21.02.2013 Views

Data recording, reduction and processing - EMBL Hamburg

Data recording, reduction and processing - EMBL Hamburg

Data recording, reduction and processing - EMBL Hamburg

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Data</strong> <strong>recording</strong>, <strong>reduction</strong> <strong>and</strong> <strong>processing</strong><br />

Manfred Roessle<br />

<strong>EMBL</strong> <strong>Hamburg</strong>


Outline<br />

Recording of Small Angle Scattering (SAS) data<br />

SAXS Variety: Laboratory Sources <strong>and</strong> Synchrotron based SAXS Beamlines<br />

What makes SAXS Beamlines special?<br />

X-rays in <strong>and</strong> X-rays out: From the source to the detector (via the sample?)<br />

Seeking <strong>and</strong> finding: What detects what?<br />

Primary <strong>Data</strong> Reduction<br />

1-dim is 1-dim<br />

Everything has to be normalized!<br />

Subtracting nothing from something a bit more than nothing<br />

The beauty of SAXS (raw) data<br />

What the hell does this all mean?<br />

Initial parameters to judge the success of the experiment<br />

Automated SAXS data <strong>recording</strong> <strong>and</strong> analysis<br />

Let’s have a beer, we are automated!<br />

2 26.10.2010<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010


3<br />

SAXS Synchrotron based<br />

At all running synchrotron source are SAXS beamlines available!<br />

At all new constructed synchrotrons SAXS beamlines are planned!<br />

All SAXS beamlines are highly oversubscribed <strong>and</strong> “working horses” on their<br />

facilities!<br />

The scientific applications ranging from soft condensed matter, nano-science <strong>and</strong><br />

fiber diffraction on ordered biological systems up to structural biology in solution.<br />

HASYLab, <strong>Hamburg</strong> ESRF, Grenoble<br />

Soleil, Orsay<br />

26.10.2010<br />

APS, Chicago<br />

Diamond, Didcot<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010<br />

SPring 8, Hyogo<br />

Petra III, <strong>Hamburg</strong>


4<br />

SAXS Lab sources<br />

Bruker NanoStar<br />

Bruker NanoStar<br />

Anton Paar SAXSess<br />

Rigaku S-Max3000<br />

Hecus SAXSeye<br />

26.10.2010<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010


5<br />

The Electromagnetic Spectrum<br />

26.10.2010<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010


6<br />

Radiation from Synchrotron Storage Rings<br />

Production of X-rays<br />

Bending magnet<br />

Wiggler<br />

Undulator<br />

http://www.physics.uwa.edu.au<br />

26.10.2010<br />

Necessary part of a synchrotron. Many of<br />

these dipole magnets form the<br />

synchrotron storage ring. The electrons<br />

(positrons) are deflected <strong>and</strong> accelerated<br />

in the magnetic field. This acceleration<br />

generates the synchrotron light. The light<br />

is emitted tangential to the electron beam.<br />

Stack of magnetic dipoles. Put into the<br />

straight sections of the storage ring.<br />

Wigglers produces more light than<br />

bending magnets in a smaller source<br />

size.<br />

Most powerfull insertion device! A stack of<br />

magnetic dipoles generate a high flux of<br />

photons in a very small source size. The<br />

specific arrangement of the dipoles (d=n*λ)<br />

produces a discrete spectrum with<br />

coherent properties.<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010


7<br />

Radiation from Synchrotron Storage Rings<br />

Dipole bending magnet (APS)<br />

26.10.2010<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010


8<br />

Properties of X-rays from<br />

Synchrotron Sources<br />

1. High flux of photons<br />

2. Tangentially emitted with a<br />

central cone such like a<br />

spotlight<br />

3. Polychromatic light from<br />

infrared to X-rays<br />

26.10.2010<br />

X-ray optics for:<br />

1. Beam defining<br />

2. Focusing<br />

3. Monochromatization<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010<br />

High heat load <strong>and</strong> radiation damage!<br />

Beamsize increases with distance from<br />

source point!<br />

Scattering/Diffraction experiments need<br />

monochromatic light!


