11.06.2013 Views

Lezione 9 12 Maggio 2010 - Università degli Studi di Pisa

Lezione 9 12 Maggio 2010 - Università degli Studi di Pisa

Lezione 9 12 Maggio 2010 - Università degli Studi di Pisa

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Lezione</strong> 9<br />

<strong>12</strong> <strong>Maggio</strong> <strong>2010</strong>


Rilascio Controllato e Mirato <strong>di</strong> Farmaci<br />

“Magic Bullet”<br />

Paul Erlich (1906)<br />

A Drug will be able to perform its therapeutic action if present<br />

at the site of action for an adeguate period of time and in an<br />

optimal concentration.<br />

concentration


NANOMEDICINA<br />

Applicazione me<strong>di</strong>ca/clinica delle nanotecnologie


Nanotechnology-Based Drug Delivery Systems<br />

Veicolazione controllata e mirata <strong>di</strong> farmaci<br />

Diagnostica ed imaging


Liposomi<br />

I liposomi sono vescicole a base <strong>di</strong> fosfolipi<strong>di</strong> <strong>di</strong> <strong>di</strong>mensioni variabili tra I 20 nm e 1 µm. Sono<br />

generalmente costituti da uno o piu’ doppi strati lipi<strong>di</strong>ci. Il nucleo spesso contiene una soluzione<br />

acquosa. Tipicamente sono utilizzati per veicolare farmaci idrofili che non potrebbero passare le<br />

membrane cellulari. Farmaci lipofili possono essere <strong>di</strong>spersi nel doppio strato lipi<strong>di</strong>co. Sono stati<br />

utilizzati come modello <strong>di</strong> membrana cellulare. Si ottengono da <strong>di</strong>spersioni in acqua <strong>di</strong> fosfolipi.


Esempio: Liposomi con catene <strong>di</strong> PEG recanti<br />

all’estremita’ molecole <strong>di</strong> transferrina.<br />

Trattamento dei gliomi.<br />

I liposomi possono essere mo<strong>di</strong>ficati per impartire<br />

proprieta’ antiopsonizzanti (PEG) e/o con molecole che<br />

<strong>di</strong>rezionano I vettori su cellule/organi specifici


Doxorubicina: Chemioterapico idrosolubile per il<br />

trattamento <strong>di</strong> tumori soli<strong>di</strong> (es. Seno)


Micelle<br />

Le micelle sono aggregati <strong>di</strong> molecole anfifiliche (testa polare,<br />

coda idrofoba) che in ambiente acquoso si organizzano in modo<br />

da esporre le teste polari verso l’acqua e le code idrofobe verso<br />

l’interno. La parte interna e’ quin<strong>di</strong> formata da lunghe catene<br />

alchiliche non polari.<br />

Le micelle si formano solo quando la concentrazione della<br />

molecola anfifilica in acqua raggiunge una determinata<br />

concentrazione chiamata concentrazione micellare critica<br />

(CMC)<br />

La micellizzazione <strong>di</strong>pende dal bilancio <strong>di</strong> due effetti principali: la tendenza delle code idrocarburiche ad evitare il<br />

contatto con l’acqua, e la repulsione tra le teste cariche, un effetto destabilizzante sul processo <strong>di</strong> aggregazione.<br />

Le catene idrocarburiche evitano il contatto col solvente puntando verso l’interno dell’aggregato, privo <strong>di</strong> acqua,<br />

mentre la repulsione tra le teste cariche sulla superficie della micella è attenuata dalla presenza <strong>di</strong> ioni <strong>di</strong> carica<br />

opposta (controioni). L’associazione favorevole delle code apolari all’interno della micella avviene attraverso<br />

l’interazione idrofobica, che è l’effetto dominante nella formazione <strong>di</strong> questi gran<strong>di</strong> aggregati <strong>di</strong> molecole.


