14.01.2015 Views

LNC-M600 Leading Numerical Controller Maintenance Manual

LNC-M600 Leading Numerical Controller Maintenance Manual

LNC-M600 Leading Numerical Controller Maintenance Manual

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>LNC</strong>-<strong>M600</strong><br />

<strong>Maintenance</strong> <strong>Manual</strong><br />

2008/1 Ver:V04.00.001(4408210020)<br />

<strong>Leading</strong> <strong>Numerical</strong> <strong>Controller</strong><br />

<strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Table of Contents<br />

Table of Contents<br />

1 SPECIFICATION.......................................................................................1<br />

1.1 NORMAL SPECIFICATION & OPTION SPECIFICATION................................................1<br />

1.2 <strong>LNC</strong> 600 STANDARD CONTROLLER & <strong>LNC</strong> 600 COMPACT CONTROLLER ................2<br />

1.2.1 <strong>LNC</strong>600 Standard <strong>Controller</strong>..................................................................2<br />

1.2.2 <strong>LNC</strong>600 Compact <strong>Controller</strong>..................................................................2<br />

1.2.3 Specifications Table of <strong>LNC</strong> 600............................................................2<br />

2 SOFTWARE MAINTENANCE...................................................................4<br />

2.1 <strong>LNC</strong>-<strong>M600</strong> INSTALLATION DESCRIPTION...............................................................4<br />

2.1.1 [O.S UTILITY]........................................................................................4<br />

2.1.2 [<strong>LNC</strong>_<strong>M600</strong> INSTALL DISK]..................................................................5<br />

2.1.3 Font Disk...............................................................................................7<br />

2.2 SYSTEM UPDATE .................................................................................................8<br />

2.3 SYSTEM DIRECTION DESCRIPTION......................................................................11<br />

2.3.1 [OS.UTILTIY] Results..........................................................................11<br />

2.3.2 [<strong>LNC</strong>_<strong>M600</strong> INSTALL DISK] Results...................................................11<br />

3 HARDWARE MAINTENANCE................................................................12<br />

3.1 POWER SUPPLY ................................................................................................12<br />

3.2 <strong>LNC</strong>600 STANDARE CONTROLLER.....................................................................12<br />

3.2.1 Standard..............................................................................................12<br />

3.2.2 Cabinet Equipment..............................................................................12<br />

3.2.3 Optional...............................................................................................12<br />

3.2.4 PCC1620 Motion Control Card Hardware Specification.......................12<br />

3.2.5 I/O Card Specfication...........................................................................13<br />

3.2.6 <strong>Controller</strong> Outlook Chart......................................................................14<br />

3.2.7 <strong>Controller</strong> Lights Definition...................................................................15<br />

3.2.8 System Connection Chart....................................................................16<br />

3.3 <strong>LNC</strong> 600 COMPACT CONTROLLER .....................................................................18<br />

3.3.1 Standard..............................................................................................18<br />

3.3.2 Cabinet Equipment..............................................................................18<br />

3.3.3 Optional...............................................................................................18<br />

3.3.4 PCC1840 Motion Control Board Hardware Specification.....................18<br />

<strong>LNC</strong> Technology Co., Ltd.<br />

I


<strong>LNC</strong>-<strong>M600</strong><br />

Table of Contents<br />

3.3.5 I/O Specification...................................................................................18<br />

3.3.6 <strong>Controller</strong> Outlook Chart......................................................................19<br />

3.3.7 Hardware Description..........................................................................20<br />

3.3.8 Basic Control System Connection Chart..............................................21<br />

3.4 HARDWARE MODULE DESCRIPTION ....................................................................25<br />

3.4.1 I/O Module...........................................................................................25<br />

3.4.2 I/O Card...............................................................................................27<br />

3.4.3 I/O card SIO 1520 definition................................................................28<br />

3.4.4 I/O card SIO 1530 definition................................................................34<br />

3.4.5 I/O card SIO 1540 definition................................................................38<br />

3.4.6 Transit Board (TRF1720) Module........................................................43<br />

3.4.7 Transit board(TRF2760) Module..........................................................59<br />

3.4.8 Operation panel module......................................................................68<br />

3.5 THE SELF PROTECTING......................................................................................75<br />

3.5.1 Twin CF card( be applicable to the Compact controller)......................75<br />

4 MLC MAINTENANCE -- C,S BITS AND REGISTER ..........................76<br />

4.1 C BITS DEFINITION............................................................................................76<br />

4.2 S BITS DEFINITION............................................................................................79<br />

4.3 REGISTER DEFINITION.......................................................................................82<br />

4.4 C BITS DESCRIPTION ........................................................................................83<br />

4.5 S BITS DESCTIPTION.........................................................................................99<br />

4.6 REGISTER DESCTIPTION..................................................................................113<br />

4.7 MLC WINDOW FUNCTION................................................................................120<br />

4.8 MLC INITIAL SETTING DESCRIPTION(PLCIO.CFG).......................................124<br />

5 PARAMETER ........................................................................................127<br />

5.1 PARAMETER LIST ............................................................................................128<br />

5.2 SERVO PARAMETER ........................................................................................152<br />

5.3 MACHINE PARAMETER.....................................................................................171<br />

5.4 SPINDLE PARAMETER......................................................................................173<br />

5.5 MPG PARAMETER ..........................................................................................201<br />

5.6 COMPENSATION PARAMETER ...........................................................................203<br />

5.7 ZERO RETURN PARAMETER..............................................................................213<br />

5.8 OPERATION PARAMETER..................................................................................227<br />

6 SYSTEM ALARM AND WARNING.......................................................255<br />

II<br />

<strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Table of Contents<br />

6.1 OP OPERATION RELATED ALARM.............................................................256<br />

6.2 OP OPERATION RELATED WARNING........................................................259<br />

6.3 INT INTERPRETATION RELATED ALARM..................................................260<br />

6.4 MOT MOTION RELATED ALARM................................................................268<br />

7 MACHINE ADJUSTMENT ....................................................................279<br />

7.1 MILLING RIGID TAPPING COMMANDING .............................................................279<br />

7.2 LASER COMPENSATION PROCEDURE ................................................................283<br />

7.3 DOUBLE BALL BAR MEASURE – BACKLASH OR CIRCULAR SPIKE.........................287<br />

8 DIMENSION...........................................................................................290<br />

8.1 LCD MODULE INSTALLATION POSITION .............................................................290<br />

8.2 MDI DIMENSION .............................................................................................291<br />

8.3 OPERATIONAL PANEL DIMENSION .....................................................................292<br />

8.4 PUSH-BUTTON OPERATIONAL PANEL DIMENSION ...............................................293<br />

8.5 MPG OPERATIONAL PANEL DIMENSION ............................................................294<br />

8.6 FDD、CD-ROM DIMENSION ..........................................................................295<br />

8.7 ELC-1000MA DIMENSION...............................................................................296<br />

8.8 ELC-2000 DIMENSION....................................................................................297<br />

8.9 STANDARD (IPC 586) DIMENSION ....................................................................298<br />

8.10 ELC_P100A POWER SUPPLY DIMENSION ........................................................299<br />

APPENDIX A: PARAMETER ADJUSTMENT EXAMPLE..........................300<br />

A1 PARAMETER ADJUSTMENT OF V COMMAND CONTROL METHOD................................300<br />

A2 PARAMETER ADJUSTMENT WHEN ENCODER IS INSTALLED BESIDES BALL SCREW........303<br />

A3 PARAMETER ADJUSTMENT WHEN USING LINEAR SCALE CONTROL METHOD...............306<br />

APPENDIX B: SERVO CONNECTION EXAMPLE....................................309<br />

B1 YASKAWA SERVO CONNECTION EXAMPLE...............................................................309<br />

B2 PANASONIC SERVO CONNECTION EXAMPLE............................................................315<br />

B3 MITSUBISHI SERVO EXAMPLE ................................................................................318<br />

B4 TOSHIBA CONVERTER.........................................................................................324<br />

APPENDIX C: ENABLING OP PROTECTION LOOP CONNECTION<br />

EXAMPLE....................................................................................................337<br />

APPENDIX D: 3 IN 1 MPG CONNECTION EXAMPLE..............................339<br />

APPENDIX E: RS232 CONNECTION DESCRIPTION...............................340<br />

<strong>LNC</strong> Technology Co., Ltd.<br />

III


<strong>LNC</strong>-<strong>M600</strong><br />

Table of Contents<br />

APPENDIX F INTERNET SETTING DESCRIPTION..................................343<br />

IV<br />

<strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

SPECIFICATION<br />

1 SPECIFICATION<br />

<strong>LNC</strong>-600 Series is a standard DOS-Based controller and also an integrated numerical<br />

controller product which is designed by Pou Yuen Technology. Its stability in quality is best<br />

suitable for applications of middle complexity, such as lathe, milling, grinding and all other<br />

kinds of industrial and automatically tools.<br />

The following introduces the functional and structure specification of <strong>LNC</strong>-600 series<br />

controller.<br />

1.1 Normal Specification & Option Specification<br />

Normal Specification<br />

• Normal G/M Code Operating<br />

• Background Editing<br />

• MACRO Program Function<br />

• External/Internal Program Transmitting Function for DNC<br />

• Multiple Language Selection (English, Traditional/Simplify Chinese)<br />

• Picture Simulation Display<br />

• Soft Interface Extension<br />

• Hardware Self-Diagnostic Display<br />

• Additional back-up of Installation floppy disk<br />

• PLC Ladder Diagram Display<br />

• Internet Function<br />

Option Specification<br />

• CAD/CAM<br />

<strong>LNC</strong> Technology Co., Ltd. 1


<strong>LNC</strong>-<strong>M600</strong><br />

SPECIFICATION<br />

1.2 <strong>LNC</strong> 600 Standard <strong>Controller</strong> & <strong>LNC</strong> 600 Compact <strong>Controller</strong><br />

<strong>LNC</strong> 600 series controller has the following two categories: <strong>LNC</strong> standard and <strong>LNC</strong><br />

compact. Detailed descriptioin of each category is as below:<br />

1.2.1 <strong>LNC</strong>600 Standard <strong>Controller</strong><br />

<strong>LNC</strong>600 Standard <strong>Controller</strong> is based on the standard industrial PC which is suitable in<br />

normal tool machines, industrial machines and automation systems. <strong>LNC</strong> 600 standard<br />

controller has excellent maintenance, high performance motion control functions and a lot<br />

I/O points support which all can be used in all kinds of industries. Moreover, PC open<br />

system and modularized design will make system function easier to upgrade and to<br />

maintain.<br />

1.2.2 <strong>LNC</strong>600 Compact <strong>Controller</strong><br />

<strong>LNC</strong>600 compact controller is designed for normal automation system or smaller machines.<br />

It can save space more effectivly.<br />

1.2.3 Specifications Table of <strong>LNC</strong> 600<br />

Specification<br />

The exquisite type<br />

constructing and<br />

putting<br />

PC Industrial PC Industrial PC<br />

Show interfaces VGA interface VGA interface<br />

The standard type<br />

constructing and putting<br />

Transmit interfaces Ethernet , RS- 232/485 Ethernet , RS232<br />

Store interfaces IDE , FDD , CF IDE , FDD<br />

Offer the power to export No 5V , 12V<br />

Deposit and withdraw the<br />

storing device dynamically Above 32M<br />

Above 32M<br />

( SDRAM )<br />

Store on the device Above card 32M of CF Above card 32M of CF<br />

Qualify for the next round of<br />

competitions in the way<br />

Servo system<br />

Qualify for the next round<br />

of competitions in the<br />

front<br />

Offer the position return<br />

circuit<br />

The front and qualifying for<br />

the next round of<br />

competitions partly<br />

Offer a return circuit / the<br />

speed return circuit of<br />

position to control<br />

2 <strong>LNC</strong> Technology Co., Ltd.


Specification<br />

The exquisite type<br />

constructing and<br />

putting<br />

Offer Pulse control / DA<br />

<strong>LNC</strong>-<strong>M600</strong><br />

SPECIFICATION<br />

The standard type<br />

constructing and putting<br />

Main shaft system<br />

Offer Pulse control / DA to<br />

to export<br />

export<br />

Remote I/O (bunch arranges 256 inputting /256 256 inputting /256<br />

I/O)<br />

exporting<br />

exporting<br />

The direct materials<br />

transmitting ( DNC)<br />

RS232 19200 Baud Rate RS232 19200 Baud Rate<br />

The biggest control axle<br />

counting<br />

4 axle Pulses 5Pulse or 6Vcmd (Ver2.1 )<br />

The axle of the main shaft is<br />

counted<br />

An axle<br />

An axle<br />

Working temperature 0~55°C 0~55°C<br />

Input the power<br />

12V (2A ) , 5V (above<br />

6A )<br />

AC110/220V 50/60HZ<br />

<strong>LNC</strong> Technology Co., Ltd. 3


<strong>LNC</strong>-<strong>M600</strong><br />

Software <strong>Maintenance</strong><br />

2 Software <strong>Maintenance</strong><br />

2.1 <strong>LNC</strong>-<strong>M600</strong> Installation Description<br />

This system has six installation diskettes, wich are [O.S UTILITY], [<strong>LNC</strong>_<strong>M600</strong> INSTALL<br />

DISK], Text Font Disk and also three anti-virus program diskettes.<br />

2.1.1 [O.S UTILITY]<br />

Insert [O.S UTILITY] disk to floppy(A:) or run R.BAT, it shows as below:<br />

WELCOME TO INSTALL <strong>LNC</strong> SERIES <br />

THIS WILL GUIDE YOU TO CREATE AN<br />

PLATFORM FOR <strong>LNC</strong> .APP AND UTILITIES.<br />

--------------VER 2.5---------------<br />

1.QUICK MAKE AN BOOTABLE H.D(C)<br />

2.INSTALL MLC UTILITIES<br />

3.INSTALL NETWORK UTILITIES<br />

4.VIRUS SCAN<br />

5.QUIT<br />

CHOISE AN OPTION[1,2,3,4,5]<br />

• QUICK MAKE AN BOOTABLE H.D(C)<br />

This will install OS to your IPC and make it bootable. Here is the step:<br />

1. Prepare a formatted CF card.<br />

2. Set the boot sequence of IPC to A: first<br />

3. Insert [O.S UTILITY] disk to A:<br />

4. RESET and boot with A:<br />

5. Run this option<br />

6. After all have done, reboot again and change boot sequence of IPC to C ONLY.<br />

• INSTALL MLC UTILITIES<br />

This will install MLC utilities to your IPC(OS required).<br />

• INSTALL NETWORK UTILITIES<br />

This is install network utilities to your IPC(OS required).<br />

4 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Software <strong>Maintenance</strong><br />

• VIRUS SCAN<br />

To scan if the system has virus(OS and scan program required).<br />

• QUIT<br />

To quit installation.<br />

2.1.2 [<strong>LNC</strong>_<strong>M600</strong> INSTALL DISK]<br />

Execute G.BAT of install disk, the screen will show as below:<br />

====================================<br />

WELCME TO INSTALL <strong>LNC</strong>-<strong>M600</strong> SERIES<br />

====================================<br />

Please read the belows NOTICE first<br />

before INSTALL task.<br />

[1]Installing..below tasks are no<br />

prompting!<br />

a.The previous File/Directory that<br />

named "*.BAK" will be killed!<br />

b.The exist File/Directory that c-<br />

onflict with SETUP will be renamed<br />

as "*.bak"!<br />

Press any key to continue . . .<br />

<strong>LNC</strong> Technology Co., Ltd. 5


<strong>LNC</strong>-<strong>M600</strong><br />

Software <strong>Maintenance</strong><br />

After press any key:<br />

=====================================<br />

<strong>LNC</strong>-<strong>M600</strong> INSTALL UTILITY V1.20<br />

Copyright (C) POU CHEN 2002 05/07/2001<br />

=====================================<br />

1.Install<br />

2.Maintain<br />

3.Quit and Restart<br />

Choice an Option[1,2,3]<br />

• Install<br />

For first time full install or hard disk reconstraction. <strong>LNC</strong>-<strong>M600</strong> SERIES has been<br />

installed in the disk before sold. This selection is useless under normal usage unless<br />

the disk has been romatted again.<br />

• Maintain<br />

<strong>Maintenance</strong> selection, there are 3 items below:<br />

1.PCscan<br />

Virus checking<br />

2.DISK doctor<br />

Disk diagnostic and errer-fix<br />

3.DEFRAG<br />

Disk access performance enhancement<br />

0.Quit<br />

(1) PCscan:to scan if there are virus in the disk or not.<br />

(2) DISK Doctor:to scan the disk is broken or not.<br />

(3) DEFRAG:disk defragment.<br />

6 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Software <strong>Maintenance</strong><br />

• Quit<br />

To quit install program and return to DOS.<br />

2.1.3 Font Disk<br />

To install fonts, execute G.BAT of install disk.<br />

<strong>LNC</strong> Technology Co., Ltd. 7


<strong>LNC</strong>-<strong>M600</strong><br />

Software <strong>Maintenance</strong><br />

2.2 System update<br />

Please prepare for update source disk before start update, here is the steps:<br />

1. Enter <strong>LNC</strong> system.<br />

2. Enter DGNOS function.<br />

3. Push EMG-STOP.<br />

4. Get into update screen and choose “1.update”, show as below:<br />

8 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Software <strong>Maintenance</strong><br />

5. Press the conform button, then it will show up the dialog room for users to choose the<br />

installation route.If the route of installation is the floopy. Please input A:1(Prsetting<br />

route is floopy),then push the conform button.Or, using the divection key to move the<br />

cursor to the source path selection column and pressing (ok).Please ensure the<br />

cursor stops at the key-in column and press (ok)in order to process the next<br />

step.Please below figure as an example:<br />

<strong>LNC</strong> Technology Co., Ltd. 9


<strong>LNC</strong>-<strong>M600</strong><br />

Software <strong>Maintenance</strong><br />

6. System up grade conform, then push conform:<br />

7. After quiting <strong>LNC</strong> system, then enter the same screen, as first time installation, and<br />

choose intall for updata. All of the operation show on the screen please follow up the.<br />

Prieus cheapoder.<br />

10 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Software <strong>Maintenance</strong><br />

2.3 System Direction Description<br />

Users will find the following files in the system hardware after running <strong>LNC</strong>-<strong>M600</strong> series<br />

installation program.<br />

2.3.1 [OS.UTILTIY] Results<br />

C:\DOS\<br />

C:\ANTIVIR\<br />

MC:\MLC\<br />

name<br />

files<br />

IBM PC_DOS 2000 files(partially)<br />

Anti-Virus<br />

Ladder editor<br />

2.3.2 [<strong>LNC</strong>_<strong>M600</strong> INSTALL DISK] Results<br />

name<br />

C:\<strong>LNC</strong>MILL.BAK<br />

C:\<strong>LNC</strong>MILL.B2<br />

C:\<strong>LNC</strong>MILL\EXE<br />

C:\<strong>LNC</strong>MILL\RESOURCE<br />

C:\<strong>LNC</strong>MILL\MACHINE<br />

C:\<strong>LNC</strong>MILL\MACRO<br />

C:\<strong>LNC</strong>MILL\NCFILES<br />

C:\<strong>LNC</strong>MILL\CAMPRJ<br />

files<br />

Backup of <strong>LNC</strong>MILL directory(last<br />

edition)<br />

Backup of <strong>LNC</strong>MILL directory<br />

(recently edition)<br />

System files<br />

Environment relative data files<br />

(refer to DIR.DOC)<br />

LADDER and system files<br />

Canned cycle macro for Standard<br />

miller(user’s NC files should<br />

not be here)<br />

User’s NC files<br />

(file name must be O0000~O8999)<br />

CAM project files<br />

(extended file name is *.DAT)<br />

<strong>LNC</strong> Technology Co., Ltd. 11


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3 Hardware <strong>Maintenance</strong><br />

3.1 Power supply<br />

This system uses these power supply:<br />

Supply<br />

Brand type Input voltage Output voltage<br />

target<br />

LCD module Skynet<br />

SNP-PA57 AC 110/230V DC 12V/4.2A<br />

Electronic Co.,Ltd<br />

60/50HZ<br />

System Skynet<br />

Electronic Co.,Ltd<br />

SNP-Z101 AC 110/230V<br />

60/50HZ<br />

DC 5V/11.5A<br />

DC 12V/3A<br />

output MEAN WELL<br />

Enterprises Co.,Ltd<br />

ADS-15524 AC 110/230V<br />

60/50HZ<br />

DC -12V/0.5A<br />

DC 24V/5.8A<br />

DC 5V/3A<br />

3.2 <strong>LNC</strong>600 Standare <strong>Controller</strong><br />

3.2.1 Standard<br />

1. Case with 8 slots (including 5V/12V power supply)<br />

2. Slave I/O (40 Input / 32 Output)<br />

3. SCSI 68 Pin Cable<br />

3.2.2 Cabinet Equipment<br />

1. Standard Operation Panel<br />

2. Standard Transit Board<br />

3. Relay Board (40 Input / 32 Output)<br />

3.2.3 Optional<br />

1. Extension Slave I/O Board (24 Input / 32 Output)<br />

2. Slave I/O (40 Input / 32 Output)<br />

3. CD – ROM<br />

4. Floppy Disk<br />

3.2.4 PCC1620 Motion Control Card Hardware Specification<br />

1. 4 axes Pulse / Vcmd control<br />

2. Spindle control panel Pulse / Vcmd (Encoder Feedback)<br />

3. Analogy output provides 6 Channel (16 Bits)<br />

4. I/O highest supports to 256 Input / 256 Output (use remote I/O transmit)<br />

5. Provide 4 axes Home Sensor<br />

6. Provide 1 axis MPG +/- 31 Bits Counter<br />

12 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

7. Provide 3 axes disconnect checking (Option)<br />

3.2.5 I/O Card Specfication<br />

1. Provide total I/O point is 256 Input / 256 Output<br />

2. Use CRC error checking function<br />

3. Transmitting method is Master / Slave<br />

4. Transmitting distance is able to reach 50 M<br />

<strong>LNC</strong> Technology Co., Ltd. 13


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.2.6 <strong>Controller</strong> Outlook Chart<br />

I/O card(SIO-1540)<br />

Motion Control Card<br />

PCC1620<br />

CPU board<br />

Main machine board and motion control board are as above,<br />

power supply AC115 ~ 230 V 60/50Hz are able to use them.<br />

14 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.2.7 <strong>Controller</strong> Lights Definition<br />

<strong>LNC</strong> Technology Co., Ltd. 15


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.2.8 System Connection Chart<br />

VGA<br />

MDI<br />

W23<br />

W16<br />

W22<br />

W20<br />

FLOPPY<br />

POWER<br />

W9<br />

W30<br />

W15<br />

W14<br />

LCD<br />

POWER<br />

W19<br />

RE1<br />

RE2<br />

RE3<br />

RE4<br />

RE5<br />

RE6<br />

RE7<br />

Transit board<br />

RE8<br />

P1<br />

U1<br />

P2<br />

P3<br />

P6<br />

P4<br />

P7<br />

P5<br />

P8<br />

P9<br />

AC AC PC<br />

24V,5V<br />

IN OUT INPUT<br />

24V GND<br />

W19<br />

AC<br />

INPUT<br />

W19<br />

DC<br />

24V,5V<br />

W19<br />

W31<br />

W18<br />

Second operation panel<br />

Loop Connection Chart 1 of Standard <strong>Controller</strong><br />

16 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

The controller peripheral connection chart, including MIC2000, TRF1720 Transit Board,<br />

Operation Panel, REL 2840 Relay Board, Servo Driver, Servo Motor, Spindle Driver,<br />

Spindle Motor and MPG (Handwheel) connection charts.<br />

W34<br />

REL2840<br />

W32<br />

W26<br />

W6<br />

SIO1520 serial communication extension slot<br />

W35<br />

W29<br />

REL2840<br />

W36<br />

RE6<br />

RE7<br />

RE3<br />

RE4<br />

RE5<br />

RE1<br />

RE2<br />

Transit board<br />

RE8<br />

P1<br />

U1<br />

P2<br />

P3<br />

P6<br />

P4<br />

P7<br />

P5<br />

P8<br />

P9<br />

W1<br />

W1<br />

W1<br />

Y axis servo<br />

W1<br />

Z axis servo<br />

4th axis servo<br />

X axis servo<br />

X axis servo motor<br />

W11<br />

Y axis servo motor<br />

W11<br />

Z axis servo motor<br />

W11<br />

4th axis servo motor<br />

W11<br />

AC AC PC<br />

IN OUT<br />

24V,5V<br />

INPUT<br />

24V GND<br />

W12<br />

spindle inverter<br />

(spindle servo)<br />

W13<br />

spindle motor<br />

W21<br />

W4<br />

MPG<br />

spindle motor<br />

ENCODER<br />

Peripheral Connection Chart 2 of Standard <strong>Controller</strong><br />

<strong>LNC</strong> Technology Co., Ltd. 17


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.3 <strong>LNC</strong> 600 Compact <strong>Controller</strong><br />

3.3.1 Standard<br />

1. ELC1000MA Case<br />

2. ELC-P100A power supply<br />

3. 10.4"TFT LCD + 12V power supply(SNP-PA57)<br />

4. SLAVE SIO (40 input/32 output)<br />

5. SCSI 68 Pin Cable<br />

3.3.2 Cabinet Equipment<br />

1. Standard Operation Panel<br />

2. Standard Transit Board<br />

3. Relay Board (20 Input / 16 Output)<br />

3.3.3 Optional<br />

1. Extension Slave I/O Board (24 Input / 32 Output)<br />

2. Slave I/O (40 Input / 32 Output)<br />

3. CD – ROM<br />

3.3.4 PCC1840 Motion Control Board Hardware Specification<br />

1. 4 axes Pulse control<br />

2. Spindle control panel Pulse / Vcmd (Encoder Feedback)<br />

3. Analogy output provides 2 Channel (±15 Bits)<br />

4. I/O highest supports to 256 Input / 256 Output (use remote I/O transmit)<br />

5. Provide 4 axes Home Sensor<br />

6. Provide 1 axis MPG +/- 31 Bits Counter<br />

3.3.5 I/O Specification<br />

1. Provide total I/O point is 256 Input / 256 Output<br />

2. Use CRC error checking function<br />

3. Transmitting method is Master / Slave<br />

4. Transmitting distance is able to reach 50 M<br />

18 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.3.6 <strong>Controller</strong> Outlook Chart<br />

IPC<br />

Motion<br />

Control<br />

Card<br />

<strong>LNC</strong> Technology Co., Ltd. 19


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.3.7 Hardware Description<br />

The IPC module and the motion control card module constitute ELC1000MA, and ports<br />

and light definition descript as below:<br />

ELC1000MA IPC module<br />

Mark Description Note<br />

COM1、COM2、FLOPPY、<br />

IDE、USB、ETHERNET、<br />

VGA、PS2<br />

Normal PC interface Some USB devices need<br />

additional drivers<br />

CF CARD CF card interface Including system software<br />

DC POWER 12V GND 5V ELC1000MA power input<br />

5V(6A or higher) 12V(2A)<br />

Please check that input value<br />

is equal to the mark, and try to<br />

shorten the cable of the power<br />

supply to prevent voltage<br />

down. (4.8V or lower might<br />

make the controller abnormal)<br />

PCC1840 motion control card module<br />

Mark Description Note<br />

RIO1、RIO2<br />

Serial IO control port. It<br />

can control 2 IO sets<br />

Please refer to the instruction<br />

of the IO card<br />

LIO PCC1840 ON_BOARD Input 24V, output using open<br />

IN/OUT<br />

collector<br />

MOTION Motion control signal<br />

output<br />

E5V light(green) Pulse output signal power Pulse signal can’t be sent<br />

when the light off<br />

20 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.3.8 Basic Control System Connection Chart<br />

The whole control system module includes: motion control board in the controller, Slaver<br />

boards in Operation Panel and in Power Cabinet, Relay Board, Transit Board, Servo Driver<br />

System and Display System. The following is divided into two parts to describe system<br />

connection chart.<br />

<strong>LNC</strong> Technology Co., Ltd. 21


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

Second operation panel<br />

W6<br />

W35<br />

W5<br />

W34<br />

REL2840<br />

W36<br />

REL2840<br />

ELC-1000<br />

W2<br />

P100A<br />

W29<br />

RE1<br />

RE2<br />

RE3<br />

RE4<br />

RE5<br />

RE6<br />

RE7<br />

Transit board<br />

RE8<br />

P1<br />

U1<br />

P2<br />

P3<br />

P6<br />

P4<br />

P7<br />

P5<br />

P8<br />

P9<br />

W1<br />

W1<br />

X axis servo<br />

W1<br />

Y axis servo<br />

W1<br />

Z axis servo<br />

4th axis servo<br />

W11<br />

W11<br />

W11<br />

W11<br />

4th axis servo motor<br />

X axis servo motor<br />

Y axis servo motor<br />

Z axis servo motor<br />

LCD POWER<br />

W19<br />

AC AC PC 24V,5V<br />

IN OUT INPUT<br />

24V GND<br />

W21<br />

主 軸 馬 達<br />

W4<br />

MPG<br />

W12<br />

spindle inverter<br />

(spindle servo)<br />

W13<br />

spindle motor<br />

W22<br />

VGA<br />

ENCODER<br />

MDI<br />

W23<br />

W16<br />

W20<br />

22 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

Note. We offer operation panel OP2520, connecting chart as below<br />

W8<br />

W32<br />

REL1840<br />

W15<br />

W9<br />

DC24V<br />

OP2520 connecting chart<br />

Required cables<br />

Wire No. SPEC Description<br />

W8<br />

Low density 15(F)- low density 15(M) OP to transit board<br />

shelding cable<br />

ON/OFF<br />

W9 OP 24V supply 3PIN 18AWG<br />

W15<br />

Low density 15(F)—suitable SIO<br />

master board<br />

OP to SIO<br />

W32<br />

High density 44(M)- high density 44(F)<br />

shelding cable<br />

OP to REL<br />

<strong>LNC</strong> Technology Co., Ltd. 23


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

NOTE. It is is workable that SIO1540 connects to REL2840. Connecting chart as below.<br />

REL1840<br />

W16<br />

W17<br />

REL1840<br />

W18<br />

SIO1540<br />

SIO1540 and REL1840 connecting chart<br />

24 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4 Hardware Module Description<br />

This controller uses PC-Based structure. So any hardware matches ISA Bus electronic<br />

specification can be used on this controller. Please pay attention to the following items<br />

while using.<br />

3.4.1 I/O Module<br />

For simplify the system and reduce the system connection cables, so Pou Yuen innovates<br />

a new transmitting method. When using this system’s I/O module, motion control board<br />

(PCC1620) must be used with 1 〜 2 sets of Slave boards in order to transmit between<br />

I/O.<br />

Two sets I/O module can provide 128 points Inputs, 128 points Outputs to use. The<br />

followings are pictures of OP and Slaved Boards:<br />

<strong>LNC</strong> Technology Co., Ltd. 25


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

Motion control card<br />

SET<br />

SET<br />

2<br />

IO 0~63<br />

IO 64~127 IO 64~127 IO 0~63<br />

24V<br />

26 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.2 I/O Card<br />

Besides to 20 Input/16 Output, I/O module of this system can be extended to 128<br />

Input/128 Output at most. Connecting chart shows as below:<br />

controller<br />

RIO port<br />

Port 1<br />

Port 2<br />

SIO mother<br />

SIO1540<br />

or<br />

SIO1520<br />

REL2840 *2<br />

REL1820<br />

Set 1 64/64<br />

SIO sub<br />

SIO1530<br />

REL1820<br />

SIO mother<br />

Port<br />

SIO1540<br />

1<br />

or<br />

Port<br />

SIO1520<br />

2<br />

REL2840 *2<br />

REL1820<br />

Set 2 64/64<br />

SIO sub<br />

SIO1530<br />

REL1820<br />

Note. When string up 2 sets of SIO, please notice the jumper of SIO. (please<br />

refer to SIO instruction)<br />

The output voltage of I/O card is 24V, the ability of each point is 100mA at most.The<br />

determination of input signals: the determination of High level(1)is 20 ~ 28V; the<br />

determination of Low level(0)is 0 ~ 4V with 10mA input。JPI of SLAVE master board<br />

inputted DC24V supply form outside.<br />

<strong>LNC</strong> Technology Co., Ltd. 27


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.3 I/O card SIO 1520 definition<br />

3.4.3.1 I/O card SPEC<br />

To reduce IO cable, we can complete I/O transmission by motion control card with I/O card.<br />

An I/O card can be divided to SIO 1520 master board(or S1O 1540 master board)and SIO<br />

1530 slave board.<br />

One SIO card can offer 40 input and 32 output, and SIO 1530 extension cardcan offer 24<br />

input and 32 output; in the other word, 1 set of I/O master board and slave board can offfer<br />

64 input and 64 output totally. <strong>LNC</strong> 600 can string up 2 set of SIO master board +SIO<br />

slave board by using RIO connecter, so it can offer 128 input and 128 output at most.<br />

SIO1520 figure<br />

28 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

A B C<br />

H<br />

F<br />

I<br />

G<br />

D<br />

E<br />

SIO1520 figure 2<br />

A:3PIN 5.08 connecter, 24V supply input connecter to POWER SUPPLY<br />

B:D_SUB15PIN(M), I/O card controlled port, connect to RIO port<br />

C:D_SUB15PIN(F), connect to next IO master board<br />

D:40PIN box header 1, for top 32 24V O output, to relay board OUT port<br />

E:40PIN box header 2, for top 40 24V I input, to relay board IN port<br />

F:40PIN box header, for bottom 32 O output, to SIO 1530<br />

G:26PIN box header, for bottom 24 I input, to SIO 1530<br />

H:The 4 yellow LEDs is the signal of serial I/O communication, when IO master<br />

board be connected to the motion control card ( the motion control card set<br />

correctly and given 5V supply from outside), 2 LEDs in the left side will be turn on<br />

first, after the software be executed 2 LEDs in the right side will be turn on if the<br />

commnication is successful. In the othr words, all 4 LEDs be turn on means<br />

communication is correct. If not, please check motion control card, IO card, cable<br />

connecting, and supply.<br />

I:Determine the IO master board is first or second IO master board (SLAVE 1 or<br />

SLAVE 2)<br />

<strong>LNC</strong> Technology Co., Ltd. 29


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

Ex:<br />

Refer to the direction of SIO 1520 figure, deep color means short circuit:<br />

Set as first<br />

Set as second<br />

30 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.3.2 SIO 1520 port definition<br />

• 40PIN box header 1(D)pin definition<br />

PIN Definition PIN Definition PIN Definition<br />

1 FG 15 OUT 21 29 OUT 7<br />

2 FG 16 OUT 22 30 OUT 8<br />

3 EGND 17 OUT 19 31 OUT 5<br />

4 EGND 18 OUT 20 32 OUT 6<br />

5 OUT 31 19 OUT 17 33 OUT 3<br />

6 EGND 20 OUT 18 34 OUT 4<br />

7 OUT 29 21 OUT 15 35 OUT 1<br />

8 OUT 30 22 OUT 16 36 OUT 2<br />

9 OUT 27 23 OUT 13 37 +24V<br />

10 OUT 28 24 OUT 14 38 OUT 0<br />

11 OUT 25 25 OUT 11 39 +24V<br />

12 OUT 26 26 OUT 12 40 +24V<br />

13 OUT 23 27 OUT 9<br />

14 OUT 24 28 OUT 10<br />

Note: FG:grounding;EGND:+24V gnd<br />

<strong>LNC</strong> Technology Co., Ltd. 31


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

• 40PIN box header 2(E)pin definition<br />

PIN Definition PIN Definition PIN Definition<br />

1 IN 39 15 IN 25 29 IN 11<br />

2 IN 38 16 IN 24 30 IN 10<br />

3 IN 37 17 IN 23 31 IN 9<br />

4 IN 36 18 IN 22 32 IN 8<br />

5 IN 35 19 IN 21 33 IN 7<br />

6 IN 34 20 IN 20 34 IN 6<br />

7 IN 33 21 IN 19 35 IN 5<br />

8 IN 32 22 IN 18 36 IN 4<br />

9 IN 31 23 IN 17 37 IN 3<br />

10 IN 30 24 IN 16 38 IN 2<br />

11 IN 29 25 IN 15 39 IN 1<br />

12 IN 28 26 IN 14 40 IN 0<br />

13 IN 27 27 IN 13<br />

14 IN 26 28 IN 12<br />

Note: FG:grounding;EGND:+24V gnd<br />

32 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

• 40PIN box header(F)<br />

for bottom 32 O output, to SIO 1530<br />

• 26PIN box header(G)<br />

for bottom 24 I input, to SIO 1530<br />

<strong>LNC</strong> Technology Co., Ltd. 33


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.4 I/O card SIO 1530 definition<br />

3.4.4.1 I/O card SPEC<br />

SIO1530 sub card offers 24 input and 32 output, 24V I/O, but SIO1530 sub card must<br />

collocate SIO master board, can’t be connected to motion control card directly.<br />

SIO 1530 slave board figure<br />

34 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

E<br />

D<br />

C<br />

A<br />

B<br />

SIO 1530 slave board figure 2<br />

E<br />

D<br />

C<br />

A<br />

B<br />

A:40PIN box header 1, for bottom 32 O output port of each SLAVE set, to REL1820<br />

output.<br />

B:40PIN box header 2, for bottom 24 I output port of each SLAVE set, to REL1820.<br />

C:26PIN box header, for bottom 24 I input, to SIO master board.<br />

D:40PIN box header, for bottom 43 O output ,to SIO master board.<br />

E:Green light is the signal of outside 24V supply, the I/O won’t work correctly without<br />

outside 24V supply.<br />

SIO 1530 slave board figure<br />

<strong>LNC</strong> Technology Co., Ltd. 35


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.4.2 SIO 1530 port definition<br />

• 40PIN box header 1(A)<br />

for bottom 32 O output of each SLAVE set, to REL1820 output<br />

J1<br />

1 2<br />

3 4<br />

OP63<br />

5 6<br />

OP61<br />

7 8<br />

OP62<br />

OP59<br />

9 10<br />

OP60<br />

OP57<br />

11 12<br />

OP58<br />

OP55<br />

13 14<br />

OP56<br />

OP53<br />

15 16<br />

OP54<br />

OP51<br />

17 18<br />

OP52<br />

OP49<br />

19 20<br />

OP50<br />

OP47<br />

21 22<br />

OP48<br />

OP45<br />

23 24<br />

OP46<br />

OP43<br />

25 26<br />

OP44<br />

OP41<br />

27 28<br />

OP42<br />

OP39<br />

29 30<br />

OP40<br />

OP37<br />

31 32<br />

OP38<br />

OP35<br />

33 34<br />

OP36<br />

OP33<br />

35 36<br />

OP34<br />

37 38<br />

OP32<br />

+24V 39 40<br />

+24V<br />

CON40A<br />

PIN Definition PIN Definition PIN Definition<br />

1 FG 15 OUT 53 29 OUT 39<br />

2 FG 16 OUT 54 30 OUT 40<br />

3 EGND 17 OUT 51 31 OUT 37<br />

4 EGND 18 OUT 52 32 OUT 38<br />

5 OUT 63 19 OUT 49 33 OUT 35<br />

6 EGND 20 OUT 50 34 OUT 36<br />

7 OUT 61 21 OUT 47 35 OUT 33<br />

8 OUT 62 22 OUT 48 36 OUT 34<br />

9 OUT 59 23 OUT 45 37 +24V<br />

10 OUT 60 24 OUT 46 38 OUT 32<br />

11 OUT 57 25 OUT 43 39 +24V<br />

12 OUT 58 26 OUT 44 40 +24V<br />

13 OUT 55 27 OUT 41<br />

14 OUT 56 28 OUT 42<br />

Note: FG:grounding<br />

EGND:+24V GND<br />

36 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

• 40PIN box header 2(B)<br />

for bottom 24 I input of each SLAVE set, to REL 1820 input port.<br />

IN63<br />

IN61<br />

IN59<br />

IN57<br />

IN55<br />

IN53<br />

IN51<br />

IN49<br />

IN47<br />

IN45<br />

IN43<br />

IN41<br />

J2<br />

1<br />

3<br />

5<br />

7<br />

9<br />

11<br />

13<br />

15<br />

17<br />

19<br />

21<br />

23<br />

25<br />

27<br />

29<br />

31<br />

33<br />

35<br />

37<br />

39<br />

CON40A<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

16<br />

18<br />

IN62<br />

20<br />

IN60<br />

22<br />

IN58<br />

24<br />

IN56<br />

26<br />

IN54<br />

28<br />

IN52<br />

30<br />

IN50<br />

32<br />

IN48<br />

34<br />

IN46<br />

36<br />

IN44<br />

38<br />

IN42<br />

40 IN40<br />

PIN Definition PIN Definition PIN Definition<br />

1 FG 15 - 29 IN 51<br />

2 FG 16 - 30 IN 50<br />

3 EGND 17 IN 63 31 IN 49<br />

4 EGND 18 IN 62 32 IN 48<br />

5 - 19 IN 61 33 IN 47<br />

6 EGND 20 IN 60 34 IN 46<br />

7 - 21 IN 59 35 IN 45<br />

8 - 22 IN 58 36 IN 44<br />

9 - 23 IN 57 37 IN 43<br />

10 - 24 IN 56 38 IN 42<br />

11 - 25 IN 55 39 IN 41<br />

12 - 26 IN 54 40 IN 40<br />

13 - 27 IN 53<br />

14 - 28 IN 52<br />

Note: FG:grounding<br />

EGND:+24V GND<br />

<strong>LNC</strong> Technology Co., Ltd. 37


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.5 I/O card SIO 1540 definition<br />

3.4.5.1 I/O card definition<br />

To save IO cable, we can complete I/O transmission by motion control card with I/O card.<br />

An I/O card can be divided to SIO 1520 master board(or S1O 1540 master board)and SIO<br />

1530 slave board.<br />

One SIO card can offer 40 input and 32 output, and SIO 1530 extension card can offer 24<br />

input and 32 output; in the other word, 1 set of I/O master board and slave board can<br />

provide 64 input and 64 output totally. <strong>LNC</strong> 600 can string up 2 set of SIO master board<br />

+SIO slave board by using RIO connecter, so it can offer 128 input and 128 output at most.<br />

SIO 1540 figure<br />

38 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

A<br />

B<br />

D<br />

E<br />

H<br />

I<br />

C<br />

F<br />

G<br />

SIO 1540 figure 2<br />

A:3PIN 3.81 connecter, 24V supply input connecter to POWER SUPPLY<br />

B:D_SUB15PIN(M), I/O card controlled port, connect to RIO port<br />

C:16PIN 2.54 box header, connect to next IO master board<br />

D:D_SUB high density 44PIN(M), for top 20 IN/16 OUT, to REL 2840<br />

E:D_SUB high density 44PIN(F), for bottom 20 IN/16 OUT, to REL 2840<br />

F:40PIN box header, for bottom 32 O output, to SIO 1530<br />

G:26PIN box header, for bottom 24 I input, to SIO 1530<br />

H:The 4 yellow LEDs is the signal of serial I/O communication, when IO master<br />

board be connected to the motion control card ( the motion control card set<br />

correctly and given 5V supply from outside), 2 LEDs in the left side will be turn on<br />

first, after the software be executed 2 LEDs in the right side will be turn on if the<br />

commnication is successful. In the othr words, all 4 LEDs be turn on means<br />

communication is correct. If not, please check motion control card, IO card, cable<br />

connecting, and supply.<br />

I:Determine the IO master board is first or second IO master board (SLAVE 1 or<br />

SLAVE 2)<br />

<strong>LNC</strong> Technology Co., Ltd. 39


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

Ex:<br />

Refer to the direction of SIO 1540 figure, deep color means short circuit:<br />

Set as first<br />

Set as second<br />

40 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.5.2 SIO 1540 port definition<br />

• E:44 PIN high density connecter (F) pin definition<br />

+24V<br />

IN0<br />

IN3<br />

IN6<br />

IN9<br />

IN12<br />

IN15<br />

IN18<br />

OP0<br />

OP3<br />

OP6<br />

OP9<br />

OP12<br />

OP15<br />

IN1<br />

IN4<br />

IN7<br />

IN10<br />

IN13<br />

IN16<br />

IN19<br />

1<br />

44<br />

2<br />

1<br />

44<br />

43<br />

3<br />

2<br />

43<br />

42<br />

4<br />

3<br />

42<br />

41<br />

5<br />

4<br />

41<br />

40<br />

6<br />

5<br />

40<br />

39<br />

7<br />

6<br />

39<br />

38<br />

8<br />

7<br />

38<br />

37<br />

9<br />

8<br />

37<br />

36<br />

10<br />

9<br />

36<br />

35<br />

11<br />

10<br />

35<br />

34<br />

12<br />

11<br />

34<br />

33<br />

13<br />

12<br />

33<br />

32<br />

14<br />

13<br />

32<br />

31<br />

15<br />

14<br />

31<br />

30<br />

16<br />

15<br />

30<br />

29<br />

17<br />

16<br />

29<br />

28<br />

18<br />

17<br />

28<br />

27<br />

19<br />

18<br />

27<br />

26<br />

20<br />

19<br />

26<br />

25<br />

21<br />

20<br />

25<br />

24<br />

22<br />

21<br />

24<br />

23<br />

22 23<br />

OP14<br />

OP11<br />

OP8<br />

OP5<br />

OP2<br />

IN17<br />

IN14<br />

IN11<br />

IN8<br />

IN5<br />

IN2<br />

OP13<br />

OP10<br />

OP7<br />

OP4<br />

OP1<br />

PIN Definition PIN Definition PIN Definition<br />

1 IN 0 16 IN 1 31 IN 2<br />

2 IN 3 17 IN 4 32 IN 5<br />

3 IN 6 18 IN 7 33 IN 8<br />

4 IN 9 19 IN 10 34 IN 11<br />

5 IN 12 20 IN 13 35 IN 14<br />

6 IN 15 21 IN 16 36 IN 17<br />

7 IN 18 22 IN 19 37 OUT 2<br />

8 OUT 0 23 OUT 1 38 OUT 5<br />

9 OUT 3 24 OUT 4 39 OUT 8<br />

10 OUT 6 25 OUT 7 40 OUT 11<br />

11 OUT 9 26 OUT 10 41 OUT 14<br />

12 OUT 12 27 OUT 13 42 X<br />

13 OUT 15 28 X 43 +24V<br />

14 X 29 X 44 +24V<br />

15 EGND 30 EGND X X<br />

<strong>LNC</strong> Technology Co., Ltd. 41


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

D:44 PIN high density connecter (M) pin definition<br />

+24V<br />

IN20<br />

IN23<br />

IN26<br />

IN29<br />

IN32<br />

IN35<br />

IN38<br />

OP16<br />

OP19<br />

OP22<br />

OP25<br />

OP28<br />

OP31<br />

IN21<br />

IN24<br />

IN27<br />

IN30<br />

IN33<br />

IN36<br />

IN39<br />

1<br />

44<br />

2<br />

1<br />

44<br />

43<br />

3<br />

2<br />

43<br />

42<br />

4<br />

3<br />

42<br />

41<br />

5<br />

4<br />

41<br />

40<br />

6<br />

5<br />

40<br />

39<br />

7<br />

6<br />

39<br />

38<br />

8<br />

7<br />

38<br />

37<br />

9<br />

8<br />

37<br />

36<br />

10<br />

9<br />

36<br />

35<br />

11<br />

10<br />

35<br />

34<br />

12<br />

11<br />

34<br />

33<br />

13<br />

12<br />

33<br />

32<br />

14<br />

13<br />

32<br />

31<br />

15<br />

14<br />

31<br />

30<br />

16<br />

15<br />

30<br />

29<br />

17<br />

16<br />

29<br />

28<br />

18<br />

17<br />

28<br />

27<br />

19<br />

18<br />

27<br />

26<br />

20<br />

19<br />

26<br />

25<br />

21<br />

20<br />

25<br />

24<br />

22<br />

21<br />

24<br />

23<br />

22 23<br />

OP30<br />

OP27<br />

OP24<br />

OP21<br />

OP18<br />

IN37<br />

IN34<br />

IN31<br />

IN28<br />

IN25<br />

IN22<br />

OP29<br />

OP26<br />

OP23<br />

OP20<br />

OP17<br />

PIN Definition PIN Definition PIN Definition<br />

1 IN 20 16 IN 21 31 IN 22<br />

2 IN 23 17 IN 24 32 IN 25<br />

3 IN 26 18 IN 27 33 IN 28<br />

4 IN 29 19 IN 30 34 IN 31<br />

5 IN 32 20 IN 33 35 IN 34<br />

6 IN 35 21 IN 36 36 IN 37<br />

7 IN 38 22 IN 39 37 OUT 18<br />

8 OUT 16 23 OUT 17 38 OUT 21<br />

9 OUT 19 24 OUT 20 39 OUT 24<br />

10 OUT 22 25 OUT 23 40 OUT 27<br />

11 OUT 25 26 OUT 26 41 OUT 30<br />

12 OUT 28 27 OUT 29 42 X<br />

13 OUT 31 28 X 43 +24V<br />

14 X 29 X 44 +24V<br />

15 EGND 30 EGND X X<br />

42 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.6 Transit Board (TRF1720) Module<br />

3.4.6.1 Transit Board Component Placement Chart<br />

<strong>LNC</strong> Technology Co., Ltd. 43


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.6.2 Transit Board Slots Define<br />

To MPG<br />

RE7<br />

RE8<br />

P1 X AXIS<br />

To X axis servo driver<br />

RE6<br />

RE5<br />

U1 FROM CNC<br />

P2 Y AXIS<br />

To Y axis servo driver<br />

RE4<br />

P6 MPG<br />

P3 Z AXIS<br />

To Z axis servo driver<br />

RE3<br />

RE2<br />

RE1<br />

P7 SP ENC<br />

P8 ON/OFF<br />

P4 4 AXIS<br />

P5 SP AXIS<br />

To 4th axis servo driver<br />

To Spindle ENCODER<br />

To Spindle converter(servo)<br />

P9 I/O<br />

To RELAY board<br />

To OP D type 15PIN(F)<br />

Transit board servo system signal pin define<br />

44 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

• P1 pin description<br />

X AXIS<br />

P1<br />

13<br />

25<br />

12<br />

24<br />

11<br />

23<br />

10<br />

22<br />

9<br />

21<br />

8<br />

20<br />

7<br />

19<br />

6<br />

18<br />

5<br />

17<br />

4<br />

16<br />

3<br />

15<br />

2<br />

14<br />

1<br />

/1B<br />

1B<br />

/1A<br />

1A<br />

/1C<br />

1C<br />

SVI_COM<br />

X_ALARM<br />

SERON<br />

+24V<br />

AGND<br />

DACO1<br />

P1A<br />

P1B<br />

/P1A<br />

/P1B<br />

CONNECTOR DB25<br />

X axis(P1)<br />

Pin signal description Pin signal description<br />

1 /P1B pulse command /B 14 /P1A pulse command /A<br />

2 P1B pulse command B 15 P1A pulse command A<br />

3 16<br />

4 GND GND 17 DACO1 Analog output<br />

5 AGND Analog output GND 18 +24V +24Voutput<br />

6 SERON SERVO ON 19 X_ALARM SERVO_ALM input<br />

7 GND GND 20 SVI_COM SERVO_ALM COM<br />

8 SVI_COM SERVO_ALM COM 21 GND GND<br />

9 22<br />

10 1C ENCODER feedback C 23 /1C ENCODER feedback /C<br />

11 1A ENCODER feedback A 24 /1A ENCODER feedback /A<br />

12 1B ENCODER feedback B 25 /1B ENCODER feedback /B<br />

13 FG Grounding<br />

<strong>LNC</strong> Technology Co., Ltd. 45


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

• P2 pin description<br />

Y AXIS<br />

P2<br />

13<br />

25<br />

12<br />

24<br />

11<br />

23<br />

10<br />

22<br />

9<br />

21<br />

8<br />

20<br />

7<br />

19<br />

6<br />

18<br />

5<br />

17<br />

4<br />

16<br />

3<br />

15<br />

2<br />

14<br />

1<br />

/2B<br />

2B<br />

/2A<br />

2A<br />

/2C<br />

2C<br />

SVI_COM<br />

Y_ALARM<br />

SERON<br />

+24V<br />

AGND<br />

DACO2<br />

GND<br />

P2A<br />

P2B<br />

/P2A<br />

/P2B<br />

CONNECTOR DB25<br />

Y axis(P2)<br />

Pin signal description Pin signal description<br />

1 /P2B pulse command /B 14 /P2A pulse command /A<br />

2 P2B pulse command B 15 P2A pulse command A<br />

3 16<br />

4 GND GND 17 DACO1 Analog output<br />

5 AGND Analog output GND 18 +24V +24Voutput<br />

6 SERON SERVO ON 19 Y_ALARM SERVO_ALM input<br />

7 GND GND 20 SVI_COM SERVO_ALM COM<br />

8 SVI_COM SERVO_ALM COM 21 GND GND<br />

9 22<br />

10 2C ENCODER feedback C 23 /2C ENCODER feedback /C<br />

11 2A ENCODER feedback A 24 /2A ENCODER feedback /A<br />

12 2B ENCODER feedback B 25 /2B ENCODER feedback /B<br />

13 FG grounding<br />

46 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

• P3 pin description<br />

Z AXIS<br />

P3<br />

13<br />

25<br />

12<br />

24<br />

11<br />

23<br />

10<br />

22<br />

9<br />

21<br />

8<br />

20<br />

7<br />

19<br />

6<br />

18<br />

5<br />

17<br />

4<br />

16<br />

3<br />

15<br />

2<br />

14<br />

1<br />

/3B<br />

3B<br />

/3A<br />

3A<br />

/3C<br />

3C<br />

SVI_COM<br />

Z_ALARM<br />

SERON<br />

+24V<br />

AGND<br />

DACO3<br />

P3A<br />

P3B<br />

/P3A<br />

/P3B<br />

CONNECTOR DB25<br />

Z axis(P3)<br />

Pin signal description Pin signal description<br />

1 /P3B pulse command /B 14 /P3A pulse command /A<br />

2 P3B pulse command B 15 P3A pulse command A<br />

3 16<br />

4 GND +24V GND 17 DACO1 Analog output<br />

5 AGND Analog outputGND 18 +24V +24Voutput<br />

6 SERON SERVO ON 19 Z_ALARM SERVO_ALM input<br />

7 GND GND 20 SVI_COM SERVO_ALM COM<br />

8 SVI_COM SERVO_ALM COM 21 GND +24V GND<br />

9 22<br />

10 3C ENCODER feedback C 23 /3C ENCODER feedback /C<br />

11 3A ENCODER feedback A 24 /3A ENCODER feedback /A<br />

12 3B ENCODER feedback B 25 /3B ENCODER feedback /B<br />

13 FG grounding<br />

<strong>LNC</strong> Technology Co., Ltd. 47


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

• P4 pin description<br />

4 AXIS<br />

P4<br />

13<br />

25<br />

12<br />

24<br />

11<br />

23<br />

10<br />

22<br />

9<br />

21<br />

8<br />

20<br />

7<br />

19<br />

6<br />

18<br />

5<br />

17<br />

4<br />

16<br />

3<br />

15<br />

2<br />

14<br />

1<br />

/4B<br />

4B<br />

/4A<br />

4A<br />

/4C<br />

4C<br />

SVI_COM<br />

4_ALARM<br />

SERON<br />

+24V<br />

AGND<br />

DACO4<br />

P4A<br />

P4B<br />

/P4A<br />

/P4B<br />

CONNECTOR DB25<br />

4 th axis(P4)<br />

Pin signal description Pin signal Description<br />

1 /P4B pulse command /B 14 /P4A pulse command /A<br />

2 P4B pulse command B 15 P4A pulse command A<br />

3 16<br />

4 GND GND 17 DACO1 Analog output<br />

5 AGND Analog outputGND 18 +24V +24Voutput<br />

6 SERON SERVO ON 19 4_ALARM SERVO_ALM input<br />

7 GND GND 20 SVI_COM SERVO_ALM COM<br />

8 SVI_COM SERVO_ALM COM 21 GND GND<br />

9 22<br />

10 4C ENCODER feedback C 23 /4C ENCODER feedback /C<br />

11 4A ENCODER feedback A 24 /4A ENCODER feedback /A<br />

12 4B ENCODER feedback B 25 /4B ENCODER feedback /B<br />

13 FG<br />

48 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

• P5 pin description<br />

SPINDLE<br />

P5<br />

13<br />

25<br />

12<br />

24<br />

11<br />

23<br />

10<br />

22<br />

9<br />

21<br />

8<br />

20<br />

7<br />

19<br />

6<br />

18<br />

5<br />

17<br />

4<br />

16<br />

3<br />

15<br />

2<br />

14<br />

1<br />

LM0<br />

LM1<br />

SPI_COM<br />

P4A<br />

P4B<br />

/P4A<br />

/P4B<br />

SPCW<br />

SPCCW<br />

SPFRST<br />

SPJOG<br />

IN1V<br />

AGND<br />

DACO5<br />

SPALARM<br />

+24V<br />

CONNECTOR DB25<br />

Spindle control contact(P5)<br />

Pin signal description Pin signal Description<br />

1 14<br />

2 15<br />

3 SPALARM<br />

Excrescent output in<br />

inverter<br />

4 GND GND 17 DACO5<br />

16<br />

Analog control voltage<br />

10V<br />

5 AGND<br />

Analog control voltage<br />

18 +24V<br />

0V<br />

+24Voutput<br />

6 IN1V Empty connecting 19 SPJOG Empty connecting<br />

7 SPFRST<br />

Inverter RESET control<br />

Inverter CCW control<br />

20 SPCCW<br />

signal<br />

signal<br />

8 SPCW<br />

Inverter CW control<br />

21 GND<br />

signal<br />

GND<br />

9 /P4B pulse command/B 22 /P4A pulse command/A<br />

10 P4B pulse commandB 23 P4A pulse commandA<br />

11 SPI_COM Inverter control COM 24 SPI_COM Inverter control COM<br />

12 LM1<br />

To inverter surveillance<br />

current<br />

13 FG gnd<br />

25 LM0<br />

To inverter surveillance<br />

current<br />

<strong>LNC</strong> Technology Co., Ltd. 49


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

• P6 pin description<br />

MPG<br />

E5V<br />

P6<br />

8<br />

15<br />

7<br />

14<br />

6<br />

13<br />

5<br />

12<br />

4<br />

11<br />

3<br />

10<br />

2<br />

9<br />

1<br />

+24V<br />

MPGS1<br />

MPGS2<br />

MPGS3<br />

MPGR1<br />

MPGR2<br />

6A<br />

/6A<br />

6B<br />

/6B<br />

MPGS4<br />

CONNECTOR DB15<br />

MPG(P6)<br />

Pin signal description Pin signal Description<br />

1 +24V +24V output 9 GND (24V,5V)GND<br />

2 MPGS4 MPG selects 4 10 FG Gnd<br />

3 /6B MPG pulse /B input 11 6B MPG pulse B input<br />

4 /6A MPG pulse /A input 12 6A MPG pulse A input<br />

5 MPGR2 MPG speed input2 13 MPGR1 MPG speed input1<br />

6 MPGS3 MPG selects 3 14 MPGS2 MPG selects 2<br />

7 MPGS1 MPG selects 1 15 E5V Provide the MPG5V<br />

8 E5V Provide the MPG5V<br />

50 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

• P7 pin description<br />

SPINDLE ENCODER<br />

E5V<br />

P7<br />

5<br />

9<br />

4<br />

8<br />

3<br />

7<br />

2<br />

6<br />

1<br />

5A<br />

/5A<br />

5B<br />

/5B<br />

5C<br />

/5C<br />

CONNECTOR DB9<br />

Spindle ENCODER feedback(P7)<br />

Pin signal description Pin signal Description<br />

1 EGND E5V gnd 6 /5C ENCODER feedback /C<br />

2 5C ENCODER feedback C 7 /5B ENCODER feedback /B<br />

3 5B ENCODER feedback B 8 /5A ENCODER feedback /A<br />

4 5A ENCODER feedback A 9 FG Gnd<br />

5 E5V Supply 5V<br />

<strong>LNC</strong> Technology Co., Ltd. 51


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

• U1 pin definition<br />

6A<br />

/6A<br />

6B<br />

/6B<br />

HS1<br />

HS2<br />

HS3<br />

HS4<br />

1A<br />

/1A<br />

1B<br />

/1B<br />

1C<br />

/1C<br />

2A<br />

/2A<br />

2B<br />

/2B<br />

2C<br />

/2C<br />

P1A<br />

/P1A<br />

P1B<br />

/P1B<br />

P2A<br />

/P2A<br />

P2B<br />

/P2B<br />

AGND<br />

DACO1<br />

DACO3<br />

DACO5<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

U1<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

61<br />

62<br />

63<br />

64<br />

65<br />

66<br />

67<br />

68<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

61<br />

62<br />

63<br />

64<br />

65<br />

66<br />

67<br />

68<br />

6C<br />

/6C<br />

P4A<br />

/P4A<br />

P4B<br />

/P4B<br />

3A<br />

/3A<br />

3B<br />

/3B<br />

3C<br />

/3C<br />

4A<br />

/4A<br />

4B<br />

/4B<br />

4C<br />

/4C<br />

5A<br />

/5A<br />

5B<br />

/5B<br />

5C<br />

/5C<br />

P3A<br />

/P3A<br />

P3B<br />

/P3B<br />

AGND<br />

DACO2<br />

DACO4<br />

DACO6<br />

E5V<br />

SCSI2-68/F<br />

Motion control card connecter(U1)<br />

Pin signal description I/O Pin signal description I/O<br />

1<br />

ENC_IN6 A phases of<br />

Outside+5V<br />

in 35 E5V<br />

A encoder 6<br />

power supply<br />

In<br />

2<br />

/ENC_IN6 /A phases of in<br />

A encoder 6<br />

36<br />

3<br />

ENC_IN6 B phases of in ENC_IN6 C phases of In<br />

37<br />

B encoder 6<br />

C encoder 6<br />

4<br />

/ENC_IN6 /B phases of In /ENC_IN6 /C phases of In<br />

38<br />

B encoder 6<br />

C encoder 6<br />

5 HS1<br />

Remote IN 0 In<br />

A phases of axis<br />

39 P3A<br />

3<br />

out<br />

6 HS2<br />

Remote IN 1 in<br />

/A phases of axis out<br />

40 /P3A<br />

3<br />

7 HS3<br />

Remote IN 2 in<br />

B phases of axis out<br />

41 P3B<br />

3<br />

8 HS4<br />

Remote IN 3 in<br />

/B phases of axis out<br />

42 /P3B<br />

3<br />

9<br />

ENC_IN1 A phases of in ENC_IN3 A phases of in<br />

43<br />

A encoder 1<br />

A encoder 3<br />

52 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

10<br />

/ENC_IN1 /A phases of in /ENC_IN3 /A phases of in<br />

44<br />

A encoder 1<br />

A encoder 3<br />

11<br />

ENC_IN1 B phases of in ENC_IN3 B phases of in<br />

45<br />

B encoder 1<br />

B encoder 3<br />

12<br />

/ENC_IN1 /B phases of in /ENC_IN3 /B phases of in<br />

46<br />

B encoder 1<br />

B encoder 3<br />

13<br />

ENC_IN1 C phases of in ENC_IN3 C phases of in<br />

47<br />

C encoder 1<br />

C encoder 3<br />

14<br />

/ENC_IN1 /C phases of in /ENC_IN3 /C phases of in<br />

48<br />

C encoder 1<br />

C encoder 3<br />

15<br />

ENC_IN2 A phases of in ENC_IN4 A phases of in<br />

49<br />

A encoder 2<br />

A encoder 4<br />

16<br />

/ENC_IN2 /A phases of in /ENC_IN4 /A phases of in<br />

50<br />

A encoder 2<br />

A encoder 4<br />

17<br />

ENC_IN2 B phases of in ENC_IN4 B phases of in<br />

51<br />

B encoder 2<br />

B encoder 4<br />

18<br />

/ENC_IN2 /B phases of in /ENC_IN4 /B phases of in<br />

52<br />

B encoder 2<br />

B encoder 4<br />

19<br />

ENC_IN2 C phases of in ENC_IN4 C phases of in<br />

53<br />

C encoder 2<br />

C encoder 4<br />

20<br />

/ENC_IN2 /C phases of in /ENC_IN4 /C phases of in<br />

54<br />

C encoder 2<br />

C encoder 4<br />

21 GND GND 55<br />

ENC_IN5 A phases of in<br />

A encoder 5<br />

22 GND GND 56<br />

/ENC_IN5 /A phases of in<br />

A encoder 5<br />

23 P0A<br />

A phases of axis out ENC_IN5 B phases of in<br />

57<br />

0<br />

B encoder 5<br />

24 /P0A<br />

/A phases of axis out /ENC_IN5 /B phases of in<br />

58<br />

0<br />

B encoder 5<br />

25 P0B<br />

B phases of axis out ENC_IN5 C phases of in<br />

59<br />

0<br />

C encoder 5<br />

26 /P0B<br />

/B phases of axis out /ENC_IN5 /C phases of in<br />

60<br />

0<br />

C encoder 5<br />

27 P1A<br />

A phases of axis out<br />

A phases of axis<br />

61 P2A<br />

1<br />

2<br />

out<br />

28 /P1A<br />

/A phases of axis out<br />

/A phases of axis out<br />

62 /P2A<br />

1<br />

2<br />

29 P1B<br />

B phases of axis out<br />

B phases of axis out<br />

63 P2B<br />

1<br />

2<br />

30 /P1B<br />

/B phases of axis out<br />

/B phases of axis out<br />

64 /P2B<br />

1<br />

2<br />

31 GND GND 65 GND GND<br />

32 S_IN0 Remote IN 4 in 66 S_IN2 Remote IN 6 in<br />

33 S_IN1 Remote IN 5 in 67 DACO3 D/A Output 3 out<br />

34 DACO4 D/A Output 4 out 68 S_IN3 Remote IN 7 in<br />

<strong>LNC</strong> Technology Co., Ltd. 53


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

• P8、P9 pin definiton<br />

OTR2<br />

OTR1<br />

P8<br />

DB15/F<br />

8<br />

15<br />

7<br />

14<br />

6<br />

13<br />

5<br />

12<br />

4<br />

11<br />

3<br />

10<br />

2<br />

9<br />

1<br />

ON1<br />

ON2<br />

ESP1<br />

ESP2<br />

OFF1<br />

OFF2<br />

OFFL<br />

SERONL<br />

OT1<br />

+24V<br />

SVI_COM<br />

RE6<br />

SERONL<br />

SERON<br />

NCRDY1<br />

NCRDY2<br />

P9<br />

1<br />

14<br />

2<br />

15<br />

3<br />

16<br />

4<br />

17<br />

5<br />

18<br />

6<br />

19<br />

7<br />

20<br />

8<br />

21<br />

9<br />

22<br />

10<br />

23<br />

11<br />

24<br />

12<br />

25<br />

13<br />

SPI_COM<br />

ESP2<br />

SPI_COM<br />

SPALARM<br />

MPGS3<br />

MPGS4<br />

ESP/OT ALARM<br />

ESPAM<br />

XALARM<br />

YALARM<br />

ZALARM<br />

4ALARM<br />

MPGS1<br />

MPGS2<br />

MPGR1<br />

MPGR2<br />

SPCW<br />

SPCCW<br />

SPFRST<br />

IN1V<br />

SPJOG<br />

R6<br />

R-DPDT<br />

D6<br />

DIODE<br />

LED6<br />

4.7K LED<br />

CONNECTOR DB25<br />

C2<br />

SPARK GAP CAP<br />

RE8<br />

110V<br />

DRIVER<br />

R-DPDT<br />

D8<br />

DIODE<br />

R8<br />

LED8<br />

4.7K<br />

LED<br />

(Note)For P8, if the user does not use the OP panel that our company provide, please<br />

