20.02.2013 Views

Fetomaternal Hemorrhage (FMH) Testing and Related ... - escca

Fetomaternal Hemorrhage (FMH) Testing and Related ... - escca

Fetomaternal Hemorrhage (FMH) Testing and Related ... - escca

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Fetomaternal</strong> <strong>Hemorrhage</strong> (<strong>FMH</strong>)<br />

<strong>Testing</strong> <strong>and</strong> <strong>Related</strong> Applications of<br />

Red Cell Flow Cytometric Analysis<br />

Bruce H Davis, MD<br />

President, Trillium Diagnostics<br />

Co-Chair, CLSI H-52 RBC Diagnostic <strong>Testing</strong> Document Committee<br />

Member, CAP Hematology Resource Committee<br />

Past President, International Clinical Cytometry Society<br />

Member, International Council for St<strong>and</strong>ardization of Haematology


Conflict of Interest Disclosure<br />

• President <strong>and</strong> Founder of Trillium Diagnostics, LLC of<br />

Bangor, Maine, which has developed <strong>and</strong> markets products<br />

for <strong>FMH</strong> testing (<strong>FMH</strong> QuikQuant, FETALtrol, anti-HbF, antipan<br />

Hb)<br />

• Consultant to Beckman Coulter, Becton Dickinson, IQ<br />

Products, Millipore, Horiba Medical <strong>and</strong> Clavis Pharma<br />

• Trillium Diagnostics has strategic alliances with Beckman<br />

Coulter, IQ Products, Millipore, Life Technologies,<br />

Cedarlane, BioSpecifix, Dartmouth College, Aarhus Univ,<br />

LeukoCare, LeukoDx <strong>and</strong> Clavis Pharma<br />

• Acknowledgements: Dr Bill Chen, Nancy Bigelow, Kathleen<br />

Thompson, Dr. Steve Olsen, Ben Hunsberger, Linda Wong,<br />

Joost Schuitemaker <strong>and</strong> others who have furthered the<br />

improvement of <strong>FMH</strong> testing by flow cytometry.


Agenda for Discussion<br />

• History of <strong>FMH</strong> <strong>Testing</strong><br />

• Kleihauer Betke test: limitations <strong>and</strong> pragmatic reality<br />

• Flow Cytometric Methods<br />

– Anti-HbF<br />

– Anti-RhD<br />

– Hybrids<br />

• What have recent clinical studies <strong>and</strong> proficiency testing taught<br />

us?<br />

• Pitfalls <strong>and</strong> technologic tips of <strong>FMH</strong> testing<br />

– Fixation effect on both HbF <strong>and</strong> RhD<br />

– Optimizing antibody concentration<br />

– Effect of nucleated cells on accuracy <strong>and</strong> how to approach<br />

– Effect of aggregates, how to detect, <strong>and</strong> how to analyze<br />

• Future improvements in <strong>FMH</strong> testing:<br />

– <strong>FMH</strong> QuikQuant (CE IVD in April 2012)<br />

– Automated data analysis<br />

• Questions


History <strong>and</strong> Clinical Utility of <strong>FMH</strong> <strong>Testing</strong><br />

• Measures the amount of fetal blood entering maternal circulation<br />

so as to provide a basis for adequate dosing of Rh Immune<br />

globulin (RhIg) therapy<br />

• Used to avoid, rather than detect, hemolytic disease of the<br />

newborn by insuring sufficient dosage of RhIg <strong>and</strong> thereby avoid<br />

maternal anti-D antibody production.<br />

• One of the first “companion diagnostic” test in clinical medicine<br />

• Assay historically performed as manual microscopic counting of<br />

red cells on glass slides after acid elution technique originally<br />

published by Kleihauer, Braun, <strong>and</strong> Betke in 1957 (KB test)<br />

• Followed by nearly 40 years of attempts to improve or<br />

st<strong>and</strong>ardize the KB assay performance with little success<br />

• Flow cytometric methods developed in 1990s that markedly<br />

improved testing performance, but still not universally adopted.<br />

• Level of <strong>FMH</strong> with therapeutic implications varies with<br />

geographic region <strong>and</strong> RhIg bottling dosage <strong>and</strong> accepted<br />

regional medical practice patterns.


Fetal RBC <strong>and</strong> F Cell Determinations: Clinical Utility<br />

• Fetal-maternal hemorrhage detection<br />

– Rh incompatability basis for Rh immunoglobulin (RhoGam) therapy<br />

– Trauma, placental abruption detection - independent of blood type <strong>and</strong><br />

causes circulating fetal RBCs<br />

– Pre-eclampsia found to have increase in circulating fetal RBCs –<br />

diagnostic potential? (Prenat Diagn 21:1022-26, 2001)<br />

• Increase in Adult F Cells<br />

– Therapeutic monitoring of treatments intended to raise Hgb F levels (F cells) in<br />

Sickle Cell Disease (eg. butyrate, hydroxyurea)<br />

– Diagnosis of Hereditary Persistence of Hgb F – elevated F cells<br />

• Homocellular – all F cells<br />

• Heterocellular – mixture of F cells <strong>and</strong> adult “normal” RBCs<br />

– Evaluation of Hematopoiesis in Anemias <strong>and</strong> Myelodysplasia – levels of F cells are<br />

predictive of disease severity


Methods for Detection of <strong>Fetomaternal</strong> <strong>Hemorrhage</strong><br />

