihle for<br />

implrmentotion a mall sokllita payload on h e ATSSB.<br />

runent gmogrfun plan cd!s for system development<br />

rwuistent with m FYW launch.<br />

Tk first mo swvcyed w u climnlc rcscuch. The highest<br />

piority memwemmu for detecting and charactcrixirig the<br />

global climats change liana1 and the pattern of this<br />

chanp hove ben well uticulsled by Ihe U.S. Global<br />

~ a n memuch ~ e propam and many individual pcientista<br />

uuch M U?. Jim D~anasn. Dirtcta of NASA's Coddard<br />

htitutc for S~OCC Studies. The core nieasurcment<br />

requirement cocmiiol to chnractaiting Ihe climate sysiem<br />

is long-term monitoring of Ihe cmths radiation budpet.<br />

The00 measurements have not been mode for<br />

~ X h O V ZIWQ l ~ yEI?PO d lpona We p\fUUWd befote he dqloymmt of 0 rdiation Waet rdiometcr on a Japnnere<br />

mtellitc, in &a mid-199& SRd he f't EOS system in the<br />

Iota 109%. Et is eomtiol to undrwtand mm'r impact on<br />

the climate EYSkm. anthropgcnic climate forcings.<br />

Spece mcnowemntn of rcroools. omc. water vrpr and<br />

snsrfnce re9ectivity (albedo) am required. all of which. mi<br />

pemt. m nnaaowd hcdquatcly or not measured at all.<br />

hotly. the climate feedback mechanisms are poorly<br />

understood nnd modald. It is eooeniisl to understand<br />

whlher mm'o impact on he climate system results in<br />

hfp? K P changer ~ (e.&. cloud cover) chat positively or<br />

nqotively reidmca h d towd alobal warming. The<br />

most important of ;hess requires detailed globrl<br />

menrwacnta of clod polnre md prrcicle rim.<br />

P), wcod IPDUMUP~~~I area CanaiQIcd is mvironmentd<br />

quahy monitor@. inrludinn pornmeters such U air and<br />

voter pllutioa hnacwdaws waste rite monitoring. wetlands<br />

-<br />

cad I d w mitorin EBEB rurvcillance of natural ud<br />

mmm& dioatero for unerpicy response. Most of<br />

&em pmamrltro Rave oilplatwe fearares hat emerge from<br />

multiogtctrol mcosurcments. Although Landsat and<br />

Sptem0 hoWm d'Gmaw~ion de la Tmr (5m have<br />

cr9graod many of Ihaaa. heir rpctral bmdr were not<br />

cphized U) w u m chan and heir spatial resolution is<br />

\


i<br />

0


2s-10<br />

\<br />

I<br />

i<br />

I<br />

f


I<br />

0<br />

I<br />

I<br />

I<br />

@.<br />

I<br />

1<br />

@uc?otion: You mentioned an JPSRU progiam where platform<br />

jitter is assessed/eliminated using a.laser. May I<br />

ask:<br />

a. If the intent of eh@ program to measure jitter<br />

(for later post-processing), or to eliminate/compensate<br />

fox jitter through is slaving control mechanism?<br />

b. Is litexatuxe is available on this matt-r (open<br />

or at least releasablelto NATO)?<br />

Reply-: a) The vnit albnc provides very precise and<br />

accurate line-of-sighk offset measurements for high<br />

frequency, low magnitude jitter. When used in concert<br />

with a fast steering Lnirror, or other closed loop<br />

syst.em, it can actively remove jitter.<br />

I<br />

b) The organization developing IPSRU is Draper Laboratory '.$<br />

in Massachusetts. The program manager is Mr. Jerry<br />

Cilmore.<br />

meetion: Would you comment on the status of CAMEO?<br />

Reply: The CAMEO, ASTEC,and ATSSB (standard busi fundinj<br />

has been included in the President's Budget submission<br />

to Congress in Fiscal Year 1993 and is in the Five<br />

Year Defense Plan. The initial technology work (for<br />

EH)' Comms has been conducted for DARPA by Lincoln<br />

Laboratory and awaits further funding. CAMEO payload<br />

specifications have been developed. The ATSSR is .<br />

currently in source selection. The Congress deferred<br />

these programs in FY 93, stating their opinion that<br />

we are premature in starting the program. We plan<br />

to re-plan tire program for a full start in 1994.<br />

Que~ation: Referring to submarine laser communication.9,<br />

where you indicated that the submarine would uplink<br />

a signal for geolocation purposes to assist in downlink<br />

laser aiming, what measures do.you propose for preventing<br />

exploitation of this uplink radiation by hostile forces<br />

for the same purposes?<br />

Reply: There will be, in general, euff icient geogrdphl.ca1<br />

separation that exploitation will not be possible.::",-,. ,., , .<br />

Use of EHF ensures nhrrow beamwidths.<br />

25-1 I


~Y!!?w!L<br />

Tho fnasibllity of installinql SARs on<br />

board liyhtsats for tactical and otrategic<br />

oboervat Ion mlsslons 1s dllbcusrred,<br />

enphaolzing hlqh resolution and short<br />

rovlsit intervals as moln syoton drlvers.<br />

Llqhtoat constollations deuign criteria<br />

are prssentcd for both globnl on4 limited<br />

latituda belt covoraqe. Pros and cons of<br />

sunsynchronous versus ncdium 1ns:lination<br />

non nunaynchronous orbjto are discussed.<br />

Gross Bystem trJd0 Off3 for tho SAR sensor<br />

are then arldreoaed, in tho spccific<br />

context of a resourcc-llmitod liqhtnnt,<br />

stressinq tho achicvcncnt of *@solutions<br />

better than 5 n, swaths grestsr than 20<br />

Km, access anqles of at least 30'. small<br />

anton?ta dimensions and a reaeonnblo powwr<br />

consumption. Roth X and C band SAR<br />

solutlone are outlined. Ditn transmisslon<br />

alternatives aro also discussed,* In the<br />

contoxt of tactfcal and 1 stratoqlc<br />

scenarion, outlininq thcir ' projectod<br />

performance.<br />

I<br />

Conotellation orbits control and plattorn<br />

attitudo are also addrt-ased lor tholr<br />

Impact cn mission , SAR Inn70 Quality a.id<br />

natellita design requircnents. Rsy aspects<br />

of critical platform subsyetens are also<br />

idsntified.<br />

/<br />

1 L 1 !?IK~KG-roF?-<br />

Liqhtsat constellations 'aro rrceiving<br />

considorablo attention by industry.<br />

qovernnanta 1 Aqonc I cs and commcrc la 1<br />

carrlors. Thalr potontial for strateqic<br />

connunications is well undarntood by<br />

ailitary planncrs. which contnibutod to<br />

the rant spinorf of major prnjncta boing<br />

undertaken by Rome American sytaton houses.<br />

Less well perceived are the 1 iqhtnots<br />

capabilities for :emote senninq and<br />

obscrvation tasks for both civil nnd<br />

dofense uses. In 1990 , anticipstinq tho<br />

need for new and unconvcntlonml oolutions<br />

to observation sateltites, AlonIn Spazio<br />

started an Intornal ntudy addraoning tho<br />

feasibillty Of small SAR QatOlllteQ,<br />

stressing tho achievcment oP ; high<br />

resolutions and short revlsit Intbrvnls.<br />

Tho '91 Gulf War provided furthor ntlmuli<br />

in that diroction, reinforcod by tho<br />

world-wide trend concernlnq npaco and<br />

dofenco budget allocatlonn. Flree results<br />

were publiehcd In [l]. Slnca thon, further<br />

work on ayatem architectures and trade<br />

offs hao boen performed, concontretlnq on<br />

military applications and tho nosr-tom<br />

foaslbIlity wlth available tochnoloqlras,<br />

thus avoidinq long and contly now<br />

developmente. This paper revlauo nom0 of<br />

the most recent results achleved masfar.<br />

,<br />

SAN SENSORS ON TACSATS:<br />

A FEksIllILIPY ASSEGSIENT<br />

' C. Porrotta<br />

Alanla Spario 9.p.A.<br />

Via Saccomuro ?4, 00131 RODQ, Italy<br />

I<br />

2L SAR OBSERVATICIN MISSIONS<br />

SAR sensors operational value comes from<br />

their independence from time of the day<br />

and clouds cover. Achievable ground<br />

resolutions, swaths and access anqles are<br />

comparabln to those of panchromatic<br />

optical sonsors. Nevertheloss SARs respond<br />

differently to the physical foatures of<br />

the obsewr' 'cone: thio may be exploited<br />

to enhancs certain target characteristics.<br />

SAR and optical satellites can therefore<br />

complement each other.<br />

Howover, in a tactical scenario, where<br />

weather and time-of-day independence of<br />

the observations are a premium factor, SAR<br />

satellites outperform the optical ones<br />

from an opcrntlonal vlewpoint.<br />

In addition, constellations of SAR<br />

oatollitee can offer performance<br />

unmatched by larqer spacecraft flown<br />

individually, much as Inhorent redundancy,<br />

mor0 frequent rovislts and an easier<br />

dCCCGB to in-orbit rOEOUrCO8. If SAR<br />

u~nscr~ can bo flown on liqhtsnts the<br />

total syoton cost can be considerably<br />

reducod, whilo achieving nom flexibility<br />

in deployinq and managing them.<br />

2.1. System confiqurntion alternatives<br />

We will discuss rcpresentatlve missions<br />

otreoninq tho hi-resolution ones for<br />

dofonso applications. SAR llqhtsatn can bo<br />

launched on-demand, for short duratlon<br />

observation tasks over cpeciflc arcas, in<br />

the event of qco-political or nilitary<br />

ctlsee. Alternatively, lonq duration<br />

mioolons with liqhtsats constellations can<br />

ba envisaged to porform cont lnuous<br />

obaorvations within a given latitude<br />

bolt.<br />

ThO cost-effcctiveness of short duration<br />

aissione is ncvertheloss questionable,<br />

considering the nced for a pormnnent<br />

ground Infrastructure whlch has to bo<br />

operated and mairbtainod anyway. and tho<br />

satellite and launch costs bhich arc<br />

poorly amortized. Permanent constellations<br />

car., Instead, otfer, oven batter qlobal<br />

porformanco at a higher initial cost which<br />

ia howevor amortized over a much longer<br />

aorvlco p0riod. Furttiermoro, a pernanent<br />

constallation can provide shorter revisit<br />

incorvals and, outside crises perlcds,<br />

otratwic observation aervlcos as well as<br />

remoto eensinq functionu for qovernment<br />

and public une, with specific referenco to<br />

pot-dioaeter damaqe aceesement. We will<br />

thus concentrate, in the following, on<br />

lightsat constellations.<br />

\


aLRaqy1 rsmnto ,.verviaw<br />

An incrooairvgly important aoqpirawmt<br />

cnnc~rno tho rovimit intorval with which<br />

military rolovant sitae, mat Rxa obaeovdr<br />

typical value14 from few dmyo to ad hourer<br />

apply rsinly to fixed aaoota. Obeorvitq<br />

targeta variable in tino or apcico<br />

requieoo, however, much ohontor raviait<br />

Intorvalo, of the ordm 00 ton houro.<br />

Concariring ground resolutlon, 3 a are<br />

suffictont for detection, In none<br />

cases rocognitIon, of fJeIrQteqliC ally<br />

relevant fixed or low-mobility aoaata.<br />

Tactical applications nead, howewe,<br />

better resolutlons down to 2 tn or leos.<br />

The swath width , or instrntanooub fiold<br />

ol viow, must be commonoureto to tho<br />

thoaton: 20 CO 40 Km , depondlppgl from tho<br />

qround reoolutlon, are likely WQ~UO~. The<br />

swath m0t also be oloctronicnlly<br />

repositioned inside tho acconn anyls,<br />

providiq a high operational Blcnibility<br />

in gaehoring SAR images of aolectodl opots<br />

duriq oatollItee* overpassea. WdQo access<br />

anqlow FAYQ instrumental to :BOCU~B a<br />

covcrsqlo without *holes* and td n1nirsir.e<br />

tho con~utallation*o satellites nunhr.<br />

TIme dalay ninim1ratlon hotwoo; o reqluaet<br />

for dater and its wailability to tho onduser<br />

io of utmoot importance, apclally In<br />

8 taCtaCQl eituetion. Direct aCCOOa to tho<br />

satollitm~, during sites oworpmssca,<br />

followodl by 10~91 dnta fux~ooain9 and<br />

intarprotation by multlple,dmto atatlono<br />

doployed in the theater, pro nom am an<br />

ekfectlve answer to auch nemo.<br />

In a oeacteqic occnario thQK0 in the<br />

additional requirement of tming &$lo to<br />

oboorvo dintant nitan with a ohort<br />

turnaround time. Hclajinq lmegouy data vIa<br />

a Data Walsy Satollite network bn tho most<br />

logical and performant solutlon Ito the<br />

prob lei. 1 .<br />

3LCCNETELUTIONS DESIGN CRITERIA<br />

I<br />

WO must diatinquiah bctvcon syntono aimed<br />

at providing a global Earth covaraqe and<br />

thooo Intendod to covar a narrower<br />

latitude bclt around the equator.<br />

AD a mattor of fact, most Countrloo whera<br />

politicel instability is oxpectm! to occur<br />

also in Pueure are includod in tho SO' U<br />

to 50' 6 latltudo belt: which m y justify<br />

tailored constellations.<br />

3.1. Conetellationn for-qlobal cowsraqw-<br />

I<br />

A modul~lr solution &onsiete in injocting<br />

oquispacod lhqht6atn in olnqie plan0 munoynchronouo<br />

orbitnr the SAR con bo<br />

provided virh just ono or two antmnnem<br />

looking on both sides of tho flight path.<br />

Multipla raguispaced orbital planma Can<br />

cop. with vory stringent reviait Intorval<br />

rof~uirowntm, i.e. less than 12 hours.<br />

3.1.1. Ljalhtbat C-tolkat Iona u m o x<br />

sneonns<br />

The capability of e 6AR to inago tarpot<br />

oreas inaddo a wide oarth strip is<br />

proportional to the a-xoaa an910, dof1n.d<br />

polv tho alninun and rwximrr ole-nadir<br />

nerglleci. TRQ conetol lat ion daml@n -cr'itorib<br />

ohould peoi*ida for a contigypad, iarth<br />

covorag~, wIthIn the above'~on~trhinis. To<br />

thio and, the fundaQental inteeval is<br />

divided into U oubintarvala whose vidth<br />

corraaponde to the SAR antenn8 access<br />

angle projected mto the evator. If the<br />

ainimum and maximum off-nadir anglos<br />

cstiofy tho conotraints of Fig. 3.1.1..<br />

then tho strips accoroiblo to tho U<br />

astellitom vi11 bo contiguous.<br />

FLg. 3.1.1. SYSTEM GEOYETny<br />

right antenna<br />

accoee angle accoee anglo<br />

I i<br />

In ono orbit period, the N satellites vi11<br />

have covor-ed an Earth slico as vide as the<br />

fundamental interval, and the cycle will<br />

repeat providing a continuous Earth<br />

coverage up to a latitude close to the<br />

munsynchronoue orbit inclination.<br />

with tho constraint of keeping ha<br />

rainimum and maximum off-nadir angles close<br />

to 20' and 50' roapaxtlvely, the number of<br />

setallites N depends frota the orbit<br />

altitude and acceoo angle, as shown in<br />

tIp.3.1.2. and Table 1.1.1.<br />

* . . . .<br />

'I * U. .ll.I..ll. .*I.<br />

* .<br />

*. .


