20.07.2013 Views

Fully-constrained formulation of Einstein's field equations using ...

Fully-constrained formulation of Einstein's field equations using ...

Fully-constrained formulation of Einstein's field equations using ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

<strong>Fully</strong>-<strong>constrained</strong> <strong>formulation</strong> <strong>of</strong><br />

Einstein’s <strong>field</strong> <strong>equations</strong> <strong>using</strong> Dirac<br />

gauge<br />

Jérôme Novak<br />

Jerome.Novak(at)obspm.fr<br />

Laboratoire de l’Univers et de ses Théories (LUTH)<br />

CNRS / Observatoire de Paris, France<br />

based on collaboration with<br />

Silvano Bonazzola, Philippe Grandclément,<br />

Éric Gourgoulhon & Lap-Ming Lin<br />

70 th Annual Meeting <strong>of</strong> the Deutsche Physikalische Gesellschaft,<br />

March 24 th 2006


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Outline<br />

1 Introduction<br />

Constraints issues in 3+1 formalism<br />

Motivation for a fully-<strong>constrained</strong> scheme<br />

2 Description <strong>of</strong> the <strong>formulation</strong> and<br />

strategy<br />

Covariant 3+1 conformal decomposition<br />

Einstein <strong>equations</strong> in Dirac gauge and maximal slicing<br />

Integration strategy<br />

3 Numerical implementation and results<br />

Evolution <strong>of</strong> gravitational wave spacetimes<br />

Models <strong>of</strong> rotating neutron stars


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

3+1 formalism<br />

Decomposition <strong>of</strong> spacetime and <strong>of</strong> Einstein <strong>equations</strong><br />

Evolution <strong>equations</strong>:<br />

∂Kij<br />

∂t − LβKij =<br />

−DiDjN + NRij − 2NKikK k j +<br />

N [KKij + 4π((S − E)γij − 2Sij)]<br />

K ij = 1<br />

„ ij<br />

∂γ<br />

2N ∂t + Diβ j + D j β i<br />

«<br />

.<br />

Constraint <strong>equations</strong>:<br />

R + K 2 − KijK ij = 16πE,<br />

DjK ij − D i K = 8πJ i .<br />

gµν dx µ dx ν = −N 2 dt 2 + γij (dx i + β i dt) (dx j + β j dt)


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Constraint violation<br />

If the constraints are verified for initial data, evolution should<br />

preserve them. Therefore, one could in principle solve Einstein<br />

<strong>equations</strong> without solving the constraints<br />

⇓<br />

Appearance <strong>of</strong> constraint violating modes<br />

However, some cures have been (are) investigated :<br />

solving the constraints at (almost) every time-step ...<br />

studying the influence <strong>of</strong> time foliation (Frauendiener & Vogel<br />

2005)<br />

constraints as evolution <strong>equations</strong> (Gentle et al. 2004)<br />

constraint-preserving boundary conditions (Lindblom et al. 2004)<br />

relaxation (Marronetti 2005)<br />

constraint projection (Holst et al. 2004)


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Some reasons not to solve constraints<br />

computational cost <strong>of</strong> usual elliptic solvers ...<br />

few results <strong>of</strong> well-posedness for mixed systems versus solid<br />

mathematical theory for pure-hyperbolic systems<br />

definition <strong>of</strong> boundary conditions at finite distance and at black hole<br />

excision boundary


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Motivations for a fully-<strong>constrained</strong><br />

scheme<br />

“Alternate” approach (although most straightforward)<br />

partially <strong>constrained</strong> schemes: Bardeen & Piran (1983), Stark &<br />

Piran (1985), Evans (1986)<br />

fully <strong>constrained</strong> schemes: Evans (1989), Shapiro & Teukolsky<br />

(1992), Abrahams et al. (1994), Choptuik et al. (2003)<br />

⇒Rather popular for 2D applications, but disregarded in 3D<br />

Still, many advantages:<br />

constraints are verified!<br />

elliptic systems have good stability properties<br />

easy to make link with initial data<br />

evolution <strong>of</strong> only two scalar-like <strong>field</strong>s ...


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Usual conformal decomposition<br />

Standard definition <strong>of</strong> conformal 3-metric (e.g.<br />

Baumgarte-Shapiro-Shibata-Nakamura formalism)<br />

Dynamical degrees <strong>of</strong> freedom <strong>of</strong> the gravitational<br />

<strong>field</strong>:<br />

York (1972) : they are carried by the conformal “metric”<br />

ˆγij := γ −1/3 γij<br />

Problem<br />

with γ := det γij<br />

ˆγij = tensor density <strong>of</strong> weight −2/3<br />

not always easy to deal with tensor densities... not really covariant!