• Manual Microscopic: Kleihauer Betke or acid elution<br />

• Screening: Microscopic Du test (sensitivity > 0.6%) –<br />

false negative results<br />

• Screening: Rosette Test - false positive results<br />

• Screening: ELISA methods – ELAT – not common<br />

useage<br />

• Contemporary: Antibody based Flow Cytometry<br />

Assays<br />

– Anti-Hemoglobin F (HbF) – CE IVD <strong>and</strong> FDA cleared<br />

– Anti-D antigen (Rh) – CE IVD <strong>and</strong> FDA cleared<br />

– Other “neonatal antigens” - i antigen <strong>and</strong> carbonic<br />

anhydrase


Kleihauer-Betke Stain<br />

Fetal RBCs<br />

Method: slide based acid elution of HbA <strong>and</strong> microscopic<br />

counting of % fetal cells of 1-2,000 RBCs by visual counting<br />

Problems:<br />

Subjective distinction between fetal cells <strong>and</strong> F cells;<br />

poor inter-observer reproducibility (CV 50-100%)<br />

Accuracy poor - 1999 College of American<br />

Pathologists HbF Survey:<br />

0.4% sample - 44.5% of labs report >0.6%<br />

0.8% sample - 10.8% of labs report < 0.6%<br />

Adult F Cells (mixture of HbF <strong>and</strong> HbA)


Kleihauer Betke or Acid Elution Method<br />

• Kleihauer Bettke test: limitations in sensitivity <strong>and</strong><br />

precision (CV of 30-100%)<br />

• But pragmatic reality is:<br />

– Used by >85% of patients<br />

– By any criteria would not be acceptable as a companion diagnostic<br />

for Rh Immune globulin Rx<br />

– Labs show no concern for accuracy of testing, particularly if it<br />

requires re-education of clinicians or questioning clinical requests<br />

• Prediction: <strong>FMH</strong> testing by flow cytometry will require a<br />

24/7 solution, preferably by an automated methodology.


0 50 100 150 200 250<br />

Number<br />

0 50 100 150 200 250<br />

Number<br />

Fetal RBC Detection by Anti-D Antigen Antibody<br />

Adult Cells<br />

Adult Cells<br />

F Cells<br />

Fetal Cells<br />

10 1 10 2 10 3 10 4<br />

Chemicon anti-D<br />

F Cells<br />

0.15% fetal cells<br />

Fetal Cells<br />

10 1 10 2 10 3 10 4<br />

Chemicon anti-D<br />

Nelson M et al, Vox Sang 75:234-241, 1998<br />

Lloyd-Evans P et al, Transfusion 36:432-437, 1996<br />

Lloyd-Evans P et al, Brit J Haematol 104:621-625, 1999<br />

Kumpel BM, Transfusion 41:1059-63, 2001<br />

Useful for detection of<br />

Rh positive fetal cell in<br />

Rh negative maternal<br />

cells, which exists in<br />

minority of<br />

pregnancies (


Fetal RBC Detection by Anti-D on Blood Counter<br />

From Richard Rogers, County Durham <strong>and</strong> Darlington Acute Hospitals, UK<br />

BH Little et al, International Journal of Laboratory Hematology 27:21-31, 2005


Comparison of Anti-D <strong>and</strong> Anti-HbF Staining<br />

Anti-D<br />

Anti-HbF<br />

0% Fetal RBCs<br />

0.15% Fetal RBCs 1.45% Fetal RBCs


Flow Cytometric Method of RBC anti-HbF Staining for Detection of Fetal<br />

RBCs <strong>and</strong> Adult F Cells<br />

BH Davis et al, Transfusion, 38:749-756, 1998<br />

• Fix 0.5 million cells (5-10 mL blood) with 0.05% glutaraldehyde in PBS 0.1% BSA<br />

x 10 min<br />

• Wash 3X - PBS-BSA<br />

• Resuspend - 0.5 mL 0.1% Triton X-100 x 3-5 min<br />

• Wash 2X - PBS-BSA<br />

• Incubate with anti-HbF antibody (Trillium Diagnostics <strong>and</strong> others)<br />

• Wash 1X - PBS-BSA<br />

• Resuspend in 1% paraformaldehyde in PBS-BSA<br />

• Flow Cytometric analysis of > 50,000 events, collect light scatter <strong>and</strong> 2<br />

fluorescence signals<br />

• Analyze data by first looking at positive control with >1% Fetal RBCs (either<br />

home brew of cord blood spiked adult normals or stabilized controls (FETALtrol,<br />

Trillium Diagnostics). This defines fetal RBC “positive” region for patient<br />

samples for each batch of specimens.<br />

Commercial Kits <strong>and</strong> FETALtrol for this assay available from Life Technologies<br />

(Caltag), Trillium Diagnostics, Beckman Coulter, <strong>and</strong> IQ Products


