22.02.2013 Views

Biochemistry II: Binding of ligands to a macromolecule (or the secret ...

Biochemistry II: Binding of ligands to a macromolecule (or the secret ...

Biochemistry II: Binding of ligands to a macromolecule (or the secret ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Biochemistry</strong> <strong>II</strong>: <strong>Binding</strong> <strong>of</strong> <strong>ligands</strong> <strong>to</strong> a <strong>macromolecule</strong><br />

(<strong>or</strong> <strong>the</strong> <strong>secret</strong> <strong>of</strong> life itself...)<br />

• http://www.kip.uni-heidelberg.de/chromcon/publications/pdf-files/Rippe_Futura_97.pdf<br />

• Principles <strong>of</strong> Physical <strong>Biochemistry</strong>, van Holde, Johnson & Ho, 1998.<br />

• Slides available at<br />

• http://www.kip.uni-heidelberg.de/chromcon/teaching/index_teaching.html<br />

Karsten Rippe<br />

Kirch<strong>of</strong>f-Institut für Physik<br />

Molecular Biophysics Group<br />

Im Neuenheimer Feld 227<br />

Tel: 54-9270<br />

e-mail: Karsten.Rippe@kip.uni-heidelberg.de


The <strong>secret</strong> <strong>of</strong> life<br />

“The <strong>secret</strong> <strong>of</strong> life is molecular recognition; <strong>the</strong><br />

ability <strong>of</strong> one molecule <strong>to</strong> "recognize" ano<strong>the</strong>r through<br />

weak bonding interactions.”<br />

Linus Pauling at <strong>the</strong> 25th anniversary <strong>of</strong> <strong>the</strong> Institute <strong>of</strong><br />

Molecular Biology at <strong>the</strong> University <strong>of</strong> Oregon


<strong>Binding</strong> <strong>of</strong> dioxygen <strong>to</strong> hemoglobin<br />

(air)


<strong>Binding</strong> <strong>of</strong> Glycerol-Phosphate <strong>to</strong> triose phosphate isomerase<br />

(energy)


Complex <strong>of</strong> <strong>the</strong> HIV protease <strong>the</strong> inhibi<strong>to</strong>r SD146<br />

(drugs)


Antibody HyHEL-10 in complex with Hen Egg White Lyzoyme<br />

(immune system)


X-ray crystal structure <strong>of</strong> <strong>the</strong> TBP-promoter DNA complex<br />

(transcription starts here...)<br />

Nikolov, D. B. & Burley, S. K.<br />

(1997). RNA polymerase <strong>II</strong><br />

transcription initiation: a<br />

structural view. PNAS 94, 15-<br />

22.


Structure <strong>of</strong> <strong>the</strong> tryp<strong>to</strong>phan repress<strong>or</strong> with DNA<br />

(transcription regulation)


<strong>Binding</strong> <strong>of</strong> <strong>ligands</strong> <strong>to</strong> a <strong>macromolecule</strong><br />

• General description <strong>of</strong> ligand binding<br />

– <strong>the</strong> esssentials<br />

– <strong>the</strong>rmodynamics<br />

– Adair equation<br />

• Simple equilibrium binding<br />

– s<strong>to</strong>ichiometric titration<br />

– equilibrium binding/dissociation constant<br />

• Complex equilibrium binding<br />

– cooperativity<br />

– Scatchard plot and Hill Plot<br />

– MWC and KNF model f<strong>or</strong> cooperative binding


The mass equation law f<strong>or</strong> binding <strong>of</strong> a protein P <strong>to</strong> its DNA D<br />

Dfree + P !<br />

free"DP<br />

K1 = Dfree #Pfree DP<br />

binding <strong>of</strong> <strong>the</strong> first proteins with <strong>the</strong> dissociation constant K 1<br />

D free, concentration free DNA; P free, concentration free protein<br />

1<br />

binding constant KB =<br />

dissociation constant KD


What is <strong>the</strong> meaning <strong>of</strong> <strong>the</strong> dissociation constant f<strong>or</strong><br />

binding <strong>of</strong> a single ligand <strong>to</strong> its site?<br />

1. K D is a concentration and has units <strong>of</strong> mol per liter<br />

2. K D gives <strong>the</strong> concentration <strong>of</strong> ligand that saturates 50% <strong>of</strong> <strong>the</strong><br />

sites (when <strong>the</strong> <strong>to</strong>tal sit concentration ismuch lower than K D)<br />

