27.07.2013 Views

noter om resonans.pdf

noter om resonans.pdf

noter om resonans.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Kapitel 3: Resonans<br />

Kapitel 3: Resonans<br />

Øvelse: En spiralfjeder holdes udspændt. Sendes en bugt på fjeder<br />

hen langs spiral-fjederen (blå linie på figur 3.1), så vil den når den<br />

rammer hånden s<strong>om</strong> holder fjederen, tilbagekastes på den<br />

modsatte side af fjederen (rød linie). Den indfaldende bølge siges<br />

at tilbagekastes i modfase, fordi dens udsving har modsat rettet<br />

amplitude.<br />

Figur 3.2 illustrerer en fremadskridende harmonisk bølge, der<br />

løber ind mod et fast punkt s<strong>om</strong> en bølge på et strengeinstrument.<br />

Når bølgen på strengen når frem til det faste punkt, så kan de ikke<br />

udbrede sig videre. Strengens endepunkt kan ikke flyttes, så det<br />

bliver liggende stille på stedet. Både store s<strong>om</strong> små udsving vil i<br />

den indfaldende bølge blive "lagt død" ved strengen. Bølgen<br />

returneres herefter i modfase (på figuren er den røde linie parallelforskudt<br />

nedad)<br />

Dette kan også beskrives s<strong>om</strong> en fremadskridende harmonisk<br />

bølge, der løber ind mod en fast flade s<strong>om</strong> en bølge i luften i en<br />

gedakt orgelpibe (en lukket eller overdækket orgelpibe). Når<br />

luftdelene i orgelpiben når til overdækningen, så kan de ikke<br />

udbrede sig videre. Luftdelene i orgelpiben kan ikke skubbes ud<br />

gennem overdækningen, så de bliver liggende stille på stedet.<br />

Både store s<strong>om</strong> små udsving vil i den indfaldende bølge blive "lagt<br />

død" ved orgelpibens afslutning.<br />

Figur 3.1<br />

Figur 3.2<br />

Det er lettere at slette et lille end et stort udsving, men hvad kræves hertil? Ifølge<br />

superpositionsprincippet må det virke s<strong>om</strong> <strong>om</strong>, at den indfaldende bølge ved det faste punkt eller den<br />

faste flade netop møder en tilbagekastet bølge i modfase (jævnfør indledningen), thi en sådan vil<br />

netop udslette den indfaldende bølge i dette punkt. Vi kan konkludere:<br />

En harmonisk bølge tilbagekastes i modfase fra en fast afslutning.<br />

Det er ikke kun på en streng eller i en gedakt orgelpibe, at bølgen fra en fast afslutning sendes<br />

tilbage i modfase. Det gælder generelt. Bemærkning. En harmonisk bølge er i modfase med sig selv<br />

en halv bølgelængde længere fremme, for her er udsvinget det modsatte. Det kan man let overbevise<br />

sig selv <strong>om</strong> ved at studere bølgebilledet af en harmonisk bølge og man kan formulere det på den<br />

måde, at bølgen "vinder" en halv bølgelængde (λ/2) ved tilbagekastningen..<br />

Øvelse: En spiralfjeder ophænges under loftet (se fig. 3.3). Da<br />

endepunktet af fjederen ikke holdes fast, er der intet til at dæmpe<br />

et udsving her. Endepunktet siges at være et frit punkt. Sendes en<br />

bugt ned langs fjederen (blå til højre), så vil den, når den k<strong>om</strong>mer<br />

til endepunktet af fjederen, tilbagekastes opad fjederen på samme<br />

side, s<strong>om</strong> den løb nedad. Det viser, at en bølge tilbagekastes fra en<br />

fri ende uden at den skifter fase, idet udsvinget i bølgen er det<br />

samme lige før og lige efter strengens endepunktet.<br />

Sendes bølgen hen ad en streng, hvis endepunkt ikke holdes fast,<br />

er der ikke noget til at dæmpe strengens udsving ved endepunktet.<br />

Er en orgelpibe åben i toppen, kan luftdelene forskyde sig næsten<br />

frit udenfor pibens munding, da der ikke længere er noget rør til at<br />

holde sammen på en luftfortætning her og luft kan frit falde ind fra<br />

mhtml:file://C:\Documents and Settings\JP\Lokale indstillinger\Temp\kapitel3a.mht<br />