10 1 10 2 10 3 10 4<br />

SSC-H --><br />

10 1 10 2 10 3 10 4<br />

autoFL - FL2 --><br />

Gating strategy important with anti-HbF method<br />

10 1 10 2 10 3 10 4<br />

FSC-H --><br />

Leukocytes<br />

10 1 10 2 10 3 10 4<br />

anti-HbF - FL1 --><br />

10 1 10 2 10 3 10 4<br />

autoFL - FL2 --><br />

100 200 300 400 500 600 700<br />

Number<br />

R1<br />

Leukocytes<br />

10 1 10 2 10 3 10 4<br />

SSC-H --><br />

fetal_cells<br />

10 1 10 2 10 3 10 4<br />

anti-HbF - FL1 --><br />

Important Features:<br />

1. Exclude RBC<br />

aggregates by<br />

light scatter<br />

2. Exclude<br />

nucleated cells<br />

(leukocytes)<br />

3. Use positive<br />

control to define<br />

regions


<strong>FMH</strong> anti-HbF testing: Clinical Experience<br />

Stat Test?<br />

Williams J et al, AJCP<br />

120:470, 2003<br />

•17 year review<br />

•96 of 2,786 (3.45%)<br />

positive at >0.4%<br />

•No clinical<br />

association<br />

•KB had no impact<br />

on clinical decision<br />

•No reason for stat<br />

N u m b e r<br />

100 200 300 400 500 600 700<br />

N u m b e r<br />

100 200 300 400 500 600 700<br />

F Cells<br />

fetal_cells<br />

10 1 10 2 10 3 10 4<br />

anti-HbF - FL1 --><br />

F Cells<br />

fetal_cells<br />

10 1 10 2 10 3 10 4<br />

anti-HbF - FL1 --><br />

N u m b e r<br />

100 200 300 400 500 600 700<br />

N u m b e r<br />

100 200 300 400 500 600 700<br />

F Cells<br />

fetal_cells<br />

10 1 10 2 10 3 10 4<br />

anti-HbF - FL1 --><br />

F Cells<br />

fetal_cells<br />

10 1 10 2 10 3 10 4<br />

anti-HbF - FL1 --><br />

N u m b e r<br />

100 200 300 400 500 600 700<br />

N u m b e r<br />

100 200 300 400 500 600 700<br />

F Cells<br />

fetal_cells<br />

10 1 10 2 10 3 10 4<br />

anti-HbF - FL1 --><br />

F Cells<br />

fetal_cells<br />

10 1 10 2 10 3 10 4<br />

anti-HbF - FL1 --><br />

Clinical experience: Chen et al, Cytometry 50:285-90, 2002<br />

•69 of 1248 (5.5%) with detectable <strong>FMH</strong><br />

•21 of 1248 (1.7%) with <strong>FMH</strong> of >0.6% (30 mL)<br />

•7 of 11 with fetal demise


Proper Gating for Anti-HbF <strong>FMH</strong> QuikQuant Method<br />

Gating Logic: Important to exclude aggregates (rerun if >1%) by gating on singlets<br />

(R1). Also exclude nucleated cells using propidium iodide signal (R3), as<br />

autofluorescence of nucleated cells is similar to fetal RBCs <strong>and</strong> may cause false<br />

positive results. Thus need boolean gating of R1 <strong>and</strong> R3.<br />

Nucleated<br />

Cells


0 50 100 150 200<br />

Number<br />

0 50 100 150 200<br />

Number<br />

Adult RBCs<br />

Adult F Cells<br />

Fetal RBCs<br />

10 0 10 1 10 2 10 3 10 4 10 5<br />

Anti- Hb F<br />

Adult RBCs<br />

Adult F Cells<br />

10 0 10 1 10 2 10 3 10 4 10 5<br />

Anti- Hb F<br />

A<br />

C<br />

Fetal RBCs<br />

0 50 100 150 200<br />

Number<br />

0 50 100 150 200<br />

Number<br />

Adult RBCs<br />

Adult F Cells<br />

Fetal RBCs<br />

10 0 10 1 10 2 10 3 10 4 10 5<br />

Anti- Hb F<br />

Adult RBCs<br />

Adult F Cells<br />

Fetal RBCs<br />

10 0 10 1 10 2 10 3 10 4 10 5<br />

Anti- Hb F<br />

<strong>Fetomaternal</strong> hemorrhage detection using anti-HbF antibody by flow cytometry (<strong>FMH</strong><br />

QuikQuant Assay, Trillium Diagnostics, Bangor, Maine). Various samples showing increased<br />

fetal red cells of 1.7% <strong>and</strong> 6.5% (panels A <strong>and</strong> C, respectively), increased adult F cells<br />

(panel B), <strong>and</strong> no fetal red cells (panel D).<br />

B<br />

D


Second Parameter, such as Carbonic Anhydrase, May Facilitate<br />

Improved Separation of Fetal RBCs from Adult F Cells<br />

Slide courtesy of Joost Schuitemaker, IQ Products – Fetal Cell Count Kit Staining


10 1 10 2 10 3 10 4<br />

HbF-TC --><br />

F RETICULOCYTES (anti-HbF <strong>and</strong> RNA<br />

staining)<br />

10 1 10 2 10 3 10 4<br />

FL1 LOG --><br />

10 1 10 2 10 3 10 4<br />

HbF-TC --><br />

10 1 10 2 10 3 10 4<br />

Thiazole Orange --><br />

Mundee Y, Bigelow NC, Davis BH, Porter JB: Flow cytometric method for simultaneous assay of<br />

foetal haemoglobin containing red cells, reticulocytes <strong>and</strong> foetal haemoglobin containing<br />

reticulocytes. Clinical <strong>and</strong> Laboratory Haematology 23:149-54, 2001


