19.02.2013 Views

Strontium-90 contamination in vegetation from radioactive waste ...

Strontium-90 contamination in vegetation from radioactive waste ...

Strontium-90 contamination in vegetation from radioactive waste ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

P<br />

,


ORNL/TM- 10453<br />

<strong>Strontium</strong>-<strong>90</strong> Contam<strong>in</strong>ation <strong>in</strong> Vegetation <strong>from</strong> Radioactive Waste<br />

Seepage Areas at ORNL, and Theoretical Calculatlons of 9oSr<br />

Accumulation by Deer<br />

C. T. Garten, Jr., and R. D. Lomax<br />

Environmental Sciences Division<br />

Publication No. 2924<br />

Date Pub1 ished June 1 987<br />

Prepared by the<br />

OAK RIDGE NATIONAL LABORATORY<br />

Oak Ridge, Tennessee 3783 1<br />

operated by<br />

MART IN MAR1 ETT A ENERGY SYSTEMS, I NC.<br />

for the<br />

US. DEPARTMENT OF ENERGY<br />

3 La45b 0263200 b


1 .<br />

2 .<br />

3<br />

CONTENTS<br />

Paae<br />

LIST W FIGURES ...................................................................................................................... v<br />

LIST OF TABLES .................................................................................................................... vi1<br />

ACKNOWLEDGMENTS .............................................................................................................. ix<br />

ABSTRACT ................................................................................................................................ xi<br />

INTRODUCTION ................................................................................................................... 1<br />

METHODS .............................................................................................................................. 2<br />

2.1 SITE SELECTION ......................................................................................................... 2<br />

2.2 GROUND-LEVEL GM SURVEYS ................................................................................ 2<br />

2.3 VEGETATION SAMPLING .......................................................................................... 5<br />

2.4 STRONTIUM-<strong>90</strong> ANALYSIS ..................................................................................... 5<br />

RESULTS ............................................................................................................................... 6<br />

3 . t QUAL I TY ASSURANCE .............................................................................................. 6<br />

3.2 SITE CHARACTERIZATION AND GROUND-LEVEL SURVEYS ........................ 6<br />

3.3 STRONTIW-<strong>90</strong> LEVELS IN P t M SAMPLES ................................................ 14<br />

4 . FOOD CHAIN PIOOEL ........................................................................................................ 16<br />

4 . 1 STEADY-STATE CALCULATIONS ........................................................................ 16<br />

4.2 NON-STEADY-STATE CALCULATIONS ............................................................. t0<br />

4.3 MOOEL PARAMETERS .............................................................................................. 18<br />

4.3. 1 Ingestion Rate (r) ........................................................................................ 18<br />

4.3.2 Fractional Assimilation (a) .................................................................... 19<br />

iii<br />

..


.......................................................................... 19<br />

................................................................................... 19<br />

................................................................................... 20<br />

................................................. 26<br />

......................................................................... “27<br />

AT IONS ................................................................. 32<br />

........................................................................... 36<br />

APPENDIX A - <strong>Strontium</strong>- Concentrations <strong>in</strong> Plant Samples .................. 39<br />

APPENDIX E3 . - <strong>Strontium</strong>-W C~ncentration~ <strong>in</strong> Soils and Vegetation<br />

<strong>from</strong> the White Oak Creek Floodpla<strong>in</strong> ........................................ 4<br />

CES ....................................................................................................................<br />

iv


Fiaure<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

LIST OF F I W S<br />

rn<br />

Distributlm of %r In mi1 south of SWSA-4. This figure was<br />

orig<strong>in</strong>ally published <strong>in</strong> Melroy et al. (ref. 3) acrd later repr<strong>in</strong>ted<br />

<strong>in</strong> Davis artd shoun (ref. 1 4) .................................................................................... 3<br />

Location of groundwater seeps on the perimeter of SWSA-5 as<br />

Ickntlfled by Doguld (ref. 1 ) .................................................................................... 4<br />

Correlation between %r concentrations <strong>in</strong> plants determ<strong>in</strong>ed<br />

by Cerenkov ccnrmttng (Environmental Sciences Division) and by<br />

radiochemical methods (Analytical Chemistry Division I.......................... 7<br />

Map of the study area at seep S- 1 1, adjacent to SWSA-5,<br />

showlng ground-?evel GH survey meter read<strong>in</strong>gs In thousands of<br />

counts per mtnute at vartous statlons on the sampl<strong>in</strong>g grid.<br />

Circled GM survey meter read<strong>in</strong>gs show where plant samples<br />

were collected <strong>in</strong> Wmber t ......................................................................... 8<br />

Map of tlw study area at sew S-5, adjacent to SWA-5, show<strong>in</strong>g<br />

the ground-level GM w e y meter read<strong>in</strong>gs <strong>in</strong> thousands of<br />

cmts per m<strong>in</strong>ute at various stations on the sampl<strong>in</strong>g grid.<br />

Circled GH survey meter readlngs Snow whm plant samples<br />

were collected <strong>in</strong> ~overntw t 986 ........................................................................ 9<br />

Map of the study area associated with the “bathtub seeps’ on<br />

SWSA-4 show<strong>in</strong>g ground-level GM swvey meter mad<strong>in</strong>gs In<br />

thousands of counts per m<strong>in</strong>ute at various stations on the<br />

sampl<strong>in</strong>g grid. Circled 661 survey meter read<strong>in</strong>gs show where<br />

plant samples were taken <strong>in</strong> November 1986 ............................................... 12<br />

V


7<br />

8<br />

I)<br />

10<br />

11<br />

Paae<br />

November 1 986 ........................................................................................................... 13<br />

Sr c ~ ~ c <strong>in</strong> plant ~ ~ ~ ~ ~ t ~<br />

samples <strong>from</strong> the four study areas (see Appendix A for a<br />

complete 1 ist<strong>in</strong>g of data) ....................................................................................... 15<br />

Relationship between gro~nd-l~~e~ GH survey meter read<strong>in</strong>gs and<br />

~ ~ ~ e s p ~ ~ ~ l n ~<br />

Comb<strong>in</strong>ations OF usage fact<br />

result <strong>in</strong> calculated steady<br />

plant 9%r concentratlans for the seepage areas ......... I 7<br />

d plant 9oSr concentration that<br />

e 9*~r levels <strong>in</strong> deer bone more<br />

than (above the l<strong>in</strong>e) or less than (below the l<strong>in</strong>e) 30 pCi/g.<br />

n the l<strong>in</strong>e correspond to plant concentrations at the<br />

as and the usage f ~ necessary ~ ~ to result r <strong>in</strong> a<br />

callculated <strong>90</strong>3- concentration <strong>in</strong> bone of 3Q pCibg,. ................................. 24<br />

Comb<strong>in</strong>attons of usage factor and plant <strong>90</strong>Sr concentratlon that<br />

result <strong>in</strong> calculated 9%- ievels <strong>in</strong> deer bone m8re than (above<br />

the l<strong>in</strong>e) or less than (below the l<strong>in</strong>e) 30 pWg after 0 week of<br />

food chatn exp~s~r%, Pa<strong>in</strong>ts on the l<strong>in</strong>e correspond to plant<br />

concentrations at the study areas and the usage factor<br />

to result <strong>in</strong> a calculated 9@r concentration <strong>in</strong> bone<br />

of 30 pCi/g ................................................................................................................. 25<br />

Vi


Table<br />

1<br />

2<br />

3<br />

4<br />

LIST OF TABLES<br />

m<br />

Example steady-state ca~culation of %r concentration <strong>in</strong><br />

8eef bone ................................................................................................................. 21<br />

Mean plant cmmtratlon and calculated concentration<br />

<strong>in</strong> deer bones after dffferent Intervals of food cha<strong>in</strong><br />

exposure ................................................................................................................. .22<br />

<strong>Strontium</strong>-9Q plantsoil concentration ratios reported f m<br />

studies done <strong>in</strong> the White Oa& Greek Watershed ................................... 28<br />

comparison of Wir <strong>in</strong> seep water and seepage area<br />

vegetat Ion ............................................................................................................... 31<br />

vii


ACKNOWLEMjMENTS<br />

We wtsh to thank the follow<strong>in</strong>g persons for their asslstance with<br />

varlous aspects of this work: J. S. Baldwln, E. A. Bondietti, 1. W. Burw<strong>in</strong>kle,<br />

J. W. Evans, R. E. Norman, T. G. Scott, B. P. Spatd<strong>in</strong>g, and R. I. Van Hook.<br />

ix


ABSTRACT<br />

This report describes data obta<strong>in</strong>ed dur<strong>in</strong>g a prelim<strong>in</strong>ary<br />

characterization of levels <strong>in</strong> browse <strong>vegetation</strong> <strong>from</strong> the vfc<strong>in</strong>ity of<br />

seclQs adjacent to ORNB, solid <strong>waste</strong> storage areas (SWSA) where deer<br />

( ~c#/’/eus viq<strong>in</strong>ims ) were suspected to accumulate 9*Sr through the<br />

food cha<strong>in</strong>. The highest strontium concentrations <strong>in</strong> plant samples were<br />

found at seeps associated with SWSA-5. <strong>Strontium</strong>-<strong>90</strong> concentrations <strong>in</strong><br />

honeysuckle and/or blackberry shoots <strong>from</strong> two seeps <strong>in</strong> SWSA-5 averaged<br />

39 and 19 nCi/g dry weight (OW), respectively. The maximum concentration<br />

observed was <strong>90</strong> nCi/g DW. <strong>Strontium</strong>-<strong>90</strong> concentrations <strong>in</strong> honeysuckle<br />

and blackberry shoots averaged 7.4 nCi/g DW <strong>in</strong> a study area south of<br />

SWSA-4, and averaged 1.0 nCi/g QW <strong>in</strong> fescue grass <strong>from</strong> a seepage area<br />

located on SWSA-4. A simple made1 (based on metabolic data for mule<br />

deer) has been used to describe the theoretical accumulation of 9%r <strong>in</strong><br />

bone of whitetai1 deer follow<strong>in</strong>g <strong>in</strong>gestion of contam<strong>in</strong>ated <strong>vegetation</strong>.<br />