consult connecting methods.<br />

54 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

• P9 pin definition<br />

MPGI/O<br />

P6<br />

SP I/O<br />

P5<br />

P9<br />

RELAY<br />

Servo I/O<br />

P1 ~ P4<br />

TRF 1720<br />

P9 wiring chart<br />

I/O(P9)<br />

Pin Signal Description Pin Signal Description<br />

1 14<br />

2 SPI_COM Inverter control COM 15 SPI_COM Inverter control COM<br />

3 SPALARM Inverter abnormal output 16 MPGS3 MPG Z axis output<br />

4 MPGS4 MPG 4 th axis output 17<br />

5 ESPAM<br />

SERVO main circuit control,<br />

SERVO ON control, drive<br />

18 NC_READ<br />

match with the J1 usage<br />

by OUT +24V<br />

6 XALARM<br />

X axis servo abnormal<br />

19 YALARM<br />

Y axis servo abnormal<br />

output<br />

7 ZALARM<br />

Z axis servo abnormal<br />

output<br />

20 4ALARM<br />

8 MPGS1 MPGX axis output 21 MPGS2 MPG Y axis output<br />

9 MPGR1 MPG speed output1 22 MPGR2 MPG speed output2<br />

10 SPCW Inverter CW control signal 23<br />

output<br />

4 th axis servo abnormal<br />

output<br />

11 SPFREST<br />

Inverter RESET control<br />

signal<br />

24<br />

12 IN1V Empty connecting 25 SPJOG Empty connecting<br />

13 GND GND<br />

<strong>LNC</strong> Technology Co., Ltd. 55


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

• Transit board wiring desctiption<br />

SPINDLE ORIENTATION SENSOR<br />

24V HS4 24V HS3 24V HS2 24V HS1 LM0 LM1<br />

TO REL2840-1<br />

TO SP INVERTER<br />

TO 4 AXIS DRIVER<br />

TO Z AXIS DRIVER<br />

TO Y AXIS DRIVER<br />

TO IPC MOTION<br />

TO X AXIS DRIVER<br />

OTX<br />

OTY OTZ<br />

TO IPC POWER IN<br />

DC 5V INPUT 5A<br />

DC 24V INPUT 2A<br />

GND GND 24V 24V 5V FG GND 24V 110V AC0<br />

110V AC0 110V AC0<br />

DC POWER INPUT PC POWER AC OUTPUT AC INPUT<br />

FUSE FUSE<br />

DC5V<br />

5A<br />

DC24V<br />

5A<br />

FUSE<br />

AC110V<br />

5A<br />

AC0<br />

110V<br />

DRIVER ON<br />

X ALARM RELAY<br />

Y ALARM RELAY<br />

Z ALARM RELAY<br />

4 ALARM RELAY<br />

PC POWER ON<br />

MOTION<br />

SERVO READY<br />

DRIVER POWER<br />

24V POWER ON<br />

A1<br />

A2<br />

AC 110V INPUT<br />

TO OP2520 ON/OFF<br />

MPG<br />

56 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.6.3 The servo starts to protect the loop desctiption<br />

Explain as follows the Power ON and servos start to protect the loop, ising shown as chart<br />

below:<br />

+24V<br />

ON1<br />

RE7<br />

ON2<br />

RE7<br />

RE7<br />

OT1<br />

OT2<br />

OTR1<br />

OTR2<br />

OFF1<br />

ESP1<br />

ESP2<br />

ESP/OT ALARM<br />

OFF2<br />

NCRDY1<br />

NCRDY2<br />

RE5<br />

RE7<br />

RE8<br />

RE6<br />

GND<br />

ONL<br />

OFFL<br />

SERONL<br />

GND<br />

SERON<br />

RE5<br />

RE6<br />

RE8<br />

Being responsible for the CNC controller power supply starts.<br />

Being responsible for the servo enables.( Servo On)<br />

Being responsible for the driver power supply starts.<br />

So when have the over travel or urgent breakup switches, the servo enable and drive<br />

the power supply and will be cut off, to protect the Human body safety.<br />

OTR<br />

NCRDY1,<br />

The over travel relieves, when occurrence over travel, can depend<br />

on this OTR the relief the over travel the protection, but need the<br />

special caution<br />

CNC ready.<br />

NCRDY2<br />

According to ascend the chart show, when the servo can't enable, needing the inspection<br />

1. Whether over travel<br />

<strong>LNC</strong> Technology Co., Ltd. 57


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

2. Whether have the urgent switch to be used for<br />

3. Is CNC ready<br />

4. Does the servo electrical appliance characteristic match<br />

5. Does the DC24V enter the transit board<br />

58 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.7 Transit board(TRF2760) Module<br />

3.4.7.1 Transit board component arrangement plan<br />

J9<br />

RE4<br />

RE3<br />

SI2<br />

J8<br />

E<br />

RE2<br />

J12<br />

J13<br />

RE1<br />

J11<br />

J7<br />

A<br />

P8<br />

J10<br />

J6<br />

D<br />

P9<br />

B<br />

P7<br />

J5<br />

P6<br />

P5<br />

J4<br />

C<br />

P4<br />

J3<br />

P3<br />

U<br />

P2<br />

1<br />

J2<br />

P1<br />

J1<br />

SI1<br />

SI3<br />

<strong>LNC</strong> Technology Co., Ltd. 59


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.7.2 Transit board slots definition<br />

Connecter Type Description Wiring instruction<br />

P1 ~ P4 D_SUB 25PIN(F) 4 axisPULSE axis To servo<br />

P5 D_SUB 25PIN(F) 1620V2.0 PULSE axis5 To servo<br />

P6 D_SUB 25PIN(F) 1620V2.0 MPG To MPG<br />

P7 D_SUB 25PIN(F) 1620V2.0 Vcmd axis1 To servo<br />

P8 D_SUB 15PIN(F) Control signal of ON/OFF To Operation panel<br />

P9 D_SUB 9PIN(F) 1620 V2.0 ENC 6th transit To 1620 V2.0 P4<br />

J1 4PIN 5.08mm plug-in DC(24V、5V) supply input To POWER<br />

J2 ~ J5 4PIN 5.08mm plug-in HOME(*) and OT contact To SENSOR<br />

J6 4PIN 5.08mm plug-in OT contact To SENSOR<br />

J7 4PIN 5.08mm plug-in ALARM1~4 To RELAY board IN<br />

J13 3PIN 5.08mm plug-in ALARM5 ~6、ESP examination To RELAY board IN<br />

J8 2PIN 5.08mm plug-in All servo RESET signal To RELAY board<br />

contact<br />

J9 2PIN 5.08mm plug-in All servo READY signal To RELAY board<br />

contact<br />

J10 2PIN 5.08mm plug-in PC uses AC POWER out To PC AC POWER<br />

J11 2PIN 5.08mm plug-in Servo uses POWER out To servo POWER<br />

J12 2PIN 5.08mm plug-in System AC POWER in To AC supply<br />

U1 SCSI- Ⅱ 68PIN Motion control signal contact To 68PIN connecter<br />

motion control card<br />

(Note)The ONBOARD HOME only provides 4 spots, toing annex the other<br />

HOME spot to need through SIO board.<br />

60 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

P1 ~ P7 pin definition<br />

The graphic is to take X axis P1 as an example.<br />

X AXIS<br />

P1<br />

13<br />

25<br />

12<br />

24<br />

11<br />

23<br />

10<br />

22<br />

9<br />

21<br />

8<br />

20<br />

7<br />

19<br />

6<br />

18<br />

5<br />

17<br />

4<br />

16<br />

3<br />

15<br />

2<br />

14<br />

1<br />

/0B<br />

0B<br />

/0A<br />

0A<br />

/0C<br />

0C<br />

RESET<br />

SVI_COM<br />

ALARM1<br />

SERON<br />

+24V<br />

DACO0<br />

E5V<br />

P0A<br />

P0B<br />

/P0A<br />

/P0B<br />

CONNECTOR DB25<br />

Servo axis control signal(P1 ~ P7)<br />

pin signal description pin signal description<br />

1 /PB<br />

2 PB<br />

The PULSE output differential<br />

signal output by spindle/B<br />

he PULSE output differential<br />

signal output by spindle B<br />

14 /PA<br />

15 PA<br />

The PULSE output<br />

differential signal output by<br />

spindle/A<br />

he PULSE output<br />

differential signal output by<br />

spindle A<br />

3 16<br />

4 EGND +24V gnd 17 DAC_OUT analog output of each axis<br />

5 AGND Analog output gnd 18 +24V +24V supply<br />

output control signal of<br />

6 SERON 19<br />

SERVO-ON<br />

ALRAM alarm output of servo axis<br />

7 EGND +24V gnd 20 SVI_COM COM of servo IN<br />

8 SVI_COM The COM spot of the servo IN 21 EGND +24V gnd<br />

9 22<br />

10 C<br />

Differential feedback in Z<br />

phase(INDEX) encoder signal C<br />

23 /C<br />

11 A<br />

Differential feedback in A phase<br />

24<br />

encoder signal A<br />

/A<br />

12 B<br />

Differential feedback in B phase<br />

25<br />

encoder signal B<br />

/B<br />

13 FGND gnd<br />

Differential feedback in Z<br />

phase( INDEX) encoder<br />

signal /C<br />

Differential feedback in A<br />

phase encoder signal /A<br />

Differential feedback in B<br />

phase encoder signal /B<br />

<strong>LNC</strong> Technology Co., Ltd. 61


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

Connecter PULSE ENCODER Analog output<br />

P1 0 0 0 P1 0 0<br />

P2 1 1 1 P2 1 1<br />

P3 2 2 2 P3 2 2<br />

P4 3 3 3 P4 3 3<br />

P5 V2.0-4; 4 4 P5 V2.0-4; 4<br />

V1.0-none<br />

V1.0-none<br />

P6 None V2.0-6 ; V2.0-none; P6 None V2.0-6 ;<br />

V1.0-5 V1.0-5<br />

V1.0-5<br />

P7 None V2.0-5 ; V2.0-5 ; P7 None V2.0-5 ;<br />

V1.0-none V1.0-none<br />

V1.0-none<br />

Connecter PULSE ENCODER Analog<br />

output<br />

Connecter PULSE ENCODER<br />

The relation of connecter and PULSE<br />

62 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

• P8 pin definition<br />

C1<br />

0.01u<br />

C2<br />

1 2<br />

SPARKGAP<br />

110V<br />

RE1<br />

4<br />

3 5<br />

7<br />

6 8<br />

PCPWD<br />

PCPWD<br />

1 2<br />

2<br />

D1<br />

1<br />

R-DPDT<br />

DIODE<br />

R9<br />

LED3<br />

1 2<br />

4.7K<br />

LED<br />

C4<br />

+24V<br />

0.01u<br />

OTR2<br />

OTR1<br />

P9<br />

8<br />

15<br />

7<br />

14<br />

6<br />

13<br />

5<br />

12<br />

4<br />

11<br />

3<br />

10<br />

2<br />

9<br />

1<br />

ON1<br />

ON2<br />

ESP1<br />

ESP2<br />

OFF1<br />

OFF2<br />

OFFL<br />

SERONL<br />

OT62<br />

OT11<br />

R12<br />

RE3<br />

4<br />

3 5<br />

7<br />

6 8<br />

1 2<br />

R-DPDT<br />

D4<br />

2 1<br />

DIODE<br />

LED6<br />

1 2<br />

ON2<br />

OFFL<br />

OT11<br />

DB15/F<br />

4.7K<br />

LED<br />

ON/OFF control connecter(P8)<br />

pin signal description pin signal description<br />

1 OT11(OTR1)<br />

Over travel contact<br />

ESP push button point of<br />

1(J2Pluggable type<br />

9 ESP1(OTR2) contact 1( and OT2, OTR2<br />

terminal block can<br />

connectivity)<br />

derivation)<br />

2 10<br />

3 11<br />

4 SERONL<br />

On the OP light-on signal in<br />

servo ON( working hour<br />

gnd of)<br />

12 OFFL<br />

5 EGND gnd 13 OFF2<br />

6 OFF1<br />

7 ESP1<br />

8 ON1<br />

• P9 pin definition<br />

The OFF press button on<br />

carrying on the OP,<br />

connecting with ON2<br />

ESP push button point of<br />

contact 1( and OT2, OTR2<br />

connectivity)<br />

The ON press button on<br />

carrying on the OP (+24<br />

Vs)<br />

14 ESP2<br />

15 ON2<br />

OFF presses button lamp,<br />

controlled by RE2 b spot<br />

The OFF presses button<br />

another side<br />

The ESP presses button<br />

another side, the ESP/ OT<br />

ALRAM detecting spot<br />

The ON presses button on<br />

the OP of another side,<br />

connect with OFF1<br />

<strong>LNC</strong> Technology Co., Ltd. 63


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

P9<br />

1<br />

6<br />

2<br />

7<br />

3<br />

8<br />

4<br />

9<br />

5<br />

DACO5<br />

5A<br />

/5A<br />

5B<br />

/5B<br />

5C<br />

/5C<br />

DB9/F<br />

V2.0 6 th ENCODER(ENC5) connecter(P9)<br />

pin signal description pin signal description<br />

1 AGND Analog output gnd 6 DAC5 Analog output 6 th<br />

2 5A Encoder feedback A 7 /5A Encoder feedback /A<br />

3 5B Encoder feedback B 8 /5B Encoder feedback /B<br />

4 5C Encoder feedback C 9 /5C Encoder feedback /C<br />

5<br />

64 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.7.3 Transit board wiring description<br />

TO IPC POWER IN<br />

TO IPC MOTION<br />

FUSE<br />

AC110V<br />

DRV_PWR<br />

RELAY<br />

RDY2 RDY1<br />

PC_PWR<br />

RELAY<br />

RST2<br />

RST1<br />

TO OP ON/OFF<br />

AC0 110V<br />

AC0 DRV_PWD AC0 PCPWD<br />

ON_OFF<br />

SERVO ON<br />

RELAY<br />

RELAY<br />

ON_OFF<br />

ENC<br />

SP_AXIS<br />

ESP2 ALM6 ALM5 ALM4 ALM3 ALM2 ALM1 OT62 OT61 OT52 OT51 OT42 OT41 +24V HS4<br />

I68<br />

I67 I66 I65 I64<br />

TO MPG<br />

MPG<br />

5_AXIS<br />

OT32 OT31 +24V HS3<br />

MOTION<br />

4-AXIS<br />

Z-AXIS<br />

Y-AXIS<br />

OT22 OT21 +24V HS2 OT12 OT11 +24V HS1<br />

X-AXIS<br />

FG<br />

5V<br />

TO SPINDLE INVERTER<br />

TO 4 AXIS DRIVER<br />

TO Z AXIS DRIVER<br />

TO Y AXIS DRIVER<br />

TO X AXIS DRIVER<br />

FUSE<br />

DC5V<br />

FUSE<br />

DC24V<br />

GND +24V<br />

<strong>LNC</strong> Technology Co., Ltd. 65


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.7.4 Adjustment and setting<br />

• A:This spot can set servo input COM spot mode,<br />

According to the servo of different to set to GND or 24 V.<br />

As follows chart, the gray represents the Jumper.<br />

24V<br />

24V<br />

SVI:GND<br />

SVI:24V<br />

• B:This spot can set usage motion control card type, when usage PCC1620<br />

V1.0( or other an axisPULSE calorie) please slice all of the SW go to mark the<br />

place of" ON";While using the V2.0 version please slice to the OFF all.<br />

As follows chart.<br />

ON<br />

ON<br />

All ON:PCC1620 V1.0<br />

PCC1840<br />

All OFF:PCC1620 V2.0<br />

66 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.7.5 LCD signals<br />

E<br />

SI2<br />

D<br />

C<br />

SI1<br />

SI3<br />

Code of<br />

chart<br />

C<br />

D<br />

E<br />

Name<br />

HOME spot and<br />

OT pilot LCD<br />

OT5 、 OT6 pilot<br />

LCD<br />

RE1、RE2、RE3、<br />

RE4 relay working<br />

pilot LCD<br />

SI1 DC24V Fuse Pilot LCD LED11<br />

SI2 AC IN Fuse Pilot LCD LED12<br />

SI3 DC5V Fuse Pilot LCD LED13<br />

Description<br />

By down highest is a HS1/ OT1 respectively~<br />

HS4/ OT4 pilot LCD, when HS pilot LCD is bright<br />

indicate to have the 24 Vs to lead into the HS to<br />

click;When OT pilot LCD is bright indicate to have<br />

no the super - stroke occurrence.( general usage<br />

b point of contact)<br />

When OT pilot LCD is bright indicate to have no<br />

the super - stroke occurrence.( general usage b<br />

point of contact)<br />

RE1:The SERVO_ON signal control uses, when<br />

SERVO_ON the LCD is bright<br />

RE2:The power supply ON/ OFF uses, being the<br />

ON key to press the LCD of hour bright<br />

RE3:The PC POWERoutput uses, when the PC<br />

power supply ON the LCD of hour is bright<br />

RE4:The DRIVER power supply output uses,<br />

when the DRIVER power supply ON the LCD of<br />

hour is bright<br />

<strong>LNC</strong> Technology Co., Ltd. 67


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.8 Operation panel module<br />

3.4.8.1 Operation panel chart<br />

68 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.8.2 Operation panel I/O definition<br />

<strong>LNC</strong> Technology Co., Ltd. 69


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.8.3 New operation panel arrangement plan(OP2520)<br />

3.4.8.4 The I/O chart of new operation panel(OP2520)<br />

70 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.8.5 REL2840 SPEC<br />

REL 2840 figure<br />

Providing 20 input pluggable type terminal blocks.<br />

The output end provides the 2 set A, B, the point of contact of C and 14 set A, the point of<br />

contact of C to add up to 16 set output spots<br />

The output point of contact capacity as the 250 V/6 A of AC<br />

<strong>LNC</strong> Technology Co., Ltd. 71


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

A<br />

C<br />

B<br />

REL 2840 figure 2<br />

A:44 PIN D-SUB high definition connecter(F) 20 IN / 16 OUT to I/O card.<br />

B:5.08mm pluggable type terminal blocks 1, output spot outward connect terminal.<br />

C:5.08mm pluggable type terminal blocks 2, input spot outward connect terminal.<br />

Note 1:The pluggable type terminal block of C provides the 20 0 Vses and 20 adapters<br />

and inputs to click the concert usage.<br />

Note 2:Each relay has it to should red LED, relay after arousing the magnetic belt and<br />

workings because of the output spot, the LED will click then bright, the debugging<br />

of available this progress relay and output spot uses.<br />

72 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.8.6 REL2840 connecting port definition<br />

• B:44 PIN high definition connecter(F) pin definition<br />

+24V<br />

IN0<br />

IN3<br />

IN6<br />

IN9<br />

IN12<br />

IN15<br />

IN18<br />

OP0<br />

OP3<br />

OP6<br />

OP9<br />

OP12<br />

OP15<br />

IN1<br />

IN4<br />

IN7<br />

IN10<br />

IN13<br />

IN16<br />

IN19<br />

1<br />

44<br />

2<br />

1<br />

44<br />

43<br />

3<br />

2<br />

43<br />

42<br />

4<br />

3<br />

42<br />

41<br />

5<br />

4<br />

41<br />

40<br />

6<br />

5<br />

40<br />

39<br />

7<br />

6<br />

39<br />

38<br />

8<br />

7<br />

38<br />

37<br />

9<br />

8<br />

37<br />

36<br />

10<br />

9<br />

36<br />

35<br />

11<br />

10<br />

35<br />

34<br />

12<br />

11<br />

34<br />

33<br />

13<br />

12<br />

33<br />

32<br />

14<br />

13<br />

32<br />

31<br />

15<br />

14<br />

31<br />

30<br />

16<br />

15<br />

30<br />

29<br />

17<br />

16<br />

29<br />

28<br />

18<br />

17<br />

28<br />

27<br />

19<br />

18<br />

27<br />

26<br />

20<br />

19<br />

26<br />

25<br />

21<br />

20<br />

25<br />

24<br />

22<br />

21<br />

24<br />

23<br />

22 23<br />

P1<br />

HD44P/F<br />

OP14<br />

OP11<br />

OP8<br />

OP5<br />

OP2<br />

IN17<br />

IN14<br />

IN11<br />

IN8<br />

IN5<br />

IN2<br />

OP13<br />

OP10<br />

OP7<br />

OP4<br />

OP1<br />

PIN Definition PIN Definition PIN Definition<br />

1 IN 0 16 IN 1 31 IN 2<br />

2 IN 3 17 IN 4 32 IN 5<br />

3 IN 6 18 IN 7 33 IN 8<br />

4 IN 9 19 IN 10 34 IN 11<br />

5 IN 12 20 IN 13 35 IN 14<br />

6 IN 15 21 IN 16 36 IN 17<br />

7 IN 18 22 IN 19 37 OUT 2<br />

8 OUT 0 23 OUT 1 38 OUT 5<br />

9 OUT 3 24 OUT 4 39 OUT 8<br />

10 OUT 6 25 OUT 7 40 OUT 11<br />

11 OUT 9 26 OUT 10 41 OUT 14<br />

12 OUT 12 27 OUT 13 42 X<br />

13 OUT 15 28 X 43 +24V<br />

14 X 29 X 44 +24V<br />

15 EGND 30 EGND X X<br />

<strong>LNC</strong> Technology Co., Ltd. 73


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.4.8.7 LCD module<br />

74 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Hardware <strong>Maintenance</strong><br />

3.5 The self protecting<br />

3.5.1 Twin CF card( be applicable to the Compact controller)<br />

A Compact controller provides with a pair of CF card mechanisms, handling the backup<br />

work in order to, the probability that can reduce significantly to damage and can't process<br />

because of the file.Introduce every kind of function and operation methods of a pair of CF<br />

cards as follows.<br />

3.5.1.1 Automatic backup<br />

In 2 kinds of opportune moments in the following, a CF card automatic backup file:<br />

1. After entering the system, be placed in for the first time 【ready】 time of appearance,<br />

automatic backup machine catalogue under of file.<br />

2. While carrying out the network function( C:\ NET\2 NET.BATs) each time, the<br />

automatic backup network sets the related file.<br />

3.5.1.2 While can't entering the system normally solving method<br />

Ask below a few methods in usage to enter the system:<br />

1. If can switch on but can't enter the system, can in the C:\> hint the sign under the<br />

inputres(, switch on to enter the system then and normally again.Please don't take out<br />

the second CF card to leave the IPC.<br />

2. While can't switching on completely, please take out the first CF card to leave the IPC,<br />

then switch on again, will start the system with the second CF card at this time.<br />

3. Please contact the attendant, our company will provide a new CF card, inserting this<br />

CF card into the IPC, system will the automatic revivification lay equal stress on new<br />

switch on, can immediately enter the system normally after.Please don't take out the<br />

second CF card to leave the IPC.<br />

<strong>LNC</strong> Technology Co., Ltd. 75


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

4 MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

4.1 C Bits Definition<br />

C BIT MLC CNC<br />

BIT # SYMBOL Description Pagination<br />

000 ST Cycle Start 83<br />

001 SP Feed Hold 83<br />

003 PPROT Prog Protect 83<br />

004 MANRET <strong>Manual</strong> Return 84<br />

006 +X +X Axis Direction 84<br />

007 -X -X Axis Direction 84<br />

008 +Y +Y Axis Direction 84<br />

009 -Y -Y Axis Direction 84<br />

010 +Z +Z Axis Direction 84<br />

011 -Z -Z Axis Direction 84<br />

012 +4 +4 Axis Direction 84<br />

013 -4 -4 Axis Direction 84<br />

016 HX Handle X Axis 84<br />

017 HY Handle Y Axis 84<br />

018 HZ Handle Z Axis 84<br />

019 H4 Handle 4th Axis 84<br />

020 MPGDRN MPG Dry Run 84<br />

021 SCNSAV Wake up the screen saver signal 84<br />

023 RT Rapid 85<br />

031 HOMEX X Axis Home DOG Signal 85<br />

032 HOMEY Y Axis Home DOG Signal 85<br />

033 HOMEZ Z Axis Home DOG Signal 85<br />

034 HOME4 4th Axis Home DOG Signal 85<br />

036 ESP Emergency Stop 86<br />

037 ERS External Reset 86<br />

038 FIN M, S, T Finish 86<br />

040 SBK Single Block 87<br />

041 BDT Optional Block Skip 87<br />

042 DRN Dry Run 87<br />

043 MLK Machine Lock 87<br />

044 OPS Optional Stop 87<br />

045 ZNG Z Axis Cancel 88<br />

046 AFL Auxiliary Function Lock 88<br />

049 4NG 4th Axis Neglect 88<br />

050 +LX +X Axis OT 88<br />

051 -LX -X Axis OT 88<br />

052 +LY +Y Axis OT 88<br />

053 -LY -Y Axis OT 88<br />

76 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

BIT # SYMBOL Description Pagination<br />

054 +LZ +Z Axis OT 88<br />

055 -LZ -Z Axis OT 88<br />

056 +L4 +4th Axis OT 88<br />

057 -L4 -4th Axis OT 88<br />

059 INTLKX X Axis Interlock 89<br />

060 INTLKY Y Axis Interlock 89<br />

061 INTLKZ Z Axis Interlock 89<br />

062 INTLK4 4th Axis Interlock 89<br />

064 WINRW MLC Window Read/Write Signal 98<br />

065 WINREQ MLC Commanding Signal 98<br />

066 HIX X Axis: Select Axis Direction Signal of Handle INT 89<br />

067 HIY Y Axis: Select Axis Direction Signal of Handle INT 89<br />

068 HIZ Z Axis: Select Axis Direction Signal of Handle INT 89<br />

069 HI4 4th Axis: Select Axis Direction Signal of Handle INT 89<br />

075 SVAX X Axis Servo Alarm 90<br />

076 SVAY Y Axis Servo Alarm 90<br />

077 SVAZ Z Axis Servo Alarm 90<br />

078 SVA4 4th Axis Servo Alarm 90<br />

082 S1CW 1st Spindle CW 91<br />

083 S1CCW 1st Spindle CCW 91<br />

085 ORT Spindle Orientation 91<br />

086 SPPULF Spindle Command Type Changes to Pulse Type Under 91<br />

Spindle Orientation and Ridig Tapping Modes<br />

089 MRX X Axis Mirror Image 91<br />

090 MRY Y Axis Servo Alarm 91<br />

091 MRZ Z Axis Servo Alarm 91<br />

092 MR4 4th Axis Servo Alarm 91<br />

097 S1GR1 1st Spindle Gear #1 92<br />

098 S1GR2 1st Spindle Gear #2 92<br />

099 S1GR3 1st Spindle Gear #3 92<br />

100 UI0 MACRO Variable $200 92<br />

101 UI1 MACRO Variable $201 92<br />

102 UI2 MACRO Variable $202 92<br />

103 UI3 MACRO Variable $203 92<br />

104 UI4 MACRO Variable $204 92<br />

105 UI5 MACRO Variable $205 92<br />

106 UI6 MACRO Variable $206 92<br />

107 UI7 MACRO Variable $207 92<br />

108 UI8 MACRO Variable $208 92<br />

109 UI9 MACRO Variable $209 92<br />

110 UI10 MACRO Variable $210 92<br />

111 UI11 MACRO Variable $211 92<br />

112 UI12 MACRO Variable $212 92<br />

113 UI13 MACRO Variable $213 92<br />

114 UI14 MACRO Variable $214 93<br />

115 UI15 MACRO Variable $215 93<br />

<strong>LNC</strong> Technology Co., Ltd. 77


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

BIT # SYMBOL Description Pagination<br />

119 ZP2ZDC ZP2Z Down Cancel 93<br />

120 PMCGO PMC Axis Go 94<br />

124 RTFIN Disable Sigal in Rigid Tapping 94<br />

125 RTST Enable Signal in Rigid Tapping 94<br />

126 SWEN Enable Signal of Spindle Motor Rotates in Gear-Shfiting 94<br />

Speed<br />

127 SWFIN Spindle Gear-Shifting Complete Signal 94<br />

134 PRTCLR Clear Working Piece Number 94<br />

140 2NDSLX 2nd +X Axis Software Limit Choice 95<br />

141 2NDSLX 2nd -X Axis Software Limit Choice 95<br />

142 2NDSLY 2nd +Y Axis Software Limit Choice 95<br />

143 2NDSLY 2nd -Y Axis Software Limit Choice 95<br />

144 2NDSLZ 2nd +Z Axis Software Limit Choice 95<br />

145 2NDSLZ 2nd -Y Axis Software Limit Choice 95<br />

146 2NDSL4 2nd +4th Axis Software Limit Choice 95<br />

147 2NDSL4 2nd -4th Axis Software Limit Choice 95<br />

201 AERSTX Absolute encoder Reset Ready Signal:X Axis 97<br />

202 AERSTY Absolute encoder Reset Ready Signal:Y Axis 97<br />

203 AERSTZ Absolute encoder Reset Ready Signal:Z Axis 97<br />

204 AERST4 Absolute encoder Reset Ready Signal:4th Axis 97<br />

207 AERDYX Absolute Encoder Data Ready Signal:X Axis 97<br />

208 AERDYY Absolute Encoder Data Ready Signal:Y Axis 97<br />

209 AERDYZ Absolute Encoder Data Ready Signal:Z Axis 97<br />

210 AERDY4 Absolute Encoder Data Ready Signal:4th Axis 97<br />

213 AEB0X Absolute Encoder Data Bit 0Transmitting Signal : X Axis 97<br />

214 AEB0Y Absolute Encoder Data Bit 0Transmitting Signal : Y Axis 97<br />

215 AEB0Z Absolute Encoder Data Bit 0Transmitting Signal : Z Axis 97<br />

216 AEB04 Absolute Encoder Data Bit 0Transmitting Signal : 4th Axis 97<br />

219 AEB1X Absolute Encoder Bit 1 Transmit: X Axis 98<br />

220 AEB1Y Absolute Encoder Bit 1 Transmit: Y Axis 98<br />

221 AEB1Z Absolute Encoder Bit 1 Transmit: Z Axis 98<br />

222 AEB14 Absolute Encoder Bit 1 Transmit: 4th Axis 98<br />

78 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

4.2 S Bits Definition<br />

S BIT CNC MLC<br />

BIT # SYMBOL Description Pagination<br />

000 STL Cycle Start Light 99<br />

001 SPL Feed Hold Light 99<br />

002 EDITL Edit Mode Light 99<br />

003 MEML MEM Mode Light 99<br />

004 MDIL MDI Mode Light 99<br />

005 JOGL JOG Mode Light 99<br />

006 INCJOG INC JOG Mode Light 99<br />

007 MPGL MPG Mode Light 99<br />

008 HOMEL Home Mode Light 99<br />

010 MREADY Preparation Completed 99<br />

011 MDIPRS MDI keyboard press signal 99<br />

016 ZP1X X 1st Axis Point Return End 100<br />

017 ZP1Y Y 1st Axis Point Return End 100<br />

018 ZP1Z Z 1st Axis Point Return End 100<br />

019 ZP14 4th 1st Axis Point Return End 100<br />

020 ZP2X X 2nd Axis Point Return End 100<br />

021 ZP2Y Y 2nd Axis Point Return End 100<br />

022 ZP2Z Z 2nd Axis Point Return End 100<br />

023 ZP24 4th 2nd Axis Point Return End 100<br />

028 WRN Warning 100<br />

029 MF M Code Read 100<br />

030 DEN Distribution EndAlarm 101<br />

031 AL Alarm 101<br />

032 RST Reset 101<br />

033 NCRDY NC Ready 101<br />

035 X1000 MPG x1000 Ratio Speeding 101<br />

036 X1 MPG x1 Ratio Speeding 101<br />

037 X10 MPG x10 Ratio Speeding 101<br />

038 X100 MPG x100 Ratio Speeding 101<br />

039 PROGST Program Restart 101<br />

040 SBKL Single Block 101<br />

041 BDTL Optional Block Skip 101<br />

042 DRNL Dry Run 102<br />

043 MLKL Machine Lock 102<br />

044 OPSL Optional Stop 102<br />

045 RTL Rapid Traverse 102<br />

046 ZNGL Z-Axis Neglect 103<br />

047 AFLL Auxiliary Function Lock 103<br />

054 S1STB S Code Read 103<br />

061 SK2 Z-Axis Neglect 103<br />

062 SK3 MPG Dry Run 104<br />

063 SK4 Auxiliary Function Lock 104<br />

<strong>LNC</strong> Technology Co., Ltd. 79


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

BIT # SYMBOL Description Pagination<br />

068 MPGDRN MPG Dry Run 105<br />

069 TSTB T Code Read 105<br />

071 SK6 Machine Lock 105<br />

072 SK7 Dry Run 106<br />

073 SK8 Optional Block Skip 106<br />

074 SK9 Optional Stop 107<br />

079 MLCFN MLC Window Finish 112<br />

080 M00 M00 Read 107<br />

081 M01 M01 Read 107<br />

082 M02 M02 Read 107<br />

083 M30 M30 Read 107<br />

086 ORTFIN Orientation Finish 107<br />

088 S1SA 1st Spindle Speed Arrival 108<br />

091 G80 Not in Canned Cycle Mode 108<br />

092 S1ZSA Spindle Zero Speed Arrival 108<br />

093 PLSCR Spindle Command Type Changes to Pulse Command in 108<br />

Spindle and Ridig Tapping Mode<br />

094 GRCAR Spindle Motor Speed when Gears are Switched 108<br />

100 UO0 MACRO Variable $600 108<br />

101 UO1 MACRO Variable $601 108<br />

102 UO2 MACRO Variable $602 108<br />

103 UO3 MACRO Variable $603 108<br />

104 UO4 MACRO Variable $604 108<br />

105 UO5 MACRO Variable $605 108<br />

106 UO6 MACRO Variable $606 108<br />

109 UO9 MACRO Variable $609 108<br />

112 UO12 MACRO Variable $612 108<br />

113 UO13 MACRO Variable $613 108<br />

114 UO14 MACRO Variable $614 108<br />

115 UO15 MACRO Variable $615 108<br />

120 PMCFIN PMC Axis Finish 108<br />

128 RTMODE Riding Tapping Mode 109<br />

130 MOVX X Axis Moving 109<br />

131 MOVY Y Axis Moving 109<br />

132 MOVZ Z Axis Moving 109<br />

133 MOV4 4th Axis Moving 109<br />

134 WPARV Max Working Piece Arrival 110<br />

150 SGRC1 Request Signal of Spindle Gear-Shifting: 1st Gear 111<br />

151 SGRC2 Request Signal of Spindle Gear-Shifting: 2nd Gear 111<br />

152 SGRC3 Request Signal of Spindle Gear-Shifting: 3rd Gear 111<br />

153 SGRC4 Request Signal of Spindle Gear-Shifting: 4th Gear 111<br />

154 MOVDX X Axis Moving Direction 111<br />

155 MOVDX Y Axis Moving Direction 111<br />

156 MOVDX Z Axis Moving Direction 111<br />

157 MOVDX 4th Axis Moving Direction 111<br />

158 MOVDX 5th Axis Moving Direction 111<br />

80 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

BIT # SYMBOL Description Pagination<br />

159 MOVDX 6th Axis Moving Direction 111<br />

201 AETFX Enter into Absolute Encoder Data Transmitting Mode:X 111<br />

Axis<br />

202 AETFY Enter into Absolute Encoder Data Transmitting Mode:Y 111<br />

Axis<br />

203 AETFZ Enter into Absolute Encoder Data Transmitting Mode:Z 111<br />

Axis<br />

204 AETF4 Enter into Absolute Encoder Data Transmitting Mode:4th 111<br />

Axis<br />

207 AETFRX Absolute Encoder Data Transmitting:X Axis 112<br />

208 AETFRY Absolute Encoder Data Transmitting:Y Axis 112<br />

209 AETFRZ Absolute Encoder Data Transmitting:Z Axis 112<br />

210 AETFR4 Absolute Encoder Data Transmitting:4th Axis 112<br />

213 AERSTX Absolute Encoder Reset:X Axis 112<br />

214 AERSTY Absolute Encoder Reset:Y Axis 112<br />

215 AERSTZ Absolute Encoder Reset:Z Axis 112<br />

216 AERST4 Absolute Encoder Reset:4th Axis 112<br />

<strong>LNC</strong> Technology Co., Ltd. 81


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

4.3 Register Definition<br />

REGISTER<br />

BIT # SYMBOL Description Pagination<br />

001 M_CODE M0~M99, M Code Command 113<br />

002 S_CODE S000~S9999, S Code Command 113<br />

003 T_CODE T000~T9999, T Code Command 113<br />

004 SPAS Spindle Actual Speed 113<br />

013 OPMDOE Mode Select 113<br />

014 INCFED MPG Ratio Select 113<br />

015 SPDOV Spindle Rotaing Mode Override 114<br />

016 FEEDOV ATC Mode Feedrate Override 115<br />

017 JOGOV JOG Mode Feedrate Override 116<br />

018 RTOV Rapid Traverse Mode Feedrate Override 117<br />

021 PMCF PMC Feedrate 117<br />

022 PMCC PMC Control 117<br />

024 PMCXMM PMC Function of X-Axis Command Amount, Unit=mm 118<br />

025 PMCXUM PMC Function of X-Axis Command Amount, Unit=um 118<br />

026 PMCYMM PMC Function of Y-Axis Command Amount, Unit=mm 118<br />

027 PMCYUM PMC Function of Y-Axis Command Amount, Unit=um 118<br />

028 PMCZMM PMC Function of Z-Axis Command Amount, Unit=mm 118<br />

029 PMCZUM PMC Function of Z-Axis Command Amount, Unit=um 118<br />

030 PMC4MM PMC Function of 4th-Axis Command Amount, Unit=mm 118<br />

031 PMC4UM PMC Function of 4th-Axis Command Amount, Unit=um 118<br />

040 OPMES1 MLC Alarm Message 118<br />

041 OPMES2 MLC Alarm Message 118<br />

042 OPMES3 MLC Alarm Message 118<br />

043 OPMES4 MLC Alarm Message 118<br />

044 OPMES5 MLC Alarm Message 118<br />

045 OPMES6 MLC Alarm Message 118<br />

060 MLCFN MLC Windows Function for Item Code 119<br />

061 MLCSF1 MLC Windows Function for Sub Item Code 1 119<br />

062 MLCSF2 MLC Windows Function for Sub Item Code 2 119<br />

063 MLCD1 NC Overwrited MLC Window Function 1 119<br />

064 MLCD2 NC Overwrited MLC Window Function 2 119<br />

065 MLCD3 NC Overwrited MLC Window Function 3 119<br />

066 MLCD4 NC Overwrited MLC Window Function 4 119<br />

067 MLCD5 NC Overwrited MLC Window Function 5 119<br />

068 MLCD6 NC Overwrited MLC Window Function 6 119<br />

069 MLCD7 NC Overwrited MLC Window Function 7 119<br />

070 MLCD8 NC Overwrited MLC Window Function 8 119<br />

071 MLCD9 NC Overwrited MLC Window Function 9 119<br />

072 MLCD10 NC Overwrited MLC Window Function 10 119<br />

073 MLCD11 NC Overwrited MLC Window Function 11 119<br />

074 MLCD12 NC Overwrited MLC Window Function 12 119<br />

82 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

4.4 C Bits Description<br />

C Bit 000<br />

Description:<br />

Cycle Start<br />

Assumed the system is under MEM or MDI mode. When the signal changes from OFF to On,<br />

the system will be ready to be【Cycle Start】 condition. Meanwhile, the S BIT 000 signal will be<br />

set to ON in order to provide LADDER to enable work light ON function during machine<br />

running. On the other hand, assumed system is in【F-HOLD】 or 【B-STOP】 condition, the S<br />

BIT 000 will be set to OFF in order to provide LADDER to enable work light OFF function during<br />

machine stop. However, this signal will not be accepted by the system under the below three<br />

conditions:<br />

a. System is not under MEM or MDI mode.<br />

b. System is in 【NC NOT Ready】 or 【Cycle Start】 condition.<br />

c. System alarm occurs.<br />

C Bit 001<br />

Description:<br />

Feed Hold<br />

Assumed the system is in MEM or MDI mode and also in【NC Ready】 conditions. When this<br />

signal is ON, the system will be in 【F-HOLD】 condition. Meanwhile, the system will set S BIT<br />

000 signal to OFF in order to provide LADDER to enable work light OFF function during<br />

machine running. And also, to set S BIT 001 signal to ON in order to provide LADDER to<br />

enable work light ON function during machine stop. But, please notice that this signal is<br />

disabled (ineffective) for PMC axis function under JOG or RAPID mode.<br />

C Bit 003<br />

Description:<br />

Prog Protect<br />

When this signal is set to ON, part program editing is prohibited.<br />

<strong>LNC</strong> Technology Co., Ltd. 83


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

C Bit 004<br />

Description:<br />

<strong>Manual</strong> Return<br />

Assumed NC is under MEM or MDI mode. If switching to JOG or MPG mode during program<br />

executing and also manual moves the machine away from the original program interrupting<br />

position, user can have the following two selections to continue the unfinished command:<br />

1. <strong>Manual</strong> Return: Moving the machine back to the original program interrupting position first<br />

and then to continue the unfinished commanding.<br />

2. Continue the unfinished commanding from the current position. But, there will be a<br />

OFFSET amount of coordinate.<br />

C Bit 006<br />

C Bit 007<br />

C Bit 008<br />

C Bit 009<br />

C Bit 010<br />

C Bit 011<br />

C Bit 012<br />

C Bit 013<br />

Description:<br />

+X Axis Direction<br />

-X Axis Direction<br />

+Y Axis Direction<br />

-Y Axis Direction<br />

+Z Axis Direction<br />

-Z Axis Direction<br />

+4 Axis Direction<br />

-4 Axis Direction<br />

These signals are selection commanding of system relative axis direction. There are three<br />

corresponding motions under each mode:<br />

a. JOG Mode:<br />

When axis direction signal is ON, the system will send out commanding signal to the<br />

designated axis direction in JOG speed until the signal is OFF.<br />

b. RAPID Mode:<br />

When axis direction signal is ON, the system will send out commanding signal to the<br />

designated axis direction in RAPID speed until the signal is OFF.<br />

c. HOME:<br />

When axis direction signal changes from OFF to ON, it starts moving back to HOME.<br />

C Bit 016<br />

C Bit 017<br />

C Bit 018<br />

C Bit 019<br />

Description:<br />

Handle X Axis<br />

Handle Y Axis<br />

Handle Z Axis<br />

Handle 4th Axis<br />

These signals are used under MPG mode, which are to indicate the present select servo axis.<br />

For example, if C BIT 016 signal is ON, it indicates that the present MPG axis direction is X<br />

axis. So, turning the MPG rotary switch will moving the servo axis toward X axis.<br />

HX:X Axis MPG Feed<br />

HY:Y Axis MPG Feed<br />

HZ:Z Axis MPG Feed<br />

H4:4 th Axis MPG Feed<br />

C Bit 020<br />

Description:<br />

MPG Dry Run<br />

Assumed the NC is in MEM or MDI mode. When this signal is ON, MPG is as feederate control.<br />

So, when operator uses MPG, the axis is moving in original feedrate, otherwise, stop.<br />

C Bit 021<br />

Wake up the screen saver signal<br />

84 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

Description:<br />

The signal which is used by MLC to notify system stopping screen saver and recount start-time.<br />

C Bit 023<br />

Description:<br />

Rapid<br />

Assumed NC is in JOG mode. If RT signal is ON, feedrate becomes rapidly speed, which is<br />

equal to RAPID mode. So, operator can apply the same principle in HOME mode.<br />

C Bit 031<br />

C Bit 032<br />

C Bit 033<br />

C Bit 034<br />

Description:<br />

X Axis Home DOG Signal<br />

Y Axis Home DOG Signal<br />

Z Axis Home DOG Signal<br />

4th Axis Home DOG Signal<br />

To notify NC the present HOME DOG signal.<br />

Remark: When Parameter # 0175 is 1 and when HOME DOG uses REMOTE key-in point, this<br />

signal is enabled.<br />

<strong>LNC</strong> Technology Co., Ltd. 85


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

C Bit 036<br />

Description:<br />

Emergency Stop<br />

When this signal is ON, the system is in RESET condition and all motions stop, which means<br />

the system condition is NOT READY.<br />

C Bit 037<br />

Description:<br />

External Reset<br />

System outer RESET signal which is the same function as pressing RESET bottom.<br />

C Bit 038<br />

Description:<br />

M, S, T Finish<br />

Assumed NC is in the MEM or MDI mode. When the program executes M code interpretation,<br />

the content of M Code will be sent by REG 1. At the same time, it will send out M Code Read<br />

(MF)signal.<br />

When LADDER finishes executing the related M Code and replies it back to M,S,T Finish<br />

(FIN)signal, the signal will inform the system that the executing of M code is completed.<br />

Correct order is as following:<br />

M CODE INTERPREATION<br />

REG<br />

MF<br />

FIN<br />

a. When executing M77, 77 will be entered into REG 1.<br />

b. Assumed M Code and motion command are in the same BLOCK. If want M Code to<br />

execute its command after motion command is completed, then m code must coordinate<br />

with Distribution End(DEN)command under LADDER control.<br />

c. M00, M01, M02, M30, M98, M99 has no such simultaneous motion.<br />

86 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

C Bit 040<br />

Description:<br />

Single Block<br />

Assumed NC is in auto-executing condition of MEM mode. If this signal is ON, the system will<br />

stop after a BLOCK of program is finish executing. But, if STL signal in OFF and system<br />

condition is B_STOP, then NC will start executing the next BLOCK of program after Cycle Start<br />

(ST) signal is ON.<br />

C Bit 041<br />

Description:<br />

Optional Block Skip<br />

Assumed NC is in auto-executing of MEM mode. If there is a such symbol, “/”, in a program,<br />

any key-in after this symbol to EOB will be neglected.<br />

C Bit 042<br />

Description:<br />

Dry Run<br />

Assumed NC is in MEM or MDI mode. If this signal is ON, program will be executed under the<br />

below feedrates:<br />

G00:When RT is ON = RAPID feed.<br />

When RT is OFF =JOG feed.<br />

G01:JOG feed.<br />

C Bit 043<br />

Description:<br />

Machine Lock<br />

Assumed NC is under manual and auto modes, all moving command will NOT send to position<br />

control servo system. But, software interpolation value is still executed which means that<br />

program coordinate will still be renewed.<br />

C Bit 044<br />

Description:<br />

Optional Stop<br />

Assumed this signal is ON. If program executing reaches M01, system will be paused and STL<br />

signal is OFF. This implies that the system will continue executing programs after pressing<br />

Cycle Start (ST) bottom.<br />

<strong>LNC</strong> Technology Co., Ltd. 87


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

C Bit 045<br />

Description:<br />

Z Axis Cancel<br />

Assumed NC is in manual and auto modes. If this signal is ON, Z axis will be locked, which<br />

means that Z axis moving command will NOT be sent to loop control servo system. But, Z axis<br />

software interpolation value is still executing. So, program coordinate will be renewed.<br />

C Bit 046<br />

Description:<br />

Auxiliary Function Lock<br />

Assumed this signal is ON. When M, S and T codes are executing, content code and reading<br />

signal are not sending out which means not to execute M, S and T simultaneously.<br />

C Bit 049<br />

Description:<br />

4th Axis Neglect<br />

When this signal is ON, the corresponding axis commanding will NOT be executed.<br />

For example: Enable 4 th axis neglect which means when executing part program G01 X10 Z10<br />

C10, C10 commanding will be neglected.<br />

C Bit 050<br />

C Bit 051<br />

C Bit 052<br />

C Bit 053<br />

C Bit 054<br />

C Bit 055<br />

C Bit 056<br />

C Bit 057<br />

Description:<br />

+X Axis OT<br />

-X Axis OT<br />

+Y Axis OT<br />

-Y Axis OT<br />

+Z Axis OT<br />

-Z Axis OT<br />

+4th Axis OT<br />

-4th Axis OT<br />

Each axis sends out the machine hardware-traveling signal in order to inform the system to<br />

display it. These C Bits are MLC travel limit signals for each axis. When these C BIT signals are<br />

on, the system alarm will be enabled. So the servo axis can only move toward the opposite<br />

direction. The following list is the definition for each C BIT:<br />

C BIT<br />

Definition<br />

50 X Axis +ive direction MLC Travel Limit<br />

51 X Axis -ive direction MLC Travel Limit<br />

52 Y Axis +ive direction MLC Travel Limit<br />

53 Y Axis -ive direction MLC Travel Limit<br />

54 Z Axis +ive direction MLC Travel Limit<br />

55 Z Axis -ive direction MLC Travel Limit<br />

56 4th Axis +ive direction MLC Travel Limit<br />

57 4th Axis -ive direction MLC Travel Limit<br />

X axis moving direction<br />

+X<br />

Enable C51<br />

Enable C50<br />

The following list is the warning message of MLC travel limit:<br />

88 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

WARNING ID<br />

Warning Message<br />

OP 6001 X AXIS OVER MLC TRAVEL LIMIT (+)<br />

OP 6002 X AXIS OVER MLC TRAVEL LIMIT (-)<br />

OP 6003 Y AXIS OVER MLC TRAVEL LIMIT (+)<br />

OP 6004 Y AXIS OVER MLC TRAVEL LIMIT (-)<br />

OP 6005 Z AXIS OVER MLC TRAVEL LIMIT (+)<br />

OP 6006 Z AXIS OVER MLC TRAVEL LIMIT (-)<br />

OP 6007 4TH AXIS OVER MLC TRAVEL LIMIT (+)<br />

OP 6008 4TH AXIS OVER MLC TRAVEL LIMIT (-)<br />

Warning/Alarm Cancel:<br />

After the above system warning message is enabled, need to wait until the servo moves toward<br />

the opposite direction. And also, the corresponding C BIT changes from ON to OFF, the<br />

warning message will be removed automatically.<br />

In JOG/RAPID or MPG mode, if the system warning message (OP 6001 〜 OP 6008) of MLC<br />

travel limit occurs, it is okay not to remove the warning message. Just moving directly to the<br />

reverse direction away from where the warning message occurs. After getting away from the<br />

software limitation range, the warning message will be removed.<br />

Under mode of MEM, MDI or HOME, if the system warning message (OP 6001 〜 OP 6008) of<br />

MLC travel limit occurs, OP will send out the warning message. In this case, users must press<br />

“RESET” to reset the system.<br />

ALARM ID<br />

OP 1020<br />

Warning Message<br />

OVER MLC TRAVEL LIMIT<br />

C Bit 059<br />

C Bit 060<br />

C Bit 061<br />

C Bit 062<br />

Description:<br />

X Axis Interlock<br />

Y Axis Interlock<br />

Z Axis Interlock<br />

4th Axis Interlock<br />

When the corresponding axis is ON, the axis will NOT move. But, the coordinate value will be<br />

renewed.<br />

C Bit 066<br />

C Bit 067<br />

C Bit 068<br />

C Bit 069<br />

Description:<br />

X Axis: Select Axis Direction Signal of Handle INT<br />

Y Axis: Select Axis Direction Signal of Handle INT<br />

Z Axis: Select Axis Direction Signal of Handle INT<br />

4th Axis: Select Axis Direction Signal of Handle INT<br />

Assumed NC is under MEM mode. User can use <strong>Manual</strong> Handle Interrupt function to<br />

<strong>LNC</strong> Technology Co., Ltd. 89


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

increase/decrease tool shifting amount in order to modify path. However, before using this<br />

function, user must set Handle Interrupt axis selection signal and MPG ratio (R REGISTER<br />

014). Then, user can use MPG to modify tool position. However, absolute coordinate will NOT<br />

be modified by Handle Interrupt, there will be a OFFSET amount of the initial program path and<br />

afterward tool path. This OFFSET amount will be cleared only by using manual reference point<br />

return.<br />

C Bit 075<br />

C Bit 076<br />

C Bit 077<br />

C Bit 078<br />

Description:<br />

X Axis Servo Alarm<br />

Y Axis Servo Alarm<br />

Z Axis Servo Alarm<br />

4th Axis Servo Alarm<br />

This signal will notify system if motor driver of any axis has any extraordinary phenomenon.<br />