10 30 50 70 90 110 140 170 200 230 260<br />

Number<br />

Quantitation of F-cells<br />

Potential Clinical Utility:<br />

•Sickle Cell Disease Rx with hydroxyurea<br />

•Thalassemia<br />

•Myelodysplasia prognosis?<br />

10 1 10 2 10 3 10 4<br />

ANTI-HGB F -->


18 month old male<br />

HbS <strong>and</strong> HbF (~40%)<br />

by electrophoresis<br />

Father has 20% HbF<br />

Mother has SS trait<br />

Hgb 12.2 g/dL<br />

MCV 73.4 fL<br />

Hoyer et al.<br />

Am J Clin Pathol<br />

117:857-63, 2002<br />

Hereditary Persistence of HbF<br />

fetal_cells<br />

10 2 10 3 10 4<br />

F - FL1 --><br />

Number<br />

Number<br />

N u m b e r<br />

100 200 300 400 500 600 700<br />

10 30 50 70 90 110 140 170 200 230 260<br />

10 30 50 70 90 120 150 180 210 240 270<br />

HbF_neg._RBCs<br />

HbF_neg._RBCs<br />

F_cells<br />

Fetal_RBCs<br />

10 1 10 2 10 3 10 4<br />

FL1-H --><br />

F_cells<br />

Fetal_RBCs<br />

Control<br />

HPFH -Homocellular type<br />

10 1 10 2 10 3 10 4<br />

FL1-H --><br />

HPFH - Heterocellular type<br />

fetal_cells<br />

10 1 10 2 10 3 10 4<br />

anti-HbF - FL1 -->


F-cell Counting using<br />

autofluorescence gating -<br />

Chen, Bigelow, Davis<br />

Cytometry 42:239, 2000<br />

1. Instrument set-up<br />

requires balanced<br />

fluorescence gains <strong>and</strong><br />

color compensation<br />

2. Cursor position<br />

A<br />

B<br />

defined with 99.8% of cells<br />

to left of cursor in FL2<br />

histogram<br />

3. Same channel for<br />

cursor position applied to<br />

FL1 histogram<br />

“Rule-based” F Cell enumeration using<br />

autofluorescence signal to define F cell region<br />

10 1 10 2 10 3 10 4<br />

FL2-H --><br />

10 1 10 2 10 3 10 4<br />

FL2-H --><br />

Leuk<br />

RBC<br />

10 1 10 2 10 3 10 4<br />

FL1-H --><br />

10 1 10 2 10 3 10 4<br />

SSC-H --><br />

Number<br />

Number<br />

C<br />

100 200 300 400 500<br />

D<br />

100 300 500 700 900 1100<br />

Bkg<br />

10 1 10 2 10 3 10 4<br />

FL2-H --><br />

HbF-<br />

F_cells<br />

10 1 10 2 10 3 10 4<br />

FL1-H -->


F Cell Counts: Inter-instrument Correlations<br />

F cell percent by Coulter XL<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

y = 1.041x - 0.49<br />

r 2 = 0.999<br />

0 5 10 15 20 25 30 35 40<br />

F cell percent by FACScan<br />

F cell in 40 normals = 3.8 + 3.6 % - Similar to 3.1 + 2.7 % (Thein <strong>and</strong> Craig,<br />

Hemoglobin 1998;22:401) <strong>and</strong> 3.33 + 3.06% (male, monozygotic), 3.19 + 2.58%<br />

(male, dizygotic), 4.19 + 3.04% (female, monozygotic), <strong>and</strong> 4.07 + 2.78% (female,<br />

dizygotic) (Garner et al, Blood 2000;95:342). From Chen J, Bigelow NC, Davis BH,<br />

Cytometry 42:239, 2000.


F Cell Counts: Imprecision<br />

Intra-Assay Imprecision - 6 observers<br />

Observer F cell % CV F cell % CV F cell % CV F cell % CV F cell % CV F cell % CV F cell % CV F cell % CV<br />

1 35.69 4.07 25.29 3.74 19.83 4.11 11.55 3.38 7.42 7.01 4.72 3.70 3.90 8.92 3.08 20.89<br />

2 34.76 2.04 25.10 2.59 19.80 1.05 11.72 1.87 7.44 2.81 4.76 5.34 3.93 5.49 3.45 12.57<br />

3 34.17 0.49 24.82 1.02 18.53 2.03 10.75 3.50 6.98 6.39 4.27 8.42 3.94 1.93 3.30 11.19<br />

4 34.97 2.08 25.33 3.71 19.72 3.57 11.55 3.38 7.46 5.97 4.66 3.50 3.83 7.08 2.88 17.33<br />

5 35.07 2.22 25.29 3.72 19.69 4.06 11.55 3.38 7.39 6.39 4.72 3.70 3.88 6.79 2.92 18.04<br />

6 35.18 2.50 25.17 3.85 19.83 4.37 11.58 3.32 7.48 6.57 4.72 3.70 3.90 8.26 2.90 17.12<br />

Mean 34.97 2.23 25.17 3.11 19.57 3.20 11.45 3.14 7.36 5.86 4.64 4.72 3.90 6.41 3.09 16.19<br />

Inter-Assay Imprecision - 6 replicates<br />

Replicate F cell % CV F cell % CV F cell % CV F cell % CV F cell % CV F cell % CV F cell % CV F cell % CV<br />

1 34.05 0.51 25.31 1.05 18.88 3.16 11.56 2.25 7.50 1.99 4.61 3.77 3.72 1.62 3.44 1.43<br />