Based on an assumed 1% usage factor and measured mean<br />

concentrations of WSr <strong>in</strong> browse piants <strong>from</strong> the four seepage areas<br />

studied, the calculated <strong>90</strong>Sr level <strong>in</strong> deer bone can easily exceed the<br />

confiscation limit of 30 pCi/g for a 45-kg buck that browses contam<strong>in</strong>ated<br />

<strong>vegetation</strong> an a regular basis. The time required to atta<strong>in</strong> a steaw-state<br />

concentration is expected to be relatively long (more than 2 years).<br />

However, calculations, aga<strong>in</strong> based on an assumed 1 X usage factor and mean<br />

plant mSr levels, <strong>in</strong>dicate that a &-kg buck could atta<strong>in</strong> <strong>90</strong>%<br />

concentrations <strong>in</strong> bone >30 pCi/g after brows<strong>in</strong>g times of 1 week ta 1 year.<br />

xi


est that if 30 pCj<br />

level for reta<strong>in</strong><strong>in</strong>g deer kille<br />

Sr/g deer bone is to be<br />

ulid be considered as a possible action<br />

level <strong>in</strong> mak<strong>in</strong>g decisions a need for remedial measures, because<br />

unrestricted access and Full utilization of <strong>vegetation</strong> contam<strong>in</strong>ated with (5<br />

results <strong>in</strong> calculated stea -state ~ ~ ~ x i r9Qr n u bone ~ ~<br />

s ob


Dur<strong>in</strong>g the last 3 months of 11986, the Tennessee Wildlife Resources<br />

Agency and the Wpartrnent of Energy condarcted a second year of organized<br />

deer hunts on the Oak Ridge Wildlife Management Area for the purpose of<br />

controll<strong>in</strong>g deer numbers and mitigat<strong>in</strong>g the likelihood of deer-vehicle<br />

accidents. Each deer taken by hunters <strong>from</strong> tfw Wildltfe Management Area<br />

was monitored at a check<strong>in</strong>g station for <strong>radioactive</strong> contmlnation.<br />

<strong>Strontium</strong>-<strong>90</strong> concentration 5n bone was measured with a sc<strong>in</strong>tillation<br />

detector applfed to a bone sample <strong>from</strong> the fareleg of each animal. Durlng<br />

the 1986 hunt, 29 of 660 deer killed (4.499) exceeded confiscation limits<br />

correspond<strong>in</strong>g to approximately 30 pCI WSr/g bone. This compares with 7<br />

of 926 deer killed (0.8%) dur<strong>in</strong>g 1985 hunts that exceeded such limits.<br />

This report describes data obta<strong>in</strong>ed dur<strong>in</strong>g a prelim<strong>in</strong>ary<br />

characterization of 96r levels <strong>in</strong> browse <strong>vegetation</strong> <strong>from</strong> the vic<strong>in</strong>ity of<br />

seeps adjacent to ORM, solid <strong>waste</strong> storage area where deer were<br />

suspected to accumulate strontium through <strong>in</strong>gestion of contam<strong>in</strong>ated<br />

<strong>vegetation</strong>. A simple model has been used to describe the theoretical<br />

accumulation of 9% <strong>in</strong> deer foilow<strong>in</strong>g <strong>in</strong>gestion of contam<strong>in</strong>ated<br />

<strong>vegetation</strong>. Appendices to this report swnmarlze previously collected or<br />

published data ora WSr <strong>contam<strong>in</strong>ation</strong> <strong>in</strong> soil and <strong>vegetation</strong> <strong>from</strong> the White<br />

Oak Creek Watershed. Collectively, this <strong>in</strong>formation is <strong>in</strong>tended to help <strong>in</strong><br />

plann<strong>in</strong>g remedial actions that will reduce the frequency of contam<strong>in</strong>ated<br />

deer Wen <strong>in</strong> future hunts.


2. II SITE SELECT10<br />

2.<br />

2<br />

aata relat<strong>in</strong>g to <strong>90</strong>% <strong>contam<strong>in</strong>ation</strong> <strong>in</strong> seepage<br />

eys. Two sites were<br />

a ISWSA) 4 one located ora SWA-<br />

ed "bathtub seeps"<br />

ehes allows them to 1111 wlth water durlng ra<strong>in</strong>y<br />

s of the year), and a seco ed south of SWSA-4 on a f?<br />

e <strong>from</strong> the bu<br />

d (Fig. 1). Two sites 6 -1<br />

of SWSA-5 (Fig. 2) at seepage<br />

ldentlf led by ~ ~ ~ ~hese ~ four ~ dsites l were . selected for lmmedlate study,<br />

the first deer h of 1986. A grld was established at<br />

each slte to faciittate und-level radlaticrn surveys wtth an<br />

end-w <strong>in</strong>dow Geiger-Mcrli<br />

2.2<br />

meter, and <strong>vegetation</strong> sampli<br />

Snute (cw) read<strong>in</strong>gs were made with an ~ - w ~ GM n ~ w<br />

1986. The, end-<br />

ic bag to prevent <strong>in</strong>strument<br />

water) was of <strong>in</strong>terest.


3: *)@O 9<br />

n<br />

3


4<br />

ORWL GRID COORDINATE-NQWTW<br />

0 60 120 180 244l<br />

0 WELL I. I 1 I J<br />

kr SEEP<br />

MET E R S<br />

ORML DWG 74-960%


2.3 VEGETATION SAMPLING<br />

5<br />

Plant samples (cmprlsed of leaves and stems) were obta<strong>in</strong>ed <strong>from</strong><br />

each site on two dlfterent oCCaSiMS: ( 1 ) In early November, t 986, dur<strong>in</strong>g<br />

site visits prior to GM ground surveys, and (2) <strong>in</strong> mid-Mvember, 1986,<br />

dur<strong>in</strong>g 6l-l gMwnd surveys. Grab samples taken dur<strong>in</strong>g the first slte vlstt<br />

were composfted for several dlfferent types of fresh vegetatton. Followlng<br />

(IrooMJi-level GPl surveys, samples were selected on the basis of count-per-<br />

m<strong>in</strong>ute read<strong>in</strong>gs at each <strong>in</strong>tersection on the gr9d. Because of the season of<br />

the year, most vegetatlan was not <strong>in</strong> tollage. Honeysuckle and/or<br />

blxkberrgc, both alive <strong>in</strong> November, were the prevalent browse plants at<br />

sites sther than the "bathtub seeps" site on SMA-4. Fescue grass was the<br />

dom<strong>in</strong>ant <strong>vegetation</strong> type at the "bathtub seeps.".<br />

2.4 STRONTIW-<strong>90</strong> ANALYSIS<br />

Plant samples were cut with scissors <strong>in</strong>to small pieces, mixed, and -1<br />

g (fresh weight) was put <strong>in</strong>to a tared crucible. Samples were dried<br />

overnight at 100 'C, weighed to obta<strong>in</strong> the sample dry weight (PW), and<br />

shed <strong>in</strong> a muffle furnace at 500 'C for 48 h. The ash was dissolved <strong>in</strong> 1 mL<br />

of concentrated nitric acid, the solution was brought to a volume of 10 ml<br />

with distilled water, and 4 ml, was transferred to a plastic sc<strong>in</strong>tillation<br />

vial conta<strong>in</strong><strong>in</strong>g 15 mL of distilled water. Vials were analyzed for <strong>90</strong>Sr by<br />

Cerenkov radiation count<strong>in</strong>g? A %r standard was made to determ<strong>in</strong>e<br />

count<strong>in</strong>g efficiency. Concentrations were orig<strong>in</strong>ally expressed as<br />

dis<strong>in</strong>tegrations per m<strong>in</strong>ute (clpm) and later converted to Curies ( 1 Ci = 2.22<br />

x 1012 dpm). Eight samples (after ash<strong>in</strong>g and dissolution <strong>in</strong> acid) were


E<br />

A paired t-test of t t split samgl wed a statistically<br />

sign 1 f jcant dj f r erewe between <strong>90</strong>% Inations by Cerenkov co<br />

ernleal analysis (t = 294, df = 7, P (0.05). Despite a very strong<br />

led radlon~~~~d~~ that we rated <strong>from</strong><br />

us and by the QRM<br />

1, ~ e count<strong>in</strong>g ~ tended @ to ~ ~ ~<br />

of 8.9% (SD =<br />

to the presence of other<br />

~ t showed ~ that the ~ ~ d<br />

Sr on QUP ~ ~ ~ p was ~ e n t<br />

A-5 (Fig. 5). Seep 3-1 1 lies<br />

)a Access<br />

to the


1 E+06<br />

1 E+05<br />

1 E+04<br />

1 E+03<br />

1 E+02<br />

1<br />

7<br />

Y = -646 + 0.92 (X)<br />

r = 1.00<br />

ORNL-DWG 87-1 1058<br />

1 E+02 1 E+03 1 E+04 1 E+05 1 E+06<br />

Cerenkov Count<strong>in</strong>g <strong>Strontium</strong>-<strong>90</strong> (dprnlg DW)<br />

Ftg. 3. Correlation between %r concentrations <strong>in</strong> plants determiw by<br />

Cerenkov cmt <strong>in</strong>g (Environmental Sciences Division) and by<br />

md#ochernical methods (Analytical Chemistry Dlvision).


Thistle<br />

We11 TI 17-1<br />

_ _ _ _ _ _ _ _ _ _ L _ _ _ _ _ - _ - - - - - -<br />

Ground Level GM Survey Meter Read<strong>in</strong>gs<br />

<strong>in</strong> Thousands of Counts per M<strong>in</strong>ute<br />

1<br />

Fig. 4. f the study area at se<br />

d-level GM survey me<br />

jacent to SWSA-5, *ow<strong>in</strong>g<br />

<strong>in</strong> t h ~ sf ~ counts ~ per ~ d ~<br />

m<strong>in</strong>ute at various stations on the ~~~1~~~ grid. Circled<br />

meter read<strong>in</strong>gs show where plant samples were collected <strong>in</strong><br />

November 1986.


A B C D E F<br />

........................................................................................<br />

<strong>in</strong> Thousands of Counts per M<strong>in</strong>ute<br />

ORNL-DWG 87-1 1060<br />

-<br />

fig. 5. Map of the study area at seep S-5, adjacent to SWSA-5, show<strong>in</strong>g the<br />

ground-level GM survey meter read<strong>in</strong>gs <strong>in</strong> thousands of cmts per<br />

m<strong>in</strong>ute at various stations on the sampl<strong>in</strong>g grid. Circled GM survey<br />

meter read<strong>in</strong>gs Snow where plant samples were collected In<br />

November 1986.<br />

.