c_-<br />

XZiiK matelT. mloy ka>r*can<br />

h.ipht(m) per plan. two S/C rnnooo(.)<br />

------<br />

270 -150 lo 10.3-20.3 i r<br />

?oO-BQO 8 23.9-29.4 *<br />

4 4 3-700 6 3x.1-3a.Q *<br />

* 100 4 49.5<br />

(b) for two-antonna SARS<br />

------I_--<br />

Table 3.1.1. satsllieon nunbor vn.<br />

orbit altjtude<br />

- -,<br />

W i t h thin atrarqwnont, :tho co+opt 00<br />

ropoat cyclo Looooo partld Ieo cnohrlnq: in<br />

otner words s1n.a a cQntiguouo onrth<br />

covorago can bo achiovod daylp and SARQ<br />

are 900 sensitive to dun illumination<br />

condition;. orbit rcpcat',cycl@o of 1,2,3<br />

or aore days can be choscd. Thio providea<br />

mor0 Proodcm in choosing tho orbit<br />

altitudo, which ie a critical Pnctor for<br />

SAR dimnrloninq duo to'lightantri powor<br />

tiaitationa. On tho other hem%, tho<br />

variabllley of tho incidence aqlo, with<br />

which D oito can be obocawcrr0 during<br />

subsequant days in tho repeat Cyclo, nay<br />

bo CQnObdOr@d a pOSitIV@ f@l3tUFO In ViOW<br />

of tRa WaoLbilLty of implemontiny B olow<br />

sanplirpq rata Irrcidonce angle divarmity<br />

eystoa. whlch may or ance the rocorpition<br />

of cixod aaaots.<br />

Since Smn can oporato day and night, tho<br />

ono-orbit plane configuration O C ~ ~ O Va Q ~<br />

noninal 12 houre rovloit intowal over<br />

nont altos. If revisit intervrlo nhorter<br />

than 12 houro nro roquirod, H oqlulopacod<br />

orbit planm can be inploncntod, and the<br />

averago rovinit interval will bo 121~<br />

hourn. Tho price to bo paid io nn ~ - f ~ ! d<br />

increane In tho satellitos nurhr.<br />

l<br />

,I<br />

' !<br />

--I--- 1<br />

I<br />

26-3<br />

Xuaot~allkmg Uho SkiR antenna on the left<br />

oddlo dloclcoaoao olightly the maximum<br />

ob~orvshlo~ lc~titudoa, a feature common to<br />

011 rretrogrsdo orbita. Fig. 3.1.3. also<br />

alhowo tho rowinit intervals VS. latitude:<br />

tho 12 houra velu0 is confirmed, with<br />

ninor dovhationo above 60' due to the<br />

inclination oP tho orbit plane combined<br />

wIth the okientation of the SAR antenna.<br />

Tho aystem go or not^ in Fig. J. 1.1. is euch<br />

that the acc@so angles, and the gap in<br />

batween, dubtend identical arcs on the<br />

oguator, Correspdnding to 1/Nth of the<br />

fundamental intehal. Aftor 1/Nth of the<br />

orbit period, the previously unaccessible<br />

otrip iQ now visible ,by the 2nd satellite:<br />

after 2/Nth of tho orbit period, the strip<br />

accessed by the left antenna on the 1st<br />

natellite iu now visible by tho riyht<br />

oneonna on the third satellite. Each strip<br />

can bo, thus, accessed twice by different<br />

ooeolliton with a tirno delay of 2/N of an<br />

orbit poriod: uoo Table 3.1.1. In summary,<br />

the presence of two antennns does not<br />

chanqe the nurnbor of hatrllltes required<br />

to achlovo n contiquous Earth coverage,<br />

but allows looking at the same target with<br />

difforont incidence angles after a rather<br />

Ohort time dolay. This allows implementing<br />

(3 fast oamplinq rate incidencr angle<br />

divorolty ayotem, for target detection and<br />

recognition enhancement purposes. Desides,<br />

target ohadowing effects ulll be lessoned,<br />

slnce tho O B ~ O arm ca'I bo observed from<br />

both righe and loft directions. With 6<br />

two-antenna SAR payload, stereo SAR<br />

inaqlng In lat?ral viaion could bo<br />

ulti~atoly implemented, providod that<br />

ouitsbla proceaeinq techniques will be<br />

developed.<br />

Obuorvstion ,oyotoms for Iinitcd latitude<br />

bolt c0*~0~cp90 oxploit the chnracteristics<br />

of lcw to modiun inclination non 0unnynchronous<br />

orbits.! Thiu ia poesible due<br />

to tho 5AR indlpendcnce from sun<br />

illumination conditione. Lou orbit<br />

inclinatlons give soveral advantages.<br />

Pirnt, tho number of satellitos required<br />

to contipuouoly covor' tho fundamontal<br />

ir.eerval io 108s than with sun-synchronous<br />

orbits. Thio is ohovn in Tablo 3.2.1.<br />

ropoae/ inclin. hoiaht H' Sat.<br />

orbLee ('1 !#tu) per plano<br />

1/15 30 482. I i<br />

e(.<br />

m w<br />

40 480.4 4<br />

50 696 5<br />

2/31 30 328.4 5<br />

m w<br />

m e<br />

40 334.4 6<br />

50 342.7 7<br />

3/46 30 378.9 4<br />

e n<br />

m m<br />

a0 380.9 5<br />

50 392.9 6<br />

-<br />

Table J. I . 1. Won aunoy&hronouo orbits<br />

conoes~lotionor satallit.aa<br />

VQ. altitude and inclinatlon<br />

-


264<br />

giving tho nunbor of oaeollitnn wrt Plana0<br />

Vn. em txbit inclination CIM eltltwdla,<br />

with aiditional constraint oinioun<br />

ana aaximllm oft-nadir en9100 of 20' and<br />

50'<br />

c,:-nd, ai latitudes cloeo to tho orbit<br />

inclinatior the ground track0 Blro rfc?nnGr<br />

and DOVO onst-west instead of northaouth.<br />

This feature may be very uaefull in<br />

certain regional sceiiar loa.<br />

itowever, if all satellites are in thO setae<br />

plane thoro vi11 bo a cluntouing ol<br />

revielea every 24 hours. To achiave an<br />

even upreading of the revisita trough the<br />

day, it is essential to redintribute the<br />

satelliten in t4 orbital planoo, with a<br />

proper phasing (riqht ascmnion and<br />

satellites' true acomaly). An oxample of<br />

application way presented in (11 and is<br />

also mentioned in a companion paper (21.<br />

Third, ono m y combine orbital planes<br />

having Biglorent inclination0 and same<br />

fundaaental. Coverage continuity n mds a<br />

propoe phaelng of satelliton orbital<br />

parPmoeorm, achiovinq also B roduction of<br />

tho rovioit intewaln at irrtitudas<br />

corrooponding to each orb': planQ<br />

inclination. This approach rducoa the<br />

oproad in tho averaqo rovlolt intorvalo,<br />

typical of constellations with one orbit<br />

plane inclination only.<br />

.;ne orbit plane oriontntlon playn a<br />

fundsnQnts1 rolo in liqhtn@t deoign.<br />

sin910 plana down-dusk nunoynchronous<br />

orbit0 aro vory convrnicnt for SAR<br />

satellitas: infect fixed solar nro-ayn<br />

be- uod since thoy aro always LIIuminated<br />

by tho Dun. This fncilitntcn continuouu<br />

SAR opaetion, unrestrained by battcrics<br />

capacity. Solar array wlnqo arc) parallel<br />

to tho orbit planc ninlnitinq tho<br />

drag allact. One nido of the opacocralt 16<br />

alwaym oxponad to cold npaco pravidlnq an<br />

ideal haet aink for thermal control.<br />

Mult Iplo plnnes sunsynchronous oabitn can<br />

be oriented nynmetricnlly w.r.t. PRe 6 A#-<br />

6 1% plnno implying nu!)-tracklnq nolar<br />

nrrayo. Earth shadowinq IJr nhout 501 of<br />

the orbit wlll, anyway, rcfiult rquirinq<br />

to augport the EAR operottop Pron on-board<br />

battorion. Aooldes, the ' vanimblo nun<br />

vector incidence on tho sntelllta, during<br />

the orbit, complicates tho thamal<br />

contrcl. Novrrtheloss the eunnynchrcnlclty<br />

and eyotoa oytnmetry , tho lattar only in<br />

cand oP an even number of orbit plenea,<br />

will holp in controlllnq tho growth in<br />

system complexity.<br />

Thia w111 not bo so in case iP non-<br />

ounoynchronoua inclincd orbits. Tho dayly<br />

nodal oAiPt wlll cause a slow potion OP<br />

the orbit plane w.r.t. tho clin vactor. Tho<br />

syntoa daalqn muat, than, cow with<br />

orbital lporiod timo-varylng phoncrnona as<br />

well a8 with Slowly ct.angin9 omn.<br />

Thie may considerably affect tho aatolllee<br />

d-i9n, SAR operation and minaion<br />

planning. With medium Inclination orbits,<br />

-r-------- .<br />

-liiui7:<br />

tho nolor onnny doaig? bocomee even more<br />

critical, rotpiring a I-DOF sun-tracking<br />

nachanilzn. Tha nsceasity for continuous<br />

oolcpr wing13 roorientation will cause a<br />

tlma-changing satellite cross-secti In ,<br />

adding #NIO?.hQr variable to the problem of<br />

drag compensation. Basides, variable<br />

cxtornel torques may Impact the natellito<br />

0ttitudo control, speclal ly at, low<br />

altitudes. The thermal control also<br />

becomes mor0 critical due to the full<br />

variability ol onvironmental conditlons.<br />

In summary the complexity and ccst of SAR<br />

lightseta increases qoing from down-dusk<br />

to nultiple planes sunsynchronous orbits<br />

and, eventually, to sinqle or multiple<br />

inclined non sunsynchronous orbits. The<br />

increased tlntcllite complevity necesarily<br />

reducos ; the payload nccomodation<br />

capability Por the samo launch mics. These<br />

considerations must be borne in mind when<br />

evaluatinq tho mission benefits 01' various<br />

orbit alternatives.<br />

41SAR-CakRYrNcL!_C1(TSATS<br />

4,l, CApabilities and ljmitotlons OL<br />

1 iqhtAats<br />

The doetqn of R SAR-cnrryinq liqhtsat must<br />

follow a bottom-up approach starting from<br />

a cot of constrainta and defining which<br />

(wrformance cnn bo reaasnnbly achieved. A<br />

liqhtsat cnrrylnq a SAR scnsor for<br />

pruleeetonai uses cannot be; too small: a<br />

500 to 800 Kq launch macs ran90 Wa6<br />

c3onun. bolnq ulthln tho injection<br />

capnbllltIti?s, in 1.EO. of scveral planned<br />

anal) launch vehicles. For a 5 years<br />

1 IleLime, draq conpcnaat Ion is the<br />

dcmlnnnt factor In sizinq thc propulnlon<br />

systom. A conpanfrn pnpcr [I1 shows that,<br />

for long mlnnion duratlonn, electric<br />

PrOpUlGiCIC tc mandatory to keep t.he<br />

proprJllnnt mass within 100 Kg at very low<br />

altitudoe. Tho ansociated IC power<br />

consumption must bo considerad in<br />

satelllto power plnnt oizinq.<br />

Tho SAR antcnnn cannot be too lnrgc: when<br />

Poldcd and ntoucd it must fit tho limfted<br />

volumc ineide thc shroud cnvclopo: its<br />

mnoa and area muot bo compatihlc vith thu<br />

attitude control cnpabllitlcs and should<br />

not contributa niqnificnntly to drno. All<br />

antenna lcnqht of 6 n and n width of 1.5 m<br />

were definod as upper bounds.<br />

Tho SAR will normally operate lor a<br />

frzction ol the orbit period, so that two<br />

paramotere aro of concern: tho nverncp<br />

onorgy por orbit and tho required pcnk<br />

power. [loth Increase with orhit hoiqht,<br />

thoreforo SAR-carrying lightsats must<br />

preporably fly rather low.<br />

Tha avornqo enerqy col lcctod by tho<br />

li$htoat dopcnde from tho chosen orblt<br />

plana oriontation w.r.t tho sun.<br />

Typically, it can be in the 0.7 to 1.8<br />

C(UR/orbit ranqo. Considorinq the cnnrgy<br />

conaunad by ossmntial platform Iunctlocs,<br />

that available to payload io between 0.5<br />

and 1.3 KWh/orbit.


,<br />

i'or a typical 708 operating duty, m SNR N<br />

peak powsr conaumption of 1.3 to 4 KW<br />

could bo fittad fron puro anergy<br />

c 3ns id@ PCP t ions. Neverthe lson , th k a woil ld<br />

aply to rely heavily on battarlam. Woro<br />

conservntlvely, a MI powor to SNR<br />

allocation in the 0.5 to 1.9 KM rplngo wan<br />

retainad for system trade-ofPR. Concerning<br />

data rates, an upper technology bound of<br />

200 ~bit/cec. was also assurnad. In viow of<br />

the abovo, a SAR payload mann allocation<br />

in the 150 to 250 Kg range reoulto, ear a<br />

500 to 000 Kg spacecraft launch mass<br />

range.<br />

4.2. SAR SENSORS F~LIG11TSAT~-<br />

We rovlew the main trade-offs impacting<br />

tho SAR desiqn in presence of conetraitits.<br />

Tho SAR will normally operate in the<br />

STRIPPVIP node: the swath will be<br />

electronically repositioned, inside the<br />

access onglc, by beam steering in the<br />

elevation plane only. Thin operating mode<br />

wa-s found to be adequate for tho intended<br />

hiqh raoolutim missions, given the<br />

lightsats constraints. Other SA$ operating<br />

nodes, ouch as SCANSAR, are also available<br />

if required by the mission. I<br />

4.2.1 xmnqe interpretationj tarqet<br />

cha racto+?iel.: ice, a&S/N<br />

!<br />

For extenckd targets hinh 'rasolution'<br />

images intcarpretation is nore rolatad to<br />

pixol sizo than to radiometric renolution.<br />

A singlo look S/N of 5 dB was choaon for<br />

.;q'. dimensioning. SAR opernting at<br />

fi!.rrsnt frequencies respond difforently<br />

i > '.he physical chaidctcristica of tho<br />

Earih surface, in terms o€,bachocntterinq<br />

coofficiont vs. the incidenco angle. For<br />

tho OB~O backscattor coeificlonte and<br />

swath width tho average tranmitted RF<br />

power incressos fcurfold from S to X band.<br />

Ncvertholess the average backscottsr from<br />

typicel ground surfaccs also increase by 6<br />

dR from S to X band, so that the two<br />

effects conpensate nnd it could bo<br />

possible, in principle, to transmit the<br />

same power at both bands. For discrete<br />

targ~ts, however, the determining factor<br />

is the contrast ratio against the speckled<br />

clutter. The relative merits of X vs. S<br />

band are still unresolved duo to th0 large<br />

variety of possible scenarioe and the<br />

scarcity of experimental data at X band.<br />

Assumimql frequency independent ,target<br />

Radar Cross Sections, the SAR ohould be<br />

denigned for the same S/N indipendontly<br />

from fraquency. This criterion ronulte in<br />

an incredse of the transmitlad RP powor<br />

with tho operating frequency, pannlizing<br />

the X-band choice. In tho following<br />

referenco is made to a sigma-nought of -15<br />

dD indegondent erom frequency and offnadir<br />

angles.<br />

4.2.2. Frequency choice, accoas anqle,<br />

andresolution<br />

In sizing tho SAR access nnglo, too low<br />

oPf-nadie angle values should bo QVOided,<br />

not to look at targets with n om vertical<br />

incidonco. Too large v2luee ohould almo bo<br />

avoidad to reduce shadowing aSUects and<br />

oxceesivo image distorsions.<br />

26-5<br />

~ddem e'hooo Walitatitrcr considerations<br />

nor6 graciee limtts are set by both<br />

roqulatory and lightsate accommodation<br />

rotatreinto. The upgar value impacte the<br />

trcnnsvorpla antonna dlm~nsions, as shown in<br />

Pig.4.2.1. showing the antenna width vs.<br />

tho neximua off-madir angle, operating<br />

iroquency and epacecraft altitude to<br />

ewath ratio H/Sv.<br />

, /<br />

1 20 30 40 50<br />

=IN. otf-nadlr angle. des.<br />

Fig. 4.2.1. Antenna width vs. frequency<br />

band, maximum oef-nadir angle and H/Sv<br />

ratio.<br />

This Figure shows that, at X-band, a 50'<br />

off-nadir an910 is both feasible and<br />

compatible with the assumed antenna<br />

constraints even increasing the tl/Sw ratio<br />

to 20 (e.g.: H-500' Km and Sw-25 Km).<br />

At C-band, one ha0 to superiorly limit the<br />

maximum oef-nadir angle to about 40',<br />

loosing in coverage: alternatively a<br />

maximum H/Sw ratio of about,12 could be<br />

chosen implying however an altitudo of<br />

only 300 Km for a 25 Km swath.<br />

S-band antennas can hardly be accomodated<br />

on lightsats at all off-nadir angles and<br />

orbit heights.<br />

JOO<br />

10 '. . .<br />

Pig. 4.2.2. Chiri, bandwidth vs. range<br />

resolution and off-nadir angle.<br />

Y I


0<br />

I


Tho ]Lo~ton boU& Of the Dfb-UFfliTf if3<br />

dggomAnod by tho SAR chirp bndj'g'dth. 80<br />

ohown in pig.b.a.2. for romp roaolutiona<br />

betweon 2 and 5 m.<br />

The inotmtanaoue SAR bandwidth mot bo<br />

conp~ltdbll~ with international bmndwldth<br />

allocationn Por Wedat nyntancr o,wratingl in<br />

the various (Iroqu~ncy banda. Ht turn0 out<br />

that, considering the 100 Wla bandwidth<br />

allocation eOr C-bend S ~ ~ CPGICR~BO, Q 0 5 a.<br />

rango roaolution limi* ,nuet bCJ ~cc~ptd,<br />

or 8 oovera rootriction in tho ninimum<br />

offnadir angl0 to about 40' would result,<br />

impacting negatively tha covorrega of the<br />

numbor of oatelliteo in tho CoPaUto~lation.<br />

On tho othor :..a?, a 2 m rnnqlo eaaolution<br />

at 20. .nimua offnadlr nnglo Is<br />

cornpiatib.r ;th both X and S-band choices,<br />

sinca bsnuuitho cf respectivnly 300 and<br />

200 me are available lor this aarvlce.<br />

Azimuth rooolution, in tho 5h.R etripmep<br />

mod0, dlopcmb, from antenna langht and<br />

lookn numbar. It is betWeen 2 ond 3 m for<br />

antenna llonghts in the 4-4 m range, with 1<br />

look. 'PRO situation is surnmvrizod tn Table<br />

4.2.1. which identifies two possible<br />

syston altarnatives:<br />

--a nodliun-high reaolutLon C-bond SAR lor<br />

conmtollotione in low to mdiun altitude<br />

orbito:<br />

- a high resolution X-hand SAR. for<br />

constollotiono in medium altitudo orbits.<br />

The 5-b~nd alternative ia rejoctcxl being<br />

incompatible vith typlcel I lightsat<br />

accommodation constraints. I !<br />

Freq. Avail. Range Azim. Mmnlnun<br />

band @:I reool. resol. tt/I;w<br />

(mi21 (N (m) (Q)<br />

s a00 2 2-3 ! 20<br />

c Cl00 5 2-3 4 12<br />

X 3GO 2 2-3 I not compa:ib.<br />

(*) at 50' off-nadir, Nloaks-1<br />

Table 4.2.1. Impact of frequency band and<br />

lightsats constrainto on SAR<br />

feaeibility<br />

I<br />

4.2.J X-band SAR: Swath, datarates, and-<br />

RF pow0r<br />

This section focuses on X band SAR trade-<br />

offs. The swath, off-nadir anqloe,<br />

rosolution, pulse lenght, orbit height,<br />

and av0rage RF power are closely<br />

interreAated.<br />

At a nodium altitude or 360 #n and naximum<br />

off-nadir anqle of SO', achievablo swaths<br />

and averago RF powers v5. qround<br />

rosolotion and pulse lenght aeo plottad in<br />

Fig. 4.2.3. Increasing the puloo lenqht<br />

one loonoo in swath width b.it &wok powero<br />

deCrarl60 too. #Ore epeCifi\!i.lly for PUlOQ<br />

lenqht greater than 20 mi:ronac. peek<br />

powero bolow 1 KW are faar iblo, whilo<br />

belov 15 microsoconds multikiltmatt poak<br />

power lovelo result, inpactittq HPA<br />

technology choice and relisblli.ty.<br />

Fig. 4.2.3. Average tranaaitted RF power<br />

ve. swath width, azimuth resolution and<br />

pulse lenght.<br />

0 - L<br />

- n<br />

51<br />

e -<br />

0<br />

L<br />

a<br />

c<br />

0<br />

0 I ' ' /.<br />

Swrth mldth. K.<br />

Pig. 4.2.4. Data rate vs. swath width,<br />

azimuth resolution and pulse lenght.<br />

Orbit height: 360 Km: off-nadir angle: 50'<br />

Fiq. 4.2.4. shows how the data rate varies<br />

with swath and qround rssolution, assuming<br />

to transmit 4 bits/sarnple, which is felt<br />

to be adequate for most tactical SAR<br />

imaging applications. The data rate<br />

increases with swath and even more rapidly<br />

with ground r0solution, and is therefore a<br />

linitinq factor for such satellite<br />

oyetemo. The assumed 200 PIbit/sec upper<br />

Bound jq compatible with a 20 Km swath at<br />

2 U reoolution, or a 35 Km swath at 2.5 m<br />

rosolution. Lower data rates would imply<br />

narrower svatha, and viceversa.<br />

\,<br />

?


280 65.0 63:6 40.1<br />

360 84.6 81.8 56.7<br />

a\ 60 108 104 , 72.5<br />

560 127 123, 80.3<br />

660 157 143 103.<br />

-I<br />

Table 4.a.a. AVerngQ trangnittad LIP power<br />

vs. orbit sltitudo, nrjnth and<br />

renolutim at 50' off-nadir.<br />

This confirms the desire Tor flying, SARs<br />

at rathor low altitudes, compatibly with<br />

covorago and rsvislts goalo. Once the<br />

swath is chosen it is kept conntant,<br />

independantly from its rapooitioning<br />

inside tho accom anglo, and 00 io the<br />

peak powor for obvioun hardware<br />

constrainto. HOWOVO~, from: 50' to 20. off-<br />

nadir, tho antenna beam in tho alavation<br />

plane must be broadened to cuv?r the<br />

svath. An a result the pulsa duration must<br />

be gradlaally increasod to r'ocovor the<br />

beambroodoning lossea Thus, at 20' ofI-<br />

nadir, 'tho avorage tra smitted RP power as<br />

well as the absorbed DL1 power, Is 'about<br />

1.5 times that at 50' off-nadir. 1<br />

Other ShR modos can be inploriianted<br />

according to mission needs, trading off<br />

goomstric with radiomatric raoolutionn<br />

(multi-look modee), or azimuth rooolution<br />

with swe:h widths ( SCANSAR raod'~), or<br />

rango roeolution with avornge, powor,<br />

adaptively changing the chirp bandwidth<br />

and peak pulse power and/or pulse<br />

duration. The spacecraft design lo anyway<br />

determinad by the most demanding hi-<br />

resolution tasks.<br />

C-band SAR trade-offs results<br />

Parametric evaluations were also perform2d<br />

at C-band, achieving similar roaults in<br />

terms of swath widths, which aro anyway<br />

superiorly limited by the antenna width.<br />

Substantially lower RF average trnnenitted<br />

powers, as well as DC pover requirements,<br />

are needad consistently with tho lower<br />

range reoolution feasible at C-band. A<br />

SCANSrW mode would equalize tho azimuth<br />

and rango resolutions while nearly<br />

doubling the width of the imaged ground<br />

strip v.r.t.. a hi-resolution X-band<br />

implementation. In this way a eimple<br />

mediun reaolutkon SAR could h m +mplm-ntcd<br />

for wide area eurveillonce tasks.<br />

4.2.4. SKantonna requirements<br />

A phased array with electronic scanning in<br />

the. elevation plane will poeltirn the<br />

svath within tho access angle. Beeidos<br />

providing beam steering in n +-15' w.r.t.<br />

the antenna normal, phaoc control munt<br />

also provide beambroadening in tho<br />

elevation plane to match antenna beanwidth<br />

to the swath position inside the access<br />

angle.<br />

26-7<br />

[ha0 to thd o.p~rtuao ovorobzing factor of<br />

Q ~ O U 2.l:l ~ at OihimuQ off-nadir anglo,<br />

lbnitod boomo;sopimg in tho slovation plane<br />

cm bo also inplanento8 to squalize the<br />

mtanna gain through tho awath width. The<br />

Righor boanolo@on outeido the swath will<br />

inprovo ran90 ambiguity control, which is<br />

particularly important at low incidence<br />

snglan. Booidss, nadir echo suppression<br />

roguires putting a beam null at nadir.<br />

Achieving ouch Paatur0s with phose control<br />

only ( conratant amplitude illumination<br />

lboing proforrod to reducm antenna width at<br />

maxfraum off-nadir angle) may be an<br />

untx-ivhl task, But it is feasible. At X<br />

bend a paaalv0 single polarization design,<br />

using multiple panels of radiating<br />

waveguide olots fed by power dividers<br />

carrying embodded phase shifters, can be<br />

realized starting from already proven but<br />

simpler design 15). at a specific weight<br />

of 10 to 12 #g/mA2 with less than 1.5 dB<br />

losses. A probably lighter technology can<br />

also be implemented at C-band.<br />

5. DP.TA TRANSMISSION<br />

Data transmission capabilities are very<br />

imp.xtant to fulfill the observation<br />

miasions herein considered. Two main<br />

approacheo were considorod: direct data<br />

transmission to ground and the use of ,data<br />

rolay satellites. On board storage with<br />

subsequent data dump was not considered<br />

practical and affective, also due to<br />

expected near-term technology limitations.<br />

5.1. Direct transmisiion to ground<br />

The simplicity of this approach is partly<br />

offset by coverage limitations, which<br />

render direct transmission unsuitable when<br />

performing SAR observations over sites too<br />

far apart from the data etation.<br />

In a tactical scenario, however, opposing<br />

forces are normally dep!?yed within a<br />

circle a fow hundred miles wide. Data<br />

receiving stations deployed within, or<br />

close to, the theater can easily access<br />

the satellites of the constellation during<br />

overpasses and get real-time data for<br />

inmediate, on-site, ground procossing.<br />

Table 5.1.1, summarize8 the projected<br />

characteristics of a direct trasmission<br />

system at X-band.<br />

-<br />

** Satellite terminal<br />

- Frequency: e CHZ<br />

- Antenna: mechanical nteerinq', driven by<br />

on-board navigation system:<br />

- EIRP : 27 dBW (Ant. gain:21 dB:<br />

Tx pwr: 10 W) :<br />

- Data rate: up to 7"> ?fbit/sec:<br />

- #odul./coding: QP. ./ > 4 dB coding gain;<br />

-'Mass and DC power: 10 K9, 50 W<br />

** Receiving Station<br />

- Antonna: traneportablo, with tracking:<br />

- C/T: 16 dB/K' (Ant. dl8rn.r 1.8 m)i<br />

- Slant rango: up to 2400 Kmr<br />

- syutem margin: > 3 dB<br />

Table 5.1.1. Direet Data transmission to<br />

grobnd: System performance


I<br />

I<br />

0<br />

I<br />

I<br />

I<br />

I<br />

I<br />

,<br />

For tn ainglo plane oun-aynnclnmnmn wbit<br />

conotallation, mooting tho dloni~n critorh<br />

diocucanod Ln 3.1.1., tho ncce-nbhla Broa<br />

from tho oitallite pacaoo in vioibili.:y of<br />

a data rascaiving otstion ham boon<br />

paraDotrically evaluatod for n nininurn<br />

olevation angle above tho horlnon of 5'.<br />

It DUO^ bo noted that tho ~bovo aroa can<br />

be ~XXCIR~Q~ two times per doy and ~ Q P<br />

orbit @ono: aultipla orbital planoo<br />

conntollationo will increaoa Lhe dayly<br />

nurabor of such *events*. Tablo 5i1.2.<br />

shown tho nunbor of uoofull oatellito<br />

passoo and total accsssibldl arm vo. Orbit<br />

sltitudlo. Tb. total availeblo Bccors tine<br />

is botwoon ~430 to 3100 SOC., ~por *ovcnte,<br />

during which 500 to 600 imagoQ, typic':aliy<br />

30 by 30 kn wido, could be uado 8vai:able<br />

to tha data station. Such vsluaa may,<br />

obviouoly, ba reduced dua to real-time<br />

ground processing limitationo.<br />

-<br />

Orbit Wumbor of Acceeoible Total<br />

altitudo satellite area access<br />

(W) pasoes (10.6 Ita-2) time(s)<br />

268 10 4.9 2500<br />

362 9 7.6 to<br />

460 7 9.8 3100<br />

Table 5.1.2. Direct transmimion to ground<br />

miusion related porformance<br />

5.2. Data transmission v i a m& Rels]L<br />

SatellitQQ<br />

For atmtopic observations ovor sites not<br />

in diroct visibility of ground atatlone,<br />

tho uno of a D M network will bo a costeffectiva<br />

and performant nolution. Our<br />

studio8 have shown that , in vim of the<br />

severa lightsate volumo Qnd ma00<br />

limitations, Inter-Orbit Link0 should<br />

preferably be carried out nt 60 CHz.<br />

Efficient coding scheme3 provldlng > 4 dB<br />

coding gain moot also bo used to further<br />

decroaoo antenna size snd power<br />

requitomants on both user tonainal and<br />

Data Relay Satellite. The DE3 repeater<br />

will Lsature onboard donodulationremodulation,<br />

while decoding io performed,.<br />

on ground.<br />

*: 8 dB<br />

POnoVQ1 during ground proceasing will be<br />

I<br />

onaior. Undlor thooe aooumptions, a 0.1'<br />

Table 5.2.1. Data trGofor to grround via ottitudo omor !- roll control and lees<br />

