11.06.2013 Views

Lezione 9 12 Maggio 2010 - Università degli Studi di Pisa

Lezione 9 12 Maggio 2010 - Università degli Studi di Pisa

Lezione 9 12 Maggio 2010 - Università degli Studi di Pisa

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Lezione</strong> 9<br />

<strong>12</strong> <strong>Maggio</strong> <strong>2010</strong>


Rilascio Controllato e Mirato <strong>di</strong> Farmaci<br />

“Magic Bullet”<br />

Paul Erlich (1906)<br />

A Drug will be able to perform its therapeutic action if present<br />

at the site of action for an adeguate period of time and in an<br />

optimal concentration.<br />

concentration


NANOMEDICINA<br />

Applicazione me<strong>di</strong>ca/clinica delle nanotecnologie


Nanotechnology-Based Drug Delivery Systems<br />

Veicolazione controllata e mirata <strong>di</strong> farmaci<br />

Diagnostica ed imaging


Liposomi<br />

I liposomi sono vescicole a base <strong>di</strong> fosfolipi<strong>di</strong> <strong>di</strong> <strong>di</strong>mensioni variabili tra I 20 nm e 1 µm. Sono<br />

generalmente costituti da uno o piu’ doppi strati lipi<strong>di</strong>ci. Il nucleo spesso contiene una soluzione<br />

acquosa. Tipicamente sono utilizzati per veicolare farmaci idrofili che non potrebbero passare le<br />

membrane cellulari. Farmaci lipofili possono essere <strong>di</strong>spersi nel doppio strato lipi<strong>di</strong>co. Sono stati<br />

utilizzati come modello <strong>di</strong> membrana cellulare. Si ottengono da <strong>di</strong>spersioni in acqua <strong>di</strong> fosfolipi.


Esempio: Liposomi con catene <strong>di</strong> PEG recanti<br />

all’estremita’ molecole <strong>di</strong> transferrina.<br />

Trattamento dei gliomi.<br />

I liposomi possono essere mo<strong>di</strong>ficati per impartire<br />

proprieta’ antiopsonizzanti (PEG) e/o con molecole che<br />

<strong>di</strong>rezionano I vettori su cellule/organi specifici


Doxorubicina: Chemioterapico idrosolubile per il<br />

trattamento <strong>di</strong> tumori soli<strong>di</strong> (es. Seno)


Micelle<br />

Le micelle sono aggregati <strong>di</strong> molecole anfifiliche (testa polare,<br />

coda idrofoba) che in ambiente acquoso si organizzano in modo<br />

da esporre le teste polari verso l’acqua e le code idrofobe verso<br />

l’interno. La parte interna e’ quin<strong>di</strong> formata da lunghe catene<br />

alchiliche non polari.<br />

Le micelle si formano solo quando la concentrazione della<br />

molecola anfifilica in acqua raggiunge una determinata<br />

concentrazione chiamata concentrazione micellare critica<br />

(CMC)<br />

La micellizzazione <strong>di</strong>pende dal bilancio <strong>di</strong> due effetti principali: la tendenza delle code idrocarburiche ad evitare il<br />

contatto con l’acqua, e la repulsione tra le teste cariche, un effetto destabilizzante sul processo <strong>di</strong> aggregazione.<br />

Le catene idrocarburiche evitano il contatto col solvente puntando verso l’interno dell’aggregato, privo <strong>di</strong> acqua,<br />

mentre la repulsione tra le teste cariche sulla superficie della micella è attenuata dalla presenza <strong>di</strong> ioni <strong>di</strong> carica<br />

opposta (controioni). L’associazione favorevole delle code apolari all’interno della micella avviene attraverso<br />

l’interazione idrofobica, che è l’effetto dominante nella formazione <strong>di</strong> questi gran<strong>di</strong> aggregati <strong>di</strong> molecole.