10<br />

road. Vegetatlon Is pr~n~~pal~y he~aceou~ with few trees.<br />

which conta<strong>in</strong>e<br />

metal bridge.<br />

high as 33,000 cfm immediately swth of sew S-11 (Fig. 4). The area of<br />

hlghest <strong>90</strong>% cont<br />

water <strong>in</strong> ~ v e m 1986, ~ r is crossed by a narrow<br />

s wlth the end-w<strong>in</strong>dow survey meter we<br />

'Inatlsn (prelim<strong>in</strong>arily def<strong>in</strong>ed by the gro<br />

was c200 m2, LOW level Wjr contamtnattan may exlst on the floodpla<strong>in</strong><br />

south of the set<br />

<strong>from</strong> the migation of seepage water toward<br />

Branch. Other notable features at the S- 1 1 site <strong>in</strong>cluded: 1) a deer<br />

o~p<strong>in</strong>~s <strong>in</strong> a dense blackberry thicket at grid marker C-5,<br />

tall, dead thtstle plant Imrnedlately south of the road gave surface beta-<br />

gamma read<strong>in</strong>gs of -7 mR/h (21,000 cprn).<br />

Seep S-5. swth of SWSA-5, was also characterized by high<br />

level count-per-m<strong>in</strong>ute readlngs (Fig. 5). Contam<strong>in</strong>ation at site 3-5 is<br />

conf<strong>in</strong>ed to a narrow ditch that Is surrounded by steep embankments. There<br />

are many large trees on the site with little herbaceous understory. Seepage<br />

water was not present <strong>in</strong> the northernmost portion of the ditch In Nwemkr<br />

; however, stmdlng water was present behlnd a weir In the s<br />

portion of the ditch Wore it mptles Into Plelton Branch. The hlgnest<br />

-level, co~t-~r-m~~te readlngs were ~ ~ ~ along o the steep ~ t ~ ~ ~<br />

center course of the<br />

to its ~ ~ ~ ~ ) wt u e ~ c e<br />

tered at the "Bathtu


encountered at seeps associated with SWSA-5 [read<strong>in</strong>gs near grlid rnarlcers<br />

0-2 and 8-22 were 25,000 and 20,000 cgm, respectively (Fig. 611. ' Both<br />

seeps had some Surface water discolored by iron. The <strong>vegetation</strong> at this<br />

site is low grass and weeds. A well cas<strong>in</strong>g identified as 180-A is located<br />

near grid marker 8-4, and a ditch, which dra<strong>in</strong>s to an area south of SWSA-4,<br />

crossed the study site <strong>in</strong> an approximated NW-SE orientation (compass<br />

read<strong>in</strong>gs w m erratic, pwhaps because of buried iron). The ditch<br />

<strong>in</strong>tercepts a downslope flow <strong>from</strong> the seeps, and appears to have prevented<br />

migration of <strong>contam<strong>in</strong>ation</strong> <strong>from</strong> its south side (Fig. 6). The estimated<br />

level of <strong>90</strong>Sr <strong>contam<strong>in</strong>ation</strong> <strong>in</strong> surface soil <strong>in</strong> the general vic<strong>in</strong>ity of the<br />

"bathtub seeps" is between loo0 and 4000 Wi/g (Fig. 1). Deer have been<br />

observed grat<strong>in</strong>g <strong>in</strong> this area of the burial ground.<br />

<strong>Strontium</strong>-80 <strong>contam<strong>in</strong>ation</strong> <strong>in</strong> soil <strong>from</strong> the seepage area south of<br />

SWSA-4 has been previously mapped3 (Fig. 1 ). Our survey south of SWSA-4<br />

transected two areas of high surface %r activity (Fig 7): the %r<br />

concentration <strong>in</strong> soil at grid marker 0-9 was -50,000 pCi/g, and the<br />

surface wit concentration at marker 0-4 was 40,oOO pCi/g. The<br />

westmost portion of the survey area <strong>in</strong>cluded two trench-like<br />

depressions (orre between 0-2 and 0-3, and one between €04 and 0-4) that<br />

conta<strong>in</strong>ed stand<strong>in</strong>g water <strong>in</strong> November 1986. The eastern portion of the<br />

survey area, centered about marker D-9, was drier. The pund-level GM<br />

survey meter read<strong>in</strong>gs at this site were lower than at any other seepage<br />

area suweyed; a maximum read<strong>in</strong>g of 26UO cpm was encountered (Fig. 7).<br />

Higher ground-level read<strong>in</strong>gs encountered at the 'bathtub seeps" were<br />

attributed to radionuclides other than %r. The "bathtub seeps" area is


12<br />

I G F E D C B A<br />

ORNL-DWG 87-1 lo61<br />

DRAINAGE DITCH<br />

Ground Level GM Survey Meter Read<strong>in</strong>gs<br />

<strong>in</strong> fhousands of Caunts per M<strong>in</strong>ute<br />

.... 0.7 .........<br />

Fig. 6 Map of the study area associated with the "bathtub seeps" on SWSA-4<br />

show<strong>in</strong>g growIcf-leve1 GM swvey meter read<strong>in</strong>gs In thousands of<br />

counts per m<strong>in</strong>ute at various stations on the sampl<strong>in</strong>g grid. Clrcled<br />

GM survey meter read<strong>in</strong>gs show where plant samples were taken In<br />

November 1986.


ORNL<br />

N<br />

3 4 5 6<br />

13<br />

ORNL-DWG 87-1 1062<br />

Ground Level GM Survey Meter Read<strong>in</strong>gs<br />

<strong>in</strong> Thousands of Counts per M<strong>in</strong>ute<br />

Fig. 7. Map of the study area w th of SWSA-4 show<strong>in</strong>g gsound-level fiM<br />

survey meter read<strong>in</strong>gs <strong>in</strong> thousands of counts per m<strong>in</strong>ute at various<br />

stations on the study area grid. Cfrcted Gfil swvey meter reiadrngs<br />

show where piant samples were taken <strong>in</strong> November 1986.<br />

1<br />

I<br />

I


14<br />

known to contaln elevated levels of 1 Ws <strong>in</strong> soil.<br />

There was evidence of deer brows<strong>in</strong>g <strong>in</strong> <strong>vegetation</strong> <strong>from</strong> the st<br />

south of SWSA-4. Dew bedd<strong>in</strong>g and evidence of digs were mount<br />

nearby seepage area located amidst heavy RNL swveyed<br />

grid po<strong>in</strong>t W 3<strong>90</strong>- 120 (Fig. 1). The latter se area is one of several<br />

other identified seeps associated with SWA-4 (Fig. 1) that were not<br />

studied; however, ground-level GM survey meter read<strong>in</strong>gs <strong>in</strong> the vic<strong>in</strong>ity of<br />

the ORNL swveyed grid po<strong>in</strong>t W 3<strong>90</strong>-S 120 were GOO cpm.<br />

3.3 STRONTIUN-<strong>90</strong> LEVELS IN RANT SAMPLES<br />

The highest CQnCe~~ratIons of fn plant samples were f<br />

seepage areas assoctated wlth SWSA-5 (Flg. 8). Strontlwn-<strong>90</strong><br />

concentrations In honeysuckle and/or blackberry shoots <strong>from</strong> seeps 5-11<br />

and S-5 averaged 39 and I9 nCf/ DW, respectlvely. The ax^^^<br />

concentration observed was <strong>90</strong> nCi/g OW tn ysuckle collected south of<br />

seep S-? ? (Ap9endlx A).<br />

cmentratlons In honeysuckle and blackberry shoots<br />

collected swth of SWSA-4 averaged 7.4 nCl/g DW (fig. 8). Cmentratfm<br />

ranged between 9 and 21 nCVg DW on the western portion of the transect<br />

survey meter readtrqs wer<br />

sol) isosr cmentrations were estimated to be<br />

area, except In the st<br />

ation coefficient was 6.82 (df = 6). This coprelati<br />

tered In fescue<br />

area assoctated wlth seep S-9 1 where


Plant<br />

<strong>Strontium</strong>-<strong>90</strong><br />

(nCi/g DW)<br />

100<br />

10<br />

I<br />

0.1<br />

0.01<br />

I .<br />

' I ,<br />

ORNL-DWG 87-1 1063<br />

Maximum<br />

0 Mean<br />

lm M<strong>in</strong>imum<br />

"Bathtub South of Seep S-5 Seep S-11<br />

Seeps" SWSA-4<br />

Fig. 8. Maximum, mean, and m<strong>in</strong>imum WSr concentratlons <strong>in</strong> plant samples<br />

<strong>from</strong> the four study areas (see Appendix A fw a complete list<strong>in</strong>g of<br />

data).