90 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

C Bit 082<br />

C Bit 083<br />

Description:<br />

1st Spindle CW<br />

1st Spindle CCW<br />

When C bit of clockwise is ON, spindle rotates in clockwise direction.<br />

When C bit of counter-clockwise is ON, spindle rotates in counter-clockwise direction.<br />

If the above two are both OFF, spindle stops rotating.<br />

Note 1: The above C bits are enabled in normal spindle speed control mode, which is spindle<br />

clockwise, counter-clockwise and stop.<br />

Note 2: If the spindle CW and CCW are controlled by inventor’s CW and CCW connection point<br />

control, the above signals will only notify NC that the current spindle is in CW or CCW<br />

condition.<br />

C Bit 085<br />

Description:<br />

Spindle Orientation<br />

This signal will be enabled when spindle orientation is decided by encoder and in JOG mode.<br />

Please notice that if Parameter # 0019, 1055, 1056 are not set for orientation position, spindle<br />

will be re-orientated again.<br />

C Bit 086<br />

Description:<br />

Spindle Command Type Changes to Pulse Type Under Spindle Orientation<br />

and Ridig Tapping Modes<br />

Signal of Spindle is in orientation mode and also finishes orientating.<br />

C Bit 089<br />

C Bit 090<br />

C Bit 091<br />

C Bit 092<br />

Description:<br />

X Axis Mirror Image<br />

Y Axis Servo Alarm<br />

Z Axis Servo Alarm<br />

4th Axis Servo Alarm<br />

When mirror image signal is ON under Auto mode, this axis will be in reverse moving direction.<br />

<strong>LNC</strong> Technology Co., Ltd. 91


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

C Bit 097 1st Spindle Gear #1<br />

C Bit 098 1st Spindle Gear #2<br />

C Bit 099 1st Spindle Gear #3<br />

Description: Setting the gear ratio between spindle motor and spindle. Every spindle provides 4sets of<br />

parameter # of gear ratio. The system default is to use the 4 th set of gear ratio. If user want to<br />

modify other sets of gear ratio, user can select the suitable gear ratio from each spindle’s<br />

corresponding gear ratio C bit.<br />

Spindle Gear C bit<br />

1 st<br />

Spindle<br />

2 nd<br />

Spindle<br />

3 rd<br />

Spindle<br />

1 C97=ON<br />

2 C98=ON<br />

3 C99=ON<br />

4 C97,98,99=OFF<br />

1 C116=ON<br />

2 C117=ON<br />

3 C118=ON<br />

4 C116,117,118=OFF<br />

1 C121=ON<br />

2 C122=ON<br />

3 C123=ON<br />

4 C121,122,123=OFF<br />

# of Motor<br />

Tooth<br />

Parameter #<br />

0049<br />

Parameter #<br />

0051<br />

Parameter #<br />

0178<br />

Parameter #<br />

0181<br />

Parameter #<br />

0664<br />

Parameter #<br />

0666<br />

Parameter #<br />

0668<br />

Parameter #<br />

0670<br />

Parameter #<br />

0672<br />

Parameter #<br />

0674<br />

Parameter #<br />

0676<br />

Parameter #<br />

0678<br />

# of Spindle<br />

Tooth<br />

Parameter #<br />

0050<br />

Parameter #<br />

0052<br />

Parameter #<br />

0179<br />

Parameter #<br />

0182<br />

Parameter #<br />

0665<br />

Parameter #<br />

0667<br />

Parameter #<br />

0669<br />

Parameter #<br />

0671<br />

Parameter #<br />

0673<br />

Parameter #<br />

0675<br />

Parameter #<br />

0677<br />

Parameter #<br />

0679<br />

C Bit 100 MACRO Variable $200<br />

C Bit 101 MACRO Variable $201<br />

C Bit 102 MACRO Variable $202<br />

C Bit 103 MACRO Variable $203<br />

C Bit 104 MACRO Variable $204<br />

C Bit 105 MACRO Variable $205<br />

C Bit 106 MACRO Variable $206<br />

C Bit 107 MACRO Variable $207<br />

C Bit 108 MACRO Variable $208<br />

C Bit 109 MACRO Variable $209<br />

C Bit 110 MACRO Variable $210<br />

C Bit 111 MACRO Variable $211<br />

C Bit 112 MACRO Variable $212<br />

C Bit 113 MACRO Variable $213<br />

92 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

C Bit 114 MACRO Variable $214<br />

C Bit 115 MACRO Variable $215<br />

Description: These signals are the same as the MACRO system variables $120~$135. They provide input<br />

points of MACRO for LADDER. Example: If set UI0 to ON in LADDER, then $120 will be 1 in<br />

MACRO. These MACRO input point signals will provide order determination for MACRO.<br />

C Bit 119<br />

Description:<br />

ZP2Z Down Cancel<br />

When this signal is ON, the local Z axis motion will be inhibited after the 2 nd reference point.<br />

This signal is to protect tool exchanging and to prevent tool collusion after tool magazine moves<br />

toward left.<br />

<strong>LNC</strong> Technology Co., Ltd. 93


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

C Bit 120<br />

Description:<br />

PMC Axis Go<br />

Setting this signal to ON in order to enable PMC axis moving command under the condition of<br />

JOG mode and when all PMC axis moving data are ready.<br />

C Bit 124<br />

Description:<br />

Disable Sigal in Rigid Tapping<br />

Milling disables rigid tapping.<br />

C Bit 125<br />

Description:<br />

Enable Signal in Rigid Tapping<br />

Rigid tapping (M29). When this signal is on, Z axis moving amount will follow the spindle<br />

encoder’s pulse amount. So user must use M28 to delete the signal when rigid tapping is done<br />

in order to prevent any wrong motion from the system.<br />

C Bit 126<br />

Description:<br />

Enable Signal of Spindle Motor Rotates in Gear-Shfiting Speed<br />

Milling spindle changes rotational speed.<br />

C Bit 127<br />

Description:<br />

Spindle Gear-Shifting Complete Signal<br />

Milling gear-shifting completed signal.<br />

C Bit 134<br />

Description:<br />

Clear Working Piece Number<br />

When NC reads M02, M30, the reading M code and parameter 89 are the same, NC will add<br />

the working piece by 1. If the working piece number is larger than or equal to that of the<br />

maximum working piece setting, NC will send out S134 to inform MLC to do the corresponding<br />

motion. When MLC sends out C 134, NC will clear the working piece number to zero.<br />

94 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

C Bit 140<br />

C Bit 141<br />

C Bit 142<br />

C Bit 143<br />

C Bit 144<br />

C Bit 145<br />

C Bit 146<br />

C Bit 147<br />

Description:<br />

2nd +X Axis Software Limit Choice<br />

2nd -X Axis Software Limit Choice<br />

2nd +Y Axis Software Limit Choice<br />

2nd -Y Axis Software Limit Choice<br />

2nd +Z Axis Software Limit Choice<br />

2nd -Y Axis Software Limit Choice<br />

2nd +4th Axis Software Limit Choice<br />

2nd -4th Axis Software Limit Choice<br />

1 st software limit: Using parameter 1006 ~ 1013 to set the limit. After executing zero return<br />

procedure, the parameter setting value will be enabled. The booting default<br />

value of +ive direction is 99999.999mm and the booting default value of –ive<br />

direction is -99999.999mm.<br />

2 nd software limit: Using parameter 1034 ~ 1041to set the limit. After executing zero return<br />

procedure, the parameter setting value will be enabled. The booting default<br />

value of +ive direction is 99999.999mm and the booting default value of –ive<br />

direction is -99999.999mm.<br />

The corresponding C BIT of each axis can exchange any value between the 1st software limit<br />

and the 2nd software limit. This means that only one set/combination can be enabled at tone<br />

time within the limit of the 1 st software limitation and the 2 nd software limitation.<br />

Software Limit<br />

C BIT<br />

X axis +ive direction C140: When OFF, use 1 st software limit;<br />

software limit<br />

When ON, using 2 nd software limit.<br />

X axis -ive direction C141: When OFF, use 1 st software limit;<br />

software limit<br />

When ON, using 2 nd software limit.<br />

Y axis +ive direction C142: When OFF, use 1 st software limit;<br />

software limit<br />

When ON, using 2 nd software limit.<br />

Y axis -ive direction C143:When OFF, use 1 st software limit;<br />

software limit<br />

When ON, using 2 nd software limit.<br />

Z axis +ive direction C144:When OFF, use 1 st software limit;<br />

software limit<br />

When ON, using 2 nd software limit.<br />

Z axis -ive direction C145:When OFF, use 1 st software limit;<br />

software limit<br />

When ON, using 2 nd software limit.<br />

4th axis +ive direction C146:When OFF, use 1 st software limit;<br />

software limit<br />

When ON, using 2 nd software limit.<br />

4th axis -ive direction C147:When OFF, use 1 st software limit;<br />

software limit<br />

When ON, using 2 nd software limit.<br />

X axis Moving Range (C140<br />

X axis Moving Range<br />

(Para. # 0071 is 1、C129 is ON)<br />

X axis Moving Range(C140 OFF)<br />

X axis Moving Range<br />

(Para. # 0071 is 1、C129 is OFF)<br />

+X<br />

+ X axis<br />

1 st soft limit<br />

G22 travel limit: Able to designated the embedded travel checking range. For Internal and<br />

- X axis<br />

Direction G22<br />

+ X axis<br />

Direction G22<br />

<strong>LNC</strong> Technology Co., Ltd. 95


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

96 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

C Bit 201<br />

C Bit 202<br />

C Bit 203<br />

C Bit 204<br />

Description:<br />

Absolute encoder Reset Ready Signal:X Axis<br />

Absolute encoder Reset Ready Signal:Y Axis<br />

Absolute encoder Reset Ready Signal:Z Axis<br />

Absolute encoder Reset Ready Signal:4th Axis<br />

When LADDER finishes absolute encoder zero return, this signal needs to be sent out to notify<br />

NC that.<br />

C Bit 207<br />

C Bit 208<br />

C Bit 209<br />

C Bit 210<br />

Description:<br />

Absolute Encoder Data Ready Signal:X Axis<br />

Absolute Encoder Data Ready Signal:Y Axis<br />

Absolute Encoder Data Ready Signal:Z Axis<br />

Absolute Encoder Data Ready Signal:4th Axis<br />

LADDER will notify NC when driver enters into ABS transmitting mode and driver data are<br />

ready.<br />

C Bit 213<br />

C Bit 214<br />

C Bit 215<br />

C Bit 216<br />

Description:<br />

Absolute Encoder Data Bit 0Transmitting Signal : X Axis<br />

Absolute Encoder Data Bit 0Transmitting Signal : Y Axis<br />

Absolute Encoder Data Bit 0Transmitting Signal : Z Axis<br />

Absolute Encoder Data Bit 0Transmitting Signal : 4th Axis<br />

Assumed absolute encoder data reading is sent by serial transmitting. Also, assumed 2 bits of<br />

Encoder will be transmitted every time. So, when this bit is ON, it indicates that the signal of<br />

transmitting 2 bits data from driver to NC is 1.<br />

<strong>LNC</strong> Technology Co., Ltd. 97


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

C Bit 219<br />

C Bit 220<br />

C Bit 221<br />

C Bit 222<br />

Description:<br />

Absolute Encoder Bit 1 Transmit: X Axis<br />

Absolute Encoder Bit 1 Transmit: Y Axis<br />

Absolute Encoder Bit 1 Transmit: Z Axis<br />

Absolute Encoder Bit 1 Transmit: 4th Axis<br />

Assumed absolute encoder data reading is sent by serial transmitting. Also, assumed 2 bits of<br />

Encoder will be transmitted every time. So, when this bit is ON, it indicates that the signal of<br />

transmitting 2 bits data from driver to NC is 1.<br />

C Bit 064<br />

C Bit 065<br />

Description:<br />

MLC Window Read/Write Signal<br />

MLC Commanding Signal<br />

Please refer to 4.7 MLC Window structure for a detailed description.<br />

98 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

4.5 S Bits Desctiption<br />

S Bit 000<br />

Description:<br />

Cycle Start Light<br />

When the system accepts to enable “CYCLE START” key and enters into automatic executing<br />

condition, this signal is ON, which means the system is in the “Cycle Start” condition. This<br />

signal is OFF when the automatic executing completed or the system is in ”FEED HOLD”<br />

condition.<br />

S Bit 001<br />

Description:<br />

Feed Hold Light<br />

When this signal is ON, it means the system is in ”FEED HOLD” condition. So the system is in<br />

“Machine Stop” condition.<br />

S Bit 002<br />

S Bit 003<br />

S Bit 004<br />

S Bit 005<br />

S Bit 006<br />

S Bit 007<br />

S Bit 008<br />

Description:<br />

Edit Mode Light<br />

MEM Mode Light<br />

MDI Mode Light<br />

JOG Mode Light<br />

INC JOG Mode Light<br />

MPG Mode Light<br />

Home Mode Light<br />

When these signals are ON, it means the system is in the relative operation mode condition.<br />

S Bit 010<br />

Description:<br />

Preparation Completed<br />

When these signals are ON, the system is in “Preparation Complete” condition.<br />

S Bit 011<br />

Description:<br />

MDI keyboard press signal<br />

1. The signal will be sent from system when pressing the bottom on MDI.<br />

2. The signal notify MLC to turn on LCD power and recount time to turn off LCD power.<br />

<strong>LNC</strong> Technology Co., Ltd. 99


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

S Bit 016<br />

S Bit 017<br />

S Bit 018<br />

S Bit 019<br />

Description:<br />

X 1st Axis Point Return End<br />

Y 1st Axis Point Return End<br />

Z 1st Axis Point Return End<br />

4th 1st Axis Point Return End<br />

When these signals are ON, it means the system relative axis completed the zero return<br />

procedure and stop at the zero point.<br />

S Bit 020 X 2nd Axis Point Return End<br />

S Bit 021 Y 2nd Axis Point Return End<br />

S Bit 022 Z 2nd Axis Point Return End<br />

S Bit 023 4th 2nd Axis Point Return End<br />

Description: When these signals are ON, it means the system relative axis is completed the 2 nd (or the 3 rd ,<br />

4 th ) reference return procedure and stop at the 2 nd (or 3 rd , 4 th ) reference point.<br />

S Bit 028<br />

Description:<br />

Warning<br />

When system warning occurs, this signal will notify PLC. After cause is eliminated, system<br />

warning is off automatically and this signal is OFF.<br />

S Bit 029<br />

Description:<br />

M Code Read<br />

When executing to the M code, this signal is “ON” in order to provide LADDER to do M code<br />

executing until FIN signal replies back. Please refer to the description of M code end signal (C<br />

BIT 038).<br />

100 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

S Bit 030<br />

Description:<br />

Distribution EndAlarm<br />

In MEM or MDI mode, when the moving command interpolation is completed, this signal will be<br />

sent out. So when M code and the moving G code are on the same BLOCK, please use this<br />

signal to control and to execute M code after moving G code. If do not use this signal, M code<br />

will be executed simultaneously with G code interpolation.<br />

S Bit 031<br />

Description:<br />

Alarm<br />

When the system alarm is on, this signal is ON.<br />

S Bit 032<br />

Description:<br />

Reset<br />

When the system receives the RESET command, this signal is ON. Remain one time scanning<br />

time in order for LADDER to reset.<br />

S Bit 033<br />

Description:<br />

NC Ready<br />

Assumed the controller’s power is on. After normally executing program, this signal will be ON.<br />

S Bit 035<br />

S Bit 036<br />

S Bit 037<br />

S Bit 038<br />

Description:<br />

MPG x1000 Ratio Speeding<br />

MPG x1 Ratio Speeding<br />

MPG x10 Ratio Speeding<br />

MPG x100 Ratio Speeding<br />

These four signals are used to indicate the current using MPG ratio.<br />

MPG Ratio S035 S036 S037 S038<br />

x1 0 1 0 0<br />

x10 0 0 1 0<br />

x100 0 0 0 1<br />

x1000 1 0 0 0<br />

S Bit 039<br />

Description:<br />

Program Restart<br />

When system enters the Program Restart process, the state signal of Program Restart will be<br />

enable(S39=ON), and will be disable when the system is completed or leave the operational<br />

status of Program Restart.<br />

S Bit 040<br />

Description:<br />

Single Block<br />

Conditional signal that is relative to single block (SBK).<br />

S Bit 041<br />

Description:<br />

Optional Block Skip<br />

Conditional signal that is relative to Optional Block Skip(BDT).<br />

<strong>LNC</strong> Technology Co., Ltd. 101


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

S Bit 042<br />

Description:<br />

Dry Run<br />

Conditional signal that is relative to Dry Run (DRN).<br />

S Bit 043<br />

Description:<br />

Machine Lock<br />

Conditional signal that is relative to Machine Lock(MLK).<br />

S Bit 044<br />

Description:<br />

Optional Stop<br />

Conditional signal that is relative to Optional Stop(OPS).<br />

S Bit 045<br />

Description:<br />

Rapid Traverse<br />

Conditional signal that is relative to Rapid Traverse(RT).<br />

102 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

S Bit 046<br />

Description:<br />

Z-Axis Neglect<br />

Conditional signal that is relative to Z Axis Cancel(ZNG).<br />

S Bit 047<br />

Description:<br />

Auxiliary Function Lock<br />

Conditional signal that is relative to Auxiliary Function Lock(AFL).<br />

S Bit 054<br />

Description:<br />

S Code Read<br />

When executing to S code, this signal is ON in order to provide LADDER to do S code<br />

executing until FIN signal is sending back.<br />

S Bit 061<br />

Description:<br />

Z-Axis Neglect<br />

ON/OFF control on the communication style software Panel will communicate with LADDER<br />

through this signal. For Z-AXIS NEGLECT key on the software Panel, ON/OFF control will<br />

communicate with LADDER through this signal. The timing procedure is as following:<br />

S061<br />

C045<br />

S046<br />

<strong>LNC</strong> Technology Co., Ltd. 103


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

S Bit 062<br />

Description:<br />

MPG Dry Run<br />

ON/OFF control on the communication style software Panel will communicate with LADDER<br />

through this signal. For MPG Dry Run key on the software Panel, ON/OFF control will<br />

communicate with LADDER through this signal. The timing procedure is as following:<br />

S062<br />

C020<br />

S068<br />

S Bit 063<br />

Description:<br />

Auxiliary Function Lock<br />

ON/OFF control on the communication style software Panel will communicate with LADDER<br />

through this signal. For AUXILIARY FUNCTION LOCK key on the software Panel, ON/OFF<br />

control will communicate with LADDER through this signal. The timing procedure is as<br />

following:<br />

S063<br />

C046<br />

S047<br />

104 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

S Bit 068<br />

Description:<br />

MPG Dry Run<br />

Conditional signal that is relative to MPG Dry Run(MPGDRN).<br />

S Bit 069<br />

Description:<br />

T Code Read<br />

When executing to T code, this signal is ON in order to provide LADDTER to do T code<br />

executing until FIN signal is sending back.<br />

S Bit 071<br />

Description:<br />

Machine Lock<br />

ON/OFF control on the communication style software Panel will communicate with LADDER<br />

through this signal. For Machine Lock key on the software Panel, ON/OFF control will<br />

communicate with LADDER through this signal. The timing procedure is as following:<br />

S071<br />

C043<br />

S043<br />

<strong>LNC</strong> Technology Co., Ltd. 105


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

S Bit 072<br />

Description:<br />

Dry Run<br />

ON/OFF control on the communication style software Panel will communicate with LADDER<br />

through this signal. For Dry Run key on the software Panel, ON/OFF control will communicate<br />

with LADDER through this signal. The timing procedure is as following:<br />

S072<br />

C042<br />

S042<br />

S Bit 073<br />

Description:<br />

Optional Block Skip<br />

ON/OFF control on the communication style software Panel will communicate with LADDER<br />

through this signal. For Optional Block Skip key on the software Panel, ON/OFF control will<br />

communicate with LADDER through this signal. The timing procedure is as following:<br />

S073<br />

C041<br />

S041<br />

106 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

S Bit 074<br />

Description:<br />

Optional Stop<br />

ON/OFF control on the communication style software Panel will communicate with LADDER<br />

through this signal. For Optional Stop key on the software Panel, ON/OFF control will<br />

communicate with LADDER through this signal. The timing procedure is as following:<br />

S074<br />

C044<br />

S044<br />

S Bit 080<br />

S Bit 081<br />

S Bit 082<br />

S Bit 083<br />

Description:<br />

M00 Read<br />

M01 Read<br />

M02 Read<br />

M30 Read<br />

M00:after interpreting as M00, this signal is ON(remain one time scanning time)<br />

M01:after interpreting as M01, this signal is ON(remain one time scanning time)<br />

M02:after interpreting as M02, this signal is ON(remain one time scanning time)<br />

M30:after interpreting as M03, this signal is ON(remain one time scanning time)<br />

S Bit 086<br />

Description:<br />

Orientation Finish<br />

When spindle orientation is completed, this signal is ON. When PLC cancels the spindle<br />

orientation command (C85), this signal will become OFF.<br />

<strong>LNC</strong> Technology Co., Ltd. 107


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

S Bit 088<br />

Description:<br />

1st Spindle Speed Arrival<br />

This signal is ON when the spindle speed arrives to its designated speed. Parameter 1054 is to<br />

set the error range of the spindle speed arrival.<br />

S Bit 091<br />

Description:<br />

Not in Canned Cycle Mode<br />

Assumed the system is in Canned Cycle mode. If this signal is OFF, effective G code of Group<br />

G09 is not 80. On the other hand, if the system is not under Canned Cycle mode and this signal<br />

is ON, then the effective G code of Group G09 is 80.<br />

S Bit 092<br />

Description:<br />

Spindle Zero Speed Arrival<br />

When the spindle rotational speed arrives to 0 rpm, the system will send out this signal and set<br />

the arrival speed to 20 rpm in advance. Also, able to use parameter No. 1063 to set the<br />

maximum speed when send out this signal.<br />

S Bit 093<br />

Description:<br />

Spindle Command Type Changes to Pulse Command in Spindle and Ridig<br />

Tapping Mode<br />

NC notifies MLC spindle to get ready to switch to the position control mode. Meanwhile, driver<br />

does the corresponding switch.<br />

S Bit 094<br />

Description:<br />

Spindle Motor Speed when Gears are Switched<br />

This signal will be sent out when spindle reaches gear-shifting speed.<br />

S Bit 100 MACRO Variable $600<br />

S Bit 101 MACRO Variable $601<br />

S Bit 102 MACRO Variable $602<br />

S Bit 103 MACRO Variable $603<br />

S Bit 104 MACRO Variable $604<br />

S Bit 105 MACRO Variable $605<br />

S Bit 106 MACRO Variable $606<br />

S Bit 109 MACRO Variable $609<br />

S Bit 112 MACRO Variable $612<br />

S Bit 113 MACRO Variable $613<br />

S Bit 114 MACRO Variable $614<br />

S Bit 115 MACRO Variable $615<br />

Description: These signals are the MACRO system variables $600~$615, which are MACRO outputs to<br />

LADDER point. Example: set $600 as 1 in MACRO, then UO0 will be ON in LADDER, which<br />

means that MACRO output signals will be used as external control for LADDER.<br />

S Bit 120<br />

Description:<br />

PMC Axis Finish<br />

This signal is ON when PMC axis moving is completed.<br />

108 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

S Bit 128<br />

Description:<br />

Riding Tapping Mode<br />

NC notifies MLC that whether or not NC is in rigid tapping mode.<br />

S Bit 130<br />

S Bit 131<br />

S Bit 132<br />

S Bit 133<br />

Description:<br />

X Axis Moving<br />

Y Axis Moving<br />

Z Axis Moving<br />

4th Axis Moving<br />

Moving condition of each axis:<br />

ON:Moving;<br />

OFF:Stop.<br />

<strong>LNC</strong> Technology Co., Ltd. 109


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

S Bit 134<br />

Description:<br />

Max Working Piece Arrival<br />

When the number of working piece is greater than or equal to that of the maximum<br />

setting-working piece, S134 will be sent out to inform MLC. If setting the maximum working<br />

piece to zero, then this signal will not be sent out. MLC will use C134 to inform NC to clear<br />

working piece.<br />

Application Description:<br />

Enter into user parameter to do function selection and set parameter No. 12 as 1. When the<br />

working piece number reaches the setting working piece number, it will enter into the Feed Hole<br />

condition and send out warning message (Wrokpiece is full).<br />

At this time, user can do any needed motion. If there is no need to do any other motion, please<br />

press “Cycle Start” key directly. Then the working piece number will be cleared to zero<br />

automatically. Furthermore, it will start working automatically and counting working piece<br />

number from zero. If no need this function at all, then set parameter No.12 as 0. Circulating<br />

work of working piece will not be affected.<br />

01 Program Editing 0 11 Power Off Delay Time 5<br />

02 Home Point Search Priority 1 12 Work Piece Alarm 1<br />

03 Return Home Axis Priority 1 13<br />

04 Rapidly Moving 50% 0 14<br />

05 Total Number of Turret 0 15<br />

06 Safety Door 0 16<br />

07 Enforce Track Lubrication 0 17<br />

08 Lubricate ON Time 5 18<br />

09 Lubricate OFF Time 30 19<br />

10 Auto Power Off Function 1 20<br />

110 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

S Bit 150<br />

S Bit 151<br />

S Bit 152<br />

S Bit 153<br />

Description:<br />

Request Signal of Spindle Gear-Shifting: 1st Gear<br />

Request Signal of Spindle Gear-Shifting: 2nd Gear<br />

Request Signal of Spindle Gear-Shifting: 3rd Gear<br />

Request Signal of Spindle Gear-Shifting: 4th Gear<br />

When S code is not below into the current gear range, System will use S Bit to notify PLC to<br />

execute gear shifting:<br />

S Bit 150:1 st spindle gear shifting signal;<br />

S Bit 151:2 nd spindle gear shifting signal;<br />

S Bit 152:3 rd spindle gear shifting signal;<br />

S Bit 153:4 th spindle gear shifting signal;<br />

At this time, spindle output voltage remains the same.<br />

S Bit 154<br />

S Bit 155<br />

S Bit 156<br />

S Bit 157<br />

S Bit 158<br />

S Bit 159<br />

Description:<br />

X Axis Moving Direction<br />

Y Axis Moving Direction<br />

Z Axis Moving Direction<br />

4th Axis Moving Direction<br />

5th Axis Moving Direction<br />

6th Axis Moving Direction<br />

These S BITs express the moving direction of each axis, when axis is at moving state.<br />

ON:positive direction<br />

OFF:negative direction<br />

S Bit 201<br />

S Bit 202<br />

S Bit 203<br />

S Bit 204<br />

Description:<br />

Enter into Absolute Encoder Data Transmitting Mode:X Axis<br />

Enter into Absolute Encoder Data Transmitting Mode:Y Axis<br />

Enter into Absolute Encoder Data Transmitting Mode:Z Axis<br />

Enter into Absolute Encoder Data Transmitting Mode:4th Axis<br />

To use this signal to notify servo driver to enter into ABS transmitting mode.<br />

<strong>LNC</strong> Technology Co., Ltd. 111


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

S Bit 207<br />

S Bit 208<br />

S Bit 209<br />

S Bit 210<br />

Description:<br />

Absolute Encoder Data Transmitting:X Axis<br />

Absolute Encoder Data Transmitting:Y Axis<br />

Absolute Encoder Data Transmitting:Z Axis<br />

Absolute Encoder Data Transmitting:4th Axis<br />

To use this signal to request ABS transmitting from servo driver.<br />

S Bit 213<br />

S Bit 214<br />

S Bit 215<br />

S Bit 216<br />

Description:<br />

Absolute Encoder Reset:X Axis<br />

Absolute Encoder Reset:Y Axis<br />

Absolute Encoder Reset:Z Axis<br />

Absolute Encoder Reset:4th Axis<br />

To use this signal to notify servo driver to eliminate absolute Encoder zero return motion.<br />

S Bit 079<br />

Description:<br />

MLC Window Finish<br />

Please refer to 4.7 MLC Window structure for a detailed description.<br />

112 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

4.6 Register Desctiption<br />

R Bit 001<br />

Description:<br />

M0~M99, M Code Command<br />

Executing M code will send the content of M code through this register.<br />

Range:00 ~ 99<br />

R Bit 002<br />

Description:<br />

R Bit 003<br />

Description:<br />

R Bit 004<br />

Description:<br />

R Bit 013<br />

Description:<br />

S000~S9999, S Code Command<br />

Executing S code will send the content of S code through this register.<br />

Range:0000 ~ 9999。<br />

T000~T9999, T Code Command<br />

Executing T code will send the content of T code through this register.<br />

Range:0000 ~ 9999.<br />

Spindle Actual Speed<br />

Actually rotational speed of spindle<br />

Mode Select<br />

The definition of operating-mode register is showed on table,<br />

Operating Mode REG 013<br />

EDIT 1<br />

MEM 2<br />

MDI 3<br />

JOG<br />

4 (C23=OFF)<br />

RAPID 4 (C23=ON )<br />

INCJOG 5<br />

MPG 6<br />

HOME 7<br />

R Bit 014<br />

Description:<br />

MPG Ratio Select<br />

The definition of register of MPG amplification is showed on table,<br />

MPG amplification REG 014<br />

x1<br />

1(or others)<br />

<strong>LNC</strong> Technology Co., Ltd. 113


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

x100 3<br />

R Bit 015<br />

Description:<br />

Spindle Rotaing Mode Override<br />

The definition of register of modulating spindle’s rotational speed is showed on table,<br />

% REG 015<br />

0% 0<br />

10% 1<br />

20% 2<br />

30% 3<br />

40% 4<br />

50% 5<br />

60% 6<br />

70% 7<br />

80% 8<br />

90% 9<br />

100% 10<br />

110% 11<br />

120% 12<br />

1% others<br />

114 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

R Bit 016<br />

Description:<br />

ATC Mode Feedrate Override<br />

The definition of register of modulating cutting-feedrate is showed on table,<br />

% REG 016<br />

0% 0<br />

10% 1<br />

20% 2<br />

30% 3<br />

40% 4<br />

50% 5<br />

60% 6<br />

70% 7<br />

80% 8<br />

90% 9<br />

100% 10<br />

110% 11<br />

120% 12<br />

130% 13<br />

140% 14<br />

150% 15<br />

160% 16<br />

170% 17<br />

180% 18<br />

190% 19<br />

200% 20<br />

‰ others<br />

<strong>LNC</strong> Technology Co., Ltd. 115


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

R Bit 017<br />

Description:<br />

JOG Mode Feedrate Override<br />

The definition of register of modulating manual feedrate is showed on table,<br />

% REG 017<br />

0% 0<br />

10% 1<br />

20% 2<br />

30% 3<br />

40% 4<br />

50% 5<br />

60% 6<br />

70% 7<br />

80% 8<br />

90% 9<br />

100% 10<br />

110% 11<br />

120% 12<br />

130% 13<br />

140% 14<br />

150% 15<br />

160% 16<br />

170% 17<br />

180% 18<br />

190% 19<br />

200% 20<br />

‰ others<br />

116 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

R Bit 018<br />

Description:<br />

Rapid Traverse Mode Feedrate Override<br />

The definition of register of rapidly modulating feedrate,<br />

% REG 18<br />

F0% 0<br />

F0% 1<br />

25% 2<br />

50% 3<br />

100% 4<br />

1% others<br />

P.S:The actual rapid-feedrate is decided in parameter 0040 when REG18 is F0%.<br />

R Bit 021<br />

Description:<br />

PMC Feedrate<br />

Setting the feedrate of PMC axis.<br />

R Bit 022<br />

Description:<br />

PMC Control<br />

Setting PMC controlled axis.<br />

Bit 1,Bit 0:00 for G00,01 for G01,10 for G53<br />

Bit 2:1 for spindle<br />

Bit 3:Reserved<br />

Bit 4:1 for X axis<br />

Bit 5:1 for Y axis<br />

Bit 6:1 for Z axis<br />

Bit 7:1 for 4 th axis<br />

<strong>LNC</strong> Technology Co., Ltd. 117


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

R Bit 024<br />

R Bit 025<br />

R Bit 026<br />

R Bit 027<br />

R Bit 028<br />

R Bit 029<br />

R Bit 030<br />

R Bit 031<br />

Description:<br />

PMC Function of X-Axis Command Amount, Unit=mm<br />

PMC Function of X-Axis Command Amount, Unit=um<br />

PMC Function of Y-Axis Command Amount, Unit=mm<br />

PMC Function of Y-Axis Command Amount, Unit=um<br />

PMC Function of Z-Axis Command Amount, Unit=mm<br />

PMC Function of Z-Axis Command Amount, Unit=um<br />

PMC Function of 4th-Axis Command Amount, Unit=mm<br />

PMC Function of 4th-Axis Command Amount, Unit=um<br />

When setting PMC axis to execute moving command, the designated moving distance must be<br />

divided into two parts, which one is mm part and the other is um part, and be set into each<br />

register separately.<br />

R Bit 040<br />

R Bit 041<br />

R Bit 042<br />

R Bit 043<br />

R Bit 044<br />

R Bit 045<br />

Description:<br />

MLC Alarm Message<br />

MLC Alarm Message<br />

MLC Alarm Message<br />

MLC Alarm Message<br />

MLC Alarm Message<br />

MLC Alarm Message<br />

The driver signal of alarm message provides MLC LADDER to send out alarm. There are six<br />

registers(word), and the sum of 96 messages can provide definitions and drivers. For<br />

example, LADDER must put a constant 5 into R40 with moving command(MOV). The strings<br />

of message must define at corresponding position in ENC_MLC.ERR simultaneously. In the<br />

same way, if setting R40 for zero, MLC ALARM will be cleaned.<br />

118 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

R Bit 060 MLC Windows Function for Item Code<br />

R Bit 061 MLC Windows Function for Sub Item Code 1<br />

R Bit 062 MLC Windows Function for Sub Item Code 2<br />

R Bit 063 NC Overwrited MLC Window Function 1<br />

R Bit 064 NC Overwrited MLC Window Function 2<br />

R Bit 065 NC Overwrited MLC Window Function 3<br />

R Bit 066 NC Overwrited MLC Window Function 4<br />

R Bit 067 NC Overwrited MLC Window Function 5<br />

R Bit 068 NC Overwrited MLC Window Function 6<br />

R Bit 069 NC Overwrited MLC Window Function 7<br />

R Bit 070 NC Overwrited MLC Window Function 8<br />

R Bit 071 NC Overwrited MLC Window Function 9<br />

R Bit 072 NC Overwrited MLC Window Function 10<br />

R Bit 073 NC Overwrited MLC Window Function 11<br />

R Bit 074 NC Overwrited MLC Window Function 12<br />

Description: Please refer to 4.7 MLC Window structure for a detailed description.<br />

<strong>LNC</strong> Technology Co., Ltd. 119


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

4.7 MLC Window Function<br />

After Ladder key-in the desired item codes in R60 〜 R62, setting C640 (0: read, 1 write).<br />

When completed, using C65 to inform NC. NC will enter the desired item into the<br />

corresponding R register (C64 is 0) according to the setting of R60 〜 R62 and C64. Or<br />

read the setting value (C64 is 1) from the corresponding R register. When completed the<br />

task, using S79 to inform Ladder. This function is enabled (raising edge trigger) when C65<br />

becomes 1 from 0; S79 will become OFF after C65 has become OFF.<br />

R register definition:<br />

R Register Definition Remarks<br />

60<br />

61<br />

62<br />

63<br />

64<br />

Item Code<br />

1:read absolute coordinate value;<br />

2:read machine coordinate value;<br />

3:read & write macro global variables;<br />

4:read parameter value;<br />

1:read only;<br />

2:read only;<br />

3:read & write。<br />

4:read only;<br />

Sub-Item Code 1 (different depends on R60)<br />

R60:3, means the starting numbers of macro global<br />

variables(1 ~ 500) that are read and wrote<br />

R60:4, the starting parameter #s that are read<br />

Sub-Item Code 2 (different depends on R60 and<br />

R61)<br />

Use R61 and R62 to order<br />

R60:3,means the desired read/write macro global read and write multiple<br />

variables’ numbers (starting from the number that is macro global variables<br />

designated by R61),maximum 8.<br />

continuously (max 8<br />

R60:4,means the desired read/write parameter variables),or the designated<br />

variables’ numbers(starting from the number that is parameter continuously<br />

designated by R61) ,maximum 8.<br />

Read/Write Value (different depends on R60~R62)<br />

R60:1,means X axis absolute coordinate mm part;<br />

R60:2,means X axis machine coordinate mm part;<br />

R60:3,means the present value of the1 st macro Please refer to Attention.<br />

global variable that is designated by R61 and R62.<br />

R60:4,means the value of 1 st parameter that is<br />

designated by R61 and R62.<br />

Read/Write Value (different depends on R60~R62)<br />

R60:1,means X axis absolute coordinate um part;<br />

R60:2,means X axis machine coordinate um part;<br />

R60:3,means the present value of the1 st macro Please refer to Attention.<br />

global variable that is designated by R61 and R62.<br />

R60:4,means the value of 1 st parameter that is<br />

designated by R61 and R62.<br />

120 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

R Register Definition Remarks<br />

65<br />

66<br />

67<br />

68<br />

69<br />

Read/Write Value (different depends on R60~R62)<br />

R60:1,means Y axis absolute coordinate mm part;<br />

R60:2,means Y axis machine coordinate mm part;<br />

R60:3,means the present value of the1 st macro Please refer to Attention.<br />

global variable that is designated by R61 and R62.<br />

R60:4,means the value of 1 st parameter that is<br />

designated by R61 and R62.<br />

Read/Write Value (different depends on R60~R62)<br />

R60:1,means Y axis absolute coordinate um part;<br />

R60:2,means Y axis machine coordinate um part;<br />

R60:3,means the present value of the1st macro Please refer to Attention.<br />

global variable that is designated by R61 and R62.<br />

R60:4,means the value of 1st parameter that is<br />

designated by R61 and R62.<br />

Read/Write Value (different depends on R60~R62)<br />

R60:1,means Z axis absolute coordinate mm part;<br />

R60:2,means Z axis machine coordinate mm part;<br />

R60:3,means the present value of the1 st macro Please refer to Attention.<br />

global variable that is designated by R61 and R62.<br />

R60:4,means the value of 1 st parameter that is<br />

designated by R61 and R62.<br />

Read/Write Value (different depends on R60~R62)<br />

R60:1,means Z axis absolute coordinate um part;<br />

R60:2,means Z axis machine coordinate um part;<br />

R60:3,means the present value of the1 st macro Please refer to Attention.<br />

global variable that is designated by R61 and R62.<br />

R60:4,means the value of 1 st parameter that is<br />

designated by R61 and R62.<br />

Read/Write Value (different depends on R60~R62)<br />

R60:1,means 4th axis absolute coordinate mm<br />

part;<br />

R60:2,means 4th axis machine coordinate mm<br />

part;<br />

Please refer to Attention.<br />

R60:3,means the present value of the1st macro<br />

global variable that is designated by R61 and R62.<br />

R60:4,means the value of 1st parameter that is<br />

designated by R61 and R62.<br />

<strong>LNC</strong> Technology Co., Ltd. 121


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

R Register Definition Remarks<br />

Read/Write Value (different depends on R60~R62)<br />

R60:1,means 4th axis absolute coordinate um<br />

part;<br />

R60:2,means 4th axis machine coordinate um<br />

70 part;<br />

Please refer to Attention.<br />

R60:3,means the present value of the1 st macro<br />

global variable that is designated by R61 and R62.<br />

R60:4,means the value of 1 st parameter that is<br />

designated by R61 and R62.<br />

Timing Prodecure Diagram:<br />

C064 1<br />

0<br />

C065 1<br />

0<br />

S079 1<br />

0<br />

MLC to R63~R76 Reading<br />

Attention:<br />

1. For read only items, if Ladder sets C64 to 1, NC will ignore it. Using the same principle<br />

for the writing items, if Ladder sets C64 to 0, NC will ignore it.<br />

2. Macro variables belong to DOUBLE type. But the present Ladder can only take care of<br />

the value in INT type. So if Ladder reads macro global variables via MLC Window, NC<br />

will check whether or not the macro global variable value is between -32768 ~ 32767.<br />

If yes, the macro global variables will change to INT type and then enter into the<br />

corresponding R register. If no, then the alarm 【 OP 1019 DESIRED MACRO<br />

VARIABLES OVER RANGE】will occur.<br />

3. Using R61 and R62, Ladder can read/write multiple macro global variables (maximum<br />

8 variables) continuously. Example: set R60 to 3, R61 to 200 and R62 to 5. When C64<br />

is OFF, it means the total current value of the designated reading/writing @200 ~<br />

@204, total 5 macro global variables. But, if (R61 + R62 – 1) > 500, then alarm<br />

message【OP 1018 DESIRED MACRO GLOBAL VARIABLES NOT EXISTED】will<br />

occur.<br />

4. Macro local variables not able to execute read and write via MLC Window.<br />

5. The reading parameter value must be an integrate number (INT) or long integrate<br />

122 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

number (LONG). But the present Ladder can only take care of the values in INT type.<br />

So if Ladder reads parameter value via MLC Window, NC will check whether or not<br />

that parameter value is between -32768 ~ 32767. If yes, the parameter will change to<br />

INT type, and then enter into the corresponding R register. If not, the alarm message<br />

【OP 1022 DESIRED PARAMETER VARIABLES OVER RANGE】 will occur.<br />

6. Using R61 and R62, Ladder can read/write multiple parameter variables (maximum 8<br />

variables) continuously. Example: set R60 to 3, R61 to 200 and R62 to 5. When C64 is<br />

OFF, it means the total value of the reading parameter variables 0200 ~ 0204, total 5<br />

parameter variables. If it is over the valid parameter range, the alarm message【OP<br />

1023 DESIRED PARAMETER VARIABLES NOT EXISTED】will occur.<br />

Valid parameter variable range: 0 ~ 220,300 ~ 899,1000 ~ 1200。<br />

7. Parameter is not able to execute setting via MLC Window.<br />

Alarm Message:<br />

1. OP 1018:DESIRED MACRO GLOBAL VARIABLES NOT EXISTED.<br />

2. OP 1019: DESIRED MACRO VARIABLES OVER RANGE<br />

3. OP 1022:DESIRED PARAMETER VARIABLES OVER RANGE<br />

4. OP 1023: DESIRED PARAMETER VARIABLES NOT EXISTED<br />

<strong>LNC</strong> Technology Co., Ltd. 123


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

4.8 MLC Initial Setting Description(PLCIO.CFG)<br />

In <strong>LNC</strong>MILL\MACHINE, file name is PLCIO.CFG, this file is to set MLC I/O configuration<br />

and definition, file content is as following:<br />

InputSignalInverse=0 // I point is reverse turning, 0=No , 1=Yes<br />

OutputSignalInverse=0 // O point is reverse turning, 0=No , 1=Yes<br />

BaseAddress=0x200 // pcc1620 base address<br />

Set1Slave1=1<br />

// whether to use Set1’s Slave1, 0=No, 1=Yes<br />

Set1Slave2=0<br />

// whether to use Set1’s Slave2, 0=No, 1=Yes<br />

Set2Slave1=1<br />

// whether to use Set2’s Slave1, 0=No, 1=Yes<br />

Set2Slave2=0<br />

// whether to use Set2’s Slave2, 0=No, 1=Yes<br />

I 0 1 0x200 // column [I or O][NUMBER][SET][ADDRESS][able to add footnot]<br />

I 8 1 0x201 // no empty space in between<br />

I 16 1 0x202 // I or i is okay<br />

I 24 1 0x203 // O or o is okay<br />

I 32 1 0x204 // SET=1means SET1, SET=2 means SET2<br />

I 40 2 0x200 // must starts from I0<br />

O 0 1 0x200 // due to EPCIO factor, O point must be set as even number.<br />

O 16 1 0x202<br />

O 32 2 0x200<br />

O 48 2 0x202<br />

(Note)I 0 1 0x200<br />

Means the corresponding hardware address (the following explains how to set)<br />

I0 ~ I15 to hardware SET1<br />

means LADDER configures from I0 ~ I15<br />

124 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

MLC <strong>Maintenance</strong> -- C,S Bits and Register<br />

PCC1620<br />

DC24V<br />

SIO1520<br />

208H ~ 20CH : Input<br />

208H ~ 20BH : Output<br />

SIO1520<br />

SIO1530<br />

20DH ~ 20FH : Input<br />

20CH ~ 20FH : Output<br />

200H ~ 204H : Input<br />

200H ~ 203H : Output<br />

SIO1530<br />

205H ~ 207H : Input<br />

204H ~ 207H : Output<br />

Due to user option I/O board and different connection methods, need to define on different<br />

I/O address. For the above diagram, due to connect to RIO1, the I/O address must be<br />

defined to SET 1.<br />

<strong>LNC</strong> Technology Co., Ltd. 125


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

5 Parameter<br />

Parameters seprated into 7 types: servo parameter, machine parameter, spindle parameter,<br />

MPG parameter, compensation parameter, original parameter, and operation parameter.<br />

Note:<br />

1. Four effective times due to different parameter setting values.<br />

a:Effective immediately<br />

b:Effective after RESET(R)<br />

c:Effective after rebooting(⊙)<br />

d:Effective after re-power on(ㄣ)<br />

2. Two types of authorization status according to each parameter’s functions. However,<br />

under 【End-User】status, some parameter will NOT occur:<br />

a:End-user<br />

b:Machine maker<br />

3. Some parameters use Bit method to set whether or not to enable a certain function.<br />

Usually, Bit0 corresponds X axis, Bit1 corresponds Y axis, Bit2 corresponds Z axis.<br />

The setting method is as below:<br />

Bit0:1 means 1 in 1, 2, 4, 8, 16, 32 and so on<br />

Bit1:1 means 2 in 1, 2, 4, 8, 16, 32 and so on;<br />

Bit2:1 means 4 in 1, 2, 4, 8, 16, 32 and so on;<br />

Bit3:1 means 8 in 1, 2, 4, 8, 16, 32 and so on;<br />

Bit4:1 means 12 in 1, 2, 4, 8, 16, 32 and so on;<br />

So, if want to set a certain Bit to 1, only need to adding up the corresponding value<br />

into the parameter. For example, if want to set both Bit1 and Bit3 to 1, the setting<br />