3. Almost all binding sites are saturated if <strong>the</strong> ligand<br />

concentration is 10 x K D<br />

4. The dissociatin constant K D is related <strong>to</strong> Gibbs free energy<br />

∆G by <strong>the</strong> relation ∆G = - R T ln(K D)


K D values in biological systems<br />

Movovalent ions binding <strong>to</strong> proteins <strong>or</strong> DNA have K D 0.1 mM <strong>to</strong> 10 mM<br />

Allosteric activa<strong>to</strong>rs <strong>of</strong> enzymes e. g. NAD have K D 0.1 µM <strong>to</strong> 0.1 mM<br />

Site specific binding <strong>to</strong> DNA K D 1 nM <strong>to</strong> 1 pM<br />

Trypsin inhibi<strong>to</strong>r <strong>to</strong> pancreatic trypsin protease K D 0.01 pM<br />

Antibody-antigen interaction have K D 0.1 mM <strong>to</strong> 0.0001 pM


What is ∆G? The <strong>the</strong>rmodynamics <strong>of</strong> a system<br />

• Biological systems can be usually described as having constant pressure P and constant<br />

temperature T<br />

– <strong>the</strong> system is free <strong>to</strong> exchange heat with <strong>the</strong> surrounding <strong>to</strong> remain at a constant temperature<br />

– it can expand <strong>or</strong> contract in volume <strong>to</strong> remain at atmospheric pressure


Some fundamentals <strong>of</strong> solution <strong>the</strong>rmodynamics<br />

• At constant pressure P and constant temperature T <strong>the</strong> system is described by <strong>the</strong> Gibbs<br />

free energy:<br />

G ! H "T S<br />

• H is <strong>the</strong> enthalpy <strong>or</strong> heat content <strong>of</strong> <strong>the</strong> system, S is <strong>the</strong> entropy <strong>of</strong> <strong>the</strong> system<br />

• a reaction occurs spontaneously only if ∆G < 0<br />

• at equilibrium ∆G = 0<br />

!G = !H "T !S<br />

• f<strong>or</strong> ∆G > 0 <strong>the</strong> input <strong>of</strong> energy is required <strong>to</strong> drive <strong>the</strong> reaction


<strong>the</strong> problem<br />

In general we can not assume that <strong>the</strong> <strong>to</strong>tal free energy G <strong>of</strong> a<br />

solution consisting <strong>of</strong> N different components is simply <strong>the</strong> sum <strong>of</strong> <strong>the</strong><br />

free energys <strong>of</strong> <strong>the</strong> single components.


The chemical potential µ <strong>of</strong> a substance is<br />

<strong>the</strong> partial molar Gibbs free energy<br />

G i = !G<br />

!n i<br />

f<strong>or</strong> an ideal solution it is:<br />

n<br />

= µ G = " n i i!µ i<br />

i=1<br />

µ i = µ i 0 f<strong>or</strong> Ci =1 mol / l<br />

0 µ i = µ i + RT lnCi<br />

C i is <strong>the</strong> concentration in mol per liter<br />

0<br />

µ i<br />

is <strong>the</strong> chemical potential <strong>of</strong> a substance at 1 mol/l


Changes <strong>of</strong> <strong>the</strong> Gibbs free energy ∆G <strong>of</strong> an reaction<br />

aA +bB+...<br />

!<br />

" gG+hH...<br />

!G = G(final state) "G(initial state)<br />

!G = g µ G + hµ H +... " aµ A "b µ B "...<br />

from µ i = µ i 0 + RT lnCi it follows:<br />

!G = g µ G 0 + hµH 0 +... " aµA 0 "b µB 0 "... + RT ln [G] g [H] h ...<br />

[A] a [B] b ...<br />

!G = !G 0 + RT ln [G]g [H] h ...<br />

[A] a [B] b ...