Data Relay Satellitote<br />

than 0.08' in pitch and yaw control can be<br />

met as reasonable goal..<br />

I


I<br />

I<br />

I


NovorthdanfS high frograonq CIQBfi~Uda 0r-r<br />

conpnornen, 810 might Fm hducadl By<br />

fioxiblo oppndagdo aubjoctad BO eranniont<br />

forceo, auat bo minilsiaod duo to tho be8<br />

effect they may have on iInQq0 gyslity.<br />

6.3 Spacecraft platform rewironants<br />

WO outlino some3 platform aubnyatona design<br />

aspecto ROB~ relevant to SAR performance<br />

and operation.<br />

Low orbit altitudes will raqludra oloctric<br />

propulaion, which must be cosmaidlalrod an<br />

enabling technology [J] for thoso SAR<br />

lightnats missions, as alroady discussed.<br />

tJevertho1ese. flying satelhitan at lou<br />

altitudo has also positive offmts, in<br />

pdrticular concerning the more benign<br />

environment (5).<br />

The stiucture design, departihg from<br />

conventional, should adopt a highly<br />

integrated aQprOxh where a t avmt~ frame<br />

utilizoa important SAR payload copponents,<br />

like tho antenna or big boxm, ab part of<br />

the structure itself, in ordar to save<br />

mass. Since the bulk of tho heat is<br />

produced by the SAR HPA, heat rejection<br />

shc*ilci be by direct radiation Fo spaca as<br />

far as practical: this is certainly easier<br />

on down-dusk orbits. I<br />

The solar array design ia ntrongly<br />

dependant upon the SAR payload operating<br />

duty. Infact, since the SAR will normally<br />

operata for short intervals totalling 5 to<br />

10 8 of tho orbit poriod, payload supply<br />

can normally be from battgry, the solar<br />

array merving mainly for battery<br />

recharging. The orbit plane cholce, and<br />

the percentage of time spont In Enrthshadow<br />

p ~r orbit period, will alno impact<br />

the OOlkr array siting t0 provide the<br />

required energy. Bosidos, electric<br />

propulsion DC power requiresnnts, will<br />

also increase the solar army siting.<br />

Accordingly, the solar array hype may<br />

range Prom a fixed wings' configuration,<br />

suitablo for satellites in' sunaynchronoue<br />

down-dusk orbits, to a sun-tracking<br />

configuration for Spacecraft :n low to<br />

medium inclination orbits.<br />

On the above grounds, long lifetime<br />

operation of mass-efficient battories,<br />

subjected to rathor deep and pariodic (up<br />

to 30000) discharge-recharge cycles is an<br />

oustanding issue for. such L.E.O.<br />

obsorvation lightsats equipped with SAR<br />

sensors.<br />

Spacecraft tolocommand must bo oacuro, and<br />

possibly jam-proof, to avoid unauthorizod<br />

entries to the satellite nyntam. Data<br />

encryption must be also implenontrd, in<br />

SpacecraPt telemetry and SAR data<br />

transmission to ground, to prevent<br />

eavesdropping by unauthorized uners.<br />

!<br />

Lightreto in tho 500 to 800 Kg range can<br />

carry CUI nQnaora for high resolution (2<br />

to 3 m), short rovisit interval, tactical<br />

ObQQFJatiOn missions. Medium resolution<br />

(order of 5 m) missions, tor strategic<br />

and, in genaral, international law-<br />

onforcement applications, are also<br />

Poaeiblo. Such spacecraft can form<br />

priaan@nt constellations of, typically, 6<br />

to 8 satallite8 per orbit plane to provide<br />

global cbverage. Multiple orbit planes<br />

constellations can offer enhanced<br />

perfomanbe, allowing also a gradual<br />

system build-up. Smaller constellations<br />

of 4 to 6 spacecraft -can be alno<br />

implernentgd to cover a narrower latitude<br />

belt akound the equator, while<br />

eignif icahtly Improving the average<br />

revisit intervale at sites close to the<br />

orbits inclinations.<br />

In summary, SAR lightsats constellations<br />

can offer certain performance unmatched by<br />

existing, or plarlned, single and larger<br />

observation satellites and can provide a<br />

valuable answer to specific operational<br />

military needs in both tactical and<br />

strategic scenarios. The required<br />

technologies exist, with few exceptions<br />

needing an early in-orbit demonstration of<br />

d@vices being now developed. Nevertheless,<br />

advances in few fields wili certainly<br />

benrfit future generation lightsats.<br />

REFERENCES<br />

(1) C. Perrotta " SAR sensors on board<br />

small S8tQllitCfJ: problems and<br />

prospectives"; Proceedings of 1991<br />

International Conference on Radar; October<br />

1991, Beijinq, china:<br />

[2] F. Borrini " The Italian approach to<br />

tactical use of space": this Conference: I<br />

[3) G. Perrotta, G. Cirri, G. Matticari "<br />

Eloctric propulsion for liqhtsats: a<br />

review oP applications and advantages":<br />

this Conference:<br />

[4) D. Caeey, J. Way Orbit selection for<br />

the EOS mission and its synergism<br />

implications": IEEE Tranoacticns on<br />

Geoscience $and Remote Sensing: Vol 29 n'<br />

6, NOV. '91.*i<br />

' I<br />

[5] H.J.Schodol,T.Kutscheid I' The X-band<br />

CFRP WaVeqUidQ antenna for the Spaco Radar<br />

Lab.81: ESA Workshop on Antenna Technoloqy,<br />

Nov. 1830. ,,<br />

. ..<br />

\


I<br />

I<br />

I


008e~Ensrr witfa ~ bde~ec~ion s of ground<br />

rmaaIWim~: llmgeas hm b n demonaJQated to<br />

afford QJILP ercrmeaaely valuable Military<br />

caopabili~. & I consequence there is<br />

mnhueal devenogment the* system<br />

~o~etber wi~h refinements in tbeir<br />

o eraaiondl deployment and usage.<br />

J weveu, a number of resopictions exist in<br />

the deployment of these systems<br />

mwhued wialto their xlnm.imPlm oprating<br />

range. "Erie &mum Q erating range is<br />

G.E. Mefie and L.M. MMU-~Q governed by the heig I! t at which the<br />

D W-Farnborough<br />

platform can fly, so for example a radar<br />

Farnborough<br />

a i an aircraft with a ceiling height of<br />

30,MO<br />

Hampshire GU 14 6TD<br />

feet will ordv be able to operate<br />

QUO to about 250 Km before grazing<br />

United Kingdom<br />

inddence is reached. This limitation can<br />

be removed by p9cocilmg the sensor in a<br />

AIPsOmeU<br />

space-based platform. In order to<br />

maximise the military utility of the<br />

The gayload concept covered; by this information produced by the instrument<br />

paper PS that of a low CO&, hieh and 00 allow recognition of targets, a<br />

performance radar sensor capable of desipn goal of 1m has been assumed for<br />

detectinn8 and rceognising suak objects spatla9 rewllu~on.<br />

within &IW imaged scene of be' IEm-th's<br />

surface usiw the Synthetic A~CROUR~ The poaenaiaP advantages of extensive,<br />

Radar (SARf technique ~ ~ a noverail 3<br />

U~RSUR~CR~ fields of view afforded by<br />

system is integrated with (a TACSAT space baed sensors makes then extremely<br />

platform in Low Earth Orbit ($!JdCD) ad, attrasaive for wide area Military<br />

although ~ nly prnssing reference is made surveillance md hence worthy of further<br />

to this feature in the<br />

attention, particularPy with a view to<br />

could anso bavc a<br />

replacing atrborne systems (although it<br />

detection of<br />

should be recognised that there are a<br />

(GMPP).<br />

I<br />

number of inherent technical difficulties<br />

in designing a spaccbrne system that has<br />

me paper provides a parametria Aview similar sensor capabilities).<br />

of sucb a scwx in the light of ah.: target<br />

and backpound features to bc ob%~wed. hge acas of the Emroh's surtace can be<br />

c~ncept is included showing the observed on a periodic basis and more<br />

hardware realisation of a detailad infomation may be obtained by<br />

cmdidsarc system, as well as budpas for dwelling on seleaed areas. Radar also has<br />

the mass, sizc, power and pointing the added advantage of a!l weather<br />

requirements of the instrumknt. daylnigho operation. Recently imaging<br />

Additional design features csmEidescd are radars ($AIR) have begun to demonstrate<br />

the inhencc that short duration missions the capability achievable from<br />

may have on hardware rcdundawcy and space-based systems but use relative1<br />

the effect of short, low dunby-cycle hea platf~r~~ns (eg EM-1 weighs 127 4<br />

observation periods on solar amay and<br />

C C ~ io contains 4 other sensors as<br />

battery sizing.<br />

well ios the SA83 and hence require large<br />

and costly 1 aunch systems and<br />

The gaper concludes by pointing the way infra-structures. Further the<br />

towards a low cost Pi and D dlemowmmr relatively poor resolutions (e6 E k S-1 have is<br />

system allowing a practical investipauion approxijnjitely 30m) makinp them<br />

of the key t@c.iniques and technolcPBes. unsuitabli fiw most Military applications<br />