value of this parameter is 10(2 + 8).<br />

<strong>LNC</strong> Technology Co., Ltd. 127


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

5.1 Parameter List<br />

No Group Description Active Level Pagination<br />

2 Servo MAX FOLLOWING ERROR X AXIS R<br />

Machinery<br />

Builder<br />

152<br />

3 Servo MAX FOLLOWING ERROR Y AXIS R<br />

Machinery<br />

Builder<br />

152<br />

4 Servo MAX FOLLOWING ERROR Z AXIS R<br />

Machinery<br />

Builder<br />

152<br />

5 Servo MAX FOLLOWING ERROR 4TH AXIS R<br />

Machinery<br />

Builder<br />

152<br />

6 Servo X IN-POS WINDOWS BOUND R<br />

Machinery<br />

Builder<br />

153<br />

7 Servo Y IN-POS WINDOWS BOUND R<br />

Machinery<br />

Builder<br />

153<br />

8 Servo Z IN-POS WINDOWS BOUND R<br />

Machinery<br />

Builder<br />

153<br />

9 Servo 4TH IN-POS WINDOWS BOUND R<br />

Machinery<br />

Builder<br />

153<br />

10 Servo G00 X ACC/DEC TIME ⊙<br />

Machinery<br />

Builder<br />

154<br />

11 Servo G00 Y ACC/DEC TIME ⊙<br />

Machinery<br />

Builder<br />

154<br />

12 Servo G00 Z ACC/DEC TIME ⊙<br />

Machinery<br />

Builder<br />

154<br />

13 Servo G00 4TH ACC/DEC TIME ⊙<br />

Machinery<br />

Builder<br />

154<br />

14 Servo G01 ACC/DEC TIME ⊙<br />

Machinery<br />

Builder<br />

155<br />

15<br />

HandW<br />

Machinery<br />

AXIS.HANDLE FOR MPG DRY RUN ⊙<br />

heel<br />

Builder<br />

201<br />

16 Spindle ACC/DEC TIME OF 1ST SPINDLE R<br />

Machinery<br />

Builder<br />

173<br />

18<br />

HandW<br />

Machinery<br />

MPG MULTIPLIER MODE<br />

R<br />

heel<br />

Builder<br />

201<br />

19<br />

Zero<br />

Machinery<br />

WAY TO DEAL HOMING ON DOG R<br />

Return<br />

Builder<br />

213<br />

20<br />

Zero DEFAULT OF RETURN HOME Machinery<br />

⊙<br />

Return FN.(BIT)<br />

Builder<br />

213<br />

21 Spindle 1ST SPD ORIENTATION RPM R<br />

Machinery<br />

Builder<br />

173<br />

24 Servo CHANNEL NO FOR X AXIS ⊙<br />

Machinery<br />

Builder<br />

155<br />

25 Servo CHANNEL NO FOR Y AXIS ⊙<br />

Machinery<br />

Builder<br />

155<br />

26 Servo CHANNEL NO FOR Z AXIS ⊙ Machinery 155<br />

128 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

Builder<br />

27 Servo CHANNEL NO FOR 4 AXIS ⊙<br />

Machinery<br />

Builder<br />

155<br />

28<br />

HandW<br />

Machinery<br />

MPG X PORT<br />

⊙<br />

heel<br />

Builder<br />

202<br />

29 Spindle CORRESPONDING TO 1ST SPINDLE ⊙<br />

Machinery<br />

Builder<br />

174<br />

30<br />

Zero<br />

Machinery<br />

OFFSET LENGTH OF X.ORG<br />

R<br />

Return<br />

Builder<br />

213<br />

31<br />

Zero<br />

Machinery<br />

OFFSET LENGTH OF Y.ORG<br />

R<br />

Return<br />

Builder<br />

213<br />

32<br />

Zero<br />

Machinery<br />

OFFSET LENGTH OF Z.ORG<br />

R<br />

Return<br />

Builder<br />

213<br />

33<br />

Zero<br />

Machinery<br />

OFFSET LENGTH OF 4.ORG<br />

R<br />

Return<br />

Builder<br />

213<br />

34<br />

Zero<br />

Machinery<br />

PAUSE TIME.X HOME SERACHING R<br />

Return<br />

Builder<br />

214<br />

35<br />

Zero<br />

Machinery<br />

PAUSE TIME.Y HOME SERACHING R<br />

Return<br />

Builder<br />

214<br />

36<br />

Zero<br />

Machinery<br />

PAUSE TIME.Z HOME SERACHING R<br />

Return<br />

Builder<br />

214<br />

37<br />

Zero<br />

Machinery<br />

PAUSE TIME.4 HOME SERACHING R<br />

Return<br />

Builder<br />

214<br />

38<br />

Compe<br />

nsation BACKLASH/PITCH COMP UNITS ⊙ Machinery<br />

Builder<br />

203<br />

39<br />

Operati<br />

on<br />

G92 IS CANCELLED AT G54~G59 R User 227<br />

40 Servo MIN.F OVERRIDE VALUE FOR G00 R User 156<br />

41<br />

Operati<br />

on<br />

G00 LINEAR INTERPOLATION R User 228<br />

42<br />

Operati<br />

on<br />

COMMENT TYPE 0:/*...*/ 1:(...) R User 228<br />

43<br />

Operati<br />

on<br />

FLAG OF EXACT CHECK R User 229<br />

44<br />

Compe<br />

nsation X BACKLASH R Machinery<br />

Builder<br />

203<br />

45<br />

Compe<br />

nsation Y BACKLASH R Machinery<br />

Builder<br />

203<br />

46<br />

Compe<br />

nsation Z BACKLASH R Machinery<br />

Builder<br />

203<br />

47<br />

Compe<br />

nsation 4TH BACKLASH R Machinery<br />

Builder<br />

203<br />

48<br />

Zero<br />

Machinery<br />

DIRECT SET HOME POSITION ⊙<br />

Return<br />

Builder<br />

214<br />

NUMBER OF 1ST SPINDLE.1M Machinery<br />

49 Spindle ⊙<br />

GEAR<br />

Builder<br />

174<br />

50 Spindle NUMBER OF 1ST SPINDLE.1A GEAR ⊙ Machinery 175<br />

<strong>LNC</strong> Technology Co., Ltd. 129


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

Builder<br />

NUMBER OF 1ST SPINDLE.2M Machinery<br />

51 Spindle ⊙<br />

GEAR<br />

Builder<br />

175<br />

52 Spindle NUMBER OF 1ST SPINDLE.2A GEAR ⊙<br />

Machinery<br />

Builder<br />

176<br />

53 Servo FEEDBACK MUL FACTOR.4TH ⊙<br />

Machinery<br />

Builder<br />

156<br />

54 Servo FEEDBACK MUL FACTOR.X ⊙<br />

Machinery<br />

Builder<br />

156<br />

55 Servo FEEDBACK MUL FACTOR.Y ⊙<br />

Machinery<br />

Builder<br />

156<br />

56 Servo FEEDBACK MUL FACTOR.Z ⊙<br />

Machinery<br />

Builder<br />

156<br />

57 Spindle 1ST SPINDLE FEEDBACK MULTIPLY ⊙<br />

Machinery<br />

Builder<br />

176<br />

62<br />

Machin<br />

Machinery<br />

UNITS OF #104~#107 PARAMS ⊙<br />

e<br />

Builder<br />

171<br />

63<br />

Operati<br />

on<br />

COORD.RLT SET WITH COORD.ABS R User 229<br />

64<br />

Zero<br />

Machinery<br />

HOME DOG 0)NC 1)NO<br />

⊙<br />

Return<br />

Builder<br />

215<br />

65 Servo ABSOLUTE ENCODER (BIT) ⊙<br />

Machinery<br />

Builder<br />

157<br />

66 Servo 4TH AXIS LINEAR/ROTARY TYPE ⊙<br />

Machinery<br />

Builder<br />

158<br />

68<br />

Machin<br />

Machinery<br />

DENOMINATOR OF GEAR RATIO.X ⊙<br />

e<br />

Builder<br />

171<br />

69<br />

Machin<br />

Machinery<br />

DENOMINATOR OF GEAR RATIO.Y ⊙<br />

e<br />

Builder<br />

171<br />

70<br />

Machin<br />

Machinery<br />

DENOMINATOR OF GEAR RATIO.Z ⊙<br />

e<br />

Builder<br />

171<br />

71<br />

Operati<br />

on<br />

INNER/OUTTER CHECK OF G22 R User 230<br />

72<br />

Machin<br />

Machinery<br />

DENOMINATOR GEAR RATIO.4 ⊙<br />

e<br />

Builder<br />

171<br />

73<br />

Operati<br />

Machinery<br />

ENABLE G31 ACCELERATION ⊙<br />

on<br />

Builder<br />

230<br />

74<br />

Operati ENABLE MACRO TRACE UNDER<br />

on SBK<br />

R User 230<br />

75<br />

HandW<br />

Machinery<br />

MPG 4TH PORT<br />

⊙<br />

heel<br />

Builder<br />

202<br />

76<br />

Zero<br />

Machinery<br />

ENABLE ABS SET AFTER HOMING R<br />

Return<br />

Builder<br />

215<br />

77<br />

Zero<br />

Return<br />

ENABLE NONE HOMING G00 OPR R User 216<br />

78<br />

Operati<br />

on<br />

ENABLE C AXIS TANGENT FOLLOW ⊙ User 231<br />

130 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

79<br />

Zero<br />

Machinery<br />

ORG.X AHEAD/BEHIND OF DOG R<br />

Return<br />

Builder<br />

216<br />

80<br />

Zero<br />

Machinery<br />

ORG.Y AHEAD/BEHIND OF DOG R<br />

Return<br />

Builder<br />

216<br />

81<br />

Zero<br />

Machinery<br />

ORG.Z AHEAD/BEHIND OF DOG R<br />

Return<br />

Builder<br />

216<br />

82<br />

Zero<br />

Machinery<br />

ORG.4 AHEAD/BEHIND OF DOG R<br />

Return<br />

Builder<br />

216<br />

83<br />

Operati<br />

on<br />

ENABLE G00 UNDER DRY RUN R User 231<br />

84 Spindle 1ST SPD ORIENT 0)SENSOR 1)ENC. R<br />

Machinery<br />

Builder<br />

177<br />

85 Servo<br />

MAX FOLLOWING ERROR X100 Machinery<br />

R<br />

(BIT)<br />

Builder<br />

158<br />

87<br />

HandW<br />

Machinery<br />

MPG Y PORT<br />

⊙<br />

heel<br />

Builder<br />

202<br />

88<br />

HandW<br />

Machinery<br />

MPG Z PORT<br />

⊙<br />

heel<br />

Builder<br />

202<br />

89<br />

Operati<br />

on<br />

M CODE ID OF PART COUNTER R User 231<br />

90 Spindle 1ST SPINDLE RPM DISPLAY TYPE<br />

Machinery<br />

Builder<br />

178<br />

94<br />

Operati<br />

Machinery<br />

EDIT FILE O9XXX 0)N 1)Y<br />

on<br />

Builder<br />

232<br />

95 Spindle MIN SPEED OF 1RD SPINDLE R<br />

Machinery<br />

Builder<br />

179<br />

98 Spindle OFFSET VALUE OF 1ST SPINDLE R<br />

Machinery<br />

Builder<br />

180<br />

100<br />

Machin<br />

Machinery<br />

NUMERATOR OF GEAR RATION.X ⊙<br />

e<br />

Builder<br />

171<br />

101<br />

Machin<br />

Machinery<br />

NUMERATOR OF GEAR RATION.Y ⊙<br />

e<br />

Builder<br />

171<br />

102<br />

Machin<br />

Machinery<br />

NUMERATOR OF GEAR RATION.Z ⊙<br />

e<br />

Builder<br />

171<br />

103<br />

Machin<br />

Machinery<br />

NUMERATOR OF GEAR RATION.4 ⊙<br />

e<br />

Builder<br />

171<br />

104<br />

Machin<br />

Machinery<br />

SCREW PITCH.X<br />

⊙<br />

e<br />

Builder<br />

172<br />

105<br />

Machin<br />

Machinery<br />

SCREW PITCH.Y<br />

⊙<br />

e<br />

Builder<br />

172<br />

106<br />

Machin<br />

Machinery<br />

SCREW PITCH.Z<br />

⊙<br />

e<br />

Builder<br />

172<br />

107<br />

Machin<br />

Machinery<br />

SCREW PITCH.4<br />

⊙<br />

e<br />

Builder<br />

172<br />

108 Servo MORTOR GAINS.X ⊙<br />

Machinery<br />

Builder<br />

159<br />

109 Servo MORTOR GAINS.Y ⊙ Machinery 159<br />

<strong>LNC</strong> Technology Co., Ltd. 131


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

Builder<br />

110 Servo MORTOR GAINS.Z ⊙<br />

Machinery<br />

Builder<br />

159<br />

111 Servo MORTOR GAINS.4TH ⊙<br />

Machinery<br />

Builder<br />

159<br />

112<br />

Compe<br />

nsation NUM.SECS OF X.PICTH COMP ⊙ Machinery<br />

Builder<br />

204<br />

113<br />

Compe<br />

nsation NUM.SECS OF Y.PICTH COMP ⊙ Machinery<br />

Builder<br />

204<br />

114<br />

Compe<br />

nsation NUM.SECS OF Z.PICTH COMP ⊙ Machinery<br />

Builder<br />

204<br />

115<br />

Compe<br />

nsation NUM.SECS OF 4TH.PICTH COMP ⊙ Machinery<br />

Builder<br />

204<br />

116 Servo MOVING DIR OF SERVO AXES(BIT) ⊙<br />

Machinery<br />

Builder<br />

160<br />

117<br />

Compe<br />

nsation ENABLE OF BACKLASH COMP(BIT) R Machinery<br />

Builder<br />

204<br />

118<br />

Compe<br />

nsation FLAG OF BACKLASH DIRECTION ⊙ Machinery<br />

Builder<br />

204<br />

119<br />

Compe<br />

nsation ENABLE FLAG OF PITCH COMP ⊙ Machinery<br />

Builder<br />

205<br />

120<br />

Zero<br />

Machinery<br />

HOME DIRECTION OF AXIS<br />

⊙<br />

Return<br />

Builder<br />

217<br />

121<br />

Operati<br />

on<br />

ESCAPE DIRECTION OF G76/G87 R User 232<br />

122<br />

Operati<br />

Machinery<br />

NAME OF AXIX.4<br />

⊙<br />

on<br />

Builder<br />

233<br />

123<br />

Operati<br />

on<br />

POWER ON METRIC/INCH SYSTEM ⊙ User 233<br />

124<br />

Operati<br />

on<br />

POWER ON G00/G01 DEFAULT ⊙ User 233<br />

129<br />

Operati<br />

on<br />

G02 G03 ARC ERROR RANGE R User 233<br />

130<br />

Operati AUTO CONTROL OF NUM<br />

on PRECISION<br />

R User 234<br />

131<br />

Operati<br />

Machinery<br />

COMPENSATION STARTING TYPE R<br />

on<br />

Builder<br />

234<br />

134<br />

Operati<br />

on<br />

G83/G87 EXTRACT 0)ESCAPE 1)R R User 234<br />

135<br />

Operati<br />

on<br />

DEFAULTS OF G90/G91 ⊙ User 235<br />

136<br />

Operati<br />

on<br />

X SCALING IS EFFECTIVE OR NOT R User 235<br />

137<br />

Operati<br />

on<br />

Y SCALING IS EFFECTIVE OR NOT R User 235<br />

138<br />

Operati<br />

on<br />

Z SCALING IS EFFECTIVE OR NOT R User 235<br />

132 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

139<br />

Operati<br />

on<br />

RADIUS COMP SYMBOL SET R User 235<br />

140<br />

Operati DISABLE RESET COMMON VAR<br />

on CLR<br />

R User 236<br />

141<br />

Operati<br />

on<br />

DISABLE RESET GLOBAL VAR CLR R User 236<br />

142<br />

Operati<br />

on<br />

ABS/RLT ROTATION COMMAND R User 236<br />

143<br />

Operati<br />

on<br />

CODE FOR SCALING R User 236<br />

145<br />

Operati<br />

Machinery<br />

DEFALTS OF PLANE XY/ZX/YZ ⊙<br />

on<br />

Builder<br />

237<br />

146<br />

Operati<br />

Machinery<br />

M CODE CALLING MACRO O9001 R<br />

on<br />

Builder<br />

237<br />

147<br />

Operati<br />

Machinery<br />

M CODE CALLING MACRO O9002 R<br />

on<br />

Builder<br />

237<br />

148<br />

Operati<br />

Machinery<br />

M CODE CALLING MACRO O9003 R<br />

on<br />

Builder<br />

237<br />

149<br />

Operati<br />

on<br />

DEFAULTS VAL OF FEEDRATE ⊙ User 237<br />

150<br />

Operati CLEANCE VALUE OF DEEP<br />

on DRILLING<br />

R User 238<br />

152<br />

Operati<br />

on<br />

4TH AXIS OPTIMAL R User 238<br />

155<br />

Operati<br />

on<br />

FEEDRATE IS MM/REV OR MM/MIN ⊙ User 239<br />

156 Servo CONTROL CMD FORMAT OF X ⊙<br />

Machinery<br />

Builder<br />

161<br />

157 Servo CONTROL CMD FORMAT OF Y ⊙<br />

Machinery<br />

Builder<br />

161<br />

158 Servo CONTROL CMD FORMAT OF Z ⊙<br />

Machinery<br />

Builder<br />

161<br />

159 Servo CONTROL CMD FORMAT OF 4 ⊙<br />

Machinery<br />

Builder<br />

161<br />

161<br />

Operati<br />

Machinery<br />

M CODE CALLING MACRO O9004 R<br />

on<br />

Builder<br />

239<br />

162<br />

Operati<br />

Machinery<br />

M CODE CALLING MACRO O9005 R<br />

on<br />

Builder<br />

239<br />

163<br />

Operati<br />

Machinery<br />

M CODE CALLING MACRO O9006 R<br />

on<br />

Builder<br />

239<br />

164<br />

Operati<br />

Machinery<br />

M CODE CALLING MACRO O9007 R<br />

on<br />

Builder<br />

239<br />

165<br />

Operati<br />

Machinery<br />

M CODE CALLING MACRO O9008 R<br />

on<br />

Builder<br />

239<br />

166<br />

Operati<br />

Machinery<br />

G CODE CALLING MACRO O9010 R<br />

on<br />

Builder<br />

239<br />

167 Operati G CODE CALLING MACRO O9011 R Machinery 239<br />

<strong>LNC</strong> Technology Co., Ltd. 133


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

168<br />

169<br />

170<br />

on<br />

Operati<br />

on<br />

Operati<br />

on<br />

Operati<br />

on<br />

G CODE CALLING MACRO O9012<br />

MACRO O9020 CALLED BY T<br />

CODES<br />

MODAL UPDATE AFTER MDI TO<br />

MEM<br />

171 Spindle FEEDBACK DIR. OF SPINDLES(BIT) ⊙<br />

172 Servo G00 ACC. TYPE 0)LINE 1)S CURVE ⊙<br />

173 Servo G01 ACC. TYPE 0)LINE 1)S CURVE ⊙<br />

175<br />

176<br />

177<br />

Zero<br />

Return<br />

Operati<br />

on<br />

Operati<br />

on<br />

178 Spindle<br />

HOME DOG FROM 0)LOCAL<br />

1)REMOTE<br />

LOCAL PORT NO FOR G31<br />

CONTACT TYPE OF G31<br />

NUMBER OF 1ST SPINDLE.3M<br />

GEAR<br />

179 Spindle NUMBER OF 1ST SPINDLE.3A GEAR ⊙<br />

180<br />

Operati<br />

on<br />

181 Spindle<br />

R<br />

R<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

239<br />

239<br />

R User 240<br />

⊙<br />

R<br />

R<br />

⊙<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

182<br />

161<br />

163<br />

218<br />

240<br />

241<br />

183<br />

183<br />

ENABLE MANUAL RETURN R User 241<br />

NUMBER OF 1ST SPINDLE.4M<br />

GEAR<br />

182 Spindle NUMBER OF 1ST SPINDLE.4A GEAR ⊙<br />

183 Spindle 1ST SPD VLOCITY COMMAND TYPE ⊙<br />

184 Spindle 1ST SPD ORT. LOCAL INPUT SET R<br />

185 Servo<br />

187<br />

Operati<br />

on<br />

FEEDBACK DIR OF SERVO<br />

AXES(BIT)<br />

⊙<br />

⊙<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

183<br />

184<br />

184<br />

185<br />

164<br />

FEED RATE CLAMPING R User 242<br />

188 Servo<br />

POSITION LOOP GAN OF EACH Machinery<br />

R<br />

AXIS<br />

Builder<br />

164<br />

189 Spindle 1ST SPD INITIAL SPEED ⊙ User 186<br />

1ST SPD POSITION COMMAND Machinery<br />

190 Spindle R<br />

TYPE<br />

Builder<br />

186<br />

191 Servo ENCODER SIGNALE TYPE.X ⊙<br />

Machinery<br />

Builder<br />

164<br />

192 Servo ENCODER SIGNALE TYPE.Y ⊙<br />

Machinery<br />

Builder<br />

164<br />

134 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

193 Servo ENCODER SIGNALE TYPE.Z ⊙<br />

Machinery<br />

Builder<br />

164<br />

194 Servo ENCODER SIGNALE TYPE.4TH ⊙<br />

Machinery<br />

Builder<br />

164<br />

195 Spindle ENCODER TYPE OF 1ST SPINDLE ⊙<br />

Machinery<br />

Builder<br />

187<br />

200<br />

Operati<br />

on<br />

FEEDRAT SHOW 0)CMD 1)ACTUAL R User 243<br />

202<br />

Operati<br />

on<br />

ENG/CHI/SIM LANG SETTING ⊙ User 243<br />

204<br />

Zero<br />

Machinery<br />

HOME POSITION RECORD BIT R<br />

Return<br />

Builder<br />

218<br />

205<br />

Operati<br />

on<br />

REL/ABS COMP VALUE R User 243<br />

208<br />

Zero REFERENCE MARKS OF LINEAR Machinery<br />

⊙<br />

Return SCALE<br />

Builder<br />

219<br />

209<br />

Zero HOME RETURN FOR LINEAR Machinery<br />

R<br />

Return SCALE<br />

Builder<br />

219<br />

210<br />

Zero<br />

Machinery<br />

HOME POINT FOR LINEAR SCALE R<br />

Return<br />

Builder<br />

220<br />

211<br />

Operati<br />

on<br />

M CODE TO STOP INTERPRETER R User 244<br />

212<br />

Operati<br />

on<br />

M CODE TO STOP INTERPRETER R User 244<br />

213<br />

Operati<br />

on<br />

M CODE TO STOP INTERPRETER R User 244<br />

214<br />

Operati<br />

on<br />

M CODE TO STOP INTERPRETER R User 244<br />

215<br />

Operati<br />

on<br />

M CODE TO STOP INTERPRETER R User 244<br />

216<br />

Operati<br />

on<br />

M CODE TO STOP INTERPRETER R User 244<br />

217<br />

Operati<br />

on<br />

M CODE TO STOP INTERPRETER R User 244<br />

218<br />

Operati<br />

on<br />

M CODE TO STOP INTERPRETER R User 244<br />

219<br />

Operati<br />

on<br />

M CODE TO STOP INTERPRETER R User 244<br />

220<br />

Operati<br />

on<br />

M CODE TO STOP INTERPRETER R User 244<br />

221<br />

Operati<br />

Machinery<br />

DIGITAL FILITER FREQUECNY ⊙<br />

on<br />

Builder<br />

244<br />

223<br />

Operati<br />

Machinery<br />

AXES MANUAL RETURN(BIT)<br />

R<br />

on<br />

Builder<br />

245<br />

224 Spindle 2ND SPD SPEED CHK 0)ACT 1)CMD R<br />

Machinery<br />

Builder<br />

189<br />

225 Spindle 3RD SPD SPEED CHK 0)ACT 1)CMD R Machinery 189<br />

<strong>LNC</strong> Technology Co., Ltd. 135


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

Builder<br />

226 Spindle MOVING DIR. OF SPINDLES(BIT) ⊙<br />

Machinery<br />

Builder<br />

187<br />

231<br />

Operati<br />

Machinery<br />

AXIS X INFORMATION HIDE<br />

on<br />

Builder<br />

245<br />

232<br />

Operati<br />

Machinery<br />

AXIS Y INFORMATION HIDE<br />

on<br />

Builder<br />

245<br />

233<br />

Operati<br />

Machinery<br />

AXIS Z INFORMATION HIDE<br />

on<br />

Builder<br />

245<br />

234<br />

Operati<br />

Machinery<br />

AXIS 4TH INFORMATION HIDE<br />

on<br />

Builder<br />

245<br />

1ST SPD POS GAIN AT Machinery<br />

240 Spindle R<br />

ORIENTATION<br />

Builder<br />

187<br />

241 Spindle 1ST SPD POS GAIN AT RIGID TAP R<br />

Machinery<br />

Builder<br />

187<br />

248 Spindle 1ST SPD ORIENT OFFSET UNIT ⊙<br />

Machinery<br />

Builder<br />

188<br />

249<br />

Operati<br />

Machinery<br />

RAMDISK ERR MSG 0)OFF 1)ON ⊙<br />

on<br />

Builder<br />

246<br />

272<br />

Machin<br />

Machinery<br />

NUMERATOR OF GEAR RATION.5 ⊙<br />

e<br />

Builder<br />

171<br />

292<br />

Operati<br />

on<br />

ENABLE C AXIS PATH FOLLOWING ⊙ User 231<br />

293<br />

Zero<br />

Machinery<br />

ZRN BY DOG OR INDEX<br />

⊙<br />

Return<br />

Builder<br />

220<br />

CORRESPONDING TO 2ND Machinery<br />

294 Spindle ⊙<br />

SPINDLE<br />

Builder<br />

174<br />

CORRESPONDING TO 3RD Machinery<br />

295 Spindle ⊙<br />

SPINDLE<br />

Builder<br />

174<br />

2ND SPD VLOCITY COMMAND Machinery<br />

296 Spindle ⊙<br />

TYPE<br />

Builder<br />

184<br />

3RD SPD VLOCITY COMMAND Machinery<br />

297 Spindle ⊙<br />

TYPE<br />

Builder<br />

184<br />

298 Spindle 2ND SPD.SPEED ARRIVAL RANGE R<br />

Machinery<br />

Builder<br />

189<br />

299 Spindle 2RD SPINDLE ZERO SPEED RANGE R<br />

Machinery<br />

Builder<br />

192<br />

300<br />

Compe<br />

nsation PITCH X COMP.001 R Machinery<br />

Builder<br />

205<br />

349<br />

Compe<br />

nsation PITCH X COMP.050 R Machinery<br />

Builder<br />

205<br />

350<br />

Operati JOG FRATE REF TO MDI F<br />

on COMMAND<br />

R User 246<br />

351<br />

Operati<br />

Machinery<br />

FEEDRATE OVERRIDE UNIT<br />

⊙<br />

on<br />

Builder<br />

246<br />

352<br />

Operati<br />

Machinery<br />

JOG OVERRIDE UNIT<br />

⊙<br />

on<br />

Builder<br />

247<br />

136 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

353<br />

Operati<br />

Machinery<br />

RAPID TRAVERSE OVERRIDE UNIT ⊙<br />

on<br />

Builder<br />

247<br />

354 Spindle 1ST SPD OVERRIDE UNIT ⊙<br />

Machinery<br />

Builder<br />

188<br />

355 Spindle 2ND SPD OVERRIDE UNIT ⊙<br />

Machinery<br />

Builder<br />

188<br />

356 Spindle 3RD SPD OVERRIDE UNIT ⊙<br />

Machinery<br />

Builder<br />

188<br />

358<br />

Compe<br />

nsation ENABLE THERMO DEFORMED CMP ⊙ Machinery<br />

Builder<br />

205<br />

359<br />

Compe ALLOWANCE OF THERMO CMP Machinery<br />

nsation INPUT<br />

Builder<br />

206<br />

360<br />

Operati<br />

on<br />

OPTION COLOR SET(0~3) ⊙ User 247<br />

361<br />

Operati<br />

on<br />

BLACK COLOR SET(0~16) ⊙ User 248<br />

362<br />

Operati<br />

on<br />

BLUE COLOR SET(0~16) ⊙ User 248<br />

363<br />

Operati<br />

on<br />

GREEN COLOR SET(0~16) ⊙ User 248<br />

364<br />

Operati<br />

on<br />

CYAN COLOR SET(0~16) ⊙ User 248<br />

365<br />

Operati<br />

on<br />

RED COLOR SET(0~16) ⊙ User 248<br />

366<br />

Operati<br />

on<br />

MAGENTA COLOR SET(0~16) ⊙ User 248<br />

367<br />

Operati<br />

on<br />

BROWN COLOR SET(0~16) ⊙ User 248<br />

368<br />

Operati<br />

on<br />

WHITE COLOR SET(0~16) ⊙ User 248<br />

369<br />

Operati<br />

on<br />

GRAY COLOR SET(0~16) ⊙ User 248<br />

370<br />

Operati<br />

on<br />

LIGHTBLUE COLOR SET(0~16) ⊙ User 248<br />

371<br />

Operati<br />

on<br />

LIGHTGREEN COLOR SET(0~16) ⊙ User 248<br />

372<br />

Operati<br />

on<br />

LIGHTCYAN COLOR SET(0~16) ⊙ User 248<br />

373<br />

Operati<br />

on<br />

LIGHTRED COLOR SET(0~16) ⊙ User 248<br />

374<br />

Operati<br />

on<br />

LIGHTMAGENTA COLOR SET(0~16) ⊙ User 248<br />

375<br />

Operati<br />

on<br />

YELLOW COLOR SET(0~16) ⊙ User 248<br />

376<br />

Operati<br />

on<br />

LIGHTWHITE COLOR SET(0~16) ⊙ User 248<br />

377 Operati CURSOR COLOR SET(0~16) ⊙ User 248<br />

<strong>LNC</strong> Technology Co., Ltd. 137


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

378<br />

379<br />

380<br />

on<br />

Operati<br />

on<br />

Operati<br />

on<br />

Operati<br />

on<br />

MARK COLOR SET(0~16) ⊙ User 248<br />

UP EDGE COLOR SET(0~16) ⊙ User 248<br />

DOWN EDGE COLOR SET(0~16) ⊙ User 248<br />

393 Spindle 1ST SPINDEL GEARING METHOD ⊙<br />

394<br />

450<br />

499<br />

600<br />

649<br />

650<br />

Machinery<br />

Builder<br />

Operati<br />

on<br />

THE SCREEN SAVER WAIT TIME ⊙ User 248<br />

Compe<br />

nsation PITCH Y COMP.001 R Machinery<br />

Builder<br />

206<br />

Compe<br />

nsation PITCH Y COMP.050 R Machinery<br />

Builder<br />

206<br />

Compe<br />

nsation PITCH Z COMP.001 R Machinery<br />

Builder<br />

207<br />

Compe<br />

nsation PITCH Z COMP.050 R Machinery<br />

Builder<br />

207<br />

Operati SET THE METHOD OF PROGRAM<br />

on RESTART<br />

User 249<br />

663 Spindle 1ST SPD ORIENT ACC/DEC TIME ⊙<br />

NUMBER OF 2ND SPINDLE.1M<br />

664 Spindle<br />

GEAR<br />

NUMBER OF 2ND SPINDLE.1A<br />

665 Spindle<br />

GEAR<br />

NUMBER OF 2ND SPINDLE.2M<br />

666 Spindle<br />

GEAR<br />

NUMBER OF 2ND SPINDLE.2A<br />

667 Spindle<br />

GEAR<br />

NUMBER OF 2ND SPINDLE.3M<br />

668 Spindle<br />

GEAR<br />

NUMBER OF 2ND SPINDLE.3A<br />

669 Spindle<br />

GEAR<br />

NUMBER OF 2ND SPINDLE.4M<br />

670 Spindle<br />

GEAR<br />

NUMBER OF 2ND SPINDLE.4A<br />

671 Spindle<br />

GEAR<br />

NUMBER OF 3RD SPINDLE.1M<br />

672 Spindle<br />

GEAR<br />

NUMBER OF 3RD SPINDLE.1A<br />

673 Spindle<br />

GEAR<br />

NUMBER OF 3RD SPINDLE.2M<br />

674 Spindle<br />

GEAR<br />

NUMBER OF 3RD SPINDLE.2A<br />

675 Spindle<br />

GEAR<br />

⊙<br />

⊙<br />

⊙<br />

⊙<br />

⊙<br />

⊙<br />

⊙<br />

⊙<br />

⊙<br />

⊙<br />

⊙<br />

⊙<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

188<br />

189<br />

174<br />

175<br />

175<br />

176<br />

183<br />

183<br />

183<br />

184<br />

174<br />

175<br />

175<br />

176<br />

138 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

NUMBER OF 3RD SPINDLE.3M Machinery<br />

676 Spindle ⊙<br />

GEAR<br />

Builder<br />

183<br />

NUMBER OF 3RD SPINDLE.3A Machinery<br />

677 Spindle ⊙<br />

GEAR<br />

Builder<br />

183<br />

NUMBER OF 3RD SPINDLE.4M Machinery<br />

678 Spindle ⊙<br />

GEAR<br />

Builder<br />

183<br />

NUMBER OF 3RD SPINDLE.4A Machinery<br />

679 Spindle ⊙<br />

GEAR<br />

Builder<br />

184<br />

750<br />

Compe<br />

nsation PITCH A COMP.001 R Machinery<br />

Builder<br />

207<br />

799<br />

Compe<br />

nsation PITCH A COMP.050 R Machinery<br />

Builder<br />

207<br />

800 Servo RANGE.X FOR EXACT REACH R<br />

Machinery<br />

Builder<br />

166<br />

801 Servo RANGE.Y FOR EXACT REACH R<br />

Machinery<br />

Builder<br />

166<br />

802 Servo RANGE.Z FOR EXACT REACH R<br />

Machinery<br />

Builder<br />

166<br />

803 Servo RANGE.4TH FOR EXACT REACH R<br />

Machinery<br />

Builder<br />

166<br />

806<br />

Operati<br />

on<br />

MAX ALLOWANCE ERROR IN TURN R User 249<br />

808<br />

Operati<br />

on<br />

ENABLE CORNNER ACC CONTROL R User 249<br />

809<br />

Operati<br />

on<br />

MAX CIRCULAR ALLOWANCE ERR R User 249<br />

810<br />

Operati<br />

on<br />

SET RIGID TAP IN G101~G105 R User 250<br />

811<br />

Compe<br />

nsation SPIKE CMP G CODE 0)G2 G3 1)ALL R Machinery<br />

Builder<br />

208<br />

812<br />

Compe<br />

nsation SPIKE +X CMP VALUE R Machinery<br />

Builder<br />

208<br />

813<br />

Compe<br />

nsation SPIKE +X CMP TIME R Machinery<br />

Builder<br />

209<br />

814<br />

Compe<br />

nsation SPIKE +X CMP DELAY R Machinery<br />

Builder<br />

209<br />

815<br />

Compe<br />

nsation SPIKE -X CMP VALUE R Machinery<br />

Builder<br />

210<br />

816<br />

Compe<br />

nsation SPIKE -X CMP TIME R Machinery<br />

Builder<br />

210<br />

817<br />

Compe<br />

nsation SPIKE -X CMP DELAY R Machinery<br />

Builder<br />

211<br />

818<br />

Compe<br />

nsation SPIKE +Y CMP VALUE R Machinery<br />

Builder<br />

208<br />

819<br />

Compe<br />

nsation SPIKE +Y CMP TIME R Machinery<br />

Builder<br />

209<br />

820 Compe SPIKE +Y CMP DELAY R Machinery 209<br />

<strong>LNC</strong> Technology Co., Ltd. 139


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

nsation<br />

Builder<br />

825<br />

Compe<br />

nsation SPIKE -Y CMP VALUE R Machinery<br />

Builder<br />

210<br />

826<br />

Compe<br />

nsation SPIKE -Y CMP TIME R Machinery<br />

Builder<br />

210<br />

827<br />

Compe<br />

nsation SPIKE -Y CMP DELAY R Machinery<br />

Builder<br />

211<br />

828<br />

Compe<br />

nsation SPIKE +Z CMP VALUE R Machinery<br />

Builder<br />

208<br />

829<br />

Compe<br />

nsation SPIKE +Z CMP TIME R Machinery<br />

Builder<br />

209<br />

830<br />

Compe<br />

nsation SPIKE +Z CMP DELAY R Machinery<br />

Builder<br />

209<br />

831<br />

Compe<br />

nsation SPIKE -Z CMP VALUE R Machinery<br />

Builder<br />

210<br />

832<br />

Compe<br />

nsation SPIKE -Z CMP TIME R Machinery<br />

Builder<br />

210<br />

833<br />

Compe<br />

nsation SPIKE -Z CMP DELAY R Machinery<br />

Builder<br />

211<br />

834<br />

Zero<br />

Machinery<br />

ABS. ENCODER READ TIME<br />

R<br />

Return<br />

Builder<br />

221<br />

1ST SPD ORIENT CHECK Machinery<br />

839 Spindle R<br />

TOLERANCE<br />

Builder<br />

189<br />

845 Servo X AXIS LINEAR/ROTARY TYPE ⊙<br />

Machinery<br />

Builder<br />

166<br />

846 Servo Y AXIS LINEAR/ROTARY TYPE ⊙<br />

Machinery<br />

Builder<br />

166<br />

847 Servo Z AXIS LINEAR/ROTARY TYPE ⊙<br />

Machinery<br />

Builder<br />

166<br />

848<br />

Operati<br />

on<br />

X AXIS OPTIMAL R User 250<br />

849<br />

Operati<br />

on<br />

Y AXIS OPTIMAL R User 250<br />

850<br />

Operati<br />

on<br />

Z AXIS OPTIMAL R User 250<br />

874 Spindle 1ST SPD SPEED CHK 0)ACT 1)CMD R<br />

Machinery<br />

Builder<br />

189<br />

875 Spindle 2ND SPD INITIAL SPEED ⊙ User 186<br />

876 Spindle MAX SPEED OF 2ND SPINDLE R<br />

Machinery<br />

Builder<br />

179<br />

877 Spindle MIN SPEED OF 2RD SPINDLE R<br />

Machinery<br />

Builder<br />

179<br />

878 Spindle 3RD SPD INITIAL SPEED ⊙ User 179<br />

879 Spindle MAX SPEED OF 3RD SPINDLE R<br />

Machinery<br />

Builder<br />

179<br />

880 Spindle MIN SPEED OF 3RD SPINDLE R Machinery 179<br />

140 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

881 Spindle 3RD SPD.SPEED ARRIVAL RANGE R<br />

882 Spindle 3RD SPINDLE ZERO SPEED RANGE R<br />

883 Spindle 2ND SPINDLE D/A SCALE RPM/10V R<br />

884 Spindle OFFSET VALUE OF 2ND SPINDLE R<br />

885 Spindle ACC/DEC TIME OF 2ND SPINDLE R<br />

886 Spindle 3RD SPINDLE D/A SCALE RPM/10V R<br />

887 Spindle OFFSET VALUE OF 3RD SPINDLE R<br />

888 Spindle ACC/DEC TIME OF 3RD SPINDLE R<br />

889 Spindle 2ND SPINDLE ENCODER PPR ⊙<br />

890 Spindle<br />

2ND SPINDLE FEEDBACK<br />

MULTIPLY<br />

891 Spindle ENCODER TYPE OF 2ND SPINDLE ⊙<br />

892 Spindle 2ND SPD ENC MOUNT 0)SPL 1)MTR R<br />

893 Spindle 3RD SPINDLE ENCODER PPR ⊙<br />

894 Spindle<br />

3RD SPINDLE FEEDBACK<br />

MULTIPLY<br />

895 Spindle ENCODER TYPE OF 3RD SPINDLE ⊙<br />

896 Spindle 3RD SPD ENC MOUNT 0)SPL 1)MTR R<br />

897 Spindle 2ND SPINDLE RPM DISPLAY TYPE R<br />

898 Spindle 3RD SPINDLE RPM DISPLAY TYPE R<br />

899<br />

Operati<br />

on<br />

USE CE RULE 0)NO 1)YES<br />

1000 Servo MAX G00 SPEED.X R<br />

1001 Servo MAX G00 SPEED.Y R<br />

1002 Servo MAX G00 SPEED.Z R<br />

1003 Servo MAX G00 SPEED.4TH R<br />

⊙<br />

⊙<br />

R<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

189<br />

192<br />

178<br />

180<br />

173<br />

178<br />

180<br />

173<br />

176<br />

176<br />

187<br />

181<br />

176<br />

176<br />

187<br />

181<br />

178<br />

178<br />

251<br />

167<br />

167<br />

167<br />

167<br />

<strong>LNC</strong> Technology Co., Ltd. 141


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

1004 Servo MAX G01 SPEED R<br />

1006 Operati<br />

on<br />

1007 Operati<br />

on<br />

1008 Operati<br />

on<br />

1009 Operati<br />

on<br />

1010 Operati<br />

on<br />

1011 Operati<br />

on<br />

1012 Operati<br />

on<br />

1013 Operati<br />

on<br />

1014 Zero<br />

Return<br />

1015 Zero<br />

Return<br />

1016 Zero<br />

Return<br />

1017 Zero<br />

Return<br />

1ST X+ SOFT LIMIT<br />

1ST X- SOFT LIMIT<br />

1ST Y+ SOFT LIMIT<br />

1ST Y- SOFT LIMIT<br />

1ST Z+ SOFT LIMIT<br />

1ST Z- SOFT LIMIT<br />

1ST 4+ SOFT LIMIT<br />

1ST 4- SOFT LIMIT<br />

ABS COORD.X AFTER HOMING<br />

ABS COORD.Y AFTER HOMING<br />

ABS COORD.Z AFTER HOMING<br />

ABS COORD.4 AFTER HOMING<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

1018 Compe<br />

nsation COMP DIST OF EACH SECTION.X ⊙ Machinery<br />

Builder<br />

1019 Compe<br />

nsation COMP DIST OF EACH SECTION.Y ⊙ Machinery<br />

Builder<br />

1020 Compe<br />

nsation COMP DIST OF EACH SECTION.Z ⊙ Machinery<br />

Builder<br />

1021 Compe<br />

nsation COMP DIST OF EACH SECTION.A ⊙ Machinery<br />

Builder<br />

Machinery<br />

X.OFF FOR ORG.2 REF TO ORG.1 R<br />

Builder<br />

222<br />

1023 Zero<br />

Machinery<br />

Y.OFF FOR ORG.2 REF TO ORG.1 R<br />

Return<br />

Builder<br />

222<br />

1024 Zero<br />

Machinery<br />

Z.OFF FOR ORG.2 REF TO ORG.1 R<br />

Return<br />

Builder<br />

222<br />

1025 Zero<br />

Machinery<br />

4.OFF FOR ORG.2 REF TO ORG.1 R<br />

Return<br />

Builder<br />

222<br />

1026 Zero<br />

Machinery<br />

X.OFF FOR ORG.3 REF TO ORG.1 R<br />

Return<br />

Builder<br />

222<br />

1027 Zero<br />

Machinery<br />

Y.OFF FOR ORG.3 REF TO ORG.1 R<br />

Return<br />

Builder<br />

222<br />

1028 Zero Z.OFF FOR ORG.3 REF TO ORG.1 R Machinery 222<br />

1022 Zero<br />

Return<br />

167<br />

251<br />

251<br />

251<br />

251<br />

251<br />

251<br />

251<br />

251<br />

221<br />

221<br />

221<br />

221<br />

211<br />

211<br />

211<br />

211<br />

142 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

Return<br />

1029 Zero<br />

Return<br />

1030 Zero<br />

Return<br />

1031 Zero<br />

Return<br />

1032 Zero<br />

Return<br />

1033 Zero<br />

Return<br />

1034 Operati<br />

on<br />

1035 Operati<br />

on<br />

1036 Operati<br />

on<br />

1037 Operati<br />

on<br />

1038 Operati<br />

on<br />

1039 Operati<br />

on<br />

1040 Operati<br />

on<br />

1041 Operati<br />

on<br />

4.OFF FOR ORG.3 REF TO ORG.1<br />

X.OFF FOR ORG.4 REF TO ORG.1<br />

Y.OFF FOR ORG.4 REF TO ORG.1<br />

Z.OFF FOR ORG.4 REF TO ORG.1<br />

4.OFF FOR ORG.4 REF TO ORG.1<br />

2ND X+ SOFT LIMIT<br />

2ND X- SOFT LIMIT<br />

2ND Y+ SOFT LIMIT<br />

2ND Y- SOFT LIMIT<br />

2ND Z+ SOFT LIMIT<br />

2ND Z- SOFT LIMIT<br />

2ND 4+ SOFT LIMIT<br />

2ND 4- SOFT LIMIT<br />

1042 Servo G31 WORK FEEDRATE R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

1046 Compe<br />

nsation START.X COMP POS ⊙ Machinery<br />

Builder<br />

1047 Compe<br />

nsation START.Y COMP POS ⊙ Machinery<br />

Builder<br />

1048 Compe<br />

nsation START.Z COMP POS ⊙ Machinery<br />

Builder<br />

1049 Compe<br />

nsation START.4 COMP POS ⊙ Machinery<br />

Builder<br />

Machinery<br />

1054 Spindle 1ST SPD.SPEED ARRIVAL RANGE R<br />

1056 Spindle 1ST SPD ORIENT OFFSET VALUE R<br />

1058 Spindle<br />

1ST SPD RIGTAP MAX FOLLOW<br />

ERROR<br />

1059 Spindle 1ST SPD RIGTAP ACC/DEC TIME R<br />

1060 Spindle<br />

1ST SPD RIGTAP EXTRACTION<br />

RATE<br />

R<br />

R<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

222<br />

223<br />

223<br />

223<br />

223<br />

252<br />

253<br />

252<br />

253<br />

252<br />

253<br />

252<br />

253<br />

168<br />

212<br />

212<br />

212<br />

212<br />

189<br />

190<br />

190<br />

191<br />

191<br />

<strong>LNC</strong> Technology Co., Ltd. 143


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

1061 Servo Thread Cutting Max. Feedrate R<br />

1063 Spindle 1RD SPINDLE ZERO SPEED RANGE R<br />

1064 Spindle 1ST SPD RIGTAP VELOCITY COMP. R<br />

1065 Spindle<br />

1ST SPD RIGTAP ACCELERATED<br />

COMP<br />

1066 Spindle 1ST SPD RIGTAP VELOCITY FILTER R<br />

1070 Spindle 1ST SPD RIGTAP ACC. FILTER R<br />

1071 Spindle 1ST SPD RIGTAP OUTPUT INVERSE R<br />

1072 Servo WIDTH OF PULSE RISING ⊙<br />

1075 Spindle 1ST SPD SERVOLAG LIMIT R<br />

1076 Spindle JOG SPEED OF 2ND SPINDLE R<br />

1077 Spindle JOG SPEED OF 3RD SPINDLE R<br />

1091 Operati<br />

on<br />

1092 Operati<br />

on<br />

1093 Operati<br />

on<br />

R<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

168<br />

192<br />

192<br />

193<br />

193<br />

194<br />

194<br />

169<br />

195<br />

197<br />

197<br />

PROTAG R User 253<br />

PSCRT R User 253<br />

PSCRT2 R User 254<br />

1094 Operati<br />

on<br />

PSCRT3 R User 254<br />

1096 Spindle MAX SPEED OF 1ST SPINDLE R<br />

Machinery<br />

Builder<br />

195<br />

1097 Spindle 1ST SPINDLE D/A SCALE RPM/10V R<br />

Machinery<br />

Builder<br />

196<br />

1098 Zero<br />

Machinery<br />

ABS. ENCODER CHECK RANGE R<br />

Return<br />

Builder<br />

223<br />

1100 Servo JOG SPEED FOR X AXIS R<br />

Machinery<br />

Builder<br />

169<br />

1101 Servo JOG SPEED FOR Y AXIS R<br />

Machinery<br />

Builder<br />

170<br />

1102 Servo JOG SPEED FOR Z AXIS R<br />

Machinery<br />

Builder<br />

170<br />

1103 Servo JOG SPEED FOR 4TH AXIS R<br />

Machinery<br />

Builder<br />

170<br />

1104 Zero<br />

Machinery<br />

1ST SPEED OF X HOMING<br />

R<br />

Return<br />

Builder<br />

223<br />

1105 Zero 1ST SPEED OF Y HOMING R Machinery 223<br />

144 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

Return<br />

1106 Zero<br />

Return<br />

1107 Zero<br />

Return<br />

1108 Zero<br />

Return<br />

1109 Zero<br />

Return<br />

1110 Zero<br />

Return<br />

1111 Zero<br />

Return<br />

1ST SPEED OF Z HOMING<br />

1ST SPEED OF C HOMING<br />

2ST SPEED OF X HOMING<br />

2ST SPEED OF Y HOMING<br />

2ST SPEED OF Z HOMING<br />

2ST SPEED OF C HOMING<br />

1112 Servo ENCODER.X PULSES/ROTATION ⊙<br />

1113 Servo ENCODER.Y PULSES/ROTATION ⊙<br />

1114 Servo ENCODER.Z PULSES/ROTATION ⊙<br />

1115 Servo ENCODER.4TH PULSES/ROTATION ⊙<br />

1116 Spindle 1ST SPINDLE ENCODER PPR ⊙<br />

1118 Zero<br />

Return<br />

ENABLE INDEX PROTECTED<br />

FUNCTION<br />

1121 Spindle JOG SPEED OF 1ST SPINDLE R<br />

1150 Spindle SPEED OF 1ST SPINDLE GEAR R<br />

1151 Spindle SPEED OF 2ND SPINDLE GEAR R<br />

1152 Spindle SPEED OF 3RD SPINDLE GEAR R<br />

1153 Spindle 1ST SPD MOTOR RPM OF GEARING R<br />

1ST SPD MOTOR RPM RANGE OF<br />

1154 Spindle<br />

GEAR<br />

MAX SPEED OF 1ST SPINDLE<br />

1155 Spindle<br />

GEAR<br />

MAX SPEED OF 1ND SPINDLE<br />

1156 Spindle<br />

GEAR<br />

MAX SPEED OF 1RD SPINDLE<br />

1157 Spindle<br />

GEAR<br />

1158 Operati<br />

on<br />

1159 Operati<br />

on<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

223<br />

223<br />

224<br />

224<br />

224<br />

224<br />

157<br />

157<br />

157<br />

157<br />

196<br />

R User 225<br />

R<br />

R<br />

R<br />

R<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

197<br />

197<br />

197<br />

198<br />

198<br />

199<br />

199<br />

199<br />

200<br />

SHOW F2~F12 FOR FUN. KEY ⊙ User 254<br />

SET READ TIMEOUT TIMES User 254<br />

<strong>LNC</strong> Technology Co., Ltd. 145


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

1171 Zero<br />

Return<br />

1172 Zero<br />

Return<br />

1173 Zero<br />

Return<br />

1174 Zero<br />

Return<br />

1175 Zero<br />

Return<br />

1176 Zero<br />

Return<br />

1177 Zero<br />

Return<br />

1178 Zero<br />

Return<br />

1183 Zero<br />

Return<br />

1184 Zero<br />

Return<br />

1185 Zero<br />

Return<br />

1186 Zero<br />

Return<br />

1196 Machin<br />

e<br />

1197 Machin<br />

e<br />

1198 Machin<br />

e<br />

1199 Machin<br />

e<br />

SPACE1 LINEAR SCALE OF X AXIS<br />

SPACE2 LINEAR SCALE OF X AXIS<br />

SPACE1 LINEAR SCALE OF Y AXIS<br />

SPACE2 LINEAR SCALE OF Y AXIS<br />

SPACE1 LINEAR SCALE OF Z AXIS<br />

SPACE2 LINEAR SCALE OF Z AXIS<br />

SPACE1 LINEAR SCALE OF 4TH<br />

AXIS<br />

SPACE2 LINEAR SCALE OF 4TH<br />

AXIS<br />

OFFSET LINEAR SCALE OF X AXIS<br />

OFFSET LINEAR SCALE OF Y AXIS<br />

OFFSET LINEAR SCALE OF Z AXIS<br />

OFFSET LINEAR SCALE OF 4TH<br />

AXIS<br />

MAXIMUM TABLE RADIUS.X(UM)<br />

MAXIMUM TABLE RADIUS.Y(UM)<br />

MAXIMUM TABLE RADIUS.Z(UM)<br />

MAXIMUM TABLE RADIUS.C(UM)<br />

⊙<br />

⊙<br />

⊙<br />

⊙<br />

⊙<br />

⊙<br />

⊙<br />

⊙<br />

R<br />

R<br />

R<br />

R<br />

⊙<br />

⊙<br />

⊙<br />

⊙<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

Machinery<br />

Builder<br />

1200 Compe<br />

nsation PITCH X COMP.051 R Machinery<br />

Builder<br />

1299 Compe<br />

nsation PITCH X COMP.150 R Machinery<br />

Builder<br />

1300 Compe<br />

nsation PITCH Y COMP.051 R Machinery<br />

Builder<br />

1399 Compe<br />

nsation PITCH Y COMP.150 R Machinery<br />

Builder<br />

1400 Compe<br />

nsation PITCH Z COMP.051 R Machinery<br />

Builder<br />

1499 Compe<br />

nsation PITCH Z COMP.150 R Machinery<br />

Builder<br />

1500 Compe<br />

nsation PITCH A COMP.051 R Machinery<br />

Builder<br />

1599 Compe PITCH A COMP.150 R Machinery 207<br />

225<br />

225<br />

225<br />

225<br />

225<br />

225<br />

225<br />

225<br />

226<br />

226<br />

226<br />

226<br />

172<br />

172<br />

172<br />

172<br />

205<br />

205<br />

206<br />

206<br />

207<br />

207<br />

207<br />

146 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

No Group Description Active Level Pagination<br />

nsation<br />

Builder<br />

<strong>LNC</strong> Technology Co., Ltd. 147


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

Zero Return Procedure Description<br />

• When Reference Point is Behind DOG<br />

伺 服 軸 進 給 率<br />

回 原 點 第 一 段<br />

速 度 F H1<br />

一<br />

原 點 偏 移 量<br />

+<br />

回 原 點 第 二 段<br />

速 度 F H2<br />

Ta<br />

Ta<br />

時 間<br />

D1<br />

D2<br />

D3<br />

D4<br />

D5<br />

原 點 擋 塊<br />

馬 達 Encoder Z 相 訊 號<br />

原 點 擋 塊 訊 號 進 來 點<br />

原 點 擋 塊 訊 號 消 失 點<br />

機 械 原 點<br />

1. D1is the distance between two Z phase signals that are close tegether of servo motor<br />

ECNODER.<br />

2. D2 is the distance between the HOME DOG input points to the servo axis by using the<br />

1 st gear speed decelerating stop. The calculating formula is as following:<br />

D2 ≒ servo lag + deceleration distance ≒<br />

F<br />

K<br />

H1 H a<br />

p<br />

F<br />

1<br />

⋅T<br />

+<br />

2<br />

K p is the servo position loop gain (sec -1 ), , T a is the servo axis G00<br />

acc/decelerating time.<br />

If the length between the Home DOG input point and the disappear point is smaller<br />

than D2, then warning message (MOT 0027 Home DOG length is too short) will occur.<br />

3. D3 is the traveling distance at the time when servo motor starts from complete stop and<br />

accelerates to 2 nd gear speed to when Home DOG singnal disappears. In order to<br />

catch the Z phase signal under the condition of the same speed, the distance of D3<br />

must be long enough in order for the servo motor to be able to reach the 2 nd gear<br />

speed. Calculating formula is as following:<br />

D3 ≧<br />

F<br />

⋅T<br />

, T a is servo axis G00 acc/deceleration time.<br />

2<br />

H 2 a<br />

148 <strong>LNC</strong> Technology Co., Ltd.


So, the length of the Home DOG must be at least (D2 + D3) long.<br />

<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

4. D4 is the time interval from the disappear point of Home DOG to the next Z phase<br />

signal of servo motor ECNODER. In order to prevent any confusion that is caused by<br />

the electric and the machine delay, D4 must be approximately one-half of D1, which<br />

means the disappear point of Home DOG must be approximately at the mid-point of<br />

the two Z phase signals that are close to the servo motor. If the motor rotates one time<br />

but not able to find the Z phase signal after the Home Dog signal is disappear, then the<br />

aralm message (MOT0045 not able to find the Zl light of motor) will occur. Please<br />

check whether there is motor connection error.<br />

5. D5 is the traveling distance from the 1 st Z phase signal of servo motor ENCODER after<br />

getting away DOG to servo axis in 2 nd gear decelerating stop. The calculating formual<br />

is as following:<br />

D5 ≒ servo lag + deceleration distance ≒<br />

K p is the servo position loop gain (sec -1 ), , T a<br />

acc/decelerating time.<br />

F<br />

K<br />

H 2 H a<br />

p<br />

F<br />

2<br />

⋅T<br />

+<br />

2<br />

is the servo axis G00<br />

The distance between the machine reference point of servo axis and the traveling limit<br />

must be at least greater than D5. Or it will mistakenly cause travel limitation during zero<br />

return.<br />

Recommanding to set the offset amount of the servo axis reference point (parameters<br />

0030 ~ 0033) greater than D5 in order to prevent any reverse direciton moving of servo<br />

axis.<br />

【Example】Assumed a servo axis home return in 1 st gear speed is 10m/min, the 2 nd<br />

gear speed is 200mm/min, G00 acc/decelerating time is 150ms, position loop gain is<br />

100sec -1 . Under the condition that the reference point is behind DOG, the calculating<br />

formula of the shortest needed length of DOG is as following:<br />

D2 ≒<br />

10000 10000 ⋅ 0.15<br />

60<br />

+<br />

60<br />

≒ 14.17mm<br />

100 2<br />

D3 ≒<br />

200 ⋅0.15<br />

60<br />

2<br />

≒ 0.25mm<br />

So, the shortest needed length of DOG is(D2 + D3) ≒ 14.42mm<br />

Also,<br />

<strong>LNC</strong> Technology Co., Ltd. 149


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

D5 ≒<br />

200 200 ⋅0.15<br />

60 + 60 ≒ 0.28mm<br />

100 2<br />

If the setting vaule for the offset amount of this axis reference point is larger than 0.28mm,<br />

it will be able to prevent this axis to do the reverse direction moving at the last step of the<br />

home return procedure.<br />

• When Reference Point is Ahead DOG<br />

伺 服 軸 進 給 率<br />

回 原 點 第 一 段<br />

速 度 F H1<br />

回 原 點 第 二 段<br />

速 度 F H2<br />

Ta<br />

Ta<br />

時 間<br />

原 點 偏 移 量<br />

+ 一<br />

D1<br />

D4<br />

D3<br />

D2<br />

原 點 擋 塊<br />

馬 達 Encoder Z 相 訊 號<br />

機 械 原 點<br />

原 點 擋 塊 訊 號 進 來 點 以 及 消 失 點<br />

1.D1is the distance between two Z phase signals that are close tegether of servo motor<br />

ECNODER.<br />

2.D2 is the distance between the HOME DOG input points to the servo axis by using the<br />

1 st gear speed decelerating stop. The calculating formula is as following:<br />

D2 ≒ servo lag + deceleration distance ≒<br />

K p is the servo position loop gain (sec -1 ), , T a<br />

acc/decelerating time.<br />

F<br />

K<br />

H1 H a<br />

p<br />

F<br />

1<br />

⋅T<br />

+<br />

2<br />

is the servo axis G00<br />

If the length between the Home DOG input point and the disappear point is<br />

150 <strong>LNC</strong> Technology Co., Ltd.


smaller than D2, then warning message (MOT 0027 Home DOG length is too<br />

short) will occur.<br />

<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

3.D2 is the traveling distance at the time when servo motor starts from complete stop and<br />

accelerates to 2 nd gear speed to when Home DOG singnal disappears General<br />

speaking, the 2 nd gear speed is smaller than the 1 st gear speed, so the length of D2<br />

must be long enough for the servo motor to accelerate to the 2 nd<br />

means catching the servo motor Z phase signals in the same speed.<br />

gear speed, which<br />

4.D3 is the time interval from the disappear point of Home DOG to the next Z phase signal<br />

of servo motor ECNODER. In order to prevent any confusion that is caused by the<br />

electric and the machine delay, D4 must be approximately one-half of D1, which means<br />

the disappear point of Home DOG must be approximately at the mid-point of the two Z<br />

phase signals that are close to the servo motor. If the motor rotates one time but not<br />

able to find the Z phase signal after the Home Dog signal is disappear, then the aralm<br />

message (MOT0045 not able to find the Zl light of motor) will occur. Please check<br />

whether there is motor connection error.<br />

5.D4 is the traveling distance from the 1 st Z phase signal of servo motor ENCODER after<br />

getting away DOG to servo axis in 2 nd gear decelerating stop. The calculating formual is<br />

as following:<br />

D5 ≒ servo lag + deceleration distance ≒<br />

K p is the servo position loop gain (sec -1 ), , T a<br />

acc/decelerating time.<br />

F<br />

K<br />

H 2 H a<br />

p<br />

F<br />

2<br />

⋅T<br />

+<br />

2<br />

is the servo axis G00<br />

Recommanding to set the setting value for the offset amount of the servo axis<br />

reference point that is greater than D4 in order to prevent the servo axis to do the<br />

reverse direction moving.<br />

<strong>LNC</strong> Technology Co., Ltd. 151


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

5.2 Servo Parameter<br />

2 MAX FOLLOWING ERROR X AXIS<br />

3 MAX FOLLOWING ERROR Y AXIS<br />

4 MAX FOLLOWING ERROR Z AXIS<br />

5 MAX FOLLOWING ERROR 4TH AXIS<br />

Range: 1 ~ 30000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 30000<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

this parameter is for settings of the maximum following error on X axis (SERVO<br />

LAG). Once the following error of X axis exceeds the set value, warning<br />

message 【MOT 4006 the X axis following error exceeds the value set in<br />

parameter 0002】 will be stimulated.<br />

In situations when the servo axis in consisten velocity, the following error can be<br />

found in the following formula.<br />

lag = F / K p F = feedrate, K p= position loop gain<br />

As you may find in this formula, the higher the feedrate is, the larger the<br />

following error value is. Therefore, you may apply the highest speed of the<br />

X-axis into this formula to figure out the maximum following error value.<br />

【Example】<br />

The position loop gain value of X axis is 100sec -1 ,G00 is 20000mm/min. In<br />

RAPID TRAVERSE, the following error will be:<br />

lag = (20000000um / 60s) / (100s -1 ) = 3333.3um<br />

Under normal situation, the following error value of X axis should not exceed<br />

3334um, therefore, it is suggested to add a tolerance range of 10% into this<br />

value when you set this parameter 0002.<br />

152 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

6 X IN-POS WINDOWS BOUND<br />

7 Y IN-POS WINDOWS BOUND<br />

8 Z IN-POS WINDOWS BOUND<br />

9 4TH IN-POS WINDOWS BOUND<br />

Range: 1 ~ 20000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 50<br />

value:<br />

Unit: um<br />

Description This parameter is to set the bound value of in-position check window of X axis<br />

:<br />

in exact stop mode (G09 or G61). When | X-axis command position – X-axis<br />

actual position | ≦ parameter set value, X-axis has accomplished G01 exact<br />

stop. Please refer to parameter # 0043.<br />

<strong>LNC</strong> Technology Co., Ltd. 153


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

10 G00 X ACC/DEC TIME<br />

11 G00 Y ACC/DEC TIME<br />

12 G00 Z ACC/DEC TIME<br />

13 G00 4TH ACC/DEC TIME<br />

Range: 3 ~ 1500<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 230<br />

value:<br />

Unit: ms<br />

Description<br />

:<br />

This parameter is to set the acceleration/deceleration time of G00 on X-axis.<br />

The smaller this parameter is, the faster the X-axis reaches the specified speed;<br />

vibration, however, would be more indispensable. In 486IPC version (the IPO is<br />

5ms), the max. value is 2000; in 586IPC version (the IPO is 3ms), the max.<br />

value is 1500.<br />

If the set value exceeds the above limit, the 【MOT 4031 set error in X-axis G00<br />

acceleration/deceleration (parameter #0010) 】 warning message will be<br />

stimulated.<br />

154 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

14 G01 ACC/DEC TIME<br />

Range: 3 ~ 1500<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 100<br />

value:<br />

Unit: ms<br />

Description This parameter is to set the acceleration/deceleration time of G00 on ALL<br />

:<br />

SERVO AXIS. The smaller this parameter is, the faster the servo axis reach the<br />

specified speed; vibration, however, would be more indispensable. In 486IPC<br />

version (the IPO is 10ms), the max. value is 2000; in 586IPC version (the IPO is<br />

3ms), the max. value is 1500.<br />

If the set value exceeds the above limit, the 【MOT 4030 set error in X-axis G00<br />

acceleration/deceleration (parameter #0014) 】 warning message will be<br />

stimulated.<br />

24 CHANNEL NO FOR X AXIS<br />

25 CHANNEL NO FOR Y AXIS<br />

26 CHANNEL NO FOR Z AXIS<br />

27 CHANNEL NO FOR 4 AXIS<br />

Range: 0 ~ 6<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

if X(Y、Z、4 th ) axis is wired to the Nth-axis port e Transit board, this parameter is<br />

set to N. If no motor is connected, then this parameter is set to 0.<br />

<strong>LNC</strong> Technology Co., Ltd. 155


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

40 MIN.F OVERRIDE VALUE FOR G00<br />

Range: 0 ~ 25<br />

Active: Active After RESET<br />

Level: User<br />

Default 10<br />

value:<br />

Unit: %<br />

Description This parameter is to set the correspondent % value of RAPID TRAVERSE when<br />

:<br />

the feedrate OVERRIDE knob is set to 0%. For example, is this parameter is set<br />

as 10, when the OVERRIDE knob is set to 0%, actually it corresponds to 10%.<br />

53 FEEDBACK MUL FACTOR.4TH<br />

54 FEEDBACK MUL FACTOR.X<br />

55 FEEDBACK MUL FACTOR.Y<br />

56 FEEDBACK MUL FACTOR.Z<br />

Range: 1 ~ 4<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 4<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

This parameter is to set the feedback multiply factor of the X-axis ENCODER<br />

and is effect only when X-axis ENCODER feedback signal is set as AB PHASE<br />

(i.e. Parameter # 0191 set as 0). If the X-axis ENCODER feedback signal is set<br />

as CW/CCW or PULSE/DIRECTION (i.e. Parameter # 0191 set as 1 or 2), the<br />

feedback multiply factor remains 1 all the time.<br />

In PULSE COMMAND mode, the value is the product of this parameter set<br />

value and the set value of Parameter #0058 (i.e. ppr) is the total pulse per<br />

rotation that NC intents to let the X-axis motor to achieve.<br />

156 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1112 ENCODER.X PULSES/ROTATION<br />

1113 ENCODER.Y PULSES/ROTATION<br />

1114 ENCODER.Z PULSES/ROTATION<br />

1115 ENCODER.4TH PULSES/ROTATION<br />

Range: 1 ~ 99999999<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 2500<br />

value:<br />

Unit: pulse<br />

Description<br />

:<br />

Assumed PULSE per rotation of this axis Motor Encoder is 2500, please set this<br />

parameter value to 2500. Please also refer to each axis feedback ratio multiplier<br />

setting description<br />

65 ABSOLUTE ENCODER (BIT)<br />

Range: 0 ~ 63<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description BIT 0:Setting 0 to indicate X axis uses Incremental Encoder and 1 to indicate X<br />

:<br />

axis uses Absolute Encoder.<br />

BIT 1:Setting 0 to indicate Y axis uses Incremental Encoder and 1 to indicate Y<br />

axis uses Absolute Encoder.<br />

BIT 2:Setting 0 to indicate Z axis uses Incremental Encoder and 1 to indicate Z<br />

axis uses Absolute Encoder.<br />

BIT 3:Setting 0 to indicate the 4th axis uses Incremental Encoder and 1 to<br />

indicate the 4th axis uses Absolute Encoder.<br />

<strong>LNC</strong> Technology Co., Ltd. 157


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

66 4TH AXIS LINEAR/ROTARY TYPE<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description 0: rotary axis<br />

:<br />

1: linear axis<br />

If the 4 th -axis is linear axis, please set the lead screw pitch (Parameter #0107);<br />

if the 4 th -axis is rotary axis, please set the lead screw pitch as 360 (i.e. 360 ∘ ).<br />

85 MAX FOLLOWING ERROR X100 (BIT)<br />

Range: 0 ~ 63<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description BIT0:when set as 1, the maximum following error of X-axis (parameter # 0002)<br />

:<br />

is magnified 100 times.<br />

BIT1: when set as 1, the maximum following error of Y-axis (parameter # 0003)<br />

is magnified 100 times.<br />

BIT2:when set as 1, the maximum following error of Z-axis (parameter # 0004)<br />

is magnified 100 times.<br />

BIT3:when set as 1, the maximum following error of 4 TH -axis (parameter #<br />

0005) is magnified 100 times.<br />

158 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

108 MORTOR GAINS.X<br />

109 MORTOR GAINS.Y<br />

110 MORTOR GAINS.Z<br />

111 MORTOR GAINS.4TH<br />

Range: 1 ~ 20000<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 200<br />

value:<br />

Unit: RPM/1V<br />

Description<br />

:<br />

using this parameter to set the corresponding rotational speed (RPM) when the<br />

X axis motor entry voltage is 1V. When the entry voltage is 10V, the X axis<br />

motor rotational speed is 2000RPM, which means the parameter setting value is<br />

200. This parameter is effective only when X axis control method is V<br />

COMMAND (Setting value of Parameter 0156 is 3).<br />

<strong>LNC</strong> Technology Co., Ltd. 159


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

116 MOVING DIR OF SERVO AXES(BIT)<br />

Range: 0 ~ 63<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description BIT0:when set as 1, the X-axis should move in reverse direction against<br />

:<br />

previous movement. When set as 0, there is no reverse movement.<br />

BIT1:when set as 1, the Y-axis should move in reverse direction against<br />

previous movement. When set as 0, there is no reverse movement.<br />

BIT2:when set as 1, the Z-axis should move in reverse direction against<br />

previous movement. When set as 0, there is no reverse movement.<br />

BIT3:when set as 1, the 4 TH -axis should move in reverse direction against<br />

previous movement. When set as 0, there is no reverse movement.<br />

BIT4:when set as 1, the spindle-axis should rotate in reverse direction against<br />

previous. When set as 0, there is no reverse rotation. This only effects<br />

only when the spindle is under PULSE COMMAND, such as spindle<br />

orientation and rigid tapping.<br />

Description: Take the X-axis for example, under JOG mode, if you pressed the<br />

+x button on the OP panel, the machine X-axis moves in negative direction, it<br />

means motor’s positive rotation is in reverse to +X axis direction. Please set<br />

BIT0 as 1. if you pressed the +x button on the OP panel, the machine X-axis<br />

moves in positive direction as well, please set BIT0 as 0. Such is the same with<br />

all the rest axis.<br />

160 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

156 CONTROL CMD FORMAT OF X<br />

157 CONTROL CMD FORMAT OF Y<br />

158 CONTROL CMD FORMAT OF Z<br />

159 CONTROL CMD FORMAT OF 4<br />

Range: 0 ~ 3<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:A/B PHASE;<br />

1:CW/CCW;<br />

2:PULSE/DIRECTION。<br />

Besides setting command type from the NC side, you have to select the same<br />

command type in MOTOR DRIVER side. If set as 1 or 2, you are also required<br />

to set the pulse wide. Please refer to Parameter # 1072. (When set as A/B<br />

PHASE, the motion board will automatically adjust to 50% DURATION).<br />

172 G00 ACC. TYPE 0)LINE 1)S CURVE<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:Linear acceleration/deceleration<br />

1:S-curve acceleration/deceleration<br />

Servo Axis<br />

Para. #1000 ~ Para. 1003 #1000 Setting ~ 1003 Setting<br />

Servo Axis<br />

Para.# 0010 ~ 0013 Setting<br />

Time<br />

Linear Acc/Dec<br />

Time<br />

Para.# 0010 ~ 0013 Setting<br />

S Curve Acc/Dec<br />

<strong>LNC</strong> Technology Co., Ltd. 161


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

162 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

173 G01 ACC. TYPE 0)LINE 1)S CURVE<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:Expolantial acceleration/deceleration<br />

1:S-curve acceleration/deceleration<br />

Servo Axis<br />

Feed Rate<br />

time<br />

Para.# 0014 Setting<br />

Linear Acc/Dec<br />

time<br />

Para.# 0014 Setting<br />

S Curve Acc/Dec<br />

<strong>LNC</strong> Technology Co., Ltd. 163


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

185 FEEDBACK DIR OF SERVO AXES(BIT)<br />

Range: 0 ~ 63<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description BIT0:when set as 1, means negative X-axis ENCODER feedback signal<br />

:<br />

BIT1:when set as 1, means negative Y-axis ENCODER feedback signal BIT2:<br />

when set as 1, means negative Z-axis ENCODER feedback signal<br />

BIT3:when set as 1, means negative 4 TH -axis ENCODER feedback signal<br />

BIT4:when set as 1, means negative spindle ENCODER feedback signal<br />

【Setting timing】<br />

Take X-axis for example, if X-axis is set as PULSE TYPE, when you press the<br />

+X button of OP panel, the machine X-axis moves in positive direction, but the<br />

value of system data #000(X-axis following error) continuously increases, and<br />

this value doesn’t decrease down to the range of ±1, it means that you have to<br />

reverse the X-axis ENCODER signal.<br />

(Usually this is caused when the BIT0 of parameter # 0116 is set as 1.) In this<br />

case, please set the BIT0 of parameter # 0116 as 1. If the above didn’t occur,<br />

please set the BIT0 of parameter # 0116 as 0. If X-axis is under V COMMAND<br />

mode, when you press the +X button of OP panel, the machine X-axis rushes, it<br />

means that you have to reverse the X-axis ENCODER signal. In this case,<br />

please set the BIT0 of this parameter as1.<br />

So is the same with all the other axis.<br />

188 POSITION LOOP GAN OF EACH AXIS<br />

Range: 1 ~ 32767<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 30<br />

value:<br />

Unit: 1/sec<br />

Description This parameter is to calculate and make sure that the contour error remain with<br />