Micelle Inverse<br />

Oltre che in acqua, le molecole anfifiliche possono formare micelle anche in solventi<br />

organici non polari. In questi casi, gli aggregati micellari prendono il nome <strong>di</strong> micelle inverse<br />

perché la situazione è "capovolta" rispetto all’acqua. Infatti, le code idrocarburiche sono<br />

esposte al solvente non polare, mentre le teste polari sono rivolte all’interno dell’aggregato<br />

per evitare il contatto con il solvente.<br />

Le micelle inverse sono capaci <strong>di</strong> trattenere quantità relativamente gran<strong>di</strong> <strong>di</strong> acqua all’interno<br />

della struttura, verso cui puntano le teste polari. In questo modo si crea una "tasca" ideale per<br />

sciogliere e trasportare soluti polari attraverso un solvente apolare.


Applicazioni Micelle per Drug Delivery


Peg-PCL micelles loaded with magnetic nanoparticles<br />

Polymer: Polycaprolactone-block-Polyethylene Glycol (PCL 2000 /PEG 2000 ) 75/25 (Mw 25000)<br />

Preparation method: Co-precipitation/Solvent Evaporation; Dialysis<br />

Magnetic Core: Cobalt Ferrite or Magnetite (Colorita)<br />

DLS<br />

Organic NPs<br />

148±41 nm<br />

Nanoparticle Suspensions<br />

Hybrid<br />

CoFe<br />

Organic<br />

Hybrid/<br />

Fe 3 O 4


Micro-Nanoparticelle Polimeriche per il Rilascio Controllato e Mirato <strong>di</strong> Farmaci<br />

➼ Dimension ≤ 1 µm (nanoDDS 100nm)<br />

➼ Capability to incorporate high dose of<br />

therapeutics<br />

➼ Able to cross biological barriers<br />

➼ Possibility to biofunctionalize surfaces for a<br />

targeted release<br />

➼ Suited for hydrophobic or proteic drugs<br />

➼ Biodegradable/Bioeliminable<br />

Control of Pharmacokinetics & Bio<strong>di</strong>stribution - Enhance Drug Physical and Chemical Stability


Meto<strong>di</strong> <strong>di</strong> Preparazione <strong>di</strong> Micro-Nanoparticelle<br />

Micro-Nanoparticelle<br />

The site of action and therapeutic regimes will guide in the<br />

in<strong>di</strong>viduation of the best type of nanoparticulate system and in the<br />

choice of the best suited polymer matrix. These aspects, combined<br />

with drug features, are the lea<strong>di</strong>ng factors for the definition of the<br />

proper preparation and purification procedures.<br />

Le metodologie <strong>di</strong> preparazione si <strong>di</strong>stinguono in:<br />

1. Polimerizzazione in situ<br />

2. Preparazione da polimeri preformati


In-situ Polymerization Procedures<br />

Direct polymerization of the low molar mass buil<strong>di</strong>ng blocks,<br />

in presence of the active agent<br />

Pros: High encapsulation efficiency<br />

Cons: Use of organic solvent which may alter the loaded drug<br />

Contamination by residual unreacted monomers<br />

Time consuming for the purification process<br />

Most Common Methods<br />

¬ Emulsion Polymerization<br />

(organic or acqueous)<br />

¬ Dispersion Polymerization<br />

¬ Interfacial Polymerization


Emulsion Polymerization<br />

Most applied and fast<br />

Aqueous or Organic Continuous Phase<br />

¬ Emulsion or inverse emulsion of the monomer<br />

and drug in the continuous phase<br />

¬ Ad<strong>di</strong>tion of surfactants to prevent aggregation<br />

(generally over the critical micellar concentration)<br />

¬ Water soluble initiators or γ/UV/VIS ra<strong>di</strong>ation<br />

Formation of Solid Nanoparticles<br />

Nanoparticelle <strong>di</strong> polialchilcianoacrilati: preparate per polimerizzazione anionica <strong>di</strong> monomeri <strong>di</strong> cianoacrilato <strong>di</strong>spersi in una<br />

fase acquosa acida


Dispersion Polymerization<br />

Single Step Technique<br />

¬ The monomer is <strong>di</strong>ssolved in a proper solvent<br />

containing drug and stabilizer<br />

¬ Ra<strong>di</strong>cal polymerization of the monomer is<br />

generally performed<br />

¬ The oligomers will start to precipitate at a critical<br />

chain length, adsorbing or entrapping the drug<br />

Formation of Solid Nanoparticles<br />

Nanoparticelle <strong>di</strong> poli(butilcianoacrilato) preparate per polimerizzazione in <strong>di</strong>spersione del monomero n-butyl cianoacrilato