I and have no inherent capability for the<br />

1 Iatda8d0Eo.s<br />

As a result of the recent UK ASTBW<br />

programme and the deploymenu of US<br />

system such as JSTARS and ASNRS, the<br />

ability to combine information derived<br />

from high resolution imaging radars<br />

detection of ground moving targets. '<br />

27-1<br />

Bg is, Pa~ever, passible to conceive SAR<br />

sensors for integration with various forms<br />

of s d saaelllite glaaoP~m and depending<br />

on the type of platform used to carry the<br />

sensor, different options exist for its


The small size aaad low mts of the<br />

FGlkUb2 tXUd SCWf S bITI%ideRed hl<br />

this papea win1 resu ? t in sipificm~ cost<br />

savings waking the dcplsymeno cf<br />

constdlmiolms of satellites vcuy much<br />

more attractive. Tbis has the ffurther<br />

sdvaamuqge of redusing revisit atimcs and<br />

conseqancw~Py providing information not<br />

otherwise available from amy I other<br />

source, and of improprimg iystem<br />

sumivmbility. In the next scc~ion some of<br />

the options for a sensor CQDCX~P ape<br />

descrnbed. This is followed by a<br />

considcraaion QP system aspects md cost<br />

and schedule drivers.<br />

2 Ilmpac~ OP a PodsaeQixnO TACSAT' Slhw<br />

Missrim om S~RQMO~~ Desdgm<br />

2.1 A PotermUdaP TACSAT Mhdanop<br />

The TACSAT mission is onc w&b is<br />

associated with a Theatre conflict wheee<br />

the Theatre is defined as being a region<br />

measuriq some 2WOh by 20WEm aund<br />

the duraunon of the conflict is mtid ated<br />

as being relativcly short, typicin8 P y of<br />

months, rather than weeks or years.<br />

Although areas of political and mniimy<br />

risk can Pic at my lati.ude, the emding of<br />

the Cold Wx suggests that if there were<br />

to be ~mch a Theatre conflict, then its<br />

occurrence in the lower latitude regions,<br />

rather than the more Northerly latitudes,<br />

seem more likely.<br />

The mission envisaged for a TACSAT<br />

SIIR is to provide the Theatre<br />

Commander with a dedicated saxvice<br />

yielding surveillance data only mer the<br />

crisis ~PCZB. In this a er, the dedicated<br />

nature of the TA U2.g. A mission Brim beam<br />

taken to mean that the Theatre<br />

Findip, the dedicated nature of the<br />

~trvici propsed for thc TACSAT S M<br />

facilitates some interesting departures<br />

from the system thinking associated with<br />

global space suweillmce concepts: these<br />

departures influence the choice of orbit,<br />

the spacecraft bus design, and the basic<br />

sensor design.<br />

The expectation of a Theatre location<br />

away from tbe NQP~~w~ latitudes invites<br />

consideration of orbits of a smaller<br />

inclination than the golae sunspcbroncpus<br />

orbit which is characteristic<br />

of civil remote sensing missions. In<br />

particular, if the chosen opercting<br />

philosophy for the TACSAT SAR is one<br />

of launch-on-demand in time of crisis,<br />

then the orbit inclination can be chosen to<br />

maximise viewing opportunities over the<br />

crisis area. if9 how eve^, the philosoph is<br />

one of in-orbit storage then an ear I ier<br />

decision must be made about inclination<br />

because of the large fuel overhead<br />

involved in effecting chamEes in orbit<br />

inclination. Wowever, even in this latter<br />

case, it may well be appropriate to set the<br />

inclination oh the storage orbit so that<br />

covera e is optirnised for the smaller<br />

latitu t e repions. The absence of<br />

sun-synshromwn, come<br />

orbit inclination,<br />

particular problem<br />

which is ca able of operating as well by<br />

nightasby B ay.<br />

In addition, the relatively short duration<br />

envisaged for a Theatre conflict allows<br />

serious camideration to be given to orbits<br />

significantly lower than those used for<br />

long duration remote sensing missions:<br />

these lower orbits, perhaps as low as<br />

Z4bk.m. would be suited to a ghiloso hy of<br />

launch-om-demanwd. However, a1 t R ough<br />

miculwly low orbits we less attractive<br />

For the case of in-orbit storage because of<br />

the short life time which results from


!<br />

I<br />

I<br />

I


The dediated nature of the sumeiUUance<br />

required horn the satellite mea th;n~ the<br />

periods dnardwg which service is required<br />

are of short duraaion. T idly* a ~tellite<br />

in the b w UP^ orbitTU0) wccsesmy<br />

for SAR sprations takes only 5 minutes<br />

to traverse a "heatre meEasursw6 2QntQkm<br />

on the SidG! ad with only 2 such passes<br />

likely day, payload power demands<br />

can readily be mct from battcmies. "be<br />

advantqy of this to the platform desip is<br />

that relativdy smdl solar arrays cm then<br />

be used to collect electrical pwer and<br />

trickle-charge the batteries durisna the<br />

prolonged periods of payload inrachty.<br />

2.4 Ssmm Dosdgm Gads<br />

The desien oals for the icnsor concept<br />

are show in $. able 1. A major diffiwlty in<br />

realising a radar desien off this<br />

sophistication is the achievement of such<br />

high resolutions and in the<br />

im lementation of a phascd array antenna<br />

ab P e to operate over isuch wide<br />

inwmmxmsi bandwidths. /<br />

Synthetic Aperture Radar '(SAR) is a<br />

sideways looking coherent irritn~gimg<br />

technique an able of produein8 rnq14k.e<br />

imagery. {AIR employs difftlmttnt<br />

principlles foi achievin rcsoludon in oQle<br />

two dimensions of the imaBery.<br />

Convewaisnal high resolutiooa radar<br />

techniques such as transwniutian~ a<br />

wideband, lowe duration pu8m caad<br />

correcolg anmatch~n? to it on reer+' bUWri! we<br />

employed in Ppnc dunension pqwmdidm<br />

27-3<br />

to tRK2 m?!eMiu@ 8rn& Tcbk a iflmu. .a<br />

the GpplrndWidOBls; commeun5ura8e \%;am<br />

rmlenaiiom BOP 8 dcty of<br />

me G~U8~0rn 00 a&mal$Be bm&duI$<br />

me due 00 U$@ capabili0ies of vavefom<br />

d pew era to as mud digititseas and the<br />

dispersion Ullnl.aParegPg uhe U<br />

HeceiVg Chai!?I§. '&aPeDt<br />

impose$ $I redlo~c limit of<br />

Unless cbmps can be aopceed, a huPaher<br />

limitirolg fac~au will be the current<br />

o rating band Jlmdom defined by the<br />

Gdd AdViSQV %tdk COUlndl (wmc)<br />

which im se restriaionas of 300 MWZ at<br />

X-band (GGpB9) and WO MWZ at J-band<br />

(13.7CIHIa). Dispersion in the atmosphere<br />

md ionos here is not thought to present a<br />

majjou pm $, Bern and, if present, the effects<br />

could be removed using techniques<br />

equivalent to S~U~Q~OSUS. Ovtr31 it is felt<br />

that a resolution of Irn at baqd is<br />

feasible at a 30' gnhg angle.<br />

The synthetic aperture technique is<br />

employed in the damemion parallel to the<br />

satellite track This involves the coherent<br />

addition of many pulses to synthesize an<br />

ogertuue sufficienoly Pong to provide the<br />

desired resolution on the ground. "his<br />

synthesis is only passible if the variation in<br />

phase pasah from uhe sews& to the tar et<br />

and back is k n ~ to ~ 8 n fraction of t fl e<br />

radar wavekngoh along the synthetic<br />

aperture. This implies that very accurate<br />

knowledge of the orbital path of the<br />

satellite is required. Hobper,, for<br />

resolutions of the order.;i';@€., Im no<br />

measurement method of &@t;bkbit gives<br />

sufficient acmacy in realistic timescales.<br />

To sumournt this problem it is expected<br />

that autofocus techniques will have to be<br />

employed. These have the added benefit<br />

that they will also automatically correct<br />

for other effects which can alter the phase<br />

path length, such as atmospheric,<br />

ionospheric and gravity perturbations.<br />

3 TACSAT SAR Sjettellite Concept


I<br />

I<br />

I<br />

I<br />

I<br />

!<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

~<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

0<br />

I<br />

I<br />

I<br />

I<br />

~<br />

I<br />

i<br />

I<br />

I<br />

!<br />

.;<br />

I<br />

I<br />

I<br />

I<br />

i<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

i<br />

I<br />

I<br />

I<br />

I<br />

I


274<br />

The outhe cdmcept of a SAR mounted<br />

on such a9 toroidal platform is presented in<br />

Figure B. B~d~ets showing the mass and<br />

power demands likely to be associated<br />

with such a satellite are presented in<br />

Table 3.<br />

nee ckthet options 0f S M design can<br />

be envisa ed QS provide a tactical<br />

apabdity. i7 n order of rising complexi<br />

these options include, rnsshanica$<br />

steered system usin a single centrzl hi<br />

power amplifier ( h PA), electronica<br />

steered systems Pike RADARSAT whic<br />

iiie a single cenurd HPA and ferrite phase<br />

shifters for beam deflection, and<br />

c.lectrslQicalP steered systems like the<br />

Eu~ogeim A AI2 which use fully active<br />

hased array technology to provide<br />

ad Spotlight operating modes.<br />

Of these fundamental design options, two<br />

were considered as candidates for<br />

dli~~~ssic~n in this paper, a partial phased<br />

array grddin electronic steerin only in<br />

the azimuth cf iaection and a ful P y\active<br />

phased may providing both azimuth and<br />

elevation steering.<br />

"he case of the potential1 simpler, partial<br />

evauon steering<br />

is provided only by mechanical pointing<br />

was considered, but it was concluded that<br />

because the Pime taken to mechanically<br />

int the s tern would be on the order<br />

'"p" o minute& P F Q number of useful Spotlight<br />

ima@wg opporaannMes available to the<br />

Theartae Co.wder would be limited to<br />

a rather smdi inumber. When this number<br />

is corn area0 wiahtn uhe much larger number<br />

of SMC YI ogpo~a~noitia potentially made<br />

aslilabk f~om a PUUy active phased may,<br />

@.sed may where the e r<br />

there appeared to be 8 strong case in


274<br />

from soia may. For this mission,<br />

where mamy roRl manoeuvres are<br />

envisaged and speed is likely to<br />

x<br />

be<br />

~~~OPBZIIIII~U, the approach corn ares<br />

BWDUJIR~D~~~ wi~b the use of col gas<br />

@hmtets whkb provide a finite life to the<br />

told &isW.<br />

The mP~anua e of this operational<br />

pMw by is 8 at a$e manoeuvre enables<br />

!<br />

re 'QEU on eitber side of<br />

the S AE US viw~<br />

he nadir taaack. U& an o erational<br />

philosophy requires that t E e wplolc<br />

satellite indudinmg latforw, solar arrays,<br />

md SAR muenma, L designed to form a<br />

robust structure with no flimsy<br />

pro~ism.<br />

on the<br />

oprauing duitpade, carrier frequency,<br />

spatid ~esoi~uia~n, and possible antema<br />

stmmres. Wwever, in OPdQP to linlit the<br />

scope of he pap9 dl options Rave been<br />

based on an asumed antenna area of<br />

ha. This area is derived from<br />

co~~ide~atic~~~i of viable payloads for<br />

hglcmew~a~on onto a toroidal platform<br />

within the TACSAT mass goal of <<br />

7043.<br />

The deadled domce of a SAR is<br />

described in t 's section, specifically for<br />

the single-lobk ca abilities whicb will<br />

chauracuerise ins; pc 3 ommce in Spotlight<br />

mode, by parameters which include;<br />

sensitivity expressed in terms of noise<br />

equivalent OQ) (PIIEOQ) and presented<br />

foe the worst cases situation which is<br />

&aased whh oh6 furthest edge of the<br />

available ccvemge width<br />

access croveqe width as that distance<br />

from nadir beyond wEch ambiguities<br />

rise to MI unacceptable level<br />

available swath width for various<br />

operauixlg mdep :<br />

Jt<br />

,,%? ';,<br />

s atial re$&'hon' in azimuth and<br />

evation fot$arious operating modes<br />

e P


In order to erform a useful<br />

recoanwJssaPnm PO P e, the SAR must be<br />

capable of grovidina imnBcs of s<br />

target zones such as airPdeMs, ~nnn ours,<br />

choke pints aand railwa iwsnaa@rttism at<br />

the finesa possible reso I ctiow. This task<br />

calls PCDB Sptiigha operation ian order :o<br />

provide adequate resolution in the<br />

alon~-trrmch (azimuth) direction and the<br />

provnsiorm of this ca ability tis major<br />

the moer~p~a.<br />

driver in ohe design o P<br />

Pfic<br />

in prirnciple, the azimuth ssmning<br />

associated with Spotli8ht ogerauiow can be<br />

provided by rwssh6ulical steeuiun of the<br />

antenna. However the diff P acnalties<br />

assxiaaed wiah repeating such mcchdd steerin several times during t ab@c pm<br />

over t P<br />

ce theatre are believed 80 be so<br />

great ahat electronic steering in the<br />

azimuth direction is considered to be<br />

essential.<br />

In addidion, it is envisaged that a<br />

TACS4T $Ail% my also be required to<br />

rovide s~m~illmce over a larger re@n.<br />

!uch cmer cm readily be grmdm!l in the<br />

form sP 8 continuous strip-map m5in.e~ the<br />

convenan'aswal Steered SAR mat& which<br />

has been characterised by SEASAT,<br />

ERS-1 and the SIR missions.<br />

I<br />

In this mode, which may bc sombiuned<br />

with Scmsm, interferometric tcs8ndques<br />

, I<br />

Access coverange width is fundamentdl<br />

limited by system parameters whic<br />

include; antenna areq.slant range to<br />

ground, RIF carrier fre'quency, and<br />

satellite ve8scity - although there is no<br />

si miificzm~ impast from satellite veiocity<br />

w il 'ch cbmges but little with altitude. FOP<br />

thio w e in whish antenna area has been<br />

constrained to 6m2, the dominant<br />

armeters are slant range and RF carrier<br />

aequenq.<br />

P<br />

The effect of changes in altitude ou access<br />

mQ sensitivity is show in Figures 3 and 4.<br />

The data are presented for the case of<br />

operation inn Spotpi ht mode with an<br />

a.sumed brandGdah o P 3WIwIM[z. Althou<br />

this bandwidth is characteristic of t i? e<br />

WAR@ Umio at X-band md is in excess of<br />

tile ddB~~tiom at S and C, it is nontheless<br />

&an 4w.<br />

It can be seen that at the lower<br />

frequencies, iwsrreaine altitude provides<br />

relatively small iw tovements in access<br />

ca ability while 10 t E e higher frequencies,<br />

su 1 s ~ improvements ~ d cm be realised.<br />

Wowever, in both cases, increasing<br />

dhde sipificmtly de~iades sensitivity.<br />

The seelmsi@vity data ~ P W E Q R in ~ Figure ~ 4<br />

shw ahe worn case sensitivity; i.e. at the<br />

PMnBseso dlistamse from nadir for which<br />

ampmble owbigunity pdomance cihn be<br />

achieved Dam shwng the variation of<br />

h


=mitrioa~ ~ ~ h i frown ~ ~ e alleimdk f off<br />

5wEraw ffm bth c and x bmd Hs gmE:waed<br />

in Fipw 5.<br />

A iuruhea impact of increminn antitudc<br />

can be wen in Figure 6 where 8 CI iumgact<br />

on the amms track component of s&d<br />

resolm8ioaa, rm e resol~~io~ IS been<br />

presented as a B unction of dista~~ce Iuom<br />

nadir md ~geri~ing altitude for 8 sh@e<br />

RF chirp hd~c8tI.J - 3WMk In sele&une an WF carrier frieqancnacy for a<br />

spacc2-bwe high resolution rnnli8m-y SAR,<br />

several faactors must be taken into<br />

accomu. First, is must be noted that, in<br />

rincigle, my grscpunmd raqe rewinntiorn cm<br />

[e- rnsixievcd by provision of 8 radar<br />

emission puke of adequate bmdcdd~h -<br />

id cxtmmples axe shown in Fipm 6 for<br />

% w e of 3mMm bm~dtltn deration,<br />

but inuemational agreements constrain<br />

the bsaw&d& rm8Umaed to space hdm as<br />

indicated in Table 2b. Howevcn; althou@<br />

such apxmms might be brcalrfhcd in<br />

times oh crisis, the TACSAT mission<br />

concept also indudes peacetime uw and<br />

for this, udhercnce to ,barndwidth<br />

allocations is essential. f<br />

The fipcs presented in Tables 2!a nmd 2b<br />

indicaec uhao only an X or 4 bamil sysuem<br />

would be capable of provichg a pound<br />

resolution close to lm, whilst the uvs of E,<br />

C or band wouid fail to provide a<br />

ground resolution better thaw 3wq over<br />

most OP the pazing angles of inuermo.<br />

In addition to the internaaioamal<br />

regulations, other factors affesaiwg the<br />

choice of WF carrier frequency are as<br />

follows;<br />

- the need for the SAR wavelcaagth to be<br />

significant1 less than the ima e<br />

resolution. #his is likely to exclude t 1 e<br />

use of Lband (0.23m waveleaguh) for a<br />

system aiming to achieve around ,lm<br />

resolution.<br />

- ionospheric dispersion. This is a<br />

frequency dependent phenomenon<br />

which can cause a signifficant<br />

degradation in ima e qualiay for<br />

frequencies around or %e low Lbmd. ,<br />

27-7<br />

atmosphwrie driop~~nion. This is<br />

8er4eaanny, IUDQ Q ~001em for<br />

irequewcna below X- B and, but may<br />

degurmde image quality at bighcr<br />

frequencies, s.8. around the water<br />

vqxu~ rmmm frequency of 2ZGBHZ<br />

atmosphsric attenuation. "his varies<br />

wib ffreqnnemq, Preconmhg more acute<br />

POP frequcndes abe: X-bm$ possibly<br />

din onat J-hd and probably ruling<br />

out & -band. Wowwer, the attraction<br />

of the very wide bandwidth allocation<br />

at I-bmd ad the assodated potential<br />

for very fine spatial resolution may<br />

mitigate in its favour.<br />

~OQPQP efficiency of solid state power<br />

a IP, p B i f i e r s at hi 8 he r ope rat i ng<br />

frequencies These factors inchcite that<br />

X-band is likely to be an optimum<br />

frequency for very high resolution<br />

(around h@nilit surveillance SAR,<br />

with C QP possibly Y band representing<br />

a viable alternative providing<br />

somewhat p rer resolution.<br />

4.3 Ima@mB CapabLPPQBos<br />

For the TACSAT SAR mission<br />

considered in his apr, target imaginq<br />

requirements may e considered to fall<br />

into the foilowing two m+in categories;<br />

(i) deaecction and classification of hard<br />

targets, e.g. military vehicles, tanks,<br />

pounded &craft, ships, etc.<br />

(ii) monitoring md change detection for<br />

distributed targets, e.g. airfields,<br />

military camps and instaliations,<br />

~IP~QUBS, railway yards, choke<br />

points, etc.<br />

! In the fomcr cases, the targets of interest<br />

generally have large radar cross sections<br />

relative to the background scene. As a<br />

result, the ability to detect and<br />

subsequently claify such tar ets depends<br />

primarily on the spatid reso f ution of the<br />

ima ery, the s stem radiometric<br />

per P ormance Ling relatively<br />

unimportant. A spatial resolution of at<br />

least 3w, and ideally less than lm, is<br />

.< '<br />

4' *,.<br />

considered necesury. (#' . 0 , : . :<br />

.. . .<br />

In the latter case, howrcvef,~t~~~features of<br />

interest anre general1 no brighter than<br />

other features in t i! c scene; the key


I<br />

I


e<br />

The SAW must possess a raa)is$wetric When ~p~athg in this mode there is a<br />

' resolution adequate to1 hilow need foe the emissiasm cif a parpicularly<br />

disc ri mi no t i o n bet we en odj ace n t higb levd of mean WH: pwcr io order to<br />

distributed features. A sedfivilty restore the Bids budget whish is a&erdy<br />

charrarcaerixed by a noise e$uivdem sigma affes~ed b the increased noise level<br />

zero (Nk,) of -23dB is considered which raun T ts from the wide bandwidth<br />

ne.ce-. needed to achieve fine range resolution.<br />

4.4 AQ~QQR~ S~~oonnrs<br />

;<br />

discussion, that the TACSA P'<br />

It can $e seen from B~ac receding<br />

i~\rmtenwa<br />

requires IMP el~t~wd~ steering in mimnnth<br />

in order to provide the Spotllight mode<br />

and thaa a similar capability3 in the<br />

elevation diredon is highly desirnablc in<br />

order to facilitate the imaging, a~blrin I<br />

sin e pw, of different tongss iiarcntctao<br />

dif P emwo elmation bearings relauivc PO the<br />

satellite.<br />

Thus, obe case for electronic soeerinp in ,<br />

both mimuoh and elevation direcusons<br />

appears to be stron and ha Dcd ohis<br />

paper eo propose a f ully acuivc phased<br />

array mPuoi0n for the enwsged - TACSAT<br />

mission.<br />

The partimllar aspect ratio ZSSM~G~ for<br />

the antema is based on the mccd to<br />

accomsda~c around the toroidd &"&, the<br />

6m2 ovcrdl<br />

r<br />

area required to providc,the<br />

unarnbi OMS access demonnsomWl in the<br />

earlier kcusion. '!bo distinct CS,?JC$ ~ ~ I W Q<br />

been emmined one at C-band, O ~ I C other<br />

at X-band. Bn bth cases, the an~cmna is<br />

built from 11 panels which are wenanbled<br />

onto the bus as indicated in Fipc 8. lin<br />

the C-bmd -e, each panel is pgulated<br />

with 32 TP. modules and meaurax .some<br />

1300x418mm2 whereas in the X-band<br />

case, each panel is populated with 64 T/R<br />

modules and measurcs<br />

1400#388pnm2. Thus, the aspcct mi9 ~f<br />

the antema is similar in both cams being<br />

4.6m(az b 1.3m(cl) in the C-brmord cw,<br />

and 4.*k&z) by 1.4m(el) in the X-band<br />

I<br />

I<br />

&caw aha uegiow being imaged is only I<br />

smarD1 rasp~ow of the mhuw, rangewarn<br />

B ipous swath, it is possible eo<br />

iricrew the trrmsmittea duty cycle and<br />

rovide a several-fold increase in wem<br />

IF power output during sgotli ~na<br />

~lb~ewiati~ws. T icdly, increases o F a<br />

factor of 5 cm T e achieved over that<br />

