09.03.2013 Views

Aero Engine Roadmap 2050 - MTU Aero Engines

Aero Engine Roadmap 2050 - MTU Aero Engines

Aero Engine Roadmap 2050 - MTU Aero Engines

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong><br />

Dr. Jörg Sieber<br />

<strong>Aero</strong>space Industry Exhibition Tokyo 2011<br />

Tokyo, October 26 - 28, 2011


Content<br />

Future Requirements<br />

Improvement Opportunities<br />

Innovative Module Technologies<br />

New <strong>Aero</strong> <strong>Engine</strong> Concepts<br />

• Improved Propulsive Efficiency<br />

• Improved Thermal Efficiency<br />

• Long-term Concepts<br />

<strong>Engine</strong> <strong>Roadmap</strong> and Future Air Traffic<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 2


Relative Change<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Future Requirements<br />

Air Traffic and CO 2 -Emissions<br />

Air traffic<br />

2% annual<br />

improvement<br />

Fuel consumption<br />

& CO 2 -emissions<br />

IATA goals for air transport:<br />

• Carbon neutral growth from 2020<br />

• 50% absolute reduction in CO 2 -emissions by <strong>2050</strong><br />

2000 2010 2020 2030 2040 <strong>2050</strong><br />

Business as usual<br />

Additional measures<br />

•Innovative technologies<br />

•Biofuels<br />

•Air traffic management<br />

•Economic instruments<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 3


NO x -Emissions<br />

Future Requirements<br />

NOx limits have been reduced in several steps<br />

Further tightening of NOx limits are in discussion<br />

<strong>Engine</strong> certification according to ICAO LTO (landing take-off ) cycle<br />

ICAO limits depend on overall pressure ratio in order to take into account combustor<br />

behavior and engine efficiency<br />

NO x rel. to CAEP/6 %<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

-80<br />

Progress in NO x certification limits<br />

CAEP/1**<br />

CAEP/2**<br />

CAEP/4**<br />

CAEP/6<br />

ICAO Goals*<br />

Medium Term<br />

Long Term<br />

1990 2000 2010 2020 2030<br />

* www.icao.int/icao/en/Env2010/TechnologyStandards.htm ** OPR=30<br />

ICAO NOx [g/kN]<br />

0<br />

10 20 30 40 50<br />

Overall Pressure Ratio<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 4<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

ICAO NO x limits and engine test data<br />

CAEP/1<br />

CAEP/2<br />

CAEP/4<br />

CAEP/6<br />

ICAO Medium Term Goal*<br />

ICAO Long Term Goal*


Noise Emissions<br />

Tight regulations by ICAO and locally<br />

Further tightening of noise limits are in discussion<br />

Expected growth in world air traffic causes significant environmental challenges<br />

Noise is becoming an important economic factor because of noise charges, quotas and<br />

flight bans<br />

EPNdB rel. to Stage 3<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

Future Requirements<br />

Progress in noise certification limits<br />

Stage 2<br />

Stage 3<br />

ICAO Goals*<br />

Stage 4<br />

Medium Term<br />

Long Term<br />

1970 1990 2010 2030<br />

* www.icao.int/icao/en/Env2010/TechnologyStandards.htm, small-med. range twin<br />

Growth in airport noise restrictions**<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 5<br />