Interfacial Polymerization<br />

Polymerization, Polycondensation or Polyad<strong>di</strong>tion<br />

¬ Preparation of a w/o or o/w emulsion with two<br />

monomers (one for each phase), drug and stabilizers<br />

(generally in the inner phase for osmotic stability)<br />

¬ The reaction starts and proceeds at the interface<br />

Formation of Nanocapsules with<br />

water or oil core


Preparation from Preformed Polymers<br />

Most widely applied, compared to in-situ polymerization methods<br />

Basically, the nanoparticles are formed due to<br />

1. Polymer Aggregation or Precipitation for Solvation Loss<br />

Emulsion-Solvent Evaporation<br />

Phase Separation<br />

Solvent Displacement (nanoprecipitation, co-precipitation,<br />

<strong>di</strong>alysis)<br />

Spray Drying<br />

2. Formation of Insoluble Complexes<br />

Self-Assembly (polyplexes, micelles)<br />

3. Cross-linking<br />

Chemical or Physical Crosslinking<br />

• The loa<strong>di</strong>ng of the drug may occur simultaneously with particle<br />

formation or on preformed particles<br />

• The drug can be physically entrapped or adsorbed


Emulsion-Solvent Evaporation 1<br />

Single Emulsion (o/w) Hydrophobic Drugs<br />

¬Polymer organic solution in which the drug is<br />

<strong>di</strong>ssolved/<strong>di</strong>spersed (sonication)<br />

¬Emulsification in water (ad<strong>di</strong>tion of surfactants)<br />

¬Removal of the organic solvent by evaporation or extraction<br />

¬Formation of Solid Nanoparticles


Emulsion-Solvent Evaporation 2<br />

Double Emulsion (w/o/w) Hydrophilic Drugs<br />

¬Emulsification of the water solution of the drug in the organic<br />

solution containing the polymer (primary emulsion)<br />

¬Transfer of the primary emulsion into an excess of water<br />

solution containing a surfactant (vigorous stirring)<br />

¬Removal of the organic solvent by evaporation or extraction<br />

I Emulsion<br />

Evaporation/<br />

Extraction<br />

II Emulsion


Phase Separation<br />

¬ Dissolution or <strong>di</strong>spersion of the drug in the polymer<br />

organic solution (PLA, PLGA, PVC…)<br />

¬ Ad<strong>di</strong>tion of an organic non solvent (silicone oil, vegetable<br />

oils..) under continuous vigorous stirring until complete<br />

extraction of the first solvent and formation of a soft<br />

coacervate<br />

¬ Hardening of the coacervate with exposure to another<br />

non solvent (hexane, <strong>di</strong>ethyl ether)<br />

Formation of Solid Nanoparticles<br />

Drawbacks: formation of aggregates and use of several organic solvents


Nanoprecipitation<br />

Hydrophobic Drugs <strong>di</strong>ssolved<br />

in the polymer solution<br />

Solvent Displacement<br />

¬ The polymer is <strong>di</strong>ssolved in an organic solution<br />

¬ The solution is added dropwise to a non solvent<br />

(other organic solvent or water), miscible with the<br />

former one, kept under stirring<br />

¬ Microphase separation of the polymer with<br />

concurrent interaction with drug and stabilizers<br />

Co-precipitation<br />

Hydrophilic Drugs <strong>di</strong>ssolved<br />

in the water solution<br />

Formation of Solid Nanoparticles


Nanoprecipitazione<br />

- Il polimero, il farmaco e stabilizzanti vengono sciolti nello stesso solvente (es. Acetone)<br />

