19.02.2013 Views

On the Differential Geometry of the Curves in Minkowski Space-Time II

On the Differential Geometry of the Curves in Minkowski Space-Time II

On the Differential Geometry of the Curves in Minkowski Space-Time II

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Abstract—In <strong>the</strong> first part <strong>of</strong> this paper [6], a method to<br />

determ<strong>in</strong>e Frenet apparatus <strong>of</strong> <strong>the</strong> space-like curves <strong>in</strong> M<strong>in</strong>kowski<br />

space-time is presented. In this work, <strong>the</strong> mentioned method is<br />

developed for <strong>the</strong> time-like curves <strong>in</strong> M<strong>in</strong>kowski space-time.<br />

Additionally, an example <strong>of</strong> presented method is illustrated.<br />

Keywords—Frenet Apparatus, <strong>Time</strong>-like <strong>Curves</strong>, M<strong>in</strong>kowski<br />

<strong>Space</strong>-time.<br />

I. INTRODUCTION<br />

N <strong>the</strong> case <strong>of</strong> a differentiable curve, at each po<strong>in</strong>t, a tetrad<br />

I <strong>of</strong> mutually orthogonal unit vectors (called tangent, normal,<br />

first b<strong>in</strong>ormal and second b<strong>in</strong>ormal) was def<strong>in</strong>ed and<br />

constructed, and <strong>the</strong> rates <strong>of</strong> change <strong>of</strong> <strong>the</strong>se vectors along <strong>the</strong><br />

curve def<strong>in</strong>e curvatures <strong>of</strong> <strong>the</strong> curve <strong>in</strong> four dimensional space<br />

[2]. In [3], regular curves <strong>in</strong> Euclidean 4-space are studied and<br />

to determ<strong>in</strong>e Frenet frame and Frenet elements, a way, which<br />

3<br />

is similar to E , is also given.<br />

At <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> twentieth century, E<strong>in</strong>ste<strong>in</strong>'s <strong>the</strong>ory<br />

opened a door to use <strong>of</strong> degenerate submanifolds. Then, <strong>the</strong><br />

researchers treated some <strong>of</strong> classical differential geometry<br />

topics and extended to Lorentz manifolds. For <strong>in</strong>stance, <strong>in</strong> [5],<br />

<strong>the</strong> author <strong>in</strong>troduces a method to calculate Frenet apparatus<br />

<strong>of</strong> space-like curves <strong>in</strong> M<strong>in</strong>kowksi 4-space accord<strong>in</strong>g to<br />

signature ( + , + , + , −)<br />

. Thereafter, <strong>in</strong> [6], <strong>in</strong> an analogous way,<br />

mentioned method is adapted to space-like curves <strong>in</strong><br />

M<strong>in</strong>kowski space-time (with respect to signature<br />

( −, + , + , + ), e.g.).<br />

In this paper, us<strong>in</strong>g vector product expressed as <strong>in</strong> [6], <strong>the</strong><br />

method is developed for <strong>the</strong> time-like curves <strong>in</strong> M<strong>in</strong>kowski<br />

4<br />

space-time E 1 . Moreover, an example <strong>of</strong> this method will be<br />

provided.<br />

<strong>II</strong>. PRELIMINARIES<br />

To meet <strong>the</strong> requirements <strong>in</strong> <strong>the</strong> next sections, here, <strong>the</strong><br />

4<br />

basic elements <strong>of</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> curves <strong>in</strong> <strong>the</strong> space E 1 are<br />

Süha Yılmaz and Melih Turgut are with Department <strong>of</strong> Ma<strong>the</strong>matics, Buca<br />

Educational Faculty, Dokuz Eylül University, 35160, Buca-Izmir, Turkey.<br />

(Correspond<strong>in</strong>g author, +902324208593, E-mail: melih.turgut@gmail.com)<br />

Em<strong>in</strong> Özyılmaz is with Department <strong>of</strong> Ma<strong>the</strong>matics, Faculty <strong>of</strong> Science,<br />