Number of Airports<br />

600<br />

400<br />

200<br />

0<br />

Restrictions:<br />

• Curfews<br />

• Noise charges<br />

• Noise level limits<br />

• Operating quotas<br />

1970 1980 1990 2000 2010<br />

** www.boeing.com/commercial/noise/restrictions.pdf


Future Requirements<br />

Environmental Objectives for Future Aviation<br />

CO2 /<br />

Fuel<br />

NO x<br />

Noise<br />

ACARE 2020 1<br />

50% reduction in CO 2<br />

per passenger<br />

kilometer<br />

by 2020 rel. to 2000<br />

80% reduction in NO x<br />

per passenger<br />

kilometer<br />

by 2020 rel. to 2000<br />

50% reduction of<br />

aircraft perceived noise<br />

by 2020 rel. to 2000<br />

NASA Goals 2<br />

50% reduction in CO 2<br />

of new aircraft in 25<br />

years<br />

80% reduction in NO x<br />

of new aircraft in 25<br />

years<br />

75% reduction of<br />

perceived noise of new<br />

aircraft in 25 years<br />

Flightpath <strong>2050</strong> 3<br />

75% reduction in CO 2<br />

per passenger<br />

kilometer<br />

by <strong>2050</strong> rel. to 2000<br />

90% reduction in NO x<br />

per passenger<br />

kilometer<br />

by <strong>2050</strong> rel. to 2000<br />

65% reduction of<br />

aircraft perceived noise<br />

by <strong>2050</strong> rel. to 2000<br />

IATA 4<br />

1.5% annual fuel<br />

efficiency improvement<br />

from 2009 to 2020<br />

carbon neutral growth<br />

of air traffic from 2020<br />

50% reduction of air<br />

traffic CO 2 emissions<br />

2 emissions<br />

by <strong>2050</strong> rel. to 2005<br />

1 European <strong>Aero</strong>nautics: A Vision for 2020, Report of the group of personalities, European Commission 2001, ACARE (Advisory Council for <strong>Aero</strong>nautics Research in Europe)<br />

2 Goals and Objectives for the <strong>Aero</strong>space Technology Enterprise,1997, National <strong>Aero</strong>nautics and Space Administration (NASA)<br />

3 Flightpath <strong>2050</strong> Europe‘s Vision for Aviation, Report of the high level group on aviation research, European Commission 2011<br />

4 IATA Press Releases Kuala Lumpur June 2009; www.iata.org/pressroom/pr/pages/2009-06-08-03.aspx<br />

5 37th Session of the ICAO Assembly Oct. 2010; www.icaoint/icao/en/Env2010/Pubs/ICAO_ENVBrochure_en.pdf &<br />

6 www.icaoint/icao/en/Env2010/Technologystandards.htm<br />

ICAO 5/6<br />

2% annual fuel<br />

efficiency improvement<br />

up to <strong>2050</strong><br />

carbon neutral growth<br />

of air traffic from 2020<br />

development of a CO2 standard for aircraft for<br />

2013<br />

-45% rel. to CAEP6<br />

LTO cycle by 2016<br />

(OPR 30)<br />

-60% rel. to CAEP6<br />

LTO cycle by 2026<br />

(OPR 30)<br />

-21 EPNdB rel. to<br />

Chapter 4 by 2018<br />

(small-med. range twin)<br />

-23.5 EPNdB rel. to<br />

Chapter 4 by 2028<br />

(small-med. range twin)<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 6


Efficiency of <strong>Aero</strong> <strong>Engine</strong>s<br />

Improvement Opportunities<br />

Propulsion Efficiency %<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

ideal<br />

installed<br />

5 10 15 20 25 30<br />

Bypass Ratio<br />

engine cycle<br />

bypass ratio pressure ratio<br />

η total = η propulsion installation · η thermal temperature<br />

…. module efficiency<br />

…<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 7<br />

Thermal Efficiency %<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

T max = 2000 K<br />

1000 K<br />

1500 K<br />

0 10 20 30 40 50<br />

Overall Pressure Ratio


Ideal and Real <strong>Aero</strong> <strong>Engine</strong><br />

Thermal Efficiency<br />

1,0<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

30<br />

20<br />

Improvement Opportunities<br />

15<br />

0,3<br />

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

10<br />

Turbofan<br />

1960 2010<br />

Propulsive Efficiency<br />

SFC<br />

g/kN/s<br />

7,5<br />

Open Rotor<br />

Ideal engine cycles<br />

Carnot T max = 2000K<br />

Joule OPR = 80<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 8


Bypass Ratio<br />

Development of Bypass Ratio and Overall Pressure Ratio<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Improvement Opportunities<br />

1960 1970 1980 1990 2000 2010<br />

Certification<br />

Overall Pressure Ratio<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 9<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

1960 1970 1980 1990 2000 2010<br />

Certification<br />

Bypass ratio and overall pressure ratio has been increased in the past in order to<br />

improve fuel efficiency and reduce noise emission.