- La soluzione polimerica viene fatta gocciolare in un non-solvente miscibile con quello<br />

utilizzato per sciogliere il polimero<br />

- In<strong>di</strong>cata per il caricamento <strong>di</strong> composti idrofobici<br />

PLGA<br />

4mg/ml<br />

Elicene GA007<br />

in DMSO (25_g/ml)<br />

Pluronic F-<strong>12</strong>7<br />

0,1 % w/v<br />

H 2 O


PLGA<br />

PHB


Co-precipitation<br />

- Original procedure - Avoid use of aggressive organic solvents<br />

- Straightforward and reproducible - Tunable for <strong>di</strong>fferent polymeric materials<br />

+<br />

HO<br />

HO<br />

HO<br />

O<br />

O<br />

HO<br />

HO<br />

O<br />

O OH<br />

OH<br />

O OH<br />

HO<br />

O<br />

OH<br />

HO<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

HO<br />

O<br />

O<br />

HO<br />

O<br />

OH<br />

O<br />

OH<br />

O<br />

O<br />

EtOH/H 2 O<br />

OH<br />

OH<br />

OH<br />

H 2 O


¬ Dissolution of polymer, drug and<br />

surfactants in the same solvent<br />

(organic).<br />

¬ Dialysis of the solution vs. a non<br />

solvent, miscible with the former<br />

one (water).<br />

¬ Progressive aggregation of polymer,<br />

drug, and surfactant.<br />

¬ Formation of solid nanoparticles<br />

Dialysis<br />

Drawbacks: formation of aggregates and interaction with the <strong>di</strong>alysis membrane.


PLGA Nanoparticles<br />

PLGA/RA Nanoparticles


Spray Drying<br />

Mild con<strong>di</strong>tions, good reproducibility<br />

¬ The polymer is <strong>di</strong>ssolved in a volatile solvent<br />

¬ The drug is either <strong>di</strong>spersed or <strong>di</strong>ssolved in the polymer solution<br />

¬ The solution/<strong>di</strong>spersion is then sprayed against a stream of cold<br />

air (-60°C)<br />

¬ The cold droplets are then dried in a cold essicator<br />

¬ Formation of Solid Nanoparticles


Self Assembly<br />

Self Assembly of oppositely charged polyions<br />

¬Generally applied for DNA plasmids, Antisense<br />

Oligodeoxynucletides (ODNs) and siRNA (negatively charged)<br />

¬Ad<strong>di</strong>tion of an aqueous solution of the active agent to the<br />

aqueous solution of water soluble cationic polymers (PEI, PLL,<br />

etc.). Mixed mixed under stirring at room temperature.<br />

Formation of Polyion Complexes<br />

(Polyplexes)


¬ Sizing: Dynamic Light Scattering<br />

Characterisations<br />

¬ Morphology: Microscopy (SEM, TEM, AFM)<br />

¬ Surface: Charge (Zeta Potential), Hydrophobicity (HIC), Plasma Protein<br />

Adsorption (2-DE), ESCA<br />

¬ Encapsulation Efficiency (EE%):<br />

¬ Loa<strong>di</strong>ng (%):<br />

¬ Encapsulated Activity (EA%):<br />

¬ Drug Release Kinetics<br />

mg Loaded Agent<br />

•100<br />

mg Dried NPs<br />

¬ In-vitro and In-vivo Characterizations<br />

¬ Shelf-Life and Stability of the Dosage Form<br />

mg Loaded Agent<br />

•100<br />

mg Agent in the Formulation<br />

UI<br />

Agent Activity<br />

•100<br />

mg Lyophilised<br />

NPs


Targeting strategies<br />

⎫ The therapeutic agent can be <strong>di</strong>rectly administered in the site of action by<br />

means of cannulas or catheters, as well as release from an implant.<br />

⎫ Passive drug targeting: usually based on the relation between the size of<br />

the drug carrier and tissue characteristics (e.g. EPR effect, respiratory tract)<br />