16<br />

signiflcmt because of three dtscrete groups of data (Fig. 9). Fig. 9 shows<br />

that wer the sites examl<strong>in</strong>ed, -level read<strong>in</strong>gs wlth the GM survey<br />

P C0.W t 1.<br />

weakly correlated with %r concentrations <strong>in</strong> plants (r = 0.65,<br />

4. FOOD CHAIN MOlXL<br />

A simple mode) ob 9%r accumulation In deer was derlved rrom data for<br />

tim metabollsrn In mule deer ~~~~~<br />

In<br />

age <strong>from</strong> 8 to 36 m<br />

Whitetall deer we simtlar to mule deer In body size and habtts, except that<br />

whitetail deer prefer forest habitats.<br />

4.1 STEADY-STATE CALCULATIONS<br />

he steacty-state skeletal concentration of %r <strong>in</strong> deer <strong>from</strong><br />

cont<strong>in</strong>uous <strong>in</strong>gestion of contam<strong>in</strong>ated <strong>vegetation</strong> can be estlmated <strong>from</strong> the<br />

follow<strong>in</strong>g equation:<br />

WtW@<br />

S = skeletal cmcantsatl<br />

I = daily <strong>in</strong>gestion (pCi/d),<br />

a = fractional arsslmilatiorr fnwn t<br />

constant (per<br />

rn = skeletal mass (9 OW).<br />

This equation assumes that, followtrq <strong>in</strong>gestion absorption <strong>in</strong>to t<br />

, This is a


100<br />

80<br />

20<br />

ORNL-DWG 87-1 1064<br />

Bathtub Seeps<br />

0 South Of SWSA-4<br />

Seep S-11<br />

0<br />

0 10 20 30 40<br />

Ground Survey (kcpm)<br />

Fig. 9. Relationship between ground-level GM survey meter readiys and<br />

correspond<strong>in</strong>g plant <strong>90</strong>~r concentrations for the seepage areas.<br />

Seep S-5 I L<br />

J<br />

,


seek<strong>in</strong>g radlmlide.<br />

where<br />

cmwaflve assumption s<strong>in</strong>ce is known to be a<br />

Dally dypstlor\ or can be estimated <strong>from</strong> the follow<strong>in</strong>g equation:<br />

c = piant concentration (pCl/g DW),<br />

r = <strong>in</strong>gestion rate (9 DW/d),<br />

e factor, or the fraction of diet <strong>from</strong> seepage areas.<br />

4.2 NOM-STEADY-STATE CALCULATIONS<br />

he skeletal concentratton or In deer bone, after a given time<br />

<strong>in</strong>terval of feedlng on contam<strong>in</strong>ated veptation, can be estimated <strong>from</strong> the<br />

f ol low<strong>in</strong>g equation:<br />

where<br />

si F the 9Qsr concentration <strong>in</strong> deer bone after time t,<br />

I "C*cy*Cu,<br />

t = the number of days that the contamlnated diet is utillzed.<br />

4.3 L PMMTERS<br />

4.3.1 /hgestr'cvr /b;ite (P)<br />

The, amount ob ve is a functlm or weight, sex,<br />

. In modeis of accmul at i on mule deer, Sc<br />

Whicker4 used a d~~~~ lngestlm rate of 16.5 g DW vegetatlon/kg bo


19<br />

wel@t for WS, and between -18 d 22 9 <strong>vegetation</strong>/kg body weiwt for<br />

does. For the present calculatians, we can assume an average <strong>in</strong>gestion<br />

rate of 17 g DW vegetatim/kg body wei@t/day <strong>in</strong> whitetail deer; the<br />

<strong>in</strong>gestion rate is multiplied by deer body weight (kg) to obta<strong>in</strong> qms dry<br />

weight <strong>in</strong>gested per day.<br />

4.3.2 Fractiml AssjmhWim (a)<br />

Schreckhlse and Whicker4 found that the fractional assimilation of<br />

strontium <strong>from</strong> the 61 tract varles between bucks (a = 0.128) and does (a =<br />

0.0377). Gender differences and seam1 variation <strong>in</strong> assimilation are<br />

apparently related to chang<strong>in</strong>g m<strong>in</strong>eral requirements dor<strong>in</strong>g antler<br />

develment.<br />

4.3.3 EWnjnatim Cmtmt (€1<br />

For bucks and does, the elim<strong>in</strong>ation constant for strontium <strong>in</strong> mule deer is<br />

0.003~~ and 0.0~401 per day, respectively4. AI average elim<strong>in</strong>ation<br />

constant of 0.0038, correspond<strong>in</strong>g to a biological half-life of 182 d, was<br />

assumed for the purpose of the present model. Sdreckhise and Whicked,<br />

report that there is evidently a large mount of skeletal bone mobilized<br />

dur<strong>in</strong>g antler development <strong>in</strong> males. AI-I alternative twnover rate for goSr<br />

<strong>in</strong> deer bone of 0.00026 pef day (7.3 year biological half-life) suggested by<br />

~arris5 does not appear to be realfstic <strong>in</strong> view of mode1 validation work<br />

presented by Schreckhlse and Whicker?<br />

43.4 SXee/etal&w (m)<br />

A value of 0.103 was used as the skeleton to total deer body weight ratio,<br />

or 10.3% of the total body weight was skeletal mass?


4 4<br />

Table 1 Snows an ~ x ~ cakullatlm p ~ e fw the ste<br />

lrOnn if 45-Q f 108-1B) Wf. TM CakUlati<br />

W#/g (the werage for<br />

ss than that <strong>in</strong> males<br />

effect of lactatlort and atkr variables m<br />

the model parameters Is unknown. 8y cmpwlm, parmeter values for<br />

males are based<br />

tions of %r <strong>in</strong> plants<br />

studied, calculations <strong>in</strong>dicate that the<br />

<strong>in</strong> bucks after vwyln<br />

scation ilmlt of


. -<br />

.<br />

21<br />

Table 1. Example steady-state calculation of %I' concentration <strong>in</strong> deer<br />

bone<br />

Item<br />

SymlDOl Qr<br />

Equation Units Male Female<br />

Plant concentratiMla C pcwl 39,000 39,000<br />

Deer body weight 8W kg 45.3 45.3<br />

Daily <strong>in</strong>gestiw i g/kg BW/d 17 17<br />

Ingestion rate r=W*i g/d 770 770<br />

Usage factor U Ig 1 1<br />

Estimated <strong>in</strong>take I = c * r * u pCi/d 300,339 300,339<br />

Assim i lat ion fraction 8 0.120 0.038<br />

Elim<strong>in</strong>ation constant<br />

Skeletal massbody weight<br />

E<br />

ratio<br />

perday<br />

x<br />

0.0038<br />

10.3<br />

0.0038<br />

10.3<br />

Skeletal mass M 9 4,666 4,666<br />

Steady state<br />

8m concentration S = ((I * a)/E]l/m pCVg 2,168 644<br />

a dry weight basis.


Tale 2. Mean plant %s cmentration and calculated concentration In deer<br />

bones after different <strong>in</strong>tervals of food cha<strong>in</strong> expaswe<br />

Ite<br />

After 1 week<br />

After 2 weeks<br />

After 1 month<br />

After 3 months<br />

After 6 months<br />

After 1 year<br />

Steady-state cmn.<br />

Bathtub South Seeps-5 S<br />

seeps SMA-4 SWSA-5 SWSA-5<br />

1<br />

3<br />

6<br />

16<br />

28<br />

42<br />

56<br />

11<br />

21<br />

44<br />

120<br />

206<br />

so9<br />

18,800<br />

27<br />

54<br />

113<br />

306<br />

524<br />

784<br />

1,045<br />

* Calculation far a 45-kg 100-1b) buck, assum<strong>in</strong>g 1% of the diet is<br />

tamtnated vegetati<br />

39,l<br />

57<br />

113<br />

234<br />

635<br />

1,089<br />

1,630<br />

2,168


23<br />

food cha<strong>in</strong> exposure, is also presented <strong>in</strong> Table 2. For seeps S- 1 1 and S-5,<br />

calculated %r concentratlons <strong>in</strong> deer bone can exceed 30 pCiPg after 2<br />

weeks of food cha<strong>in</strong> exgosure. For the seepage area south of SWSA-4, -1<br />

month of food cha<strong>in</strong> exgowe was requlred &@fore calculated bone<br />

concentratlons exceeded the conf1xatim limlt.<br />

The usage factor <strong>in</strong> the model has a proportionate <strong>in</strong>fluence on<br />

calculations of bone 9% <strong>in</strong> deer bone (i.e., a doubl<strong>in</strong>g of the usage factor<br />

will double the calculated concentration). A usage factor of 1% has been<br />

assumed <strong>in</strong> prior calculations, but the validity of this assumption is<br />

unknown because the extent to which deer utilize the seepage areas for<br />

food has not been determ<strong>in</strong>ed. Assum<strong>in</strong>g maximum usage (lQO%),<br />

calculations show that a <strong>90</strong>% concentration of (5 pCi/g OW <strong>in</strong> <strong>vegetation</strong><br />

results <strong>in</strong> calculated steady-state concentrations of


Plant<br />

<strong>Strontium</strong>-<strong>90</strong><br />

(nCi/g DW)<br />

100-<br />

0-<br />

1-<br />

I .I..<br />

......... C...*3C...- .............................. C-..<br />

\m ..... seep S-1 1 ;.:.:-;: ........... .........................<br />

L , I,..<br />

.............. : r ..........<br />

\:<br />

-...*-.... ..................................<br />

I . : :::::: :<br />

.............. . ,:..+seeD S-5 .......... ....... ---.,...,..,..+.,.<br />

.......... :<br />

....... L...-L..A..L.~.~-.<br />

I I.. I I.<br />

.......<br />

..<br />

I,.<br />

ORNL-DWG 87-1 1065<br />

. . . . . . I ,<br />

I -c IC<br />

I.<br />

, : : : : : Above the l<strong>in</strong>e -7.:<br />

I * I . .<br />

I. - -r .C<br />

. . : . : . : . : : . Bone>30pCi/g i i<br />

, - -r -e<br />

I , I . . I.<br />

........ .......<br />

........ .......<br />

. . .<br />

..... 2 .... :...&.&.:.&&: ....<br />

I I . . * I .<br />

....... . I . . I . . . I . . I . .<br />

..... . I . . I . . .......<br />

Below the l<strong>in</strong>e ....... ...... L...I..A-..-a.I-.<br />

Bone e30 pCi/g<br />

................ .. .. ... .. ..... ...<br />

........<br />

. I<br />

I .<br />

.<br />

I..<br />

0.1 -<br />

0.01 0.1 1<br />

Usage Factor (%)<br />

Fig. 18. Combdnations of usage factor and plant 9% concentr<br />

result <strong>in</strong> calculated steadystate <strong>90</strong>% levels <strong>in</strong> deer bone more<br />

than (above the l<strong>in</strong>e) or less thm (below the l<strong>in</strong>e) 30 p<br />

on the 11w correspond to plant concentrations at the s<br />

and the usage factor necessary to result <strong>in</strong> a calculate<br />

concentration <strong>in</strong> bone of 30 pCi/g.<br />

-. . -. .c ... -c -c<br />

.......<br />

13<br />

b


'p<br />

.t-w<br />

. . .. .<br />

0<br />

r<br />

F<br />

25


26<br />

exposure) show that more than 4% us of <strong>vegetation</strong> <strong>from</strong> the three more<br />

highly contam<strong>in</strong>ated seepage areas 6 - 1 1 , S-5, and south of §MA-4)<br />

results <strong>in</strong> calculated bone concentrations exceed<strong>in</strong>g 30 pCi/g (Fig. 1 1).<br />