:<br />

the tolerance via arch feedrate auto clamp function. (please refer to Parameter<br />

# 0187). Under PULSE TYPE, since servo driver deals with position control<br />

loop, NC system is not able to know this set value. If you want to enable the<br />

arch feedrate auto clamp function, you have to set a position loop gain in your<br />

formula. Notice that the position loop gain of each axis must be the same<br />

otherwise the actual contour of the arch command will become ellipse.<br />

Please refer to related parameters (#0187 and # 0809).<br />

191 ENCODER SIGNALE TYPE.X<br />

192 ENCODER SIGNALE TYPE.Y<br />

193 ENCODER SIGNALE TYPE.Z<br />

194 ENCODER SIGNALE TYPE.4TH<br />

Range: 0 ~ 3<br />

164 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

Active:<br />

Level:<br />

Default<br />

value:<br />

Unit:<br />

Description<br />

:<br />

Active After Reboot<br />

Machinery Builder<br />

0<br />

Nul<br />

0:A/B PHASE<br />

1:CW/CCW<br />

2:PULSE/DIRECTION<br />

3:none<br />

This parameter is to set the ENCODER signal type of each axis. Please refer to<br />

the settings of motor drivers. If the each axis motor is not equipped with<br />

ENCODER, such as in cases of stepping motor, please set this parameter as 3.<br />

<strong>LNC</strong> Technology Co., Ltd. 165


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

800 RANGE.X FOR EXACT REACH<br />

801 RANGE.Y FOR EXACT REACH<br />

802 RANGE.Z FOR EXACT REACH<br />

803 RANGE.4TH FOR EXACT REACH<br />

Range: 1 ~ 20000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 500<br />

value:<br />

Unit: um<br />

Description This parameter is to set the bound value of in-position check window of X axis<br />

:<br />

when G00 exact stop is enabled. (Please refer to parameter # 0043). When |<br />

X-axis command position – X-axis axis actual position | ≦ parameter set value,<br />

X-axis has accomplished G00 exact stop.<br />

845 X AXIS LINEAR/ROTARY TYPE<br />

846 Y AXIS LINEAR/ROTARY TYPE<br />

847 Z AXIS LINEAR/ROTARY TYPE<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:0:Linear axis is set for X axis and ball screw pitch is set according to actual<br />

value.<br />

1:Rotary axis is set for X axis and ball screw pitch is set to 360 o .<br />

166 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1000 MAX G00 SPEED.X<br />

1001 MAX G00 SPEED.Y<br />

1002 MAX G00 SPEED.Z<br />

1003 MAX G00 SPEED.4TH<br />

Range: 1 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 5000000<br />

value:<br />

Unit: um/min<br />

Description<br />

:<br />

In G00 commanded, the maximum speed X-axis is set in this parameter, but not<br />

the feedrate specified by F code. This parameter also specifies the maximum<br />

speed X-axis under RAPID TRAVERSE mode.<br />

1004 MAX G01 SPEED<br />

Range: 1 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 2000000<br />

value:<br />

Unit: um/min<br />

Description This parameter decides the value of the below items:<br />

:<br />

1. Highest feedrate of G01;<br />

2. Highest feedrate of G02/03;<br />

3. Feedrate of G01/02/03 in DRY RUN mode.<br />

If the user gives a F code that exceeds the set value of this parameter, NC will<br />

automatically clamp its feedrate.<br />

<strong>LNC</strong> Technology Co., Ltd. 167


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1042 G31 WORK FEEDRATE<br />

Range: 1 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 2000<br />

value:<br />

Unit: um/min<br />

Description If the feedrate is specified in G31 block, the command value will be the feedrate<br />

:<br />

of the block; if no feedrate is specified in G31, then the feedrate is the set value<br />

of this parameter.<br />

1061 Thread Cutting Max. Feedrate<br />

Range: 1 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 10000000<br />

value:<br />

Unit: um<br />

Description During Lathe tapping, cutting axis feedrate is decided by Spindle rotational<br />

:<br />

speed and thread pitch. When the combination value cause the cutting axis<br />

feedrate is over this parameter setting value, System Alarm【MOT 4061: Lathe<br />

Tapping Speed Over Setting Value】 will occur.<br />

168 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1072 WIDTH OF PULSE RISING<br />

Range: 1 ~ 50<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 20<br />

value:<br />

Unit: us<br />

Description In PULSE COMMAND type, this parameter is to set the pulse wid, as shown in<br />

:<br />

the below figure. The pulse cycle can be expressed in the below formula. (linear<br />

axis)<br />

Pulse Upper<br />

Period: T<br />

1 feedrate<br />

= × GR × Pulse/rev<br />

T pitch<br />

×<br />

1<br />

60000<br />

, unit:ms<br />

Example: X-axis pitch = 10mm, gear ratio is 2(deceleratin ratio, motor rotates<br />

2 times and ball screw rotates one time). In the condition when it takes 10000<br />

Pulses for the motor to complete a rotation, if the feedrate is set as<br />

2000mm/min, then the pulse amount per 1ms should be:<br />

Pulses =<br />

2000<br />

10<br />

× 2 × 10000 ×<br />

Commanding Pulse Rush Period is:<br />

T<br />

=<br />

1000<br />

67<br />

1<br />

60000<br />

≈ 15us<br />

≈ 67pulses/ms<br />

Under this condition and the condition of maintaining pulse rush is 50% of<br />

DURATION (High/Low Standard Position Time), the raising width shoue be set<br />

as 7us.<br />

If the setting value of this parameter is too big, it is possible to cause the raising<br />

width of the pulse rush over the period in high speed motion. This will further<br />

cause the commanding pulse rush to double with each other. At this time, motor<br />

DRIVER will not able to do the determination correctly, which will make the<br />

servo motor not able to rotate normally.<br />

But, if the setting value is too small, the motor DRIVER still not able to do the<br />

determination. So, the maximum setting value of this parameter should be<br />

under the max motion speed (G00). Also the upper limit is the width of the<br />

non-double commanding pulse rush rows. The smallest value should be the<br />

smallest width value that the motor DRIVER is able to determine.<br />

1100 JOG SPEED FOR X AXIS<br />

<strong>LNC</strong> Technology Co., Ltd. 169


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1101 JOG SPEED FOR Y AXIS<br />

1102 JOG SPEED FOR Z AXIS<br />

1103 JOG SPEED FOR 4TH AXIS<br />

Range: 1 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 2000000<br />

value:<br />

Unit: um/min<br />

Description This parameter is to set the JOG speed of X-axis.<br />

:<br />

170 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

5.3 Machine Parameter<br />

62 UNITS OF #104~#107 PARAMS<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

this parameter is used to set unit system for the setting value of parameters<br />

0104 ~ 0107.<br />

68 DENOMINATOR OF GEAR RATIO.X<br />

69 DENOMINATOR OF GEAR RATIO.Y<br />

70 DENOMINATOR OF GEAR RATIO.Z<br />

72 DENOMINATOR GEAR RATIO.4<br />

Range: 1 ~ 32767<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

This parameter is to set the denominator for X axis motor gearratio. If gear ratio<br />

of X axis is bigger than 1, there is a deceleration relationship between X axis<br />

motor and ball screw. If gear ratio of X axis is smaller than 1, there is an<br />

acceleration relationship between X axis motor and ball screw.<br />

100 NUMERATOR OF GEAR RATION.X<br />

101 NUMERATOR OF GEAR RATION.Y<br />

102 NUMERATOR OF GEAR RATION.Z<br />

103 NUMERATOR OF GEAR RATION.4<br />

272 NUMERATOR OF GEAR RATION.5<br />

Range: 1 ~ 32767<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

This parameter is to set the numerator for each axis ball screw.<br />

If the gear ratio of each axis is bigger than 1, there is a deceleration relationship<br />

between each axis motor and ball screw. If this ratio is smaller than 1, there is<br />

an acceleration relationship of each axis motor and ball screw.<br />

<strong>LNC</strong> Technology Co., Ltd. 171


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

104 SCREW PITCH.X<br />

105 SCREW PITCH.Y<br />

106 SCREW PITCH.Z<br />

107 SCREW PITCH.4<br />

Range: 1 ~ 32767<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 360<br />

value:<br />

Unit: um<br />

Description this parameter is to set ball screw pitch of each axis.<br />

:<br />

1196 MAXIMUM TABLE RADIUS.X(UM)<br />

1197 MAXIMUM TABLE RADIUS.Y(UM)<br />

1198 MAXIMUM TABLE RADIUS.Z(UM)<br />

1199 MAXIMUM TABLE RADIUS.C(UM)<br />

Range: 0 ~ 99999999<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:When only one axis is in motion, this parameter times feed rate equals to<br />

cutting speed. If the cutting speed is over the maximum speed allowable as set<br />

by parameter No. 1004, CNC controller will adjust the command value of feed<br />

rate to make it conform to the set value of parameter No. 1004. When more<br />

than one axis is in motion, the combined cutting speed of each axis must be<br />

taken into account. If one of the axes is a linear axis, please set this parameter<br />

to 0.<br />

172 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

5.4 Spindle Parameter<br />

16 ACC/DEC TIME OF 1ST SPINDLE<br />

885 ACC/DEC TIME OF 2ND SPINDLE<br />

888 ACC/DEC TIME OF 3RD SPINDLE<br />

Range: 0 ~ 32767<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 1000<br />

value:<br />

Unit: MS/KRPM<br />

Description<br />

:<br />

This parameter sets the corresponding output voltage of Spindle rotation and<br />

acc/deceleration speed of Pulse command. When Spindle rotational signal uses<br />

voltage output, user must sets OFFSET of voltage output signal and the<br />

corresponding RPM of 10 V.<br />

21 1ST SPD ORIENTATION RPM<br />

Range: 1 ~ 20000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 100<br />

value:<br />

Unit: RPM<br />

Description this parameter is used to set rotational speed of spindle orientation . When the<br />

:<br />

spindle orientation is doing machine adjustment, the spindle rotational speed is<br />

decided by this parameter. In order to prevent any error by different rotational<br />

speed, please do NOT modify this parameter setting value after machine<br />

adjustment of spindle orientation is completed.<br />

<strong>LNC</strong> Technology Co., Ltd. 173


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

29 CORRESPONDING TO 1ST SPINDLE<br />

294 CORRESPONDING TO 2ND SPINDLE<br />

295 CORRESPONDING TO 3RD SPINDLE<br />

Range: 0 ~ 16<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

if connecting the spindle connection cable to the N axis on transit board, then<br />

the parameter is set as N. But, if there is no spindle, then set 0.<br />

49 NUMBER OF 1ST SPINDLE.1M GEAR<br />

664 NUMBER OF 2ND SPINDLE.1M GEAR<br />

672 NUMBER OF 3RD SPINDLE.1M GEAR<br />

Range: 1 ~ 32767<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

this parameter is to set the denominator of the 1 st motor gear ratio. When the<br />

spindle is at the 1 st gear, C BIT 097 is ON.<br />

If this ratio is greater than 1, it is a deceleration relationship between the motor<br />

and the spindle. If this ratio is smaller than 1, it is an acceleration relationship<br />

between the motor and the spindle.<br />

174 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

50 NUMBER OF 1ST SPINDLE.1A GEAR<br />

665 NUMBER OF 2ND SPINDLE.1A GEAR<br />

673 NUMBER OF 3RD SPINDLE.1A GEAR<br />

Range: 1 ~ 32767<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

this parameter is to set the numerator of the 1 st spindle gear ratio. When the<br />

spindle is at the 1 st gear, C BIT 097 is ON.<br />

If this ratio is greater than 1, it is a deceleration relationship between the motor<br />

and the spindle. If this ratio is smaller than 1, it is an acceleration relationship<br />

between the motor and the spindle.<br />

51 NUMBER OF 1ST SPINDLE.2M GEAR<br />

666 NUMBER OF 2ND SPINDLE.2M GEAR<br />

674 NUMBER OF 3RD SPINDLE.2M GEAR<br />

Range: 1 ~ 32767<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

this parameter is to set the denominator of the 2 nd motor gear ratio. When the<br />

spindle is at the 2 nd gear, C BIT 098 is ON.<br />

If this ratio is greater than 1, it is a deceleration relationship between the motor<br />

and the spindle. If this ratio is smaller than 1, it is an acceleration relationship<br />

between the motor and the spindle.<br />

<strong>LNC</strong> Technology Co., Ltd. 175


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

52 NUMBER OF 1ST SPINDLE.2A GEAR<br />

667 NUMBER OF 2ND SPINDLE.2A GEAR<br />

675 NUMBER OF 3RD SPINDLE.2A GEAR<br />

Range: 1 ~ 32767<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

this parameter is to set the numerator of the 2 nd spindle gear ratio. When the<br />

spindle is at the 2nd gear, C BIT 097 is ON.<br />

If this ratio is greater than 1, it is a deceleration relationship between the motor<br />

and the spindle. If this ratio is smaller than 1, it is an acceleration relationship<br />

between the motor and the spindle.<br />

57 1ST SPINDLE FEEDBACK MULTIPLY<br />

890 2ND SPINDLE FEEDBACK MULTIPLY<br />

894 3RD SPINDLE FEEDBACK MULTIPLY<br />

Range: 1 ~ 4<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

this parameter is to set ENCODER feedback multiple factor of spindle, this<br />

parameter works only when the ENCODER feedback multiple factor of spindle<br />

is AB PHASE (setting value of Parameter 0195 is 0); if the ENCODER feedback<br />

multiple factor of spindle is CW/CCW or PULSE/DIRECTION (setting value of<br />

Parameter 0195 is either 1 or 2), then the feedback multiple factor of spindle is<br />

1 permanently.<br />

Assumed the spindle control method is PULSE COMMAND (under spindle<br />

orientation and rigid rapping modes), the multiple product of this parameter<br />

setting value and parameter #1116 setting value (total pulse per rotation of<br />

spindle motor ENCODER) is the PLUSE command value that is sent by NC in<br />

order to make spindle motor to rotates one time. If the spindle control method is<br />

V COMMAND, then the multiple product of this parameter setting value and the<br />

parameter 1116 setting value will only be used to calculate the actual rotational<br />

speed of spindle.<br />

889 2ND SPINDLE ENCODER PPR<br />

893 3RD SPINDLE ENCODER PPR<br />

Range: 1 ~ 32767<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 1024<br />

value:<br />

176 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

Unit:<br />

Description<br />

:<br />

pulse<br />

Assumed PULSE per rotation of Motor Encoder is 2500, please set this<br />

parameter value to 2500.<br />

84 1ST SPD ORIENT 0)SENSOR 1)ENC.<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:Orientation Sensor of Spindle orientation basic point.<br />

1:Encoder Index of Spindle orientation basic point.<br />

<strong>LNC</strong> Technology Co., Ltd. 177


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

90 1ST SPINDLE RPM DISPLAY TYPE<br />

897 2ND SPINDLE RPM DISPLAY TYPE<br />

898 3RD SPINDLE RPM DISPLAY TYPE<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:showing commanding value;<br />

1:showing encoder feedback. At this time NC will calculate the actual rotating<br />

speed from the spindle motor ENCODER feedback signal and the actual<br />

rotating speed will be showed on HMI panel.<br />

If the spindle motor hasn’t install ENCODER, please set this parameter to 0 to in<br />

order to prevent the problem of not able to check rotating speed.<br />

883 2ND SPINDLE D/A SCALE RPM/10V<br />

886 3RD SPINDLE D/A SCALE RPM/10V<br />

Range: 1 ~ 99999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 6000<br />

value:<br />

Unit: RPM<br />

Description<br />

:<br />

When the spindle 10V corresponds to 3000 RPM, please set this parameter to<br />

3000. Please notice that this will be effective only when Spindle driver is in V<br />

Command mode.<br />

178 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

95 MIN SPEED OF 1RD SPINDLE<br />

876 MAX SPEED OF 2ND SPINDLE<br />

877 MIN SPEED OF 2RD SPINDLE<br />

878 3RD SPD INITIAL SPEED<br />

879 MAX SPEED OF 3RD SPINDLE<br />

880 MIN SPEED OF 3RD SPINDLE<br />

Range: 0 ~ 99999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: RPM<br />

Description<br />

:<br />

this parameter is to set the lowest rotational speed of the spindle. When the<br />

lowest rotational speed command of the spindle (is set by user) is smaller than<br />

this parameter setting value, the system will use this parameter setting to drive<br />

the spindle.<br />

<strong>LNC</strong> Technology Co., Ltd. 179


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

98 OFFSET VALUE OF 1ST SPINDLE<br />

884 OFFSET VALUE OF 2ND SPINDLE<br />

887 OFFSET VALUE OF 3RD SPINDLE<br />

Range: -5000 ~ 5000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: 0.3mV<br />

Description<br />

:<br />

this parameter is to set OFFSET amount of spindle commanding voltage. The<br />

actual commanding voltage that is sent to the spindle inverter is calculated by<br />

the commanding voltage of spindle rotational sped minus this parameter setting<br />

value. The present system axis board’s DAC is 16 Bits, corresponding to ±10.<br />

So the analytic degree is<br />

10<br />

32768<br />

which is the unit of this parameter.<br />

= 0.305mV<br />

180 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

892 2ND SPD ENC MOUNT 0)SPL 1)MTR<br />

896 3RD SPD ENC MOUNT 0)SPL 1)MTR<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

Setting the Spindle Loop Encoder installation position:<br />

0:Beside Spindle<br />

1:Beside Motor<br />

<strong>LNC</strong> Technology Co., Ltd. 181


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

171 FEEDBACK DIR. OF SPINDLES(BIT)<br />

Range: 0 ~ 7<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:No, program coordinate value is the absolute coordinate display value<br />

1:Yes, the sum of program coordinate value plus tool length compensation<br />

value is the absolute coordinate display value.<br />

【Example】Assumed the tool length compensation of #1 tool is -50mm,<br />

if the setting value of this parameter is 0:<br />

Program Command<br />

Z Axis Abs. Z Axis Mac.<br />

Coordinate Coordinate<br />

G00 Z0.; 0. 0.<br />

G43 H1; 0. 0.<br />

G01 Z10. F1000.; 10. -40.<br />

… … …<br />

if the setting value of this parameter is 1:<br />

Z Axis Abs. Z Axis Mac.<br />

Program Command<br />

Coordinate Coordinate<br />

G00 Z0.; 0. 0.<br />

G43 H1; 0. 0.<br />

G01 Z10. F1000.; -40. -40.<br />

… … …<br />

182 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

178 NUMBER OF 1ST SPINDLE.3M GEAR<br />

668 NUMBER OF 2ND SPINDLE.3M GEAR<br />

676 NUMBER OF 3RD SPINDLE.3M GEAR<br />

Range: 1 ~ 32767<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

this parameter is to set the denominator of the 3 rd motor gear ratio. When the<br />

spindle is at the 3 rd gear, C BIT 099 is ON.<br />

If this ratio is larger than 1, there is a deceleration relationship between the<br />

motor and the spindle. If it is less than 1, there is an acceleration relationship<br />

between the motor and the spindle.<br />

179 NUMBER OF 1ST SPINDLE.3A GEAR<br />

669 NUMBER OF 2ND SPINDLE.3A GEAR<br />

677 NUMBER OF 3RD SPINDLE.3A GEAR<br />

Range: 1 ~ 32767<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

using this parameter to set the numerator of the 3 rd spindle gear ratio. When the<br />

spindle is at the 3 rd gear, C BIT099 is ON.<br />

If this ratio is larger than 1, there is a deceleration relationship between the<br />

motor and the spindle. If it is less than 1, there is an acceleration relationship<br />

between the motor and the spindle.<br />

181 NUMBER OF 1ST SPINDLE.4M GEAR<br />

670 NUMBER OF 2ND SPINDLE.4M GEAR<br />

678 NUMBER OF 3RD SPINDLE.4M GEAR<br />

Range: 1 ~ 32767<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

this parameter is to set the denominator of the 4 th motor gear ratio. When the<br />

spindle is at the 4 th gear, C BIT 097 ~ 099 is OFF.<br />

If this ratio is larger than 1, there is a deceleration relationship between the<br />

motor and the spindle. If it is less than 1, there is an acceleration relationship<br />

<strong>LNC</strong> Technology Co., Ltd. 183


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

between the motor and the spindle.<br />

182 NUMBER OF 1ST SPINDLE.4A GEAR<br />

671 NUMBER OF 2ND SPINDLE.4A GEAR<br />

679 NUMBER OF 3RD SPINDLE.4A GEAR<br />

Range: 1 ~ 32767<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

using this parameter to set the numerator of the 4 th spindle gear ratio. When the<br />

spindle is at the 4 th gear, C BIT 097 ~ 099 is OFF.<br />

If this ratio is larger than 1, there is a deceleration relationship between the<br />

motor and the spindle. If it is less than 1, there is an acceleration relationship<br />

between the motor and the spindle.<br />

183 1ST SPD VLOCITY COMMAND TYPE<br />

296 2ND SPD VLOCITY COMMAND TYPE<br />

297 3RD SPD VLOCITY COMMAND TYPE<br />

Range: 0 ~ 4<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

This parameter sets the command format of the spindle rotation speed. The<br />

system’s preset command format is voltage output. If the motor driver of the<br />

spindle has a PG card or the spindle motor is servo motor, the output command<br />

format of the spindle can be set in a pulse format that the motor driver accepts.<br />

184 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

184 1ST SPD ORT. LOCAL INPUT SET<br />

Range: 1 ~ 10<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 9<br />

value:<br />

Unit: Nul<br />

Description<br />

: Bit2 Bit1 Bit0 Description<br />

0 0 1 To Local input 1 (HS1 on Transit Board)( Default)<br />

0 1 0 To Local input 2(HS2 on Transit Board)<br />

Bit3<br />

Description<br />

0 NC<br />

1 NO(Default)<br />

BIT0 ~ BIT2:To set connecting point number of Spindle orientation sensor<br />

signal. If the setting value is 1, it means it is HS1 point on the transit board. If<br />

the setting value is 2, it means it is HS2 point on the transit board.<br />

BIT3 :To set the Spindle orientation sensor signal type. Setting value is 0<br />

means NC and setting value is 0 means NO.<br />

If Spindle orientation sensor connection point is HS1 and the signal format is<br />

NC,then setting value is 1. If Spindle orientation sensor connection point is HS1<br />

and the setting format is NO, setting value is 9. If Spindle orientation sensor<br />

connection point is HS2 and the signal format is NC,then setting value is 2. If<br />

Spindle orientation sensor connection point is HS2 and the setting format is NO,<br />

setting value is 10.<br />

<strong>LNC</strong> Technology Co., Ltd. 185


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

189 1ST SPD INITIAL SPEED<br />

875 2ND SPD INITIAL SPEED<br />

Range: 0 ~ 99999<br />

Active: Active After Reboot<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: RPM<br />

Description Spindle default rotational speed when system start<br />

:<br />

190 1ST SPD POSITION COMMAND TYPE<br />

Range: 0 ~ 6<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description 0:A/B PHASE<br />

:<br />

1:CW/CCW<br />

2:PULSE/DIRECTION<br />

System is use PULSE COMMAND to drive Spindle when it s doing Spindle<br />

orientation and is under rigid tapping mode. This parameter is to set this<br />

commanding PULSE format. Please set the commanding PLUSE format<br />

according to Spindle inventor.<br />

186 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

195 ENCODER TYPE OF 1ST SPINDLE<br />

891 ENCODER TYPE OF 2ND SPINDLE<br />

895 ENCODER TYPE OF 3RD SPINDLE<br />

Range: 0 ~ 3<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

this parameter is to set the spindle Encoder’s output signal type.<br />

0:A/B PHASE<br />

1:CW/CCW<br />

2:PULSE/DIRECTION<br />

3:none<br />

226 MOVING DIR. OF SPINDLES(BIT)<br />

Range: 0 ~ 7<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:BIT 0: When set to 1, motion direction of the 1 st spindle must be reversed;<br />

BIT 1: When set to 1, motion direction of the 2 nd spindle must be reversed;<br />

BIT 2: When set to 1, motion direction of the 3 rd spindle must be reversed;<br />

Only valid when output command format of the spindle is in pulse format.<br />

240 1ST SPD POS GAIN AT ORIENTATION<br />

Range: 0 ~ 20000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 30<br />

value:<br />

Unit: 1/S<br />

Description When the spindle’s command format in control mode is V command (parameter<br />

:<br />

No. 0190 = 3), this parameter sets the spindle’s proportional gain during<br />

positioning.<br />

241 1ST SPD POS GAIN AT RIGID TAP<br />

Range: 0 ~ 20000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 30<br />

<strong>LNC</strong> Technology Co., Ltd. 187


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

value:<br />

Unit: 1/S<br />

Description:When the spindle’s command format in control mode is V command (parameter<br />

No. 0190 = 3), this parameter sets the spindle’s proportional gain during rigid<br />

tapping.<br />

248 1ST SPD ORIENT OFFSET UNIT<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: NUL<br />

Description:0: Unit of OFFSET amount between Spindle Orientation point and center point<br />

(Parameter #1056 and System Data #10) is pulse.<br />

1: Unit of OFFSET amount between Spindle Orientation point and center point<br />

(Parameter #1056 and System Data #10) is 0.001 degree.<br />

354 1ST SPD OVERRIDE UNIT<br />

355 2ND SPD OVERRIDE UNIT<br />

356 3RD SPD OVERRIDE UNIT<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:0:The 1 st (2 nd & 3 rd ) spindle’s rotation override speed = R015 (R019、R020)<br />

register value * 10%;<br />

1:The 1 st (2 nd & 3 rd ) spindle’s rotation override speed = R015 (R019、R020 )<br />

register value* 1%。<br />

393 1ST SPINDEL GEARING METHOD<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:Choose either “automatic” or “manual” gear change method to be the spindle’s<br />

gear change method<br />

0:Automatic gear change<br />

1:<strong>Manual</strong> gear change<br />

188 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

663 1ST SPD ORIENT ACC/DEC TIME<br />

Range: 0 ~ 1500<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 100<br />

value:<br />

Unit: ms<br />

Description<br />

:<br />

This parameter is to set the acceleration and deceleration time of Spindle<br />

orientation (including Spindle Adjustment).<br />

839 1ST SPD ORIENT CHECK TOLERANCE<br />

Range: 0 ~ 32767<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 1000<br />

value:<br />

Unit: 0.001 degree<br />

Description This parameter is to se the allowable error amount of Spindle Orientation. If the<br />

:<br />

difference between Spindle stopping position and the actual orientation position<br />

is smaller than this parameter setting value, Spindle orientation task can be<br />

meant as accomplish. However, if the difference amount is larger than this<br />

parameter setting value, System Alarm 【MOT 4049 Spindle Orientation<br />

Exceed Allowable Error】 will occur.<br />

224 2ND SPD SPEED CHK 0)ACT 1)CMD<br />

225 3RD SPD SPEED CHK 0)ACT 1)CMD<br />

874 1ST SPD SPEED CHK 0)ACT 1)CMD<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:0:Spindle rotational speed checking signal source is Spindle Loop Encoder.<br />

1:Spindle rotational speed checking signal source is Spindle rotational<br />

command.<br />

298 2ND SPD.SPEED ARRIVAL RANGE<br />

881 3RD SPD.SPEED ARRIVAL RANGE<br />

1054 1ST SPD.SPEED ARRIVAL RANGE<br />

Range: 1 ~ 20000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

<strong>LNC</strong> Technology Co., Ltd. 189


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

Default<br />

value:<br />

Unit:<br />

50<br />

RPM<br />

Description:under the condition that parameter 0090 is 1 (Spindle rotational speed is the<br />

actually speed), the system will calculate the actual rotational speed according<br />

to the spindle ENCODER feedback signal.<br />

When | Spindle actual rotational speed – spindle command rotational speed | is<br />

less than or equal to this parameter setting value, the system will set S BIT 088<br />

to ON. Also, it will inform PL that the spindle actual rotational speed to is arrived<br />

to the commanding value. If this parameter setting value is too small, it is<br />

possible to cause the system’s checking spindle actual rotational speed not able<br />

to arrive within the error range, which will not set S BIT 088 to ON. This further<br />

causes S code or M3, and M4 commands not able to end.<br />

1056 1ST SPD ORIENT OFFSET VALUE<br />

Range: -99999999 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: pulse<br />

Description:During Spindle orientation, this parameter sets the OFFSET amount of<br />

positioning final point and basic point. Parameter # 0248 can assign pulse or<br />

0.001 degree as OFFSET amount unit.<br />

1058 1ST SPD RIGTAP MAX FOLLOW ERROR<br />

Range: 1 ~ 32767<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 3000<br />

value:<br />

Unit: um<br />

Description:during rigid tapping, if the following error limit of Z-axis is larger than this setting<br />

value, the system will stop rigid tapping. Also, the system warning message<br />

(MOT 0052 error in rigid tapping is over limit) will occur. After machine<br />

adjustment, please set this parameter to a smaller value in order to prevent<br />

wrong motion that may cause damage of machines. After the rigid tapping<br />

machine adjustment is completed, please set the value that is 5 〜10 times<br />

larger than the display value from system data #021 on DGNOS page.<br />

190 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1059 1ST SPD RIGTAP ACC/DEC TIME<br />

Range: 1 ~ 32767<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 500<br />

value:<br />

Unit: ms<br />

Description:setting under the rigid tapping mode, spindle’s acc/deceleration time. Since<br />

under the rigid tapping mode, the movement amount of Z-axis is calculated by<br />

the spindle movement so this parameter also set the acc/deceleration time for<br />

Z-axis.<br />

1060 1ST SPD RIGTAP EXTRACTION RATE<br />

Range: 1 ~ 400<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 100<br />

value:<br />

Unit: %<br />

Description during rigid tapping returning, the needed cutting power is small, so can use this<br />

:<br />

parameter to set the increasing return speed.<br />

Example, if setting value is 200, this means during returning procedure, the<br />

spindle turns by two times of the original commanding rotational speed, Z-axis<br />

moves by two times of the original commanding the feedrate. But, the faster the<br />

rotational speed, the larger the following error of Z-axis. So must be careful in<br />

order to prevent crash situation. Also, must be careful of the limitation of the<br />

highest turning speed of the spindle and the highest cutting speed of the Z-axis.<br />

<strong>LNC</strong> Technology Co., Ltd. 191


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

299 2RD SPINDLE ZERO SPEED RANGE<br />

882 3RD SPINDLE ZERO SPEED RANGE<br />

1063 1RD SPINDLE ZERO SPEED RANGE<br />

Range: 1 ~ 20000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 10<br />

value:<br />

Unit: RPM<br />

Description<br />

:<br />

under the condition that parameter 0090 is 1 (actual value of<br />

spindle rotational speed), the system ENCODER feedback signal will<br />

calculate the actual rotational speed. When the spindle actual rotational speed<br />

is less than or equal to this parameter setting value, the system will set S BIT<br />

092 to ON and also inform the PLC that the spindle actual rotational speed has<br />

reached zero speed already.<br />

1064 1ST SPD RIGTAP VELOCITY COMP.<br />

Range: 0 ~ 100000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description when the rigid tapping machine adjustment is completed,<br />

:<br />

please set the commanding compensation value as the display value from data<br />

system #023 at (Diagnostic) DGNOS page.<br />

192 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1065 1ST SPD RIGTAP ACCELERATED COMP<br />

Range: 0 ~ 100000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description after rigid tapping is completed, please set the commanding<br />

:<br />

compensation value as the display value of data system #022 at<br />

(Diagnostic) DGNOS page.<br />

1066 1ST SPD RIGTAP VELOCITY FILTER<br />

Range: 0 ~ 20<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description the bigger the value, the less vibration will occur. , but the<br />

:<br />

bigger the rigid tapping following error will be. When enter 0, this means<br />

there is no filting effect. When enter the maximum value (i.e., 20), this<br />

means there is a completely filting effect, which means the signal is filited<br />

completely. Please adjust this parameter setting value during the rigid<br />

tapping machine adjustment.<br />

<strong>LNC</strong> Technology Co., Ltd. 193


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1070 1ST SPD RIGTAP ACC. FILTER<br />

Range: 0 ~ 20<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description the bigger the value, the less vibration will occur and the<br />

:<br />

smaller of the following error. But, it is NOT absolute, which means there is<br />

an optimal value under certain filter intensity. When enter 0, it means there<br />

is no filting effect. When enter the maximum value (i.e., 20), it means there<br />

is a completely filting effect, which means the signal is filited completely.<br />

Please adjust this parameter setting value during the rigid tapping machine<br />

adjustment.<br />

1071 1ST SPD RIGTAP OUTPUT INVERSE<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description When the spindle +ive rotating direction under rigid tapping is<br />

:<br />

not the same as that under not rigid tapping mode, please set this parameter to<br />

1. Please adjust this parameter setting value during rigid tapping machine<br />

adjustment.<br />

194 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1075 1ST SPD SERVOLAG LIMIT<br />

Range: 0 ~ 100000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 4096<br />

value:<br />

Unit: Pulse<br />

Description when rigid tapping machine adjustment is complete, please set the value or the<br />

:<br />

allowable following error that is 5-10 times larger of the display value from data<br />

system #26 at DGNOS page. If this setting value is too small, it is possible to<br />

cause the system alarm (MOT 055 rigid tapping spindle servo error is over the<br />

allowable limit) to occur during rigid tapping.<br />

1096 MAX SPEED OF 1ST SPINDLE<br />

Range: 0 ~ 99999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 6000<br />

value:<br />

Unit: RPM<br />

Description this parameter is used to set the max rotational speed ofspindle. When spindle<br />

:<br />

command rotational speed, which is set by user, islarger than this Parameter<br />

setting value, the system will restrict the spindlerotational speed according to<br />

this parameter setting value.<br />

<strong>LNC</strong> Technology Co., Ltd. 195


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1097 1ST SPINDLE D/A SCALE RPM/10V<br />

Range: 1 ~ 99999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 6000<br />

value:<br />

Unit: RPM<br />

Description<br />

:<br />

this parameter is to set the corresponding spindle rotational<br />

speed when the spindle motor input voltage is 10V.<br />

1116 1ST SPINDLE ENCODER PPR<br />

Range: 1 ~ 32767<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 1024<br />

value:<br />

Unit: pulse<br />

Description Assumed total pulse per rotation of spindle motor ENCODER is 2500, this<br />

:<br />

means this parameter is set to 2500. Please refer to parameter # 0057 for<br />

setting description.<br />

196 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1076 JOG SPEED OF 2ND SPINDLE<br />

1077 JOG SPEED OF 3RD SPINDLE<br />

1121 JOG SPEED OF 1ST SPINDLE<br />

Range: 0 ~ 99999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 200<br />

value:<br />

Unit: RPM<br />

Description<br />

:<br />

When C BIT 072 is ON, spindle will rotate in this parameter’s setting rotational<br />

speed.<br />

1150 SPEED OF 1ST SPINDLE GEAR<br />

Range: 0 ~ 99999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: RPM<br />

Description this parameter is to determine whether or not to do gear<br />

:<br />

shifting motion according to the spindle S code command.<br />

1. when the spindle is at 1 st gear and assuming that the user command of the<br />

spindle S code command is larger than (not including equal to) this<br />

parameter setting value, the system will inform PLC to do the gear shifting<br />

motion (shifting to which gear depends on the spindle commanding<br />

rotational speed);<br />

2. when the spindle is NOT at 1 st gear and assuming that the user command<br />

of the spindle S code command is smaller than (including equal to ) this<br />

parameter setting value, the system will inform PLC to shift the spindle to<br />

the 1 st gear;<br />

3. if no spindle gear shifting need, recommend to use the 4 th gear (C BIT<br />

097 – 099 are OFF) and set this parameter to 0.<br />

Need to pay attention to the following: NC only follow S code command from the<br />

user command of to determine the desired gear and then to inform PCL to<br />

execute gear shifting motion. If due to the spindle rotational speed OVERRIDE,<br />

which cause the actual rotational speed is over that gear range, then NC will<br />

NOT execute the above motion.<br />

1151 SPEED OF 2ND SPINDLE GEAR<br />

Range: 0 ~ 99999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: RPM<br />

Description this parameter is to determine whether or not to execute the<br />

:<br />

gear shifting motion according to the spindle S code command.<br />

1. when the spindle is at 2 nd gear and assuming that the spindle S code<br />

<strong>LNC</strong> Technology Co., Ltd. 197


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

command from the user commanding of is larger than (not including equal<br />

to) this parameter setting value, or smaller than (including equal to) the<br />

setting value of parameter 1150 (gear shifting rotational speed of 1 st<br />

spindle gear), the system will inform PLC to execute the gear shifting<br />

motion (shifting to which gear is determined by the spindle commanding<br />

rotational speed);<br />

2. the spindle is NOT at 2 nd gear and assuming that the spindle S code<br />

command from the user command of is smaller than (including equal to)<br />

this parameter setting value and larger than (not including equal to) the<br />

setting value of parameter 1150 (gear shifting rotational speed of 1 st<br />

spindle gear), the system will inform PLC to shift the spindle to the 2 nd<br />

gear;<br />

3. if no spindle gear shifting need, recommend to use the 4 th gear (C BIT<br />

097 – 099 are OFF) and set this parameter to 0.<br />

Need to pay attention to the following: NC only follows the S code<br />

command from user command to determine the gear and then to inform<br />

PCL to execute gear shifting motion. If due to the spindle rotational speed<br />

OVERRIDE, the actual rotational speed is over that gear range, and then NC<br />

will NOT execute the above motion.<br />

1152 SPEED OF 3RD SPINDLE GEAR<br />

Range: 0 ~ 99999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: RPM<br />

Description this parameter is to determine whether or not to execute gear<br />

:<br />

shifting motion according to spindle S code command:<br />

1. when spindle is at 3 rd gear and assuming that the spindle S code<br />

command from user command of is larger than (not including equal to) this<br />

parameter setting value, or smaller than (including equal to) the setting<br />

value of parameter 1151 (gear shifting rotational speed of the 2 nd spindle<br />

gear), the system will inform PLC to execute gear shifting motion (shifting<br />

to which gear is determined by the spindle commanding rotational speed);<br />

2. when spindle is NOT at 3 rd gear and assuming the spindle S code<br />

command from user command is smaller than (including equal to) this<br />

parameter setting value and larger than (not including equal to) the setting<br />

value of parameter 1151 (gear shifting rotational speed of the 2 nd spindle<br />

gear). System will inform PLC to shift spindle to the 3 rd gear.<br />

3. if no spindle gear shifting need, recommend to use the 4 th gear (C BIT<br />

097 – 099 are OFF) and set this parameter to 0.<br />

Need to pay attention to the following: NC only follows the S code<br />

command from user command to determine the gear and then to inform<br />

PCL to execute gear shifting motion. If due to the spindle rotational speed<br />

OVERRIDE, the actual rotational speed is over that gear range, then NC<br />

will NOT execute the above motion.<br />

1153 1ST SPD MOTOR RPM OF GEARING<br />

Range: 0 ~ 99999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

198 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

Default<br />

value:<br />

Unit:<br />

Description<br />

:<br />

100<br />

RPM<br />

during spindle is shifting gears, when C BIT 126 is ON, the<br />

system will use this parameter to set the rotating speed to driver spindle<br />

motor. At this time, spindle rotational speed OVERRIDE does not work.<br />

1154 1ST SPD MOTOR RPM RANGE OF GEAR<br />

Range: 0 ~ 99999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 50<br />

value:<br />

Unit: RPM<br />

Description assumed during spindle gear shifting procedure. Assumed C<br />

:<br />

BIT 126 is ON, if _the spindle motor actual rotational speed - parameter 1113<br />

setting value_is less than and equal to this parameter setting value, the system<br />

will set S BIT 094 to ON.<br />

1155 MAX SPEED OF 1ST SPINDLE GEAR<br />

Range: 0 ~ 99999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 1000<br />

value:<br />

Unit: RPM<br />

Description assumed the spindle is at the 1 st gear, when the spindle rotational speed<br />

:<br />

(spindle S Code command * rotational speed OVERRIDE) is over this prameter<br />

setting value, the system will be restricted this parameter setting value.<br />

1156 MAX SPEED OF 1ND SPINDLE GEAR<br />

Range: 0 ~ 99999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 2000<br />

value:<br />

Unit: RPM<br />

Description assumed the spindle is at the 2 nd gear, when the spindle rotational speed<br />

:<br />

(spindle S Code command * rotational speed OVERRIDE) is over this<br />

parameter setting value, the system will be restricted this parameter setting<br />

value.<br />

<strong>LNC</strong> Technology Co., Ltd. 199


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1157 MAX SPEED OF 1RD SPINDLE GEAR<br />

Range: 0 ~ 99999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 3000<br />

value:<br />

Unit: RPM<br />

Description assumed the spindle is at the 3 rd gear, when the spindle<br />

:<br />

rotational speed (spindle S Code command * rotational speed OVERRIDE) is<br />

over this parameter setting value, the system will be restricted this parameter<br />

setting value.<br />

200 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

5.5 MPG Parameter<br />

15 AXIS.HANDLE FOR MPG DRY RUN<br />

Range: 1 ~ 19<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 6<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

this is used to set connection port number of the handwheel under MPG dry fun<br />

mode (works only in MEM or MDI modes).<br />

18 MPG MULTIPLIER MODE<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description This parameter is to set the cutting axis acceleration/deceleration time under<br />

:<br />

Lathe-Tapping cutting command. The smaller the parameter value, the faster<br />

the cutting axis reaches the designated moving speed. However, it may cause<br />

vibration of cutting axis.<br />

In 486IPC(IPO is 5ms), max. value of this parameter is 1000.<br />

In 586IPC(IPO is 3ms), max. value of this parameter is 1000.<br />

When the setting value is less than IPO interval of the above restricted value,<br />

System Alarm【MOT 4056: Lathe-Tapping Acc/Dec Time (Para. # 0018) Setting<br />

Error】will occur.<br />

<strong>LNC</strong> Technology Co., Ltd. 201


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

28 MPG X PORT<br />

75 MPG 4TH PORT<br />

87 MPG Y PORT<br />

88 MPG Z PORT<br />

Range: 1 ~ 19<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 6<br />

value:<br />

Unit: Nul<br />

Description under MPG mode, connection port number of X-axis MPG.<br />

:<br />

202 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

5.6 Compensation Parameter<br />

38 BACKLASH/PITCH COMP UNITS<br />

Range: 0 ~ 16<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 16<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

to set units for backlash compensation parameters (parameters 0044~ 0047)<br />

and pitch compensation parameters (parameters 0300 ~ 0349、0450 ~0499、<br />

0600 ~ 0649、0750 ~ 0799).<br />

44 X BACKLASH<br />

45 Y BACKLASH<br />

46 Z BACKLASH<br />

47 4TH BACKLASH<br />

Range: 0 ~ 32767<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description to set backlash compensation of X-axis.<br />

:<br />

<strong>LNC</strong> Technology Co., Ltd. 203


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

112 NUM.SECS OF X.PICTH COMP<br />

113 NUM.SECS OF Y.PICTH COMP<br />

114 NUM.SECS OF Z.PICTH COMP<br />

115 NUM.SECS OF 4TH.PICTH COMP<br />

Range: 1 ~ 150<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 20<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

to set total section of X-axis pitch error compensation. The multiple product of<br />

this parameter setting value and parameter 1018(1019, 1020, 1021) setting<br />

value should be the total length of X-axis ball screw pitch error compensation.<br />

Now the max compensation section is 50 sections for each axis.<br />

117 ENABLE OF BACKLASH COMP(BIT)<br />

Range: 0 ~ 63<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description BIT0: for X axis, 1 means to enable X-axis backlash compensation function; 0<br />

:<br />

means not to enable.<br />

BIT1:for Y axis, 1 means to enable Y axis backlash compensation function; 0<br />

means not to enable.<br />

BIT2:for Z axis, 1 means to enable Z axis backlash compensation function; 0<br />

means not to enable.<br />

BIT3:for 4 th axis, 1 means to enable 4th axis backlash compensation function; 0<br />

means not to enable.<br />

118 FLAG OF BACKLASH DIRECTION<br />

Range: 0 ~ 63<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description BIT0:for setting X axis, 1 means pitch error compensation starts from –ive<br />

:<br />

direction X axis returns to the reference point; 0 means pitch error<br />

compensation starts toward +ive direction.<br />

BIT1:for setting Y axis, 1 means pitch error compensation starts from –ive<br />

direction Y axis returns to the reference point; 0 means pitch error<br />

compensation starts toward +ive direction.<br />

BIT2:for setting Z axis, 1 means pitch error compensation starts from –ive<br />

direction Z axis returns to the reference point; 0 means pitch error<br />

204 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

compensation starts toward +ive direction.<br />

BIT3:for setting 4 th axis, 1 means pitch error compensation starts from –ive<br />

direction 4 th axis returns to the reference point; 0 means pitch error<br />

compensation starts toward +ive direction.<br />

119 ENABLE FLAG OF PITCH COMP<br />

Range: 0 ~ 63<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description BIT0:for X axis, 1 means to enable X axis pitch error compensation function; 0<br />

:<br />

means not to enable.<br />

BIT1:for Y axis, 1 means to enable Y axis pitch error compensation function; 0<br />

means not to enable.<br />

BIT2:for Z axis, 1 means to enable Z-axis pitch error compensation function; 0<br />

means not to enable.<br />

BIT3:for 4 th axis, 1 means to enable 4 th axis pitch error compensation function;<br />

0 means not to enable.<br />

300 PITCH X COMP.001<br />

349 PITCH X COMP.050<br />

1200 PITCH X COMP.051<br />

1299 PITCH X COMP.150<br />

Range: -20000 ~ 20000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

assumed pitch error on the nth section of X axis is M (um), the parameter<br />

#(300+N – 1) is set as M, parameter 0038 is set as 16.<br />

358 ENABLE THERMO DEFORMED CMP<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:Turn off the thermal compensation function<br />

1:Turn on the thermal compensation function<br />

<strong>LNC</strong> Technology Co., Ltd. 205


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

359 ALLOWANCE OF THERMO CMP INPUT<br />

Range: 1 ~ 1000<br />

Active: Instant Activity<br />

Level: Machinery Builder<br />

Default 1000<br />

value:<br />

Unit: um<br />

Description The maximum thermal compensation input amount allowed.<br />

:<br />

450 PITCH Y COMP.001<br />

499 PITCH Y COMP.050<br />

1300 PITCH Y COMP.051<br />

1399 PITCH Y COMP.150<br />

Range: -20000 ~ 20000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

assumed pitch error on the nth section of Y axis is M (um), the Parameter #<br />

(450+N – 1) is set as M, parameter 0038 is set as 16.<br />

206 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

600 PITCH Z COMP.001<br />

649 PITCH Z COMP.050<br />

1400 PITCH Z COMP.051<br />

1499 PITCH Z COMP.150<br />

Range: -20000 ~ 20000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

assumed pitch error on the nth section of Z axis is M (um), the Parameter #<br />

(600+N – 1) is set as M, parameter 0038 is set as 16.<br />

750 PITCH A COMP.001<br />

799 PITCH A COMP.050<br />

1500 PITCH A COMP.051<br />

1599 PITCH A COMP.150<br />

Range: -20000 ~ 20000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

assumed pitch error on the nth section of Z axis is M (um), the parameter<br />

#(750+N – 1) is set as M, parameter 0038 is set as 16.<br />

<strong>LNC</strong> Technology Co., Ltd. 207


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

811 SPIKE CMP G CODE 0)G2 G3 1)ALL<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description when parameter setting is 0, this means the spike compensation value, set by<br />

:<br />

using circular testing, can only be applied on G02/03 arch interpolation<br />

command. When it is 1, the spike compensation value can be applied on all<br />

moving G codes, which means as long as servo axis is doing reverse direction<br />

motion, the setting spike compensation value will be added.<br />

812 SPIKE +X CMP VALUE<br />

818 SPIKE +Y CMP VALUE<br />

828 SPIKE +Z CMP VALUE<br />

Range: 0 ~ 200<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

assumed doing the circular testing. When the spike value of +ive X axis<br />

direction is 0, this means NOT to enable the spike compensation function of<br />

+ive X-axis direction.<br />

208 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

813 SPIKE +X CMP TIME<br />

819 SPIKE +Y CMP TIME<br />

829 SPIKE +Z CMP TIME<br />

Range: 0 ~ 200<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

Please check the controller’s actual disconnecting time interval first and then set<br />

the desired value. Assumed doing circular testing. When set the spike time<br />

interval to 0, it means NOT to enable the spike compensation function of +ive<br />

X-axis direction.<br />

814 SPIKE +X CMP DELAY<br />

820 SPIKE +Y CMP DELAY<br />

830 SPIKE +Z CMP DELAY<br />

Range: 0 ~ 200<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

Please check the controller’s actual disconnecting time interval first and then set<br />

the value. Assumed doing circular testing. Delay time interval between the spike<br />

point of +ive X-axis direction and the direction changing point.<br />

<strong>LNC</strong> Technology Co., Ltd. 209


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

815 SPIKE -X CMP VALUE<br />

825 SPIKE -Y CMP VALUE<br />

831 SPIKE -Z CMP VALUE<br />

Range: 0 ~ 200<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

assumed doing the circular testing. When the spike value of -ive X axis direction<br />

is 0, this means NOT to enable the spike compensation function of -ive X-axis<br />

direction.<br />

816 SPIKE -X CMP TIME<br />

826 SPIKE -Y CMP TIME<br />

832 SPIKE -Z CMP TIME<br />

Range: 0 ~ 200<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

Please check the controller’s actual disconnecting time interval first and then set<br />

the value. Assumed doing canned cycle testing. When set the spike time<br />

interval to 0, it means NOT to enable the spike compensation function of -ive<br />

X-axis direction.<br />

210 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

817 SPIKE -X CMP DELAY<br />

827 SPIKE -Y CMP DELAY<br />

833 SPIKE -Z CMP DELAY<br />

Range: 0 ~ 200<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

Please check the controller’s actual disconnecting time interval first and then set<br />

the value. Assumed doing canned cycle testing. Delay time interval between the<br />

spike point of X axis -ive direction and the direction changing point.<br />

1018 COMP DIST OF EACH SECTION.X<br />

1019 COMP DIST OF EACH SECTION.Y<br />

1020 COMP DIST OF EACH SECTION.Z<br />

1021 COMP DIST OF EACH SECTION.A<br />

Range: 0 ~ 99999999<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 30000<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

Assumed pitch error compensation interval is 10000μm of every X axis section,<br />

so please set this parameter to 1000.<br />

<strong>LNC</strong> Technology Co., Ltd. 211


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1046 START.X COMP POS<br />

1047 START.Y COMP POS<br />

1048 START.Z COMP POS<br />

1049 START.4 COMP POS<br />

Range: -99999999 ~ 99999999<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

When the starting position of X axis pitch error compensation is 0μm(machine<br />

coordinate), please set this parameter to 0.<br />

212 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

5.7 Zero Return parameter<br />

19 WAY TO DEAL HOMING ON DOG<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:0:warning from the system in order to inform user to move away the servo axis.<br />

Then the system will execute the zero return procedure. Each axis warning<br />

message is as following:<br />

X Axis:【 MOT 0014 X axis is on HOME DOG】<br />

Y Axis:【 MOT 0015 Y axis is on HOME DOG】<br />

Z Axis:【 MOT 0016 Z axis is on HOME DOG】<br />

4 th Axis:【 MOT 0017 4 th axis is on HOME DOG】<br />

1:NC moves away the servo axis automatically (moves toward the reverse<br />

direction from the reference point). After getting away from DOG, it will execute<br />

home/zero return procedure.<br />

20 DEFAULT OF RETURN HOME FN.(BIT)<br />

Range: 0 ~ 63<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:After turning on the machine, check if each axis is preset to having returned to<br />

reference point.<br />

Bit 0:X axis<br />

Bit 1:Y axis<br />

Bit 2:Z axis<br />

Bit 3:The 4 th axis<br />

Bit 4:The 5 th axis<br />

Bit 5:The 6 th axis<br />

30 OFFSET LENGTH OF X.ORG<br />

31 OFFSET LENGTH OF Y.ORG<br />

32 OFFSET LENGTH OF Z.ORG<br />

33 OFFSET LENGTH OF 4.ORG<br />

Range: -99999999 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

<strong>LNC</strong> Technology Co., Ltd. 213


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

Default<br />

value:<br />

Unit:<br />

0<br />

um<br />

Description:Assumed each axis moves N distance toward machine reference point. Setting<br />

this parameter to N if want to get the offset amount of N distance (um). Different<br />

setting value will change the reference point due to different offset amount. But,<br />

this setting value will NOT change the display coordinate after returning home.<br />

When the setting value is positive, it makes the machine home point of this axis<br />

moves away from DOG direction.<br />

When the setting value is positive, it makes the machine home point of this axis<br />

moves close to DOG direction.<br />

34 PAUSE TIME.X HOME SERACHING<br />

35 PAUSE TIME.Y HOME SERACHING<br />

36 PAUSE TIME.Z HOME SERACHING<br />

37 PAUSE TIME.4 HOME SERACHING<br />

Range: 100 ~ 2000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 100<br />

value:<br />

Unit: 10 ms<br />

Description:the required dwell time that is set by this parameter can be used in the following<br />

three places:<br />

a. dwell time of decelerating stop when X axis moves toward the reference<br />

point in 1 st speed and reaches DOG.<br />

b. dwell time of decelerating stop when X axis gets away from DOG in 2 nd<br />

speed and finds motor INDEX.<br />

c. dwell time of decelerating stop when X axis returns back the desired motor<br />

INDEX position.<br />

48 DIRECT SET HOME POSITION<br />

Range: 0 ~ 63<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:BIT 0: Setting 0 to indicate X axis re-searching HOME point method is<br />

re-searching DOG+ Index. 1 to indicate X axis re-searching HOME point<br />

method is force setting.<br />

BIT 1: Setting 0 to indicate Y axis re-searching HOME point method is<br />

re-searching DOG+ Index. 1 to indicate Y axis re-searching HOME point<br />

method is force setting.<br />

BIT 2: Setting 0 to indicate Z axis re-searching HOME point method is<br />

re-searching DOG+ Index. 1 to indicate Z axis re-searching HOME point<br />

method is force setting.<br />

BIT 3: Setting 0 to indicate the 4 th axis re-searching HOME point method is<br />

re-searching DOG+ Index. 1 to indicate the 4 th axis re-searching HOME point<br />

214 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

method is force setting.<br />

64 HOME DOG 0)NC 1)NO<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:this parameter works only when the home DOG sensor signal<br />

is connected to LOCAL INPUTS (Transit Board HS1 〜 HS4 connect<br />

points). (Parameter 0175 setting value is 0). If the home dog sensor signal<br />

is connected REMOTE INPUTS, then PLC ladder diagram program needs<br />

to change each axis home DOG signal state to C BIT 0031 〜 0035 in<br />

order to inform NC.<br />

76 ENABLE ABS SET AFTER HOMING<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description:please refer to 1014 ~ 1017 for absolute coordinate setting<br />

value. After each servo axis returns home, display value of absolute<br />

coordinate is determined by following three points:<br />

a. setting value of parameters 1014 ~ 1017;<br />

b. 00 coordinated system, setting value of G54 ~ G59 coordinate system;<br />

c. setting value in G52 area coordinate system.<br />

⎛00<br />

coordinate value<br />

⎞<br />

⎜<br />

⎟<br />

Para#1014 ~ 1017 value − ⎜+<br />

G54 ~ G59 coordinate value ⎟<br />

⎜<br />

⎟<br />

⎝+<br />

G52 regional coordinate value ⎠<br />

In addition,<br />

a. setting value of parameters 1014 ~ 1017: use this parameter to decide<br />

whether or not they are effective;<br />

b. 00 coordinate system, G54 ~ G59 coordinate system setting values:<br />

effective permanently;<br />

c. setting value in G52 area coordinate system: use parameter 0133 to decide<br />

whether or not it is effective.<br />

<strong>LNC</strong> Technology Co., Ltd. 215


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

77 ENABLE NONE HOMING G00 OPR<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description:<br />

Parameter 77setting<br />

value<br />

is 1, G00 is effective<br />

before zero return<br />

G00 motion normally,<br />

each axis feedrate is<br />

MEM, MDI<br />

decided by the setting<br />

Automatic<br />

value of parameters<br />

mode<br />

1000 ~ 1003.<br />

JOG, RAPID<br />

<strong>Manual</strong><br />

mode<br />

Under JOG, each axis<br />

feedrate is decided by<br />

the<br />

setting value of<br />

parameter 1100 ~ 1103;<br />

under RAPID, each axis<br />

feedrate is decided by<br />

the setting value of<br />

parameters 1000 ~ 1003.<br />

Parameter 77 setting value<br />

is 0,G00 is NOT effective<br />

before<br />

Return Home<br />

Automatically change G00<br />

motion to G01 motion,<br />

feedrate is the present F code<br />

designated value (use<br />

parameter 149 to set the<br />

default value).<br />

Motion of RAPID and motion<br />

of JOG, each axis feedrate is<br />

decided by the setting value of<br />

parameter1100 ~ 1103.<br />

79 ORG.X AHEAD/BEHIND OF DOG<br />

80 ORG.Y AHEAD/BEHIND OF DOG<br />

81 ORG.Z AHEAD/BEHIND OF DOG<br />

82 ORG.4 AHEAD/BEHIND OF DOG<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description:0:when reference point is behind DOG, after each axis reaches DOG, each axis<br />

will continue moving toward the same direction and look for the reference point;<br />

1:home position is ahead of DOG, after each axis reaches DOG, each axis will<br />

continue moving toward the reverse direction and look for the reference point.<br />

216 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

120 HOME DIRECTION OF AXIS<br />

Range: 0 ~ 63<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:about home return direction, other than this parameter setting, PLC also needs<br />

to do the corresponding modification according to this setting. Home return<br />

procedure that is written by PLC of the controller machine version uses the<br />

home point is at +ive direction as the standard.<br />

Also, in the safety concern to prevent mistakenly touching, the direction<br />

signal will be sent out (using X axis as an example, which is C6) no matter<br />

which servo axis key ( ) that the user presses. So, under the condition<br />

that the home point is at the –ive servo axis direction, not only needs to set the<br />

corresponding BIT of this parameter to 1 but also needs to modify the<br />

orresponding returning home program in PLC.<br />

Use X axis as an example, the diagram of PLC return home procedure from<br />

+ive direction is as following:<br />

If X axis returns home at the –ive direction, other than setting this parameter<br />

BIT0 to 1, PLC modification is as following:<br />

<strong>LNC</strong> Technology Co., Ltd. 217


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

175 HOME DOG FROM 0)LOCAL 1)REMOTE<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:0:means the HOME DOG signal is connected LOCAL INPUTS (transit board<br />