⎫ Physical targeting involves endogenous or exogenous physical factors that<br />

can me<strong>di</strong>ate targeted drug delivery (e.g. pH changes in gastrointestinal tract,<br />

external magnetic field).<br />

⎫ Active targeting: epitope-paratope recognition system


Effetto EPR (Enhanced Permeation and Retention)<br />

R.Solaro, F. Chiellini, A. Battisti<br />

Materials, <strong>2010</strong>, 3 1928-1980


ACTIVE TARGETING IN CANCER THERAPY<br />

ANGIOGENESIS-ASSOCIATE TARGETING:<br />

Vascular Endothelial Growth Factor receptor<br />

α vβ 3 Integrin (endothelial cell receptor for ECM)<br />

Vascular Cell Adhesion Molecule-1 (VCAM-1)<br />

Membrane Type 1- Matrix metalloproteinase (MT1-MMP)


ACTIVE TARGETING IN CANCER THERAPY<br />

Uncontrolled Cell Proliferation Targeting:<br />

Human Epidermal Receptor-2 (HER-2)<br />

Epidermal Growth Factor Receptor<br />

Transferrin Receptors<br />

Folate Receptors


PEG<br />

Brushes<br />

Drug<br />

Polymer Matrix<br />

Targeting<br />

Moieties


❒ Targeted &Controlled Controlled Drug Delivery System:<br />

A Case Study<br />

EC Funded Project TATLYS<br />

“A New Biocompatible Nanoparticle Delivery System for Targeted<br />

Release of Fibrinolytic Drugs”<br />

• University of <strong>Pisa</strong> (I)<br />

• Kedrion SpA (I)<br />

• Polymer Laboratories Ltd (UK)<br />

• Novetide Ltd (IL)<br />

G5RD-CT-2000-00294<br />

• Vulm a.s. (SK)<br />

• Polish Academy of Science (PL)<br />

• Czech Academy of Science (CZ)<br />

• Slovak Academy of Science (SK)


Formation of intracoronary thrombus (95 % of cases)<br />

Vascular<br />

injury<br />

❒ Acute Myocar<strong>di</strong>al Infarction (AMI)<br />

Protease<br />

activation<br />

Fibrin Clot<br />

Plasminogen t-PA<br />

u-PA<br />

Plasmin<br />

Prothrombin Thrombin Fibrinogen<br />

Polymerization<br />

Factor XIIIa<br />

Fibrin<br />

(monomer)<br />

Soft clot<br />

Hard Clot<br />

Clot<br />

Lyses


❒ Available Treatments for AMI<br />

❍ Percutaneous Transluminal Coronary Angioplastic (PTCA)<br />

❍ Fibrinolysis Standard Treatment<br />

● Thrombolytic drugs:<br />

- Urokinase (Uk);<br />

- Recombinant Tissue Plasminogen Activator (rt-PA)<br />

● Side effects: Fatal Hemorrhage Risks<br />

Improvement of Fibrinolytic Therapy:<br />

Targeted Selected Activation of Plasminogen in Thrombus<br />

Site specific delivery of Urokinase


❒ Fibrin as Targeting Site<br />

Selection of sequences exposed on the surface of Fibrin but not on Fibrinogen molecule<br />

Selected epitope on γ chain


❒ Biofunctionalized Bioero<strong>di</strong>ble Polymers<br />

Grafting of 5% PEG 2000 Da to achieve stealth<br />

polymer matrices & relative nanoparticles<br />

Fab fragment against fibrin γ epitope covalently linked<br />

to pegilated bioero<strong>di</strong>ble polymer as targeting moiety<br />

F.Chiellini, A.M. Piras, M. Gazzari, C. Bartoli, M. Ferri, L. Paolini, MACROMOLECULAR BIOSCIENCE 2008