2 35.95 0.63 23.97 1.19 19.86 0.58 11.51 1.32 7.13 1.97 4.76 2.65 3.66 1.50 3.49 8.71<br />

3 35.97 0.99 25.37 1.04 19.23 0.66 11.22 3.47 8.18 3.23 4.88 1.74 4.08 5.03 2.32 6.74<br />

4 34.54 0.37 26.28 4.22 19.93 0.55 11.39 0.55 7.27 0.00 4.46 2.20 4.19 1.99 3.43 3.52<br />

5 35.34 4.30 25.41 1.21 20.69 2.49 11.92 1.73 7.54 1.31 4.70 1.71 4.05 2.34 2.93 12.43<br />

6 34.94 1.08 25.08 0.99 20.05 1.12 11.93 1.87 7.00 2.20 4.88 0.92 3.62 7.24 2.66 20.72<br />

Mean 35.13 1.31 25.24 1.62 19.77 1.43 11.59 1.86 7.44 1.78 4.71 2.17 3.89 3.29 3.05 8.93<br />

Linearity of the F cells quantitation by 6 observers for all the eight<br />

specimens <strong>and</strong> replicates was 0.9976 +0.0005 with a CV of


Potential Problems with Flow Cytometric Detection of<br />

Fetal RBCs<br />

• Antibody concentration below saturation of all antigen binding sites<br />

• Improper use or concentration of glutaraldehyde or other fixatives<br />

• Improper washing or centrifugation methods<br />

• Instrument setup (gains) <strong>and</strong> compensation not optimized<br />

• Specimen flow rate on flow cytometer too fast (>5,000 cell/second)<br />

resulting in particle coincidence<br />

• White blood cells not excluded from analysis by gating to remove<br />

autofluorescent events<br />

• Failure to use a positive region for fetal cell enumeration based on a<br />

positive control, such as FETALtrol (Trillium Diagnostics) or artificial mixtures<br />

of cord <strong>and</strong> adult blood<br />

• Carryover between samples – should run positive control samples last <strong>and</strong><br />

flush, rinse, or run a blank (buffer only) tube between samples, if necessary<br />

• RBC aggregates, especially with poor mixing after washes or improperly<br />

high glutaraldehyde concentration <strong>and</strong> patient samples received posttransfusion:<br />