Ege University, Bornova-Izmir, Turkey. (E-mail:<br />

em<strong>in</strong>ozyilmaz@hotmail.com)<br />

The third author would like to thank TUBITAK-BIDEB for <strong>the</strong>ir f<strong>in</strong>ancial<br />

supports dur<strong>in</strong>g his Ph.D. studies.<br />

World Academy <strong>of</strong> Science, Eng<strong>in</strong>eer<strong>in</strong>g and Technology 35 2009<br />

<strong>On</strong> <strong>the</strong> <strong>Differential</strong> <strong>Geometry</strong> <strong>of</strong> <strong>the</strong> <strong>Curves</strong> <strong>in</strong><br />

M<strong>in</strong>kowski <strong>Space</strong>-<strong>Time</strong> <strong>II</strong><br />

Süha Yılmaz, Em<strong>in</strong> Özyılmaz and Melih Turgut<br />

1029<br />

briefly presented (A more complete elementary treatment can<br />

be found <strong>in</strong> [2].)<br />

M<strong>in</strong>kowski space-time<br />

4<br />

E 1 is an Euclidean space<br />

provided with <strong>the</strong> standard flat metric given by<br />

2<br />

4<br />

E 1<br />

g = −dx1<br />

+ dx2<br />

+ dx3<br />

+ dx4<br />

,<br />

(1)<br />

where x , x , x , x ) is a rectangular coord<strong>in</strong>ate system <strong>in</strong><br />

4<br />

1<br />

( 1 2 3 4<br />

3<br />

E . S<strong>in</strong>ce g is an <strong>in</strong>def<strong>in</strong>ite metric, recall that a vector<br />

4<br />

v ∈ E1<br />

r<br />

can have one <strong>of</strong> <strong>the</strong> three causal characters; it can be<br />

r r<br />

space-like if g(<br />

v,<br />

v)<br />

〉 0 or v = 0,<br />

r<br />

r r<br />

time-like if g(<br />

v,<br />

v)<br />

〈 0 and<br />

r r<br />

null (light-like) if g(<br />

v,<br />

v)<br />

= 0 and v ≠ 0.<br />

r<br />

Similarly, an<br />

r r<br />

4<br />

arbitrary curve α = α(s)<br />

<strong>in</strong> E1 can be locally be space-like,<br />

time-like or null (light-like), if all <strong>of</strong> its velocity vectors α (s)<br />

r ′<br />

are respectively space-like, time-like or null. Also, recall <strong>the</strong><br />

norm <strong>of</strong> a vector v r r r r<br />

r<br />

is given by v = g(<br />

v,<br />

v)<br />

. Therefore, v<br />

r r<br />

is a unit vector if g(<br />

v,<br />

v)<br />

= ± 1.<br />

Next, vectors v w<br />

r r 4<br />

, <strong>in</strong> E 1 are<br />

said to be orthogonal if g ( v,<br />

w)<br />

= 0.<br />

The velocity <strong>of</strong> <strong>the</strong> curve<br />

α r is given by α .<br />

r ′ Thus, a space-like or a time-like curve α r<br />

is said to be parametrized by arclength function s , if<br />

( α ′ , α ′ ) = ± 1.<br />

r r<br />

g The Lorentzian hypersphere <strong>of</strong> center<br />

r<br />

+<br />

m = ( m1,<br />

m2<br />

, m3<br />

, m4<br />

) and radius r ∈ R <strong>in</strong> <strong>the</strong> space 4<br />

E 1<br />

def<strong>in</strong>ed by<br />

3 r<br />

4 r r r r 2<br />

S = { α = ( α , α , α , α ) ∈ E : g(<br />

α − m,<br />

α − m)<br />

= r }. (2)<br />

1<br />

1<br />

2<br />

r r r r<br />

Denote by { T s),<br />

N(<br />

s),<br />

B ( s),<br />

B ( s)<br />

}<br />

3<br />

4<br />

( 1 2 <strong>the</strong> mov<strong>in</strong>g Frenet<br />

frame along <strong>the</strong> curve α r 4<br />

<strong>in</strong> <strong>the</strong> space E 1 . Then 1 2 , , , B B N T<br />

r r r r<br />

are, respectively, <strong>the</strong> tangent, <strong>the</strong> pr<strong>in</strong>cipal normal, <strong>the</strong> first<br />