❒ Nanoparticles Preparation by Co-Precipitation<br />

Co Precipitation<br />

Technique<br />

- Avoid use of aggressive organic solvents<br />

- Straightforward and reproducible<br />

- Tunable for <strong>di</strong>fferent polymeric materials<br />

Organic bioero<strong>di</strong>ble/bioeliminable polymer solution<br />

Water solution of Human Serum Albumin (HSA)+<br />

Protein Drug (Urokinase) + Stabilizer (Cyclodextrin)<br />

E.E. Chiellini, F. Chiellini, R. Solaro, J. Nanosci. Nanotechnol. 2006, 6, 3310-20


❒ Bioero<strong>di</strong>ble Nanoparticles Characterization<br />

VAM41<br />

Size: <strong>12</strong>0-150 nm<br />

VAM41-Peg-Fab<br />

Size: 90-<strong>12</strong>0 nm<br />

VAM41-Peg-Fab<br />

Urokinase<br />

Size: 90-150 nm<br />

- Reproducible Results<br />

- Biofunctionalization of Polymer Matrices and Introduction of Protein Drug do not alter<br />

Nanoparticles Formation<br />

A.M. Piras, F. Chiellini, C. Fiumi, C. Bartoli, E. Chiellini, INT. J. PHARM. 2008


❒ Bioero<strong>di</strong>ble Nanoparticles Zeta Potential<br />

Sample Grafted Z Pot<br />

Molecule (mV± SD)<br />

Vam41-G - -18.5 ± 1.1<br />

Vam41-1%Fab Fab-SH -18.1± 0.9 √<br />

Vam41-Fab Fab-SH -20.1± 1.1 √<br />

Vam41-PEG PEG -7.7 ± 1.2<br />

Vam41-PEG PL PEG -7.8 ± 0.5<br />

Vam41-PEG-NHM PEG, NHM -7.8 ± 0.8<br />

Vam41-PEG-1%Fab PEG, Fab-SH -8.1 ± 1.5<br />

Vam41-PEG-Fab PEG, Fab-SH -10.6 ± 1.2<br />

Measurements carried out in 0.9%NaCl at pH 5.5<br />

•<br />

•<br />

•<br />

å<br />

å<br />

A.M. Piras, F. Chiellini, C. Fiumi, C. Bartoli, E. Chiellini, INT. J. PHARM. 2008<br />

Reference Material<br />

Fab-SH Reduce Z Pot<br />

PEG Increase Z Pot<br />

Core-Corona Particles<br />

Elude RES


❒ In Vivo Evaluation of Polymers Cytotoxicity<br />

Acute Toxicity in mice after single i.v. dose polymers and stabilisers<br />

Polymer LD50 (mg/Kg) Mw (kDa)<br />

VAM41-1 0.6 320<br />

VAM41-B 1.2 150<br />

VAM41-C 1.5 130<br />

VAM41-D 1.7 105<br />

VAM41-F 2.5 41<br />

VAM41-5%PEG 7.5 57<br />

GIG-βCD 1500 -<br />

Acute Oral Toxicity in mice<br />

Polymer LD50 (mg/Kg) Mw (kDa)<br />

VAM41-F ≥ 3000 41<br />

VAM41-G ≥ 3000 38


❒ Evaluation of Urokinase Release Kinetics<br />

Dialysis was performed at 37 °C in PBS 5X pH 7.4 containing 0.2% EDTA<br />

using a regenerated cellulose membrane with a MWCO of 60000 Da<br />

Protein release Activity of the released enzyme


❒<br />

In Vivo Activity Activity<br />

of Urokinase Loaded Nanoparticle<br />

Artherial rtherial thrombosis in rats<br />

Time-course of mean blood flow in a carotid artery after<br />

i.v. application


❒ Stability <strong>Stu<strong>di</strong></strong>es<br />

Stressed Stability Con<strong>di</strong>tions for Lyophilized Nanoparticles:<br />

3 months at 35 ± 2 °C, 75 ± 5% relative humi<strong>di</strong>ty<br />

Stressed Stability Con<strong>di</strong>tions for Nanoparticles Suspensions:<br />

16 months at 4 ± 2 °C, 75 ± 5% relative humi<strong>di</strong>ty

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!