cause for overestimation of <strong>FMH</strong>


0 10 20 30 40 50<br />

Number<br />

0 50 100 150 200<br />

Number<br />

Adult RBCs<br />

Effect of Fixative Concentration<br />

Adult F cells<br />

10 0 10 1 10 2 10 3 10 4<br />

Adult RBCs<br />

Adult F cells<br />

anti-HbF<br />

10 microliters<br />

glutaraldehye<br />

Fetal RBCs<br />

10 0 10 1 10 2 10 3 10 4<br />

anti-HbF<br />

50 microliters<br />

glutaraldehye<br />

Fetal RBCs<br />

0 50 100 150 200<br />

Number<br />

0 50 100 150 200<br />

Number<br />

Adult RBCs<br />

Adult F cells<br />

10 0 10 1 10 2 10 3 10 4<br />

Adult RBCs<br />

Adult F cells<br />

anti-HbF<br />

25 microliters<br />

glutaraldehye<br />

Fetal RBCs<br />

10 0 10 1 10 2 10 3 10 4<br />

anti-HbF<br />

75 microliters<br />

glutaraldehye<br />

Fetal RBCs<br />

0 50 100 150 200<br />

Number<br />

0 50 100 150 200 250 300<br />

Number<br />

Adult RBCs<br />

Adult F cells<br />

10 0 10 1 10 2 10 3 10 4<br />

Adult RBCs<br />

From Davis BH et al, Laboratory Medicine 38:365-371, 2007<br />

Adult F cells<br />

anti-HbF<br />

30 microliters<br />

glutaraldehye<br />

Fetal RBCs<br />

RBC<br />

aggregates<br />

100 microliters<br />

glutaraldehye<br />

10 0 10 1 10 2 10 3 10 4<br />

anti-HbF<br />

Fetal RBCs


Effect of Fixative Concentration


CAP HBF Survey: <strong>FMH</strong> <strong>Testing</strong><br />

CAP HBF-A Survey 2000<br />

Methods No. Labs HBF-01 CV HBF-02 CV<br />

Flow Cytometry - Anti-HbF 10 0.53 24.3 1.05 26.2<br />

Kleihauer Assay (home brew) 48 0.70 59.9 1.24 61.9<br />

Kleihauer Assay (Suretech) 151 0.62 45.7 1.09 39.1<br />

Kleihauer Assay (Simmler) 183 0.60 55.3 1.10 50.8<br />

Kleihauer Assay (Sigma) 34 0.71 45.4 1.24 55.3<br />

Gamma Fetal Screen 121 100% + 100% +<br />

Ortho Fetal Screen 245 99.6% + 99.6% +<br />

CAP 1999 HBF Survey: Flow<br />

0.4% sample - 44.5% of labs report >0.6% 0%<br />

0.8% sample - 10.8% of labs report < 0.6% 0%<br />

CAP 2001 HBF Survey:<br />

0.4% sample – 51.2% of labs report >0.6% 12.5%<br />

0.8% sample - 10.6% of labs report < 0.6% 0%


HBF-01<br />

HBF-02<br />

METHOD<br />

2004 CAP HBF Survey for <strong>FMH</strong> <strong>Testing</strong><br />

NO.<br />

LABS MEAN S.D. C.V. MEDIAN<br />

LOW<br />

VALUE<br />

HIGH<br />

VALUE<br />

Fetal Hemoglobin Sigma<br />

Diagnostics 47 0.016 0.048 297.6 0.00 0.00 0.20<br />

Flow Cytometry (anti-HbF) 16 0.034 0.037 108.3 0.02 0.00 0.11<br />

K-B (acid elution) in-house 55 0.016 0.043 269.0 0.00 0.00 0.20<br />

K-B Sure-Tech Diagnostics 274 0.023 0.056 241.7 0.00 0.00 0.32<br />

Simmler Fetal Cell Stain Kit 313 0.019 0.052 278.8 0.00 0.00 0.27<br />

METHOD<br />

NO.<br />

LABS MEAN S.D. C.V. MEDIAN<br />

LOW<br />

VALUE<br />

HIGH<br />

VALUE<br />

Fetal Hemoglobin Sigma<br />

Diagnostics 60 6.416 2.332 36.3 5.74 2.55 12.80<br />

Flow Cytometry (anti-HbF) 17 5.715 0.583 10.2 5.61 4.87 7.29<br />

K-B (acid elution) in-house 63 6.342 2.035 32.1 6.20 0.57 10.50<br />

K-B Sure-Tech Diagnostics 331 5.813 2.335 40.2 5.70 0.05 17.15<br />

Simmler Fetal Cell Stain Kit 390 5.093 2.788 54.7 5.40 0.00 13.50<br />

Conclusions:<br />

•Anti-HbF<br />

method starting<br />

growth<br />

•KB Assay has<br />

lower precision<br />

<strong>and</strong> accuracy<br />

•Large scale<br />

proficiency<br />

testing for <strong>FMH</strong><br />

screening <strong>and</strong><br />

quantitation is<br />

feasible


HBF-03<br />

HBF-04<br />

Method<br />

CAP HBF Survey: <strong>FMH</strong> <strong>Testing</strong><br />

HBF-B 2003: Targets: HBF-03 – 0.2%; HBF-04 – 0.6%<br />

No.<br />

Labs<br />

Mean<br />

S.D.<br />

C.V.<br />

Median<br />

Low<br />

Value<br />

High<br />

Value<br />

Eng Scientific (Room Temp.)*<br />

Fetal Hemoglobin Sigma<br />

15 0.398 0.185 46.6 0.35 0.15 0.90<br />

Diagnostics<br />

52 0.308 0.137 44.5 0.30 0.08 0.70<br />

Flow Cytometry (anti-HbF) 29 0.147 0.055 37.3 0.15 0.02 0.24<br />

K-B (acid elution) in-house 62 0.394 0.243 61.6 0.31 0.00 1.10<br />

K-B Sure-Tech Diagnostics 420 0.321 0.161 50.1 0.30 0.00 0.80<br />

Simmler Fetal Cell Stain Kit 453 0.326 0.192 59.1 0.30 0.00 1.00<br />

Method<br />

No.<br />

Labs<br />

Mean<br />

S.D.<br />

C.V.<br />

Median<br />

Low<br />

Value<br />

High<br />

Value<br />

Eng Scientific (Room Temp.)*<br />

Fetal Hemoglobin Sigma<br />

16 1.225 0.569 46.4 1.00 0.74 3.00<br />

Diagnostics<br />

50 0.903 0.269 29.7 0.90 0.40 1.50<br />

Flow Cytometry (anti-HbF) 28 0.579 0.104 18.0 0.60 0.36 0.78<br />

K-B (acid elution) in-house 61 1.163 0.537 46.1 1.00 0.36 3.20<br />

K-B Sure-Tech Diagnostics 422 0.930 0.330 35.5 0.90 0.00 2.01<br />

Simmler Fetal Cell Stain Kit 457 0.996 0.422 42.4 0.93 0.01 2.52


HBF-03<br />

CAP HBF Survey: <strong>FMH</strong> <strong>Testing</strong><br />

HBF-B 2003: Targets: HBF-03 – 0.2%; HBF-04 – 0.6%<br />

Number of<br />

Vials<br />

Therapeutic Decisions for RhoGam Doseage<br />

Number of<br />

Participants<br />

Percent<br />

Number of<br />

Vials<br />

Number of<br />

Participants<br />

Percent<br />

0 11 1.1 0 2 0.2<br />

1 637 62.9 1 90 9.4<br />

2 323 31.9 2 345 35.9<br />

3 25 2.5 3 354 36.8<br />

4 4 0.4 4 113 11.8<br />

5 4 0.4 5 27 2.8<br />

6 2 0.2 6 14 1.5<br />

7 1 0.1 7 3 0.3<br />

10 1 0.1 8 2 0.2<br />

11 5 0.5 9 1 0.1<br />

10 1 0.1<br />

11 4 0.4<br />

12 2 0.2<br />

14 1 0.1<br />

15 2 0.2<br />

HBF-04


2010 CAP HBF B Survey for <strong>FMH</strong> <strong>Testing</strong>