b<strong>in</strong>ormal and <strong>the</strong> second b<strong>in</strong>ormal vector fields. For a timelike<br />

unit speed curve α r 4<br />

<strong>in</strong> E 1 <strong>the</strong> follow<strong>in</strong>g Frenet equations<br />

are given <strong>in</strong> [1], [2]<br />

⎡ &r<br />

T ⎤<br />

⎢ ⎥ ⎡0<br />

⎢ &r<br />

N<br />

⎥ ⎢<br />

⎥ = ⎢<br />

κ<br />

⎢<br />

⎢ &r<br />

⎥ ⎢0<br />

⎢<br />

B1<br />

⎥ ⎢<br />

⎢ &r ⎥ ⎣0<br />

⎣B2<br />

⎦<br />

κ<br />

0<br />

−τ<br />

0<br />

1<br />

2<br />

2<br />

r<br />

0 0⎤<br />

⎡T<br />

⎤<br />

0<br />

⎥<br />

⎢ r ⎥<br />

τ<br />

⎥<br />

⎢N<br />

⎥<br />

,<br />

0<br />

⎢ r<br />

σ ⎥<br />

⎥<br />

⎢B1<br />

⎥<br />

⎥<br />

−σ<br />

0⎦<br />

⎢ r ⎥<br />

⎣B2<br />

⎦<br />

(3)


r<br />

r<br />

where T,<br />

N,<br />

B1<br />

satisfy<strong>in</strong>g equations<br />

and B2 r are mutually orthogonal vectors<br />

r r<br />

g(<br />

T,<br />

T ) = −1<br />

r r r r r r<br />

g N,<br />

N)<br />

= g(<br />

B , B ) = g(<br />

B , B ) = 1.<br />

( 1 1 2 2<br />

And here, κ ( s), τ ( s)<br />

and σ (s)<br />

are first, second and third<br />

curvature <strong>of</strong> <strong>the</strong> curveα r , respectively.<br />

Suffice it to say that, for an arbitrary parametrized time-like<br />

curve <strong>the</strong> follow<strong>in</strong>g Frenet equations are hold:<br />

r<br />

⎡T<br />

′ ⎤<br />

⎡ 0<br />

⎢ r ⎥<br />

⎢<br />

⎢N<br />

′ ⎥<br />

⎢<br />

vκ<br />

⎢ r ⎥ =<br />

⎢<br />

⎢B<br />

0<br />

1′<br />

⎥<br />

⎢<br />

⎢ r ⎥ ⎣ 0<br />

⎣B2′<br />

⎦<br />

vκ<br />

0<br />

− vτ<br />

0<br />

0<br />

vτ<br />

0<br />

− vσ<br />

where v denotes speed <strong>of</strong> <strong>the</strong> curve.<br />

r<br />

0 ⎤<br />

⎡T<br />

⎤<br />

0<br />

⎥<br />

⎢ r ⎥<br />

⎥<br />

⎢N<br />

⎥<br />

⎢ r ⎥,<br />

vσ<br />

⎥<br />

⎢B1<br />

⎥<br />

⎥<br />

0 ⎦⎢<br />

r ⎥<br />

⎣B2<br />

⎦<br />

In <strong>the</strong> same space, <strong>the</strong> authors, <strong>in</strong> [6], expressed a vector<br />

product with <strong>the</strong> follow<strong>in</strong>g def<strong>in</strong>ition.<br />

r<br />

r<br />

Def<strong>in</strong>ition 1. Let a = ( a1,<br />

a2<br />

, a3<br />

, a4<br />

), b = ( b1<br />

, b2<br />

, b3<br />

, b4<br />

) and<br />

r<br />

4<br />

c = ( c1,<br />

c2<br />

, c3<br />

, c4<br />

) be vectors <strong>in</strong> <strong>the</strong> space E 1 . The vector<br />

product <strong>in</strong> M<strong>in</strong>kowski space-time is def<strong>in</strong>ed with <strong>the</strong><br />