5. SOIL-TO-PLANT TRANSFER OF STRONTlW-<strong>90</strong><br />

In the late 195 's, <strong>90</strong>3- was recognlzed as a potential accumulator <strong>in</strong><br />

terrestrlal ecosystem eom onents of the ite QaR Lake bed. Mean<br />

concentrations <strong>in</strong> grasses, forbs, and woody plants occupy<strong>in</strong>g the lake bed<br />

<strong>from</strong> 1456 to 196 were 0.31, 0.77, and 0.56 Ki/g DW, respectivelyd.<br />

<strong>Strontium</strong>-<strong>90</strong> concentratlons were higher <strong>in</strong> leaves than In stems arrd<br />

higher <strong>in</strong> forbs and woody plants than In herbaceous plants. DeSelm and<br />

Shanks6 esttmated that approximately 7% and 29% of the soll strontium was<br />

removed by lake bed willows and herbaceous <strong>vegetation</strong>, respectively. Much<br />

of this removal was recycled back onto the topsoil as accumulated lltter.<br />

Baes et al.7 reviewed exist<strong>in</strong>g literature on the plant:soll concentration<br />

ratios or vartous radi(3nuclides. The range or reference mean values ror the<br />

plant:soll concentration ratio of WSr was 0.077 to 17, with a geometric<br />

mean of 2.7. Variability In the ratio arises <strong>from</strong> regional variation <strong>in</strong> soil<br />

parameters affect<strong>in</strong>g 9% upt e by plants. The foremost soil property<br />

affect<strong>in</strong>g uptake by plants IS the status or exchangeable caletum <strong>in</strong> SOH.<br />

Plant cmentrations decrease w lth <strong>in</strong>creas<strong>in</strong>g exchangeable soil calcium.<br />

Other soil properties, like e, and organic matter, can become<br />

important <strong>in</strong> determ<strong>in</strong><strong>in</strong>g W ~P uptake by piants <strong>in</strong> neutral or alkal<strong>in</strong>e soils<br />

or <strong>in</strong> sails where more t<br />

78% of the exchange capacity Is calcl<br />

saturated$. Tncl relatlonshlp between 9%- levels In soil and plants Is<br />

clfie conditions.


27<br />

There is little empirical data <strong>from</strong> which to derive representative<br />

plantsoil concentration ratios for 9% <strong>in</strong> the White Oak Creek Watershed.<br />

Surface soils of the Tennessee ridge and valley prov<strong>in</strong>ce are typically<br />

acidic (pH between 5.5 and 6.51, and <strong>in</strong> general, the plant uptake of %r is<br />

greater <strong>from</strong> acid soils (pH


Table 3. <strong>Strontium</strong>-<strong>90</strong> p1ant:soil concentration ratios reported <strong>from</strong><br />

studies done <strong>in</strong> the i te Qak Creek Wateixhed<br />

28<br />

P1ant:Soli<br />

<strong>90</strong>% soil concentration<br />

P1 ant type (Wi/g DW) ratio Notes Reference<br />

Sudan Grass 0.255 1.9 a 1<br />

sp. 1<br />

Corn 0.3 10 1.3 b 2<br />

( Zea mays)<br />

Herbaceous species 0.36 3.3 C 3<br />

Uniden t i f ied 0.175 0.9- 1.6 d This report<br />

grasses (Appendix 8)<br />

a) From White Oak Lake be agricultural plot, soil l;bH = 7.1.<br />

b) Concentrations <strong>in</strong> leaves <strong>from</strong> White Oak Lake bed agricultural plot.<br />

Bi&n$ €qpatwim# and dmcm<br />

c) Includes followfng plants: pa<br />

d) From Whfte Oak Creek floodpla<strong>in</strong>, soil pH = 7.5.<br />

References:<br />

1. Auerbach, S. I., et a\. 1959. Ecological research. pp. 18-54. IN Health<br />

Physics Division epwt, July 3 1 , 1959. ORNL-2806.<br />

Oak Ridge Natdonal Laboratory, Oak Ridge, Tennessee.<br />

2. Auerbaich, S. f ., et al. 1858. Ecological research. pp. 27-52. IN Health<br />

Physics Dlvision Annual Progress Report, July 3 1, 1958. ORNL-25W.<br />

Oak Rldge National Laboratory, Oak Ridge, Tennessee.<br />

3. Crossley, D., A., Jr.> and H. F. Howden. 1961. Insect-<strong>vegetation</strong><br />

relationships In an area contam<strong>in</strong>ated by <strong>radioactive</strong> <strong>waste</strong>s. Ecology<br />

42: 302-317.


that govern 9%r uptake and retention by female mute deer are not well<br />

quantified, and the extent to which parameters vary between mule deer and<br />

whitetail deer is unknown. To avoid uncerta<strong>in</strong>ties and to normalize<br />

comparisons between seepage areas, the calculations presented here have<br />

been made for a "standard" deer (45-kg, male). Despite these limitations,<br />

the calculations are useful as first approximations for guidance <strong>in</strong> plann<strong>in</strong>g<br />

remedial actions to prevent the food cha<strong>in</strong> transport of <strong>90</strong>Sr to QRM deer.<br />

The accumulation of WSr <strong>in</strong> deer depends even more strongly on the<br />

extent to which deer actually utilize <strong>vegetation</strong> <strong>from</strong> the seepage areas <strong>in</strong><br />

their diet. Utifization of the seepage areas depends on elements of animal<br />

behavior that cannot be adequately represented <strong>in</strong> the food cha<strong>in</strong> model used<br />

<strong>in</strong> this report However, calculations <strong>in</strong>dicate that a food cha<strong>in</strong> exposure of<br />

7 d duration and more than 49% utilization of <strong>vegetation</strong> <strong>from</strong> seep areas S-<br />

1 1, S-5, or the area south of SWSA-4 can produce calculated concentrations<br />

of <strong>90</strong>% <strong>in</strong> deer bone <strong>in</strong> excess of 30 pci/g (Fig. t 1).<br />

Calculations also <strong>in</strong>dicate that even the modest (-10%) <strong>in</strong>clusion <strong>in</strong> the<br />

deer diet of <strong>vegetation</strong> contam<strong>in</strong>ated with relatively low levels (-100<br />

pCi/g) of <strong>90</strong>9 can result <strong>in</strong> steady-state concentrations of this isotope <strong>in</strong><br />

deer bone exceed<strong>in</strong>g 30 pC?/g. The time required to atta<strong>in</strong> a steady-state<br />

concentration is expected to be relatively long (more than 2 years assumfng<br />

a biological half-life of 182 d); however, given sufficient time, long-term<br />

low-level exposure can result <strong>in</strong> a degree of <strong>90</strong>Sr accumulation by deer that<br />

might necessitate confiscation. Back calculations, for a 45-kg buck, show<br />

that 100% usage of browse <strong>vegetation</strong> conta<strong>in</strong><strong>in</strong>g a 9% level of -5 pCi/g<br />

OW is the maximum plant concentration that will not result <strong>in</strong> steadystate


‘)osr concentrations <strong>in</strong> bone >SO pci/g.<br />

Research is needed on land m<br />

modification or soil treatments, th<br />

<strong>from</strong> contam<strong>in</strong>ated areas or reducl<br />

30<br />

too ex~ns~v@ or difficult to remove eontam<strong>in</strong>ati<br />

nt practices, such as habitat<br />

be effective <strong>in</strong> deterr<strong>in</strong>g deer<br />

ant uptake of g%r, because it<br />

or to exclude<br />

deer by fenc<strong>in</strong>g larger (nonpo<strong>in</strong>t-source) areas of low-level <strong>contam<strong>in</strong>ation</strong>,<br />

For example, superphosphate fertilizer treatments have been shown to<br />

reduce the 9%- uptake by Sor grown on the upper White Oak Lake<br />

bedlo. Various other treatments that are known to affect. the cation-<br />

exchange capacity of the soil, can also alter the 9oSr uptake by plant@,<br />

thereby reduc<strong>in</strong>g or <strong>in</strong>creas<strong>in</strong>g its food cha<strong>in</strong> transport. The<br />

soil treatments as a remedial action measwe must be carefully researched,<br />

because the effectiveness of soil amendments depends upon soil acidity and<br />

base saturation?<br />

The possibility of habitat modification as a remedial action measure,<br />

such as the progressive reduction of forest coverage throughout<br />

contam<strong>in</strong>ated portions of the watershed, should be evaluated <strong>in</strong> the context<br />

of an overall long-term land management plan for White Oak Creek<br />

Watershed.<br />

The use of seeps for dr<strong>in</strong>k<strong>in</strong>g water is another potential source of <strong>90</strong>Sr<br />

available to deer aside <strong>from</strong> seepage area <strong>vegetation</strong>. Conce<br />

9%- <strong>in</strong> seep water and plant samples for three of the four sites exa<br />

are compared In Table 4. The data are more than 10 years apart, but mean<br />

concentrations <strong>in</strong> <strong>vegetation</strong> dur<strong>in</strong>g 1986 exceed the reported<br />

concentrations <strong>in</strong> seep water at each site <strong>in</strong> 1995. The maxim


31<br />

Table 4. Comparison of <strong>90</strong>%- concentrations <strong>in</strong> seep water and seepage area<br />

<strong>vegetation</strong>.<br />

<strong>90</strong>% concentration<br />

Vegetation<br />

Seep wafefl Meanb Vegetation:water<br />

Location Seep (dpm/mt) (dpm/g DW) ratio<br />

South of SWSA-4 5-2 45 1 16,440 36<br />

SWSA-5 5-5 340 41,730 120<br />

S-1 f 23 86,802 3,774<br />

8 Data <strong>from</strong> Duguid, J. 0. 1975. Status report on radioactivity movement<br />

<strong>from</strong> burial grounds <strong>in</strong> Me1 ton and Bethel valleys. OWL-50 I 7. Oak Ridge<br />

Natlonal Laboratory, Oak Ridge, Tennessee.<br />

b Data <strong>from</strong> 1986.