Surge control<br />

by tip injection<br />

Non axisymmetric<br />

endwalls<br />

Aspirated<br />

blading<br />

Innovative Module Technologies<br />

Innovative Compressor Technologies - Examples<br />

Advanced<br />

casing<br />

treatment<br />

Rub<br />

management<br />

Blade tip<br />

Abradable<br />

Casing<br />

aspiration<br />

Active clearance<br />

control<br />

All BLISK rotor<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 10


Ceramic matrix<br />

composite (CMC)<br />

Integral 3D<br />

design<br />

Efficient cooling<br />

systems<br />

Innovative Module Technologies<br />

Innovative Turbine Technologies - Examples<br />

Micro-structured<br />

blade surfaces<br />

High stage<br />

loading<br />

Low noise<br />

design<br />

Low weight<br />

materials (TiAl)<br />

Turbine Blisk<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 11


Main combustion zone:<br />

lean burning<br />

(out at lower powers)<br />

Pilot: rich burning zone<br />

(stable to low power)<br />

Innovative Module Technologies<br />

Innovative Combustor Technologies - Lean Combustion<br />

Lean combustion operates with an<br />

excess of air to significantly lower flame<br />

temperatures and consequently reduce<br />

NOx formation.<br />

To overcome the narrow operating<br />

range of lean combustion, fuel staging<br />

is required.<br />

DPNOx/Foo g/kN<br />

0<br />

10 20 30 40 50 60 70 80<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 12<br />

100<br />

80<br />

60<br />

40<br />

20<br />

LP(P)<br />

Combustor<br />

LPP<br />

NO x CAEP2<br />

PERM<br />

LDI<br />

Overall Pressure Ratio<br />

PERM<br />

Combustor<br />

LDI<br />

Combustor<br />

LPP<br />

40% CAEP2<br />

PERM<br />

35% CAEP2<br />

LDI<br />

30% CAEP2


Geared Turbofan<br />

Description<br />

• Gear between low pressure turbine and fan<br />

• High speed low pressure turbine<br />

• High bypass ratio > 12<br />

Benefits<br />

• High propulsive efficiency<br />

• Efficient and light weight low pressure turbine<br />

• 15% reduced fuel consumption *<br />

• 24 dB noise reduction (accumulated) *<br />

• EIS 2013<br />

Challenges<br />

• Low drag nacelle<br />

• Gearbox<br />

• Light weight design<br />

* rel. to year 2000 engine<br />

New <strong>Aero</strong> <strong>Engine</strong> Concepts<br />

Improved Propulsive Efficiency<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 13


Noise Simulation: Pratt & Whitney<br />

SEL Contour Source: Wyle Laboratories<br />

New <strong>Aero</strong> <strong>Engine</strong> Concepts<br />

Improved Propulsive Efficiency<br />

Geared Turbofan – Noise Reduction<br />

Munich Airport<br />

Current aircraft Next Generation aircraft with<br />

Geared Turbofan<br />

Reduction of 75dB noise contour by 72%<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 14


Studies Component Development Demonstrators Flight Tests Applications<br />

Rotor aerodynamics<br />

Studies<br />

New <strong>Aero</strong> <strong>Engine</strong> Concepts<br />

Improved Propulsive Efficiency<br />

Geared Turbofan – Technology Development<br />

Demonstrator 50 klb<br />

windtunnel tests<br />

Flight gearbox 32k SHP<br />

Demonstrator 28 klb<br />

engine tests<br />

Demonstrator 13 klb<br />

engine tests<br />

First flight<br />

FTB Boeing B747<br />

Mitsubishi MRJ<br />

Bombardier CSeries<br />

Irkut MC-21<br />

Airbus A320 NEO<br />

1980 1990 2000 2010 2020<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 15