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Introduction <strong>of</strong> a flat metric<br />

= 0) as the asymptotic structure <strong>of</strong> γij,<br />

∂t<br />

and Di the associated covariant derivative.<br />

We introduce fij (with ∂fij<br />

Define:<br />

˜γij := Ψ −4 γij or γij =: Ψ 4 ˜γij<br />

with<br />

1/12 γ<br />

f<br />

Ψ :=<br />

f := det fij<br />

˜γij is invariant under any conformal transformation <strong>of</strong> γij and verifies<br />

det ˜γij = f<br />

⇒no more tensor densities: only tensors.<br />

Finally,<br />

˜γ ij = f ij + h ij<br />

is the deviation <strong>of</strong> the 3-metric from conformal flatness.


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Generalized Dirac gauge<br />

One can generalize the gauge introduced by Dirac (1959) to any type<br />

<strong>of</strong> coordinates:<br />

divergence-free condition on ˜γ ij<br />

Dj ˜γ ij = Djh ij = 0<br />

where Dj denotes the covariant derivative with respect to the flat<br />

metric fij.<br />

Compare<br />

ij<br />

minimal distortion (Smarr & York 1978) : Dj ∂˜γ /∂t = 0<br />

pseudo-minimal distortion (Nakamura 1994) : D j (∂˜γij/∂t) = 0<br />

Notice: Dirac gauge ⇐⇒ BSSN connection functions vanish: ˜ Γ i = 0


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Generalized Dirac gauge properties<br />

h ij is transverse<br />

from the requirement det ˜γij = 1, h ij is asymptotically traceless<br />

3 Rij is a simple Laplacian in terms <strong>of</strong> h ij<br />

3 R does not contain any second-order derivative <strong>of</strong> h ij<br />

with constant mean curvature (K = t) and spatial harmonic<br />

coordinates (Dj<br />

<br />

(γ/f) 1/2 γ ij<br />

= 0), Anderson & Moncrief<br />

(2003) have shown that the Cauchy problem is locally strongly<br />

well posed<br />

the Conformal Flat Condition (CFC) verifies the Dirac gauge<br />

⇒possibility to easily use initial data for binaries now available


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Einstein <strong>equations</strong><br />

Dirac gauge and maximal slicing (K = 0)<br />

Hamiltonian constraint<br />

∆(Ψ 2 N) = Ψ 6 „<br />

N<br />

4πS + 3<br />

Momentum constraint<br />

∆β i + 1<br />

3<br />

4<br />

ÃklA kl«<br />

− h kl DkDl (Ψ 2 N) + Ψ 2<br />

"<br />

“ 1<br />

N ˜γ<br />

16<br />

kl Dkh ij Dl ˜γ ij<br />

− 1<br />

˜γ<br />

8<br />

kl Dkh ij Dj ˜γ il + 2 ˜D k ln Ψ ˜D k ”<br />

ln Ψ + 2 ˜D k ln Ψ ˜D k N<br />

“ ”<br />

i j<br />

D Dj β<br />

Trace <strong>of</strong> dynamical <strong>equations</strong><br />

= 2A ij D j N + 16πNΨ 4 J i − 12NA ij D j ln Ψ − 2∆ i kl NAkl<br />

−h kl DkDl β i − 1<br />

h<br />

3<br />

ik DkDl β l<br />

∆N = Ψ 4 h<br />

N 4π(E + S) + ÃklA kli<br />

− h kl DkDl N − 2 ˜D k ln Ψ ˜D k N<br />

#


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Einstein <strong>equations</strong><br />

Dirac gauge and maximal slicing (K = 0)<br />

Evolution <strong>equations</strong><br />

∂ 2 h ij 2<br />

N<br />

−<br />

∂t2 Ψ4 ∆hij ∂h<br />

− 2£β<br />

ij<br />

∂t + £β£βh ij = S ij<br />

6 components - 3 Dirac gauge conditions - det ˜γ ij = 1 <br />

2 degrees <strong>of</strong> freedom<br />

− ∂2W ∂t2 + ∆W = SW<br />

− ∂2X ∂t2 + ∆X = SX<br />

with W and X two scalar potentials related to h θθ − h ϕϕ and h θϕ .