∆G <strong>of</strong> an reaction in equilibrium<br />

aA +bB+...<br />

0 = !G0 + RT ln [G]g [H] h ...<br />

[A] a [B] b " %<br />

$<br />

# ... &<br />

' Eq<br />

!G0 = "RT ln [G]g [H] h ...<br />

[A] a [B] b # &<br />

%<br />

$ ... ( = "RT ln K<br />

' Eq<br />

K = [G]g [H] h ...<br />

[A] a [B] b ! $<br />

#<br />

" ... %<br />

!<br />

" gG+hH...<br />

& Eq<br />

= exp '(G0 ! $<br />

#<br />

" RT &<br />

%


Titration <strong>of</strong> a <strong>macromolecule</strong> D with n binding sites<br />

f<strong>or</strong> <strong>the</strong> ligand P which is added <strong>to</strong> <strong>the</strong> solution<br />

n<br />

degree <strong>of</strong> binding ν<br />

!X<br />

!X max<br />

0<br />

= "<br />

n<br />

∆X<br />

free ligand P free (M)<br />

=# (fraction saturation)<br />

! =<br />

n binding sites<br />

occupied<br />

∆X max<br />

[boundligand P]<br />

[<strong>macromolecule</strong> D]


Schematic view <strong>of</strong> gel electroph<strong>or</strong>esis<br />

<strong>to</strong> analyze protein-DNA complexes


*<br />

*<br />

“Gel shift”: elec<strong>to</strong>rph<strong>or</strong>etic mobility shift assay (“EMSA”)<br />

f<strong>or</strong> DNA-binding proteins<br />

Protein-DNA complex<br />

Free DNA probe<br />

1. Prepare labeled DNA probe<br />

2. Bind protein<br />

3. Native gel electroph<strong>or</strong>esis<br />

Advantage: sensitive, fmol DNA<br />

Disadvantage: requires stable complex;<br />

little “structural” inf<strong>or</strong>mation about which<br />

protein is binding


EMSA <strong>of</strong> Lac repress<strong>or</strong> binding <strong>to</strong> opera<strong>to</strong>r DNA<br />

From (a) <strong>to</strong> (j) <strong>the</strong> concentration<br />

<strong>of</strong> lac repress<strong>or</strong> is increased.<br />

Complexes with<br />

Free DNA


Measuring binding constants f<strong>or</strong> lambda repress<strong>or</strong> on a gel


Principle <strong>of</strong> filter-binding assay


<strong>Binding</strong> measurments by equilibrium dialysis<br />

A <strong>macromolecule</strong> is dialyzed against a solution <strong>of</strong> ligand. Upon reaching equilibrium,<br />

<strong>the</strong> ligand concentration is measured inside and outside <strong>the</strong> dialysis chamber. The excess<br />

ligand inside <strong>the</strong> chamber c<strong>or</strong>responds <strong>to</strong> bound ligand.<br />

- direct measurement <strong>of</strong> binding<br />

!<br />

" = [X] in #[X] out<br />

M<br />

-non-specific binding will obscure results, w<strong>or</strong>k at moderate ionic strength (≥<br />

50 <strong>to</strong> avoid <strong>the</strong> Donnan Effect (electrostatic interactions between <strong>the</strong><br />

<strong>macromolecule</strong> and a charged ligand.<br />

- needs relatively large amounts <strong>of</strong> material


Analysis <strong>of</strong> binding <strong>of</strong> RNAP·σ 54 <strong>to</strong> a promoter DNA sequence<br />

by measurements <strong>of</strong> flu<strong>or</strong>escence anisotropy<br />

RNAP·σ 54<br />

+<br />

promoter DNA<br />

K d<br />

Rho<br />

Rho<br />

RNAP·σ 54 -DNA-Komplex<br />

free DNA with a flu<strong>or</strong>oph<strong>or</strong>e<br />

with high rotational diffusion<br />

-> low flu<strong>or</strong>escence anisotropy r min<br />

RNAP-DNA complex<br />

with low rotational diffusion<br />

-> high flu<strong>or</strong>escence anisotropy<br />

r max


How <strong>to</strong> measure binding <strong>of</strong> a protein <strong>to</strong> DNA?<br />