9<br />

X-ray optics<br />

Beam defining<br />

Beam defining by slit pairs:<br />

From Glatter & Kratky 1982<br />

Small Angle Scattering<br />

Book online available!<br />

http://physchem.kfunigraz.ac.at/sm/Index.html<br />

Or google “Otto Glatter”<br />

26.10.2010<br />

Problem:<br />

Every edge cutting the beam produces<br />

parasitic scattering! Refractive streaks at low<br />

angles impedes SAXS experiments!<br />

Solution:<br />

Successive slit systems. First slits cutting the beam <strong>and</strong><br />

second system cuts out the undesired parasitic scattering<br />

from source<br />

Slit system 1<br />

Beam defining<br />

Slit system 2<br />

Beam cleaning<br />

to detector<br />

For slits exposed to high head load, cooling is necessary<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010


10<br />

X-ray optics<br />

Focusing<br />

The glancing angle for X-rays on surfaces are very<br />

small. Only under grazing conditions X-ray mirrors<br />

can be used for focusing.<br />

Bending of the highly<br />

polished mirror surface<br />

permits focusing on the<br />

parabolic mirror profile<br />

26.10.2010<br />

reflectivity<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Reflectivity for Rh@8keV<br />

0 0.2 0.4 0.6 0.8 1<br />

angles [deg]<br />

In order to use the full beam size X-ray mirrors on<br />

synchrotrons are typically in the range of 30cm to<br />

1m. The grazing angle can be increased by using<br />

high Z-elements (e.g. Rhodium, Platin, Nickel) as<br />

reflecting surface. These mirrors are acting as well<br />

as high energy filter; important for<br />

monochromatization<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010


11<br />

X-ray Optics<br />

Monochromator<br />

Monochromatization of the X-ray is achieved by using single crystals in<br />

Bragg diffraction geometry<br />

26.10.2010<br />

nλ=<br />

2dsin<br />

( Θ)<br />

For instance a Si 111 crystal<br />

with d-spacing (=distance<br />

between the crystal lattice) of<br />

d=3.14 Å deflects the beam for<br />

a wavelength of λ=1 Å to Θ ~<br />

10°(9.16°).<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010<br />

Θ<br />

Θ<br />

2Θ<br />

Problem:<br />

The Bragg condition is also fulfilled for<br />

multiple orders of the wavelength n.<br />

These higher order have to be filtered<br />

by the X-ray mirror


12<br />

X-ray optics<br />

X33 mirror<br />

1m Rh coated on Zerodur substrate<br />

26.10.2010<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010<br />

X33 monochromator<br />

Si 111 single crystal in asymmetric<br />

cut<br />

This device is also used for horizontal<br />

focusing.


13<br />

Detectors for SAXS<br />

Seeking <strong>and</strong> finding<br />

26.10.2010<br />

Fiber optic tapered CCD cameras for X-rays.<br />

+ fast readout (10Hz framing possible)<br />

+ large area possible<br />

- low dynamic range<br />

- sensitive to overexposing<br />

- spatial correction due to the fiber optic taper<br />

- intrinsic background of CCD chip<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010


14<br />

Detectors for SAXS<br />

Seeking <strong>and</strong> finding<br />

26.10.2010<br />

Novel pixel detectors<br />

PILATUS system Swiss light source<br />

+ high dynamic range (10 20 phot/s!!!)<br />

+ no intrinsic background<br />

+ fast framing<br />

Ideal detector for solution scattering!<br />

500k model was installed successfully at<br />

X33 <strong>and</strong> upgraded to a 1M prototype<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010


SAXS<br />

Detector<br />

15<br />

BM4<br />

Camera Tube<br />

26.10.2010<br />

Experimental Hutch<br />

WAXS<br />

Detector<br />

Sample<br />

Area<br />

BM3<br />

Shutter<br />

Hutch Wall<br />

1.5m 1.2m 0.1m 2.2m 2.5m 0.7m<br />

2.7m<br />

X33-Beamline Schematic<br />

Not to scale<br />

Attenuator<br />

Optics Hutch<br />

SS4 SS3 SS2 Mirror SS1 Mono<br />

Aperture<br />

PS – Primary Slit SS – Secondary Slits BM – Beam Monitor<br />

31.6m<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010<br />

0.9m<br />

BM2<br />

1.1m<br />

21.4m<br />

BM1<br />

+<br />

PS<br />

+<br />

Source


16<br />

Schematic X33 SAXS setup<br />

Beamstop with diode for measurement<br />

of transmitted beam<br />

PILATUS 1M<br />

26.10.2010<br />

1400 mm<br />

s: 0.1 nm -1 to 4.3nm -1<br />

d : 65 nm to 15 nm<br />

Pilatus WAXS detector up to 13°<br />

q~10 nm -1 d~ 6 Å<br />

1000 mm<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010<br />

Sample cell<br />

Beamshutter<br />

with diode for<br />

measurement of<br />

incident beam<br />

(prior to<br />

exposure)