32<br />

Concentrations <strong>in</strong> <strong>vegetation</strong> at each site exceed those <strong>in</strong> seep water by<br />

factors between 100 and mwater ratio und~u~te~ly<br />

varies, depend<strong>in</strong>g on the the time of collection;<br />

therefore the importance o of 9QSr to deer is<br />

difficult to assess bec ances of expo<br />

However, for the seeps<br />

contam<strong>in</strong>ated <strong>vegetation</strong> e important source<br />

of 9QSr.<br />

7. CONCLUSIONS AN<br />

1. The two seeps south of SWSA-5, S- 1 1 and S-5, are a hi<br />

for remedial action than the seeps associated with SWSA-4. The areas of<br />

high-level (> 1000 pCi/g DW) <strong>90</strong>Sr <strong>contam<strong>in</strong>ation</strong> <strong>in</strong> vegetati<br />

S-5 are relatively small (


33<br />

seepage areas adjacent to SWSA-5. However, <strong>in</strong> terms of priority for<br />

remedial action, the seeps associated with SWSA-4 (both the "bathtub"<br />

seeps and those south of SWSA-4) are only slightly less important than<br />

seeps adjacent to SWSA-5, because then! is apparently heavy use of SWSA-<br />

4 by deer. This evidence <strong>in</strong>cludes frequent sight<strong>in</strong>gs of deer on SWSA-4 as<br />

well as the presence of deer beds and digs <strong>in</strong> brushy areas adjacent to the<br />

burial gramd. Assum<strong>in</strong>g a 1% usage factor, calculations show that a food<br />

cha<strong>in</strong> exposure of -1 month <strong>in</strong> areas south of SWSA-4 results <strong>in</strong> calculated<br />

<strong>90</strong>Sr levels <strong>in</strong> deer bone of >30 pCi/g.<br />

3. Additional areas of environmental 9% <strong>contam<strong>in</strong>ation</strong> <strong>in</strong> the White<br />

Oak Creek Watershed should be identified and surveyed for %r<br />

<strong>contam<strong>in</strong>ation</strong>. Prior reports on the areal distribution of %r activity <strong>in</strong><br />

streambed gravels <strong>from</strong> the watershed1Zs13 and <strong>from</strong> seeps associated with<br />

SWSA-4 and SWSA-51 1 J4J5 <strong>in</strong>dicate that these areas fall <strong>in</strong>to the<br />

follow<strong>in</strong>g broad categories:<br />

seeps associated with solid <strong>waste</strong> disposal areas that have been<br />

previously identified and are suspected of known sources of <strong>90</strong>%<br />

<strong>contam<strong>in</strong>ation</strong> to the environment,<br />

e the exposed shorel<strong>in</strong>e and sediments of White Oak Lake, particularly<br />

secluded areas that are attractive to deer and where, based on historical<br />

data16, WSr <strong>contam<strong>in</strong>ation</strong> <strong>in</strong> native <strong>vegetation</strong> is expected to range<br />

between 100 and 1000 pCi/g,<br />

floodpla<strong>in</strong>s adjacent to White Oak Creek and Melton Brarich where<br />

environmental 9% <strong>contam<strong>in</strong>ation</strong> is suspected to exist because of prior<br />

events <strong>in</strong> the history of OWL, or WSr migration away <strong>from</strong> seeps


34<br />

associated with solid <strong>waste</strong> storage areas.<br />

To aid this identificatlotn process, lished data on <strong>90</strong>Sr<br />

concentrations In surface soil and grass area of low-level<br />

<strong>in</strong>ation border<strong>in</strong>g White Oak Creek are wesented <strong>in</strong> Appendix 8.<br />

Research is needed to empirically determ<strong>in</strong>e the plmt:soil c~centrat~on<br />

ratios for <strong>90</strong>Sr <strong>in</strong> a varlety of <strong>vegetation</strong> types <strong>from</strong> the White Oak Creek<br />

Watershed, so that sites requir<strong>in</strong>g remedial actions can be confide<br />

the basis of <strong>90</strong>% levels In soils when plants are not present.<br />

calculations sug st that if 30 i of <strong>90</strong>~r per gram of deer<br />

bone 1% to be the accepted screen<strong>in</strong>g level for reta<strong>in</strong><strong>in</strong>g deer killed on the<br />

ation, then 5 pCi of 9oSr per gr dry weight <strong>vegetation</strong> should be<br />

c ~ n § ~ as d a $ possible ~ ~ ~ action level <strong>in</strong> rnakfn decisions about the need for<br />

remedial measures. This level is -25 times the background <strong>90</strong>%<br />

~ ~ ~ c<strong>in</strong> plants e ~ that t orig<strong>in</strong>ates ~ ~ ~ <strong>from</strong> i we- ~ ~ 6 test<strong>in</strong>g fallout.<br />

Theoretical calculations show that unrestricted access and 100<br />

utilization of <strong>vegetation</strong> contam<strong>in</strong>ated with (5 pei of %r per gram<br />

weight (by a 45-kg buck) results <strong>in</strong> calculated steadystate (maximum)<br />

~ ~ ~ c of


35<br />

Research is needed on land management practices, such as habitat<br />

modification or soil treatments, that might be effective <strong>in</strong> deterr<strong>in</strong>g deer<br />

<strong>from</strong> contam<strong>in</strong>ated areas or reduc<strong>in</strong>g the plant uptake of %r; it may be too<br />

expensive or difficult to remove <strong>contam<strong>in</strong>ation</strong> or to exclude deer by<br />

fenc<strong>in</strong>g larger (nonpo<strong>in</strong>t-source) areas of low-level <strong>contam<strong>in</strong>ation</strong>.


36<br />

REFERENCES<br />

1. Duguid, J. 0, 1975. Status report o radioact ivty movement fro<br />

burial grounds <strong>in</strong> Melton and Bethel valleys. ORNL-50 17. Oak Ridge<br />

~at~o~al ~aborato~y~ Oak Ridge, Tennessee.<br />

2. Larsen, I. L. 198 1. <strong>Strontium</strong>-<strong>90</strong> deter <strong>in</strong>ation by Cerenkov radiation<br />

count<strong>in</strong>g for well ~ ~ n ~ at Oak ~ o idge ~ National i ~ g Laboratory.<br />

ORNL/TM-7760. 0 k Ridge Natlonal Laboratory, Oak Ridge, Tennessee.<br />

3. Melroy, L. A., D. 0. Huff, and N. D. Faro . 1986. Characterization of the<br />

near-surface radionuclide Contam<strong>in</strong>ation associated with the bathtub<br />

effect at Solid Waste Storage Area 4, Oak Ridge National Laboratory,<br />

Tennessee. ORNL/TM- 10043. Oak Ridge National Laboratory, Oak Ridge,<br />

Tennessee.<br />

4. Schreckhise, R. G., and F. W. Whicker. 1976. A model for predict<strong>in</strong>g<br />

strontium-<strong>90</strong> levels <strong>in</strong> mule deer. pp. 148- 156. IN C. E. Cushlng, Jr. ed.,<br />

Radioecology and Energy Resources. Dowde , Hutch<strong>in</strong>son, and Ross, Inc.,<br />

Stroudsburg, Pennsylvania.<br />

5. Farris, G. C. 1967. Factors <strong>in</strong>fluenc<strong>in</strong>g the accumulation of %r,<br />

stable strontium, and calcium <strong>in</strong> mule deer. Ph.0. dissertation.<br />

Colorado State University, Ft. Coll<strong>in</strong>s.


6. DeSelm, H. R., and R. E. Shanks. 1963. Accumulation and cycl<strong>in</strong>g of<br />

37<br />

organic matter and chemical constituents dur<strong>in</strong>g early <strong>vegetation</strong>al<br />

succession on a radioactlve <strong>waste</strong> disposal area, pp. 83-96. IN V.<br />

Schultz and A. W. Klement, Jr. eds. , Radioecology, Proc. First National<br />

Symposium, Re<strong>in</strong>hold Publish<strong>in</strong>g Cow., New Yo&, and AISS, Wash<strong>in</strong>gton,<br />

0. C.<br />

7. Bas, C. F., 111, R. 0. Sharp, A L. Sjoreen, and R. W. Shor. 1984. A review<br />

and analysis of parametem for assess<strong>in</strong>g transport of environmentally<br />

released radionuclides through agriculture. OM-5786. Oak Ridge<br />

National Laboratory, Oak Ridge, Tennessee.<br />

8. Francis, C. W. 1978. Radiostrontium movement <strong>in</strong> soils and uptake by<br />

plants. T6D-27564. National Technical Information Service,<br />

Spr<strong>in</strong>gfield, Virg<strong>in</strong>ia.<br />

9. Goldman, M., W. M. Longhurst, R. J. Della Rosa, N. F. Baker, and R. 0.<br />

Barnes. 1%5. The comparative metabolism of strontium, calcium, and<br />

cesium <strong>in</strong> deer and sheep. Health Phys. 1 1: 141 5- t 422.<br />

10. Auerbach, S. I., et al. 1961. White Oak Lake bed studies. pp. 81 - 105.<br />

IN Health Physics Division Annual Progress Report, July 3 I , 196 1.<br />

ORNL-3 189. Oak Ridge National Laboratory, Oak Ridge, Tennessee.<br />

1 I . Spald<strong>in</strong>g, B. I?, and I . L. Munro. 1984. Determ<strong>in</strong>ation of the areal<br />

distribution of <strong>90</strong>% <strong>in</strong> groundwater via s<strong>in</strong>gle-use boreholes,<br />

ORNL/TM-899 1. Oak Ridge National Laboratory, Oak Ridge, Tennessee.<br />

12. Cerl<strong>in</strong>g, T. E., and 8. P. Spald<strong>in</strong>g. 1981. Areal distribution of f&o,<br />

137Cs, and <strong>90</strong>% <strong>in</strong> streambed gravels of White Oak Creek Watershed,<br />

Oak Ridge, Tennessee. ORWTM-73 i 8. Oak Ridge National Laboratory,


Oak Ridge, Tennessee.<br />

13. Spald<strong>in</strong>g, 8. P., and T. E. Cerl<strong>in</strong>g. 1979. Association of radionuclides<br />

38<br />

with streambed sediments <strong>in</strong> White Oak Greek Watershed. ORNL/TM-<br />

6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee.<br />

14. Davis, E. C., and R. R. Shoun. 1986. Environmental data package for<br />

ORNL solid <strong>waste</strong> storage area four, the adjacent <strong>in</strong>termediate-level<br />

liquid <strong>waste</strong> transfer l<strong>in</strong>e, and the liquid <strong>waste</strong> pilot pit area.<br />

ORNL/TM- 10 155. Oak Ridge National Laboratory, Oak Ridge, Tennessee.<br />

15. Stueber, A. M., 0. E. Edgar, A F. McFadden, and T. G. Scott. 1978.<br />

Preiim<strong>in</strong>ary <strong>in</strong>vestigation of %r <strong>in</strong> White Oak Creek between<br />

monitor<strong>in</strong>g stations 2 and 3, Oak Ridge National Laboratory. ORNUTM-<br />

65 10. Oak Ridge National Laboratory, Oak Ridge, Tennessee.<br />

16. Auerbach, S. I., and D. A. Crossley, Jr. 1958. <strong>Strontium</strong>-<strong>90</strong> and cesium-<br />

137 uptake by <strong>vegetation</strong> under natural conditions, pp. 494-499. IN<br />

Proc. Second United Nations Geneva Conference on Peaceful Uses of<br />

Atomic Energy, Vol. 18. Pergamon Press, London.