One possibility is <strong>to</strong> use flu<strong>or</strong>escence anisotropy<br />

x<br />

filter/monochroma<strong>to</strong>r<br />

y<br />

I⊥<br />

measured<br />

flu<strong>or</strong>escence<br />

emission intensity<br />

polarisa<strong>to</strong>r<br />

<strong>II</strong>I<br />

vertical<br />

excitation<br />

polarisa<strong>to</strong>r<br />

filter/monochroma<strong>to</strong>r<br />

z<br />

sample<br />

r = I <strong>II</strong> ! I "<br />

I <strong>II</strong> + 2I "<br />

Definition <strong>of</strong> flu<strong>or</strong>escence<br />

anisotropy r<br />

The anisotropy r reflects<br />

<strong>the</strong> rotational diffusion <strong>of</strong> a<br />

flu<strong>or</strong>escent species


Measurements <strong>of</strong> flu<strong>or</strong>escence anisotropy <strong>to</strong><br />

moni<strong>to</strong>r binding <strong>of</strong> RNAP·σ 54 <strong>to</strong> different promoters<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

200 mM K-Acetate<br />

θ = 0.5<br />

glnAp2<br />

nifH nifL<br />

0.01 0.1 11 0 100 1000<br />

RNAP σ 54 (nM)<br />

P <strong>to</strong>t = K D<br />

Vogel, S., Schulz A. & Rippe, K.


Titration <strong>of</strong> a <strong>macromolecule</strong> D with n binding sites<br />

f<strong>or</strong> <strong>the</strong> ligand P which is added <strong>to</strong> <strong>the</strong> solution<br />

n<br />

degree <strong>of</strong> binding ν<br />

!X<br />

!X max<br />

0<br />

= "<br />

n<br />

∆X<br />

free ligand P free (M)<br />

=# (fraction saturation)<br />

! =<br />

n binding sites<br />

occupied<br />

∆X max<br />

[boundligand P]<br />

[<strong>macromolecule</strong> D]


Example: binding <strong>of</strong> a protein P <strong>to</strong> a DNAfragment<br />

D with one <strong>or</strong> two binding sites<br />

Dfree + P !<br />

free"DP<br />

K1 = Dfree #Pfree DP<br />

D free, concentration free DNA; P free, concentration free protein;<br />

DP, complex with one protein; DP 2, complex with two proteins;<br />

DP+ P free<br />

!<br />

"DP 2 K 2 = DP#P free<br />

DP 2<br />

D+2P !<br />

* D<br />

free"<br />

DP2 K 2 = free#Pfree DP2 binding constant K B =<br />

2<br />

1<br />

dissociation constant K D<br />

binding <strong>of</strong> <strong>the</strong> first proteins with<br />

<strong>the</strong> dissociation constant K 1<br />

binding <strong>of</strong> <strong>the</strong> second proteins with<br />

<strong>the</strong> dissociation constant K 2<br />

K 2 * = K1 # K 2<br />

alternative expression


[boundligand P]<br />

! =<br />

[<strong>macromolecule</strong> D]<br />

! =<br />

Definition <strong>of</strong> <strong>the</strong> degree <strong>of</strong> binding ν<br />

n<br />

#<br />

i=1<br />

n<br />

#<br />

i=0<br />

i" 1 i<br />

"D<br />

K<br />

frei"Pfrei i<br />

1<br />

K i<br />

! 1 =<br />

i<br />

"Dfrei "Pfrei DP<br />

D free +DP<br />

=<br />

n<br />

#<br />

i=1<br />

n<br />

#<br />

i=0<br />

i" 1 i<br />

"Pfrei Ki ν f<strong>or</strong> n binding sites (Adair equation)<br />

1<br />

K i<br />

i<br />

"Pfrei ! 2 = DP+2"DP 2<br />

D free +DP+DP 2<br />

degree <strong>of</strong> binding ν ν f<strong>or</strong> one binding site ν f<strong>or</strong> two binding sites<br />

mit K 0 =1


<strong>Binding</strong> <strong>to</strong> a single binding site: Deriving an expression<br />

f<strong>or</strong> <strong>the</strong> degree <strong>of</strong> binding ν <strong>or</strong> <strong>the</strong> fraction saturation θ<br />

Dfree + P !<br />

free"DP<br />

! 1 =" =<br />

1<br />

K D<br />

#P free<br />

1+ 1<br />

#Pfree KD K D = D free!P free<br />

DP<br />

from <strong>the</strong> Adair equation we obtain:<br />

$ ! 1 =" =<br />

P free<br />

K D +P free<br />

Often <strong>the</strong> concentration P free can not be determined but<br />

<strong>the</strong> <strong>to</strong>tal concentration <strong>of</strong> added protein P <strong>to</strong>t is known.<br />