no~mdly associated with civil remote<br />

semiw rmaissiom W ~ R ~ R C ob& duty cycle is<br />

Pimite d eo around 9%. The advantage of<br />

this O ~~ROZ~IE is thane these increases an be achieved W ~ O ~ Qresortin U ~ to an<br />

increase of r z the ab RIF power andling<br />

capability of t e T/R module output<br />

stages.<br />

PO is interesting to mw are this TACSAT<br />

mission with ar civi P remote sensing<br />

rpaiuiow. Pw a i d C-band civil &ion,<br />

320 T/R modu T es operate at up to 8 W<br />

ak RIF p~~er in order 90 provrde < 150<br />

mean RlF ower, whereas in the<br />

E<br />

Spotli ht TAC ! AT mission considered<br />

here, 4 52 T/R rw&ula operating at 6 W<br />

F power. In the<br />

2 -$ad case considered in this paper, 704<br />

peak power cmn are o rated to provide<br />

U to 750 W mean wt"<br />

T/R ~ ~ M I ~ are Q s operated at less than 3<br />

W peak power in order to provide the<br />

same mean RF power (750 W).<br />

However, the technique is od applicable<br />

tc achieving short tern gains i<br />

r<br />

ecause the<br />

increased trwnwinaer cr requires that<br />

the system be copanb e of handling the<br />

asmsnated inaee in waste per. In this<br />

concept 08n~ uhed paobRem is re arded<br />

as a thermal impulse and Raaded<br />

f by


-.-<br />

I<br />

I<br />

I<br />

I<br />

I<br />

!


I<br />

I<br />

I<br />

!<br />

27-9<br />

Different data rate: can be associated<br />

with the SAR depending on whether<br />

range ccpmwpreskm IS conducted on-bonrd<br />

or on the Pround. With the long duty<br />

cycles envisaBed for use in Spotlight<br />

mode, there is a need to receive radar<br />

returns, not ody for the duration of the<br />

time delay from near to far sides of the<br />

image regon, but also for the duration of<br />

the transmit puk.<br />

The classical technique for reducing SAR<br />

down linEc rates is to accept dl the returns<br />

from a given single puke emission into a<br />

register (during a receive 'window period<br />

which is mucpI longer than the transmit<br />

, and then to transmit the<br />

data pulse scam pepio3 ated in that register during<br />

the longer period associated with one<br />

pulse repetition interval. However, when<br />

the receive window is shorter tban the<br />

transmit pulse, there is less opportunity<br />

for data rote compression. if, on the other<br />

hand, pulse compression is conducted<br />

on-had, then the duration of the receive<br />

window - post range aom ression - is<br />

identical with the time delay i etween near<br />

and far sides OP the image region. This<br />

time difference can be significantly<br />

smaller ohan the interpulse period and<br />

appreciable reductions made to the data<br />

rate.<br />

Using such techniques, it is possible to<br />

limit the data rate t0 values ips small as<br />

13Q MWs for operations at C-band<br />

where he $Mi chirp bandwidth is limited<br />

to lOOM.Wz, and to BQQMbit/s for<br />

operotions a~ X-band where the chirp<br />

bandwidth is lidacd to 34#)MWz. Data<br />

links with these $r;sradwidohs exist but the<br />

problem of Rmdin these quantities and<br />

rates of data WI 7 I require further<br />

examimaioa


27-10<br />

Currcunaly available ground<br />

algoria8nm will puscess 'ITA@$ 'IT &ta in<br />

its Saeeucd Beam and Scanmar modes.<br />

Funhear development could be required<br />

for the &gh ~csdution Spatlight miode ty<br />

cope with the rapidly varying Do pler,<br />

aliasinmg aut Bm resolution, e5p~a B" Uy at<br />

X-band, sand ouoofocusaing will be<br />

iequired to maintain focus over varying<br />

terraria height. Existing airborne<br />

techniques are not applicable.<br />

/<br />

I<br />

TkiQg<br />

Data is received at 108 samples per<br />

second: Spotlight processincfg with -<br />

autofocus W~PI re uire some I@ ~ O P<br />

per resaPBution ce 7 1, and therefore, real<br />

h e processing could re uire a mmptcr<br />

power of met 1QOG F&<br />

d<br />

B. Cumeantl<br />

this wodd require an a m of mm 5<br />

vector prctasmrs and co J d be idl smte of<br />

the in6 machine, osing major data<br />

handling problem. I!$ owever, maomin a<br />

deploymcamt date at least 5 ymn in t 8h e<br />

future, bprorremcnts in processasor speed<br />

of at leet 4 times can be anticipated.<br />

If 40 minutes, rather than red time, is d<br />

dl~wed to roccss the rnax.inwunrra data<br />

anticipated P rom a single gam, then the<br />

number sf vector processoriuna modes<br />

required cm be reduced to 125. Such a<br />

processor couPd be Roused in a sin le<br />

19inch equipment rack and wopd %J e<br />

equivdenmo to top-of-thetrange<br />

commercial equipment.<br />

I ,<br />

I<br />

*&<br />

. .: *<br />

. ., .<br />

,<br />

5.1 Eapnnnca ca3as / UhrasOe~Qioer S h<br />

There is much discussion about the<br />

skible &the of a TACSAT mission.<br />

Epewding on the mission concept, the<br />

intended Pnfehes cm vary from several<br />

weeks - associated with launch on<br />

demaund, e$nou@ months - associated with<br />

+ , launch in mtia don of a crisis, to years<br />

+ -<br />

" 1 .g.<br />

sswiaoed wit Til prc-deployment of the<br />

satellite(s) and storage in space.<br />

ma: case in P ~VOU~ of launches using the<br />

residual mm apabili r often assmatcd<br />

with luge launch vehic es has been made<br />

in section 3 of this paper. Here, we discuss<br />

the possible im act of that launch<br />

Bi1oaup;lbgr on re P iability required of a<br />

ACSATSAPL<br />

The particular needs which might be<br />

envisaged for a TACSAT SAR are that it<br />

: be capable of viewin the designated<br />

* Theatre at very rep P ar intervals. For<br />

'1<br />

. ., 1'<br />

', instance. ip full mtem mav be reauired to<br />

g provide<br />

hesving*oppodties at 8-hourly<br />

mtexvals: such a revisit rate would call for<br />

the service of a constellation of 3<br />

satellites.<br />

The toroidal bus design discussed earlier<br />

. facilitates the launch of a<br />

miui-ccBmteElaaion of 4 or 5 satellites from<br />

a sin e, dedicated launch using Ariane4<br />

or T@ itan. System reliability can in this<br />

case, be improved by the 3 from 4 (or 5)<br />

. redundancy which results from using the<br />

multiple Barunch.<br />

I


In resent ears, industry made<br />

gr0fpS b?lU.& S B d g Of QlR-EJfOUd<br />

testrq in order to op~rmnise mission<br />

reliabality vcnus programme COSR and<br />

schedule. Wowever, indust ri~a~froaasly<br />

retains tbtc service of flie T t qualified<br />

compcPnentsfordIprogrammes. ' I<br />

I<br />

It is iaIUeH49SRiQg to recall that Wight<br />

campomems are in genera! &mm Porn<br />

&e same gmdsrdon lincs w8nm'dn debver<br />

Mil Sodl mmpnaenn&. The premium chge<br />

made OR &@t components read& from<br />

the additional tests and ri~orous<br />

traceability wbi& is impolsed on rtlima bmic<br />

Mil Sod corn onents to rovide the<br />

greater lewd Q P anfidence 2 emded for<br />

their use in space.<br />

TWO pania~lao features of i d space<br />

programmes favour the hig 9 level of<br />

caution inn licit in the dedicated use of<br />

fully udi P ied components. One is the<br />

long I' 3 e usually demanded of the<br />

z<br />

the other is ~e one-off nature ca mod<br />

large) satellite systems. The fit of these<br />

eatures demands the reater level of<br />

cod~dem d t e d wit ?I fi@t qded corn ORR~QPS in order to gumamtee<br />

relia iiity cver the (long) life time; the<br />

other dlemmds hi& intrinsic reliability<br />

because wiuh a one-off system, taaeae can<br />

be no resort to the N from M option for<br />

reduciafJ OB& overall risk of failure.<br />

Notwithstanding these cautions, in the<br />

case of launch on demand, the iife time<br />

expected of the satellite can $a, quite short<br />

- typically around 6 montbs - "pnd he<br />

poteatid a-mes of using less1 higM<br />

qualified components is wort<br />

coasidemtion.<br />

T"&"'<br />

h<br />

I<br />

I<br />

' 27-1 1<br />

The mpabilhks of a TACSAT SAW have<br />

kcn reviewed in he context of notiod<br />

Theatre sweiUmce hion. Of various<br />

cpgti~m~, io Pas been argued ohao only a<br />

SAR based on active ghbsed array<br />

technolorn will provide the flexibility of<br />

performance needed to satisfy the<br />

notional mission.<br />

It has ben shm that a SAR operatingl at<br />

X-bmd would be capable of providin<br />

single-look imagery at Am spatia<br />

resolution md a noise floor of better than<br />

-2WB when flown in a circular orbit at<br />

SOOkm altitude. The total mass of a<br />

satellite carrying this SAW has been<br />

estimated at around 600 to 7Wkg.<br />

While it is quite within the bounds of<br />

to conceive integration of<br />

§AJfb &cussed in the paper<br />

on a gliuform suited to individual launch,<br />

it is specifid1 the absence of dedicated<br />

launch vehic r es optimised for single<br />

launch of such a satellite mass which has<br />

ken t&en as io driver towards a toroidal<br />

bw structure suited to a multiple launch<br />

making use of the residual mass often<br />

associated with launches on larger<br />

vehicles.<br />

The adoption of such a philosophy has<br />

ken shm to provide the opportunity of<br />

getting single satellites into orbit<br />

economicall but not with a ra id<br />

turn-round. I n addlition, the toroidal us<br />

structure provides the possibility of<br />

dep80pe~t of a complete constellation,<br />

wua a single launch from a large vehicle.<br />

In t&s wa it is possible to amortise the<br />

cost of t l e larpr launch against the<br />

corresponding cost of several individual<br />

hunches using smaller vehicles.<br />

IQ order to M y understand the operation<br />

of, and iwRePphy between, the various<br />

cornpnem~ whicb mmpriqe a TACSAT<br />

system md RO o aidsa tbe design of a<br />

military comael P mion, I demonstrator<br />

system is chdy required In particular,<br />

f


I<br />

!<br />

I<br />

I<br />

I<br />

I<br />

I


I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

,<br />

I<br />

.:<br />

I<br />

I<br />

I<br />

27- 12<br />

7.0 STA'lilIUMmT OF ~ ~ N ~ ~ ~ ~ L ' H ' 0.3 Y<br />

Any views expressed are tho& of the<br />

author(s md do not n e d y represeat<br />

those of g, A4 Government.<br />

Table 1<br />

I i<br />

1'<br />

I<br />

I<br />

I<br />

I<br />

r<br />

10 J<br />

A<br />

0.1<br />

Table 2a<br />

as Sa 48<br />

e7 110<br />

a60 sa0<br />

C a 9-25 - 5.J5 ~<br />

Table28<br />

150<br />

450<br />

070 1100 1500<br />

aooo moo 4500<br />

100<br />

aoo<br />

300<br />

600<br />

-<br />

a0 4


Figure 1<br />

Figure 2<br />

\<br />

'.<br />

0<br />

#<br />

--e-<br />

I<br />

i<br />

I<br />

I<br />

I<br />

I<br />

Fipre 3<br />

27-13


27-14<br />

,<br />

I I


SliMMARY<br />

Cost and ycrformancc technology hrcakthroughc it1 rcccnt<br />

ycarc havr niadc po\cihlc thc ncar icrm dcvclopnicnl and<br />

clcployincnt of a low cmt TACSAl \uncillaiicc \y\tt*in. Thc<br />

prtciitial rtrr hoth ihc \pacecraft and wnuir IO hc lauiwhcil cm<br />

loucr coi\t I:iuiicli \y\tcni\ I\ ihc funtlainsntal for rctlucccl<br />

\y\tcni ci~t. Acltlitionally. thc spiicccraft and scn\or iiiN hc<br />

anirnahlc III IOU' co\i maw protlucticin. Virr all weather.<br />

d;ry/night survcillancc. an activc synthetic :ipcrturc radar<br />

I$:\RI it thc ideal in\trumcnt. ancl thc obilily 1st masinanufacwc<br />

thour;ld% of vcry low ccnt iran\niii/rcccivc tT/R)<br />

IIIIJUIC\ ha% kcn dcvclopccl at H~phc*. Sincc ihc si/r of a<br />

SAR incrcasc.; ac thc orhital aliitudc is incrcarccl. b final<br />

clmcnt of thc cconcmicrl hviq for a low ciht 'I'A


, ._<br />

.'< . ,<br />

'\ '


.<br />

FIQURE 2. REPRESENTATIVE OPERATIONAL SAR SYSTEM<br />

3.l PFXCFIIME SPACB CONST,TEI.I.ATION<br />

SCENARIO<br />

Cmtraq b thc launch-on-demand ucnario. ihr rracctinn<br />

spscchmc radar ucnario mah uw of a -mall l.EO rHIar<br />

c~mr~ainn that pmvk horl ma IhcNcr wmh. a* wcll m<br />

high mnlulim imaginp upm thc dclcclin or cueing nl a<br />

tar:ct'* C'cwncc. Thiq sccnarin dncr niii prrcludc ihc<br />

capahilily to c~ecut~ a wgc launch In *uppkmnla p-acclim<br />

cnnsicllalinn or to rccnnhlulc thc *ywm aq ~~ICIIIICI arc<br />

dewmycd dump majw mnflici.. Thr cimlml nl this siiunkm<br />

. wnuld rc%idc in Ihc Ihcatcr cnmmmdcr who a1.o ha% ihc<br />

rcqwnsihilily and capahilily 10, rral :imr tarkin: 111 thc<br />

.pacchmm radar and ~pacrcrafl. In Firure 2. lhrrc radan<br />

npntm: in lhc SAR modc am dcpicicd. mr pwidinp .!rip<br />

map imaging in I wide arc8 urpi I*mcion mdc and the<br />

nkr tw pmviding thc hi#hcr mu,lutinn *lightme In nJri<br />

in chimlniring rmy iarylr that harc hrcn dcitxtrd. Mi*<br />

chmy tn*truinnr to Ionb. in diflrmni urn. lor cxamp~c. are<br />

cnmmandcd in real time hy IIK field cmnniantdr mnhilc<br />

cimtml uarim. n huh can alw xccp~ mhovrd pwc\utl m<br />

paniallr prnccwd imaging data fmm ihc orhilirp rrdan.<br />

kpcnding m Ihc lime lram el Ihc lint launch. lhcre iq an<br />

impurtani iradcnll hclwccn accnmpliqhinp a11 imapins<br />

pcwng mhurd thc rpcccrali. lhclulinp rnmprium nf<br />

input data to .lomi imap nf ptrniid iaryir. vcnuq thc<br />

dnwnlinkin: nl rmkr widchnd imapin: data fnr war real<br />

tim pmcrwin: in thc cnmmadrr's m wd rrmtml cnnudc.<br />

Thc Iallcr is mnsl likcly to be prrfcmd. until cnmplcaly<br />

reliahk autnpmn-in: d inulin: &a hn hn urmdully<br />

vrlidalcd. The implcmcntalinn nf an cfficicni widchand<br />

dnmlink is very rmightlmad and cm nm M thc mhrrrd<br />

ndar M y 10 pide the canrmnicalhr &nunlink apmum<br />

10 lhsl anhcr tnnuniturlmcnru nuld m k -q.<br />

The pwirinn nl a commander'* cm:mad cwwol c#mu*lc<br />

ur( d statim to usk ud crmd the nd wmw.<br />

pl"S mlkled data. n*l pmidc J.U 1u.m at quid i.<br />

an c.unlial pan dah mal qrnlMl ryum. ah# with t k<br />

Uidehnd mal time damlink imn ~hce uakm.<br />

unall aimnna lranuni18 a canmand la Ihc SAR In 'spotlight"<br />

a pnr(inn 01 Smn Charlie where unmnpnizcd cnmy arwir<br />

may hc hidden in a wmdcd area. AI lime 1.1. Ihc SAR<br />

SpuliQhlr k tm Charlie a1 high reudulicm. using I uinninp<br />

km. a d wcnmplirk mpcal Id- a nrrwry in inreme<br />

rrwlulnm. AI lim 14. a SAR plrrsud nr panialiy pmccrd<br />

imapc ir dnwnlinkcd I o Ihc mnhilc grnund rtalinn. which<br />

mvcaI\ a clu


LOW.oIlN<br />

ANTENNA<br />

b ClsLEWRIP<br />

4 SOWRPANEL<br />

FWURE 4. MAQELUN SPACECRAFl<br />

FIGURE 5, RMAR ARCHITECTURE COMPARISON -<br />

Anothn fwr.saiellite mnriellaiion would hc placed a1 half<br />

Ihc allilude of lk one juu dernikcd iue Figurn HI. In thir caw.<br />

the allilude for 111 rpacecrafl wnuld be 300 n.mi.. and<br />

lhc irrlinalimr far ihc rp~ecrafi would br 0.. YIP. 51'. and<br />

W. respectively. The orhil period for each would be<br />

W miwlcr. and the avmw wkil gap glohrlly would nnp<br />

rmn 2 m 4 houn. Fi8u1-e R shnws lhc gmund I ~ ovo I lhm<br />

mdutimx (4.8 huun) tw lhnc four Wim.<br />

6. REPRESENTATIVE LOW COST SPACE SYSTEM<br />

DESIGN<br />

Hugh hn devc)opd I low eosi sp.rrmll nd SAR pyld Ib.( v s one lam O r b ai. kq Ilk s m h In Ihe


mr a<br />

n<br />

problem. The pal was to Jcwgn ailightwei~ht. low colt.<br />

manufacturable pacec craft ihlt could wpporl a fairly<br />

lulmutuial (W ultra-li~htweighll *AR and bc cmpniMc with<br />

the Delu II launch ryrtm. Tbc debign ii for an a f t e m sun<br />

synchnmur ahil with M allilvdc Of appmrimalcly 370 %mi.<br />

Ihe pi- dv pwr spin is appmninnvly 5 kW. and<br />

Ihc SAR amy ir appuainutcly 12 x 4 nte~R. for 8 to%t c m<br />

d 4 d. In thim pniculn dcripn. il is dcrinhk io include a<br />

luge (6 faa, diameter). dud limb1 pointing pahnlic ~tenna<br />

to rclny wideband SAR data to a gen(yn.Vronour<br />

communications relay satellite. Furthennore. an X-hand<br />

downlink is provided to enable real lime SAR data to he<br />

Iranrmilled to operitional userr directly below Ihc<br />

Ip8cecnfUSAb at any time. The entire Ipwccrafl. power<br />

rysHm radar. p~pulrim syum. d dI arbmd ekrtmnics<br />

me desiyrd fa an abiial lifctimc d 4 ye=.<br />

’The very liihrweighl spacecraft fvr this appli&alion ir a<br />

simp* lri~&~ wss amngenmtn. whcm5y thc SAR uny<br />

ir lfftncd 10 OM of lhm rider of thc bus. md each d ihe<br />

rolu wing 11 a~irhcd toone or the IWO Rnuininl rides. U is<br />

lhmrn in Fipm 9. Note that in this filum. the hiring abow<br />

the Delu I1 s e d u8;e has s I IO inch envelop for the<br />

pylad ud ihe large reflccta utlcnlu is ab0 rmnmodd<br />

within Ihc fairing.<br />

Ague IO depicts this apaccnfVSAR pylod in the spndeployed<br />

configuration. The SAR antenna 11 canted<br />

rppahn~~ly 30’ OR thc horimtal, to pmnh s&-lonkitt;<br />

1 STELLITES<br />

2ORBilPLAMSATWI<br />

MU mN ALTRUOE<br />

FIGURE 7. HIGH ORBITAL ALTITUDE<br />

~TELUTION<br />

only. In this puikulu &sign. ~hc quimmtn am fa fwT<br />

scat c.pMlily in Ihc ckvation uii md ran capbli~~ in<br />

thc uimulh axis. Similu destplr haw alkd lor the amy to<br />

bc dcploycd nunul b ihc euh’s ndiw wcmr to mac mdtly<br />

um~ 0 thc right nd kft U the tywrcnll mua aIm8 the<br />

abilal plh. In chr bar CDU. hc desim bve :ypkdly dkd<br />

form d SCM in bah LICL


NOI-1-0'<br />

MZ-1-90<br />

NO 3- I I 57<br />

NO1-1-57<br />

110 n<br />

DIaMETEI)<br />

mnom i'<br />

ENVELOPE<br />

t<br />

win<br />

1.0. RI. 57 57, PED --mk<br />

TOP VIEW<br />

I<br />

FIGUAE e SATELLITE GROUND TRACES<br />

I<br />

t.<br />

FIGURE 9. SPACECRAFT LAUNCH CONFIGURATION<br />

DATA LINK WTEEWNA e , lwlL OlMBIL POINTMOI<br />

m' SFUECIUFT BUS<br />

FIGURE 10. SPACECRAFT DEPLOYED CONFDURATloN


w<br />

4<br />

I<br />

Discussion<br />

Question: May you give (rough order of magnitude)<br />

how many PEGASUS launched small satellites you plan<br />

to build to have an economically efficient approach<br />

in terms of manufacturing facilities and effective<br />

service?<br />

Reply: That one concept was based on . -omer long-<br />

term need for hundreds of spacccrac very low cost<br />

to be deployed in the field for , periods. The<br />

PEGASUS solution was a design cmstraint, but is high<br />

in $s /lb to orbit. Multiple spacecraft launchers<br />

for peacetime constellations and short (approximately<br />

1 year) orbit life may make more sense. However, the<br />

very large, high performance radar (on Delta 11) is<br />

Close in cost to :he TACSAT goals discussed by Charlie<br />

Heimach, et al.<br />

!<br />

. .:.


Cost Efl'ectivc TacSats for Military Support<br />

By h.T. Crodsky, M.D. Benz & J.T. Neer<br />

Lockheecl RPissilcs & Space Company, Inc.<br />

0q:mhtIm 6F-01, Buildin& 590<br />

11 I1 Lurkbred Way<br />

SuonJnle, CalUolrb 94089.350) USA.<br />

This pper diseuses the key spxc system fcWrcs<br />

rrquind U) provide ~Ncctivc suppwc to military fcld<br />

uniu anti discusses Lockhcad's Conccp to fill crihl<br />

nkhw in military survcillancc and remote sensing.<br />

Thc military is aware of kncfiU availahlc from m n<br />

effective usc of ~poce. To provide lhose bcnefiu, spacc<br />

systcmq must be dependable. casy U, use. flc cibk.<br />

msponsive Md aNordablc. This paper describes itou a<br />

programmable, multi-specml 0-0 scnsor wm ?ined<br />

with a new small satellice bus. nnd suppming msnd<br />

and conml and dau processing tools can providc<br />

cnvimnmenlol and surveillance suppon lo users in<br />

pemlime, crisis and combat. Also discussed arc how<br />

such a system mccu csscnlial military utility criteria<br />

and an llppasch for rapid TacSat systcm dcvelopmcnl.<br />

evaluation nd deployment.<br />

In M m wha burinascs arc learning Ihc imporonec<br />

of 10181 Customer sslisfrtion. devcbpn of new space<br />

systems have opportunities to achieve similnr gmoal~.<br />

lust as pmducu emphasizing user crmvenknce. hank-<br />

froc service and high quality at an affordPblc price am<br />

essential in ay's economy. spa system I;;velopcn<br />

must usc emerging tcchm~ks to niccl similar nee&<br />

for civil nd mililary sytms. In Ihc cunmcrc*l m.<br />

a system designed fw talal customer satisfaction.<br />

Motorola's IRIDIUMTM'sM global pcrsonal<br />

communications systcm is in dcvelopmcnt. Ihc s~mc<br />

philosophies can k reflected in a octid surveillance<br />

system and Ihc pjcctcd commercial infnrvuciurc un<br />

aidU~~ocmcwnicfcuibd~tyofsluhrlynan.<br />

The IRIDIUM system providcs ~lob~l penonal<br />

comrnmbations using a constellation d small LEO<br />

salellius. supponing ground facilitiei and a user<br />

cquipmcnl family including a small. hand-held<br />

tekphane and a vuiay of dam terminals. Thc system<br />

lhnra ir Y) provide cellular telephone-like convenience<br />

and quality with U hour dependability mywhen on UIC<br />

fUe Of ule Ennh. The IRIDIUM sysm will provide<br />

Itigh quality telephone connections anywhere with he<br />

sunc c h i normally required IO call ktwan onicw in<br />

a hgc city. In shac. the IaIDlUM sylta applies<br />

qnu-ol-lhc-811 whnobgies IO make things simple and<br />

um~aiat fa cuaomus. Wih modem crypollrqhi<br />

III(DlUM la mTrdanut nd Swim M lLd Mopmblrp.<br />

31-1<br />

devices and GPS rccciven. an IRIDNM subscrihr unit<br />