Micelle Inverse<br />

Oltre che in acqua, le molecole anfifiliche possono formare micelle anche in solventi<br />

organici non polari. In questi casi, gli aggregati micellari prendono il nome <strong>di</strong> micelle inverse<br />

perché la situazione è "capovolta" rispetto all’acqua. Infatti, le code idrocarburiche sono<br />

esposte al solvente non polare, mentre le teste polari sono rivolte all’interno dell’aggregato<br />

per evitare il contatto con il solvente.<br />

Le micelle inverse sono capaci <strong>di</strong> trattenere quantità relativamente gran<strong>di</strong> <strong>di</strong> acqua all’interno<br />

della struttura, verso cui puntano le teste polari. In questo modo si crea una "tasca" ideale per<br />

sciogliere e trasportare soluti polari attraverso un solvente apolare.


Applicazioni Micelle per Drug Delivery


Peg-PCL micelles loaded with magnetic nanoparticles<br />

Polymer: Polycaprolactone-block-Polyethylene Glycol (PCL 2000 /PEG 2000 ) 75/25 (Mw 25000)<br />

Preparation method: Co-precipitation/Solvent Evaporation; Dialysis<br />

Magnetic Core: Cobalt Ferrite or Magnetite (Colorita)<br />

DLS<br />

Organic NPs<br />

148±41 nm<br />

Nanoparticle Suspensions<br />

Hybrid<br />

CoFe<br />

Organic<br />

Hybrid/<br />

Fe 3 O 4


Micro-Nanoparticelle Polimeriche per il Rilascio Controllato e Mirato <strong>di</strong> Farmaci<br />

➼ Dimension ≤ 1 µm (nanoDDS 100nm)<br />

➼ Capability to incorporate high dose of<br />

therapeutics<br />

➼ Able to cross biological barriers<br />

➼ Possibility to biofunctionalize surfaces for a<br />

targeted release<br />

➼ Suited for hydrophobic or proteic drugs<br />

➼ Biodegradable/Bioeliminable<br />

Control of Pharmacokinetics & Bio<strong>di</strong>stribution - Enhance Drug Physical and Chemical Stability


Meto<strong>di</strong> <strong>di</strong> Preparazione <strong>di</strong> Micro-Nanoparticelle<br />

Micro-Nanoparticelle<br />

The site of action and therapeutic regimes will guide in the<br />

in<strong>di</strong>viduation of the best type of nanoparticulate system and in the<br />

choice of the best suited polymer matrix. These aspects, combined<br />

with drug features, are the lea<strong>di</strong>ng factors for the definition of the<br />

proper preparation and purification procedures.<br />

Le metodologie <strong>di</strong> preparazione si <strong>di</strong>stinguono in:<br />

1. Polimerizzazione in situ<br />

2. Preparazione da polimeri preformati


In-situ Polymerization Procedures<br />

Direct polymerization of the low molar mass buil<strong>di</strong>ng blocks,<br />

in presence of the active agent<br />

Pros: High encapsulation efficiency<br />

Cons: Use of organic solvent which may alter the loaded drug<br />

Contamination by residual unreacted monomers<br />

Time consuming for the purification process<br />

Most Common Methods<br />

¬ Emulsion Polymerization<br />

(organic or acqueous)<br />

¬ Dispersion Polymerization<br />

¬ Interfacial Polymerization


Emulsion Polymerization<br />

Most applied and fast<br />

Aqueous or Organic Continuous Phase<br />

¬ Emulsion or inverse emulsion of the monomer<br />

and drug in the continuous phase<br />

¬ Ad<strong>di</strong>tion of surfactants to prevent aggregation<br />

(generally over the critical micellar concentration)<br />

¬ Water soluble initiators or γ/UV/VIS ra<strong>di</strong>ation<br />

Formation of Solid Nanoparticles<br />

Nanoparticelle <strong>di</strong> polialchilcianoacrilati: preparate per polimerizzazione anionica <strong>di</strong> monomeri <strong>di</strong> cianoacrilato <strong>di</strong>spersi in una<br />

fase acquosa acida


Dispersion Polymerization<br />

Single Step Technique<br />

¬ The monomer is <strong>di</strong>ssolved in a proper solvent<br />

containing drug and stabilizer<br />

¬ Ra<strong>di</strong>cal polymerization of the monomer is<br />

generally performed<br />

¬ The oligomers will start to precipitate at a critical<br />

chain length, adsorbing or entrapping the drug<br />

Formation of Solid Nanoparticles<br />

Nanoparticelle <strong>di</strong> poli(butilcianoacrilato) preparate per polimerizzazione in <strong>di</strong>spersione del monomero n-butyl cianoacrilato