17<br />

<strong>EMBL</strong>’s X33 Beamline<br />

26.10.2010<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010


18<br />

<strong>Data</strong> Reduction<br />

From 2-dim to 1-dim<br />

Intensity<br />

1e+5<br />

1e+4<br />

1e+3<br />

1e+2<br />

26.10.2010<br />

d<br />

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400<br />

Channels<br />

Radial (azimuthal) averaging:<br />

The 2-dim detector intensities are stored as<br />

a images with three values:<br />

Intensity counts; pixel X <strong>and</strong> pixel Y<br />

I(x,y)<br />

The x=0 <strong>and</strong> y=0 position<br />

can be determined by<br />

the concentric diffraction<br />

cycles of Silver Behenate<br />

powder.<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010


Radial Averaging<br />

Log I(s)<br />

Normalization against:<br />

• data collection time,<br />

• concentration,<br />

• transmitted sample intensity.<br />

s, nm -1


20<br />

<strong>Data</strong> Reduction<br />

Assigning the s-axis<br />

Peak order d-spacing s-value d-Channel<br />

1 st order 5.834 nm 1.076 nm -1 495<br />

2 nd order 2.917 nm 2.153 nm-1 995<br />

3 rd order 1.944 nm 3.231 nm -1 1400<br />

4 th order 1.458 nm 4.304 nm -1 1990<br />

26.10.2010<br />

2π<br />

s=<br />

sin<br />

λ<br />

1<br />

( 2Θ)<br />

=<br />

d<br />

Intensity<br />

s-value [nm -1 ]<br />

5<br />

4<br />

3<br />

2<br />

1<br />

1e+12<br />

1e+11<br />

1e+10<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010<br />

1e+9<br />

1e+8<br />

1e+7<br />

0 500 1000 1500 2000 2500<br />

Channels<br />

0<br />

0 500 1000 1500 2000<br />

Peak position [Channels]


21<br />

Background subtraction<br />

26.10.2010<br />

St<strong>and</strong>ard protocol:<br />

1. Measurement: Buffer<br />

2. Measurement: Protein<br />

3. Measurement: Buffer<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010<br />

We are looking to protein<br />

signals of less than 0.5%<br />

above the back- ground level!


22<br />

Primary <strong>Data</strong> Analysis<br />

Judging the data quality<br />

26.10.2010<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010<br />

First experiment<br />

BSA st<strong>and</strong>ard solution<br />

This st<strong>and</strong>ard is used<br />

for calibration <strong>and</strong> has<br />

to be freshly prepared<br />

<strong>and</strong> measured.


23<br />

First test<br />

Quality check on intensity data<br />

Ideal solution of particles Repulsive particle interactions Attractive particle interactions<br />

26.10.2010<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010


24<br />

Primary <strong>Data</strong> Analysis<br />

The Guinier Fit<br />

26.10.2010<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010<br />

Comparison of two a<br />

protein sample to the BSA<br />

st<strong>and</strong>ard.<br />

The difference at low<br />

angles < 1 nm -1 because<br />

of the different molecular<br />

weights (MW).<br />

The scattering at low<br />

angles is proportional the<br />

product of c protein · MW.<br />

At known protein<br />

concentration <strong>and</strong> a<br />

proper BSA st<strong>and</strong>ard the<br />

molecular weight of the<br />

sample can be estimated<br />

using the Guinier-Fit.