P free = P <strong>to</strong>t !" 1 # D <strong>to</strong>t<br />

! 1 = D<strong>to</strong>t +P<strong>to</strong>t +K D " D<strong>to</strong>t +P<strong>to</strong>t +K ( D)<br />

2 "4#D<strong>to</strong>t #P<strong>to</strong>t 2#D<strong>to</strong>t


!<br />

n ="<br />

f<strong>or</strong> n =1<br />

! ="<br />

ν <strong>or</strong> θ<br />

S<strong>to</strong>ichiometric titration <strong>to</strong> determine<br />

<strong>the</strong> number <strong>of</strong> binding sites<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

equivalence point<br />

1 protein per DNA<br />

0<br />

0 1·10 -10<br />

P <strong>to</strong>t (M)<br />

D <strong>to</strong>t = 10 -10 (M)<br />

2·10 -10<br />

K D = 10 -14 (M)<br />

K D = 10 -13 (M)<br />

K D = 10 -12 (M)<br />

To a solution <strong>of</strong> DNA strands with a single binding site small amounts <strong>of</strong> protein P are<br />

added. Since <strong>the</strong> binding affinity <strong>of</strong> <strong>the</strong> protein is high (low K D value as compared <strong>to</strong> <strong>the</strong> <strong>to</strong>tal<br />

DNA concentration) practically every protein binds as long as <strong>the</strong>re are free binding sites on<br />

<strong>the</strong> DNA. This is termed “s<strong>to</strong>ichiometric binding” <strong>or</strong> a “s<strong>to</strong>ichiometric titration”.


<strong>Binding</strong> <strong>to</strong> a single binding site. Titration <strong>of</strong> DNA with a<br />

protein f<strong>or</strong> <strong>the</strong> determination <strong>of</strong> <strong>the</strong> dissociation constant K D<br />

ν <strong>or</strong> θ<br />

0.<br />

8<br />

0.<br />

6<br />

0.<br />

4<br />

0.<br />

2<br />

1<br />

0<br />

0 2 1<br />

0<br />

! 1 =<br />

P <strong>to</strong>t = K D<br />

-9<br />

P free<br />

P free +K D<br />

ν <strong>or</strong> θ = 0.5<br />

-9<br />

4 1 6 1<br />

0 0<br />

P<strong>to</strong>t (M)<br />

"<br />

D <strong>to</strong>t = 10 -10 (M)<br />

-9<br />

P <strong>to</strong>t<br />

P <strong>to</strong>t +K D<br />

8 1<br />

0<br />

-9<br />

1 1<br />

0<br />

-8<br />

K D = 10 -9 (M)<br />

K D = 10 -9 (M)<br />

! 1 =<br />

if P free " P <strong>to</strong>t d. h. 10# D <strong>to</strong>t $ K D<br />

P free<br />

P free +K D<br />

P <strong>to</strong>t<br />

! = 1<br />

P<strong>to</strong>t +K D


cooperativit<br />

y<br />

Increasing complexity <strong>of</strong> binding<br />

all binding sites are<br />

equivalent and independent<br />

all binding sites are<br />

equivalent and not independent<br />

heterogeneity<br />

heterogeneity<br />

all binding sites are<br />

not equivalent and not independent<br />

all binding sites are<br />

independent but not equivalent<br />

cooperativity<br />

simple<br />

difficult<br />

very<br />

difficult


<strong>Binding</strong> <strong>to</strong> n identical binding sites<br />

! 1 =<br />

P free<br />

P free +K D<br />

! n = n"P free<br />

k D +P free<br />

D+n! P "<br />

free<br />

# DPn Kn = D n<br />

free!Pfree binding <strong>to</strong> a single binding site<br />

binding <strong>to</strong> n independent and<br />

identical binding sites<br />

DP n<br />

$ n = n!P n<br />

free<br />

n<br />

Kn +Pfree strong cooperative binding <strong>to</strong> n identical binding sites<br />