could k id4 for scvcral voicc and pncision location<br />

functions in pcacctimc and limilcd wiufm situations.<br />

AnMhcr mililsy bencfil fiom the IRIDIUM systcm<br />

may be UIC user satisfaction modcl it pmvidcs. A like<br />

philosophy. applied to Ihe dcvclopmcnl of milimy<br />

arrvcillnnce sysums. could pmduee huge bcncfils.<br />

Any discussion of a ncw military capability must<br />

ddresJ new world replitics. The wckome rcduction in<br />

superpower tensions has come with unpleawnl sidc-<br />

cllecls including gmcr political instability. local "hot<br />

spas." and Ihc danger ora low1 conflict spinling OUI of<br />

eonvol. Thc political reality of reduced western<br />

military spncing and constrained forward basing<br />

accompanies lhcsc threats. The iacton combine to<br />

demand greatcr flexibility and msponsivcncn of Ihc<br />

remaining lows. The Persian Gulf showed that timcly<br />

warning and inlclligcncc information in thc honds of<br />

commandcn can pmducc forcc multipliers that allow<br />

thc pmrocution of conflict with low casdty Icwls.<br />

Onc consqucncc of this cnvironment is an emerging<br />

need for wer controlled. cost cffcctivc, tactical space<br />

syacm IO provide timely information to commandcn.<br />

The systems could give indications and warnings of<br />

forcc build-ups, allow wty compliance moniloring.<br />

and suppon nc.~olurl and allied form in pcocctimc.<br />

crisis and combat. Thcy could opt.qtc in modes to<br />

&fy Ihc dillcrent ncedc ofscml usen.<br />

5hc Keded capability qn* cffcctivcly provided by a<br />

small LEO sptcllitc with .e programmahlc. multi-<br />

rpecvll scrim combinc$rtlrUi a "Tadat' spacc syslem<br />

shown in Figure 1. && tr:iac syrum fcatumx would<br />

include a disvibutcd architccturc with direct user<br />

asking and dau reudout. Tcchnologics central U) this<br />

TrSat systun wncep arc multi-band. CCD focal-<br />

planc arrays. satellite on-bonrd computing and<br />

dvPnad vat station gmund dm pmcessing.<br />

lkLwkmu<br />

At Ihc mosc bp*c level. Ihc fundamcnlal requiruncnl Of<br />

MY system is that it satisfy user meds. In a military<br />

surveillance system. that vanslaws inlo a nced IO<br />

povide timely infamation on foccc dimition. local<br />

envimmenul. infraanrtun ud olhu conditions U,<br />

ammudw 11 is technically l dble U) build a m e


- SURVEILLANCE<br />

- ENVIRONMENTAL<br />

FLEXIBLE, nww,<br />

RESPONSIVE APtU '<br />

sysum with lhc spatial and spectral ~ lutim IO Jo the<br />

job. 11 U huder IO nuin adequate nsolulim while<br />

satisfyinn rqUCfl1 covcmge. large ma mumillance.<br />

tLnely recu IO inlamakm poducu. rase of W. and<br />

dcpndrbilily needs, dl with bw s y W rosa Many<br />

lhink IIU Jr simuluvau satisfrh dlhcr nccdr is<br />

.01 pdd. I1 is pncciul. however. IO build a syslan<br />

1 SYSTEM OPERATOR<br />

-A?%€-<br />

Alx?mlw<br />

IJUI meeu lhcr varied wr nocdn at sclccccd timw.<br />

Using low cm systems and Ibchnolcgm, il is possibk<br />

IO achieve high user salisfaction wtth I mbusi and<br />

rcsponsi~ ryscan mhilccuuc. Dc-mnvnli7Plion does<br />

IKU rwlt in higher cosu than rmnt capabilities. This<br />

rchilcclun. shown in Figw 2. momgcs ~~SOU~OCS IO<br />

Ill I situation and is Ihc lhrupl of our TaeSel coneep~<br />

ClNC X


' Figure 3. Usa Driven Dwign Future Muria<br />

-<br />

Figure 3 shows UIC key uscr necds utisficd by an<br />

clocuuopical T=Sat sysccm. and how lhose n&<br />

map into desired design fcatuns. The Snt syslcm<br />

&sign slcp is lhc dcrinition of kcy mission driven<br />

sRIol ctlaralcristiu. Thcsc cheractuislicr combined<br />

with orbit slechn. define Ihe syrm's 'capability to<br />

rurvcy and collect".<br />

Tdat ryncm pcrfrrmpncc is ~ unklally dcfincd<br />

by the combination of scrim chmcieristics and<br />

mission orbit. As shown in Figurc 4. Ihe pmccss of<br />

slccting lhesc pmacn s m with he delinilion of<br />

mission rcquircmcna: i.e. what. specific mles will UIC<br />

system be dcsigncd IO satisfy dnd what performance<br />

levcls will be required for the.* mlcs. h eanmple.<br />

onc mlc might bc daylight surveillance of a botcle am<br />

IO decst mw. Mocha might bo suneillnncc of n pm<br />

area IO detect shipping activity. Ewh of there<br />

missions rcquircn some spccific qunntifishlc threshold<br />

perfonnnnee and a range of characteristic goals thot<br />

affcct basking. The key IO Sensor and orbit design is<br />

brlnncing ily many lasking thresholds U pnclicpl while<br />

maintaining pufomunce againv UIC varisbk gds. rll<br />

at M affodable cost.<br />

The multiple areas of prlonnanco nquind for TrSu<br />

missions uc achievable in sevcnl ways. Ths<br />

mvaltiooll.pporhisloum Iw0~msat)ps.<br />

me emphasizing wide ficld-of-vicw. be olher iigh<br />

nsoludoo. Tbe key to wc concept b Ihe c*pabllky to<br />

nully lbe key TrS.1 mldocll ritb a s h k -.<br />

31-3<br />

bpmn'blethmgh tholns of two diffmt foal<br />

plmra md che flexibility m e In either 'amingm<br />

or 'running' modor Ths "nuing" mode capons<br />

high n.~lulioo dam d a relatively small geographic<br />

M. In this mode. a sensor continuously wka, 01<br />

%arcs" at a putieular urga and the image site is<br />

limited to Ihe kkl of view 0.<br />

The mm UD scan in eilher Ihe 'push-broom' or<br />

"whisk-bmom" modu When scanning in the "push-<br />

bram' &. I seasor imagrs a nrip determined by its<br />

FOV. A wider area. with reduced dim targct<br />

pcrfonnrre. M be imaged using the "whisk-braom"<br />

lcll mode. This dual-nmdc upbiliy. discuJsed later,<br />

provides a surveillance option 'menu" to the uaer<br />

ranging Ifom small arca. higha nsolution IO large area.<br />

mcdium rcdution. In addition. UIC pointing capability<br />

required foc scanning and staring also allows mget<br />

area sleclim wilhin a field of regard (FOR) of about<br />

MY to crsh rirle of nadir dong Ihe flight pth.<br />

In addition to wr-programmable pointing, che sensor<br />

should feature multi-spccvP1 capability. The scan<br />

modes might be suppaned by a series of multi-element<br />

linor focal-plpne arrays. each covcscd by narrow bend<br />

oplical film. The high resolulioo Waring modc wulJ<br />

uw a rgu~ panchromatic array oprating in the visible<br />

band. This combinnlion makes it possible to suppon<br />

lhe many spccual bnnds Md differing rcsotutions<br />

ncuM IO putam TrSpl missiau.<br />

CClVCrppC<br />

TacSnt system flexibility and timeliness arc. to e luge<br />

cxlcnt. orbit dependent. Of cows?. orbit selection<br />

ofm invdva adcs agairut nsolution. Orbit xlcction<br />

requires consideration of options for altitude.<br />

inclination and. in some cow. ecccnuicily. Figurc S<br />

shows some d che fecws effecting altilude selection.<br />

Environmcntnl facton bound the range of available<br />

optiau. Below aboul4SO KM. wnosphetic dng staris<br />

IO became a factor by increasing propellant for orbit<br />

mainlc- and beginning IO pmduce ntutude conlrol<br />

design issues. At be ocher cxuemc. alitudu abovc<br />

about 1400 KM rcrult in incruccd rcquircmcnU fOr<br />

componcnt hardening against the radiation<br />

envinmmcnt. (Orbiu above he dintion bclu would<br />

rnn rred .ss much hsrdening. but would quire sN0n<br />

dadinirrniclarihmlhosediacmdherc.)


31-4<br />

spciri dtilrdo * beMsa 450 rd 1400 KM<br />

in- rninimizka the lool COOI fa a dcdd<br />

~lU(i0n kvcl. k altiode inaenC:. rrmw~ focd<br />

length must also increase to maintain cm-nt<br />

rrroluion on cha wnd. ~neruping he rarl length<br />

wdy iocrcaw boch the WIWX and %Wite weight.<br />

This combination d hnucd weight and dtiludc<br />

incmscs satellite cost and. gemlly, huxh cosU.<br />

However. UIC higher altiwdes have rved ngnifiunt<br />

dvmuger. Fa even at CQumnt redulim kvelr. it<br />

is possible to gain a widcrreess araona single pur<br />

by taking ad~muge or gmtu off-& pcrfamsnce.<br />

Second. if reduced resolution is allowed. higher<br />

dtiuda allow imaging muhs on a single pur<br />

even with a conomt Qwn-link dam rate. Ihcrrforc. a<br />

sensible duip stMegy i? to oplimizs for the highesl<br />

pncciul OM @Clw 1400 KM) availabk with the<br />

reketed launch vehicle. Sizing lhe sensor to povide<br />

lhs rrgllircd nr0tul;Xl would then give the best<br />

ba1ance ktwecn rrrolution, single Wlite covcrage<br />

and COBL This p~pa llsumcs lhnt boosler umsminu<br />

would rrsult in a ryswn at the low end of lhe mnge<br />

(450 KM). but no lid Mi is implii<br />

Other impormi puuneufs nn whok eyth venuc<br />

mid-tcipnk mvcnge. revisit times and he numbs of<br />

sntellitcs quid 10 Wive Ihun. orbit inclidon is<br />

elected based on Ihe desired range of urge1 ma latitude8 and the pvticd consminintr d available<br />

launch dm. though l~mc mobih launch ryaanr could<br />

eliminate lbose consminu given suflicient payload<br />

apability. The ode ir usually bavcn a polar orbit<br />

and m inclined dit. either ciaular or elliptical. Ths<br />

polar diu have the ndvantage d cowing lhe cntire<br />

unh wilh paentially rcpoting ground WU Their<br />

disadodvmtage is hat the satellite spends a significant<br />

ponion of iu orbit over lhc polar regions. Inclined<br />

orbiu M wcr Ihe PEmpUare zones or hir3ha lpciwda<br />

as required. Hawcwr. .* is diicuh if not impassible to<br />

design an inclid abil when a WfiU il available at<br />

the same time each day with only a few satellitcr<br />

wilh the fadIider rd cxpmhn 1O manage and mad<br />

adnphT~oralDultipkucllinonpelLcia<br />

Tbe opcmtltloaal prl.rlpk In bad on the idea ol<br />

lkld cummnnden udq I pndetemined scbeduk<br />

d n r ~ ~~llrblllty<br />

o ~ to inili.tr targeting. They<br />

would know in advnce of sa~~llite orbid paaa over<br />

their ueu of inlensL The n~p echelon activity would<br />

op~lc he spaufmfc and perform housekeeping<br />

functions. Uscm would lolow hat, between qwifmi<br />

timer lhey covld point the sensor, select SpEElnl bands<br />

to aquirc necded data and direct it to he nppmpdm<br />

user gmund station. would not have to conml<br />

satellite. auilude or provide pointing angles. InsW.<br />

lhey would pmvide mget coadinnca. Sysm design<br />

faturcs and UST mk phning l~dr would ensure w<br />

the UIU canmands were wilhin system capabilities.<br />

ud M POMIiJly damaging IO the satellite.<br />

The suategy allows regional commands to use a<br />

satellile U a- organlc aset when it is overhad, even<br />

lhough LEC mtcllilcs arc inherently inorganic global<br />

prreu. Usn would conml lhe sascu bascd on local<br />

priorities. It would k possiblc for a command to make<br />

a decision on the bes~ ktiking use just prior IO a pass.<br />

send commands to he TacSar. have it image the targa.<br />

and renun the dala for processing and analysis. This<br />

high degrcc of WQ auVmomy requires tha~ the satcllite<br />

and suppon system be designed fmm the sIan to<br />

separate hauclreeping md payload operations. This<br />

fcolurc raquim a mar echelon ruppon capability thaI<br />

opcmtes Ihe satellites and pmvidcs uscr suppon.<br />

Satellite operations include such traditional functions<br />

U: launch conlrol, injection. check-out. navigation.<br />

orbit adjusu &ad mainlenance. User suppon includes<br />

Ihc dislribulion anl prioritialiM) of tasking allocntions.<br />

and the rwalution ofopuolio~i poblans.<br />

Figurc 6 shows a typicid TacSar pass. With thc 3'<br />

POV multi-pwpose snsor, a single pass swath width is<br />

limiccd by thc allowable scrim obliquity. At 45". the<br />

walh iC about loo0 KM by 1930 KM at IO' elevation<br />

angle.. The u9u secess arca is limited by linc-of-sight<br />

fmn the satcllitc to he mobilc exploitation siles that<br />

rcrcive Ihc dam, Reseha of 780 KM arc co~Irrvative<br />

and could be incrcascd by reducing allowcd elcvation<br />

Per satellite coveragc is a kcy musun of cost<br />

tfTcctimwJs and is. in nun, driven heavily by LMcha<br />

bpcionr in two ways. Fira. use of mimum launcher<br />

rfomunce incrrr+r orbiul altitude and coveragc.<br />

!? ofond. launcher Ilexibility dlows varying, situation angks a swplh lcnglhr. The linkup is made bclween<br />

tpocific diu when ' .Anahaappmachh 3' and 5' elevation and commands and o h data up<br />

r~omlpVpopG~~.c~lm,llCOPOk W d betcvecn So and 10" elevation.<br />

kbit Ihr pwida a global. h g lcrm upbility.<br />

TacSat operational objectives to maximize user<br />

benefits and flexlbilIly and rninimizc user<br />

An effective command and control archilaturc is lhe perrurmed satellite operations drive the C3<br />

key to kSat rysUm useability. U shown in Figure 2. mrcbitccture. Dirvibulcd paylod larking h a key IO<br />

I~IC FhUV uchilc*ural smgy divides umtd into the TSCSa anvcpl Uwrs rcquirc a system that simply<br />

two functions. mission suppon and wrllitc ruppa~ and responsively rupplics support without being<br />

Tbe char uparatiom of these hm fulrctiooa h hampered by insufficient salcllite knowledge or the<br />

crltkal lo our utLshcI100 since It rtlm cambat burdcn of additional infrastructure. Figwc 7 shows the<br />

comma& to obtalm u(cllltc survelllarm bewnla C3 capabilities divided into categorics. hylond<br />

allhut CLe burden ol satelllle mma#enent Thi usking COMW of simple. user wmmandr on a prc-<br />

~lp~an r-rion, ~pieteiy -t to the fieid<br />

eanllpndr. is warnplihed by &h etivitiu<br />

Jlocpcrd. rime shnrc W. Allowing users to lark he<br />

mJor payload in m nd coadinales. eliminates Ihe<br />

nmJ for lgo ephemerides and pointing undcnlanding.


L<br />

Figure 6. Tu&oprrpliom Rovi Usus with a Sumilbnce Reach or 100‘s of Kilometers<br />

-<br />

31-5<br />

dk.etive aplks IO maintain M YT~IC rurlacc figure.<br />

Aminahrgd cnwgh for lhedcsircd apenure and FOR<br />

mw be stiff and lhennally conmlled IO mainmin its<br />

flgm. lhir nukes Ihc girnhlal smsm a lighter wight<br />

duip OVerrJd, though 11 rcquker I huge# moving mrss<br />

llis is just one example of Ihe many &la and criteria<br />

nquircd to propcrly evaluate and rolecl TacSal systcm<br />

design fames. Thc mmr achieves Ihe prlmsncc<br />

rcquircd wilh I singk opcid system serving two focal<br />

plmcs. It h cmicr IO mantafacture and mae vmtik<br />

hu UIC allenrmivcs. which ladr IO rcdffid costs.<br />

Figure 9 rhowr a modular, multimode ekctmoprical<br />

TICSpl g’w(~ paylcd. Thc design has a wide fWd of<br />

vicw and twmxis gimbals for scanning Operations in<br />

lnnh push and whisk bmm modeJ and/or staring, a9<br />

dunvn in Rgun 10. Multi-mode operalion is ccnval to<br />

supporung diffcrcnc. time varying missians. With a<br />

multi-rpcctrPI rout planc. it pmvidcs IR mapping,<br />

topographic and occpnographic sensing dau. and<br />

depcnding on objoftivcs. could provide the bands<br />

rhdwn in Figurc 11. Fa Mghw ctsolution , a squsn.<br />

ll~mu FOV, visible f d plMc h ukkd.


*APERTURE<br />

*FOCALLENmn<br />

OAS U<br />

STARINO ARRAY 6.78 U<br />

STRIP ARRAY 3.16 U<br />

OpTlCS FIELD OF VIEW<br />

STARINQ ARRAY .e*<br />

~~<br />

x Ar<br />

STRIP ARRAY 3.00 X.1.<br />

*POINTING CAPABILITY f 45-<br />

24x1s GIMBALUNQ WITH MOUEIZUM<br />

COMPENSATION<br />

SPUTSTrRUNQ CYCLE FPA REFRIGERATOR<br />

- Figurc 9. TrSU Multi-PurpoJc MSI Sensor Concept<br />

m y<br />

The unh'r atmosphere hac many highly absorbing<br />

molecular specie. I5cu influences esWblish spcelnl<br />

windows for satellite stlsm to dcmt surface or near-<br />

surface phenomena. Waveband opions must bc chosen<br />

midwing wet phmomnology and Uusc windows.<br />

." .-<br />

- U-.,-<br />

.U<br />

D("1lm-<br />

." .- oDy.ou WIIIIICIO)<br />

." .- .I--<br />

".. ..- U-. --.I-<br />

a .- 1.-<br />

Y l l l C l P<br />

1. I.- UD..<br />

m. .4 *A sa".<br />

Figwe It. MSI Sensor Bads & Uses<br />

Mulllapertral information U highly useful for many<br />

TacSat missions. When used to supplement<br />

panchromatic data, the non-visible bands add<br />

dclcctrbility. Camouflage can bc delcelcd ac can warm<br />

&&U against a cooler background. Multiple band<br />

mesurmenu can bc uscd IO compcnwc data lor<br />

environmental conditions such ac water vapor eNsu.<br />

The bands listed in Figure I1 represent an initial<br />

selslion based on eapcted targets and backgrounds of<br />

grrrcal inkrest and likelihood. llw system and<br />

scnsofs programmable fcaturcs allow rpeik uses ol<br />

band umbdms for each mission with dur famolted<br />

for vuumillll IO he gmund.<br />

All-rellecling opllrs designs are nuperlor for<br />

rimul(rneoul uae of dillcrenl apcclral bands.<br />

Refkctin# optical sysans also offu f&bk veighu in<br />

this apcnure range. Except lor small refractive<br />

ekmenu providing image correction in he hi#h-<br />

resolution visual band. thc design u.sa all reflecting<br />

@S. DccSton for h e high remlulucion pnchmnulie<br />

arc locatcd with che central lo or the line FOV<br />

when gcomclric abcnations arc small. This has chc<br />

disadvantage of reducing available visual coverage<br />

rates. but is necessary to balance distortion and<br />

rcsolution. Using two focal planes with diflercnt focnl<br />

dos maaimims he combined FDV and msolulion.<br />

Physical law diclatcs ihat rcsolution IS proponional U)<br />

the ratio of apriun diameter and specvol wavelength.<br />

For apncres feasible on a small satcllitc. high<br />

resolulion is atwinable only in lhe visual and ncar-lo-<br />

mid-IR bands, fmm lower orbiu. The 45 cm apnure<br />

compromise provides good performance (SNR and<br />

resolution) for most missions. and construction with<br />

reasonable size and weight. For mapping, SNR<br />

gcnedly docrears and resolution increases with I/#.<br />

The 117 Icmnlngmode optkal path U a compromise<br />

betwcen SNR and resolution performance. In<br />

slnring. high resolution-mode. a higher I/# is desired.<br />

With a large square silicon CCD delcclor, am f/lS<br />

system mnU resolution requirements with good<br />

FOV and SNR perfornunre.<br />

For given ap9lurC and resolution. wide-field-of-view<br />

sensors knd IO bc large. The design has a slightly ON<br />

axis optical path providing a wide. one dimcnsion FOV.<br />

with resolution only pulially degraded by gmevic<br />

aberrations. This approsch is kcceptabic for IR hands.<br />

when dillnaion blur cac& h goomevie blur. An<br />

additid square high-resolution local plane uses the<br />

on-axis opliwl path md operalu only in the visual<br />

band. providing maximum resolulion for designated<br />

areas of intutst. Operating the highest nsolution<br />

missions solely in he sham wavclcngth visual band<br />

keeps he apcnure size small. When sunlit. most<br />

gmund and wcachu lcatwcs of intnul show visual-<br />

budmnvra8df!quUcfmOh<br />

'Ihc quam visiblc'ruring m y receives the on-axis<br />

oumv-pOV beam thrwgh a muat hole in he pimay<br />

mina. The multi-lpreml opial F+III lia just U) he<br />

side of he nuing rynunr lens ekmenu. Fiqun 12


Vlrtbl~ D~tect~n<br />

b Rows of 18um quam dmtocton, doubb oWu( mwr, -0gaO bna<br />

1 Row of 10um quam delacton, dwbh oHW( row, 6m(<br />

IR D.hclom *' 1<br />

2 Row 01 Wum quam oatulon, doubb 0ffl.C row& -3OOO lo&' '<br />

3 Row of 1Wum qwn G Mulon, doubh off.* row. -1- long<br />

Each row cowmd by.pproprf.1. fllhn<br />

FigllrC I2 M~lri-Sp~~ml Focrl Plphe<br />

shows he mulii-spcvrl Focal Plane Array (FPA)<br />

layouL A lhcrd irolacor divides Ihc FPA into an<br />

unroolcd visual and cooled (EO OK) IR waveband<br />

scctiau. Film IO define the dcmwd wnvcband cowl<br />

$4 ~rcd-atignment<br />

the dclccm in aEh p r<br />

rows,<br />

with multiabr dam miva! lutomlticrlly as he rows<br />

svcep rmn the sccnc. l'hc FPA kngth will lil ely<br />

nquh lllc ad Jignmat of scparatc mJk line umy<br />

rcctions combined lo lorn the FPA. Signal-hnoise<br />

rnlio lnalyris of a MIM IO bc imaged a mappcd must<br />

account fa Ihs obsrrvcr's desired COIVISI level.<br />

Backgmund noise nlhcr than internal sensor noise<br />

limiu TWSU mapping observations. This is bcuue<br />

Ihc unh is bright in most wavebands, upcially Ihe<br />

sunlit hall. The result is thc panbolif relation of<br />

contra to photon count. Since detectable convast<br />

depends on photon count. for background-limird<br />

dc~tion Ihe relation btwcen CO~IUSI level. required<br />

SNR. M me, rd rpean( bandwidth, is<br />

1 PAYLOAD I<br />

ON-GIMBAL I GIMBAL OFF-GIMBAL<br />

Vlslble<br />

Thermal<br />

Isolator<br />

IR<br />

31-7<br />

Conwan 9 SNR8(Scan Raier5l(Sp. Bandwidthp.'.<br />

lhin hclps IO ehoosc bo acari nu, once be expeeccd<br />

lsrgct Md background rignnlurrs. Wnr search amas<br />

IIE Wi. A MmmMdnbk sensor allows operaions<br />

lpilaed U) iMnediu missicm rcquimnmu.<br />

SenJoc operalions could involve bi-directional whisk-<br />

kmm scans cwcring about a 14O-wide swath parallel<br />

U) he flight path at up to 45' lrom nadir. Desired<br />

gmund raolutions am challenging IO achieve ovcr he<br />

full FoV with a modaalc apcrIun, cspccially in be IR<br />

bands. and a widc field-of-view wih r-able and<br />

wcighl is noeded for lhuc mi.sions. Data downlink<br />

mm ~IC high lor mapping and suweilla~c missions.<br />

This molru it dillicult 10 pmasr ad reuirn data withii<br />

time unmrpinu. 'Ihesc reflect Ihe combination of widc<br />

covetage and modium resolution. If aucntion is limited<br />