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Integration procedure<br />

Everything is know on slice Σt<br />

⇓<br />

Evolution <strong>of</strong> W and X to next time-slice Σt+dt (+ hydro)<br />

⇓<br />

Deduce h ij (t + dt) from Dirac and trace-free conditions<br />

Deduce the trace from det ˜γ ij = 1; thus h ij (t + dt)<br />

and ˜γ ij (t + dt).<br />

⇓<br />

⇓<br />

Iterate on the system <strong>of</strong> elliptic <strong>equations</strong> for N, Ψ 2 N and β i on Σt+dt


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Numerical methods: 3D multi-domain<br />

spectral methods<br />

numerical library Lorene (http://www.lorene.obspm.fr)<br />

Decomposition:<br />

Chebyshev polynomials for ξ,<br />

Fourier or Y m<br />

l for the angular<br />

part (θ, φ),<br />

symmetries and regularity<br />

conditions <strong>of</strong> the <strong>field</strong>s at the<br />

origin and on the axis <strong>of</strong><br />

spherical coordinate system<br />

compactified variable for<br />

elliptic PDEs ⇒boundary<br />

conditions are well imposed<br />

use <strong>of</strong> spherical components<br />

for tensors<br />

⇒development <strong>of</strong> a “transparent” boundary conditions for the<br />

hyperbolic PDEs at finite distance


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Results with a pure gravitational wave<br />

spacetime<br />

Initial data<br />

Similar to Baumgarte & Shapiro (1999), namely a momentarily static<br />

(∂˜γ ij /∂t = 0) Teukolsky (1982) wave ℓ = 2, m = 2:<br />

⎧<br />

⎨<br />

⎩<br />

W (t = 0) = W0<br />

2 r2 <br />

exp − r2<br />

r2 <br />

0<br />

X(t = 0) = 0<br />

sin 2 θ sin 2ϕ<br />

Preparation <strong>of</strong> the initial data by means <strong>of</strong> the conformal thin<br />

sandwich procedure<br />

with W0 = 10 −3<br />

Evolution <strong>of</strong> h φφ in the plane θ = π<br />

2


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

How well are <strong>equations</strong> solved?<br />

Constraints<br />

Imposed<br />

numerically at<br />

every time-step!<br />

depends on<br />

spectral resolution<br />

& number <strong>of</strong><br />

iterations<br />

keep the error<br />

below 10 −6<br />

Evolution <strong>equations</strong><br />

only two out <strong>of</strong> six are solved<br />

check on the others: equation for Ψ<br />

∂Ψ<br />

= β<br />

∂t<br />

k DkΨ + Ψ<br />

Dkβ 6<br />

k


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Evolution <strong>of</strong> ADM mass<br />

Are the boundary conditions efficient?<br />

ADM mass is conserved up to 10 −4<br />

main source <strong>of</strong> error comes from time finite-differencing<br />

the wave is let out at better than 10 −4<br />

Long-term stability : run for several grid-crossing times !!


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Physical model <strong>of</strong> rotating neutron<br />

stars<br />

Code developed for<br />

self-gravitating perfect fluid in general relativity<br />

two Killing vector <strong>field</strong>s (axisymmetry + stationarity)<br />

Dirac gauge<br />

equilibrium between matter and gravitational <strong>field</strong><br />

equation <strong>of</strong> state <strong>of</strong> a relativistic polytrope Γ = 2<br />

Considered model here:<br />

central density ρc = 2.9ρnuc<br />

rotation frequency f = 641.47 Hz fMass shedding<br />

gravitational mass Mg 1.51M⊙<br />

baryon mass Mb 1.60M⊙<br />

Equations are the same as in the dynamical case, replacing time<br />

derivative terms by zero


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Comparison with quasi-isotropic gauge<br />

Other code <strong>using</strong> quasi-isotropic gauge has been used for a long time<br />

and successfully compared to other codes in Nozawa et al. (1998).<br />

Global quantities<br />

Quantity q-isotropic Dirac rel. diff.<br />

N(r = 0) 0.727515 0.727522 10 −5<br />

Mg [M⊙] 1.60142 1.60121 10 −4<br />

Mb [M⊙] 1.50870 1.50852 10 −4<br />

Rcirc [km] 23.1675 23.1585 4 × 10−4 J GM 2 ⊙/c <br />

1.61077 1.61032 3 × 10−4 Virial 2D 1.4 × 10 −4 1.5 × 10 −4<br />

Virial 3D 2.5 × 10 −4 2.1 × 10 −4<br />

Virial identities (2 & 3D) are covariant relations that should be<br />

fulfilled by any stationary spacetime; they are not imposed<br />

numerically.