2010 CAP HBF Survey for <strong>FMH</strong> <strong>Testing</strong><br />

• CAP now in 2 nd decade of <strong>FMH</strong> <strong>Testing</strong><br />

• Kleihauer Bettke test remains the poorly<br />

performing, but pragmatic reality<br />

• Flow Cytometric Methods<br />

– Anti-HbF clear majority of minority<br />

– Anti-RhD no usage in U.S., but impt in UK<br />

– Hybrids low frequency use, high cost<br />

• Performance unchanged, but variable<br />

due to use of KB assay<br />

• HBF survey by CAP has minimal impact<br />

on clinical practice <strong>and</strong> has not improve<br />

<strong>FMH</strong> testing


2000 UKNEQAS Program for <strong>FMH</strong> <strong>Testing</strong><br />

• Program completed pilot <strong>and</strong> started in April 1998<br />

• By end of 2000 14 participates for screening (10 mL); 199 for acid<br />

elution; 13 for flow cytometry; 16 for both flow <strong>and</strong> KB<br />

• <strong>Testing</strong> followed BCSH Guidelines for estimation of fetomaternal haemorrhage.<br />

Transfusion Med 9:87-92, 1999<br />

Survey 0002F included a short questionnaire regarding acid elution techniques. Analysis of<br />

the data revealed the following key points:<br />

• 79% use a commercial kit<br />

• 71% use 80% ethanol (or “alcohol‟) as a fixative<br />

• 55% count the adult cells in each field; 28% count one or more fields but estimate the<br />

rest; 17% assume the number of cells per field based on historical estimates. This<br />

compares with only 26% who counted adult cells in all field in 1997.<br />

• 58% use a graticule (Miller disc) to aid counting adult cells, compared with only 19% in<br />

1997.<br />

Survey Code Target Value %CV Acid Elution %CV Flow Cytometry<br />

9801F 7 53 31<br />

9901F 6 42 12<br />

0003F 6 33 11


2010 UKNEQAS Program for <strong>FMH</strong> <strong>Testing</strong><br />

• Program continue to grow <strong>and</strong> guidelines modified to adopt flow cytometry as<br />

preferred method if > 2 mL bleed detected (new guidelines in 2009, Transfusion<br />

Med 9:87-92, 1999)<br />

• By end of 2000 14 participates for screening (10 mL); 199 for acid<br />

elution; 13 for flow cytometry; 16 for both flow <strong>and</strong> KB<br />

• Protective effect of anti-D immunoglobulin is dose-dependent <strong>and</strong> 125 iu/mL of<br />

packed fetal red cells is recommended when given by the intramuscular route<br />

Calculation Assumptions for reporting:<br />

1800 mL = red cell volume (RCV) of a pregnant woman,<br />

e.g. 6 mL <strong>FMH</strong> = 0.33% adult RCV<br />

Calculation for 6 mL ‘target’ bleed: X = 0.33 x adult haematocrit / cord haematocrit<br />

where X is the volume of cord blood to be added to each 100 mL of adult blood.<br />

Participation December 2010 by Method UK (n=234) 1 Non-UK (n=34) 2<br />

Quantification by acid elution 190 20<br />

Quantification by flow cytometry 31 16<br />

Screening only 33 5


UKNEQAS Program for <strong>FMH</strong> <strong>Testing</strong>: Improved Performance


2009 BCSH Guidelines for Estimation of <strong>FMH</strong><br />

• Recognized that the accuracy of counting low frequency events is associated with a high coefficient of<br />

variation (CV) <strong>and</strong> therefore the cut-off for a significant <strong>FMH</strong> is now set at 2mL.<br />

• 2006 Guidelines for the use of anti-D immunoglobulin for Rh prophylaxis<br />

– At least 500 iu of anti-D immunoglobulin must be given to every D negative woman with no preformed anti-D within 72 hours<br />

of delivery of a D positive baby - dose will be sufficient to prevent sensitization up to 4mL fetal red cells.<br />

– <strong>FMH</strong> greater than 4mL is rare but unpredictable; 1% of women have a <strong>FMH</strong> of greater than 4mL <strong>and</strong> up to 0.3% greater than<br />

15mL <strong>and</strong> may not be protected by a 500 iu <strong>and</strong> 1500 iu dose of anti-D immunoglobulin, respectively.<br />

– Important that the volume of <strong>FMH</strong> is accurately assessed so that, if necessary, a supplementary dose(s) of anti-D<br />

immunoglobulin can be administered <strong>and</strong> prevent maternal alloimmunization<br />

• Need for <strong>FMH</strong> measurement still exists because of the unpredictable nature of large bleeds as review of<br />

134 published cases between 1966 <strong>and</strong> 1997 where 82% had no demonstrable cause (Giacoia GP. Severe<br />

fetomaternal hemorrhage: a review. Obstet Gynaecol Survey 1997; 52(6):372-380 )<br />

• Flow cytometry tests for a minor D positive population may be required:<br />

– Following a D positive RBC transfusion to a D negative woman of childbearing potential. To estimate or confirm the dose of anti-<br />

D immunoglobulin required, as part of the protocol given in the anti-D guidelines (BCSH 2006a), to prevent sensitisation to the<br />

D antigen.<br />

– In solid organ transplantation when the donor is D positive <strong>and</strong> recipient D negative with childbearing potential.<br />

• Tests for <strong>FMH</strong> estimation are not required:<br />

– Before 20 weeks because the fetal blood volume is insufficient to exceed that covered by the minimum anti-D immunoglobulin<br />

dose in st<strong>and</strong>ard use.<br />

– When the woman is known to have immune anti-D.<br />

– As it is difficult to distinguish between passive <strong>and</strong> immune anti-D. In such cases, <strong>FMH</strong> estimation should be performed.<br />