determ<strong>in</strong>ant<br />

r<br />

− e1<br />

r<br />

e2<br />

r<br />

e3<br />

r<br />

e4<br />

r r r<br />

a ∧ b ∧ c = −<br />

a1<br />

b1<br />

a2<br />

b2<br />

a3<br />

b3<br />

a4<br />

, (5)<br />

b4<br />

where<br />

c1<br />

c2<br />

c3<br />

c4<br />

r r r<br />

e1<br />

, e2<br />

, e3<br />

and e4 r are coord<strong>in</strong>ate direction vectors<br />

satisfy<strong>in</strong>g<br />

r r r r r r r r r r r r<br />

e1<br />

∧ e2<br />

∧ e3<br />

= e4<br />

, e2<br />

∧ e3<br />

∧ e4<br />

= e1,<br />

e3<br />

∧ e4<br />

∧ e1<br />

= e2<br />

r r r r<br />

e ∧ e ∧ e = −e<br />

4<br />

1<br />

<strong>II</strong>I. DETERMINATION OF FRENET APPARATUS OF THE TIME-<br />

LIKE CURVES IN MINKOWSKI SPACE-TIME<br />

r r<br />

4<br />

Let ϕ = ϕ(s)<br />

be an arbitrary time-like curve <strong>in</strong> E 1 with<br />

curvatures κ , τ and σ for each s∈ I ⊂R.<br />

. If we calculate 1 st ,<br />

2 nd , 3 rd and 4 th order derivatives (with respect to s ) <strong>of</strong> this<br />

time-like curve, we have, respectively,<br />

vT, r r<br />

ϕ ′ =<br />

(6)<br />

r r r<br />

2<br />

ϕ ′ = v′<br />

T + v κN,<br />

(7)<br />

r<br />

r<br />

r r<br />

3 2<br />

2<br />

3<br />

ϕ ′′′ = ( v′<br />

′ + v κ ) T + ( 3vv′<br />

+ v κ ')<br />

N + ( v κτ)<br />

B1,<br />

(8)<br />

r r r r r<br />

( IV )<br />

4<br />

ϕ = (...) T + (...) N + (...) B1<br />

+ ( v κτσ)<br />

B2<br />

. (9)<br />

Consider<strong>in</strong>g (6), we immediately arrive<br />

r<br />

r<br />

ϕ ′<br />

T = .<br />

(10)<br />

v<br />

2<br />

World Academy <strong>of</strong> Science, Eng<strong>in</strong>eer<strong>in</strong>g and Technology 35 2009<br />

3.<br />

(4)<br />

1030<br />

From def<strong>in</strong>ition <strong>of</strong> velocity, we may express that, due to timelike<br />

tangent vector<br />

2<br />

( ϕ , ϕ ).<br />

r r<br />

v = −g<br />

′ ′<br />

(11)<br />

Differentiat<strong>in</strong>g both sides <strong>of</strong> (11), we have<br />

r r<br />

g(<br />

ϕ ′ , ϕ ′′ )<br />

v′<br />

= − .<br />

(12)<br />

v<br />

Us<strong>in</strong>g (12) <strong>in</strong> (7) and tak<strong>in</strong>g <strong>the</strong> norm <strong>of</strong> both sides this<br />

expression, we have, respectively,<br />

r 2 r r r r<br />

ϕ ′ . ϕ ′<br />

+ g(<br />

ϕ ′ , ϕ ′<br />

). ϕ ′<br />

κ = r 4<br />

ϕ ′<br />

(13)<br />

and<br />

r<br />

N =<br />

r 2 r r r r<br />

ϕ ′ . ϕ ′<br />

+ g(<br />

ϕ ′ , ϕ ′<br />

). ϕ ′<br />

r<br />

.<br />

2 r r r r<br />

(14)<br />

ϕ ′ . ϕ ′<br />

+ g(<br />

ϕ ′ , ϕ ′<br />

). ϕ ′<br />

The vector product <strong>of</strong> T N<br />

r r , and ϕ r ′′ ′ gives us<br />

r r r<br />

−T<br />

N B1<br />

r<br />

B2<br />

r r r<br />

T ∧ N ∧ϕ<br />

′<br />

= −<br />

1<br />

0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0 (15)<br />

3 2<br />

v ′′ + v κ<br />

r<br />

3<br />

= μ v κτB2<br />

2<br />

3vv′<br />

+ v κ '<br />

3<br />

v κτ 0<br />

where μ is taken ± 1 to make + 1 determ<strong>in</strong>ant <strong>of</strong><br />