Interfacial Polymerization<br />

Polymerization, Polycondensation or Polyad<strong>di</strong>tion<br />

¬ Preparation of a w/o or o/w emulsion with two<br />

monomers (one for each phase), drug and stabilizers<br />

(generally in the inner phase for osmotic stability)<br />

¬ The reaction starts and proceeds at the interface<br />

Formation of Nanocapsules with<br />

water or oil core


Preparation from Preformed Polymers<br />

Most widely applied, compared to in-situ polymerization methods<br />

Basically, the nanoparticles are formed due to<br />

1. Polymer Aggregation or Precipitation for Solvation Loss<br />

Emulsion-Solvent Evaporation<br />

Phase Separation<br />

Solvent Displacement (nanoprecipitation, co-precipitation,<br />

<strong>di</strong>alysis)<br />

Spray Drying<br />

2. Formation of Insoluble Complexes<br />

Self-Assembly (polyplexes, micelles)<br />

3. Cross-linking<br />

Chemical or Physical Crosslinking<br />

• The loa<strong>di</strong>ng of the drug may occur simultaneously with particle<br />

formation or on preformed particles<br />

• The drug can be physically entrapped or adsorbed


Emulsion-Solvent Evaporation 1<br />

Single Emulsion (o/w) Hydrophobic Drugs<br />

¬Polymer organic solution in which the drug is<br />

<strong>di</strong>ssolved/<strong>di</strong>spersed (sonication)<br />

¬Emulsification in water (ad<strong>di</strong>tion of surfactants)<br />

¬Removal of the organic solvent by evaporation or extraction<br />

¬Formation of Solid Nanoparticles


Emulsion-Solvent Evaporation 2<br />

Double Emulsion (w/o/w) Hydrophilic Drugs<br />

¬Emulsification of the water solution of the drug in the organic<br />

solution containing the polymer (primary emulsion)<br />

¬Transfer of the primary emulsion into an excess of water<br />

solution containing a surfactant (vigorous stirring)<br />

¬Removal of the organic solvent by evaporation or extraction<br />

I Emulsion<br />

Evaporation/<br />

Extraction<br />

II Emulsion


Phase Separation<br />

¬ Dissolution or <strong>di</strong>spersion of the drug in the polymer<br />

organic solution (PLA, PLGA, PVC…)<br />

¬ Ad<strong>di</strong>tion of an organic non solvent (silicone oil, vegetable<br />

oils..) under continuous vigorous stirring until complete<br />

extraction of the first solvent and formation of a soft<br />

coacervate<br />

¬ Hardening of the coacervate with exposure to another<br />

non solvent (hexane, <strong>di</strong>ethyl ether)<br />

Formation of Solid Nanoparticles<br />

Drawbacks: formation of aggregates and use of several organic solvents


Nanoprecipitation<br />

Hydrophobic Drugs <strong>di</strong>ssolved<br />

in the polymer solution<br />

Solvent Displacement<br />

¬ The polymer is <strong>di</strong>ssolved in an organic solution<br />

¬ The solution is added dropwise to a non solvent<br />

(other organic solvent or water), miscible with the<br />

former one, kept under stirring<br />

¬ Microphase separation of the polymer with<br />

concurrent interaction with drug and stabilizers<br />

Co-precipitation<br />

Hydrophilic Drugs <strong>di</strong>ssolved<br />

in the water solution<br />

Formation of Solid Nanoparticles


Nanoprecipitazione<br />

- Il polimero, il farmaco e stabilizzanti vengono sciolti nello stesso solvente (es. Acetone)<br />