– When the fetus/baby is known to be D negative.<br />

– When the woman is D positive<br />

– Maternal samples should be tested with saline reacting IgM anti-D reagents that do not detect D<br />

are unlikely to make anti-D that will adversely affect the baby. If there is any doubt, arrange further testing at a reference<br />

laboratory <strong>and</strong> treat as D negative until results of these tests are available<br />

• In D positive women with unexplained abdominal pain in late pregnancy, <strong>FMH</strong> tests (by AE) are of limited<br />

diagnostic use. More sensitive <strong>and</strong> specific tests exist to investigate suspected placental abruption.<br />

• <strong>FMH</strong> of greater than or equal to 2mL by AE should be confirmed by the flow cytometry method (FC),<br />

using the original sample. If the FC result will not be available within 72 hours, the AE test should be<br />

repeated by a second operator before referral.


Ta<br />

Taken from 2009 BCSH Guidelines


Problems with Current <strong>FMH</strong> Assay Approach<br />

1. Proficiency testing by College of American Pathologist <strong>and</strong> UK NEQAS<br />

programs consistently documents inter-laboratory variation between 10 –<br />

30%. While vastly superior to non-flow cytometric methods for <strong>FMH</strong><br />

detection, this variation is higher than the intra-laboratory imprecision with<br />

a typical CV of ~5%.<br />

2. Sources of inter-laboratory variation include<br />

• subjectivity of the gating approach<br />

• inconsistency of excluding interfering cell populations (nucleated<br />

cells) <strong>and</strong> aggregates<br />

• setting regions for the defined subpopulations of Adult RBCs, F cells,<br />

<strong>and</strong> Fetal RBCs.<br />

3. Education on data analysis is required <strong>and</strong> often this too can be variable<br />

between products for <strong>FMH</strong> detection <strong>and</strong> between technical “experts”.<br />

4. Automated data analysis could remove these variables <strong>and</strong> reduce the<br />

imprecision.


Benefits of Probability State Modeling<br />

A B C D<br />

E


Study Aims<br />

1. Develop a Probability State Model (PSM) for analysis of flow cytometric listmode data files using<br />

Anti-HbF methods for the detection of fetal red blood cells (RBCs) in maternal blood samples as<br />

used in diagnostic assessment of fetomaternal hemorrhage.<br />

2. Compare PSM model in Gemstone software (Verity Software House, www.vsh.com) to manual<br />

data analysis with WinList software (Verity Software House) as performed by blinded analysis by<br />

an expert (developer of the Anti-HbF method) in >200 data files from analysis of diagnostic<br />

clinical blood samples, artificial mixtures of fetal (cord) blood <strong>and</strong> adult blood, <strong>and</strong> stabilized<br />

control product for <strong>FMH</strong> assays (FETALTrol, Trillium Diagnostics).<br />

3. Examine data from above comparative analysis to determine the correlation between the<br />

methods <strong>and</strong> determine if any bias is identified between PSM <strong>and</strong> expert manual analysis.<br />

4. Determine potential for PSM data analysis to provide automated analysis of flow cytometric<br />

data files for clinical fetomaternal hemorrhage testing <strong>and</strong> provide a more robust alternative to<br />

the current practice of subjective gating <strong>and</strong> subpopulation region definition that contribute to<br />

the documented imprecision or variation between various diagnostic laboratories performing<br />

flow cytometric fetomaternal hemorrhage testing for pregnant women.


Correlation between Expert “Manual” Analysis<br />

vs Automated Software


Correlation between Two Software Operators


Imprecision of “Manual” Flow Cytometric Data Analysis<br />

Gemstone automated analysis gave a CV of 0% for all 205 samples with triplicate analysis


Conclusions on Gemstone Software to Date<br />

1. Probability State Modeling provides equivalent results to manual data analysis<br />

with st<strong>and</strong>ard listmode analysis software by highly experienced individuals for<br />

Fetal RBC analysis, a form of rare event analysis.<br />

2. The Gemstone PSM protocol requires no adjustment of gate or regions,<br />

demonstrating a high likelihood that <strong>FMH</strong> analysis could be done in an<br />

automated format, thereby removing an important source of inter-individual<br />

variability in the current methods of data analysis.<br />

3. PSM analysis by Gemstone <strong>and</strong> the improved method of <strong>FMH</strong> QuikQuant<br />

together promise to further improve the accuracy, precision, <strong>and</strong> technical<br />

simplicity of <strong>FMH</strong> detection in clinical flow cytometry.<br />

1. Further study is warranted to validate analysis of clinical samples <strong>and</strong><br />

document the degree of improved performance over current manual methods<br />

of flow cytometric data analysis.


Summary of <strong>FMH</strong> assays:<br />

• Flow cytometric assays (anti-D or anti-HbF) are<br />

superior to KB acid elution in performance.<br />

• FCM HbF assay vs KB cost: higher reagents <strong>and</strong><br />

instrumentation, less labor - cost neutral change<br />

• Multiple clinical application of assay:<br />

– Quantitation of fetal maternal hemorrhage<br />

– Evaluation of pre-eclampsia risk?<br />

– Simplified measurement of adult F cell counting for<br />

hemoglobinopathies <strong>and</strong> MDS<br />

– Evaluation of elevated HbF: homocellular vs.<br />

heterocellular


Questions??

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!