! n =<br />

#<br />

n"P H<br />

free<br />

K # H<br />

#<br />

+Pfree<br />

H<br />

approximation f<strong>or</strong> cooperative binding <strong>to</strong><br />

n identical binding sites, α H HiIl coefficient


k D<br />

Difference between microscopic and<br />

macroscopic dissociation constant<br />

1 2<br />

1 2 1 2<br />

k D<br />

microscopic binding macroscopic binding<br />

1 2<br />

k D<br />

k D<br />

2 possibilities f<strong>or</strong><br />

<strong>the</strong> f<strong>or</strong>mation <strong>of</strong> DP<br />

2 possibilities f<strong>or</strong> <strong>the</strong><br />

dissociation <strong>of</strong> DP 2<br />

K1 K2 = k D 2<br />

2!k D<br />

= 1<br />

4<br />

D free<br />

DP<br />

DP 2<br />

K 1 = k D<br />

2<br />

K 2 = 2 !k D


ν 2<br />

1.<br />

5<br />

0.<br />

5<br />

2<br />

1<br />

0<br />

Cooperativity: <strong>the</strong> binding <strong>of</strong> multiple <strong>ligands</strong><br />

<strong>to</strong> a <strong>macromolecule</strong> is not independent<br />

0 2 1<br />

0<br />

-9<br />

-9<br />

4 1 6 1<br />

0 0<br />

P free (M)<br />

-9<br />

8 1<br />

0<br />

Adair equation: ! 2 =<br />

-9<br />

1 1<br />

0<br />

-8<br />

independent binding<br />

microscopic binding constant<br />

k D = 10 -9 (M)<br />

macroscopic binding constants<br />

K 1 = 5·10 -10 (M); K 2 = 2·10 -9 (M)<br />

cooperative binding<br />

microscopic binding constant<br />

k D = 10 -9 (M)<br />

macroscopic binding constants<br />

K 1 = 5·10 -10 (M); K 2 = 2·10 -10 (M)<br />

2<br />

K2"Pfree +2"Pfree K 1"K 2 +K 2"P free +P free<br />

2


ν 2<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10 -11<br />

Logarithmic representation <strong>of</strong> a binding curve<br />

10 -10<br />

10 -9<br />

P free (M)<br />

10 -8<br />

• Determine dissociation constants over a ligand concentration <strong>of</strong> at least three <strong>or</strong>ders <strong>of</strong><br />

magnitudes<br />

• Logarithmic representation since <strong>the</strong> chemical potential µ is prop<strong>or</strong>tional <strong>to</strong> <strong>the</strong> logarithm<br />

<strong>of</strong> <strong>the</strong> concentration.<br />

10 -7<br />

independent binding<br />

microscopic binding constant<br />

k D = 10 -9 (M)<br />

macroscopic binding constants<br />

K 1 = 5·10 -10 (M); K 2 = 2·10 -9 (M)<br />

cooperative binding<br />

microscopic binding constant<br />

k D = 10 -9 (M)<br />

macroscopic binding constants<br />

K 1 = 5·10 -10 (M); K 2 = 2·10 -10 (M)


Y = θ (degree <strong>of</strong> binding)<br />

L: free ligand


ν/ P frei<br />

3 1<br />

0<br />

2 1<br />

0<br />

1 1<br />

0<br />

9<br />

9<br />

9<br />

0<br />

Visualisation <strong>of</strong> binding data - Scatchard plot<br />

intercept = n/k D<br />

0 0.<br />

5<br />

! n = n"P free<br />

k D +P free<br />

slope = - 1/k D<br />

ν<br />

1 1.<br />

5<br />

# ! n<br />

P free<br />

intercept =<br />

n<br />

= n<br />

k D<br />

$ ! n<br />

k D<br />

2<br />

independent binding<br />

microscopic binding constant<br />

k D = 10 -9 (M)<br />

macroscopic binding constants<br />

K 1 = 5·10 -10 (M); K 2 = 2·10 -9 (M)<br />

cooperative binding<br />

microscopic binding constant<br />

k D = 10 -9 (M)<br />

macroscopic binding constants<br />

K 1 = 5·10 -10 (M); K 2 = 2·10 -10 (M)