Open Rotor<br />

Description<br />

• Open counter-rotating fan<br />

• Gearbox or counter-rotating low pressure turbine<br />

• „pusher“ or „puller“ configuration<br />

• Very high bypass ratio<br />

Benefits<br />

• Very high propulsive efficiency<br />

• 20% reduced fuel consumption *<br />

• Technology readiness 2020+<br />

Challenges<br />

• Noise emission (far field + cabin)<br />

• Installation<br />

• High flight velocity<br />

• Blade pitch change mechanism<br />

• Certification (blade off / bird strike)<br />

• Gearbox / counter-rotating turbine<br />

* rel. to year 2000 engine<br />

New <strong>Aero</strong> <strong>Engine</strong> Concepts<br />

Improved Propulsive Efficiency<br />

pusher<br />

puller<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 16


Open Rotor<br />

New <strong>Aero</strong> <strong>Engine</strong> Concepts<br />

Improved Propulsive Efficiency<br />

Development of the new engine concept after the OPEC oil embargo in the USA by<br />

General Electric und Pratt&Whitney-Allison.<br />

• GE36 from GE, driven by a counter-rotating low pressure turbine<br />

• 578-DX from P&W-Allison, driven by a gearbox<br />

Demonstrator flights using B727 and MD80 in the late 1980s<br />

The development was stopped because of falling fuel prices and unsolved noise<br />

problems (noise emission approximately ICAO Stage 3).<br />

Restart of the Open Rotor development by Rolls Royce and GE.<br />

P&W-Allison 578-DX General Electric GE36<br />

Tail mounted<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 17


Thermal Efficiency<br />

New <strong>Aero</strong> <strong>Engine</strong> Concepts<br />

Improved Thermal Efficiency<br />

Thermal Efficiency for Different <strong>Engine</strong> Cycles<br />

Intercooled<br />

IC HEX<br />

Recuperated LPC HPC<br />

Com.<br />

HPT<br />

5 10 20 50<br />

100<br />

Overall Pressure Ratio<br />

Intercooled<br />

Conventional<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 18<br />

LPT<br />

Intercooled Recuperated<br />

IC<br />

Com.<br />

LPC HPC HPT<br />

Intercooled<br />

Com.<br />

LPC HPC HPT<br />

Conventional<br />

LPT<br />

LPT


Intercooled Core<br />

Description<br />

• Intercooler between low pressure and<br />

high pressure compressor<br />

• Conventional or geared fan<br />

• High overall pressure ratio > 70<br />

Benefits<br />

• High thermal efficiency<br />

• 20% reduced fuel consumption *<br />

• Technology readiness > 2025<br />

Challenges<br />

• Integration of intercooler<br />

• Low pressure loss ducting and<br />

intercooler<br />

• Light weight and efficient intercooler<br />

• Efficient compressor for high pressures<br />

* rel. to year 2000 engine<br />

New <strong>Aero</strong> <strong>Engine</strong> Concepts<br />

Improved Thermal Efficiency<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 19


Intercooled<br />

engine<br />

intercase<br />

Intercooler<br />

ducting system<br />

New <strong>Aero</strong> <strong>Engine</strong> Concepts<br />

Improved Thermal Efficiency<br />

Intercooled Core – Technologies<br />

Intercooler<br />

modules<br />

Stability<br />

enhancement<br />

(tip blowing)<br />

Tip clearance<br />

control<br />

LDI combustor<br />

20<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 20


Intercooled Recuperated Core<br />

Description<br />

• Intercooler between low pressure and<br />

high pressure compressor<br />

• Exhaust gas heat exchanger<br />

• Geared fan<br />

• Low overall pressure ratio ~ 25<br />

Benefits<br />

• Very high thermal efficiency<br />

• Low NO X -Emissions<br />

• 30% reduced fuel consumption *<br />

• Technology readiness > 2035<br />

Challenges<br />

• Integration of intercooler and heat<br />

exchanger<br />

• Low pressures loss ducting, intercooler<br />

and heat exchanger<br />

• Low weight and efficient heat exchanger<br />

* rel. to year 2000 engine<br />

New <strong>Aero</strong> <strong>Engine</strong> Concepts<br />

Improved Thermal Efficiency<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 21