0 a fm uepr. slower scan and d;lu mes am possible.<br />

Fiyn I3 shows the rensa block dipgram.


Tb lSB in &a "heat" of ha TacSet spacecdk. It is a<br />

hat ~ ~ U tIs rcnvcntiol. n oparlh of Imfmd smcam ~ln~la e k m h pbgo with a mudular dm bus. A<br />

quires cooling of detecton and 0th Docn! hemal safis of mhbn d applica i .i specific cards attach to<br />

phom mise sawces (optics and SoIPctU"~). ~E~tOOs. the data bus These cads connect the bus systems, and<br />

if MgCdl%e, opwa~c with 3uPficicndy bw CaarBr turrcnt pmylmd if desired, @ the data bus. A high speed CPU<br />

whcn ai 8O0K To cchicve such Rna~mKums ailhout is also on the data bus, ai shown in Figure 16. Locally<br />

Ixgc dintors, mcchnnical coolcrs ~ rn saccdcd. Two generated +tar and ground commands move to the<br />

small radbrors m usdd. one fm the mtlxhaniccpl COoEer pmcessor. Once in mcmory, this data is used to<br />

and on-Bimbn9 electronics, and the mhcr to kccp the generate spacecraft or lrsrnsmission commands.<br />

optics and slructurrs cool. A 9i@~lwei8hl, rapidreadincss,<br />

cooler with long slomgo life codld bc I<br />

--<br />

01IYju%3 manu DItl WO<br />

q u i d for TxSe6 missions. In U!! &ired size range,<br />

-U-<br />

a mmbnicid Stcrling cyclc coolcr is 8 pod choke. It<br />

opcratcs at (I coefficieot of operating paver of<br />

approximatcly 1W Wax consumed per Watt of<br />

cryocaoling dissipath.<br />

Sincc the scnsor is dcsigncd to opernte in the "push<br />

broom" or "whisk broom" mode. it is urllikely that a<br />

radiator would bc continuously shradcd. Some<br />

altcrniivcs are: periodically movin8 'the primary<br />

spacccdt nadir-pointing axis off diu, fitting a sun<br />

shicld, or using a sun-synchronous abit and "whisk<br />

broom" mode cxclusivcly. It might also be possible to<br />

change qrmtional modcs so that mdintm sun capsure<br />

is less than 35 minutcs per orbit. However, the<br />

combination of a sun shicld and nlternating modes<br />

could allow shad4 oprntions with minimal made use<br />

interference and allowing inclination choice frccdom.<br />

I<br />

Figure 14 shows U possible TacSat configuration. The<br />

TacSat bus houscs 8111 cquipmcnt to support thc scnsor<br />

payload and communications cquipmcnt. 'fhc kcy to<br />

TncSat flcxibility and utility is a bus that uscs a singlc<br />

Intcgmtcd Spacccraft Elccmnics !ISE). Figurc IS, the<br />

spacecraft block diagram, shbws major vehicle<br />

components and intcrfaccs and hJw ahr ISE conmls<br />

and cmdinatcs functions. Thr ISE pmccsws attitude<br />

scnsor data and controls or5it and ataituffe through the<br />

rcaction whecls and the propulsion spuem. Thc ISE<br />

also collccls and formats spacmaft ksdiccping data<br />

for storage and/or transmission. i<br />

I =lr<br />

I<br />

Figure 16. ISE Block Diagram<br />

The electricrsl power system (EPS) design should be<br />

simplc and flexiblc. Thc system uses cithcr gallium-<br />

arsenide-on-gmanium or silicon solar cells and nickcl-<br />

hydrogen battcrics. Gallium-arscnide solar pancls,<br />

while more expnsivc. offcr improved packaging, loww<br />

wcighl and rcduce orbital disturbance torqucs and<br />

momcnls of inda comparcd to silicoQ ccll pancls. A<br />

singlc prcssurc vcsxl (SPV) nickcl-hydrogen battery<br />

can lowcr both wcighl and cost comparcd to an<br />

cquivrllcnt individual pressure vcsscl (IPV) system.<br />

Tolcse factors combine to rcducc propcllant mass.<br />

TRrcc-axis stabilized TacSat attitude contro! and<br />

propusion subsystcm functions providc a swblc Sensor<br />

platform and include: dclermination of attitude and<br />

'


I<br />

I<br />

I<br />

. .<br />

/<br />

0<br />

- 0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

4<br />

0<br />

0<br />

4<br />

0<br />

0<br />

4<br />

b<br />

0<br />

0<br />

4<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

44<br />

psi lion, attitudc control arid pointing agility. orbit<br />

adjust control and actuation. prayloml torque anJ<br />

mcmcntum compcnsation. safcmodc conlr~l and dcorb^,<br />

;I q u i d . TRc subsystem hardwssrc consists of<br />

x,xm. txtu;~~ors and propellant storage and &livery<br />

systcm. All control law. safemode and oihcr software<br />

rcsidc in thc ISE. Thrce faction whecls pvidc torquc<br />

actuation, with agility rcquircmcnts and residual<br />

payload toqucs aftcr momentum compensation driving<br />

their six and magnctic torquers for desntlaration. Low<br />

cost staf camcra scnsors providc thc kind of knowlcdgc<br />

nceded. with a sun scrim for cwfsc pointing. 1<br />

?he propulsion systcm consisls of 3 conventional<br />

hydrazine mono-propcllant unk wiah proprllanl<br />

Aanagcment systcm. lines. filler. valves,<br />

ihstrumcnution and Lhrustcrs. Syslcm p~essuri?ation<br />

could use cithcr a b!ow-down or a rc-pressurization<br />

systcm. The propulsion systcm is uscd to correct<br />

launch vehicle injection errors. perform orbit trim<br />

haneuvers and dc-boost if rcquircd.<br />

Major bus structurc components me: thc frame.<br />

equipment pai!cls. propulsion module, and interfacc<br />

ring. Thc modular design allows subsystem mounting<br />

while mainiaining alignments during test,<br />

mwcmion, and storage. Thc modulstr agproach also<br />

reduces pm count and assembly spans. The interface<br />

ring provide3 Ihe suuctural load path brKwam the bus<br />

slructure and launch vehicle. Omghite-epoxy<br />

composilc (Gr/E) was selected ova a meanllic malcrial.<br />

for both primary and secondary structure. after<br />

conducting Yadc studies. GrE providrs LI stslble (near<br />

zero CTE! stru-ture to meet and maintain attitude<br />

Figure 19. T} pical TacSat Block Diagram<br />

31-9<br />

control scnsor pointing accuracy. Thc Gr/E suucturc<br />

saves 4.9 kilograms ovcr AVLi and 7.9 kilograms ovcr<br />

Al. Thc primary structurc providcs continuity. strcngth<br />

and rigidity between IRc payload and thc intcrfacc ring.<br />

-<br />

Spa-Ground Link Systcm (SGLS) and high data-ntc<br />

anwnnm stow against thc vchiclc and dcploy on hingcs.<br />

Spring driven mechanisms dcploy both antcnnas and<br />

Ihc solar mays. Each solar array gimbal is drivcn by<br />

small motors and rc8ucers. Rcx harness and slip rings<br />

cany clccrrical power and lelcmctry across thc joints.<br />

Temperature. exhfemcs allowed in olhcr subsystems<br />

drivc the salcllite thcnnal subsyslcm. Assuming the<br />

general case using a non-sun synchronous orbit.<br />

TacSau would not have "hot" and "cold" sidcs, as the<br />

thermal cnvironmcnt varics on thc satcllitc sidcs<br />

depending cm inclination and timc of ycar. A TscSat is<br />

subject to many cclipse cyclcs and must bc dcsigncd to<br />

accommodate them. For example. componcnts that<br />

operatc during sunlit portion of thc orbit would have<br />

a significant thcrmal radiation arca to rcjcct both<br />

intcmal and incident hat. Ilnfonunately, whcn this<br />

surface is in cclipsc, heater power must now mainlain<br />

the item with the larger radiator sizcd for the full-sun<br />

operation case. Albedo and earthshine (planet IR<br />

hearing) also influence LEO vehicle environments.<br />

RE&<br />

Fi$urc 17 shows thc two major communication system<br />

hrdware groups. User support is provided by an<br />

encryped two-way common dam link (CDL) at X-<br />

Band. A small stecrablc downlink dish can provide<br />

about 274 megsbit/scc in LEO orbits. The up-link


:<br />

0'<br />

31-10<br />

plovadm mglc apecity into an md mzmm a 16 or<br />

200 km. "lis is LBkt primary raser p ytd mml Oink<br />

but could support housekeeping. as nm SOLS altchate.<br />

Figure 17. Typical TacSat Comm & Data Links<br />

P m I<br />

Figure 18 shows a summary lcvcl weinh, and power<br />

budgct of a typical TacSat in thc small satcllitc (450<br />

kilogram) class. With the use of advmd compmics,<br />

high efficiency electric powcr gcncmtlon and stbmgc<br />

devices. nnd advanced digital techno!o$y, a TncSat<br />

could xhicvc a high payload to total chylmmss uatio.<br />

Thc spacecnft dry wcight is about 45% payload,<br />

(scnsor and data link) and thc rcst is llic bus. Tlic<br />

clccuicml pwcr rcquircmcnt cairnate is shout 480<br />

... *at& avcmgc. The powcr systcm is driven by thc<br />

sensor duty cycle, cclipu: operations ,and cooling<br />

bwcr. erc. Thc 68 kilograms of propesllani suppru,<br />

in,ection and dng-makcup for 1 - 2 years.<br />

syotom I SaIYboyotoon<br />

OVQ<br />

PAY LOA0<br />

h I<br />

Figure 18. Typical 'TacSat Weight & Power Budget<br />

TacSat conccyls have been discussed fm many years.<br />

Changes in Lhc international climate now make<br />

surveillance 'I'acSats the right capability nt he right<br />

lime. Potential users now havc a bcuer untkmding.<br />

gaincd in thc Persian Gulf. of the value of spe basal<br />

surv6illancc dam. Syslcm dcvclopen hve !car+ to<br />

. Ibhk . 0,t apace surveillance from chc fzld m W s<br />

.?. .,<br />

Finally, many TacSal sysm elmernu err<br />

tieing &ir'opul for ohcz purpscs. Fa &e.= reasons,<br />

. pc&p&$,v.<br />

1<br />

andl hdgetzary dides, the time is right to begin a<br />

phased T a t deZve3ctpmnt and acquisition program.<br />

Simx the T&mp concept centers on directly satisfying<br />

Centralized conml nnd maintenance redwe the ~wr's user needs, implemenodon efforts must include<br />

workload. Because the spxccmh would pratonn continuous user invohemnt. This involvement could<br />

normal systems manmgement, Rousekpiss~ corsld %c smrl with two sinauhtiorns. The first would provide<br />

done from m small ground station, CO!OCRif!g tclqoletry, asea with ample sensor dam of various Scene types to<br />

corntin8 momdies, etc. Continued bu.z-Ccoeping for BISSCSS their utility an8 value. ThC second simulation<br />

a large constcllation quires a larger mission convol would educate potential users about TacSat command<br />

ccnlcr. Existing bunch command and onnW rewu~ces and conml smlegy. planned sensor tasking and how<br />

an a ctmicc For launch and early orbit functions. they would receive. process and exploit the data<br />

--wc?ciicwm<br />

W A U W mac While both simulations could be done in a laboratory<br />

. ComwAnaM<br />

environment, a porlion of the process should be foldcd<br />

into military exenis. The uscr feedback will establish<br />

quantitative criteria for the TacSat system dcsign based<br />

on user nccds. Simulated sensor data for such an<br />

evaluation pmpm could bc gencrated bcforc the event<br />

using pmesscd airborne imagery. Imagery of typical<br />

bttlcfield objccts and subscqucnt computcr processing<br />

to vary imagc quality would allow thc uscrs to fully<br />

assess thc utility of various data typcs and qualities.<br />

Once dcsign criteria arc cstablishcd. thc TacSat<br />

dcrnonstration and validation program would begin.<br />

Thc program would be initiatcd with the first TacSat<br />

and a fcw user ground terminals. Activitics planned, or<br />

now undcrway. indicatc that most of thc systems<br />

rcquircd for a dcmonsmtion will bc availablc "off-the-<br />

shclf." The major cxccption is thc multi-spccwal<br />

scnsor. Howcvcr. i& ckvclopmcni risks arc nomind DS<br />

most of the componcnts arc cithcr commcrcially<br />

availablc or of stmightlorward dcsign and fabrication.<br />

It is likcly that UIC spcccnft bus will bc availablc as a<br />

dcrivativc of thc U.S. Air Forcc's Advonccd<br />

Technology Standard Satcllitc Bus (ATSSB) or othcr<br />

grogram. Thcrc should bc at lcast onc viablc candidate<br />

launch vchiclc for this Dcm-Val phasc. Thc Taurus<br />

bstcr should k availablc and it is likcly that anothcr<br />

launct system will cmcrgc to support IRIDIUM<br />

program operations and mainicnance launchcs.<br />

Satellile conuol for TacSat Dcm-Val phasc codd bc<br />

done cffcctivcly n.9 a factory effort by thc dcvclopcr.<br />

Comntcrcially availablc hardwarc would be cmploycd<br />

for uscr ground stations. Softwarc would be a<br />

combination of existing program and uniquc codc.<br />

A Dcm-Val proam would allow dcmonsmtion of:<br />

Disoibutcd C3 Archimturc Roof of Concept<br />

k ~ Cast w Satellite Control<br />

Multipk User Suggon<br />

Us( 7 ,',.ing Effcctivencss<br />

. I . L? hcs%ing & Exploimtion<br />

-.- ;cnonsmwaion grogram would providc an initial<br />

s;ctariond apbility hat could expand. ns shown in<br />

Ftpm 19. TRe infmstruciurc, once establishcd. could<br />

support other pyhds lo form a mixed. highly capable<br />

tactid weillancc system.<br />

A phttd. "Dzm-Val" TacSat implcmcnlalion slralc~y<br />

would provide B tea-bed lo evaluate TacSat system<br />

utility. provide multi-spectral imagery in many bands


covering a variety of scenes, asses 1:~ kncfits of<br />

ljmcly, mctsium resoltition MSI, pmvid.: an interim<br />

uaty monitoring capability, and Imrniliiarizc military<br />

USCIS wih tasking , dircct conml and dcS c !QlOilauOn.<br />

. vAcIc(usI M<br />

An opcrational TacSat systcm must grovidr h high lcvcl<br />

of dcprndability and timcly acccSs lo &la. The numkr<br />

of satclliacs availablc dircctly dribcs IRc system's ability<br />

to satisfy thcsc nccds. A singlc salcllitc can only<br />

providc a fcw opportunitics pcr day to imagc a givcn<br />

mgct arm. If thcrc nrc: conflicting drnler Pcquircmcnls<br />

from multiplc largcts in a givcn gcognpnic arca, or if<br />

thcrc mc sgccific timc windows or other constraints, a<br />

singlc atcllitc may not pmvidc timcly sopport. Ih<br />

addition. Ihc dcpcndability of a singlc satcllitc will<br />

always be at risk. Thcrcforc:. it is vcry likcly that an<br />

opcrational TacSat systcm will rcquirc, in somc way,<br />

multiplc sotcllitcq. This nccd can bc satisfied in (r c of<br />

two ways, and sclcction will bc hcuvily offcctcd by thc<br />

launch copbilitics that cmcrgc in thc ncxt fcW yars.<br />

If a quick rcaction launch systcm bccomes availablc, a<br />

flcxiblc approach to a TacSat capability, whcn and<br />

whcrc it is nccdcd, would bc practical. Salcllitcs and<br />

launch vchiclcs could bc storcd for call-up and launch<br />

in days whcn a sccurity cmcrgcncy rcquircs support.<br />

To mintdin rcadincss, a satcllitc would masiwally bc<br />

launchcd undcr cxcrcisc conditions. Thcsc would<br />

providc a lcvcl of continuous capability for non-crisis<br />

activitics, such as training and m ty monitoring. With<br />

this capability. satcllitcs could bc launchcd into<br />

situation-specific orbits to incrcasc thc availablc<br />

covcngc for a givcn cmcrgcncy.<br />

T'ie abscncc of a quick rcaction launch systcm would<br />

lad to a diffcrcnt stntcgy. This scenario would bc<br />

xrvcd by in-place TacSats, forming a pcrmancnt<br />

constcllation. Hcrc, thc sarcllitcs would &: in gcncral<br />

purpose orbils covcring thc cuth. A set of near-polar<br />

sun-synchronous orbits would ttc likely. For covcragc<br />

and dcpcndability, the constcllation would consi!.l of<br />

two of lhrcc satcllilcs. Thcir phasing would bc diffc rcnl<br />

but altitudc and inclination would bc similar. Assunling<br />

current boostcrs. the conccpt is to launch the cntirc<br />

constcllation on a singlc mcdium boostcr. A similar<br />

launch every fcw ycars allows for planncd rcglaccmcnt,<br />

cmstcllation cnhanccmcnt or capability upgdcs.<br />

Initiating a Dcm-Val proccss for TacSots dws not<br />

rcquirc an early answcr to thc qucstim of how an<br />

opention?! :system will be dcployd md launchcd.<br />

Then is a good chance bat Lhc IRIDIUM program's<br />

i<br />

0<br />

31-11<br />

O&M rqui&men(s will provide the foundation for h<br />

quick mtion launch system with sdcqualc capability<br />

for TncSlat use. If this docs not occur, thc permanent<br />

consellation of multiply launchcd mtcllitcs can satisfy<br />

operational needs with existing launch vchiclcs.<br />

Wc now have thc opportunity to providc our military<br />

Corccs with 8 cost cffcctivc forcc multiplicr. This<br />

opportunity exisls because:<br />

1) Military organiiations arc laming how dala from<br />

spacc can be used to cnhancc thc cffcctivcncss of<br />

cxisting and planncd forcc svuclurcs.<br />

2) Thc tcchnologics nccdcd for smallcr. vcry capable<br />

survcillancc satcllitcs cxist, gcncrally off-thc-shclf.<br />

3) Commcrcidl spxc programs and various govcmmcnt<br />

dcvclopmcnts arc providing thc cconomic<br />

foundation that will makc most kcy TacSat systcm<br />

clcmcnts available at affordable costs.<br />

Thc singlc major unfundcd dcvclopmcnt rcquircd<br />

kforc iaunch of thc first TacSat is for thc scnsor.<br />

Undcrtaking that dcvclopmcnt would allow<br />

dcmonsmtioa of thc tactical bcncfits of multi-spccual<br />

imagcry and lcad to the introduction of growing<br />

apabilitics To? military suppon from spxc.<br />

In an unstablc global sccurity transition cra, flcxiblc,<br />

multi-purposc spncc assct~ arc csscntinl. Multi-spccual<br />

imaging offcrs lactical uscrs cnhsnccd capabilitics not<br />

currcntly availablc. A uscr taskcd, multi-rolc MSI<br />

Scnsor and spacccraft can form a practical TacSat<br />

systcm. Thc prcmisc for and thc validity of TacSats<br />

havr bccn subslantiatcd barcd on thc tcchnical analysis<br />

ptescned. It is thc aulhors' opinion that TacSats should<br />

bc implcmcntcd with a scnsc of national and allicd<br />

wgcncy and ncccssity.<br />

LMSC & BA&H undcr AFSSD Conuact #M4701-89-<br />

C-0088, ' Octobcr 1990.<br />

S. & V.M. Kilston & Capt. T.F. Utch. USAF. Small<br />

First Intcmational Symposium on Small Satcllitcs<br />

Systcms and Scrviccs, Arachon. Francc. Junc 1992.<br />

T.C. Lcisgang & M.D. Bcnz. U w -<br />

v,<br />

. . AIAA-92-1952, 14th<br />

AIAA Intcmational Communications Satcllitc Systcms<br />

Confcrcncc. April. 1992.<br />

Significant portions of thc tcchnical content of this<br />

paper originated from work donc for thc USAF Spacc<br />

Systcms Division's RESERVES study. Thc authors<br />

spprocia~c<br />

the contributions IO hat cffon by:<br />

Capt. T. Utsch USAF<br />

W. S. Kilslon LMSC<br />

Ms. V.M. Kilston LMSC<br />

Mr. J. KcRm LMSC<br />

Mr. M. Rhynard Bm.. Allen Rr Hnmilton Ins.


31-12<br />

_.<br />

’ Discussion<br />

Question: Would a reduction in altitude allow the<br />

0 size, mass, and cost of the optical system be reduced?<br />

Reply: Yes, a lower altitude would reduce the optical<br />

system weight. but at the expense of reduced coverage.<br />

Also, the increased drag would increase fuel<br />

requirements; thereby, ofEsetting the optics weight<br />

reduction. The likely affect is J push on weight and<br />

reducej. coverage. .<br />

Question: What is approximately the total mass of<br />

the space segment under discussion or in your paper?<br />

Reply: The approximate.mass of the concept is 45Bkg<br />

including fuel and a contingency of 20%.


AbsltmsU<br />

'E'AC.WT MEmOROWflCU<br />

PAYLOADS<br />

by<br />

ID. Nickman<br />

Matra-Marconi Space<br />

Anchorage Road<br />

Portsmouth PO3 5BU<br />

Hampshi rc<br />

United Kingdom<br />

Information derivable from<br />

Meteoroio@cd satellites are revkwed in<br />

tern of their ag , liability to rnillitary use.<br />

Potential TA 8 SAT meteordo ical<br />

system are discussed in term of &EO<br />

and EO payloads currently in operation.<br />

1. InthosilnoccUiOna<br />

Knowledge of changes in weather<br />

conditions could provide essential<br />

information in numerous militaky<br />

scenarios. Such information has becn<br />

obtained for many years from both ciril<br />

aiid militauy satellite systems and is now a<br />

well established technology with ti ,e<br />

accuracy of information retrieval arld<br />

processing cor,;inually improving.<br />

Meteorological data can relate PO either<br />

actual regional variations or to predictions<br />

of cpli~gcs for a Liven area. bOBp<br />

infomaion could be of consider<br />

to a ground commander. For military<br />

operations involving the movement or<br />

deployment of men<br />

frequent and accurate<br />

maps and forecasts<br />

assistance with operational g8anranio .<br />

Furthermore, meteorolo icd da@ wou P d<br />

also play a significant ro f: e in ~hc tactical<br />

and strategic de loyment of foums in both<br />

defensive and o H" Pensive 0pemtiom.l<br />

The present papet aims to crspnoue the<br />

a p p 1 I cab i 1 i t y of me t eo u d og i CP 1,<br />

measurements from dedicated mtelli$tf<br />

systems to support<br />

military operataons.<br />

atmospheric physics<br />

meteorolo&ical data p~oscsohg are<br />

outside the swpe of this paper sa~d awe not<br />

considered here. Of more irnpmi-tance is<br />

I<br />

33-1<br />

tbri! rel~vmss of atmagheriic parameters<br />

trhich could be measured through a<br />

dedicated tacoid meteorological system.<br />

These requirements are reviewed in<br />

wdon 2.<br />

To ascertain what information could be<br />

retrieved from such a TACSAT payload,<br />

section 3 discusses the capabilities of a<br />

nunbet of current civil and military<br />

meteorological payloads which, it is felt,<br />

demonstrate how the requirements of a<br />

ground commander can be met. The<br />

central discussion will be based on the<br />