[ 1 2 ] , , , B B N T<br />

r r r r<br />

matrix. By this way, Frenet frame provides<br />

positively oriented.<br />

Tak<strong>in</strong>g <strong>the</strong> norm <strong>of</strong> both sides <strong>of</strong> (15) and us<strong>in</strong>g (13), we have<br />

r r r r<br />

T ∧ N ∧ϕ<br />

′<br />

ϕ ′<br />

τ =<br />

r<br />

.<br />

2 r r r r<br />

(16)<br />

ϕ′<br />

. ϕ ′<br />

+ g(<br />

ϕ′<br />

, ϕ ′<br />

). ϕ ′<br />

Substitut<strong>in</strong>g (16) and (13) <strong>in</strong>to (15), we have second b<strong>in</strong>ormal<br />

vector field<br />

r r<br />

r<br />

r<br />

T ∧ N ∧ϕ<br />

′′ ′<br />

B 2 = μ r r r .<br />

(17)<br />

T ∧ N ∧ϕ<br />

′′ ′<br />

r r<br />

( IV )<br />

And us<strong>in</strong>g <strong>in</strong>ner product g(<br />

ϕ , B2<br />

) and consider<strong>in</strong>g<br />

obta<strong>in</strong>ed equations, we obta<strong>in</strong> <strong>the</strong> third curvature<br />

r r<br />

( IV )<br />

g(<br />

ϕ , B2<br />

)<br />

σ = r r r r .<br />

(18)<br />

T ∧ N ∧ϕ<br />

′′ ′ ϕ ′<br />

F<strong>in</strong>ally, vector product <strong>of</strong> N T<br />

r r , and B2 r gives us <strong>the</strong> first<br />

b<strong>in</strong>ormal vector field as<br />

r r r r<br />

B1<br />

= μ N ∧ T ∧ B2<br />

.<br />

(19)<br />

S<strong>in</strong>ce, we calculate Frenet apparatus<br />

r r r r<br />

{ T ( s),<br />

N(<br />

s),<br />

B1<br />

( s),<br />

B2<br />

( s),<br />

κ ( s),<br />

τ ( s),<br />

σ ( s)<br />

} <strong>of</strong> an arbitrary time-<br />

r r<br />

like curve ϕ = ϕ(s)<br />

<strong>in</strong> M<strong>in</strong>kowski space-time.<br />

IV. AN EXAMPLE<br />

In this section, we illustrate an example <strong>of</strong> presented method.


4<br />

E 1<br />

Let us consider <strong>the</strong> follow<strong>in</strong>g curve <strong>in</strong> <strong>the</strong> space<br />

r r<br />

ψ =ψ ( s ) = ( 2s,<br />

1, s<strong>in</strong> s,<br />

cos s).<br />

(20)<br />

Differentiat<strong>in</strong>g both sides <strong>of</strong> (20) with respect to s , we have<br />

ψ ′ = ( 2,<br />

0, cos s, − s<strong>in</strong> s).<br />

r<br />

(21)<br />

The <strong>in</strong>ner product ( ψ ′ , ψ ′ )<br />

r r<br />

g follows that ( ψ ′ , ψ ′ ) = −1,<br />

r r<br />

g<br />

which shows ψ (s)<br />

r<br />

is an unit speed time-like curve. Thus,<br />

ψ ′ = v = 1.<br />

r<br />

Then, we decompose tangent vector <strong>of</strong> ψ r as<br />

follows:<br />

r<br />

T = ( 2,<br />

0, cos s,<br />

− s<strong>in</strong> s).<br />

(22)<br />

And, consider<strong>in</strong>g equation (14), we have pr<strong>in</strong>cipal normal<br />

vector<br />

r<br />

N = ( 0,<br />

0,<br />

− s<strong>in</strong> s,<br />

− cos s).<br />

(23)<br />

r r r<br />

Writ<strong>in</strong>g vector productT ∧ N ∧ψ<br />

′<br />

, we have<br />

∧ ∧ψ<br />

′′′ = ( 0,<br />

− 2,<br />

0,<br />

0).<br />

r r r<br />

T N<br />

(24)<br />

S<strong>in</strong>ce, we have <strong>the</strong> second b<strong>in</strong>ormal vector<br />