Intercooled Recuperated Core – Technologies<br />

Axial / radial<br />

compressor<br />

New <strong>Aero</strong> <strong>Engine</strong> Concepts<br />

Improved Thermal Efficiency<br />

Heat exchanger<br />

Heat exchanger<br />

arrangement and<br />

ducting system<br />

Lean Premixed<br />

Pre-vapourised<br />

combustor<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 22


All Electric Flight<br />

Description<br />

• Electric driven propeller,<br />

open rotor or ducted fan<br />

• Energy storage by batteries<br />

Benefits<br />

• Zero emission (during flight)<br />

• Independence from oil resources<br />

Challenges<br />

• Specific energy of batteries<br />

(kWh/kg)<br />

• Power to weight ratio of electric<br />

motors (high temperature<br />

superconductivity necessary)<br />

New <strong>Aero</strong> <strong>Engine</strong> Concepts<br />

Long-term Concepts<br />

Range (nm)<br />

Example: Electrification of an<br />

ATR72-600<br />

Assumptions<br />

• Battery capacity: 200 Wh/kg<br />

2010, 5% p.a. improvement<br />

• Fuel replaced by batteries (5 t)<br />

• Electric motors using high<br />

temperature superconductivity<br />

(HTS)<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 23<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Typical mission<br />

< 300 nm<br />

2010 2020 2030 2040 <strong>2050</strong>


Hybrid <strong>Engine</strong><br />

Description<br />

• Electric driven distributed fans<br />

• Electric generator driven by a high efficient gas<br />

turbine using an advanced thermodynamic cycle<br />

• Buffering of peak power by batteries<br />

Benefits<br />

• Reduced aircraft drag if wing/fuselage wake is<br />

reduced by distributed fans<br />

• High propulsive efficiency<br />

• Optimization of gas turbine for cruise conditions<br />

• Additional degree of freedom to integrate<br />

complex gas turbine cycles<br />

• High energy content of conventional fuel<br />

Challenges<br />

• High weight<br />

• Complex system<br />

• Transmission losses<br />

New <strong>Aero</strong> <strong>Engine</strong> Concepts<br />

Long-term Concepts<br />

E-Motor<br />

E-Motor<br />

LPC HPC HPT<br />

Gas turbine with advanced engine cycle<br />

Batterie<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 24<br />

IC<br />

HEX<br />

COM.<br />

LPT Generator


<strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong><br />

German <strong>Aero</strong>space Industries Association (BDLI)<br />

Geared<br />

Turbofan<br />

Open<br />

Rotor<br />

<strong>Engine</strong> <strong>Roadmap</strong> & Future Air Traffic<br />

Counter<br />

Rotating<br />

Shrouded<br />

Propfan<br />

Intercooled<br />

Core<br />

Intercooled<br />

Recuperated<br />

Core<br />

All-electric<br />

Hybrid<br />

<strong>Engine</strong><br />

2010 2020 2030 2040 <strong>2050</strong><br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 25


Future Development of Air Traffic and CO 2 -Emissions<br />

Relative Change<br />

5<br />

4<br />

3<br />

2<br />

Air traffic<br />

(+5% p.a.)<br />

<strong>Engine</strong> <strong>Roadmap</strong> & Future Air Traffic<br />

CO 2 emissions<br />

business<br />

as usual<br />

(efficiency<br />

+2% p.a.)<br />

CO 2 emissions<br />

innovative<br />

technologies<br />

1<br />

0<br />

IATA objectives:<br />

• carbon neutral growth from 2020<br />

• 50% absolute reduction in CO2 emissions by <strong>2050</strong> rel. to 2005<br />

2000 2010 2020 2030 2040 <strong>2050</strong><br />

New Aircraft<br />

Concepts<br />

30% efficiency<br />

improvement *<br />

New<br />

<strong>Engine</strong>s<br />

50% efficiency<br />

improvement *<br />

Advanced<br />

Air Traffic<br />

Management<br />

20% efficiency<br />

improvement *<br />

Alternative<br />

Fuels<br />

80% carbon<br />

free fuel *<br />

* by <strong>2050</strong> rel. to 2000<br />

Oct. 28, 2011 <strong>Aero</strong> <strong>Engine</strong> <strong>Roadmap</strong> <strong>2050</strong> - Dr. J. Sieber 26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!