Page 1 of 5<br />

21-11-2008


Kapitel 3: Resonans<br />

siden ved en fortynding (se fig). Man siger, at bølgen rammer et<br />

frit punkt eller en fri flade. Man kunne med superpositionsprincippet<br />

i tanken forestille sig, at den indfaldende harmoniske<br />

bølge afleverer sin svingnings-energi, men at den ved endepunktet<br />

(jævnfør forrige øvelse) møder en tilbagekastet bølge, der leverer<br />

svingningsenergien tilbage. Dette gælder for enhver harmonisk<br />

bølge, s<strong>om</strong> møder en fri afslutning og vi kan konkludere:<br />

En bølge tilbagekastes fra en fri afslutning uden faseskift<br />

En stående bølge. Lad os se på forholdet ved en gedakt orgelpibe,<br />

hvor overdækningen kan forskydes. S<strong>om</strong> model for en sådan<br />

orgelpibe kan benyttes et <strong>resonans</strong>rør, der simpelthen er en<br />

vandfyldt niveaukugle i forbindelse med et rør (se fig. 3.4).<br />

Vandstanden i røret kan reguleres ved at hæve og sænke<br />

niveaukuglen. Vandoverfladen i <strong>resonans</strong>røret udgør en fast væg<br />

mens mundingen af røret er en fri flade. Rørlængden L regnes fra<br />

rørets munding til vandoverfladen.<br />

Sender man en harmonisk bølge ned i <strong>resonans</strong>røret fra en<br />

lydgiver, f. eks. en stemmegaffel eller en højtaler, vil den<br />

fremadløbende bølge i røret kastes tilbage fra den faste<br />

vandoverflade i modfase og denne tilbageløbende bølge vil så igen<br />

kastes tilbage i fase fra den frie overflade ved rørets munding osv.<br />

Da lydgiveren til stadighed sender en harmonisk bølge ned i røret,<br />

vil det efterhånden blive "fyldt helt op af bølger". Alle disse bølger<br />

vil sædvanligvis udslukke hinanden ved destruktiv interferens,<br />

men ved bestemte rørlængder vil der opstå konstruktiv interferens.<br />

Halvt lukket rør<br />

En harmonisk bølge, der først er reflekteret fra den faste væg og<br />

dernæst netop reflekteret fra den frie flade, har gennemløbet røret<br />

frem og tilbage, altså tilbagelagt vejlængden 2·L (rørlængde L).<br />

Den vandt en halv bølgelængde (λ/2) ved tilbagekastningen fra<br />

den faste væg, så bølgen vil svinge i takt med den indk<strong>om</strong>mende<br />

bølge, hvis strækningen 2L er en halv bølgelængde samt eventuelt<br />

et helt antal bølgelængder. De superponerer til en kraftigere bølge.<br />

Når denne er blevet tilbagekastet fra henholdsvis en fast og en fri<br />

flade, vil den igen være i fase med den indk<strong>om</strong>mende harmoniske<br />

bølge osv. Disse bølger vil derfor samle sig sammen til en kraftig<br />

fremadløbende harmonisk bølge i røret, men betingelsen for at den<br />

opstår er s<strong>om</strong> sagt, at den dobbelte rørlængde 2 L er en halv<br />

bølgelængde plus evt. noglr hele. På fig. 3.5 er betingelsen<br />

opstillet matematisk hvor n er et helt tal 0, 1, 2, 3, 4, ....). De<br />

rørlængder L, for hvilke der opstår <strong>resonans</strong> er således givet ved<br />

formlen :<br />

mhtml:file://C:\Documents and Settings\JP\Lokale indstillinger\Temp\kapitel3a.mht<br />