HS1 ~ HS4), must setting the type of DOG signal to(parameter 0064);<br />

1:means the HOME DOG signal is connected REMOTE INPUTS, PLC must<br />

change each axis reference point DOG signal to the corresponding C BIT<br />

0031 ~ 0034(please refer to C BIT 0031 ~ 0034 for description).<br />

204 HOME POSITION RECORD BIT<br />

Range: 0 ~ 63<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:BIT 0: 0 means when X axis is in Home point mode, the system must<br />

research Home point when executing return Home process.<br />

1 means when X axis is in Home point mode, the system uses NC record’s<br />

Home point when executing return Home process.<br />

BIT 1: 0 means when Y axis is in Home point mode, the system must<br />

research Home point when executing return Home process.<br />

1 means when Y axis is in Home point mode, the system uses NC record’s<br />

Home point when executing return Home process.<br />

BIT 2: 0 means when Y axis is in Home point mode, the system must research<br />

Home point when executing return Home process.<br />

1 means when Y axis is in Home point mode, the system uses NC record’s<br />

218 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

Home point when executing return Home process.<br />

BIT 3: 0 means when 4th axis is in Home point mode, the system must<br />

research Home point when executing return Home process.<br />

1 means when 4th axis is in Home point mode, the system uses NC record’s<br />

Home point when executing return Home process.<br />

208 REFERENCE MARKS OF LINEAR SCALE<br />

Range: 0 ~ 63<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:For a servo axis that uses a linear scale with multiple reference marks, zero<br />

point return can be done manually by measuring the signal intervals between<br />

any 2 or 3 reference positions. (Please use parameter No. 0209 & 0210 to set<br />

other relevant actions).<br />

BIT0:1 Heidenhain’s linear scale with multiple reference marks is used for<br />

position feedback of X axis; 0 means not used.<br />

BIT1:1 Heidenhain’s linear scale with multiple reference marks is used for<br />

position feedback of Y axis; 0 means not used.<br />

BIT2:1 Heidenhain’s linear scale with multiple reference marks is used for<br />

position feedback of Z axis; 0 means not used.<br />

BIT3:1 Heidenhain’s linear scale with multiple reference marks is used for<br />

position feedback of the 4 th axis; 0 means not used.<br />

(Below is for 6-axis version)<br />

BIT4:1 Heidenhain’s linear scale with multiple reference marks is used for<br />

position feedback of the 5 th axis; 0 means not used.<br />

BIT5:1 Heidenhain’s linear scale with multiple reference marks is used for<br />

position feedback of the 6 th axis; 0 means not used.<br />

209 HOME RETURN FOR LINEAR SCALE<br />

Range: 0 ~ 63<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:This parameter is only applicable to Heidenhain’s linear scale with multiple<br />

reference marks. When executing zero return manually, please use BIT defined<br />

as follows to set the numbers of reference mark signals that need to be checked<br />

for each axis.<br />

0:In manual mode, 3 reference marks must be checked to complete the zero<br />

return.<br />

1:In manual mode, only 2 reference marks have to be checked to complete the<br />

zero return. If this option is adopted, parameter No. 0210 must be set<br />

additionally.<br />

<strong>LNC</strong> Technology Co., Ltd. 219


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

210 HOME POINT FOR LINEAR SCALE<br />

Range: 0 ~ 63<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:This parameter is only applicable to Heidenhain’s linear scale with multiple<br />

reference marks. Please use BIT to set the relative position of each axis’s<br />

machine zero point and the linear scale’s zero point (Only valid when the<br />

relevant BIT value to parameter No. 0209 is set to 1).<br />

0:Machine zero point is at the positive side of the linear scale’s reference mark;<br />

1:Machine zero point is at the negative side of the linear scale’s reference<br />

mark.<br />

293 ZRN BY DOG OR INDEX<br />

Range: 0 ~ 63<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:BIT0:0 means X axis uses DOG for machine reference point reference and 1<br />

means X uses motor INDEX signal for reference.<br />

BIT1:0 means Y axis uses DOG for machine reference point reference and 1<br />

means Y uses motor INDEX signal for reference.<br />

BIT2:0 means Z axis uses DOG for machine reference point reference and 1<br />

means Z uses motor INDEX signal for reference.<br />

220 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

834 ABS. ENCODER READ TIME<br />

Range: 0 ~ 10<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 5<br />

value:<br />

Unit: s<br />

Description:To set time restriction of NC executes Encoder reading movement.<br />

1014 ABS COORD.X AFTER HOMING<br />

1015 ABS COORD.Y AFTER HOMING<br />

1016 ABS COORD.Z AFTER HOMING<br />

1017 ABS COORD.4 AFTER HOMING<br />

Range: -99999999 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description:Assumed the desired X axis absolute coordinate is 300 um after home return,<br />

so the setting value must be 300. This parameter setting value only changes the<br />

coordinate display value after X-axis returns home.<br />

This will NOT change the actual machine position when X-axis returns home.<br />

So must set the parameter 0076 setting value to 1 for this setting to be effective.<br />

<strong>LNC</strong> Technology Co., Ltd. 221


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1022 X.OFF FOR ORG.2 REF TO ORG.1<br />

1023 Y.OFF FOR ORG.2 REF TO ORG.1<br />

1024 Z.OFF FOR ORG.2 REF TO ORG.1<br />

1025 4.OFF FOR ORG.2 REF TO ORG.1<br />

Range: -99999999 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description:This parameter is to set the offset amount of the 1 st reference point<br />

corresponding to the 2 nd reference point of X axis. Assumed the desired<br />

corresponding offset amount of the 1 st reference point is 2000 um, so set the<br />

offset amount to 2000.<br />

1026 X.OFF FOR ORG.3 REF TO ORG.1<br />

1027 Y.OFF FOR ORG.3 REF TO ORG.1<br />

1028 Z.OFF FOR ORG.3 REF TO ORG.1<br />

1029 4.OFF FOR ORG.3 REF TO ORG.1<br />

Range: -99999999 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description:this parameter is to set the offset amount of the 1 st reference point<br />

corresponding to the 3 rd reference point of X axis. Assumed the desired<br />

corresponding offset amount of the 1 st reference point is 2000um, so set<br />

the offset amount to 2000.<br />

222 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1030 X.OFF FOR ORG.4 REF TO ORG.1<br />

1031 Y.OFF FOR ORG.4 REF TO ORG.1<br />

1032 Z.OFF FOR ORG.4 REF TO ORG.1<br />

1033 4.OFF FOR ORG.4 REF TO ORG.1<br />

Range: -99999999 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description:this parameter is to set the offset amount of the 1 st reference point<br />

corresponding to the 4 th reference point of X axis. Assumed the desired<br />

corresponding offset amount of the 1 st reference point is 2000um, so set<br />

the offset amount to 2000.<br />

1098 ABS. ENCODER CHECK RANGE<br />

Range: 0 ~ 1000<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 30<br />

value:<br />

Unit: pulse<br />

Description:To set the max difference value that is between NC internal Encoder value and<br />

Driver Absolute Encoder value. Difference value that is between setting value of<br />

X axis Absolute Encoder (System Data #41) and NC internal value (System<br />

Data #32). Difference value that is between setting value of Y axis Absolute<br />

Encoder (System Data #42) and NC internal value (System Data #33).<br />

Difference value that is between setting value of Z axis Absolute Encoder<br />

(System Data #43) and NC internal value (System Data #34). Difference value<br />

that is between setting value of the 4th axis Absolute Encoder (System Data<br />

#44) and NC internal value (System Data #35).<br />

1104 1ST SPEED OF X HOMING<br />

1105 1ST SPEED OF Y HOMING<br />

1106 1ST SPEED OF Z HOMING<br />

1107 1ST SPEED OF C HOMING<br />

Range: 1 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 2000000<br />

value:<br />

Unit: um/min<br />

Description:during each axis zero return procedure, moves toward this axis<br />

reference point in this parameter setting speed (set by parameter 0120).<br />

After reaching the home DOG, please use the 2 nd gear speed, which is set<br />

by parameter 1108 ~ 1111, to move and to search for motor reference point.<br />

<strong>LNC</strong> Technology Co., Ltd. 223


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1108 2ST SPEED OF X HOMING<br />

1109 2ST SPEED OF Y HOMING<br />

1110 2ST SPEED OF Z HOMING<br />

1111 2ST SPEED OF C HOMING<br />

Range: 1 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 200000<br />

value:<br />

Unit: um/min<br />

Description:during each axis zero return procedure, moves toward this axis<br />

reference point in Parameter #1104 ~ #1107’s setting speed. (set by parameter<br />

0120). After touching the home DOG, please use the 2 nd gear speed, which is<br />

set by this parameter, to move and to search for motor reference point.<br />

224 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1118 ENABLE INDEX PROTECTED FUNCTION<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description:When the distance between the 1 st index and limit switch is less than 1/5 or<br />

more than 4/5 revolution of the encoder, grid protection function will activate so<br />

the next index mark will be used to make the distance between the 1 st index and<br />

limit switch over 1/2 revolution of the encoder if the distance in-between is less<br />

than 1/2 revolution. This function ensures that the zero point is always the<br />

original one.<br />

1171 SPACE1 LINEAR SCALE OF X AXIS<br />

1172 SPACE2 LINEAR SCALE OF X AXIS<br />

1173 SPACE1 LINEAR SCALE OF Y AXIS<br />

1174 SPACE2 LINEAR SCALE OF Y AXIS<br />

1175 SPACE1 LINEAR SCALE OF Z AXIS<br />

1176 SPACE2 LINEAR SCALE OF Z AXIS<br />

1177 SPACE1 LINEAR SCALE OF 4TH AXIS<br />

1178 SPACE2 LINEAR SCALE OF 4TH AXIS<br />

Range: 0 ~ 99999999<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 20020<br />

value:<br />

Unit: um<br />

Description:This parameter is only applicable to Heidenhain’s linear scale with multiple<br />

reference marks. For the setting method, please go to the figure below for<br />

reference.<br />

10.02<br />

9.98<br />

10.04<br />

9.96<br />

Parameter No. 1171<br />

Parameter No. 1172<br />

Unit:mm<br />

<strong>LNC</strong> Technology Co., Ltd. 225


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1183 OFFSET LINEAR SCALE OF X AXIS<br />

1184 OFFSET LINEAR SCALE OF Y AXIS<br />

1185 OFFSET LINEAR SCALE OF Z AXIS<br />

1186 OFFSET LINEAR SCALE OF 4TH AXIS<br />

Range: 0 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

This parameter is only applicable to Heidenhain’s linear scale with multiple<br />

reference marks. To change the set value of this parameter, please press<br />

RESET first and execute zero return manually again. By measuring 2 or 3<br />

signal intervals of the linear scale, NC can detect instantly the relative position<br />

between each axis’s current position and the linear scale’s zero point. If the two<br />

positions do not match each other, the shift between them must be defined by<br />

setting this parameter.<br />

226 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

5.8 Operation Parameter<br />

39 G92 IS CANCELLED AT G54~G59<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description 0:When program executes G54 ~ G59 coordinate selecting command, not to<br />

:<br />

cancel previous coordinate OFFSET amount which is caused by G92<br />

command. Not to cancel neither the designated command of absolute<br />

command (G90) nor OFFSET amount G54 ~ G59.<br />

1: When program executes G54 ~ G59 coordinates selecting command,<br />

cancel previous coordinate OFFSET amount which is caused by G92 command<br />

and also designated coordinate of absolute command (G90), which is for G54 ~<br />

G59 coordinates ONLY.<br />

<strong>LNC</strong> Technology Co., Ltd. 227


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

41 G00 LINEAR INTERPOLATION<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:for G00 command, each servo axis will move by its setting G00 speed, NOT<br />

to do compensation motion simultaneously.<br />

1:for G00 command, each servo does compensation motion simultaneously,<br />

the valid range is as following:<br />

a. G00 commands in MEM and/or MDI modes<br />

b. Same G00 motion commands under MEM and/or MDI modes, such<br />

as G27 ~ G30、G53;<br />

c. G00 and G53 commands of PMC axis function<br />

Final Pt.<br />

Y<br />

Starting pt.<br />

X<br />

Tool<br />

Z<br />

Parameter 0041 setting value is 0<br />

Final Pt.<br />

Y<br />

Starting pt.<br />

X<br />

Tool<br />

Z<br />

Parameter 0041setting value is 1<br />

42 COMMENT TYPE 0:/*...*/ 1:(...)<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

228 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

Level:<br />

Default<br />

value:<br />

Unit:<br />

Description<br />

:<br />

User<br />

0<br />

Nul<br />

Parameter No. 42 sets the annotation format for part programs. When<br />

parameter No. 42 is set to 0, the annotation format is /*……*/, and the functional<br />

format can either be (…) or […]. When parameter No. 42 is set to 1, the<br />

annotation format can be either /*……*/ or (………), but the functional format<br />

must be […].<br />

43 FLAG OF EXACT CHECK<br />

Range: 0 ~ 127<br />

Active: Active After RESET<br />

Level: User<br />

Default 16<br />

value:<br />

Unit: Nul<br />

Description Bit0:1 means X axis straight-line cutting (G01) of exact stop checking function<br />

:<br />

is canceled.<br />

Bit1:1 means Y axis straight-line cutting (G01) of exact stop checking function<br />

is canceled.<br />

Bit2:1 means Z axis straight-line cutting (G01) of exact stop checking function<br />

is canceled.<br />

Bit3:1 means 4th axis straight-line cutting (G01) of exact stop checking function<br />

is canceled.<br />

Bit4:1 means starting rapid traverse (G00) of exact stop checking function is<br />

canceled.<br />

For straight-line cutting command (G01), if want to enable the<br />

exact stop checking function, not only needs to set this parameter<br />

corresponding bit but also needs to order G09 command ( exact stop<br />

command, works for a single block), or G61 command (exact stop mode,<br />

permanently effective, so must use G64 command to cancel.)<br />

Once activating the exact stop checking function of G01 command, NC system<br />

will wait until each enabled servo axis enters into the checking windows range<br />

(parameters 0006 ~ 0009) after completed interpolation of any one of G01<br />

command, then it will execute the next single block.<br />

For the RAPID TRAVERSE command, G00, only need to set BIT 4 of this<br />

parameter to 1 in order to active the exact stop checking function. Under the<br />

condition that the exact stop function can be enable, NC system will wait until<br />

the actual position of each servo axis already enters into the checking windows<br />

range (parameters 0800 ~ 0803) after the interpolation is completed, then it will<br />

execute the next signal block. But if the former single block and the latter single<br />

block of a certain rapidly orientation command are both rapid traverse<br />

commands, then this rapid traverse command will NOT execute the exact stop<br />

checking.<br />

63 COORD.RLT SET WITH COORD.ABS<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

<strong>LNC</strong> Technology Co., Ltd. 229


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

Default<br />

value:<br />

Unit:<br />

Description<br />

:<br />

1<br />

Nul<br />

the valid range of this parameter setting value is as following:<br />

1. Reboot coordinate display value;<br />

2. After zero return procedure is completed, coordinate display value;<br />

3. G54 ~ G59 commands(work coordinate system selection);<br />

4. G92 command(coordinate value setting).<br />

71 INNER/OUTTER CHECK OF G22<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description 0:the embedded travel checking function that is set by G22 is the external<br />

:<br />

prohibit area. When there is command that will move the tool to outside of the<br />

setting range, the system alarm will be enabled.<br />

1:the embedded travel checking function that is set by G22 is the external<br />

prohibit area. When there is command that will move the tool to outside of the<br />

setting range, the system alarm will be enabled.<br />

About system alarm, please refer to the description of MOT 4058、9009 ~<br />

9014.<br />

73 ENABLE G31 ACCELERATION<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:after G31 SKIP SIGNAL enters, immediately stop without decelerating;<br />

1 : after G31 SKIP SIGNAL enters, use parameter 0041 to set the<br />

acc/decelerating time in order to proceed stop in decelerating speed.<br />

74 ENABLE MACRO TRACE UNDER SBK<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:Macro command (not NC command) Not execute single block;<br />

1:Macro command (not NC command) execute single block.<br />

230 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

78 ENABLE C AXIS TANGENT FOLLOW<br />

292 ENABLE C AXIS PATH FOLLOWING<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

When this function is enabled, C axis moving angle will move by following XY<br />

cutting line direction.<br />

83 ENABLE G00 UNDER DRY RUN<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

: Under Dry Run, Motion of RAPID TRAVERSE Command<br />

Para #0083<br />

0 1<br />

Para #0041 Para #0041<br />

0 1 0 1<br />

RAPID mode (1)<br />

In MEM and MDI modes, G00<br />

command and/or motion with<br />

G00 command<br />

(2) (3) (1) (4)<br />

G00 and G53 commands of PMC<br />

axis function<br />

C23 OFF:<br />

(1)<br />

C23 ON:<br />

(1)<br />

C23 OFF:<br />

(3)<br />

C23 ON:<br />

(4)<br />

(1) (4)<br />

(1) Each axis moves according to its G00 speed.<br />

(2) Each axis moves according to its JOG speed<br />

(3) Each axis moving speed will NOT excess its setting JOG speed.<br />

(4) Each axis moving speed will NOT excess its setting G00 speed.<br />

89 M CODE ID OF PART COUNTER<br />

Range: 1 ~ 99<br />

Active: Active After RESET<br />

<strong>LNC</strong> Technology Co., Ltd. 231


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

Level:<br />

Default<br />

value:<br />

Unit:<br />

Description<br />

:<br />

User<br />

99<br />

Nul<br />

other than M02 and M03, users can use this parameter to set<br />

another working piece counter control of M code command. But, must<br />

avoid using normal M code commands, such as M00 (program stop), M01<br />

(optional stop), M3 (Spindle Positive Rotating) and est. Please refer to the<br />

program manual for a full detailed description of M code commands.<br />

When the program executes this M code, working piece will be added up<br />

at the POS page. At the same time, machine working time will return to<br />

zero automatically. If the adding-up sum of working piece is larger than<br />

the max sum of working piece which is set by users, the system will send<br />

out S BIT 134 signal to inform PLC.<br />

94 EDIT FILE O9XXX 0)N 1)Y<br />

Range: 0 ~ 1<br />

Active: Instant Activity<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description Set the edibility of files No. O9000~O9999, etc.<br />

:<br />

121 ESCAPE DIRECTION OF G76/G87<br />

Range: 0 ~ 3<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

: Tool Escape Direction of Canned Cycle Commands<br />

(G76/G87)<br />

G17 G18 G19<br />

0 +X +Z +Y<br />

1 -X -Z -Y<br />

2 +Y +X +Z<br />

3 -Y -X -Z<br />

232 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

122 NAME OF AXIX.4<br />

Range: 0 ~ 5<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 2<br />

value:<br />

Unit: Nul<br />

Description Setting Value is 0, name of the 4 th Axis is A;<br />

:<br />

Setting Value is 1, name of the 4 th Axis is B;<br />

Setting Value is 2, name of the 4 th Axis is C;<br />

Setting Value is 3, name of the 4 th Axis is U;<br />

Setting Value is 4, name of the 4 th Axis is V;<br />

Setting Value is 5, name of the 4 th Axis is W.<br />

123 POWER ON METRIC/INCH SYSTEM<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description this parameter is to set the system starting unit after rebooting the system.<br />

:<br />

Please use G20 (inch command)/G21 (metric command) to exchange the<br />

system starting unit.<br />

124 POWER ON G00/G01 DEFAULT<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: User<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description This parameter is used to set the moving command after NC starts. After<br />

:<br />

entering into NC system, user needs to execute the following command under<br />

MEM or MDI mode:<br />

G91 X100. Y100. Z100.;<br />

When parameter setting value is 0, the above command equals to:<br />

G91 G00 X100. Y100. Z100.;<br />

When parameter setting value is 1, the above command equals to:<br />

G91 G01 X100. Y100. Z100.;<br />

129 G02 G03 ARC ERROR RANGE<br />

Range: 0 ~ 32767<br />

Active: Active After RESET<br />

<strong>LNC</strong> Technology Co., Ltd. 233


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

Level:<br />

Default<br />

value:<br />

Unit:<br />

Description<br />

:<br />

User<br />

5<br />

um<br />

When part programs execute G02 or G03, the system will check if the terminal<br />

position of an arc is on the circle described by starting point coordinates and<br />

center point coordinates. If the deviation between the arc’s terminal position<br />

and the circle exceeds the range set by parameter No. 129, the system will<br />

send a warning signal as [Illegal Radius].<br />

When parameter is set to 0, the range to be checked is preset as 5um.<br />

130 AUTO CONTROL OF NUM PRECISION<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description 【Example】Under the metric unit system, if set this parameter to 0, user will<br />

:<br />

order the following commands in MDI mode:<br />

G90G00X100F1000<br />

X axis moves 0.1mm position in 1mm/min speed<br />

G90G00X100.F1000.<br />

X axis moves to 100mm position in 1000mm/min speed<br />

If set this parameter to 1:<br />

G90G00X100F1000<br />

X axis moves to 100mm position in 1000mm/min speed<br />

G90G00X100.F1000.<br />

X axis moves to 100mm position in 1000mm/min speed<br />

131 COMPENSATION STARTING TYPE<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:path compensation by using Type A;<br />

1:path compensation by using Type B.<br />

Please refer to program manual for the full detailed description of path<br />

compensation type.<br />

134 G83/G87 EXTRACT 0)ESCAPE 1)R<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

234 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

Level:<br />

Default<br />

value:<br />

Unit:<br />

Description<br />

:<br />

User<br />

1<br />

Nul<br />

0:Start point<br />

1:R point<br />

135 DEFAULTS OF G90/G91<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:setting absolute coordinate(G90)as the coordinate type when starting system<br />

1:setting incremental coordinate(G91)as the coordinate type when starting<br />

system.<br />

136 X SCALING IS EFFECTIVE OR NOT<br />

137 Y SCALING IS EFFECTIVE OR NOT<br />

138 Z SCALING IS EFFECTIVE OR NOT<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:invalid<br />

1:valid<br />

139 RADIUS COMP SYMBOL SET<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description 0:H code<br />

:<br />

1:D code<br />

this parameter is to set the path compensation code is either<br />

H code or D code.<br />

0 means the path compensation command is G41H1<br />

1 means the path compensation command is G41D1<br />

<strong>LNC</strong> Technology Co., Ltd. 235


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

140 DISABLE RESET COMMON VAR CLR<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description there are 500 command variables and all level programs share these common<br />

:<br />

variables. The default value is VACANT for common variables @1 ~ @400<br />

when rebooting. But, whether or not clear means VACANT is decided by this<br />

parameter when press RESET. For common<br />

variables @401 ~ @500, remaining as the original value after pressing RESET<br />

key and also remaining power-discontinue memory. @0 means VACANT<br />

permanently.<br />

141 DISABLE RESET GLOBAL VAR CLR<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description there are 33 local variables and program in each level program has its own 33<br />

:<br />

local variables. Only need to end that level program to clear local variables of<br />

that level. Since pressing RESET key will return back to the main program level,<br />

the content of local variables in the main program level will use this parameter<br />

to set whether or not to clear when pressing RESET. If rebooting, local variables<br />

will be cleared no matter in which local level. #0 means VANCANT permanently.<br />

142 ABS/RLT ROTATION COMMAND<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:absolute value<br />

1:incremental value<br />

please refer to program manual for a full detailed description.<br />

143 CODE FOR SCALING<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

236 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

Default<br />

value:<br />

Unit:<br />

Description<br />

:<br />

0<br />

Nul<br />

0:X, Y, and Z axis zoom in/out scale is set by P code command<br />

1:I, J, K code will set X, Y, and Z axis zoom in/out scale. In this case, each axis<br />

zoom in/out scale is set by parameters 1092 ~ 1094.<br />

Please refer to program manual for a full detailed description.<br />

145 DEFALTS OF PLANE XY/ZX/YZ<br />

Range: 0 ~ 2<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:after entering into the system, default setting is XY panel(G17)<br />

1:after entering into the system, default setting is ZX panel(G18)<br />

2:after entering into the system, default setting is YZ panel(G19)<br />

146 M CODE CALLING MACRO O9001<br />

147 M CODE CALLING MACRO O9002<br />

148 M CODE CALLING MACRO O9003<br />

Range: 0 ~ 99<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

O9001 is the automatic tool changing of MACRO program of the system. When<br />

the system executes to this parameter’s setting M code, it will call and execute<br />

MACRO program O9001, which is to change tool automatically. The setting<br />

value of this parameter must avoid all normal M code commands. Please refer<br />

to program manual for a full detailed M code command list.<br />

149 DEFAULTS VAL OF FEEDRATE<br />

Range: 0 ~ 32767<br />

Active: Active After Reboot<br />

Level: User<br />

Default 1000<br />

value:<br />

Unit: mm/min<br />

Description<br />

:<br />

this parameter is to set the default feedrate of the system under MEM or MDI<br />

mode.<br />

<strong>LNC</strong> Technology Co., Ltd. 237


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

150 CLEANCE VALUE OF DEEP DRILLING<br />

Range: 0 ~ 32767<br />

Active: Active After RESET<br />

Level: User<br />

Default 200<br />

value:<br />

Unit: um<br />

Description this parameter is to set the shrinking amount that everytime X-axis feed into a<br />

:<br />

constant value in G73 peak drilling command. The following shows the separate<br />

motion of a peak drilling command. Please refer to program manual for a full<br />

detailed description.<br />

Start<br />

○1<br />

○2<br />

R Pt.<br />

○3<br />

○ ○4<br />

○5<br />

Feed<br />

Amount<br />

Parameter<br />

0150<br />

○6<br />

○7<br />

○8<br />

○13<br />

○9<br />

○10<br />

○11<br />

○12<br />

Hole<br />

152 4TH AXIS OPTIMAL<br />

Range: 0 ~ 3<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

238 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

Description<br />

:<br />

the following diagram shows when C axis moves from 300.000∘position to<br />

-150.000∘position, whether or not C axis takes into account the difference if<br />

take the shortest path: the path in means using the linear-type axis method of<br />

the rotatory axis. After completed, C axis coordinate display value is –150.000.<br />

The path in means to take the shortest path. When completed, C axis<br />

coordinate display value is 210.0000.<br />

Command of the<br />

NextCaxis-150.00<br />

0∘<br />

○1<br />

+Y<br />

Present<br />

axis<br />

C<br />

○2<br />

+X<br />

155 FEEDRATE IS MM/REV OR MM/MIN<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: User<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description this parameter is to set the default unit of the cutting federate under MEM or<br />

:<br />

MDI mode, but this is not valid for the rapid traverse command (G00).<br />

0:using G95, under metric: unit is mm/rev; under inch: unit is inch/rev. In this<br />

situation, must match with the spindle rotating for the cutting command<br />

(G01/G02/G03) to be effective;<br />

1:using G94,under metric: unit is mm/min; under inch: unit is inch/min.<br />

161 M CODE CALLING MACRO O9004<br />

162 M CODE CALLING MACRO O9005<br />

163 M CODE CALLING MACRO O9006<br />

164 M CODE CALLING MACRO O9007<br />

165 M CODE CALLING MACRO O9008<br />

166 G CODE CALLING MACRO O9010<br />

167 G CODE CALLING MACRO O9011<br />

168 G CODE CALLING MACRO O9012<br />

169 MACRO O9020 CALLED BY T CODES<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

<strong>LNC</strong> Technology Co., Ltd. 239


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

Level:<br />

Default<br />

value:<br />

Unit:<br />

Description<br />

:<br />

Machinery Builder<br />

0<br />

Nul<br />

when NC executes this parameter’s setting M code, it will call and execute<br />

MACRO program O9004(O9005 ~ O9008、O9010 ~ O9012、O9020). Users can<br />

write the content of this MACRO themselves and then copy this file to the<br />

desired MACRO program menu (default: C:\[system path]\MACRO) in the<br />

system. The setting value of this parameter must avoid all normal M code<br />

commands. Please see program manual for the full detailed M code commands.<br />

170 MODAL UPDATE AFTER MDI TO MEM<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description 0:Yes, the changing modal of MDI mode does NOT work, all modals return<br />

:<br />

back to the default condition<br />

1:NO, the changing modal of MDI mode will continue to MEM mode.<br />

【Example】Assumed the setting value of parameter 0135 is 0 (the default<br />

system coordinate modal is G90 modal). After entering and executing the G91<br />

command under the MDI mode, MDI mode will change to MEM mode. If the<br />

parameter setting value of this parameter is 0:<br />

Executing<br />

G01X100.F1000.<br />

will move X axis to 100mm position in 1000mm/mm speed.<br />

If the parameter setting value is 1:<br />

Executing<br />

G01X100.F1000.<br />

will move X axis direct to 100mm position in 1000mm/mm speed.<br />

176 LOCAL PORT NO FOR G31<br />

Range: 1 ~ 2<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description 1:G31 SKIP signal to 1 st LOCAL INPUT point(HS1 on Transit Board)<br />

:<br />

2:G31 SKIP signal to 2 nd LOCAL INPUT point(HS2 on Transit Board)<br />

G31 SKIP signal must be connected to LOCAL INPUT on Transit board. This<br />

parameter is to set connector point number. Since G31 signal must use LOCAL<br />

INPUT to latch absolute position record value of each axis, must use the 1 st and<br />

the 2 nd point of LOCAL INPUT.<br />

240 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

177 CONTACT TYPE OF G31<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:G31 SKIP signal is NC. When SKIP signal changes from 1 to 0, this G31<br />

signal block stops immediately and executes the next signal block.<br />

1:G31 SKIP signal is NO. When SKIP signal changes from 0 to 1, this G31<br />

signal block stops immediately and executes the next signal block.<br />

180 ENABLE MANUAL RETURN<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description 0:No<br />

:<br />

1:Yes<br />

Assumed the system is in MEM or MDI mode. If switching to JOG, MPG and/or<br />

RAPID modes during program executing, system will enter into 【Free Hold】. If<br />

user uses this manual function to move the machine from the initial program<br />

interrupting position and then continue executing the unfinished command in<br />

MEM or MDI mode, user has two choices. One is to move the machine back to<br />

the initial program interrupting position and continue the unfinished<br />

commanding, which is called MANUAL RETURN. The other one is to continue<br />

the unfinished commanding from the present position. But, there will be a<br />

OFFFET amount between the program path and afterward working path. Please<br />

refer the below diagrams for the difference between the above two methods.<br />

<strong>Manual</strong> Moving Path<br />

Program<br />

Actual<br />

Program<br />

Interrupt Point<br />

Enable MANUAL RETURN<br />

<strong>LNC</strong> Technology Co., Ltd. 241


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

<strong>Manual</strong><br />

Progra<br />

Actual<br />

Program<br />

Interrupt Point<br />

Disable MANUAL RETURN<br />

Other than using this parameter to set MANUAL RETURN function, C BIT 0004<br />

can also be used:<br />

If C BIT 004 is ON, it means enable MANUAL RETURN function.<br />

If C BIT 004 is OFF, it means disable MANUAL RETURN function.<br />

Moreover, if the Parameter #0180 is 1, MANUAL RETURN function will be<br />

enabled no matter C BIT 004 is enable or not. On the other hand, if Parameter<br />

#0180 is 0, C BIT 004 does matter whether or not to enable this function.<br />

187 FEED RATE CLAMPING<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:No<br />

1:Yes<br />

There will be a error amount ΔR between arch commanding and actual path.<br />

△R<br />

R<br />

242 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

2<br />

1 T 2<br />

Calculating formula is : ∆ R = ( + ) V . K<br />

2 p<br />

is position<br />

2K<br />

R 24R<br />

loop incremental. T is acceleration and deceleration time integer<br />

number. R is arch radius and V is the assigned feedrate. This<br />

formula is used only when the corresponding speed of speed loop<br />

is 3 ~ 10 times faster than position loop.<br />

Please also refer to description of Parameter 0188 and 0809 for<br />

detailed description.<br />

p<br />

200 FEEDRAT SHOW 0)CMD 1)ACTUAL<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:HMI panel displays feedrate commanding value<br />

1:system will calculate the actual feedrate according to each axis motor<br />

ENCODER (or linear scale) and then will display it on HMI panel.<br />

202 ENG/CHI/SIM LANG SETTING<br />

Range: 0 ~ 2<br />

Active: Active After Reboot<br />

Level: User<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:English<br />

1:Traditional Chinese<br />

2:Simplify Chinese<br />

205 REL/ABS COMP VALUE<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

Using this parameter to set the entering tool compensation value at OFFSET<br />

page, either absolute value or relative value.<br />

<strong>LNC</strong> Technology Co., Ltd. 243


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

211 M CODE TO STOP INTERPRETER<br />

212 M CODE TO STOP INTERPRETER<br />

213 M CODE TO STOP INTERPRETER<br />

214 M CODE TO STOP INTERPRETER<br />

215 M CODE TO STOP INTERPRETER<br />

216 M CODE TO STOP INTERPRETER<br />

217 M CODE TO STOP INTERPRETER<br />

218 M CODE TO STOP INTERPRETER<br />

219 M CODE TO STOP INTERPRETER<br />

220 M CODE TO STOP INTERPRETER<br />

Range: 0 ~ 299<br />

Active: Active After RESET<br />

Level: User<br />

Default 209<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

If some M code must wait for outside signals, it must be registered here to<br />

prevent any false action caused by pre-interpretation of part programs.<br />

221 DIGITAL FILITER FREQUECNY<br />

Range: 0 ~ 6666<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description Please go to the reference chart below for the valid ranges of digital filter<br />

:<br />

frequency. If the frequency is set between two ranges, NC will use the closest<br />

value as the filter frequency. For example, parameter No. 221 is set as 250 KHz<br />

while the actual filter frequency is 256 KHz.<br />

Filter<br />

Freq.<br />

(KHz)<br />

Filter<br />

Freq.<br />

(KHz)<br />

Filter<br />

Freq.<br />

(KHz)<br />

Filter<br />

Freq.<br />

(KHz)<br />

Filter<br />

Freq.<br />

(KHz)<br />

Filter<br />

Freq.<br />

(KHz)<br />

6667 256 131 81 53 28<br />

3333 247 128 80 52 27<br />

2222 238 126 79 51 26<br />

1667 230 123 78 50<br />

1333 222 121 77 49<br />

1111 215 119 76 48<br />

952 208 117 75 47<br />

833 202 115 74 46<br />

741 196 113 73 45<br />

667 190 111 72 44<br />

606 185 109 71 43<br />

556 180 108 67 42<br />

513 175 106 66 41<br />

476 171 104 63 40<br />

244 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

444 167 101 65 39<br />

417 163 100 64 38<br />

392 159 98 63 37<br />

370 155 95 62 36<br />

351 152 94 61 35<br />

333 148 93 60 34<br />

317 145 90 59 33<br />

303 142 88 58 32<br />

290 139 85 57 31<br />

278 136 83 56 30<br />

267 133 82 54 29<br />

223 AXES MANUAL RETURN(BIT)<br />

Range: 0 ~ 63<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description Bit 0 : Enable manual return function of X axis.<br />

:<br />

Bit 1 : Enable manual return function of Y axis.<br />

Bit 2 : Enable manual return function of Z axis.<br />

Bit 3 : Enable manual return function of the 4 th axis.<br />

Bit 4 : Enable manual return function of the 5 th axis.<br />

Bit 5 : Enable manual return function of the 6 th axis.<br />

Preset as 0: Enable manual return function of all axes.<br />

231 AXIS X INFORMATION HIDE<br />

232 AXIS Y INFORMATION HIDE<br />

233 AXIS Z INFORMATION HIDE<br />

234 AXIS 4TH INFORMATION HIDE<br />

Range: 0 ~ 3<br />

Active: Instant Activity<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:Show relative HMI information of X (Y, Z, the 4 th , the 5 th , the 6 th ) axis.<br />

1:Hide relative HMI information of X (Y, Z, the 4 th , the 5 th , the 6 th ) axis.<br />

2:Set by C Bit 0181(0182、0183、0184、0185、0186). OFF: Show;ON: Hide.<br />

<strong>LNC</strong> Technology Co., Ltd. 245


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

249 RAMDISK ERR MSG 0)OFF 1)ON<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0: 當 RAMDISK 發 生 異 常 時 , 不 顯 示 警 告 訊 息 。<br />

1: 當 RAMDISK 發 生 異 常 時 , 顯 示 警 告 訊 息 。<br />

350 JOG FRATE REF TO MDI F COMMAND<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description 0:In JOG mode, the speed of each axis is always defined by parameters.<br />

:<br />

1:In JOG mode, the speed of each axis is preset by parameters. If executing F<br />

code in MDI mode, F code replaces JOG speed to set the speed of each axis<br />

until RESET is pressed. However, in JOG mode, the highest speed of each axis<br />

is still set by parameters.<br />

351 FEEDRATE OVERRIDE UNIT<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:Cutting override feed rate = R016 register value* 10%;<br />

1:Cutting override feed rate = R016 register value* 1%。<br />

246 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

352 JOG OVERRIDE UNIT<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:Jog override unit feed rate = R017 register value* 10%;<br />

1:Jog override unit feed rate = R017 register value* 1%。<br />

353 RAPID TRAVERSE OVERRIDE UNIT<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:Rapid traverse override are F0, 25%, 50%, & 100%, respectively;<br />

1:Rapid traverse override = R018 register value* 1%。<br />

360 OPTION COLOR SET(0~3)<br />

Range: 0 ~ 3<br />

Active: Active After Reboot<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:Screen color setting is not applied.<br />

1:Screen color setting is white words over a black background<br />

2:Screen color setting is black words over a white background<br />

3:Screen color setting is customized by users.<br />

<strong>LNC</strong> Technology Co., Ltd. 247


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

361 BLACK COLOR SET(0~16)<br />

362 BLUE COLOR SET(0~16)<br />

363 GREEN COLOR SET(0~16)<br />

364 CYAN COLOR SET(0~16)<br />

365 RED COLOR SET(0~16)<br />

366 MAGENTA COLOR SET(0~16)<br />

367 BROWN COLOR SET(0~16)<br />

368 WHITE COLOR SET(0~16)<br />

369 GRAY COLOR SET(0~16)<br />

370 LIGHTBLUE COLOR SET(0~16)<br />

371 LIGHTGREEN COLOR SET(0~16)<br />

372 LIGHTCYAN COLOR SET(0~16)<br />

373 LIGHTRED COLOR SET(0~16)<br />

374 LIGHTMAGENTA COLOR SET(0~16)<br />

375 YELLOW COLOR SET(0~16)<br />

376 LIGHTWHITE COLOR SET(0~16)<br />

377 CURSOR COLOR SET(0~16)<br />

378 MARK COLOR SET(0~16)<br />

379 UP EDGE COLOR SET(0~16)<br />

380 DOWN EDGE COLOR SET(0~16)<br />

Range: 0 ~ 16<br />

Active: Active After Reboot<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

Only valid when parameter No. 0360 is set to 3.<br />

0:Not applied.<br />

1~16:Applied and change to the selected color.<br />

394 THE SCREEN SAVER WAIT TIME<br />

Range: 0 ~ 9999<br />

Active: Active After Reboot<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description 1. When the parameter is set to 0, the screensaver is not applied.<br />

2.<br />

:<br />

When the parameter is not 0, the screensaver activates automatically after<br />

the system is not operated for a specified amount of time (time length set<br />

by the parameter). If screensaver has not activated and some key is<br />

pressed, wait time will be counted from the last keystroke. If screensaver<br />

already activates, pressing any key will immediately terminate it, and wait<br />

time will be counted from zero.<br />

248 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

650 SET THE METHOD OF PROGRAM RESTART<br />

Range: 0 ~ 1<br />

Active: Instant Activity<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:Program restart definition 1 st .<br />

1:Program restart definition 2 nd . (Call O9888)<br />

806 MAX ALLOWANCE ERROR IN TURN<br />

Range: 0 ~ 32767<br />

Active: Active After RESET<br />

Level: User<br />

Default 50<br />

value:<br />

Unit: um<br />

Description This parameter will affect the precision degree of work, the smaller the setting<br />

:<br />

value, the higher matching work sharp to the working program, but the longer<br />

working time needed. Also, because of machine setup, collusion and other<br />

relationships, it is possible that the machine position is not able to arrive the<br />

designated checking range, which means not able to finished this single block.<br />

Recommanding the smallest<br />

value is approximate 10um.<br />

808 ENABLE CORNNER ACC CONTROL<br />

Range: 0 ~ 2<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description If enable the corner decelerating function, the system will automatic control the<br />

:<br />

corner acc/decelerating speed between tool path which makes the path error<br />

within the allowable range (parameter 0806).<br />

809 MAX CIRCULAR ALLOWANCE ERR<br />

Range: 1 ~ 32767<br />

Active: Active After RESET<br />

Level: User<br />

Default 30<br />

value:<br />

Unit: um<br />

<strong>LNC</strong> Technology Co., Ltd. 249


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

Description<br />

:<br />

This parameter will affect arching precision degree. The smaller the setting<br />

value is, the better the result is but the longer the working hour. User must set<br />

the allowable error range according to the actual arch size. Recommending the<br />

minimum setting value is around 10μm.<br />

810 SET RIGID TAP IN G101~G105<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description When applying multi-hole drilling compound G code (G101 ~105), use this<br />

:<br />

parameter to set the tapping function. Set to 1: rigid tapping is activated; set to<br />

0, tapping is activated. The preset mode is tapping.<br />

848 X AXIS OPTIMAL<br />

849 Y AXIS OPTIMAL<br />

850 Z AXIS OPTIMAL<br />

Range: 0 ~ 3<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

This parameter is effective only for rotary axis.<br />

bit 0: Coordinate display method selection<br />

0: Display as Linear method.<br />

1: Display as one rotate 0.000~360.000 cycle method.<br />

bit 1: Coordinate display method is 0~360 cycle(bit 0 setting is 1), user is able<br />

to select whether or not the absolute command is handled as the shortest path.<br />

0: Calculate the shortest moving distance.<br />

1: Move according to commanding value.<br />

(Note)Incremental commanding is NOT handled as the shortest path at all.<br />

250 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

899 USE CE RULE 0)NO 1)YES<br />

Range: 0 ~ 1<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description<br />

:<br />

0:CE regulations are not applied.<br />

1:CE regulations are applied.<br />

1006 1ST X+ SOFT LIMIT<br />

1008 1ST Y+ SOFT LIMIT<br />

1010 1ST Z+ SOFT LIMIT<br />

1012 1ST 4+ SOFT LIMIT<br />

Range: -99999999 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 99999999<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

This parameter is to set the limitation value of the +ive X-axis software travel<br />

limit. It works only after X axis is completed zero return procedure, or using the<br />

rebooting default value 99999.999 um. If this parameter setting value is smaller<br />

than parameter # 1007 (-ive X-axis software travel limit), it will enable the alarm<br />

system (MOT 4005, 1 st software traveling limit setting error). The +ive X axis 1 st<br />

and 2 nd software<br />

traveling limit is able to execute exchanging through C BIT 140. Please refer to<br />

the description of C BIT. Under the condition that the +ive X axis 1 st software<br />

traveling limit is enabled, when X-axis will excess the restricted range, it will<br />

enable the alarm system (MOT 9001 X-axis over the +ive software travel limit)<br />

or (MOT 4058 over the software travel limit). Please refer to the description of<br />

this warning message.<br />

1007 1ST X- SOFT LIMIT<br />

1009 1ST Y- SOFT LIMIT<br />

1011 1ST Z- SOFT LIMIT<br />

1013 1ST 4- SOFT LIMIT<br />

Range: -99999999 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default -99999999<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

This parameter is to set the limitation value of the -ive X axis software travel<br />

limit. It works only after X axis is completed zero return procedure, or using the<br />

<strong>LNC</strong> Technology Co., Ltd. 251


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

rebooting default value 99999.999 um. If this parameter setting value is larger<br />

than parameter # 1006 (+ive X-axis<br />

software travel limit), it will enable the alarm system (MOT 4005, 1 st software<br />

traveling limit setting error). The -ive X axis 1 st and 2 nd software traveling limit is<br />

able to execute exchanging through C BIT 141. Please refer to the description<br />

of C BIT. Under the condition that the -ive X axis 1 st software traveling limit is<br />

enabled, when X axis will excess the restricted range, it will enable the alarm<br />

system (MOT 9002 X axis over the –ive software travel limit) or (MOT 4058 over<br />

the software travel limit). Please refer to the description of this warning<br />

message.<br />

1034 2ND X+ SOFT LIMIT<br />

1036 2ND Y+ SOFT LIMIT<br />

1038 2ND Z+ SOFT LIMIT<br />

1040 2ND 4+ SOFT LIMIT<br />

Range: -99999999 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default 99999999<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

this parameter is to set the limitation value of the +ive X axis software travel<br />

limit. It works only after X axis is completed zero return procedure, or using the<br />

rebooting default value 99999.999 um. If this parameter setting value is smaller<br />

than parameter # 1035 (-ive X axis<br />

software travel limit), it will enable the alarm system (MOT 4023, 2 nd software<br />

traveling limit setting error). The +ive X axis 1 st and 2 nd software traveling limit is<br />

able to execute exchanging through C BIT 140. Please refer to the description<br />

of C BIT. Under the condition that the +ive X axis 2 nd software traveling limit is<br />

enabled, when X axis will excess the restricted range, it will enable the alarm<br />

system (MOT 9001 X axis over the +ive software travel limit) or (MOT 4058 over<br />

the software travel limit). Please refer to the description of this warning<br />

message.<br />

252 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1035 2ND X- SOFT LIMIT<br />

1037 2ND Y- SOFT LIMIT<br />

1039 2ND Z- SOFT LIMIT<br />

1041 2ND 4- SOFT LIMIT<br />

Range: -99999999 ~ 99999999<br />

Active: Active After RESET<br />

Level: Machinery Builder<br />

Default -99999999<br />

value:<br />

Unit: um<br />

Description<br />

:<br />

this parameter is to set the limitation value of the -ive X axis software travel limit.<br />

It works only after X axis is completed zero return procedure, or using the<br />

rebooting default value 99999.999 um. If this parameter setting value is larger<br />

than parameter # 1034 (+ive X axis<br />

software travel limit), it will enable the alarm system (MOT 4023, 2 nd software<br />

traveling limit setting error). The -ive X axis 1 st and 2 nd software traveling limit is<br />

able to execute exchanging through C BIT 141. Please refer to the description<br />

of C BIT. Under the condition that the -ive X axis 1 st software traveling limit is<br />

enabled, when X axis will excess the restricted range, it will enable the alarm<br />

system (MOT 9002 X axis over the –ive software travel limit) or (MOT 4058 over<br />

the software travel limit). Please refer to the description of this warning<br />

message.<br />

1091 PROTAG<br />

Range: -360000 ~ 360000<br />

Active: Active After RESET<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: um<br />

Description this parameter is to set the default angle for G68 coordinate rotating command.<br />

:<br />

1092 PSCRT<br />

Range: 1 ~ 99999999<br />

Active: Active After RESET<br />

Level: User<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description when the setting value of parameter# 0143 is 1 (X, Y and Z axes zoom in/out<br />

:<br />

scale is determined by I, J and K of G51 zoom in/out scale command), this<br />

parameter is to set the default zoom in/out scale of X-axis.<br />

<strong>LNC</strong> Technology Co., Ltd. 253


<strong>LNC</strong>-<strong>M600</strong><br />

Parameter<br />

1093 PSCRT2<br />

Range: 1 ~ 99999999<br />

Active: Active After RESET<br />

Level: User<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description when the setting value of parameter# 0143 is 1 (X, Y and Z axes zoom in/out<br />

:<br />

scale is determined by I, J and K of G51 zoom in/out scale command), this<br />

parameter is to set the default zoom in/out scale of Y-axis.<br />

1094 PSCRT3<br />

Range: 1 ~ 99999999<br />

Active: Active After RESET<br />

Level: User<br />

Default 1<br />

value:<br />

Unit: Nul<br />

Description when the setting value of parameter# 0143 is 1 (X, Y and Z axes zoom in/out<br />

:<br />

scale is determined by I, J and K of G51 zoom in/out scale command), this<br />

parameter is to set the default zoom in/out scale of Z axis.<br />

1158 SHOW F2~F12 FOR FUN. KEY<br />

Range: 0 ~ 1<br />

Active: Active After Reboot<br />

Level: User<br />

Default 0<br />

value:<br />

Unit: Nul<br />

Description Because inconvenience could occur when operators use commercial PC<br />

:<br />

keyboard to operate controller, F2~F12 characters are shown on the function<br />

keys on the screen for users’ convenience during operation.<br />

1159 SET READ TIMEOUT TIMES<br />

Range: 0 ~ 30000<br />

Active: Instant Activity<br />

Level: User<br />

Default 30<br />

value:<br />

Unit: sec<br />

Description If the time is too long when abnormal file reading of the controller happens<br />

:<br />

during machining, a new dialog box with warning messages will appear to notify<br />

users about the abnormal situation and also remind users to reset the system to<br />

ensure efficiency of the controller and the machine.<br />

254 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

6 SYSTEM ALARM and WARNING<br />

When the system alarm message (ALARM) occurs, operation will stop. User must check<br />

the whole machine according to the alarm message. If able to solve problems, then only<br />

need to click RESET again to clear the condition. (However, if need to change parameter,<br />

then must exit the system software and then re-enter for the system to work.)<br />

Three types of alarm message which are MOT (MOTION) ALARM, OP<br />

(OPERATION) ALARM or INT (INTERPREATATION) ALARM. Definitions of the above<br />

alarm message are as following:<br />

<strong>LNC</strong> Technology Co., Ltd. 255


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

6.1 OP OPERATION RELATED ALARM<br />

OP<br />

1001:X SERVO ALARM<br />

(1)Alarm message from X SERVO driver.<br />

(2)Please check ERROR message from the SERVO driver to know the cause.<br />

(3)Please re-booting.<br />

OP<br />

1002:Y SERVO ALARM<br />

(1)Warning message from Y SEVOR driver.<br />

(2)Please check ERROR message from the SERVO driver to know the cause.<br />

(3)Please re-booting.<br />

OP<br />

1003:Z SERVO ALARM<br />

(1)Warning message from Z SERVO driver.<br />

(2)Please check ERROR message from the SERVO driver to know the cause.<br />

(3)Please re-booting.<br />

OP<br />

1004:4 TH SERVO ALARM<br />

(1)Warning message from 4 th SERVO driver.<br />

(2)Please check ERROR message from the SERVO driver to know the cause.<br />

(3)Please re-booting.<br />

OP 1005:X OVER TRAVEL (+)<br />

(1)X over travel (+) limit.<br />

(2)Click and hold OT(OVER TRAVEL)RELEASE and then use JOG to take away<br />

machine from the travel limit.<br />

256 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

OP 1006:X OVER TRAVEL (-)<br />

(1)X over travel (-) limit.<br />

(2)Click and hold OT(OVER TRAVEL)RELEASE and then use JOG to take away<br />

machine from the travel limit.<br />

OP 1007:Y OVER TRAVEL (+)<br />

(1)Y over travel (+) limit.<br />

(2)Click and hold OT(OVER TRAVEL) RELEASE and then use JOG to take away<br />

machine from the travel limit.<br />

OP 1008:Y OVER TRAVEL (-)<br />

(1)Y over travel (-) limit.<br />

(2)Click and hold OT(OVER TRAVEL) RELEASE and then use JOG to take away<br />

machine from the travel limit.<br />

OP 1009:Z OVER TRAVEL (+)<br />

(1)Z over travel (+) limit.<br />

(2)Click and hold OT(OVER TRAVEL) RELEASE and then use JOG to take away<br />

machine from the travel limit.<br />

OP 1010:Z OVER TRAVEL (-)<br />

(1)Z over travel (-) limit.<br />

(2)Click and hold OT(OVER TRAVEL) RELEASE and then use JOG to take away<br />

machine from the travel limit.<br />

OP 1011:4 TH OVER TRAVEL (+)<br />

(1)4 th over travel (+) limit.<br />

(2)Hold OT(OVER TRAVEL) RELEASE and then use JOG to take away machine<br />

from the travel limit.<br />

<strong>LNC</strong> Technology Co., Ltd. 257


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

OP 1012:4 TH OVER TRAVEL (-)<br />

(1)4 th over travel (-) limit.<br />

(2)Hold OT(OVER TRAVEL) RELEASE and then use JOG to take away machine<br />

from the travel limit.<br />

OP<br />

1013:DETACH/ATTACH X-AXIS AS MOVING<br />

OP<br />

1014:DETACH/ATTACH Y-AXIS AS MOVING<br />

OP<br />

1015:DETACH/ATTACH Z-AXIS AS MOVING<br />

OP<br />

1016:DETACH/ATTACH C-AXIS AS MOVING<br />

OP<br />

1017:<strong>LNC</strong> SYSTEM EXPIRED<br />

OP<br />

1018:DESIRED MACRO VARIABLES NOT EXIST<br />

OP<br />

1019:DESIRED MACRO VARIABLES OVER RANGE<br />

OP<br />

1020:OVER MLC TRAVEL LIMITE<br />

OP<br />

1021:GEAR SIGNAL ERROR<br />

OP<br />

1022:DESIRED PARAMETER VARIABLES OVER RANGE<br />

OP<br />

1023:DESIRED PARAMETER VARIABLES NOT EXISTED<br />

258 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

6.2 OP OPERATION RELATED WARNING<br />

OP 6001:X AXIS OVER MLC TRAVEL LIMIT (+)<br />

OP 6002:X AXIS OVER MLC TRAVEL LIMIT (-)<br />

OP 6003:Y AXIS OVER MLC TRAVEL LIMIT (+)<br />

OP 6004:Y AXIS OVER MLC TRAVEL LIMIT (-)<br />

OP 6005:Z AXIS OVER MLC TRAVEL LIMIT (+)<br />

OP 6006:Z AXIS OVER MLC TRAVEL LIMIT (-)<br />

OP 6007:4TH AXIS OVER MLC TRAVEL LIMIT (+)<br />

OP 6008:4TH AXIS OVER MLC TRAVEL LIMIT (-)<br />

<strong>LNC</strong> Technology Co., Ltd. 259


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

6.3 INT INTERPRETATION RELATED ALARM<br />

INT 3001:NO SUCH TOKEN<br />

(1)Part program enter data has invalid symbols or characters.<br />

(2)Modify program error.<br />

(3)Press RESET to clear the wrong warning message.<br />

INT 3002:GRAMMAR ERROR<br />

(1)Part program enter data has grammar error.<br />

(2)Modify program error.<br />

(3)Press RESET to clear the wrong warning message.<br />

INT 3003:OUT OF NODE MEMORY<br />

(1)MACRO grammar has too complicat showing program such as too many<br />

brackets.<br />

(2)Simplify complexity degree<br />

(3)Press RESET to clear the wrong warning message.<br />

INT 3004:EXECUTE NODE ERROR<br />

(1)System executes mathematics calculation that is not allow to execute<br />

(2)Press RESET to clear the wrong warning message.<br />

INT 3005:FUNCTION ERROR<br />

(1)System executes invalid function that is not allow to execute.(Won’t happen<br />

under normal system condition.)<br />

(2)System error, please contact the supplier.<br />

260 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

INT 3006:DIVIDED BY 0<br />

(1)MACRO is divided by 0.<br />

(2)Modify numerator of the division. Must NOT be 0.<br />

(3)Press RESET to clear the wrong warning message.<br />

INT 3007:VARIABLE OVER RANGE<br />

(1)One/some of local variables, common variables and global variables are out of<br />

range.<br />

(2)Modify variable numbers that are out of their number range.<br />

(3)Press RESET to clear the wrong warning message.<br />

INT 3008:MACRO DOMAIN ERROR<br />

(1)MACRO function domain error. If square (SQRT) argument is negative or ATAN<br />

arguments are two zeros.<br />

(2)Modify domain.<br />

(3)Press RESET to clear the wrong warning message.<br />

INT 3010:NOT ALLOWABLE DECIMAL POINT<br />

(1)NC address has not allowable decimal point.<br />

(2)Modify decimal point in NC address.<br />

INT 3011:WORD DATA OVER RANGE<br />

(1)NC address word data is out of range.<br />

(2)Modify word data in NC address.<br />

(3)Press RESET to clear wrong warning message.<br />

INT 3012:MACRO ILLEGAL MACRO PARAMATER INPUT(G、L、N、O、P)<br />

(1)Illegal arguments(G,L,N,O,P)in MACRO program.<br />

(2)Correcting these illegal arguments.<br />

(3)Press RESET to clear wrong warning message.<br />

INT 3050:TOOL DIAMETER IS 0<br />

INT 3051:ILLEGAL RPM GIVEN<br />

INT 3052:ILLEGAL FEEDRATE GIVEN<br />

<strong>LNC</strong> Technology Co., Ltd. 261


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

INT 3053:( D ) EACH CUT DOWN DEPTH IS 0<br />

INT 3054:( H ) TOTAL DEPTH IS 0<br />

INT 3055:ESCAPE LOWER START POINT.Z<br />

INT 3056:( W ) EACH CUT WIDTH IS 0<br />

INT 3060:HOLES TOO DENSITY<br />

INT 3061:HOLES COUNT MUST>=2<br />

INT 3062:R MUST > Z<br />

INT 3070:WRONG DATA:R=0<br />

INT 3071:WRONG DATA:2RPHI<br />

INT 3073:WRONG DATA:Q=0<br />

INT 3074:WRONG DATA:V>=Q<br />

INT 3075:WRONG DATA:( PHI+2Q)>=2R<br />

INT 3076:WRONG DATA:I(J)=0<br />

INT 3077:WRONG DATA:I(J)-2R=I(J)<br />

INT 3079:WRONG DATA:2V+PHI>I(J)<br />

INT 3080:DISTANCE OF TWO CENTER IS 0<br />

262 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

INT 3081:WRONG DATA:2(R-V)


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

INT 3113:FILE NOT FOUND<br />

(1)File not found in the system.<br />

(2)Making/modifying the executing file.<br />

(3)Press RESET to clear wrong warning message.<br />

INT 3114:END OF FILE<br />

INT 3120:POST ERROR<br />

INT 3121:LACK OF SUB RETURN(M99)<br />

(1)No returning to the part program command in the sub-program.<br />

(2)Add returning back to the part program command in the sub-program.<br />

(3)Press RESET to clear wrong warning message.<br />

INT 3122:PROGRAM OVERFLOW(8)<br />

(1)Total numbers of calling Sub-program or MACRO is over the total level limit.(i.e.,<br />

8)<br />

(2)Decrease numbers of calling program level.<br />

(3)Press RESET to clear the wrong warning message.<br />

INT 3123:MACRO OVERFLOW(4)<br />

(1)Total numbers of calling MACRO is over the total level limit. (i.e., 4).<br />

(2)Decrease numbers of calling program level.<br />

(3)Press RESET to clear the wrong warning message.<br />

INT 3124:MACRO UNDERFLOW(G67)<br />

INT 3125:WITHOUT LABEL<br />

(1)NO such LABEL .<br />

(2)Please check LABEL name.<br />

(3)Press RESET to clear wrong message error.<br />

264 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

INT 3126:BLOCK NOT FOUND<br />

(1)The designated BLOCK is not found.<br />

(2)Check whether or not the designated BLOCK is exist in part program.<br />

(3)Press RESET to clear wrong message error.<br />

INT 3127:ILLEGAL LABEL<br />

INT 3128:FEEDRATE OUT OF RANGE, CHECK G94/G95<br />

(1)Check G94 and G95 are used correctly.<br />

(2)Check whether or not the FEEDRAT F value is too big.<br />

(3)Press RESET to clear the error and adjust G94, G95 and F value.<br />

INT 3130:COORDINATE ERROR<br />

INT 3131:UNKNOWN PLANE<br />

INT 3132:ILLEGAL RADIUS<br />

(1)Using G02, G03 arch cutting command, the final coordinate is NOT on the arch<br />

(2)Check the position of center point, direction and final point’s coordinate value<br />