Bathtub<br />

saeps<br />

southof<br />

WSA-4<br />

seeps-1 1<br />

(SWSh-5)<br />

seep s-5<br />

(SWSA-5)<br />

39<br />

Appendix A<br />

<strong>Strontium</strong>-<strong>90</strong> Concentrations <strong>in</strong> Plant Samples<br />

131<br />

02<br />

03<br />

04<br />

DS<br />

06<br />

07<br />

08<br />

03<br />

04<br />

DS<br />

F4<br />

A4<br />

08<br />

09<br />

Dl0<br />

F9<br />

A9<br />

86<br />

cb<br />

D6<br />

E6<br />

84<br />

05<br />

c7<br />

07<br />

A1<br />

81<br />

C1<br />

01<br />

M<br />

02<br />

D3<br />

F5<br />

0.38<br />

0.32<br />

0.44<br />

0.47<br />

0.43<br />

0.41<br />

0.43<br />

0.52<br />

0.34<br />

0.17<br />

0.40<br />

0.36<br />

0.35<br />

0.27<br />

0.39<br />

0.48<br />

0.42<br />

0.33<br />

OS8<br />

OS4<br />

0.20<br />

0.38<br />

0.42<br />

0.5 1<br />

0.5 1<br />

0.38<br />

0.40<br />

0.4 1<br />

0.35<br />

0.36<br />

0.39<br />

0.37<br />

0.24<br />

0.35<br />

0.80<br />

1.43<br />

t .79<br />

1 .%<br />

8.8 I<br />

0.68<br />

0.47<br />

0.03<br />

2.07<br />

0.6s<br />

1.70<br />

7.1 1<br />

3.24<br />

9.17<br />

12.6 1<br />

20.70<br />

11.62<br />

5.17<br />

17.58<br />

63.92<br />

51.17<br />

63.24<br />

5.98<br />

<strong>90</strong>.07<br />

8.97<br />

12.13<br />

20.82<br />

7 I .60<br />

3 1 .05<br />

6.24<br />

3.80<br />

4.07<br />

2.40<br />

10.40<br />

0.5<br />

14.0<br />

9.0<br />

15.0<br />

18.0<br />

14.0<br />

1 .2<br />

0.2<br />

2.0<br />

2.2<br />

1 .o<br />

0.9<br />

2.2<br />

2.2<br />

2.6<br />

2.2<br />

2.5<br />

2.3<br />

2.7<br />

20.0<br />

20.0<br />

19.0<br />

11.0<br />

35.0<br />

18.0<br />

7.0<br />

15.0<br />

18.0<br />

31.0<br />

8.0<br />

12.0<br />

4.0<br />

2.0<br />

23.0


Appendix B<br />

<strong>Strontium</strong>-<strong>90</strong> Concentrations <strong>in</strong> Soils and Vegetation <strong>from</strong><br />

the White Oak Creek Floodpla<strong>in</strong><br />

The White Oak Creek floodpla<strong>in</strong> lies to the east of SWSA-4 (Fig. B. 1)<br />

and borders an abandoned channel of White Oak Creek. A 30 x 30-m grid<br />

has been surveyed on the the floodpta<strong>in</strong>, <strong>in</strong> conjunction with prior<br />

radioecology <strong>in</strong>vestigationsl, to study radionuclide migration <strong>from</strong> SWSA-<br />

4. The site, -0.5 krn downstream <strong>from</strong> ORNL, received effluents conta<strong>in</strong><strong>in</strong>g<br />

fission products when <strong>in</strong> service as a temporary settl<strong>in</strong>g bas<strong>in</strong> dur<strong>in</strong>g 6<br />

months <strong>in</strong> 1944. The soil profile is azonal because of periodic erosion and<br />

deposition of sediments related to flood<strong>in</strong>g. The soil texture is a loamy<br />

clay, and the soil is slightly alkal<strong>in</strong>e (pH 7.1 to 7.6) because of alkal<strong>in</strong>e<br />

treatment of the <strong>waste</strong> effluents <strong>in</strong> 1944. More detailed descriptions of<br />

this site, <strong>in</strong>clud<strong>in</strong>g maps of 137Cs and 239Pu <strong>contam<strong>in</strong>ation</strong>, can be found <strong>in</strong><br />

references 1 through 3.<br />

Paired samples of surface sol1 (0 - 7 cm) and plants were collected on<br />

the floodpla<strong>in</strong> at 27 stations (Fig. 6.2) <strong>in</strong> 1983. The mean surface soil<br />

9oSr concentration was 388 dpm/g DW. Plant samples, collected <strong>in</strong> June<br />

and August, were comprised pr<strong>in</strong>cipally of unidentified grasses<br />

honeysuckle. The mean plant <strong>90</strong>% concentration was 608 and 375 dpm/g<br />

DW <strong>in</strong> June and August, respectively. Mean 9oSr concentrations <strong>in</strong> plants<br />

were approximately equal to or 1.5 times greater than the mean<br />

concentration <strong>in</strong> surface soil (Table 6. I 1. Two properties of the site that<br />

probably help to dim<strong>in</strong>ish the plant uptake of 9*Sr are the high ("1%) silt


41<br />

content of the soil and the high soil pH. Nonetheless, 9% concentrations<br />

<strong>in</strong> plants, over the -<strong>90</strong>00-rn2 area surveyed <strong>in</strong> 1983, ranged <strong>from</strong> 129 to<br />

1672 @m/g DW (58 to 753 pCi/g OW) (Table B. 1 1.


.<br />

E uxn BASIN<br />

4 A13 OgSERVATION WELL AND NUMBER<br />

t . 681 PROPOSED OBSERVATION WELL AND NUMBER<br />

0 cn3 CORE HOLE AND NUMBER<br />

A CR3 CREEK WIlGUfflCi POINT AND NUMBER<br />

0 FLOW OCIUGING STATION<br />

__ SWSA 8 BOUNDARY (APPROXYATE) - ROAD _-- STREAM - U((OEROROUND WISE TRANSFER *<br />

___.__<br />

UNDLROROUND SURFACE DRAINAGE LINE - A-LT UNED DRAINAGL<br />

0 HIGH LEVEL WASTE<br />

0 TRENCHES COVERED WITH SWLE<br />

TRENCHES COVERED WmC CONCRETE<br />

A - 1 PROPOSED WATU MIALITV WEU AND NUMBER<br />

FLOW GAUGW<br />

STATON 12A<br />

Fig. 8.1. Map of SWSA-4 show<strong>in</strong>g site features and locatlon of the 38-m<br />

grid system superimposed on the White Oak Creek floodpla<strong>in</strong> east<br />

of SWSA-4.<br />

+<br />

b


S 210<br />

43<br />

Toward SWSA-4 rsgO-P<br />

0 Survey Po<strong>in</strong>t<br />

e Sampl<strong>in</strong>g<br />

Station<br />

S 240<br />

S 270<br />

S 300<br />

1<br />

104 .9<br />

S 180<br />

I aii I<br />

0<br />

m<br />

ti2<br />

3<br />

e13<br />

Y a14<br />

0 e15<br />

ct)<br />

16<br />

+30 m -b<br />

17 b<br />

0<br />

ORNL-DWG 87-1 1092<br />

Toward Old<br />

Creek Channel<br />

Fig. 8.2. Sampl<strong>in</strong>g stations and grid swvey po<strong>in</strong>ts on the White Oak Creek<br />

f Imdplaln east of SWSA-4.


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

M<strong>in</strong>imum<br />

Maximum<br />

M<br />

C.V!<br />

766<br />

258<br />

272<br />

319<br />

rn<br />

644<br />

230<br />

302<br />

452<br />

256<br />

269<br />

274<br />

282<br />

329<br />

350<br />

m<br />

443<br />

279<br />

308<br />

246<br />

550<br />

366<br />

632<br />

431<br />

505<br />

607<br />

230<br />

644<br />

3<br />

0.37<br />

438<br />

330<br />

210<br />

42<br />

444<br />

420<br />

895<br />

326<br />

524<br />

446<br />

448<br />

47 1<br />

551<br />

437<br />

959<br />

7081<br />

454<br />

915<br />

#I8<br />

233<br />

194<br />

743<br />

3%6<br />

712<br />

lbsl<br />

754<br />

1 672<br />

194<br />

1672<br />

6<br />

0.60<br />

44<br />

7m<br />

230<br />

178<br />

437<br />

269<br />

433<br />

314<br />

152<br />

226<br />

298<br />

297<br />

129<br />

302<br />

272<br />

349<br />

278<br />

305<br />

445<br />

24<br />

257<br />

219<br />

1412<br />

414<br />

3%<br />

326<br />

506<br />

129<br />

1412<br />

375<br />

0.67<br />

i3 Plmt mples <strong>in</strong>cluded mostly unidentiflad<br />

Refer to Fig 8.2 for sample laxdim 011<br />

2.22dpm = 1 pCi.<br />

d C. V. = coefficient of variation = mean / starderd de~iatim.<br />

0 57<br />

1.28<br />

0.77<br />

1 .os<br />

1.99<br />

1.08<br />

1.39<br />

1.41<br />

1.74<br />

0.99<br />

1.75<br />

1.75<br />

2.0 1<br />

1%<br />

2.92<br />

2.02<br />

1.34<br />

2.06<br />

221<br />

0 -78<br />

0.79<br />

1.35<br />

1.06<br />

1.13<br />

3.83<br />

1.49<br />

2.75<br />

0.57<br />

3.83<br />

1 .58<br />

0.46<br />

1 .oo<br />

0.89<br />

0.65<br />

1 .oo<br />

0.84<br />

1.1 1<br />

0.49<br />

0b6<br />

0.711<br />

0b6<br />

1.16<br />

0.<br />

1.10<br />

0 .%<br />

1 .a<br />

0.79<br />

1.05<br />

1 .oo<br />

0.88<br />

O M<br />

0.89<br />

257<br />

1.13<br />

0.63<br />

0.76<br />

1.01<br />

1 .w<br />

0.48<br />

2.57<br />

8.94<br />

0.40<br />

with m e mlm iracluslon le.