- La soluzione polimerica viene fatta gocciolare in un non-solvente miscibile con quello<br />

utilizzato per sciogliere il polimero<br />

- In<strong>di</strong>cata per il caricamento <strong>di</strong> composti idrofobici<br />

PLGA<br />

4mg/ml<br />

Elicene GA007<br />

in DMSO (25_g/ml)<br />

Pluronic F-<strong>12</strong>7<br />

0,1 % w/v<br />

H 2 O


PLGA<br />

PHB


Co-precipitation<br />

- Original procedure - Avoid use of aggressive organic solvents<br />

- Straightforward and reproducible - Tunable for <strong>di</strong>fferent polymeric materials<br />

+<br />

HO<br />

HO<br />

HO<br />

O<br />

O<br />

HO<br />

HO<br />

O<br />

O OH<br />

OH<br />

O OH<br />

HO<br />

O<br />

OH<br />

HO<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

HO<br />

O<br />

O<br />

HO<br />

O<br />

OH<br />

O<br />

OH<br />

O<br />

O<br />

EtOH/H 2 O<br />

OH<br />

OH<br />

OH<br />

H 2 O


¬ Dissolution of polymer, drug and<br />

surfactants in the same solvent<br />

(organic).<br />

¬ Dialysis of the solution vs. a non<br />

solvent, miscible with the former<br />

one (water).<br />

¬ Progressive aggregation of polymer,<br />

drug, and surfactant.<br />

¬ Formation of solid nanoparticles<br />

Dialysis<br />

Drawbacks: formation of aggregates and interaction with the <strong>di</strong>alysis membrane.


PLGA Nanoparticles<br />

PLGA/RA Nanoparticles


Spray Drying<br />

Mild con<strong>di</strong>tions, good reproducibility<br />

¬ The polymer is <strong>di</strong>ssolved in a volatile solvent<br />

¬ The drug is either <strong>di</strong>spersed or <strong>di</strong>ssolved in the polymer solution<br />

¬ The solution/<strong>di</strong>spersion is then sprayed against a stream of cold<br />

air (-60°C)<br />

¬ The cold droplets are then dried in a cold essicator<br />

¬ Formation of Solid Nanoparticles


Self Assembly<br />

Self Assembly of oppositely charged polyions<br />

¬Generally applied for DNA plasmids, Antisense<br />

Oligodeoxynucletides (ODNs) and siRNA (negatively charged)<br />

¬Ad<strong>di</strong>tion of an aqueous solution of the active agent to the<br />

aqueous solution of water soluble cationic polymers (PEI, PLL,<br />

etc.). Mixed mixed under stirring at room temperature.<br />

Formation of Polyion Complexes<br />

(Polyplexes)


¬ Sizing: Dynamic Light Scattering<br />

Characterisations<br />

¬ Morphology: Microscopy (SEM, TEM, AFM)<br />

¬ Surface: Charge (Zeta Potential), Hydrophobicity (HIC), Plasma Protein<br />

Adsorption (2-DE), ESCA<br />

¬ Encapsulation Efficiency (EE%):<br />

¬ Loa<strong>di</strong>ng (%):<br />

¬ Encapsulated Activity (EA%):<br />

¬ Drug Release Kinetics<br />

mg Loaded Agent<br />

•100<br />

mg Dried NPs<br />

¬ In-vitro and In-vivo Characterizations<br />

¬ Shelf-Life and Stability of the Dosage Form<br />

mg Loaded Agent<br />

•100<br />

mg Agent in the Formulation<br />

UI<br />

Agent Activity<br />

•100<br />

mg Lyophilised<br />

NPs


Targeting strategies<br />

⎫ The therapeutic agent can be <strong>di</strong>rectly administered in the site of action by<br />

means of cannulas or catheters, as well as release from an implant.<br />

⎫ Passive drug targeting: usually based on the relation between the size of<br />

the drug carrier and tissue characteristics (e.g. EPR effect, respiratory tract)<br />