(3)Press RESET to clear error.<br />

INT 3140:SEND TABLE ERROR<br />

INT 3141:NO FREE VARIABLES<br />

INT 3150:INSUFFICIENT DATA<br />

(1)Not enough executing G code data.(Lack of G10’s P,R,Z)<br />

(2)Supply the needed data.<br />

(3)Press RESET to clear wrong warning message.<br />

INT 3151:IP MAINTAIN ERROR<br />

INT 3152:CC R RETURN<br />

(1)Executing G27,G28,G29,G30 in the CANNED CYCLE.<br />

(2)Cancel the above G codes in CANNED CYCLE before executing.<br />

(3)Press RESET to clear wrong warning message.<br />

<strong>LNC</strong> Technology Co., Ltd. 265


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

INT 3153:NO SUCH R POINT<br />

(1)Wrong reference point number in G30.<br />

(2)Modify the entered reference point number.<br />

(3)Press RESET to clear wrong warning message.<br />

INT 3154:ILLEGAL IN CC<br />

(1)Executing illegal motion in CANNED CYCLE.<br />

(2)Please cancel any illegal motion in CANNED CYCLE before executing.<br />

(3)Press RESET to clear wrong warning message.<br />

INT 3155:ILLEGAL PROFILE PATH<br />

(1)Illegal profile path in CANNED CYCLE (i.e., over cutting)<br />

(2)Please modify illegal profile path in CANNED CYCLE before executing.<br />

(3)Press RESET to clear wrong warning message.<br />

INT 3156:ILLEGAL G31 IN COMPENSATION<br />

INT 3157:G10 P CODE OUT OF RANGE<br />

INT 3158:G10 L/E CODE OUT OF RANGE<br />

INT 3160:DNC:INCORRECT READ SEQUENCE<br />

(1)Check whether or not there is incorrect sub-program or jump sequence from the<br />

part program.<br />

(2)Press RESET to clear wrong warning message, and modify part program.<br />

INT 3161:DNC:LOSS DATA PACKET<br />

INT 3162:DNC:PROGRAM BUFFER OVERFLOW<br />

(1)Program buffer overflow while DNC RS232 is transmitting program.<br />

(2)Check whether or not the connecting line is disconnect or fall.<br />

(3)Press RESET to clear wrong warning message or reboot.<br />

INT 3170:CUTTING LENGTH IN Z TOO SHORT<br />

INT 3171:CUT DOWN CHAMFER OVER RANGE<br />

266 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

INT 3172:CUT UP CHAMFER OVER RANGE<br />

INT 3201:COMP UNIT VECTOR 0<br />

(1)Compensation unit vector is 0.<br />

(2)System error, please contact supplier.<br />

(3)Press RESET to clear wrong warning message<br />

INT 3202:COMP START UP ARC<br />

(1)Compensating start-up is arch.<br />

(2)Please start compensating according to G00/G01.<br />

(3)Press RESET to clear wrong warning message.<br />

INT 3203:COMP CANCEL ARC<br />

(1)Compensating cancel is arch.<br />

(2)Please cancel compensation according to G00/G01.<br />

(3)Press RESET to clear wrong warning message.<br />

INT 3204:COMP LINE DET 0<br />

(1)DETERMINE values is 0.<br />

(2)Check part program.<br />

(3)System error, please contact supplier.<br />

INT 3205:COMP VECTOR LENGTH 0<br />

(1)DETERMINE values is 0.<br />

(2)Check part program.<br />

(3)System error, please contact supplier.<br />

INT 3206:COMP INTERFERENCE<br />

(1)Over cutting interference occurs.<br />

(2)Decrease compensation radius or modify part program pathway.<br />

(3)Press RESET to clear wrong message error.<br />

INT 3207:COMP NO INTERSECTION<br />

(1)Not able to find the intersect points while calculating compensation value.<br />

(2)Decrease compensation radius or modify part program pathway.<br />

( 3 ) Press RESET to clear wrong warning message.<br />

<strong>LNC</strong> Technology Co., Ltd. 267


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

6.4 MOT MOTION RELATED ALARM<br />

MOT 4001:X-AXIS ERROR COUNTER OVERFLOW<br />

(1)Motion board X- Axis ERROR COUNTER overflow(16-BIT).<br />

(2)Check or not the commanding speed is too fast.<br />

(3)Check whether or not servo motor is working normally.<br />

(4)Check whether or not the machine is running normally.<br />

(5)Check whether or not the board is normal.<br />

MOT 4002:Y-AXIS ERROR COUNTER OVERFLOW<br />

(1)Motion board Y-AXIS ERROR COUNTER overflow(16-BIT)<br />

(2)Check or not the commanding speed is too fast.<br />

(3)Check whether or not servo motor is working normally.<br />

(4)Check whether or not the machine is running normally.<br />

(5)Check whether or not the board is normal.<br />

MOT 4003:Z-AXIS ERROR COUNTER OVERFLOW<br />

(1)Motion board Z-AXIS ERROR COUNTER overflow(16-BIT)<br />

(2)Check or not the commanding speed is too fast.<br />

(3)Check whether or not servo motor is working normally.<br />

(4)Check whether or not the machine is running normally.<br />

(5)Check whether or not the board is normal.<br />

MOT 4004:4TH-AXIS ERROR COUNTER OVERFLOW<br />

(1)Motion board 4th-AXIS ERROR COUNTER overflow(16-BIT)<br />

(2)Check or not the commanding speed is too fast.<br />

(3)Check whether or not servo motor is working normally.<br />

(4)Check whether or not the machine is running normally.<br />

(5)Check whether or not the board is normal.<br />

MOT 4005:SET FIRST SOFT LIMIT ERROR<br />

(1)Error setting of 1st soft limit parameter (i.e., +ive soft limit is smaller than –ive soft<br />

limit) Please check parameter numbers 1006~1013.<br />

(2)Clicking RESET to set new parameter.<br />

(3)After changing the parameter, please reboot.<br />

268 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

MOT 4006:X AXIS SERVO LAG OVERFLOW<br />

(1)X Axis servo lag over parameter 0002 setting value.<br />

(2)Check whether the setting speed is too fast or the parameter 0002 setting value<br />

is too small.<br />

(3)Clicking RESET to continue operating.<br />

(4)If reset parameter, must reboot.<br />

MOT 4007:Y AXIS SERVO LAG OVERFLOW<br />

(1)Y Axis servo lag over parameter 0003 setting value.<br />

(2)Check whether the setting speed is too fast or the parameter 0003 setting value<br />

is too small.<br />

(3)Clicking RESET to continue operating.<br />

(4)If reset parameter, must reboot.<br />

MOT 4008:Z AXIS SERVO LAG OVERFLOW<br />

(1)Z Axis servo lag over parameter 0004 setting value.<br />

(2)Check whether the setting speed is too fast or the parameter 0004 setting value<br />

is too small.<br />

(3)Clicking RESET to continue operating.<br />

(4)If reset parameter, must reboot.<br />

MOT 4009:4TH AXIS SERVO LAG OVERFLOW<br />

(1)4th Axis servo lag over parameter 0005 setting value.<br />

(2)Check whether the setting speed is too fast or the parameter 0005 setting value<br />

is too small.<br />

(3)Clicking RESET to continue operating.<br />

(4)If reset parameter, must reboot.<br />

MOT 4010:SPINDLE FEED FUNCTION ERROR<br />

(1)Checking spindle G25/G26 rotation speed.<br />

(2)Checking whether or not the setting values of parameter 57, 61 and 92 are<br />

correct.<br />

(3)Checking whether or not the spindle is working normally.<br />

(4)Clicking RESET to continue operating.<br />

(5)If change the parameter, need to reboot for the new setting parameter to be<br />

effective.<br />

<strong>LNC</strong> Technology Co., Ltd. 269


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

MOT 4011:SPINDLE SPEED ERROR<br />

(1)Spindle shaking value is grater than parameter 97 setting value.<br />

(2)Checking whether or not the setting values of parameter 57, 61, 92, and 97 are<br />

correct.<br />

(3)Checking whether or not the spindle is working normally.<br />

(4)Clicking RESET to continue operating.<br />

(5)If change the parameter, need to reboot for the new setting parameter to be<br />

effective.<br />

MOT<br />

4012:NO FINAL LINE<br />

MOT<br />

4013:NO BLOCK<br />

MOT 4014:X AXIS ON HOME DOG<br />

(1)X Axis on HOME DOG.<br />

(2)Clicking RESET, use JOG to take the machine away from HOME DOG then will<br />

be able to return to the reference point.<br />

MOT 4015:Y AXIS ON HOME DOG<br />

(1)Y Axis on HOME DOG.<br />

(2)Clicking RESET, use JOG to take the machine away from HOME DOG then will<br />

be able to return to the reference point.<br />

MOT 4016:Z AXIS ON HOME DOG<br />

(1)Z Axis on HOME DOG.<br />

(2)Clicking RESET, use JOG to take the machine away from HOME DOG then will<br />

be able to return to the reference point.<br />

MOT 4017:4TH AXIS ON HOME DOG<br />

(1)4th Axis on HOME DOG.<br />

(2)Clicking RESET, use JOG to take the machine away from HOME DOG then will<br />

be able to return to the reference point.<br />

MOT 4018:NO RETURN HOME<br />

(1)Not return to the reference point after rebooting.<br />

(2)Clicking RESET and return to the reference point first.<br />

270 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

MOT 4019:OVER TRAVEL<br />

(1)Machine over travel problem.<br />

(2)Solving the problem according to alarm message (OP 005~0012).<br />

MOT<br />

4020:NO RESIDUE DATA<br />

MOT<br />

4021:STOP POSITION ERROR<br />

MOT 4022:FIRST SOFT LIMIT ERROR<br />

(1)Over 1 st soft limit. (Please refer to G10 in program manual.)<br />

(2)Please checking setting values of parameters 1006 ~ 1013.<br />

(3)Clicking RESET to continue operating from the reverse direction.<br />

MOT 4023:SET SECOND SOFT LIMIT ERROR<br />

(1)Maximum parameter value of the 2 nd soft limit is smaller than the smallest value.<br />

(2)Checking parameters 1034~1041.<br />

(3)Reset parameter and then reboot.<br />

MOT 4024:SECOND SOFT LIMIT ERROR<br />

(1)Over 2 nd soft limit.<br />

(2)Checking parameters 1034~1041.<br />

(3)Click RESET to continue operating.<br />

MOT 4025:G10 P RANGE ERROR<br />

(1)P value is over range.<br />

(2)Please checking the part program.<br />

MOT 4026:ENCODER A,B PHASE ERROR<br />

(1)ENCODER disconnect or 5V power problem<br />

(2)Checking whether or not the ENCODER or power port is connected.<br />

MOT 4027:HOME DOG TOO SHORT<br />

(1)Check whether or not HOME DOG is too short or the speed is too fast.<br />

(2)Extend DOG or slow down the zero return speed.<br />

MOT<br />

4028:SET PARAM 39 ERROR<br />

<strong>LNC</strong> Technology Co., Ltd. 271


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

MOT<br />

4029:SET PARAM 23 ERROR<br />

MOT 4030:SET PARAM 14 ERROR<br />

(1)Parameter #14 setting error.<br />

(2)Re-set parameter and re-boot.<br />

MOT 4031:SET PARAM 10 ERROR<br />

(1)Parameter #10setting error.<br />

(2)Re-set parameter and re-boot.<br />

MOT 4032:SET PARAM 11 ERROR<br />

(1)Parameter # 11 setting error.<br />

(2)Re-set parameter and re-boot.<br />

MOT 4033:SET PARAM 12 ERROR<br />

(1)Parameter # 12 setting error.<br />

(2)Re-set parameter and re-boot.<br />

MOT 4034:SET PARAM 13 ERROR<br />

(1)Parameter # 13 setting error.<br />

(2)Re-set parameter and re-boot.<br />

MOT 4035:SET CMR ERROR<br />

(1)Setting CMR error<br />

(2)Checking Para. # 0053 ~ 0056,0067 ~ 0070,0072,0100 ~ 0107,1112 ~ 1115.<br />

(3)Re-setting parameter and re-booting.<br />

MOT 4036:SET IN POSITION CHECK ERROR<br />

(1)Setting position check error.<br />

(2)Checking Para. # 0006 ~ 0009.<br />

(3)Re-setting parameter and re-booting.<br />

MOT 4037:SET DMR ERROR<br />

(1)DMR setting error.<br />

(2)Checking whether or not the setting value is over setting parameter 53~57 range.<br />

(3)Re-setting parameter and re-booting.<br />

272 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

MOT 4038:SET ENCODER PULSE/REV ERROR<br />

(1)Setting motor ENCODER pulse/rev error.<br />

(2)Checking whether or not the setting value is over setting parameter 1112~1115<br />

range.<br />

(3)Re-setting parameter and re-booting.<br />

MOT 4039:HOME LOW SPEED ERROR<br />

(1)2 nd home speed setting error.<br />

(2)Checking whether or not the setting value is over setting parameter 1108-1111<br />

range.<br />

(3)Re-setting parameter and re-booting.<br />

MOT 4040:X CMP NO. ERROR<br />

(1)Pitch compensation section setting error.<br />

(2)Checking Parameter # 0112 range.<br />

(3)Re-setting parameter and re-booting.<br />

MOT 4041:Y CMP NO. ERROR<br />

(1)Pitch compensation section setting error.<br />

(2)Checking Parameter # 0113 range.<br />

(3)Re-setting parameter and re-booting.<br />

MOT 4042:Z CMP NO. ERROR<br />

(1)Pitch compensation section setting error.<br />

(2)Checking Parameter # 0114 range.<br />

(3)Re-set parameter and re-boot.<br />

MOT 4043:4TH CMP NO. ERROR<br />

(1)Pitch compensation section setting error.<br />

(2)Checking Parameter # 0115 range.<br />

(3)Re-setting parameter and re-booting.<br />

MOT 4044:CMP INTERVAL ERROR<br />

(1)Pitch compensation section setting error.<br />

(2)Checking Parameter # 0114 range.<br />

(3)Re-setting parameter and re-booting.<br />

<strong>LNC</strong> Technology Co., Ltd. 273


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

MOT 4045:NO INDEX INTERRUPT<br />

(1)Reference point index disconnect signal error or HOME DOG too short.<br />

(2)Checking connection for motor to servo.<br />

MOT 4046:RETURN HOME FAILURE<br />

(1)Checking whether nor not machine lock or other machine problems.<br />

(2)Press RESET to clear the condition.<br />

MOT 4047:I/O COMMUNICATION ERROR<br />

(1)Checking I/O board<br />

(2)Checking all connectors on I/O board.<br />

MOT<br />

4048:SPINDLE ORITENTATION SIGNAL NOT RELEASE<br />

Assumed executing machine adjustment and orientation. If initially, the spindle is<br />

positioned on the sensor, the spindle will move away automatically. After the orientation<br />

signal is off, user will be able to execute machine adjustment or orientation. However, if the<br />

spindle already rotates one cycle but the orientation signal has not been released, then<br />

this alarm message will occur.<br />

(1)Checking whether or not there is connection problem on the spindle orientation<br />

sensor.<br />

(2)Checking whether or not the spindle orientation sensor signal and type setting is<br />

correct (Parameter # 184).<br />

(3)Checking whether or not the spindle orientation sensor is broken.<br />

MOT<br />

4049:SPINDLE ORITENTATION FLAUT<br />

When executing spindle orientation, the spindle is NOT able to reach the correct<br />

orientation point.<br />

(1)Please go to DGNOS page. If the data system NO. 10 is changing, but the<br />

spindle is not rotating. Then, it means the spindle motor ENCDER signal has<br />

external distribution that makes the system misunderstood.<br />

(2)Please check whether or not the setting orientation rate is too high by parameter<br />

NO. 21 that makes spindle motor has missing step in the Pulse Mode.<br />

274 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

MOT<br />

4050:SPINDLE ORITENTATION SIGNAL NOT FOUND<br />

Assumed the spindle has rotated one time already but it hasn’t found the orientation<br />

position sensor while executing machine adjustment or while orientation program is<br />

running. The following alarm messages will occur.<br />

(1)Checking whether or not there is connection problem on the spindle orientation<br />

sensor<br />

(2)Checking whether or not the spindle orientation sensor signal and type setting is<br />

correct (Parameter # 184).<br />

(3)Checking whether or not the spindle orientation sensor is broken.<br />

MOT 4051:NO SPINDLE SPEED DEFINE<br />

No spindle speed definition. So please define rotary command in rigid tapping. Please<br />

key-in rotational speed command S before tapping command.<br />

MOT 4052:MOVE ERR OVER LIMIT IN RIGTAP<br />

(1)Please check whether or not the procedure of rigid machine adjustment is<br />

completed.<br />

(2)Please check whether not the setting value of Parameter 1058 is too small.<br />

MOT 4053:SPD SPEED WILL OVER LIMIT<br />

(1)Please check whether or not the setting spindle rotational speed is over the<br />

maximum speed that this gear spindle can handle.<br />

(2)Please check whether or not the setting of Parameter NO. 1060 for the spindle<br />

return accelerating speed is too big under rigid tapping. Unless necessary,<br />

recommend setting to 100.<br />

MOT 4054:Z AXIS FEEDRATE WILL OVER LIMIT<br />

Z axis cutting feedrate speed of rigid tapping is larger than the maximum cutting<br />

speed that is set by Parameter 1004.<br />

(1) Checking whether or not Parameter NO. 1060 has set the spindle returning<br />

accelerating speed too large under rigid tapping. If speed starts to accelerate<br />

while returning (i.e., P1060 > 1000), then speed of cutting spindle will<br />

accelerate too. Unless necessary, recommend to set 100.<br />

<strong>LNC</strong> Technology Co., Ltd. 275


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

MOT 4055:SPD SERROLAG OVER LIMIT IN RT<br />

(1) Please check whether or not ladder has error.<br />

(2) Please check whether or to the spindle is rotating in rigid tapping procedure. If<br />

not, please check whether or not there is problem for the spindle driver setting.<br />

(3) Please check whether or not the spindle Encoder line is discount or fall.<br />

(4) Please check whether or not the setting of Parameter 1075 is too small.<br />

MOT<br />

MOT<br />

MOT<br />

MOT<br />

MOT<br />

MOT<br />

MOT<br />

MOT<br />

MOT<br />

MOT<br />

MOT<br />

MOT<br />

4056:SET PAR 18 ERROR<br />

4057:SPINDLE SPEED CAN'T ARRIVE<br />

4058:OVER SOFTLIMIT<br />

4061:THREAD CUT FEED OVERLIMIT<br />

4062:X-AXIS ABSOLUTE ENCODER VALUE OUT OF TOLERANCE<br />

4063:X AXIS ABSOLUTE ENCODER TRANSMISSION OVER TIME<br />

4064:X AXIS ABSOLUTE ENCODER CHECK SΜM ERROR<br />

4065:Y-AXIS ABSOLUTE ENCODER VALUE OUT OF TOLERANCE<br />

4066:Y AXIS ABSOLUTE ENCODER TRANSMISSION OVER TIME<br />

4067:Y AXIS ABSOLUTE ENCODER CHECK SΜM ERROR<br />

4068:Z-AXIS ABSOLUTE ENCODER VALUE OUT OF TOLERANCE<br />

4069:Z AXIS ABSOLUTE ENCODER TRANSMISSION OVER TIME<br />

MOT<br />

MOT<br />

MOT<br />

MOT<br />

4070:Z AXIS ABSOLUTE ENCODER CHECK SΜM ERROR<br />

4071:4TH-AXIS ABSOLUTE ENCODER VALUE OUT OF TOLERANCE<br />

4072:4TH AXIS ABSOLUTE ENCODER TRANSMISSION OVER TIME<br />

4073:4TH AXIS ABSOLUTE ENCODER CHECK SΜM ERROR<br />

MOT 4074:M CODE REPEAT ASSIGN,CHECK PARAMETER 89,835,836,837<br />

276 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

MOT<br />

MOT<br />

MOT<br />

4075:TOUCH DIRECTION SIGNAL READ ERROR<br />

4076:TOUCH SIGNAL IS TRIGGERED IN MANUAL MEASURE STATUS<br />

4077:NO SEMI-FIXED M CODE<br />

MOT 4101:TOOL POSITION INTERFERENCE<br />

(1)In OPR mode, tool position and setting value NOT match.<br />

(2)Moving away tool or re-enter data<br />

(3)Pressing RESET.<br />

MOT<br />

4102:INPUT DIGTS RANGE ERROR<br />

MOT<br />

4103:AUTHORIZATION CHECK FAILURE<br />

Please contact technical person.<br />

MOT<br />

4121:X AXIS COMMANDED UNDER DETACHED<br />

MOT<br />

4122:Y AXIS COMMANDED UNDER DETACHED<br />

MOT<br />

4123:Z AXIS COMMANDED UNDER DETACHED<br />

MOT<br />

4124:4TH AXIS COMMANDED UNDER DETACHED<br />

MOT<br />

4125:SPINDLE POSITIONING ACC/DCC TIME SETTING ERROR<br />

MOT<br />

4901:SYSTEM ALARM<br />

MOT<br />

4902:SYSTEM ALARM<br />

MOT<br />

4903:SYSTEM ALARM<br />

MOT<br />

4950:SYSTEM ALARM<br />

MOT<br />

4951:SYSTEM ALARM<br />

MOT 9001:X AXIS OVER SOFTLIMIT (+)<br />

<strong>LNC</strong> Technology Co., Ltd. 277


<strong>LNC</strong>-<strong>M600</strong><br />

SYSTEM ALARM and WARNING<br />

MOT 9002:X AXIS OVER SOFTLIMIT (-)<br />

MOT 9003:Y AXIS OVER SOFTLIMIT (+)<br />

MOT 9004:Y AXIS OVER SOFTLIMIT (-)<br />

MOT 9005:Z AXIS OVER SOFTLIMIT (+)<br />

MOT 9006:Z AXIS OVER SOFTLIMIT (-)<br />

MOT 9007:4TH AXIS OVER SOFTLIMIT (+)<br />

MOT 9008:4TH AXIS OVER SOFTLIMIT (-)<br />

MOT 9009:X AXIS OVER G22 SOFTLIMIT (+)<br />

MOT 9010:X AXIS OVER G22 SOFTLIMIT (-)<br />

MOT 9011:Y AXIS OVER G22 SOFTLIMIT (+)<br />

MOT 9012:Y AXIS OVER G22 SOFTLIMIT (-)<br />

MOT 9013:Z AXIS OVER G22 SOFTLIMIT (+)<br />

MOT 9014:Z AXIS OVER G22 SOFTLIMIT (-)<br />

MOT<br />

9015:OVER CUTTING FEED START SIGNAL WAITTING<br />

278 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Machine Adjustment<br />

7 Machine Adjustment<br />

7.1 Milling Rigid Tapping Commanding<br />

Description:<br />

• G94(G95)<br />

Mode<br />

Thread Pitch<br />

Calculation<br />

F_ Unit<br />

G94 F_ / S_ mm/min<br />

G95 F_ mm/rev<br />

• G98、G99<br />

G98 : Returning back to the initial height.<br />

G99 : Returning back to R point.<br />

• G84(G74)X_Y_Z_R_P_F_K_:<br />

G84:Right helical.<br />

G74:Left helical.<br />

X_Y_:Tapping position.<br />

Z_:Tapping’s lowest point (hole bottom).<br />

R_:Tapping’s starting point.<br />

P_:Tapping’s stop time.<br />

F_:Tapping’s Z axis feed speed(G94)or pitch(G95).<br />

K_:Repeating tapping numbers.<br />

Example:<br />

G94(G95);<br />

M29 S_;<br />

// To set Feedrate unit.<br />

// To enable rigid tapping mode and to command spindle to the<br />

desired rotational speed.<br />

G98(G99)G84(G74)X_Y_Z_R_P_F_K_;<br />

G80; // or Group 0 commands(G00、G01、G02、G03), disable<br />

rigid mode.<br />

<strong>LNC</strong> Technology Co., Ltd. 279


<strong>LNC</strong>-<strong>M600</strong><br />

Machine Adjustment<br />

• Returning acceleration function<br />

Setting parameter 1060, which will be able to accelerate the Z axis returning speed<br />

under rigid tapping and to decrease working time.<br />

• Override<br />

Under rigid tapping, Feed Override and Spindle Speed Override will be disabled.<br />

• MLC Rigid Tapping C BIT<br />

C BIT SYMBOL Description<br />

C125 RT START<br />

When C125 is ON, it will inform NC to start rigid tapping mode.<br />

MLC needs to wait until NC S128 = ON and then to disable<br />

C125.<br />

C124 RT STOP<br />

Disable rigid tapping mode.<br />

Under normal situation, rigid tapping mode will be disabled<br />

automatically after reading G80 or Group 1’s G code. If there is<br />

special need, please set bit to ON and then rigid tapping will be<br />

disabled automatically.<br />

S128 RT STATE<br />

Rigid Tapping Mode Status<br />

When NC enters into the rigid tapping mode, S128 remains ON<br />

until it exits rigid tapping mode. If user press RESET under rigid<br />

tapping, NC will set S128 OFF.<br />

Notice: When user press RESET, please disable rigid tapping mode in order to prevent<br />

any unpredicted situation.<br />

• Rigid Tapping System Information<br />

Rigid Tapping<br />

System<br />

Information #<br />

Description<br />

#21 Max error in rigid tapping travel<br />

#22<br />

#23<br />

#24<br />

#25<br />

Estimate value of rigid tapping 1 st speed<br />

compensation value<br />

Estimate value of rigid tapping 1 st<br />

acceleration speed compensation value<br />

Estimate value of rigid tapping 2 nd speed<br />

compensation value<br />

Estimate value of rigid tapping 2 nd<br />

acceleration compensation value<br />

#26 Rigid tapping spindle following error<br />

280 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Machine Adjustment<br />

• Rigid Tapping Machine Adjustment Procedure<br />

1. Please increase the maximum allowable following error of Z axis direction (Para. #<br />

1058 is approximately set to 3000). Also increase the maximum servo error of the<br />

spindle (Para. # 1075 is approximately set to encoder size per rotation of the<br />

spindle*10) in order to prevent warning when doing machine adjustment.<br />

2. Confirm Spindle Rotational Direction(Para. # 1071)<br />

Executing the following program:<br />

M29S500<br />

G91G84R-10Z-50F500<br />

M28<br />

M30<br />

Check whether or not the spindle rotational direction is the same direction as M3<br />

direction under non-rigid tapping mode. If not the same, please set Para. # 1071 to 1.<br />

3. Acc/Deceleration Time Adjustment<br />

To adjust acc/deceleration time (parameter 1059) and execute the following program:<br />

M29S2500 ; rotational speed setting is the maximum rigid tapping speed.<br />

G91G84R-10Z-50F2500<br />

M28<br />

M30<br />

During executing, must make the spindle drive device’s current lower than the<br />

saturation value, and make the spindle to turn smoothly.<br />

Please pay attention to whether or not the needed maximum rotational speed can be<br />

reached at the upper enter frequency limit of the spindle. Using Toshiba as an example,<br />

adjust Para. # 373, 425, 426, 427, and 428.<br />

If the spindle rotational speed is not smooth in high rotational speed, please refer to<br />

Para. # 371.<br />

<strong>LNC</strong> Technology Co., Ltd. 281


<strong>LNC</strong>-<strong>M600</strong><br />

Machine Adjustment<br />

4. Speed Compensation<br />

a. Please set parameters 1064、1065、1073、1074 to zero and reboot the system after<br />

modifying.<br />

b. Executing the following program in dry run one time (no need to put on any material)<br />

M29S2500<br />

G91G84R-10Z-50 F2500 P1000<br />

M28<br />

M30<br />

To observe system data #22, and to enter this value into speed compensation<br />

parameter 1064. This value should be between 100~8000. After entering system<br />

data #24 into parameter 1073 (S22 → P1064,S24→P1073), reboot the system.<br />

c. Executing the above part program again. If there is any shaking, please adding<br />

parameter 1066 from 0 to 20 in order to decrease shaking. This value shouldn’t be<br />

as too big as possible, or the following error will increase. Recommending value is<br />

between 3~5.<br />

5. Acceleration Speed Compensation<br />

a. Executing Step 4 program one more time, enter system data # 23 and #25<br />

separately into acceleration speed compensation parameter 1065 and 1074 and<br />

then reboot the system. This value should be between 100~8000.<br />

b. If shaking occurs, please adding parameter 1070 from 0 to 20 in order to decrease<br />

shaking. Recommending value is 10~15.<br />

c. After completed, please observe system data #21. This is the biggest error of Z axis<br />

direction during tapping.<br />

6. Servo Error Amount Checking<br />

a. Reset Para. # 1058 as the allowable error amount and it must be larger than system<br />

data #21. Recommend setting this value as 5 – 10 times larger than system<br />

parameter 21. During rigid tapping, when the error is over this setting value, tapping<br />

will stop.<br />

b. Using the same principle to set Para. # 1075 as the allowable error amount for the<br />

spindle servo. Recommend to set this value as 5-10 times larger than the system<br />

parameter #26. During rigid tapping, when the error is over this setting value,<br />

tapping will stop.<br />

282 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Machine Adjustment<br />

7.2 Laser Compensation Procedure<br />

R(MAC Coord.)<br />

1<br />

-X<br />

2<br />

3<br />

4 5<br />

Total Length = ABS(Q) * K<br />

K+3<br />

Arg. U to Decide Effective or Not<br />

K+4<br />

E(Cancel Distance of Backlash)<br />

Q(Each Section Measurement)<br />

K+5<br />

2K+5<br />

K+7<br />

K+6<br />

:Repaidly Ori. G00<br />

E(Cancel Distance of Backlash)<br />

:Linear Inter G01<br />

:Pro. Pause M0<br />

:Stop G04<br />

:Pro. Finish<br />

Program Argument Description<br />

1. A:Axis direction, 1 means X axis, 2 means Y axis and 3 means Z axis.<br />

2. E:Delete backlash moving distance. If it is a positive value, at beginning of<br />

measuring, the program should move ABS(E)distance toward this axis<br />

positive direction. Then moving ABS(E)distance toward negative direction<br />

(Step 2 and Step 3 from the above Diagram). After measuring forward direction,<br />

first moving ABS(E)distance toward negative direction and then moving ABS<br />

(E)distance toward positive direction (Steps K+4 and K+5 from the above<br />

diagram). If it is a negative value, then using the opposite method. So, if this<br />

axis pitch error compensation direction is positive, then this argument must be<br />

set as negative value. If it is a negative direction compensation, then this<br />

argument must be set as positive.<br />

<strong>LNC</strong> Technology Co., Ltd. 283


<strong>LNC</strong>-<strong>M600</strong><br />

Machine Adjustment<br />

To delete backlash motion is to execute G01 and the feedrate is constant to<br />

800mm/min. In order to catch the first point of Backward direction (which<br />

equals to the last point of the Forward direction, final point of Step K+3 or the<br />

starting point of Step K+6), so the setting value of this argument should be<br />

bigger than the setting value of Laser measuring software (such as<br />

RENISHAW, HP and etc). If not, Step K+4 and Step K+5 should stop for a<br />

while.<br />

3. K:Measure section, this argument value must be the same as the total section<br />

setting value of the pitch error compensation (Parameters 0112 – 0115) for the<br />

corresponding axis direction in NC system.<br />

4. Q:Each section’s measuring length. If it is positive direction compensation,<br />

please set setting value as positive value. If it is negative direction, please set<br />

setting value as negative value. This argument value must be the same as<br />

each pitch error compensation distance’s setting value for the corresponding<br />

axis in NC system. (Parameters 1018 – 1021, NC system parameter values<br />

are positive permanently. Parameter 0118 will set the compensation<br />

direction.)<br />

5. R:Measure starting coordinate (machine coordinate), this argument value must<br />

be the same as the starting position’s setting value of pitch error<br />

compensation (Parameters 1046 – 1049) for the corresponding axis direction<br />

in NC system.<br />

6. T:For each section’s pause time, unit is sec.<br />

7. U:When the setting is 1, after executing K+4 Step, pause argument<br />

T will continue moving toward the reverse direction at the desired time. When<br />

the setting is 0, pause argument T will continue moving toward the reverse<br />

direction immediately after executing K+4 Step. Please refer to Argument E<br />

for a description.<br />

284 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Machine Adjustment<br />

Executing Steps<br />

1. Check NC parameter 0038 (Backlash and pitch error compensation unit) setting value<br />

is correct or not.<br />

2. Correct O0000 content and modify each argument’s (E, K, Q, R) corresponding NC<br />

parameter setting value.<br />

3. Disable backlash or pitch error compensation function (Parameters 0117 and 0119);<br />

reboot system.<br />

4. Executing reference point procedure.<br />

5. After resetting laser measure software (such as RENISHAW、HP and est.), executing<br />

O0000 program and measuring the error amount of each section’s compensation<br />

length. The measure result is as below:<br />

Error<br />

Backward<br />

Backlash<br />

Forward<br />

Dist.<br />

6. Putting the measured backlash(From the upper diagram, the vertical difference<br />

between two lines)into NC parameter(Parameters 0044 ~ 0047), and enable the<br />

backlash function(Parameter 0117); reboot the system.<br />

<strong>LNC</strong> Technology Co., Ltd. 285


<strong>LNC</strong>-<strong>M600</strong><br />

Machine Adjustment<br />

7. After looking for the reference point, re-executing Step 5 and the measure result<br />

should be as following:<br />

Error<br />

Backward<br />

Forward<br />

Dist.<br />

8. Setting pitch error compensation values(NC Parameters 0300 ~ 0349、0450 ~<br />

0499、0600 ~ 0649 and 0750 ~ 0799). Assumed the <strong>LNC</strong> system pitch error<br />

compensation value uses the relative value setting. If the laser measure software<br />

(such as RENISHAW, HP, and est.) able to execute exchanging, there will be no<br />

problem. But, if can only use the absolute value to indicate, the exchanging<br />

method is as following:<br />

The N th section relative error = the N th section absolute error – the (N-1) th section<br />

absolute error;<br />

The N th section compensation setting value = -ive N th section relative error.<br />

Starting Point<br />

Ideal Time Interval,<br />

20mm<br />

Ideal:20.000<br />

Meausre:20.002<br />

Actual:20.002<br />

Abs. Error:0.002<br />

Rel. Error:0.002<br />

Para. Set:-0.002<br />

Ideal:40.000<br />

Meausre:40.001<br />

Actual:19.999<br />

Abs. Error:0.001<br />

Rel. Error:-0.001<br />

Para. Set:0.001<br />

9. After rebooting the system, re-executing Step 7 until the compensation effect is<br />

within the acceptable range.<br />

Ideal::60.000<br />

Meausre:60.001<br />

Actual:20.000<br />

Abs. Error:0.001<br />

Rel. Error:0.000<br />

Para. Set:0.000<br />

Ideal::80.000<br />

Meausre:79.998<br />

Actual:19.997<br />

Abs. Error:-0.002<br />

Rel. Error:-0.003<br />

Para. Set:0.003<br />

286 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Machine Adjustment<br />

7.3 Double Ball Bar Measure – Backlash or Circular Spike<br />

• Backlash<br />

Using DOUBLE BALL BAR to measure backlash, the result analyzing diagram is as<br />

following (only the Y axis part, which is called Positive Backlash). Able to see the Y<br />

axis backlash is 14um from the diagram. So please set this value (i.e., 14um) into<br />

Para. # 0045 and set BIT1 of Para. # 0117 to 1 in order to enable Y axis backlash<br />

compensation function.<br />

• Reversal Spikes<br />

Using DOUBLE BALL BAR to executing canned cycle testing, the result analyzing<br />

diagram is as below. In the diagram, the sticking out path in the direction changing<br />

area of each axis is called the circular spikes phenomenon.<br />

<strong>LNC</strong> Technology Co., Ltd. 287


<strong>LNC</strong>-<strong>M600</strong><br />

Machine Adjustment<br />

Using +ive X axis direction as an example, each related parameter setting for circular<br />

spikes compensation value is as following:<br />

1. Parameter 0812:+ X Axis Direction of Reversal Spikes Value<br />

Unit:um<br />

Description: This parameter is to set the circular compensation value of +ive X axis<br />

direction. Using the above diagram as an example. The +ive X axis direction circular<br />

spike is 11. So based on the principle, the parameter setting value is 11. However,<br />

since the present <strong>LNC</strong> series controller is using PULSE COMMAND control mode<br />

(spike compensation is added to CURRENT LOOP value), there will be some delay<br />

between the actual corresponding of servo motor and the commanding value. Based<br />

on past experience, the circular compensation value should be set as 8-9 times of the<br />

actual value. So according to the result from the above diagram, the recommend<br />

setting value for this parameter is 90. If this parameter setting value is 0, it means not<br />

to enable the + X axis spike compensation function.<br />

2. Parameter 0813: Reversal Spikes Time Interval of +ive X Axis Direction<br />

Unit: disconnecting time interval<br />

486IPC is 10.6ms<br />

586IPC is 3.6ms<br />

Description: To use this parameter to set the maintaining time of +ive X axis direction<br />

spike compensation. The corresponding +ive X axis spike maintaining time (spindle<br />

width) is displayed on the result analyzing diagram. The measure software will provide<br />

each measured Sampling Rate. Using RENISHAW as an example,【Sample: 7.81 per<br />

sec information will be displayed on the left side of analysis diagram. This means the<br />

time interval for two closing points is<br />

1<br />

7.81<br />

= 128ms . Need at least 3 points (during<br />

time 2 × 128 = 256ms<br />

) if want the analysis diagram to display multiple-angle sharp.<br />

256<br />

Under this requirement, the parameter setting value is = 71 (586IPC). If this<br />

3.6<br />

parameter setting value is zero, this means not to enable the +ive X axis spike<br />

compensation function.<br />

3. Parameter 0814: Reversal Spikes Delay Time of +ive X axis<br />

Unit: discounting time interval<br />

486IPC is 10.6ms<br />

586IPC is 3.6ms<br />

288 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Machine Adjustment<br />

Description: Assumed the circular spike occurring point of +ive X axis is not in the<br />

direction changing center (on the X axis), but it occurs after direction changing. Then,<br />

need to set this parameter. Please refer to the description of parameter 0813 for the<br />

calculating method of this setting value.<br />

<strong>LNC</strong> Technology Co., Ltd. 289


<strong>LNC</strong>-<strong>M600</strong><br />

Dimension<br />

8 Dimension<br />

The following is the dimension chart for each installation position. The linear part is the<br />

cutting line and the cycle part is the position of a drilling hole, and the dotted-line part is the<br />

range after the installation is completed.<br />

8.1 LCD Module Installation Position<br />

穿 孔<br />

290 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Dimension<br />

8.2 MDI Dimension<br />

Drill a hole<br />

<strong>LNC</strong> Technology Co., Ltd. 291


<strong>LNC</strong>-<strong>M600</strong><br />

Dimension<br />

8.3 Operational Panel Dimension<br />

292 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Dimension<br />

8.4 Push-button Operational Panel Dimension<br />

To set up, use M4 screw with nut to lock up, the length is depend on the location. (OP<br />

panel is 5mm in depth)<br />

8<br />

<strong>LNC</strong> Technology Co., Ltd. 293


<strong>LNC</strong>-<strong>M600</strong><br />

Dimension<br />

8.5 MPG Operational Panel Dimension<br />

To set up, use M4 screw with nut to lock up, the length is depend on the location. (OP<br />

panel is 5mm in depth)<br />

294 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Dimension<br />

8.6 FDD、CD-ROM Dimension<br />

<strong>LNC</strong> Technology Co., Ltd. 295


<strong>LNC</strong>-<strong>M600</strong><br />

Dimension<br />

8.7 ELC-1000MA Dimension<br />

PCC-1840<br />

MOTION<br />

ERR<br />

E5V<br />

VR1<br />

VR2<br />

R I/O 1<br />

BA<br />

R I/O2<br />

L I/O<br />

ELC-1000M-A<br />

USB<br />

COM1<br />

IDE<br />

PS2<br />

VGA<br />

FLOPPY<br />

DC Power<br />

+12 G +5<br />

COM2<br />

PRINT<br />

CF CARD<br />

296 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Dimension<br />

8.8 ELC-2000 Dimension<br />

PCC-1840<br />

MOTION<br />

R I/O2<br />

ERR<br />

E5V<br />

VR1<br />

VR2<br />

L I/O<br />

R I/O1<br />

BA<br />

COM2<br />

ELC-2000<br />

COM1<br />

FAN ERR<br />

IDE<br />

PS2 RESET<br />

PRINT<br />

VGA<br />

FLOPPY<br />

DC Power<br />

+12V G +5V<br />

USB<br />

+5V<br />

CF CARD<br />

<strong>LNC</strong> Technology Co., Ltd. 297


<strong>LNC</strong>-<strong>M600</strong><br />

Dimension<br />

8.9 Standard (IPC 586) Dimension<br />

298 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Dimension<br />

8.10 ELC_P100A Power Supply Dimension<br />

<strong>LNC</strong> Technology Co., Ltd. 299


<strong>LNC</strong>-<strong>M600</strong><br />

APPENDIX A: PARAMETER ADJUSTMENT EXAMPLE<br />

APPENDIX A: PARAMETER ADJUSTMENT EXAMPLE<br />

A1 Parameter Adjustment of V Command Control Method<br />

Using X axis as an example, the following is the diagram of CONTROL BLOCK DIAGRAM<br />

when motor ENCODER has the position feedback signal.<br />

NC<br />

Motor<br />

K p<br />

DAC<br />

Motor<br />

RPM/V<br />

Speed<br />

Loop<br />

Current<br />

Counter<br />

1/S<br />

Pulse/rotation of motor<br />

pulse V rpm rpm rev pulse<br />

1. K p :position gain on PCC1620 motion control card, P control.<br />

2. PCC1620 motion control board DAC specification:<br />

16-bit,output ±10V DAC analogy degree =<br />

10<br />

− 1<br />

2 −1<br />

16<br />

=<br />

10<br />

32767<br />

3. Motor incremental gain = 1V, the corresponding motor rotational speed rpm, is decided<br />

by motor specification(motor driver also needs to be set).<br />

4. The speed of motor driver and the responding speed of the current feedback is much<br />

faster than the speed of position feedback, so it is able to set it as 1.<br />

5. Total pulse per rotation of Motor = total Encoder output pulse per rotation of motor *<br />

multiple feedback factor.<br />

300 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

APPENDIX A: PARAMETER ADJUSTMENT EXAMPLE<br />

Example:X axis selects motor 2000rpm/10V, the total encoder output pulse per rotation of<br />

motor is 2500; for machine structure, gear ratio is 4; pitch is 10mm. Under V<br />

command control method, if users hope the system feedback loop gain is 30<br />

for this axis, then how to set the related parameters<br />

Answer: Parameter #0001:30(system feedback loop gain).<br />

Parameter # 0054:4(X axis multiple feedback factor).<br />

Parameter #1112:2500(total encoder output pulse per rotation of X axis motor).<br />

Parameter # 0108:200(X axis motor loop gain).<br />

Parameter #0156:3(X axis control commanding mode).<br />

Parameter #0068:1(denominator of X axis motor).<br />

Parameter #0100:4(numerator of X axis ball screw).<br />

Parameter #0104:10000(pitch of X axis ball screw).<br />

So the control loop at this time is as below:<br />

NC<br />

Motor<br />

Speed, Current Loop<br />

X<br />

Y<br />

Interpolation<br />

4<br />

K p 10/32767<br />

200 1 1/60 1/S 10000<br />

μm<br />

CMR<br />

puls<br />

e<br />

V<br />

rpm<br />

rpm<br />

rps<br />

rev<br />

pulse<br />

Relationship between Position Control Feedback Output and Input:<br />

Y<br />

1<br />

K<br />

p<br />

⋅10<br />

1<br />

32767<br />

⋅ 200⋅<br />

60<br />

⋅ ⋅10000<br />

S<br />

10.17284K<br />

p<br />

= X =<br />

X ,<br />

1<br />

1+<br />

K 10<br />

1<br />

S 10.17284K<br />

p<br />

p<br />

⋅ ⋅ 200⋅<br />

⋅ ⋅10000<br />

+<br />

32767 60 S<br />

At this time, the position feedback loop gain is 10.17284K p . Since the user requires the<br />

30<br />

desired position loop gain is 30, so the K p value needs to be set as = 2.949 i on<br />

10.17284<br />

motion control board.<br />

<strong>LNC</strong> Technology Co., Ltd. 301


<strong>LNC</strong>-<strong>M600</strong><br />

APPENDIX A: PARAMETER ADJUSTMENT EXAMPLE<br />

Testing Method:<br />

F<br />

e =<br />

K<br />

,e is the following error under stable condition(X axis reaches equal speed),<br />

please check system data # 000, unit is the smallest unit of the system; F is the feedrate;<br />

K is the position feedback loop gain. In this example, when K is 30 and under the condition<br />

2000000<br />

that feedrate is 2000mm/min, following error should be e = 60 = 1111 when X axis<br />

30<br />

is in equal speed. When X axis is already in equal speed and the value of system data<br />

#000 is 1111 (or close to this number, sometimes there will be some difference due to<br />

moving forward one space), it means the parameter setting is correct.<br />

302 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

APPENDIX A: PARAMETER ADJUSTMENT EXAMPLE<br />

A2 Parameter Adjustment when Encoder is installed besides Ball Screw<br />

1. Connecting ball screw encoder feedback signal to NC, using it as position control.<br />

2. Connecting motor encoder feedback signal to motor driver, using it as speed<br />

(velocity) and voltage control.<br />

NC<br />

Motor<br />

Ballscrew<br />

Speed<br />

DAC Motor<br />

Interpolation CMR K p<br />

1/GR<br />

Loop<br />

RPM/V Current<br />

1/S<br />

Pulse/screw<br />

um<br />

pulse<br />

V<br />

rpm<br />

motor rpm<br />

ball screw rpm<br />

rev<br />

pulse<br />

3. Since the position feedback signal is returning back from ball screw at this time,<br />

must set gear ratio to 1 even there is gear ratio is between motor and ball screw.<br />

Putting the gear ratio factor into the position control feedback.<br />

4. Assumed the initial parameter # 1112 is to set the encoder total output pulse value<br />

per rotation of motor. At this time, changing it to as the encoder total output pulse<br />

value per rotation of ball screw.<br />

Example:X axis selects 2000rpm/10V motor,encoder total output pulse<br />

value per rotation of motor is 2500; for machine structure, gear ratio is 4, pitch<br />

is 10mm, Please to install an additional 3000pulses/rev encoder on the ball<br />

screw side and also to connect the feedback signal to NC for position control.<br />

Under the condition that V command control method and the system loop gain<br />

is 30, how to set the related parameters<br />

Answer:Parameter #0001:30(system feedback loop gain).<br />

Parameter #0054:4(X axis multiple feedback factor).<br />

Parameter #1112:3000(encoder total output pulse value per rotation of X axis<br />

ball screw).<br />

Parameter #0108:(X axis motor loop gain)<br />

Parameter #0156:3(X axis control commanding mode).<br />

Parameter #0068:1(denominator of X axis motor).<br />

Parameter #0100:1(numerator of X axis ball screw).<br />

Parameter #0104:10000(Pitch of X axis ball screw).<br />

explain later.<br />

<strong>LNC</strong> Technology Co., Ltd. 303


<strong>LNC</strong>-<strong>M600</strong><br />

APPENDIX A: PARAMETER ADJUSTMENT EXAMPLE<br />

3000*4<br />

CMR = = 1.2 pulses / um ,which means 1um on X axis is correspond to 1.2<br />

10000<br />

pulses that is the encoder total output signal of ball screw.<br />

Control Loop is as below:<br />

X<br />

NC<br />

Motor<br />

Ballscrew<br />

Interpolatio 1.2 K p 10/32767 200 1 1/4 1/60<br />

1/S<br />

12000<br />

Y<br />

um<br />

pulse<br />

V<br />

rpm<br />

Motor rpm<br />

ball screw rpm<br />

Ball<br />

screw<br />

rps<br />

rev<br />

pulse<br />

But, since there is no extra parameters for GR factor setting in position feedback,<br />

modification is as following:<br />

X<br />

NC<br />

Motor<br />

Ballscrew<br />

Interpolatio 1.2<br />

K p<br />

10/32767 200/4 1<br />

1/60<br />

1/S 12000<br />

Y<br />

um<br />

pulse<br />

V<br />

rpm<br />

rpm<br />

rps<br />

rev<br />

pulse<br />

Input and Output Relationship:<br />

K<br />

p<br />

⋅10<br />

32767⋅<br />

200⋅1<br />

4⋅1<br />

60⋅1<br />

S ⋅12000<br />

Y =<br />

X<br />

1+<br />

K ⋅10<br />

32767⋅<br />

200⋅1<br />

4⋅1<br />

60⋅1<br />

S ⋅12000<br />

K<br />

p<br />

⋅10<br />

32767⋅<br />

200 4⋅1<br />

60⋅1<br />

S ⋅12000<br />

3.05185K<br />

p<br />

=<br />

X =<br />

1+<br />

K ⋅10<br />

32767⋅<br />

200 4⋅1<br />

60⋅1<br />

S ⋅12000<br />

S + 3.05185K<br />

p<br />

p<br />

p<br />

X<br />

So, in this application example, parameter #0108 setting value is 200/4=50 and the<br />

K p setting value is<br />

30<br />

3.05185<br />

= 9.83 on PCC1620 motion control board.<br />

304 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

APPENDIX A: PARAMETER ADJUSTMENT EXAMPLE<br />

Weakness: under the present structure, when the motor actual loop<br />

gain cannot be completely divided by gear wheel ratio, please enter the<br />

closest integrate value. Also, there is a little bit difference between the<br />

whole position loop gain values and Parameter #0001 value. But, the<br />

position control has no problem at all.<br />

Strength: able to clear backlash error.<br />

<strong>LNC</strong> Technology Co., Ltd. 305


<strong>LNC</strong>-<strong>M600</strong><br />

APPENDIX A: PARAMETER ADJUSTMENT EXAMPLE<br />

A3 Parameter Adjustment when using Linear Scale Control Method<br />

1. Connecting linear scale feedback signal to NC, using it as position control.<br />

2. Connecting motor encoder feedback signal to motor driver, using it as velocity<br />

(speed) and voltage control.<br />

NC<br />

Motor<br />

Ballscrew<br />

Speed<br />

DAC Motor<br />

Interpolatio CMR K p<br />

1/GR<br />

Loop<br />

RPM/V Current<br />

1/S Pitch<br />

Pause of Linear<br />

Scale Unit<br />

um<br />

pulse<br />

V<br />

rpm<br />

motor rpm<br />

ball screw rpm<br />

rev<br />

um<br />

pulse<br />

3. Since the position feedback signal is returning back from table at this time, must<br />

set the gear ratio to 1 even there is gear ratio between motor and ball screw.<br />

Putting the gear ratio factor into the position control loop.<br />

Example:X axis selects 2000rpm/10V motor, the total<br />

encoder output pulse value per rotation of motor is 2500; for the<br />

machine structure, gear ratio is 4, pitch is 10mm. Also, please install an addition<br />

linear scale: every 20um will output one A/B pulse set, every 50mm will output one<br />

Z phase pulse and also sending the feedback signal to NC. Under the condition of V<br />

command control method and the system loop gain value is 30, how to set the<br />

related parameters<br />

Answer:Parameter #0001:30(system loop gain).<br />

Parameter #0054:4(X axis multiple feedback factor).<br />

Parameter #1112:(total encoder output pulse value per rotation of X axis<br />

motor).<br />

explain later.<br />

Parameter #0108:(X axis motor loop gain).<br />

Parameter #0156:3(X axis control commanding mode).<br />

Parameter #0068:1(denominator of X axis motor).<br />

Parameter #0100:1(numerator of X axis ball screw).<br />

Parameter #0104:(X axis pitch).<br />

explain later.<br />

explain later.<br />

(Parameter #1112 * Parameter #0054)the initial definition is the total<br />

encoder output pulse value per rotation of X axis motor. This value is<br />

306 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

APPENDIX A: PARAMETER ADJUSTMENT EXAMPLE<br />

used as the distance between each index in zero return procedure. So<br />

after changing to linear scale, Parameter #1112 also needs to change to<br />

the pulse value that is sent out by linear scale. In this example, every<br />

50 mm linear scale will produce one Z phase pulse, every 20 um will<br />

produce one A/B pulse set, so the pulse value that is produced by linear<br />

scale between each index is 50 * 1000 / 20 = 2500<br />

Parameter #1112 is 2500.<br />

the setting value of<br />

For linear scale, every 20 um will produce one A/B pulse set. This means every 5um<br />

will produce one pulse after 4 ratio so the CMR = 1 / 5 = 0.2. But for NC,<br />

P0058×<br />

P0054<br />

P100<br />

CMR =<br />

×<br />

P0104<br />

P68<br />

Since Parameter #1112 is to set the pulse value, which is produced by linear scale,<br />

between each index, Parameter #0104 must set the distance between each linear<br />

scale index in order to make the CMR in NC the same as that in linear scale. In this<br />

example, Parameter #0104 must be set as 50000.<br />

Control Loop is as following:<br />

NC<br />

Motor<br />

Ballscrew<br />

Interpolatio 0.2 K p 10/32767 200 1 1/4 1/60 1/S 1000 2500*4/50000<br />

um<br />

pulse<br />

V<br />

rpm<br />

motor rpm<br />

ball<br />

screw<br />

rpm<br />

ball screw rps<br />

rev<br />

um<br />

pulse<br />

Since there is no extra parameter for pitch and numerator of X axis ball screw setting,<br />

the control loop is modified as following:<br />

NC<br />

Motor<br />

Ballscrew<br />

Interpolatio 0.2 K p 10/32767 200*10000/(4*50000) 1<br />

1/60<br />

1/S 1000<br />

0<br />

Output and Input Relationship:<br />

<strong>LNC</strong> Technology Co., Ltd. 307


<strong>LNC</strong>-<strong>M600</strong><br />

APPENDIX A: PARAMETER ADJUSTMENT EXAMPLE<br />

K<br />

p<br />

⋅10<br />

32767⋅<br />

200⋅1<br />

4⋅1<br />

60⋅1<br />

S ⋅10000⋅10000<br />

50000<br />

Y =<br />

X<br />

1+<br />

K ⋅10<br />

32767⋅<br />

200⋅1<br />

4⋅1<br />

60⋅1<br />

S ⋅10000⋅10000<br />

50000<br />

K<br />

p<br />

⋅10<br />

32767⋅(200⋅10000)<br />

(4⋅50000)<br />

⋅1<br />

60⋅1<br />

S ⋅10000<br />

=<br />

X<br />

1+<br />

K ⋅10<br />

32767 ⋅(200⋅10000)<br />

(4⋅500000)<br />

⋅1<br />

60⋅1<br />

S ⋅10000<br />

p<br />

p<br />

0.50864<br />

=<br />

S + 0.50864K<br />

p<br />

X<br />

So, in this application case, the setting value of Parameter 0108 is 200*10000/(4*50000)<br />

=10. The K p setting value is<br />

30<br />

0.50864<br />

= 58.9808 on PCC1620 Motion Control Board.<br />

Weakness: Under current structure, when Parameter 0108<br />

cannot be an integrate number, please enter the closest integrate<br />

number. At this time, there will be some difference between the whole<br />

position loop gain and parameter 0001, but the position control will not<br />

have any problem.<br />

Strength: able to clear backlash error and pitch error.<br />

308 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

Appendix B: Servo Connection Example<br />

B1 Yaskawa Servo Connection Example<br />

YASKAWA Servo Motor Machine Adjustment Description<br />

Parameter Description Value Note<br />

Pn000 Control Mode Select:<br />

_ _1_<br />

0:speed control<br />

1<br />

1:position control<br />

Pn100 Speed circuit gain Depend on motor type<br />

Pn101 Speed Loop Integral Time Constant Depend on motor type<br />

Pn102 Position Loop Gain Depend on motor type<br />

Pn200 Pulse Type 4 _ _ _4<br />

Pn201 PG Dividing Ratio Depend on motor type<br />

Pn202 Electronic Gear Ratio (Numerator) Depend on motor type<br />

Pn203 Electronic Gear Ratio (Denominator) Depend on motor type<br />

<strong>LNC</strong> Technology Co., Ltd. 309


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

YASKAWA Σ-II Series electron gear ratio formula<br />

NC output pulse/rev→<br />

CMX(Pn202)<br />

CDV(Pn203)<br />

→driver pulse/rev<br />

feedack<br />

Encoder output pulses(Pn201x4)<br />

Model example<br />

SGMPH-01 A A A 2 S<br />

SGMPH-01 A A A G 1 2 B<br />

Code<br />

ENCODER pulse per rotate(pulse/rev)<br />

A 13-BIT 2048<br />

1 or B 16-BIT 16384<br />

2 or C 17-BIT 32768<br />

Ex: using motor that Code=A, PITCH=5MM, (1μ=1pulse):<br />

5MM=5000μ=5000pulse<br />

Because Pn201X4=5000 pulse<br />

So Pn201=1250<br />

NC parameter:to set X-Axis and Z-Axis ENCODER(P/Rev.)=1250。<br />

Pn203<br />

=<br />

Pn203 1250<br />

2048<br />

13−BIT<br />

X4<br />

x4 multiplier<br />

NC Para.: X−Axis<br />

/ Z−Zxis<br />

ENCODER ( P / Re v.)<br />

Servo motor parameter:<br />

Pn201:1250 Pn202:1024 Pn203:625<br />

X4<br />

x4 multiplier<br />

reduce 1024<br />

= ⎯⎯⎯→<br />

625<br />

Ex: using motor that Code=1 or B, PITCH=10MM,(1μ=1pulse):<br />

10MM=10000μ=10000pulse<br />

Because Pn201< motor ENCODER PULES per rotate >X4< NC multiple >=10000 pulse<br />

So Pn201=2500<br />

NC parameter :X-Axis and Z-Axis ENCODER(P/Rev.)=2500<br />

Pn203<br />

=<br />

Pn203 2500<br />

16384<br />

16−BIT<br />

X4<br />

x4 multiplier<br />

NC Para.: X−Axis<br />

/ Z−Zxis<br />

ENCODER ( P / Re v.)<br />

X4<br />

x4 multiplier<br />

Servo motor parameter: X-Axis and Z-Axis ENCODER(P/Rev.)=2500<br />

Pn201:2500 Pn202:4096 Pn203:625<br />

reduce 4096<br />

= ⎯⎯⎯→<br />

625<br />

310 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

Ex:using Code=2 or C type motor, PITCH=10MM,(1μ=1pulse):<br />

10MM=10000μ=10000pulse<br />

Pn201 < motor ENCODER P/Rev. > X4 =10000 pulse<br />

So Pn201=2500<br />

NC para. : : X-Axis and Z-Axis ENCODER(P/Rev.)=2500<br />

Pn203<br />

=<br />

Pn203 2500<br />

32768<br />

17−<br />

BIT<br />

X4<br />

x4 multiplier<br />

NC Para.: X−Axis<br />

/ Z−Zxis<br />

ENCODER ( P / Re v.)<br />

Servo motor parameters:<br />

Pn201:2500 Pn202:8192 Pn203:625<br />

X4<br />

( x4 multiplier)<br />

約 分 後 8192<br />

= ⎯⎯⎯<br />

→<br />

625<br />

ENCODER-Connection Diagram<br />

<strong>LNC</strong> Technology Co., Ltd. 311


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

U23.1<br />

X 軸<br />

M2<br />

MOTOR-Connection Diagram#1<br />

312 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

MOTOR-Connection Diagram#2<br />

<strong>LNC</strong> Technology Co., Ltd. 313


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

<strong>LNC</strong> 600S<br />

P1 Connection Diagram<br />

314 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

B2 Panasonic Servo Connection Example<br />

Panasonic Servo Motor Adjust Parameters<br />

A TYPE<br />

Para. Description Value Note<br />

Pr 02 * To set control mode<br />

0<br />

Control mode:0: position<br />

1: speed<br />

Pr10 Position Loop Gain According to motor<br />

type<br />

Pr11 Speed Loop Gain According to motor<br />

type<br />

Pr12 Loop Integral Time Constant According to motor<br />

type<br />

Pr40 * Control pulse multiple 4(default) Use if resolution been<br />

changed<br />

Pr44 * Number of output pulse per<br />

rotation<br />

2500(default) Use if resolution been<br />

changed<br />

Pr46 electronic gear ratio numerator 10000(default) Use if resolution been<br />

changed<br />

Pr4A electronic gear ratio numerator×2 n 0(default) Use if resolution been<br />

changed<br />

Pr4B electronic gear ratio denominator 10000(default) Use if resolution been<br />

changed<br />

D TYPE<br />

Para. Description Value Note<br />

Pr 02 * To set control mode<br />

0<br />

Control mode:0: position<br />

1: speed<br />

Pr03 Speed Loop Gain According to motor type<br />

Pr04 Loop Integral Time Constant According to motor type<br />

Pr20 Position Loop Gain According to motor type<br />

<strong>LNC</strong> Technology Co., Ltd. 315


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

Panasonic electron gear ratio formula<br />

NC output pulse/rev→<br />

Pr4A<br />

CMX(Pr46) × 2 →driver pulse/rev<br />

CDV(Pr4B)<br />

feedback<br />

Encoder output pulses(Pr44xPr40)<br />

NC pulse output must equal to driver feedback pulse(ENR) formula:<br />

Pr 44 ×<br />

Pr 40 ×<br />

Pr 46 × 2<br />

Pr 4B<br />

Pr40=4(default)<br />

Pr44=2500(default)<br />

Pr46=10000(default)<br />

Pr4A=0(default)<br />

Pr4B=10000(default)<br />

Ex: if want resolution of motor up to 10000pulse/rev<br />

2500 Pr 44<br />

× 4<br />

( Pr 40)<br />

10000<br />

×<br />

10000<br />

Pr 4A<br />

0( Pr 4 A)<br />

( Pr 46) × 2<br />

( Pr 4B)<br />

= 10000 pulse /<br />

rev<br />

316 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

P1<br />

25AWG*10P ***CM<br />

CNI/F<br />

<strong>LNC</strong> 600<br />

TRF 1720 P1-P4<br />

P1<br />

DES PIN NO.<br />

1A 11<br />

/1A 24<br />

1B 12<br />

/1B 25<br />

1C 10<br />

/1C 23<br />

/P1B 1<br />

P1B 2<br />

/P1A 14<br />

P1A 15<br />

SVI_CM 20<br />

AGND 5<br />

DACO1 17<br />

+24V 18<br />

FGND 4<br />

SERON 6<br />

ALM 19<br />

SVI_CM 8<br />

SERSET 9<br />

PANASONIC<br />

MDMXXX<br />

CN1A<br />

DES PIN NO.<br />

OA+ 21<br />

OA- 22<br />

OB+ 48<br />

OB- 49<br />

OZ+ 23<br />

OZ- 24<br />

SIGN2 6<br />

SIGN1 5<br />

PULSE2 4<br />

PULSE1 3<br />

COM- 41<br />

GND 15<br />

SPR/TRQR 14<br />

COM+ 7<br />

GND 25<br />

SRV-ON 29<br />

ALM+ 37<br />

ALM- 36<br />

A-CLR 31<br />

FG<br />

13<br />

FG<br />

50<br />

P1 Connection Diagram<br />

<strong>LNC</strong> Technology Co., Ltd. 317


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

B3 Mitsubishi Servo Example<br />

Mitsubishi Servo Motor Adjust Parameter<br />

classification Para. # Symbol Name and function Default Setting<br />

value<br />

Basic<br />

parameter<br />

Extended<br />

parameter 1<br />

19 *BLK Parameter write<br />

function setting:<br />

0 *STY Control mode selection:<br />

0:position control<br />

2:speed control<br />

Please refer to 5-5<br />

Control<br />

Unit<br />

mode<br />

0000 000E P.S.T<br />

0000 0000 P.S.T<br />

2 ATU Auto-tuning:<br />

0105 0405 P.S<br />

Please refer to 5-6<br />

3 CMX electronic gear ratio 1 8192 P<br />

numerator<br />

4 CDV electronic gear ratio 1 625 P<br />

denominator<br />

21 *OP Function 3(command 0000 0012 P<br />

pulse selection)<br />

25 VCM Max. Feedback Speed 0 3000 Rpm/min S.T<br />

of Analogy Speed:<br />

Setting Analogy Speed<br />

Command(VC). Key-in<br />

the feedback speed of<br />

maximum voltage<br />

(10V).<br />

The setting value is 0<br />

as the constant<br />

rotational speed.<br />

27 *ENC Checking Output<br />

PLUSE:<br />

Output PLUSE =<br />

Analogy Degree/REV<br />

of Servo Motor<br />

Please also refer to<br />

Section 5-15.<br />

4000 10000 Pulse/rev P.S.T<br />

29 VCO Analogy Speed Accordi Millivolt<br />

Command OFFSET: ng to<br />

Setting Voltage servo<br />

OFFSET value of driver<br />

Analogy Speed<br />

Command(VC).<br />

37 VG2 Speed Incremental 2 817 1000 Rad/s<br />

Adjusting effort is more<br />

obvious than that of<br />

Speed Incremental 1.<br />

Mitsubishi electron gear ratio formula<br />

318 <strong>LNC</strong> Technology Co., Ltd.