45<br />

REFERENCES<br />

1. Van Voris, P., and R. C. Dahliman. 1976. Floodpla<strong>in</strong> data: ecosystem<br />

characteristics and Cs-137 concentrations <strong>in</strong> biota and soil. ORML/TM-<br />

5526. Oak Ridge National Laboratory, Oak Ridge, Tennessee.<br />

2. Dahlrnan, R. C., and P. Van Voris. 1976. Cycl<strong>in</strong>g of Cs- 137 <strong>in</strong> soil and<br />

<strong>vegetation</strong> of a flood pla<strong>in</strong> 30 years after <strong>in</strong>itial <strong>contam<strong>in</strong>ation</strong>. pp.<br />

291 -298. IN C. E. Cush<strong>in</strong>g, 3r. ed., Radioecology and Energy Resources.<br />

Dowden, Hutch<strong>in</strong>son, and Ross, Inc., Stroudsburg, Pennsylvania.<br />

3. Dahlman, R. C., C. T. Garten, Jr., and T. E. Hastonson. 1980. Comparative<br />

distribution of plutonium <strong>in</strong> contam<strong>in</strong>ated ecosystems at Oak Ridge,<br />

Tennessee, and Los Alamos, New Mexico. pp. 37 1-380. IN W. C. Hanson<br />

ed., Transuranic Elements <strong>in</strong> the Environment. ooE/TlC-22800.<br />

National Technical <strong>in</strong>formation Service, Spr<strong>in</strong>gfield, Virg<strong>in</strong>ia.


I. S. 1. Auerbach<br />

2. 8. A. Bewen<br />

3. E. A. 0ondietti<br />

4. T. W. Burw<strong>in</strong>kle<br />

5. C. Clark, Jr.<br />

6. K. W. Cook<br />

7. J. W. Evans<br />

8. C. T. Garten, Jr.<br />

9. 0. F. Mll<br />

10. F. J. Human<br />

I 1. J. R. Lawson<br />

12. R. 0. Lomax<br />

13. T. E. Myrick<br />

14. R. E. Noman<br />

15. 7. W. Oakes<br />

47<br />

1 NTERNAL D I STRI BUT I ON<br />

16.<br />

1 7.<br />

i 8.<br />

19.<br />

20.<br />

21.<br />

22.<br />

23.<br />

24.<br />

25.<br />

26 - 40.<br />

41 -42.<br />

43.<br />

44.<br />

45.<br />

EXTERNAL DlSTRlBUTfON<br />

P. T. Owen<br />

0. E. Reichie<br />

P. S. Rohwer<br />

T. f. Scanlan<br />

B. P. Spald<strong>in</strong>g<br />

J. R. Trabalka<br />

R. I. Van Hook<br />

8. T. Wal ton<br />

J. K. Wflliams<br />

Central Research Library<br />

ESD ti brary<br />

Laboratory Records Department<br />

Laboratory Records, RC<br />

QRNL Patent Office<br />

ORNL Y- 12 Technical Library<br />

46. Tom Beasley, 9700 South Cass Avenue, Argonne National<br />

Laboratory, Argonne, It 60439<br />

47. Jack Blanchard, Office of Environmental and Health Affairs,<br />

Department of State, Room 7820, Wash<strong>in</strong>gton, M1 20520<br />

48. Dewey L. Bunt<strong>in</strong>g, Graduate Program <strong>in</strong> Ecology, The University of<br />

Tennessee, Knoxville, TN 37916<br />

49. J. Thomas Callahan, Associate Director, Ecosystem Studies<br />

Program, Room 336, 1800 G Street, NW, National Science<br />

Foundation, Wash<strong>in</strong>gton, DC 20550<br />

50. J. 1. Cooley, Ecology Institute, University of Georgia, Athens, GA<br />

30602<br />

5 1. Colbert E. Cush<strong>in</strong>g, Ecosystems Department, f3attelle Pacific<br />

Northwest Laboratories, P.O. Box 999, Richtand, WA 99352


48<br />

Process<br />

52. G. J. Foley, Office of € ~ ~ i r o ~ ~ n t a ~<br />

tal ~ ~ ~ A ~ e ~ 481 t M ~ iStreet, o ~ SW, RD- ~ ~ ,<br />

Wash<strong>in</strong>gton, DC 2046<br />

53. C. R. Goldman, Professor of Limnology, Director of Tahoe Research<br />

Group, Divlsion of En~iron~e~ta~ Studies, University of<br />

~alifor~ia~ Da Is, CA 95616<br />

54. J. W. Hucka~@@~ Manager, Ecalo cat1 Studies Program, Electric<br />

Power Research Institute, 34 Hi 1 lview Aven e, P.O. Box 104 12,<br />

Palo Alto, CA 94303<br />

55. W. F. Harrts, National Science ~ o ~ n ~ 1800 a ~ G Street, t ~ ~ NW, ,<br />

Room 336, Wash<strong>in</strong>gton, DC 20550<br />

56. George Y. Jordy, Director, Office of ~ r ~ ~ ralysis, a m Off ice of<br />

Energy Research, ER-30,G-2226, US. Department of Energy,<br />

Wash<strong>in</strong>gton, DC 28545<br />

57. C. J. Mank<strong>in</strong>, Director, Oklahoma Geo ical Survey, The University<br />

of ~ ~ 830 Van ~ Vleet Oval, ~ R 163> ~ Norman, ~ OK 73019 ~ a ,<br />

58. J. S. Mattice, Electric Power Research Institute, 3412 Hillview<br />

Avenue, P.O. Box I04 i 2, Palo Alto, CA 94303<br />

59. Helen McCarnrnon, Director, Ecological Research Division, Off ice<br />

of Health and Environmental Research, Off ice of Energy Research,<br />

MS-E2Q 1 , ER-75, Room E-233, Department of Energy, Wash<strong>in</strong>gton,<br />

DC 20545<br />

60. J. Frank McComlck, The University of Tennessee, Knomi 1 le, TN<br />

379 16<br />

61. Robert 8. M<strong>in</strong> Research, US. Nuclear<br />

Regulatory Commission, Was~~n~~~n, DC 20555<br />

62. V. Nabholz, Office of Toxic Substances, ~ ~viron~~ntal Review<br />

Division, U.S. E ~ ~ i r o ~ Protection ~ @ n t Agency, ~ ~ 40 1 M Street, NW,<br />

was^^^^^^^, DC 20545<br />

63. Christopher B. Nelson, Office of Radiation Programs, ANR-45<br />

U.S. ~ ~v~ron~enta~ Protectio Agency, 401 M Street, SW,<br />

Wash<strong>in</strong>gton, DC 2


64.<br />

65.<br />

66.<br />

67.<br />

68.<br />

69.<br />

70.<br />

71.<br />

72.<br />

73.<br />

74.<br />

75.<br />

76.<br />

49<br />

Y. Ng, Environmental Sciences Divjsiun, Mal1 Code L-453, P.O. Box<br />

5507, Lawrence hivermore National laboratory, hivermore, CA<br />

94550<br />

P. 6. Risser, Vice President for Research, The University of New<br />

Mexico, Schoies Hall 108, Albuquerque, NM 87131<br />

Warren K. Slnclalr, National Council on Radiation Protection and<br />

Measurements, 79 10 Woodmont Avenue, Suite 10 16, Sethesda, MD<br />

208 14<br />

M. W. Smith, Savannah River Ecology Laboratory, Drawer E, Aiken,<br />

SC 29601<br />

R. J. Stem, Director, Office of Environmental Compliance, NS PE-<br />

25, FORRESTAL, U.S. Department of Energy, 1000 Independence<br />

Avenue, SW, Wash<strong>in</strong>gton, DC 20585<br />

W. L. Templeton, Battelle Pacific Northwest Laboratories, P.O. Box<br />

999, Richland, WA 99352<br />

Robert C. Watters, Ecological Research Division, Off ice of Health<br />

and Environmental Research, Off ice of Energy Research, MS-E20 I ,<br />

ER-75, Room F-226, US. Department of Energy, Wash<strong>in</strong>gton, DC<br />

20545<br />

Leonard H. We<strong>in</strong>ste<strong>in</strong>, Program Director of Environmental Biology,<br />

Cornel1 University, Boyce Thompson Institute for Plant Research,<br />

Ithaca, NY 14853<br />

F. W. Whlcker, Uepartrnent of Radiology and Radiation Biology,<br />

Colorado State University, Fort Coil <strong>in</strong>s, CO 80523<br />

R. Wildung, Battelie Pacific Northwest Laboratories, P.O. Box 999,<br />

Richland, WA 99352<br />

Raymond G. Wilhour, Chief, Air Pollution Effects Branch, CorvalIIis<br />

Environmental Research Laboratory, U.S. Environmental Protect ion<br />

Agency, 200 SW 35th Street, Cowailis, OR 97330<br />

Frank J. Wobber, Divlsion of Ecological Research, Off Ice of Health<br />

and Environmental Research, Off ice of Energy Research, MS-E20 1,<br />

Department of Energy, Wash<strong>in</strong>gton, DC 20545<br />

M. Gordon Wolman, The Johns Hopk<strong>in</strong>s University, Department of<br />

Geography and Environmental Eng<strong>in</strong>eer<strong>in</strong>g, Baltimore, MD 2 12 I8


50<br />

77. Office of Assistant Manager for Energy Research and Development,<br />

Oak Ridge Operations, P. 0, Box E, Department of Energy, Oak<br />

Ridge, TN 3783 1<br />

78- 107. Technical Information Center, Oak Ridge, TN 3783 I

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!