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Stationary axisymmetric models<br />

Deviation from conformal flatness<br />

For all components (except h rϕ and h θϕ ,<br />

which are null), h ij max ∼ 0.005 (up to ∼ 0.02<br />

in more compact cases)<br />

⇒comparable with γθθ − γϕϕ in<br />

quasi-isotropic gauge


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Introduction<br />

Constraints<br />

Motivations<br />

Formulation<br />

Conformal<br />

decomposition<br />

Equations<br />

Strategy<br />

Simulations<br />

Gravitational<br />

Waves<br />

Neutron stars<br />

Summary<br />

Summary<br />

We have developed and implemented a fully-<strong>constrained</strong><br />

evolution scheme for solving Einstein <strong>equations</strong>, <strong>using</strong> a<br />

generalization <strong>of</strong> Dirac gauge and maximal slicing<br />

Easy to extract gravitational radiation (asymptotical TT gauge +<br />

spherical grid)<br />

Well tested in the quasi-linear regime and for rotating compact<br />

stars (i.e. most astrophysical scenarios without a black hole)<br />

Ongoing work and outlook<br />

Improve the accuracy to study the full non-linear regime (e.g.<br />

collapse <strong>of</strong> a GW to a black hole)<br />

Develop boundary conditions on the for black holes (on the<br />

apparent horizon) in this <strong>formulation</strong><br />

Already possible applications to core collapse (“Mariage Des<br />

Maillages” project) or study <strong>of</strong> oscillations <strong>of</strong> relativistic stars<br />

Compatible with no-radiation approximations: e.g. Schäfer &<br />

Gopakumar (2004); useful for slow evolution studies <strong>of</strong><br />

inspiralling compact binaries


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Appendix<br />

References<br />

Definition <strong>of</strong> W<br />

and X<br />

References<br />

S. Bonazzola, E. Gourgoulhon, P. Grandcément and J. Novak, Phys. Rev. D 70 104007 (2004).<br />

J. Novak and S. Bonazzola, J. Comput. Phys. 197, 186 (2004).<br />

L.M. Lin and J. Novak gr-qc/0603048 submitted.<br />

L. Andersson and V. Moncrief, Ann. Henri Poincaré 4, 1 (2003).<br />

M.W. Choptuik, E.W. Hirschmann, S.L. Liebling, and F. Pretorius, Class. Quantum Grav. 20, 1857 (2003).<br />

J. Fauendiener and T. Vogel, Class. Quantum Grav. 22, 1769 (2005).<br />

A.P. Gentle, N.D. George, A. Kheyfets, and W.A. Miller, Class. Quantum Grav. 21, 83 (2004).<br />

L. Lindblom, M.A. Scheel, L.E. Kidder, H.P. Pfeiffer, D. Shoemaker, and S.A. Teukolsky, Phys. Rev. D 69, 124025 (2004).<br />

P.Marronetti, Class. Quantum Grav. 22, 2433 (2005).<br />

T. Nozawa, N. Stergioulas, E. Gourgoulhon and Y. Eriguchi, Astron. Astrophys. Suppl. 132, 431 (1998).<br />

G. Schäfer and A. Gopakumar, Phys. Rev. D 69 021501 (2004).


Constrained<br />

<strong>formulation</strong> <strong>of</strong><br />

Einstein<br />

<strong>equations</strong><br />

Jérôme Novak<br />

Appendix<br />

References<br />

Definition <strong>of</strong> W<br />

and X<br />

Definition <strong>of</strong> W and X potentials<br />

with P = h θθ − h ϕϕ /2<br />

P = ∂2W 1 ∂W 1<br />

− −<br />

∂θ2 tan θ ∂θ sin 2 ∂<br />

θ<br />

2 <br />

W ∂ 1 ∂X<br />

− 2<br />

∂ϕ2 ∂θ sin θ ∂ϕ<br />

h θϕ = ∂2X 1 ∂X 1<br />

− −<br />

∂θ2 tan θ ∂θ sin 2 ∂<br />

θ<br />

2 <br />

X ∂ 1 ∂W<br />

+ 2<br />

∂ϕ2 ∂θ sin θ ∂ϕ<br />

“ ”<br />

∆θϕ ∆θϕ + 2 W =<br />

“ ”<br />

∆θϕ ∆θϕ + 2 X =<br />

Inverse relations<br />

∂ 2 P 3 ∂P<br />

+ −<br />

∂θ2 tan θ ∂θ<br />

1<br />

sin2 ∂<br />

θ<br />

2 0<br />

P<br />

2 ∂<br />

− 2P + @<br />

∂ϕ2 sin θ ∂ϕ<br />

∂hθϕ<br />

+<br />

∂θ<br />

hθϕ<br />

1<br />

A<br />

tan θ<br />

∂ 2 h θϕ<br />

3 ∂h<br />

+<br />

∂θ2 tan θ<br />

θϕ<br />

−<br />

∂θ<br />

1<br />

sin2 ∂<br />

θ<br />

2 h θϕ<br />

∂ϕ2 − 2hθϕ − 2 ∂<br />

sin θ ∂ϕ<br />

∂P<br />

∂θ<br />

+ P<br />

tan θ<br />

!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!