⎫ Physical targeting involves endogenous or exogenous physical factors that<br />

can me<strong>di</strong>ate targeted drug delivery (e.g. pH changes in gastrointestinal tract,<br />

external magnetic field).<br />

⎫ Active targeting: epitope-paratope recognition system


Effetto EPR (Enhanced Permeation and Retention)<br />

R.Solaro, F. Chiellini, A. Battisti<br />

Materials, <strong>2010</strong>, 3 1928-1980


ACTIVE TARGETING IN CANCER THERAPY<br />

ANGIOGENESIS-ASSOCIATE TARGETING:<br />

Vascular Endothelial Growth Factor receptor<br />

α vβ 3 Integrin (endothelial cell receptor for ECM)<br />

Vascular Cell Adhesion Molecule-1 (VCAM-1)<br />

Membrane Type 1- Matrix metalloproteinase (MT1-MMP)


ACTIVE TARGETING IN CANCER THERAPY<br />

Uncontrolled Cell Proliferation Targeting:<br />

Human Epidermal Receptor-2 (HER-2)<br />

Epidermal Growth Factor Receptor<br />

Transferrin Receptors<br />

Folate Receptors


PEG<br />

Brushes<br />

Drug<br />

Polymer Matrix<br />

Targeting<br />

Moieties


❒ Targeted &Controlled Controlled Drug Delivery System:<br />

A Case Study<br />

EC Funded Project TATLYS<br />

“A New Biocompatible Nanoparticle Delivery System for Targeted<br />

Release of Fibrinolytic Drugs”<br />

• University of <strong>Pisa</strong> (I)<br />

• Kedrion SpA (I)<br />

• Polymer Laboratories Ltd (UK)<br />

• Novetide Ltd (IL)<br />

G5RD-CT-2000-00294<br />

• Vulm a.s. (SK)<br />

• Polish Academy of Science (PL)<br />

• Czech Academy of Science (CZ)<br />

• Slovak Academy of Science (SK)


Formation of intracoronary thrombus (95 % of cases)<br />

Vascular<br />

injury<br />

❒ Acute Myocar<strong>di</strong>al Infarction (AMI)<br />

Protease<br />

activation<br />

Fibrin Clot<br />

Plasminogen t-PA<br />

u-PA<br />

Plasmin<br />

Prothrombin Thrombin Fibrinogen<br />

Polymerization<br />

Factor XIIIa<br />

Fibrin<br />

(monomer)<br />

Soft clot<br />

Hard Clot<br />

Clot<br />

Lyses


❒ Available Treatments for AMI<br />

❍ Percutaneous Transluminal Coronary Angioplastic (PTCA)<br />

❍ Fibrinolysis Standard Treatment<br />

● Thrombolytic drugs:<br />

- Urokinase (Uk);<br />

- Recombinant Tissue Plasminogen Activator (rt-PA)<br />

● Side effects: Fatal Hemorrhage Risks<br />

Improvement of Fibrinolytic Therapy:<br />

Targeted Selected Activation of Plasminogen in Thrombus<br />

Site specific delivery of Urokinase


❒ Fibrin as Targeting Site<br />

Selection of sequences exposed on the surface of Fibrin but not on Fibrinogen molecule<br />

Selected epitope on γ chain


❒ Biofunctionalized Bioero<strong>di</strong>ble Polymers<br />

Grafting of 5% PEG 2000 Da to achieve stealth<br />

polymer matrices & relative nanoparticles<br />

Fab fragment against fibrin γ epitope covalently linked<br />

to pegilated bioero<strong>di</strong>ble polymer as targeting moiety<br />

F.Chiellini, A.M. Piras, M. Gazzari, C. Bartoli, M. Ferri, L. Paolini, MACROMOLECULAR BIOSCIENCE 2008