Figur 3.3<br />

Figur 3.4<br />

Figur<br />

Page 2 of 5<br />

21-11-2008


Kapitel 3: Resonans<br />

I princippet skulle amplituden af den indfaldende bølge vokse sig uendelig stor, når der til stadighed<br />

sendes harmoniske bølger ind i røret, men i praksis dæmpes bølgerne efterhånden, så amplituden<br />

blot bliver stor. Når der opstår en kraftig fremadløbende bølge i røret, så vil der ligeledes opstå en<br />

kraftig tilbageløbende harmonisk bølge i røret. Man kan blot tænke sig, at den kraftige fremadløbende<br />

harmoniske bølge i røret tilbagekastes i modfase fra den faste flade s<strong>om</strong> en kraftig<br />

tilbageløbende bølge. Den kraftige fremadløbende og den kraftige tilbageløbende harmoniske bølge<br />

danner ved interferens en såkaldt stående bølge i røret. Vi har opnået <strong>resonans</strong> i røret. At der opstår<br />

en stående bølge i røret, kan vises ved beregning. Vi skal dog nøjes med at illustrere det ved hjælp af<br />

internettet. På fysiks hjemmeside på intranettet vælges under virtuelt laboratorium punktet "5.<br />

Superpositionsprincippet". Denne animation kan også demonstrere stående bølger – prøv efter! Hvis<br />

man læser dette i en browser kan du klikke her for animationen.<br />

Figur 3.6 illustrerer, hvordan en stående bølge opstår i<br />

<strong>resonans</strong>røret. Nogle steder er den resulterende bølgebevægelse til<br />

stadighed i ro, mens der andre steder er store udsving. Den står og<br />

svinger op og ned på stedet, hvorfor den kaldes en stående bølge.<br />

Steder i bølgen uden udsving kaldes knuder (vist på figuren ved<br />

kugle o), mens de steder, hvor udsvingene er størst kaldes buge<br />

(vist ved lighedstegn =) . Ved vandoverfladen (den faste flade),<br />

kan luftdelene ikke svinge, så her er knude. Ved rørets munding<br />

(den frie flade) er der intet til at dæmpe udsvinget, så her er det<br />

størst muligt, hvorfor her er bug. Alt efter rørets længde er der<br />

flere knuder og buge mellem knuden ved den faste flade og bugen<br />

ved den frie flade. På den stående bølge kan man aflæse, at der er<br />

en halv bølgelængde både mellem knuderne og bugene: Afstanden<br />

mellem to naboknuder eller to nabobuge er en halv bølgelængde<br />

λ/2 og på figuren ses at rørlængden i dette tilfælde svarer til λ·5/4 i<br />

henhold til formlen for rørlængder med <strong>resonans</strong>.<br />

På de næste figurer ses tre af de øvrige muligheder for <strong>resonans</strong> i<br />

henhold til formlen. Her er eksempler med rørlængder på 1/4 , 3/4<br />

og 7/4 af en bølgelængde.<br />

Figur 3.7<br />

Figur 3.8<br />

Figur 3.6<br />

Figur 3.9<br />

Øvelse: Overbevis dig selv <strong>om</strong>, at de forrige figurer svarer til forholdene i <strong>resonans</strong>røret. Hvordan er<br />

faseforholdet ved den faste flade? Er der knude eller bug ved "rørets" ender?<br />

En stående bølge kan s<strong>om</strong> vist kun opstå ved bestemte rørlængder. Den kaldes også for en<br />

egensvingning. Selve dette fæn<strong>om</strong>en, at svage bølger bygger op til en kraftig stående bølge kaldes<br />

<strong>resonans</strong> eller egensvingninger. Det er selvfølgeligt ikke afgørende at røret er halvåbent for at<br />

<strong>resonans</strong> kan opstå. Var bølgen blevet udsendt fra den fast flade og reflekteret fra en fri (byttet <strong>om</strong><br />

på munding og fast flade), ville der igen være <strong>resonans</strong>, hvis rørlængden passer med betingelserne<br />

fra før.<br />

Det er ikke kun i rør og orgelpiber at der kan opstå stående bølger.<br />

Det kan der ligeledes på en udspændt streng, hvor en harmonisk<br />

bølge s<strong>om</strong> i et rør også tilbagekastes fra endepunkterne (se fig.<br />

mhtml:file://C:\Documents and Settings\JP\Lokale indstillinger\Temp\kapitel3a.mht<br />

Page 3 of 5<br />

21-11-2008


Kapitel 3: Resonans<br />

3.10). Der er knude, hvor strengen er i ro, og bug, hvor udslaget er<br />

størst. En streng er fastspændt i begge ender, hvor der så må være<br />

knude. Det er derfor liges<strong>om</strong> ved det lukkede rør, og<br />

<strong>resonans</strong>betingelserne er s<strong>om</strong> der (L er nu strengens længde):<br />