25<br />

Primary <strong>Data</strong> Analysis<br />

The Guinier Fit<br />

26.10.2010<br />

Radius of Gyration Forward scattering I 0<br />

BSA st<strong>and</strong>ard 3.07 nm 185 units<br />

Sample protein 5.58 nm 867 units<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010<br />

I(<br />

s)<br />

≅ I<br />

lnI<br />

MW<br />

MW<br />

( s)<br />

protein<br />

protein<br />

0<br />

e<br />

Rg<br />

−<br />

3<br />

≅ln<br />

I<br />

0<br />

2<br />

s<br />

Rg<br />

−<br />

3<br />

66kDa<br />

= ⋅867<br />

185<br />

2<br />

= 307kDa<br />

2<br />

s<br />

2


Protein folding state<br />

Kratky plot<br />

The Kratky plot is typically used to analyze the conformation of proteins, but can be used to<br />

analyze the r<strong>and</strong>om walk model of polymers.<br />

I(s)*s2 A Kratky plot can be made by plotting:<br />

versus s.<br />

Folded globular protein Completely unfolded protein Partially folded protein<br />

26 26.10.2010<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010


Porod Volume<br />

Rule of thumb: Porod volume is approximately two times molecular weight<br />

Here BSA: MW 66 kDa; Porod volume 115<br />

27 26.10.2010<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010<br />

Porod approximation:<br />

Q=<br />

I(s) = K*s -4<br />

K<br />

∝<br />

Q<br />

V<br />

∞<br />

∫<br />

s=<br />

0<br />

s<br />

S<br />

V<br />

2<br />

I(<br />

s)<br />

ds<br />

Q = Porod invariant<br />

S shape to<br />

volume ratio


28<br />

Automated SAXS data treatment “Pipeline”<br />

water.dat<br />

s-buffer1.dat<br />

sample-hi-conc.dat<br />

sample-mid-conc.dat<br />

sample-check.dat<br />

sample-lo-conc.dat<br />

s-buffer2.dat<br />

bsa-buffer1.dat<br />

bsa.dat<br />

bsa-buffer2.dat<br />

26.10.2010<br />

AUTORG<br />

AUTOSUB<br />

AUTOSUB<br />

AUTORG<br />

AUTOSUB<br />

AUTORG<br />

qual.<br />

qual<br />

.<br />

qual<br />

.<br />

.dat<br />

.dat<br />

I 0<br />

I 0<br />

.dat .out<br />

Merge AUTOGNOM DAMMIF<br />

MolMass<br />

R g ,s min<br />

MM<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010<br />

…<br />


29<br />

BioSAXS sample changer evaluation setup<br />

Integrated in experiment control <strong>and</strong> analysis pipeline<br />

In user operation since 2010<br />

26.10.2010<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010<br />

Joint project with <strong>EMBL</strong><br />

Grenoble (project leader <strong>and</strong><br />

construction of the device)<br />

<strong>and</strong> ESRF<br />

In <strong>Hamburg</strong>:<br />

Fully automated operation<br />

implemented <strong>and</strong> integrated<br />

in the analysis pipeline<br />

Filling faster than with the<br />

Fraunhofer changer<br />

35 µl sample volume (before<br />

80 µl)


Automation Results: what the users see<br />

30 26.10.2010<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010


31<br />

Automated <strong>Data</strong> Analysis: AutoRg<br />

Estimation of radius of gyration Rg <strong>and</strong> molecular weight<br />

Solution<br />

scattering data<br />

1. Automated (no help from a user)<br />

2. Implemented into <strong>processing</strong> pipline<br />

3. Input used for Autognom<br />

26.10.2010<br />

file.dat<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010<br />

Program autorg.exe<br />

Rg – radius of gyration<br />

σ – accuracy<br />

Io – zero angle intensity<br />

Used range<br />

Quality<br />

Petoukhov, M.V., Konarev, P.V., Kikhney, A.G. &<br />

Svergun D.I. (2007) ATSAS 2.1 - Towards Automated<br />

<strong>and</strong> Web-supported Small-angle Scattering <strong>Data</strong> Analysis.<br />

J.Appl.Cryst. 40, 223-228.


32<br />

Estimation of D max with AUTOGNOM<br />

D max underestimated D max overestimated D max ok.<br />

26.10.2010<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010


33<br />

Automation<br />

Easy going <strong>and</strong> money is for nothing?<br />

26.10.2010<br />

Ab initio model with closed shutter!!<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010


34<br />

Conclusions<br />

26.10.2010<br />

1. SAXS beamlines are special equipped for<br />

making excellent solution scattering<br />

experiments<br />

2. Trust the beamline automation, it is working!<br />

3. Don’t trust the beamline automation – if you<br />

find something strange going on<br />

4. Validate your results!<br />

5. Ask the beamline staff in the case of troubles –<br />

they will help you<br />

EMBO Workshop on solution scattering <strong>EMBL</strong> <strong>Hamburg</strong> 25.10 to 01.11.2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!