❒ Nanoparticles Preparation by Co-Precipitation<br />

Co Precipitation<br />

Technique<br />

- Avoid use of aggressive organic solvents<br />

- Straightforward and reproducible<br />

- Tunable for <strong>di</strong>fferent polymeric materials<br />

Organic bioero<strong>di</strong>ble/bioeliminable polymer solution<br />

Water solution of Human Serum Albumin (HSA)+<br />

Protein Drug (Urokinase) + Stabilizer (Cyclodextrin)<br />

E.E. Chiellini, F. Chiellini, R. Solaro, J. Nanosci. Nanotechnol. 2006, 6, 3310-20


❒ Bioero<strong>di</strong>ble Nanoparticles Characterization<br />

VAM41<br />

Size: <strong>12</strong>0-150 nm<br />

VAM41-Peg-Fab<br />

Size: 90-<strong>12</strong>0 nm<br />

VAM41-Peg-Fab<br />

Urokinase<br />

Size: 90-150 nm<br />

- Reproducible Results<br />

- Biofunctionalization of Polymer Matrices and Introduction of Protein Drug do not alter<br />

Nanoparticles Formation<br />

A.M. Piras, F. Chiellini, C. Fiumi, C. Bartoli, E. Chiellini, INT. J. PHARM. 2008


❒ Bioero<strong>di</strong>ble Nanoparticles Zeta Potential<br />

Sample Grafted Z Pot<br />

Molecule (mV± SD)<br />

Vam41-G - -18.5 ± 1.1<br />

Vam41-1%Fab Fab-SH -18.1± 0.9 √<br />

Vam41-Fab Fab-SH -20.1± 1.1 √<br />

Vam41-PEG PEG -7.7 ± 1.2<br />

Vam41-PEG PL PEG -7.8 ± 0.5<br />

Vam41-PEG-NHM PEG, NHM -7.8 ± 0.8<br />

Vam41-PEG-1%Fab PEG, Fab-SH -8.1 ± 1.5<br />

Vam41-PEG-Fab PEG, Fab-SH -10.6 ± 1.2<br />

Measurements carried out in 0.9%NaCl at pH 5.5<br />

•<br />

•<br />

•<br />

å<br />

å<br />

A.M. Piras, F. Chiellini, C. Fiumi, C. Bartoli, E. Chiellini, INT. J. PHARM. 2008<br />

Reference Material<br />

Fab-SH Reduce Z Pot<br />

PEG Increase Z Pot<br />

Core-Corona Particles<br />

Elude RES


❒ In Vivo Evaluation of Polymers Cytotoxicity<br />

Acute Toxicity in mice after single i.v. dose polymers and stabilisers<br />

Polymer LD50 (mg/Kg) Mw (kDa)<br />

VAM41-1 0.6 320<br />

VAM41-B 1.2 150<br />

VAM41-C 1.5 130<br />

VAM41-D 1.7 105<br />

VAM41-F 2.5 41<br />

VAM41-5%PEG 7.5 57<br />

GIG-βCD 1500 -<br />

Acute Oral Toxicity in mice<br />

Polymer LD50 (mg/Kg) Mw (kDa)<br />

VAM41-F ≥ 3000 41<br />

VAM41-G ≥ 3000 38


❒ Evaluation of Urokinase Release Kinetics<br />

Dialysis was performed at 37 °C in PBS 5X pH 7.4 containing 0.2% EDTA<br />

using a regenerated cellulose membrane with a MWCO of 60000 Da<br />

Protein release Activity of the released enzyme


❒<br />

In Vivo Activity Activity<br />

of Urokinase Loaded Nanoparticle<br />

Artherial rtherial thrombosis in rats<br />

Time-course of mean blood flow in a carotid artery after<br />

i.v. application


❒ Stability <strong>Stu<strong>di</strong></strong>es<br />

Stressed Stability Con<strong>di</strong>tions for Lyophilized Nanoparticles:<br />

3 months at 35 ± 2 °C, 75 ± 5% relative humi<strong>di</strong>ty<br />

Stressed Stability Con<strong>di</strong>tions for Nanoparticles Suspensions:<br />

16 months at 4 ± 2 °C, 75 ± 5% relative humi<strong>di</strong>ty

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!