Ex: Setting ENCODER output value(NO.27)to 10000:<br />

<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

CMX<br />

CDV<br />

Commandpulse numerator<br />

Commandpulse denominator<br />

131072X4<br />

Reduction 8192<br />

= = ⎯⎯ ⎯⎯→<br />

=<br />

10000X4<br />

625<br />

parameter3<br />

parameter4<br />

<strong>LNC</strong> Technology Co., Ltd. 319


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

3M<br />

10320<br />

* CN2<br />

L31.1<br />

25AWG*5P ***CM<br />

* ENC<br />

MR-J2S-XXA<br />

ENC<br />

DES<br />

P5<br />

LG<br />

P5<br />

LG<br />

P5<br />

LG<br />

MR<br />

MRR<br />

MD<br />

MDR<br />

BAT<br />

LG<br />

PIN NO.<br />

19<br />

11<br />

20<br />

12<br />

18<br />

2<br />

7<br />

17<br />

6<br />

16<br />

9<br />

1<br />

FG<br />

DES<br />

MR<br />

MRR<br />

LG<br />

FG<br />

MOTOR<br />

HC-SFS, RFS, UFS<br />

ENC<br />

PIN NO.<br />

S<br />

R<br />

C<br />

D<br />

A<br />

B<br />

F<br />

G<br />

N<br />

M<br />

ENCODER Connection Diagram<br />

320 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

* MO<br />

L27.1<br />

3.5mm*4C ***CM<br />

* MO<br />

MOTOR<br />

HC-SFS, RFS, UFS<br />

U*<br />

V*<br />

W*<br />

PE<br />

DES<br />

U*<br />

V*<br />

W*<br />

E<br />

B1<br />

B2<br />

MOTOR<br />

PIN NO.<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

H<br />

MOTOR Connection Diagram #1<br />

<strong>LNC</strong> Technology Co., Ltd. 321


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

U23.1<br />

L21<br />

L22<br />

L23<br />

L1<br />

L2<br />

L3<br />

U<br />

V<br />

W<br />

U2<br />

V2<br />

W2<br />

M<br />

3<br />

1.0KW 220VAC<br />

X 軸<br />

M2<br />

PE<br />

PE<br />

PE<br />

PE<br />

L11<br />

L1C<br />

CN2<br />

L12<br />

L2C<br />

CN1A<br />

PA<br />

P5<br />

LG<br />

MR<br />

MRR<br />

LG<br />

S<br />

R<br />

C<br />

D<br />

G<br />

PG<br />

/PA<br />

FG<br />

N<br />

PB<br />

/PB<br />

PC<br />

/PC<br />

CN1B<br />

SIGN<br />

LG<br />

/SIGN<br />

VG<br />

PULSE<br />

COM<br />

/PULSE<br />

LSP<br />

COM<br />

LSN<br />

SON<br />

EMG<br />

ALM<br />

SG<br />

MOTOR Connection Diagram #2<br />

322 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

P1<br />

25AWG*10P ***CM<br />

CN1A<br />

<strong>LNC</strong> 600<br />

TRF 1720<br />

P1<br />

25AWG*10P ***CM<br />

CN1B<br />

J2S-XXA<br />

P1<br />

DES PIN NO.<br />

1A 11<br />

/1A 24<br />

1B 12<br />

/1B 25<br />

1C 10<br />

/1C 23<br />

/P1B 1<br />

P1B 2<br />

/P1A 14<br />

P1A 15<br />

DES<br />

LA<br />

LAR<br />

LB<br />

LBR<br />

LZ<br />

LZR<br />

NG<br />

NP<br />

PG<br />

PP<br />

COM<br />

CN1A<br />

PIN NO.<br />

6<br />

16<br />

7<br />

17<br />

5<br />

15<br />

12<br />

2<br />

13<br />

3<br />

9<br />

FG<br />

+24V<br />

AGND<br />

DACO1<br />

GND<br />

GND<br />

SON<br />

GND<br />

ALM<br />

FG<br />

18<br />

5<br />

17<br />

4<br />

7<br />

6<br />

21<br />

19<br />

13<br />

CN1B<br />

DES PIN NO.<br />

COM 13<br />

VDD 3<br />

LG 1<br />

VG 2<br />

LSP 16<br />

LSN 17<br />

SON 5<br />

EMG 15<br />

ALM 18<br />

SG 10<br />

FG<br />

P1 Connection Diagram<br />

<strong>LNC</strong> Technology Co., Ltd. 323


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

B4 TOSHIBA converter<br />

Starting & AUTO – TUNING Steps:<br />

Please Follow the below Parameter Adjustment Steps after Power ON:<br />

1.Para. vL:Base frequency #1(25 ~ 400 )<br />

(Normal setting value is 60).<br />

2.Para. F306:Voltage of base frequency(output voltage adjustment)<br />

(Normal setting value is 0 ~ 600V).<br />

3.Para.F411:Nμmber of poles of motor(2、4、6、8、10、12、14、16、18)<br />

(Normal setting value is 4).<br />

4.Para.F412:Rated capacity of motor( 0.1 ~ 280kw)<br />

Setting value is according to Output ratio on motor brand.<br />

5.Para.F413:Motor type( 0 ~ 4)<br />

(Normal setting value is 4).<br />

6. Executing auto-tuning.<br />

Para.F400:To set auto-tuning selection as 2(auto-tuning enabled)<br />

7. When auto-tunning is finish, inverter will auto-save the new parameter after testing.<br />

Para.F401 ~ F410 auto-setting value.<br />

8.Finish Steps 1~7 and doing CW/CCW testing.<br />

Para.Fr(Forward/Reverse selection) 0:Forward 1:Reverse<br />

(This parameter is effective on OP operation method. )<br />

9. To set Para.cnod(operation command mode selection)to 1.<br />

324 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

When AUTO – TUNING is finish and basic motor parameter data is key-in, executing<br />

parameter adjustment immediately.<br />

There are 24 basic parameters. F100 ~ F800 are extension parameters.<br />

Bais Parameter Setting:<br />

Parameter Function Setting Range<br />

AU1<br />

Automatic<br />

acceleration /<br />

deceleration<br />

0:disabled(manual setting)<br />

1:enabled(automatic setting)<br />

Setting<br />

Value<br />

This parameter controls ACC/DECELERATION Speed<br />

AU1=1: Auto acc/deceleration speed adjustment. But, user must set a constant value<br />

for the acceleration/deceleration parameter. This parameter will do 1/8 ~ 8 time<br />

auto-adjusting setting according to the acc/deceleration value.<br />

AU1=0:This function is disable which means that acc/deceleration is controlled by this<br />

parameter value.<br />

Figure 1 and Figure 2 are automatically time changing figure when overloading size<br />

changes. The below two figures show that this parameter can control the actual<br />

rotational speed in order to prevent any unusual sound.<br />

0<br />

Acc/Deceleration Time when Small<br />

Overloading<br />

Acc/Deceleration Time when Large<br />

Overloading<br />

Time<br />

Time<br />

Accleration<br />

Time<br />

Deceleration<br />

Time<br />

Acceleration<br />

Time<br />

Deceleration<br />

Time<br />

Figure 1 Figure 2<br />

<strong>LNC</strong> Technology Co., Ltd. 325


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

Parameter Function Setting Range Setting Value<br />

AU2 Automatic V/f 0:( 0 is always displayed)<br />

1<br />

mode setting 1:Automatic torque boost + auto-tuning<br />

2 : Vector control ( speed control ) +<br />

auto-tuning<br />

3:Automatic energy-saving + auto-tuning<br />

When this parameter is finished setting, number will all be zero on the screen. Please do NOT<br />

worry whether or not the setting is finish.<br />

1:Automatic torque boost + auto-tuning<br />

The load current is observed in all speed range and the inverter's output voltage is adjusted<br />

automatically so that the motor can always produce torque large enough for stable operation.<br />

This parameter is finished setting, PE(motor control mode select) parameter will be set to 2<br />

automtaically(automatic torque boost). Also 400(auto tuning) parameter will be set to 2<br />

automatically(automatic torque execution).<br />

2:Vector control(speed control)+ auto-tuning<br />

The motor reach its full potential and produce large torque even at low speeds. Also, you can<br />

minimize motor speed fluctuations caused by load fluctuations for more accurate operation.<br />

This mode of control is best suited to conveyor and crane/hoist application as operated in speed<br />

control mode<br />

This parameter is finished setting, PE(motor control mode select)parameter will be set to 3<br />

automatically(vector control)Also 400(auto tuning) parameter will be set to 2 automatically<br />

(automatic torque execution).<br />

3:Automatic energy-saving + auto-tuning<br />

The inverter passes a current commensurate with the load to save energy.<br />

This parameter is finished setting, PE(motor control mode select)parameter will be set to 5<br />

automatically(vector control). Also 400(auto tuning) parameter will be set to 2 automatically<br />

(automatic torque execution).<br />

The correspoindng parameter value after AU1 is set.<br />

AU2<br />

Parameters set automatically<br />

PE<br />

F400<br />

0 0 is always display -- ----------- ---------<br />

1 Automatic torque boost 2 Automatic torque boost Executed 2 first<br />

+ auto-tuning<br />

( returns to 0 after<br />

execution)<br />

2 Vector control(speed)<br />

+ auto-tuning<br />

3 Automatic energy-saving<br />

+ auto-tuning<br />

3 Sensor-less vector control<br />

(speed control)<br />

5 Automatic energy-saving<br />

+ sensor-less auto-tuning<br />

Executed 2 first<br />

( returns to 0 after<br />

execution)<br />

Executed 2 first<br />

( returns to 0 after<br />

execution)<br />

Parameter Function Setting Range<br />

3<br />

Setting<br />

Value<br />

326 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

CNOD Operation 0:Terminal input enable<br />

0<br />

command mode 1:Operating panel input enabled<br />

selection 2:Communication common serial option enabled<br />

3:Communication RS485 option enabled<br />

4:Communic add-on option enabled<br />

0:Terminal input enable<br />

Start and stop is exercised by means of external signals.<br />

1:Operating panel input enabled<br />

Start and stop is exercised by pressing the RUN or STOP key on the control panel.<br />

2:Communication common serial option enabled<br />

Start and stop is exercised from RS232C device fitted as standard.<br />

3:Communication RS485 option enabled<br />

Start and stop is exercised from RS485 communication device fitted as standard.<br />

4:Communic add-on option enabled<br />

Start and stop is exercised from add-on module communication option.<br />

Parameter Function Setting Range<br />

FNOD<br />

Speed setting<br />

mode selection<br />

Setting<br />

Value<br />

1:VI( voltage input ) / II( current input ) 2<br />

VI:0 to 10Vdc II:4 to 20mAdc<br />

2:RR( Potentiometer / voltage input )<br />

RR:0 to 10Vdc<br />

3:RX( voltage input )<br />

RX:0 to +/-10Vdc<br />

4:RX2( voltage input )<br />

RX2:0 to +/-10Vdc<br />

5:Operating panel input enabled<br />

Frequencies are set by pressing the control<br />

panel key.<br />

6:Binary / BCD input<br />

speed command are entered from 12/16 bit<br />

binary input or BCD<br />

7:Communication common serial option(RS232C)<br />

8:Standard communication RS485<br />

9:Communication add-on module option enabled<br />

speed command are entered from network<br />

communication<br />

10:Up-down frequency<br />

by means of up-down frequency signals from the<br />

terminal<br />

11:Pulse input<br />

Setting<br />

Parameter Function Setting Range<br />

Value<br />

FNSL FM Terminal meter selection 0 ~ 31 0<br />

FN FM Terminal meter ----- ---<br />

adjustment<br />

This parameter is not used this time. So, please ignore it.<br />

<strong>LNC</strong> Technology Co., Ltd. 327


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

Parameter Function Setting Range<br />

typ<br />

Standard setting<br />

mode selection<br />

1:50Hz standard setting<br />

2:60Hz standard setting<br />

3:Factory default setting<br />

4:Trip history clear<br />

5:Comulative operation time clear<br />

6:Type information clear<br />

7:User setting storage<br />

8:Reset to saved parameters (7)<br />

Setting<br />

Value<br />

Parameter Function Setting Range<br />

Setting<br />

Value<br />

Fr Forward / reverse run 0:Forward run 1:Reverse run 0<br />

selection<br />

This parameter is effective when CNOD is 1.<br />

In hardware wiring of F-CC: Forward running. R-CC Wiring: Reverse running. Please also refer<br />

to parameter F105.<br />

Parameter Function Setting Range Setting Value<br />

ACC Acceleration time 1 0.1(Note) ~ 6000 seconds Recommending<br />

Value = 15<br />

DEC Deceleration time 1 0.1(Note) ~ 6000 seconds Recommending<br />

Value = 15<br />

(Note) If the setting time is very small, it can be set by Para. F508. The range is 0.01 ~<br />

10 sec.<br />

The ACC time is the frequency value of Output Speed Commanding, which is the time of<br />

frequency from 0 adding up to FH setting value.<br />

The DEC time is the frequency value of Output Speed Commanding, which is the time of<br />

frequency from FH decreasing down to 0 setting value.<br />

If two parameters are to set AU1 as 0, then it is manual adjustment parameter. Please refer<br />

to Figure 3 as a constant acceleration/deceleration frequency changes example.<br />

Acc/Deceleration are Constant No Matter Any Change<br />

FH<br />

Time<br />

Acceleration Time<br />

Deceleration Time<br />

Figure 3<br />

Parameter Function Setting Range<br />

Setting<br />

Value<br />

328 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

FH Maximμm frequency 30 ~400 Hz 333<br />

Max. outuput frequency to control acc/deceleration time condition.<br />

Setting<br />

Parameter Function Setting Range<br />

Value<br />

UL Upper limit frequency LL ~ FH 333<br />

Parameter Function Setting Range<br />

LL Lower limit frequency 0 ~ UL 3<br />

Setting<br />

Value<br />

Setting<br />

Parameter Function Setting Range<br />

Value<br />

uL Base frequency 25 ~ 400 60<br />

uL parameter is used in constant torque control area. Please refer to parameter F306<br />

(Base frequency voltage).<br />

Parameter Function Setting Range<br />

Setting<br />

Value<br />

Pt Motor control 0: Constant torque characteristic(motor control) 9<br />

mode<br />

selection<br />

1: Square reduction torque characteristic (motor<br />

and so on.)<br />

2: Automatic torque boost (V/F control<br />

automatically).<br />

Must used as AU2 = 2 and F400 = 1.<br />

3: Sensor-less vector control. Must used as AU2 =<br />

4 and F400 = 2.<br />

4: Automtic torque boost + automatic energy-saving<br />

Must used as AU2 = 4 and F400 = 2.<br />

5: Sensor-less vector control + automatic<br />

energy-saving. Must used as AU2 = 4 and F400 =<br />

2.<br />

6:V-f 5-point setting<br />

7: Sensorless vector control ( torque/speed<br />

switching)<br />

8: PG feedback vector control ( torque/speed<br />

switching)<br />

9: PG feedback vector control ( torque/position<br />

switching)<br />

Parameter Function Setting Range Setting Value<br />

ub <strong>Manual</strong> torque boost 0 ~ 30% Depends on<br />

1<br />

capacity<br />

<strong>LNC</strong> Technology Co., Ltd. 329


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

When torque produced in low speed range is not large enough, it can be boosted up by<br />

increasing the torque boost rate with this parameter<br />

This parameter can be used with:<br />

PE=0(V/f constant)<br />

PE=1(square reduction)<br />

PE=6(V/f 5-point setting)<br />

(Note)This value must not be too high. Everytime’s incremental can not be over2% of<br />

setting value, or over current will occur.<br />

Base-frequency F306<br />

ub<br />

7<br />

Output frequency(Hz)<br />

330 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

Parameter Function Setting Range Note<br />

Electronic thermal protective characteristic selection<br />

Set Value Overload Overload stall<br />

protection<br />

0 O ×<br />

OLN O 1 Standard<br />

O O<br />

2 motor<br />

× ×<br />

3<br />

× O<br />

4 O ×<br />

5 VF motor<br />

O O<br />

6 (special<br />

× ×<br />

7<br />

motor)<br />

× O<br />

Setting<br />

Parameter<br />

Function<br />

Setting Value<br />

Range<br />

Sr1 ~Sr7 Preset-speed operation frequencies 0 ~ 30% Depends on capacity<br />

This parameter can set 15 kinds of default speed. The first seven sections are set in S1 ~<br />

S7 and the last eight sections are set in F287~F294. The requirements, such as<br />

acc/deceleration, direction and so on) can be modified in F380 ~ F394. Also, when doing<br />

multiple-speed testing, CNOD and FNOD must be modified in order for this function to be<br />

effective. Please refer E28 ~E30 for a detailed description.<br />

Please notice that this value is a frequency multiplier value, not actual rotational speed.<br />

Preset-speed<br />

Note<br />

Terminal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

S1 - CC O -- O -- O -- O -- O -- O -- O -- O<br />

S2 - CC -- O O -- -- O O -- -- O O -- -- O O<br />

S3 - CC -- -- -- O O O O -- -- -- -- O O O O<br />

S4 - CC -- -- -- -- -- -- -- O O O O O O O O<br />

<strong>LNC</strong> Technology Co., Ltd. 331


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

P7<br />

25AWG*10P 175CM<br />

P7<br />

TRF <strong>LNC</strong> 1720 600<br />

TOSHIBA VF-A7<br />

VEC001Z TB2<br />

P7<br />

DES<br />

EGND<br />

E5V<br />

4A<br />

/4A<br />

4B<br />

/4B<br />

4C<br />

/4C<br />

FG<br />

PIN NO.<br />

1<br />

5<br />

4<br />

8<br />

3<br />

7<br />

2<br />

6<br />

9<br />

PGCC<br />

PGVC<br />

A<br />

NA<br />

B<br />

NB<br />

Z<br />

NZ<br />

DES<br />

PGCC<br />

PGVC<br />

A<br />

NA<br />

B<br />

NB<br />

Z<br />

NZ<br />

TB2<br />

PIN NO.<br />

15<br />

14<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

ENCODER Connection Diagram<br />

332 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

PG<br />

25AWG*10P 175CM<br />

SP ENC<br />

TOSHIBA VF-A7<br />

VEC001Z CN8<br />

CN8<br />

DES<br />

PGA1<br />

PGA2<br />

PGB1<br />

PGB2<br />

PGZ1<br />

PGZ2<br />

NZ<br />

(N. C.)<br />

VD<br />

Z<br />

NA<br />

A<br />

NB<br />

B<br />

PGCC<br />

PGVC<br />

PIN NO.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

FG<br />

橙<br />

黃<br />

粉 紅<br />

紅<br />

藍<br />

綠<br />

黑<br />

白<br />

DES<br />

NZ<br />

Z<br />

/A<br />

A<br />

/B<br />

B<br />

0V<br />

5V<br />

MOTOR<br />

ENCODE<br />

ENC<br />

PIN NO.<br />

8<br />

7<br />

4<br />

3<br />

6<br />

5<br />

2<br />

1<br />

MOTOR Connection Diagram<br />

<strong>LNC</strong> Technology Co., Ltd. 333


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

MOTOR Connection Diagram<br />

334 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

SP AXIS<br />

<strong>LNC</strong> Technology Co., Ltd. 335


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix B: Servo Connection Example<br />

P5<br />

25AWG*10P 175CM<br />

P5<br />

<strong>LNC</strong> 600<br />

TRF 1720<br />

TOSHIBA VF-A7<br />

VEC001Z TB2<br />

P5<br />

DES<br />

/P4B<br />

P4B<br />

/P4A<br />

P4A<br />

PIN NO.<br />

9<br />

10<br />

22<br />

23<br />

CCWN<br />

CCW<br />

CWN<br />

CW<br />

DES<br />

CCWN<br />

CCW<br />

CWN<br />

CW<br />

TB1<br />

PIN NO.<br />

CCWN<br />

CCW<br />

CWN<br />

CW<br />

SPI_COM 11<br />

SPI_COM 24<br />

EGND 21<br />

SPCW 8<br />

SPCCW 20<br />

SPFRST 7<br />

AGND 5<br />

DACO5 17<br />

+24V 18<br />

SPALM 3<br />

FG 13<br />

ST<br />

CC<br />

CC<br />

F<br />

R<br />

RES<br />

CC<br />

RR<br />

FLC<br />

FLA<br />

DES<br />

ST<br />

CC<br />

CC<br />

F<br />

R<br />

RES<br />

CC<br />

RR<br />

FLC<br />

FLA<br />

FLB<br />

S4<br />

CC<br />

PIN NO.<br />

ST<br />

CC<br />

CC<br />

F<br />

R<br />

RES<br />

CC<br />

RR<br />

FLC<br />

FLA<br />

FLB<br />

S4<br />

CC<br />

P5 Connection Diagram<br />

336 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix C: Enabling OP Protection Loop Connection Example<br />

Appendix C: Enabling OP Protection Loop Connection<br />

Example<br />

Here assumed that users need to connect operation panel themselves due to the problem<br />

of Pou Yuen Technology’s operation panel does not meet their needs. The following<br />

describes how to connect the enable protection loop on Users Define Operation Panel with<br />

TRF1720.<br />

<strong>LNC</strong> Technology Co., Ltd. 337


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix C: Enabling OP Protection Loop Connection Example<br />

TRF1720<br />

ON_OFF PORT<br />

第 4 軸 ENABLE 第 5 軸 ENABLE<br />

RELAY RELAY<br />

第 4 軸 ENABLE<br />

第 5 軸 ENABLE<br />

338 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix D: 3 In 1 MPG Connection Example<br />

Appendix D: 3 In 1 MPG Connection Example<br />

MPG<br />

橙 白 , 黑 白<br />

紫<br />

淡 綠<br />

藍<br />

灰<br />

橙<br />

黃<br />

粉 紅<br />

綠<br />

紅 白<br />

紅 黑<br />

棕<br />

紅 / 灰 黑<br />

大 綠<br />

<strong>LNC</strong> Technology Co., Ltd. 339


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix E: RS232 Connection Description<br />

Appendix E: RS232 Connection Description<br />

For remote transmittion connector standard, it means the remote transmittion connector<br />

and the external setting signal connection standard. RS-232C is the very easy transmittion<br />

standard. If not using hard-part flow control, only needs 3 signal cables in order to<br />

accomplish the double transmittion jobs.<br />

The electronic feature of RS232 belongs to the in-balance transmittion method. So the<br />

transmittion distance is a little bit short, approximate 15m, due to the anti-interference<br />

function is weak. According to the RS-232C standard, connector circuit must be the<br />

physical D type connector. D type connector has 25 cords (short name is DB25). But, it<br />

can be 9 cords (short name is DB9). Most of PC use DB9, like the diagram show below:<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

PIN Abb. Meaning<br />

Pin1 CD Carrier Detect<br />

Pin2 RXD Receive<br />

Pin3 TXD Transmit<br />

Pin4 DTR Data Terminal Ready<br />

Pin5 GND Ground<br />

Pin6 DSR Data Set Ready<br />

Pin7 RTS Request To Send<br />

Pin8 CTS Clear To Send<br />

Pin9 RI Ring Indicator<br />

340 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix E: RS232 Connection Description<br />

• Transmitting Cable Production<br />

There are two types of Pin for a normal type remote port. One is 9 Pin and the other one is<br />

25 Pin. Usually the NC side has 9Pin male port. But, the PC side has either 9Pin or 25Pin.<br />

male port.<br />

The method to connect NC and PC is to do the transmitting via jumper cable. If users<br />

equipment is 9Pin, then please use the 9Pin connector. Actually, 9Pin is very useful for<br />

other controller system application. Sometimes, 3Pin can have the same control function.<br />

So the simplest 3Pin is to use the 2 nd , the 3 rd and the 5 th pins to receive and transmit.<br />

NC COM1(9 pin Female)<br />

to<br />

PC COM1(9 pin Female)<br />

NC PC<br />

-----------------------------<br />

pin2(RD) --- pin3(TD)<br />

pin3(TD) --- pin2(RD)<br />

pin5(SG) --- pin5(SG)<br />

NC COM1(9 pin Female)<br />

to<br />

PC COM2(25 pin Female)<br />

NC PC<br />

-----------------------------<br />

pin2(RD) --- pin3(TD)<br />

pin3(TD) --- pin2(RD)<br />

pin5(SG) --- pin7(SG)<br />

<strong>LNC</strong> Technology Co., Ltd. 341


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

Appendix F Internet Setting Description<br />

Network Connection Settings for the <strong>Controller</strong><br />

This controller can obtain the resource of a remote disk in Microsoft Network by “Internet<br />

Connection Sharing.” Below are the steps to be made at the controller side & PC side,<br />

respectively, to install and to make relative settings to enable network connection sharing<br />

function.<br />

1. At the controller side:<br />

Install network software at the controller side. To install, boot the system with an OS<br />

floppy disk and select the installation option 3 “INSTALL NETWORK UTILITIES.” (This<br />

step can be skipped if there is already a NET directory in the path of “C:\NET.”)<br />

Modify network configuration of the controller. There are two ways to make the<br />

modifications: by DOS or by the operating interface of <strong>LNC</strong> software.<br />

Method 1: By DOS<br />

A. Modify the file “C:\config.sys” of the controller.<br />

Modify<br />

REM device=C:\NET\ifshlp.sys<br />

into<br />

device=C:\NET\ifshlp.sys<br />

B. Edit “C:\Net\2net.bat.” Modify this line according to your needs:<br />

C:\NET\net△use△N:△\\PCNET\share△12345△YES<br />

Below are the definitions for each field in the line.<br />

a. △ represents a blank character.<br />

b. ”PCNET” is the computer name in the Network, and “share” is the folder name shared by the<br />

computer.<br />

c. ”N” is the (virtual) disk of N: which is mapping to the sharing resource “\\PCNET\share“ in the<br />

network. (Please do not use “D:” which is used for different purposes; using “D:” will cause<br />

errors.)<br />

d. “12345” indicates the password to log on PC. Passwords may or may not be required for<br />

different operating systems.<br />

u Window98:For this system, instead of adding a new account, users can connect some<br />

network disk by sharing a folder with each other. Therefore, users must log on with the<br />

same password as set by PC for “folder-sharing” function.<br />

<strong>LNC</strong> Technology Co., Ltd. 343


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

u Window2000 & WindowXP:The two systems have higher security levels for access<br />

permissions, so users of different identifications are required to enter different passwords<br />

as set by PC. If no password is set at PC side, network connection would fail unless PC<br />

permission is open for guest access (the setup of guest access is described in the later<br />

chapter).<br />

u For OS versions Ver.2.5 or versions earlier than Ver.2.5, some disk codes that are no<br />

longer applicable can still be shown. If this occurs when the controller is on-line, add the<br />

line C:\NET\net stop /yes before the line C:\NET\ net initialize.<br />

C. Verify if the settings are correct for the controller’s file C:\NET\SYSTEM.INI and<br />

also for other relative settings in Network Neighborhood. Some programs might<br />

need to be modified as below (Please DO NOT change the settings that are not<br />

mentioned here):<br />

[network]<br />

:<br />

computername=<strong>LNC</strong>DOS<br />

:<br />

username=<strong>LNC</strong>DOS<br />

:<br />

workgroup=WORKGROUP<br />

:<br />

logondomain=WORKGROUP<br />

:<br />

a. ”computername=” is the controller name in the Network. Each controller should have its own<br />

unique name that is different from other disks in the Network. The default computer name is<br />

<strong>LNC</strong>DOS. Therefore, if there is more than one controller in a domain, this default name must be<br />

modified.<br />

b. ”username=” is the controller name to log on PC. Except for Window98, all other operating<br />

systems require PC side to add a new user with the same name at the same time unless<br />

access permission is open to guests. The default user name is <strong>LNC</strong>DOS. Since a user can use<br />

the same name to log on repeatedly, there is no need to modify this name even if there is more<br />

than one controller in a domain.<br />

c. ”workgroup=” is the work group name of the controller when logging on the internet. Please set<br />

this value according to the Network which the controller belongs to. By default, it is set as<br />

“WORKGROUP.”<br />

d. ”logondomain=” is the domain name of the controller when logging on the internet. Please set<br />

this value according to the domain that the controller belongs to. The setting method is<br />

basically the same as that of “WORKGROUP.”<br />

344 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

Method 2. By the operating interface of <strong>LNC</strong> software<br />

A. For 600 & 520 Series, the path to go to the configuration interface is <br />

NET SET; for 500i/510i & 300i/310i Series, it is < PARAM > NET, as shown in<br />

the figures below.<br />

Networking configuration screen for 600 & 520 Series<br />

Networking configuration screen for 500i/510i & 300i/310i Series<br />

<strong>LNC</strong> Technology Co., Ltd. 345


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

B. FIELD DEFINITIONS:<br />

a. NC NAME: “computername” in the C:\Net\system.ini file. One name should not be used<br />

twice in the same domain. The default name is <strong>LNC</strong>DOS.<br />

b. USERNAME: “username” in the C:\Net\system.ini file. This is the user to log on PC. The<br />

default name is <strong>LNC</strong>DOS.<br />

c. GROUP: “workgroup” in the C:\Net\system.ini file. This is the work group name of the<br />

controller when logging on the internet. The default name is WORKGROUP.<br />

d. STATUS(for 600 & 520 Series) or STAT (for 500i/510i & 300i/310i Series):<br />

u Disk codes are used in C:\Net\2net.bat when logging on the internet.<br />

u Disk codes start from “E” to “N.” There are 10 codes in total.<br />

u The drive codes are assigned by the system; users are not allowed to set the codes by<br />

themselves.<br />

u ○ & X after drive codes indicate the network status of the drive. X means off-line; ○<br />

means on-line.<br />

u Disk codes other than E ~ N existing before network setting is configured will be deleted<br />

after networking configuration is finished.<br />

e. PC NAME: Enter the full computer name for the controller to get connected with PC. The<br />

maximum length allowed is 12 characters.<br />

f. SHARE DIR: Enter the share folder name for the controller to get connected with PC. The<br />

maximum length allowed is 12 characters.<br />

g. PWD.: Set the password to get connected with PC. The content of the password is visible when<br />

being entered, but it will be converted into “******” as soon as “Enter” key is pressed. The<br />

maximum length allowed is 12 characters.<br />

C. DEFINITIONS OF FUNCTION KEYS<br />

a. Press the keys UP, DOWN, LEFT, & RIGHT to move cursor to the desired field.<br />

b. Enter the information in the input text box, then press INPUT to upload the information to the<br />

field assigned by cursor.<br />

c. Pressing INPUT without any information in the input text box will delete the original information<br />

in the field.<br />

d. Press PageUp & PageDown to switch between pages.<br />

e. SAVE: Press SAVE to save changes.<br />

f. RECON: Press emergency button then press RECON, the changes will be validated.<br />

※ Due to connectivity issues, sometimes the controller fails to log on the network.<br />

If this happens when the above functions are in use, the controller will try to<br />

connect to the same disk for 3 times before connecting to the next disk. After all<br />

connections are tried, the controller will then enter the system.<br />

346 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

2. NETWORK SETTINGS AT PC SIDE<br />

Network Settings for Windows 98<br />

A. Verify if the network card, internet cables, and relative protocols have been<br />

installed properly.<br />

Verify if the “NetBEUI” protocol & the “File and printer sharing for Microsoft<br />

Networks” service have been installed. (Caution: DO NOT activate the network<br />

protocol “NWlink NetBIOS” which would cause network connection to fail.)<br />

a. Click Start Settings Control Panel.<br />

<strong>LNC</strong> Technology Co., Ltd. 347


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

b. Double-click on the Network icon to configure network settings.<br />

348 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

c. If the two network protocols “File and Printer Sharing for Microsoft Networks” & “NetBEUI” are<br />

not installed, please press Add.<br />

<strong>LNC</strong> Technology Co., Ltd. 349


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

d. If “File and Printer Sharing for Microsoft Networks” is not installed, please select Service; if<br />

“NetBEUI” protocol is not installed, please select Protocol. Then click Add.<br />

e. If “File and Printer Sharing for Microsoft Networks” is not installed, highlight it on the service<br />

menu then click OK to complete installation.<br />

350 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

f. If the network protocol “NetBEUI” is not installed, please highlight it on the menu as shown in<br />

the diagram below then click OK to complete installation.<br />

B. Verify if Computer Name & Workgroup are set correctly.<br />

(The setting of workgroup and logondomain in C:\net\system.ini must be the<br />

same as those at PC side. The computername in C:\net\2net.bat must be the<br />

same as PC’s computer name.)<br />

a. Select Start Settings Control Panel.<br />

b. Double-click on the Network icon.<br />

c. Verify if the settings of Computer Name & Workgroup are the same as those in<br />

C:\NET\2net.bat & C:\NET\system.ini. (Take the diagram below as an example,<br />

computername of 2net.bat should be set to “tenwho”;workgroup of system.ini should be<br />

set to “Workgroup”).<br />

<strong>LNC</strong> Technology Co., Ltd. 351


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

C. Share a directory at PC side<br />

a. Go to Windows Explorer and create a new folder with the name “tmp” (The folder can be<br />

named differently by users).<br />

352 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

b. Left-click to select the “tmp” folder, then right-click and choose Sharing.<br />

<strong>LNC</strong> Technology Co., Ltd. 353


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

c. Please follow the steps below for configuration:<br />

u Click the Sharing tab.<br />

u By default, the Share Name and the newly-created folder are the same.<br />

u Users can change name of the new folder, but it must be the same as the folder name in<br />

2net.bat.<br />

u Verify the box of Full for Access Type.<br />

u You can choose either to set a password or not. If set, the password must be the same as<br />

that in 2net.bat.<br />

354 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

3. NETWORK SETTING FOR WINDOWS 2000<br />

A. Verify if a network card, internet cables, and the relative protocols have been<br />

installed properly.<br />

Verify if the “NetBEUI” protocol & the “File and printer sharing for Microsoft<br />

Networks” service have been installed. (Caution: DO NOT activate the network<br />

protocol “Nwlink NetBIOS” which would cause network connection to fail.)<br />

a. Select Start Settings Control Panel.<br />

<strong>LNC</strong> Technology Co., Ltd. 355


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

b. Double-click on the Network and Dial-up Connections icon.<br />

356 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

c. Right-click on the Local Area Connection icon and left-click properties.<br />

<strong>LNC</strong> Technology Co., Ltd. 357


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

d. If the two network protocols “File and Printer Sharing for Microsoft Networks” & “NetBEUI<br />

Protocol” are not installed, verify the boxes and press Install to install them.<br />

358 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

e. If “File and Printer Sharing for Microsoft NetWorks” is not installed, please select Service; if<br />

“NetBEUI Protocol” is not installed, please select Protocol. Then click Add.<br />

<strong>LNC</strong> Technology Co., Ltd. 359


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

f. If “File and Printer Sharing for Microsoft Networks” is not installed, highlight it on the menu then<br />

click OK to complete the installation.<br />

g. If “NetBEUI Protocol” is not installed, highlight it on the menu then click OK to complete the<br />

installation.<br />

360 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

B. Verify if “computername” & “workgroup” are set correctly.<br />

(The setting of workgroup and logondomain in C:\net\system.ini must be the<br />

same as those at PC side. The computername in C:\net\2net.bat must be the<br />

same as PC’s computer name.)<br />

a. Right-click on “My Computer” icon on the desktop then left-click properties.<br />

b. Select the Network Identification tab. Verify if the settings of Full computer name &<br />

Workgroup are the same as those in C:\NET\2net.bat & C:\NET\system.ini. (Take the<br />

diagram below as an example, computername of 2net.bat should be set to “mark-nb”;<br />

workgroup of system.ini should be set to “WORKGROUP”). Press Properties to change<br />

Full computer name & Workgroup.<br />

<strong>LNC</strong> Technology Co., Ltd. 361


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

c. To change a computer or workgroup name, modify it directly in the corresponding text box.<br />

362 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

C. Share a directory at PC side<br />

a. Press Start Run, enter “explorer,” and press OK to open explorer.<br />

b. Create a new folder for sharing.<br />

<strong>LNC</strong> Technology Co., Ltd. 363


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

c. Left-click the new folder, and then right-click Sharing.<br />

364 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

d. Click the Sharing tab, click to select Share this folder, and verify if the name in the Share<br />

name text box is the same as that in the 2net.bat file. Then click Permissions.<br />

<strong>LNC</strong> Technology Co., Ltd. 365


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

e. Select “Everyone” in the Share Permissions section, and check all the Allow boxes in the<br />

Permissions section. Then press OK.<br />

366 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

D. ENABLE USER ACCESS:<br />

There are two ways to enable user access. Please choose either one according to<br />

your need. The advantage of method 1 (recommended) is its convenience for<br />

installation, and there is no need to add a new user if each controller has its own<br />

username; however, the disadvantage is that its security level is low. On the<br />

contrary, the second method has a higher security level. But if there are different<br />

user names for different controllers, users are required to add a new user each<br />

time. Depending on the types of operating systems, there are different steps for<br />

setup as listed below:<br />

Method 1:<br />

a. Right -click the My Computer icon on the desktop, and Left-click Manage.<br />

b. In the Manage pop-up menu, in the Users folder, left-click Guest, right-click,and then left -click<br />

“Set Password.”<br />

<strong>LNC</strong> Technology Co., Ltd. 367


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

c. Leave the password boxes blank, and press OK.<br />

d. Press OK again, and finish the procedure of password modification.<br />

368 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

e. If there is a red cross over the Guest icon in the Users folder, right-click on Guest and select<br />

Properties. A dialogue box will appear as the figure below, check the boxes of “User cannot<br />

change password” & “Password never expires” and uncheck the box of “Account is disabled.”<br />

<strong>LNC</strong> Technology Co., Ltd. 369


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

f. Next, set a higher access level for Guest. To do so, click Start Run, and enter secpol.msc<br />

in the text box. Then press OK.<br />

g. Click Local Policies User Rights Assignment. Right-click the Access this computer from the<br />

network method, and then left-click Security.<br />

370 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

h. Click the Add button.<br />

<strong>LNC</strong> Technology Co., Ltd. 371


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

i. After Add is clicked, a new dialog box will appear as the figure below. Click Guests, click Add,<br />

and press OK. Then the procedure to enable guest access is finished.<br />

372 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

Method 2:<br />

a. Right-click the My Computer icon on the desktop, and Left-click Manage.<br />

b. Right-click the User folder, and left-click New User.<br />

<strong>LNC</strong> Technology Co., Ltd. 373


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

c. A dialog box will appear as the figure below. Please enter the username same as that in the<br />

system.ini file, and enter the password same as that in the 2net.bat file. Check the boxes<br />

as the figure shown below, and then press Create to finish the procedure of enabling user<br />

access.<br />

374 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

4. Network Settings for Windows XP Professional<br />

A. Verify if a network card, internet cables, and the relative protocols have been<br />

installed properly.<br />

Verify if the “NetBEUI Protocol” & the “File and printer sharing for Microsoft<br />

Networks” service have been installed. (Caution: DO NOT activate the network<br />

protocol “NWlink NetBIOS” which would cause network connection to fail.)<br />

a. Because Microsoft does not support the network protocol “NetBIOS” (NetBEUI) in Windows XP,<br />

users must install the network protocol NetBEUI additionally from the Windows XP CD. Please<br />

follow the steps below for installation:<br />

u Insert the Windows XP CD-ROM into the CD-ROM drive. Browse the<br />

Valueadd\MSFT\Net\NetBEUI folder.<br />

u Copy Nbf.sys to the directory %SYSTEMROOT%\System32\Drivers.<br />

u Copy Netnbf.inf to the hidden directory %SYSTEMROOT%\Inf.<br />

u Note: To make the hidden directory visible, execute the following steps:<br />

b. Click Start, click Run, enter “explorer” in the text box, and then press ENTER.<br />

c. Click Tools, click Folder Options, then click the View tab.<br />

d. Under Advanced Settings, and under Hidden files and folders, click Show hidden files and<br />

folders.<br />

u Note: %SYSTEMROOT% is a Windows environment variable for discerning the directory<br />

installed in Windows XP (Ex. C:\Windows). If users want to view the relative values of<br />

%SYSTEMROOT% or other environment variables, please enter “set” in the Command<br />

Prompt window, then press “ENTER.”<br />

<strong>LNC</strong> Technology Co., Ltd. 375


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

e. Click Start Control Panel.<br />

f. Double-click Network Connections.<br />

376 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

g. Right -click the Local Connection icon, then left-click properties.<br />

<strong>LNC</strong> Technology Co., Ltd. 377


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

h. If the two network protocols “File and Printer Sharing for Microsoft Networks” & “NetBEUI<br />

Protocol” are not installed, please press Install for installation.<br />

378 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

i. If “File and Printer Sharing for Microsoft Networks” is not installed, please select Service; if<br />

“NetBEUI Protocol” is not installed, please select Protocol. Then click Add.<br />

<strong>LNC</strong> Technology Co., Ltd. 379


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

j. If “File and Printer Sharing for Microsoft Networks” is not installed, highlight it on the service<br />

menu then click OK to complete installation.<br />

380 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

k. If the “NetBEUI Protocol” is not installed, please highlight it on the menu as shown in the<br />

diagram below then click OK to complete the installation. To validate the configuration, please<br />

reboot the system.<br />

<strong>LNC</strong> Technology Co., Ltd. 381


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

B. Verify if Computer name & Workgroup are set correctly.<br />

(The settings of workgroup & logondomain in C:\net\system.ini must be the<br />

same as those at PC side. The computername in C:\net\2net.bat must be the<br />

same as PC’s computer name.)<br />

a. Click Start Control Panel.<br />

b. Double-click System.<br />

382 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

c. Select the Computer Name tab, and verify if the settings of Full computer name &<br />

Workgroup are the same as those in C:\NET\2net.bat & C:\NET\system.ini at the<br />

controller side. (Take the figure below for example, computername of 2net.bat must be set to<br />

“uichain1,” and workgroup of system.ini must be set to “WORKGROUP.” If you need to<br />

change the computer name or workgroup name, click Change to modify it.<br />

<strong>LNC</strong> Technology Co., Ltd. 383


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

d. To modify the computer name or workgroup name, make the revision directly in the<br />

corresponding text box.<br />

384 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

C. Share a directory at PC side<br />

a. Click Start Run, enter “explorer” in the text box, and then press OK.<br />

b. In Windows Explorer, select File New Folder. Name the new folder after the<br />

corresponding folder at the controller side such as share, pcscan, and so on.<br />

<strong>LNC</strong> Technology Co., Ltd. 385


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

c. Uncheck Use simple file sharing mode. In Windows Explorer, select Tools Folder Options,<br />

click the View tab, and uncheck the box of Use simple file sharing.<br />

386 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

d. Right-click the new folder, and left-click Sharing and Security.<br />

<strong>LNC</strong> Technology Co., Ltd. 387


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

e. Click the Sharing tab, check the box of Share this folder, and verify if the name in the Share<br />

name text box is the same as that in the 2net.bat file. Then click [Permissions].<br />

388 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

f. Select “Everyone” as Group or user names, and check all the Allow boxes in the Permissions<br />

for Everyone section.<br />

<strong>LNC</strong> Technology Co., Ltd. 389


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

g. If there is no Security tab in the dialog box, the steps for folder sharing is then finished. If there<br />

is, please click the Security tab, and the following figure is shown:<br />

390 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

h. Click the Add button, and the Select users or Groups dialog box will appear as the figure<br />

below:<br />

<strong>LNC</strong> Technology Co., Ltd. 391


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

i. Click the Advanced button, and the following dialog box will be shown:<br />

392 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

j. Press the Find Now button, and a list of users will appear in the bottom section of the dialog as<br />

shown below:<br />

k. Click to select in the list the user that needs to be added. There are two ways to do this:<br />

Method 1:Open permissions to Everyone by selecting Everyone in the menu.<br />

Method 2:Add the user “lncdos” as assigned by〝username=lncdos〞in the<br />

c:\net\system.ini file. The username may not be “lncdos;” for<br />

its setting, please refer to the setting in system.ini.<br />

<strong>LNC</strong> Technology Co., Ltd. 393


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

394 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

l. Take the example of adding the new user “lncdos,” after clicking to select the new user in the<br />

list, press OK, and the following figure will be shown:<br />

<strong>LNC</strong> Technology Co., Ltd. 395


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

m. Press OK again, and the following dialog box will appear. Please check the box of Full Control,<br />

and then press OK to complete the procedure of adding a new folder.<br />

D. ENABLE USER ACCESS:<br />

There are two ways to enable user access. Please choose either one according to<br />

your need. The advantage of method 1 (recommended) is its convenience for<br />

configuration, and there is no need to add a new user for controllers with different<br />

usernames; however, it has the disadvantage of a low security level. On the<br />

contrary, the second method has a higher security level. But if there are multiple<br />

controllers with different names, users are required to add a new user for each<br />

controller separately. Depending on the types of operating systems, there are<br />

different steps for setup as listed below:<br />

396 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

Method 1:<br />

a. Press Start My Computer Manage.<br />

<strong>LNC</strong> Technology Co., Ltd. 397


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

b. Click to select the folder Local Users and Group Users, Right-click Guest, and then<br />

left-click Set Password.<br />

398 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

c. The following dialog box will appear, press the Proceed button to close the dialog box.<br />

d. Leave the password boxes blank, and press OK.<br />

<strong>LNC</strong> Technology Co., Ltd. 399


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

e. Press OK again to finish password modification.<br />

400 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

f. If there is a red cross over the Guest icon in the Users folder, right-click on Guest and select<br />

Properties. A dialogue box will appear as the figure below, check the boxes of User cannot<br />

change password & Password never expires and uncheck the box Account is disabled.<br />

<strong>LNC</strong> Technology Co., Ltd. 401


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

g. Next, set a higher access level for Guest. To do so, click Start Run, and enter secpol.msc<br />

in the text box. Then press OK.<br />

402 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

h. Click Local Policies User Rights Assignment, right-click the Deny logon locally policy,<br />

and then left-click properties.<br />

<strong>LNC</strong> Technology Co., Ltd. 403


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

i. Left-click Guest, and press the Remove button. After the access permission for Guest is open,<br />

press OK to close the dialog box.<br />

404 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

j. Right -click the Access this computer from the network policy, left-click properties.<br />

<strong>LNC</strong> Technology Co., Ltd. 405


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

k. Click the Object Types button.<br />

l. Check the box of Groups, and then press OK.<br />

406 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

m. Press the Advanced button, press the Find Now button, and a list of users will be shown in the<br />

bottom section of the dialog box. Select Guests in the list, and press OK to complete the<br />

procedure of enabling guest access.<br />

<strong>LNC</strong> Technology Co., Ltd. 407


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

Method 2:<br />

a. Click Start My Computer Manage.<br />

b. Right-click the Users folder, and left-click New User.<br />

408 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

c. A dialog box will appear as the figure below. Please enter the username same as that in the<br />

system.ini file, and enter the password same as that in the 2net.bat file. Verify the boxes<br />

as the figure shown below, and then press Create to finish the procedure of enabling guess<br />

access.<br />

5. Network Settings for Windows XP HOME Edition<br />

A. Verify if the network card, internet cables, and relative protocols have been<br />

installed properly.<br />

For this section, please refer to the above setting procedure of Windows XP<br />

Professional.<br />

B. Verify if Computer name and Workgroup have been set correctly.<br />

For this section, please refer to the above setting procedure of Windows XP<br />

Professional.<br />

<strong>LNC</strong> Technology Co., Ltd. 409


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

C. Share a directory at PC side.<br />

a. Click Start Run, enter “explorer” in the text box, and then press OK.<br />

b. In Windows Explorer, select File New Folder. Name the new folder after the<br />

corresponding folder at the controller side such as share, pcscan, and so on.<br />

410 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

c. Right-click the new folder, and left-click Sharing and Security.<br />

d. Click the Sharing tab, and verify the boxes of Share this folder on the network & Allow<br />

network users to change my files. Check that the name in the Share name text box is the<br />

same as that in the 2net.bat file, and then press OK to complete the procedure of<br />

file-sharing.<br />

<strong>LNC</strong> Technology Co., Ltd. 411


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

412 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

6. NETWORK WIRING: STEPS TO WIRE A CONNECTOR WITH CABLE<br />

Network cable from controller to HUB:<br />

Internal network wiring<br />

PC side<br />

<strong>Controller</strong> side<br />

This is the conductor side<br />

This is the conductor side<br />

White/Orange<br />

Orange<br />

White/Green<br />

Blue<br />

White/Blue<br />

Green<br />

White/Brown<br />

Brown<br />

White/Orange<br />

Orange<br />

White/Green<br />

Blue<br />

White/Blue<br />

Green<br />

White/Brown<br />

Brown<br />

Network cable from the controller to PC<br />

One to one network wiring<br />

PC side<br />

<strong>Controller</strong> side<br />

This is the conductor side<br />

This is the conductor side<br />

White/Orange<br />

Orange<br />

White/Green<br />

Blue<br />

White/Blue<br />

Green<br />

White/Brown<br />

Brown<br />

White/Green<br />

Green<br />

White/Orange<br />

Blue<br />

White/Blue<br />

Orange<br />

White/Brown<br />

Brown<br />

<strong>LNC</strong> Technology Co., Ltd. 413


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

7. DISCONNECTION & IDLE TIME-OUT SETTINGS<br />

There are two possible causes for users to experience a disconnection problem for<br />

“over idle time-out limit” when sharing a folder with network disks on-line:<br />

A. Operating system: For the operating system at PC side that is Windows 2000 or<br />

Windows XP, by default, the idle time-out limit is set to 15 minutes.<br />

B. Network card: PC side automatically shuts down the power of network cards. This<br />

usually happens for laptop users.<br />

Below are the procedures to disable idle time-out limit.<br />

• OPERATING SYSTEMS<br />

For Windows 2000:<br />

a. Click Start Run, enter “gpedit.msc” in the text box, and press OK to open the Group Policy<br />

configuration dialog box.<br />

414 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

b. Set the policy Amount of idle time required before disconnecting session in Computer<br />

Configuration\ Windows Settings\ Security Settings\ Local Policies\ Security Options.<br />

<strong>LNC</strong> Technology Co., Ltd. 415


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

c. Double-click on the principle, and a dialog box will appear as the figure below. Enter “0” in the<br />

text box, which means no disconnection at all time. To validate the configuration, please reboot<br />

the system.<br />

416 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

For Windows XP:<br />

a. Click Start Run, enter “gpedit.msc” in the text box, and press OK to open the Group Policy<br />

configuration dialog box.<br />

b. Set the policy Miscrosoft network server: Amount of idle time required before suspending<br />

session in Computer Configuration\ Windows Settings\ Security Settings\ Local Policies\<br />

Security Options.<br />

c. Double-click on the principle, and a dialog box will appear as the figure below. Enter “0” in the<br />

text box, which means no disconnection at all time. To validate the configuration, please reboot<br />

the system.<br />

<strong>LNC</strong> Technology Co., Ltd. 417


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

• NETWORK CARD<br />

For Windows 2000:<br />

d. Click My Network Places Right-click properties Local Area Connection Right-click<br />

properties Click the Configure button of General tab Click the Power Management tab,<br />

and uncheck the box of Allow the computer to turn off this device to save power as the<br />

figure below:<br />

418 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

For Windows XP:<br />

a. Click My Network Places Right-click properties Local Area Connection Right-click<br />

properties Click the Configure button of General tab Click the Power Management tab,<br />

and uncheck the box of Allow the computer to turn off this device to save power as the<br />

figure below:<br />

<strong>LNC</strong> Technology Co., Ltd. 419


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

VIRUS SCAN BY A NETWORK DRIVE<br />

If the controller is infected with a virus, enter the system and scan for virus. If the virus<br />

cannot be removed, you can try to scan the virus by a network drive. The setting<br />

procedure is as below:<br />

1. Follow the installation method of the virus scan program to install the program in the<br />

C:\PCSCAN directory at PC side. Or, double-click the PCSCAN.EXE file in the directory<br />

of network settings to decompress and move the files automatically to the C:\PCSCAN<br />

directory.<br />

2. Please set access permission of the PCSCAN file to “read-only.”<br />

420 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

3. Make an emergency boot disk.<br />

A. Insert a disk into the PC drive.<br />

B. Double-click the program NRC1.0.exe.<br />

C. “1.0” of NRC1.0.exe indicates the version of the program.<br />

4. Modify the following contents in the boot disk:<br />

A. A:\NET\SYSTEM.INI<br />

B. The shared file PCSCAN in A:\NET\2NET.BAT.<br />

For example A:\net\net use u: \\uichain1\pcscan /yes<br />

For further details, please refer to Appendix D “Networking Settings.”<br />

5. After the boot disk has been reconfigured and set to “read-only,” insert the disk into the<br />

controller drive and reboot the system. Please change the system configuration to boot<br />

off by a disk; in so doing, the controller will connect to network disks at the same time<br />

as entering the system.<br />

6. During initial connection, because the disk is set to “read-only” and the network drive<br />

cannot write to the disk, the message “Write protect error writing drive A, Abort, Retry,<br />

Fail” will appear. When this occurs, please press “f” to discharge the message and<br />

continue to connect to the network.<br />

7. When the connection is successful, switch manually to the pcscan directory. For the<br />

above example, switch to U disk (U:\\pcscan).<br />

8. Execute pcscan.exe.<br />

<strong>LNC</strong> Technology Co., Ltd. 421


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

COMMON PROBLEMS OF NETWORK DISKS<br />

Common network errors at the controller side:<br />

u Error 5: Access has been denied.<br />

Definition: Access has been denied.<br />

Troubleshooting:<br />

a. Verify if there is any new username in the system.ini file at PC side; and also<br />

verify if guest access of the file is enabled.<br />

b. Verify if the file names at PC side and in the 2net.bat file are the same.<br />

u Error 52: Duplicate workgroup or computer name exists on the network.<br />

Definition: Duplicate workgroup or computer name exists on the network.<br />

Troubleshooting: Change the computer name of the controller; meaning, change<br />

“computername” in the system.ini file.<br />

u Error 53: The computer name specified in the network path cannot be located.<br />

Definition: The specified computer name does not exist or is not open for access.<br />

Troubleshooting:<br />

a. Verify if the network connection light of network cable has turn on.<br />

b. Verify if the NetBEUI Protocol has been installed.<br />

c. Verify if the contents of computername and workgroup are the same as those in 2net.bat &<br />

system.ini at the controller side.<br />

d. Reboot the system with the emergency boot disk to connect to a network disk and scan the<br />

system by using the connected disk.<br />

u Error 55: This resource does not exist on the network.<br />

Definition: The share file does not exist, or the share file at the controller side does not<br />

have authority to access.<br />

Troubleshooting:<br />

a. Verify if the file names at PC side and in the 2net.bat file at the controller side are the same.<br />

b. Verify if the file at PC side is open for access, and the access method is set to full control.<br />

c. Verify if the user password at PC side has expired. To verify, reset the user password and check<br />

the box of Password never expires. Then reconnect to see if the connection works.<br />

422 <strong>LNC</strong> Technology Co., Ltd.


<strong>LNC</strong>-<strong>M600</strong><br />

Appendix F Internet Setting Description<br />

u Error 58: The network has responded incorrectly.<br />

Definition: Incorrect response of the network.<br />

Troubleshooting:<br />

a. Verify if the user password at PC side has expired.<br />

b. Verify if the user password at PC side is the same as that in the 2net.bat file at the controller<br />

side.<br />

u Error 67: The specified shared directory cannot be found.<br />

Definition: The specified share directory cannot be found.<br />

Troubleshooting:<br />

a. Verify if the file of PC side has the permission for file sharing.<br />

b. Verify if the file names at PC side and in the 2net.bat file are the same.<br />

u Error 85: The local device name is already in use.<br />

Definition: The local device name is already in use.<br />

Troubleshooting: Verify if there is any duplicate disk code in the 2net.bat file at the<br />

controller side.<br />

u Error 2184: The service has not been started.<br />

This error message can be ignored.<br />

u Error 3658: The IFSHLP.SYS driver is not installed.<br />

Definition: The IFSHLP.SYS driver is not installed.<br />

Troubleshooting: Verify if “rem” of rem device=C:\NET\ifshlp.sys in the<br />

C:\config.sys file has been deleted.<br />

<strong>LNC</strong> Technology Co., Ltd. 423

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!