D+n! P "<br />

free<br />

<strong>Binding</strong> <strong>to</strong> n identical binding sites<br />

! 1 =<br />

P free<br />

P free +K D<br />

! n = n"P free<br />

k D +P free<br />

# DP K = n n D n<br />

free!Pfree DP n<br />

<strong>or</strong> divided by n<br />

!<br />

binding <strong>to</strong> a single binding site<br />

binding <strong>to</strong> n independent and<br />

identical binding sites<br />

$ = n n!P n<br />

free<br />

n<br />

Kn +Pfree " = P n<br />

free<br />

n<br />

Kn +Pfree


All <strong>or</strong> none binding (very high cooperativity)<br />

<strong>or</strong><br />

!<br />

" = P n<br />

free<br />

n<br />

Kn +Pfree


!<br />

!<br />

<strong>Binding</strong> <strong>to</strong> n identical binding sites<br />

! 1 =<br />

P free<br />

P free +K D<br />

! n = n"P free<br />

k D +P free<br />

" = n n P n<br />

free<br />

n<br />

Kn +Pfree ! n =<br />

"=<br />

# H n"Pfree K # H<br />

#<br />

+Pfree<br />

H<br />

#<br />

P H<br />

free<br />

K # H #<br />

+Pfree<br />

H<br />

binding <strong>to</strong> a single binding site<br />

binding <strong>to</strong> n independent and<br />

identical binding sites<br />

strong cooperative binding<br />

<strong>to</strong> n identical binding sites,<br />

with K n = (k d ) n<br />

approximation f<strong>or</strong> cooperative binding <strong>to</strong><br />

n identical binding sites, α H HiIl coefficient


!<br />

" =<br />

#<br />

L H<br />

free<br />

K # H #<br />

+Lfree<br />

H<br />

Hill coefficient and Hill plot<br />

approximation f<strong>or</strong> cooperative binding <strong>to</strong><br />

n identical binding sites, α H HiIl coefficient<br />

L free is free ligand<br />

The HiIl α H coefficient characterizes <strong>the</strong> degree <strong>of</strong> cooperativitiy. It varies<br />

from 1 (non-cooperative vinding) <strong>to</strong> n (<strong>the</strong> <strong>to</strong>tal number <strong>of</strong> bound <strong>ligands</strong>)<br />

α H > 1, <strong>the</strong> system shows positive cooperativity<br />

α H = n, <strong>the</strong> cooperativity is infinite<br />

α H = 1, <strong>the</strong> system is non-cooperative<br />

α H < 1, <strong>the</strong> system shows negative cooperativity<br />

The Hill coefficient and <strong>the</strong> ‘average’ K d can be obtained from a Hill plot,<br />

which is based on <strong>the</strong> transf<strong>or</strong>mation <strong>of</strong> <strong>the</strong> above equation