Nedenfor er vist tre andre muligheder for <strong>resonans</strong> ven en<br />

fastspændt streng. Argumenter for hvilke <strong>resonans</strong>betingelser for<br />

strenglængden der passer til hver figur!<br />

Figur 3.11<br />

Figur 3.12<br />

Lukket rør og lukket streng<br />

De fire eksempler med <strong>resonans</strong> ved en streng svarer også til<br />

<strong>resonans</strong> i rør, hvor begge ender er lukkede. I begge tilfælde er der<br />

knude ved enderne med faseskift til følge. Der kan herved udledes<br />

en simpel betingelse for, hvornår <strong>resonans</strong> kan opstå. I det<br />

følgende svarer L til enten rørets eller strengens længde: ved<br />

passage frem og tilbage har bølgen tilbagelagt vejlængden 2·L.<br />

Ved hver knude vindes en halv bølgelængde, altså en hel bølgelængde<br />

i alt. Hvis også vejlængden er et helt antal bølgelængder,<br />

vil der være konstruktiv interferens. Matematisk er udledningen<br />

opskrevet til højre i fig. 3.14, og de givne værdier af L er således<br />

bestemt ved værdierne :<br />

Åbent rør<br />

Endelig kan der også opstå <strong>resonans</strong> ved åbne rør. Her er<br />

<strong>resonans</strong>betingelsen, at der ikke optræder faseskift ved<br />

reflektionerne fra de frie ender. Et eksempel er vist her til højre i<br />

fig. 3.15, hvor der ses buge ved enderne.<br />

Opgave: Udled matematisk <strong>resonans</strong>betingelse for det åbne rør og<br />

angiv de "lovlige" værdier for rørlængde L ved <strong>resonans</strong>!<br />

Figur 3.10<br />

Figur 3.13<br />

Figur 3.15<br />

Page 4 of 5<br />

Resumé:<br />

Resonansundersøgelser viser det er en fast regel, at der er knude ved en fast flade, og bug ved en fri.<br />

Ved den faste flade vindes en faseskift på λ/2 mens der ikke er faseskift ved reflektion fra en fri<br />

flade.<br />

Ved <strong>resonans</strong> i rør og på strenge er forskellen mellem to nabosteder med <strong>resonans</strong> altid λ/2 .<br />

mhtml:file://C:\Documents and Settings\JP\Lokale indstillinger\Temp\kapitel3a.mht<br />

21-11-2008


Kapitel 3: Resonans<br />

Eksperiment. En lang spiralfjeder holdes med hænderne udspændt imellem to personer. Den ene<br />

person bevæger rytmisk eller harmonisk den hånd, s<strong>om</strong> holder fast i spiralfjederen, op og ned med<br />

små udsving. Han/hun vil ved at mærke fjederens ryk i hånden næsten aut<strong>om</strong>atisk falde ind i en<br />

rytme, der får stående svingninger til at opstå på strengen.<br />

1. Forklar, at der er knude ved den rytmisk bevægede hånd såvel s<strong>om</strong> ved den hånd, s<strong>om</strong> ikke<br />

bevæges.<br />

2. Udpeg buge og knuder på strengen.<br />

3. Find bølgelængden.<br />

4. Forsøg at frembringe andre stående svingninger på strengen<br />

Eksperiment. Find lydens hastighed i luft ved hjælp af en stemmegaffel (440 Hz) og et <strong>resonans</strong>rør.<br />

Opgave. Man siger, at mænd synger på store badeværelser og kvinder på toiletter. Hvorfor mon det?<br />

(Vink: Frekvensintervallet for en bas er fra 66 til 350 Hz, mens det for en sopran er fra 200 til 1050 Hz.)<br />

http://www.acskive.dk/virtex/<br />

http://www.acskive.dk/virtex/Lyd_og_lys/lyd_lys.htm<br />

mhtml:file://C:\Documents and Settings\JP\Lokale indstillinger\Temp\kapitel3a.mht<br />

Page 5 of 5<br />

21-11-2008

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!