B2 = ( 0,<br />

−1,<br />

0,<br />

0).<br />

r<br />

(25)<br />

Us<strong>in</strong>g vector product <strong>of</strong> N T<br />

r r , and 2 Br , we express<br />

r<br />

B1 = ( −1,<br />

0,<br />

2 cos s,<br />

− 2 s<strong>in</strong> s).<br />

(26)<br />

F<strong>in</strong>ally, us<strong>in</strong>g fourth order derivative <strong>of</strong> ψ (s),<br />

r<br />

(13), (16) and<br />

(18), we write curvatures <strong>of</strong> <strong>the</strong> curve, respectively,<br />

κ = 1,<br />

(27)<br />

τ = 2,<br />

(28)<br />

σ = 0.<br />

(29)<br />

r r r r<br />

Corollary 1. Suffice it to say that, { T ( s),<br />

N(<br />

s),<br />

B1<br />

( s),<br />

B2<br />

( s)<br />

} is<br />

4<br />

an orthonormal frame <strong>of</strong> E .<br />

1<br />

V. CONCLUSION AND FURTHER REMARKS<br />

Throughout <strong>the</strong> presented paper, we present a method to<br />

calculate all Frenet apparatus <strong>of</strong> a time-like curve which lies<br />

4<br />

fully <strong>in</strong> E 1 . Here, us<strong>in</strong>g vector product, we give formulas <strong>of</strong><br />

frame vectors (and <strong>the</strong>refore curvatures).<br />

Via this method, some <strong>of</strong> classical differential geometry<br />

topics can be treated. Relations among spherical <strong>in</strong>dicators,<br />

Bertrand curves and Involute-evolute curve couple may be<br />

easily calculated. We hope <strong>the</strong>se results will be helpful to<br />

ma<strong>the</strong>maticians who are specialized on ma<strong>the</strong>matical<br />

model<strong>in</strong>g.<br />

REFERENCES<br />

[1] C. Camci, K. Ilarslan and E. Sucurovic, “<strong>On</strong> pseudohyperbolical curves<br />

<strong>in</strong> M<strong>in</strong>kowski space-time”. Turk J.Math. vol. 27, pp. 315-328, 2003.<br />

[2] B. O'Neill, Semi-Riemannian <strong>Geometry</strong>, Academic Press, New York,<br />

1983.<br />

4<br />

[3] A. Mağden, “Characterizations <strong>of</strong> Some Special <strong>Curves</strong> <strong>in</strong> E ” Ph.D.<br />

dissertation, Dept. Math, Atatürk Univ., Erzurum, Turkey, 1990.<br />

[4] J. Walrave, “<strong>Curves</strong> and surfaces <strong>in</strong> M<strong>in</strong>kowski space” Ph.D.<br />

dissertation, K. U. Leuven, Fac. <strong>of</strong> Science, Leuven 1995.<br />

World Academy <strong>of</strong> Science, Eng<strong>in</strong>eer<strong>in</strong>g and Technology 35 2009<br />

1031<br />

[5] S. Yilmaz. “Spherical Indicators <strong>of</strong> curves and characterizations <strong>of</strong> some<br />

special curves <strong>in</strong> four dimensional Lorentzian space<br />

4<br />

L ” Ph.D.<br />

dissertation, Dept. Math, Dokuz Eylül Univ., İzmir, Turkey, 2001.<br />

[6] S. Yilmaz and M. Turgut, “<strong>On</strong> <strong>the</strong> differential geometry <strong>of</strong> <strong>the</strong> curves <strong>in</strong><br />

M<strong>in</strong>kowski space-time I”. Int. J. Contemp. Math. Sci. vol.3 no. 27 pp.<br />

1343-1349, 2008.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!