METEOSAT series of satellites together<br />

with its companion satellites which form<br />

part of a lobal monitoring s stem.<br />

Although a P<br />

r ull review of meteor0 ogical<br />

payloads cannot be given here, the<br />

payloads which are discussed are<br />

considered to be relevant to TACSAT<br />

applications and indicate what<br />

measurements can be performed.<br />

Satellite system can take the form of<br />

either 6eostationary Earth Orbit (GEO)<br />

or Low Earth Orbit (LEO), the choice of<br />

orbit being dependent on the resolution,<br />

ground coverage and data rates as well as<br />

the scan characteristics of the satellite<br />

pa load. A further distinction between<br />

G6O and LEO satellites is that the<br />

former employs assive sensors whereas<br />

the latter can a P so<br />

developments in<br />

ere. Active<br />

are not considered in any detail<br />

in phis ager. However, it should be noted<br />

that t R ey are becoming increasingly<br />

important and do represent important<br />

advances in meteorological systems.<br />

In section 4, the features identified in<br />

section 2 and the systems presented in<br />

section 3 are brought together and<br />

disclased in the context of meteorolo.ica1<br />

TACSAT payloads. Additional nee& of<br />

TACSAT system which are not currently<br />

met by meteorological payloads are<br />

reviewed in term of extensions to present<br />

satellite system. Finally, an assessment is<br />

offered on the usefulness of<br />

meteorological payloads in a TACSAT<br />

role.<br />

2. RqWrnemU Revim<br />

Atmospheric cswditiom clearly play a<br />

m'or role in d itay operations and must<br />

in d uence decisions mode by a local


33-2<br />

commander. Parameters sP iwtereiit<br />

I<br />

include:<br />

i) cloud Bssaaaion;<br />

11) dkaison md speed of clonad<br />

rn~eanacemss;<br />

iii) dqpe of cloud cover;<br />

iv) cloud a! titude; i<br />

V) wind spreds and direction; I<br />

VI) rain snow conditions;<br />

vil) flood waming5;<br />

viii) fog conditions.<br />

Cloud location, cover and allaiaaade ar3<br />

important measurements reqanised f ~ r<br />

both day anad night o<br />

limit aarborne visi<br />

illumination.<br />

controls ground temperature which in<br />

turn iwBps,m on penomel and ment.<br />

Cou led OS this 1s the direction m bsD speed<br />

of c P oud movement which can ke Lased to<br />

provide forecasts of cloud cover.<br />

Wind speeds a d diiectioos wne also<br />

important aoticdwrrly at a<br />

the deglopcnt<br />

r<br />

8ircaiou-s of<br />

wea xu me dependent on uind vduxity.<br />

In esen terrains, wind conditions will<br />

govern sand-stnrms.<br />

Wain and snow not only affect visibility<br />

but are dm be very restrictive for pound<br />

operations. 'Warnings of oiential<br />

floodin8 and fog condition WO 3 d &Q be<br />

of abvious use to a ground commwder.<br />

Meteorobgical measurements of the<br />

above parameters are required during<br />

both day and night.<br />

In addition to the measurements of the<br />

conditions present in a given region, other<br />

aspects of meteorolo y must be<br />

considered. These inch c$ c the rate at<br />

which weather information is updated as<br />

well as the forecasting period. In srder to<br />

provide a major advantage, the<br />

meteoroiogid data should be updated on<br />

a timescals of minutes rather thm houn.<br />

Another important factor is ohat thc<br />

meteorological measuremcum and<br />

forecasting are already both accurate and<br />

reliable.<br />

Finally, the format of the data resented<br />

s ccw~czful<br />

consideranuion to ensure that the eswnrid<br />

information is readily accessible and<br />

to the local commander nee B<br />

3. PPessnaQ Meteorological<br />

PayOQeado<br />

3.1 MsacxDGuDn~<br />

- GzpOBaR MsamiOo~Plg<br />

The World Meteorology Organisation<br />

(WMO) is responsible for providing<br />

Goverage of meteorological data.<br />

e network is illustrated in Figure 1.<br />

Currently, there are five GIE0 satellites<br />

positioned at VX~OUS points around the<br />

e U~OOP at an altitude of approximately<br />

3 i! ,W&mps.<br />

Inn additionto these, there are a<br />

numbei of polar satellites (in a LEO)<br />

which operate at an altitude of<br />

approximately 85Okm. Table 1 provides a<br />

summary of some of the key features of<br />

these meteorology satellites.<br />

The primary role of the. geostationary<br />

satellites is to provide cloud imagery at<br />

replar intervals of ap roximately 30<br />

rmnutcs. Meteosat, whic R forms part af<br />

the GEO ring is discussed in more detail<br />

in the next section.<br />

Apart from their imaging role, the ring of<br />

satellites also serve a number of other<br />

functions including the transmission and<br />

relay of meteorological data from both<br />

ground stations and other satellites. They<br />

also can be used to relay<br />

meteorological data between t<br />

processing centre and the users<br />

The polar satellites are sun-synchronous<br />

and each arbit is stepped with respect to<br />

the previous such that a full earth<br />

coverage is achieved twice per day from<br />

each satellite. The mdn purpose of these<br />

hl satellites is LO monitor clouds, surface<br />

tit'', temperatures and vegetation cover.<br />

.L .*.,.<br />

'c.3.2 Metmart Oprmtionni Prqpmme<br />

The basic design Meteosot Operational<br />

§ystern ;brad iss main instrument, the<br />

Imaging Wadhrneter, is over Z years old.<br />

However, because of the success of the<br />

Meteosart Operational. Programme<br />

(MOP , a huber modcl (with possibly a<br />

semn d 80 follow next year) is currently<br />

being built. This is the Meteosat


I<br />

I<br />

I<br />

I<br />

Trtarasiaiaand Pnogramme (MTP) mud<br />

bridges to &I to the l,Meacoz~: !bcond<br />

(~CXI~RIM~~IE td SG) as disc'wed ian section<br />

3.3. A historicad review of elm Mefiemat<br />

Frog~me clppl $e found i$ rcfepewce 1.<br />

Meteosmt is a spin-stabilised aaaellite<br />

whose axis of rotation is ali ncd with the<br />

Mh's NJOhPh-kUrPR PoleS. h e est west<br />

san is achieved through ,the romaion of<br />

the satellite and the north soanUh scan is<br />

accomplished by a scanning mirror.<br />

The key parameters of Metecosat are<br />

summmxd in table 2.<br />

Meteosat has three ke roles. Fi~s~ly, it<br />

~ovides images of the<br />

b<br />

k arth at Qowgitude<br />

which are then transmitted 00 t pound<br />

processing station. Its second rsne is to<br />

distribute the processed dlda~ag ~o user<br />

stqtions ix?. thirdly, it provides P point of<br />

data coliecoion and distribution from<br />

other meteorological stations.<br />

The raw data is processed au a ground<br />

station and the following information is<br />

derived:<br />

!<br />

- cloudmotion and winds i<br />

- sea-surface temperatures<br />

- cloud top height maps<br />

- cloud coverage data /'<br />

- prccipieation indices<br />

The rmwd images are trw&ttcd, via<br />

the R etcosat down-link cPamnne8, il<br />

transmission rate of 2400 b/o. Thc<br />

resolution of the processed irn~~c~s is<br />

lower than that of the radiometer.<br />

TypicdB , he cloud top hei ha ~TIB are<br />

resolve d on a site of 20Em whiba the<br />

grid for be other parameters is 2fTQkrn.<br />

Meteorno mm rises three srv;cwd bands,<br />

one visible m 6! tw~ iIW bands. visible<br />

channel is wed IC' pitwide high wsIPUaneion<br />

cloud imasgss during daylight. Thc ahemal<br />

PW w band prrovides ima es com~iun~orasly<br />

since io relies on the t emaR rpediinnce<br />

from the clouds. The IR WV shsmocl<br />

rovides on atmospheric distribaoalisn of<br />

Rumidity in cloud free regions glund also<br />

provides images of cloud tops.<br />

Two detector units are used, orme for the<br />

visible chmel and one which mmbinces<br />

the PR wv md IR. The deteaom m SMCR<br />

are singk e!ernent devices wish V G hi ~<br />

(quantum-limited) erforninamce, t I? e<br />

layout being illustrate B in Figwe 2<br />

33-3<br />

MSG is the replbnwment qstem for the<br />

payload desip~ in the operational and<br />

trmltritiound pro rmmes. It cow rises<br />

WBQP~<br />

wavebmd c f amels in the & and<br />

and has mddphe mow spectral bmds<br />

in the visible s ectpum. Like MOP and<br />

MTP, the MS 8 satellite system will be<br />

s in stabilised, with a spin-rate of lUUrpm.<br />

8round resolution is improved<br />

co~~espndh to 1.4b in the visible and<br />

4.8b in the %W and IPB.<br />

A notable fcamre of the ro osed system<br />

is that it produces a fulp &! imay in 12<br />

minutes. The calibration and stab1 isation<br />

time is 3 minutes and the subsequent<br />

repeat cycle is 15 minutes.<br />

3.4 DMSP<br />

The DMSP (Defense Meteorological<br />

Satellite Programme) is a US military<br />

pro ramme comprising two orbitin<br />

sate P lites. The pli ht histor), of the DMS<br />

t!<br />

began in 1965 ut remained classified<br />

until the inid-70's. The satellite operates<br />

in a heliosynchronous orbit of altitude of<br />

ap roxirnaoel 800 km and is a 3-axis<br />

orm.<br />

sta e ilised plat I<br />

The DMSP satellites contain three<br />

B ayloa&. The fino of these is the OLS<br />

Operational Einescan S<br />

rcovides visible and IX<br />

F he second inastmme~t<br />

(Specid SQWJOP Microwave / Imager)<br />

wRic$ gives idomfion on<br />

water vapour, SODOW mer an<br />

ice. The thkd insummcnt<br />

Sensor Microwave / \:r$:km) and this provides surface<br />

temperatures, vertical moisture and<br />

temperature profiles.<br />

From the few examples described in<br />

section 3, it can be stated that present<br />

meteordogid system arc capable of<br />

measuring many of the parameters<br />

indicated in the requirements review of<br />

section 2<br />

The concept of the five GEO satellites<br />

which provide global coverage is<br />

appdhng POP potential TACSAT systems<br />

sincc continuous monitoring of a ground<br />

&f


,<br />

I<br />

I<br />

I<br />

:<br />

I<br />

I<br />

33-4<br />

. I.<br />

psitiom am t!&ui~&. FN~~%~~zuc, EC~ZUB U&. WD~GV~P, &is is generally a<br />

&e &iiIity DO ITC~OS~~~OXI ~tditc kTd ifif~~wps *fhed vdue md CAUUUQ~ be ogti&d for a<br />

in orbit inn OR&H to m~lrimf5.c ~prtem @vel73 pnimtion. A three-* smbipised<br />

&~&hduy a00 an @mn lon@tv~dz mmures sy~aenrra % iag lo@ean& anxi latitude SXUIS<br />

iht &!Q S'jD8~io) PCWhl~Oll k3 VWWXd. genenatcd tBusu@~ a scan mirror<br />

~WW?XD~XTIU. 'hh then provides a more<br />

T$e dam p b m and redh~bpwrSiOaa of fle~.~~~ spRem. Additionally, the dwell<br />

xnetscorollo&ical 3 i omation ~ f current<br />

f<br />

time for signal integration can be<br />

$stern dm lends itself tb &e TACSAT selectively mntrolled to optimise signal to<br />

Qoncept. However, the format df data noise patio, image repetition frequency<br />

presentation may need fbrther and image size.<br />

development to ensure that the<br />

information presented is in ~Poe most The detector configuration is also an<br />

Eseful form. There may ~ P S O be, a o tion which needs further consideration.<br />

requirement for 'real-time' interrogation &r MOP, single element detectors were<br />

of the TACSAT system.<br />

used md this provided a relatively simple<br />

imaging system. Alternatively, a staring<br />

Throun Pn the appropriate seQection of array could be used. In this case a<br />

s y d l charneb, rneteorolo 0ca.1 data is boresight pointing system would be<br />

o tained on a 24 hour bask. f$y sclesoing required. Although this ma be an<br />

the iappro riaoe spectral ban& md their attractive option since t z e scan<br />

associate $ spectral widths, the most mecPnmisws are simplified, ir ma be<br />

approprhte information cm obtahed. difficult to obtain an IR ;imy or the<br />

AlPPl~ugh present metcorolo 'd system required d' ensions. For example an area<br />

provide much of the data a0 i&cly tO be of 1000 km ? with a resolutim of 1 km<br />

would require a 1024 x 1024 array.<br />

required by the theatre commder, the<br />

emphasis ow spectral bands for a<br />

TACSAT ma be different awd a full<br />

analysis woul B be required. lmdee& the<br />

system demands may be such that a<br />

variable band-pass should be employed<br />

thou the use of diffraction mung or<br />

tunab !@ e interference filters.<br />

For a TACSAT system operatlirmg in GEO,<br />

it is un.kc8 that full Earth mmee wiil<br />

be reqaedA Wibk conaepa wuld be<br />

zones of meteorological data amtred on<br />

the loation of interest. The obs2mtion<br />

or dwell times on a given region would<br />

then be controlled through a preset<br />

weighting scale Or by request from a<br />

ground commander.<br />

A possible need from a GEO TACSAT<br />

system is to produce hi er resolution<br />

images tban are currenty P available. Ef<br />

such a need is io be satisffisd, the<br />

fallowing points will need to be<br />

considered:<br />

i) scan mechanism / beam c+fldon<br />

ii) si@ KO nok ratio .<br />

iu de~~amr mnfi~tion<br />

iv I achimablc resolution<br />

v) saoelfite platform<br />

Firstly, the satellite platform cam k either<br />

spin or tbrec-axis ssabiliscd. For the<br />

former case, the satellite spin give one<br />

A different<br />

iic to use a<br />

before adopting such an approach. These<br />

include si@ to noise ratios, multiple<br />

rvaveband channels and detector cooling.<br />

The telescope system must be capable of<br />

providing the resolution within its<br />

diffraction limit. This then sets a<br />

re airement on the telescope aperture<br />

an 1<br />

angula- mgmfication. For the case of<br />

1 lan resolution, an aperture diameter of<br />

approximately 500 mm would bc required<br />

with a magnification of t pically 10.<br />

Current telescope system cr esigns have<br />

sloown that these paramcters can be<br />

readily met.<br />

A major benefit from a TACSAT<br />

meteorological capability will be<br />

indepaadlena from avilian :-: mms and<br />

mdod forecasting senrim so that in the<br />

event 00 10, mjor crisis during which the<br />

civil we@ may be switched off for<br />

reasons sf security, me tcorological<br />

forecasting is not lost to the Theatre<br />

c o w r .


several chys.<br />

If S~CDPO term forecastin od was<br />

CSA with<br />

an HWoptical imager and 81 Plimiaed<br />

SOUI~C~F. capability would probably<br />

suffice nB used in conjunction with a<br />

skilled Id forecaster.<br />

required, a gcosaationiuy T 1 %<br />

. i<br />

I<br />

,<br />

I<br />

I<br />

h i<br />

The concept of a meteorrsloaical<br />

TACSAT system has been lmddaessed<br />

through P review of current payUa~a& aund<br />

military requirements. The use of the<br />

GEO systsm is wen as being pmisleiar1rly<br />

attractive since these can provide<br />

continual observation as well as a data<br />

transmission link. LEO payloads me seen<br />

as a complement to those in GIEO md can<br />

offer a number of additional benefits.<br />

Indeed, for complete atmm Daeric<br />

monitoring and data extraction, b 5 LEO<br />

and GEO satellites are necessary.<br />

From review of the possibla: military<br />

requirements, it is considered that present<br />

meteorolo ical payloads can provide<br />

P useful information.<br />

current technmc~la~~ can<br />

offer improvements which auld lead to a<br />

viable TACSAT system.<br />

The oaential value of a dedicated<br />

’ TAC sp AT meteorological system cappears<br />

I<br />

2<br />

to hh@ on the possible need to replace<br />

~et~a~~dogid data derived €rom civil<br />

mums whch my be switched off in time<br />

of CI%~S, ad o$e tactid need for the<br />

timely delilev of processed data.<br />

system based an<br />

iting satellites co\L;a<br />

provide data adequate for forecasting up<br />

to several days &ea& and compensate for<br />

the loss of cid data sources, should those<br />

be switched off durin a crisis. If such<br />

assets are not switche df off then current<br />

GEO system provide full Earth cloud<br />

maps at a refresh rate of<br />

minutes which is adequate Tically or global 3Q<br />

monitoring. However, there may be a<br />

requirement for ditay operations in<br />

which the provision o a more ra id<br />

update over an area much smaller t K an<br />

the globd image would be of value. Such<br />

ill system could be obtained through only a<br />

minimal development of current<br />

techology and in con’unction with global<br />

imsa e?, would provi d e sufficient data to<br />

A m d d me0eoro)lo ‘d<br />

2 or 3 Low Earth Or %<br />

em % le short tern forecasting.<br />

The ultimate assessment of the need for a<br />

rne~eo~olo@d system and its subsequent<br />

performance charaaeristics falls to the<br />

various Ministries and De artments of<br />

Defense. However, it is P elt that the<br />

tecPlPlical capability to rovide a variety of<br />

tactical meoeorologi cap systems has been<br />

demonstrated.<br />

An views ex ressed are those of the<br />

aut 1 or(s) and f o not necessarily represent<br />

those of HM Government.<br />

REFERENCES<br />

[ 11 RTessier ‘The Metcosat Programme’<br />

ESA Bulletin 58, May 1989, pp45-47


Figure1 World Met roroloKy<br />

-h<br />

Visiblm Wtmetor Ilsamntm<br />

In D8tector Llennts<br />

1. .<br />

3 6.:<br />

111<br />

I 0o.y 1.l.I 1. .U. H... -1.c.l w -111 lllpyn I<br />

I ."l.<br />

Table 1 Summary of Global<br />

Mod- Sstditcr<br />

Irc m e l d [ as .I"<br />

[ s b I.* 4 111


e:<br />

l<br />

,<br />

/<br />

I<br />

Discussion<br />

Question: You put great emphasis on GEO meteorological<br />

satellites, bllt these cannot give full polar coverage.<br />

Could you comment on the significance of this incomplete<br />

coverage.<br />

Reply: There is an anticipation that if a crisis/theater<br />

operation were to wcur, then that operation is more<br />

likely in lattitudes remote from the poles. The objection<br />

voiced to LEO sensors was based on the relatively<br />

Long revisit times associated with polar LEO satellites.<br />

However, near the poles, ,revisit times are much more<br />

frequent and will probably provide short term data.<br />

33-7


,<br />

Comment: TACSATS, 1<br />

only as "trucks" bpb<br />

c all sakellltes, are useful<br />

'I provide data to supported<br />

commanders. Whcrc I<br />

strategic/operat.I'<br />

Ioyment distances and<br />

b l depths are large, as in Desert<br />

Storm, spacecraft :e useful. In other situations,<br />

such as the \IS If. ."rvention in Grenada, spacecraft<br />

are useless because of dwell and ... limitations.<br />

What we should do IS to examine the functions performed<br />

(comms, nav, etc.;; remember that these functions<br />

are as old as warfare and - not unique to space: and<br />

then find a means to determine when other means of<br />

support are more appropriate from spacecraft.<br />

Question: This is a conference about tactical, low<br />

cost, lightsat concepts.<br />

Reply: Possibly yes, but the confusion comes from<br />

the mere existence of systems providing support to<br />

the theater and that dedicated systems can only be<br />

deployed if they are low cost, hence lightsat.<br />

Question: There may be problems of jamming TACSATS.<br />

Reply: Yes. Probably mare for SAR than optical systems.<br />

Nevertheless, means exist to reduce such damaging<br />

effects to a radar, in general. It may be worthwhile<br />

to develop some tests t.o better assess how to cope<br />

with the jammer threat.<br />

.'


7<br />

t!lETTl?3T iDOCWMEWAmOT'd PAGE<br />

AGARD-CP-5 22 ISBN 92-835-0700-2 UNCLASSIFIED/<br />

5. Oddnotor Advisory Group for Acroipacc Research and Development<br />

North Atlantic Treaty Qrfpization<br />

7 RUC Anccllc. 82200 Ncriilly sur Seine, France<br />

6. I ltk<br />

---<br />

TACSATS FOR St.kVElLLANCE, VERIFICATION AND C31<br />

-- --<br />

7. I'n~nted at thc Avionics Panel Symposium held in<br />

Brusscls, bclgium from 19th-22nd October 1992.<br />

---<br />

8. AulRoo(s)/Editor(s) 9. Date<br />

Various February 1993<br />

IO. AutMdEditor's Address 11. Pages<br />

Various 26 2<br />

I_ I<br />

fihtr%don . Thcre arc no rcstrictions on the distribution of this documcnt.<br />

lnfonnation about the availability of this and other AGARD<br />

unclassified publications is givcn on thc back cover.<br />

13. #a~Qds/Dt'SCdptW<br />

TacSats Satcllitc communications<br />

Small satcllitcs Satcllitc navigation<br />

Launch vchiclcs Satcllitc survcillancc<br />

Satcllitc payloads 1 Spacccraft bus<br />

This Symposium dealt with smdl satcllitcs uscd for tactical (as opposcd to strategic) zpplications<br />

that might bc of value to NATO. 3 %~ 1 1 Scssions covcrcd TacSat concepts and needs, aspccts of<br />

TacSat applications, TacSat systcm applications, communication concepts, launch systcms,<br />

spacccraft bus. advanccd tcchnology, radar concepts, clectro-optics concepts and two pancl<br />

discussions. The information gencratcd by thc Symposium will bc used by Working Group 16 to<br />

rcpn on thc utility of such salcllitcs and applications to mcct futurc NATO needs.


. 1.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!