!<br />

!<br />

!<br />

" =<br />

Hill coefficient and Hill plot<br />

#<br />

L H<br />

free<br />

K # H #<br />

+Lfree<br />

H<br />

"<br />

L H<br />

free<br />

K " H<br />

rearrange <strong>the</strong> terms <strong>to</strong> get<br />

= #<br />

1$#<br />

which yields <strong>the</strong> Hill equation<br />

log " $ '<br />

& ) =* log L #log K H free<br />

% 1#" (<br />

* H<br />

α H HiIl coefficient<br />

L free is free ligand<br />

K average microscopic binding constan


log[ν/ (2–ν)]= log[θ/ (1–θ)]<br />

! n =<br />

2<br />

1.<br />

5<br />

1<br />

0.<br />

5<br />

0<br />

-<br />

0.5<br />

-<br />

1<br />

-<br />

1.5<br />

-<br />

21<br />

0<br />

#<br />

n"P H<br />

free<br />

K # H<br />

#<br />

+Pfree<br />

H<br />

-11<br />

weak<br />

bindin<br />

g<br />

limit<br />

Visualisation <strong>of</strong> binding data - Hill plot<br />

slope α H =1.5<br />

1<br />

0<br />

K 2/<br />

2<br />

-10<br />

! 2 =<br />

1<br />

0<br />

log (P free)<br />

2<br />

K2"Pfree +2"Pfree K 1"K 2 +K 2"P free +P free<br />

-9<br />

2·K 1<br />

strong<br />

bindin<br />

g<br />

limit<br />

1<br />

0<br />

-8<br />

2 # ! 2<br />

2$! 2<br />

P ! " # log<br />

&<br />

free (<br />

'<br />

%<br />

Pfree ! K " log'<br />

&<br />

%<br />

Pfree ! 0 " log'<br />

&<br />

= %<br />

1$% = K 2<br />

2"Pfree +2"Pfree 2"K1"K 2 +K2"P free<br />

$ 2<br />

2%$ 2<br />

# 2<br />

2$# 2<br />

# 2<br />

2$# 2<br />

)<br />

+ = log( Pfree )%log<br />

*<br />

K & 2 )<br />

( +<br />

' 2 *<br />

(<br />

* =+ H ,log( Pfree )$+ H ,log K<br />

)<br />

(<br />

* =log Pfree )<br />

( )$ log 2K 1<br />

( )<br />

( )


<strong>Binding</strong> <strong>of</strong> dioxygen <strong>to</strong> hemoglobin


+<br />

P<br />

The Monod-Wyman-Changeau (MWC)<br />

model f<strong>or</strong> cooperative binding<br />

T 0 T 1 T 2<br />

k T<br />

L 0 L 1 L 2<br />

+P<br />

k R<br />

+P<br />

P P P P P<br />

k T<br />

+P<br />

k R<br />

R 0 R 1 R 2<br />

• in <strong>the</strong> absence <strong>of</strong> ligand P <strong>the</strong> <strong>the</strong> T conf<strong>or</strong>mation is fav<strong>or</strong>ed<br />

T conf<strong>or</strong>mation<br />

(all binding sites<br />

are weak)<br />

R conf<strong>or</strong>mation<br />

(all binding sites<br />

are strong)<br />

• <strong>the</strong> ligand affinity <strong>to</strong> <strong>the</strong> R f<strong>or</strong>m is higher, i. e. <strong>the</strong> dissociation constant k R< k T.<br />

• all subunits are present in <strong>the</strong> same confomation<br />

• binding <strong>of</strong> each ligand changes <strong>the</strong> TR equilibrium <strong>to</strong>wards <strong>the</strong> R-F<strong>or</strong>m<br />

+P<br />

k T<br />

+P<br />

P<br />

T 3<br />

+P<br />

k T<br />

T 4<br />

P P<br />

P P<br />

P P P P P<br />

P P<br />

k R<br />

L 3<br />

P<br />

R 3<br />

+P<br />

k R<br />

L 4<br />

P P<br />

R 4


α-conf<strong>or</strong>mation<br />

The Koshland-Nemethy-Filmer (KNF)<br />

model f<strong>or</strong> cooperative binding<br />

+P<br />

k 1<br />

+P<br />

• <strong>Binding</strong> <strong>of</strong> ligand P induces a conf<strong>or</strong>mation change in <strong>the</strong> subunit <strong>to</strong> which it binds<br />

+P<br />

from <strong>the</strong> α in<strong>to</strong> <strong>the</strong> β-conf<strong>or</strong>mation (“induced fit”).<br />

• The bound ligand P facilitates <strong>the</strong> binding <strong>of</strong> P <strong>to</strong> a nearby subunit<br />

in <strong>the</strong> α-conf<strong>or</strong>mation (red), i. e. <strong>the</strong> dissociation constant k 2 < k’ 2.<br />

• subunits can adopt a mixture <strong>of</strong> α−β confomations.<br />

P<br />

P<br />

α-conf<strong>or</strong>mation<br />

(facilitated binding)<br />

P<br />

k’ 2<br />

k 2<br />

P P<br />

β-conf<strong>or</strong>mation<br />

(induced by<br />

ligand binding)


Summary<br />

• Thermodynamic relation between ∆G und K D<br />

• S<strong>to</strong>ichiometry <strong>of</strong> binding<br />

• Determination <strong>of</strong> <strong>the</strong> dissociation constant f<strong>or</strong> simple systems<br />

• Adair equation f<strong>or</strong> a general description <strong>of</strong> binding<br />

• <strong>Binding</strong> <strong>to</strong> n binding sites<br />

• Visualisation <strong>of</strong> binding curves by Scatchard and Hill plots<br />

• Cooperativity <strong>of</strong> binding (MWC and KNF model)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!