24.02.2013 Views

Self-Assembled Monolayers of Thiolates on Metals as - Whitesides ...

Self-Assembled Monolayers of Thiolates on Metals as - Whitesides ...

Self-Assembled Monolayers of Thiolates on Metals as - Whitesides ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1130 Chemical Reviews, 2005, Vol. 105, No. 4 Love et al.<br />

Figure 8. (a) Schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the different<br />

growth modes <str<strong>on</strong>g>of</str<strong>on</strong>g> PbS nanocrystals in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different surfactants. (Reprinted with permissi<strong>on</strong> from ref<br />

78. Copyright 2003 Wiley-VCH.) (b) TEM image <str<strong>on</strong>g>of</str<strong>on</strong>g> rodb<strong>as</strong>ed<br />

PbS multipods formed in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> dodecanethiol<br />

at 140 °C for 5 min. (c) TEM image <str<strong>on</strong>g>of</str<strong>on</strong>g> star-shaped<br />

nanocrystals <str<strong>on</strong>g>of</str<strong>on</strong>g> PbS formed in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> dodecanethiol<br />

at 230 °C. (d) TEM image <str<strong>on</strong>g>of</str<strong>on</strong>g> cubic PbS nanocrystals formed<br />

in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> dodecylamine. (b-d) (Reprinted with<br />

permissi<strong>on</strong> from ref 77. Copyright 2002 American Chemical<br />

Society.)<br />

Scheme 4. Three Comm<strong>on</strong> Strategies for Tailoring<br />

the Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the SAM <strong>on</strong> Nanoparticles a<br />

a Each <strong>on</strong>e is discussed in the text in the secti<strong>on</strong> indicated in<br />

the scheme.<br />

For example, depending <strong>on</strong> the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dodecanethiol present during formati<strong>on</strong> and <strong>on</strong> the<br />

temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the reacti<strong>on</strong>, the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> PbS (a<br />

semic<strong>on</strong>ductor) nanocrystals changes from the equilibrium<br />

cubic habit (bounded by six {100} faces), to<br />

starlike crystals, to el<strong>on</strong>gated rods and branched<br />

structures (bounded by {111} faces) (Figure 8). 77,78<br />

This effect is specific to thiols: growth in the presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dodecylamine, a ligand with lower affinity for PbS,<br />

yields <strong>on</strong>ly PbS cubes. These results suggest that the<br />

thiols have a higher affinity for the {111} faces,<br />

where the sulfur can be positi<strong>on</strong>ed equidistant from<br />

three Pb(II) atoms, than for the {100} faces, where<br />

the sulfur can <strong>on</strong>ly be positi<strong>on</strong>ed equidistant from<br />

two Pb(II) atoms.<br />

6.2. Strategies for Functi<strong>on</strong>alizing Nanoparticles<br />

with Ligands<br />

There are three comm<strong>on</strong> strategies for tailoring the<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the SAM <strong>on</strong> nanoparticles and the<br />

functi<strong>on</strong>al groups exposed at the SAM-solvent interface<br />

(Scheme 4). They are (1) forming the nanoparticles<br />

directly in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> ω-functi<strong>on</strong>alized<br />

thiols, (2) exchanging an existing ligand for an<br />

ω-functi<strong>on</strong>alized thiol, and (3) modifying the original<br />

thiol covalently by an interfacial reacti<strong>on</strong>. We address<br />

each <str<strong>on</strong>g>of</str<strong>on</strong>g> these approaches in the following secti<strong>on</strong>s.<br />

6.2.1. Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanoparticles in the Presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Thiols<br />

The ω-functi<strong>on</strong>alities <str<strong>on</strong>g>of</str<strong>on</strong>g> the thiols used to protect<br />

nanoparticles determine what solvents (aqueous or<br />

organic) can disperse the particles. Some alkanethiols<br />

can tolerate the reductive c<strong>on</strong>diti<strong>on</strong>s used to prepare<br />

nanoparticles and, therefore, can be used to protect<br />

the nanoparticles during formati<strong>on</strong> (Scheme 4). For<br />

example, in the two-ph<strong>as</strong>e Brust-Schiffrin method,<br />

n-alkanethiols and other organic soluble thiols, including<br />

a BINOL (1,1′-bi-2-naphthol) derivative, 453<br />

have been used. 57,92,454<br />

Water-soluble nanoparticles are desirable for biological<br />

applicati<strong>on</strong>s, and many preparati<strong>on</strong>s have<br />

been developed that use thiols with hydrophilic, polar<br />

headgroups. For example, mercaptosuccinic acid can<br />

serve <strong>as</strong> a stabilizer during borohydride reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

HAuCl4 to give 1-3 nm, water-dispersible gold nanoparticles<br />

that are stabilized by the charge-charge<br />

repulsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the carboxylate i<strong>on</strong>s. 447 Glutathi<strong>on</strong>e, 455<br />

tiopr<strong>on</strong>in (N-2-mercaptopropi<strong>on</strong>yl-glycine), 456 coenzyme<br />

A (CoA), 456 trimethyl (mercaptoundecyl)amm<strong>on</strong>ium,<br />

457 and thiolated derivatives <str<strong>on</strong>g>of</str<strong>on</strong>g> PEG 458 have<br />

all been used <strong>as</strong> thiol-b<strong>as</strong>ed water-soluble stabilizers<br />

during the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gold nanoparticles with a<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> reductants.<br />

6.2.2. Ligand-Exchange Methods<br />

Displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e ligand for another is a sec<strong>on</strong>d<br />

strategy for modifying the organic surface <str<strong>on</strong>g>of</str<strong>on</strong>g> nanoparticles<br />

after their formati<strong>on</strong> (Scheme 4). 459,460 These<br />

so-called “ligand-exchange” methods are particularly<br />

useful if the desired ligand is not compatible with the<br />

highly reductive envir<strong>on</strong>ment required for forming<br />

nanoparticles or if the desired ligand is particularly<br />

valuable (or simply not commercially available) and<br />

cannot be used in the excess necessary for stabilizati<strong>on</strong><br />

during synthesis. Simple thiols can be exchanged<br />

for more complex thiols 459 or disulfides. 91,461 Ligand<br />

exchange is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used to synthesize poly-hetero-ωfuncti<strong>on</strong>alized<br />

alkanethiol gold nanoparticles via<br />

either simultaneous or stepwise exchange. 462,463 There<br />

are also several recent reports <str<strong>on</strong>g>of</str<strong>on</strong>g> solid-ph<strong>as</strong>e placeexchange<br />

reacti<strong>on</strong>s with thiol ligands displayed <strong>on</strong><br />

Wang resin beads. 464,465<br />

Thiols can displace other ligands weakly bound to<br />

gold (e.g., phosphines and citrate i<strong>on</strong>s); procedures<br />

b<strong>as</strong>ed <strong>on</strong> exchange are used to functi<strong>on</strong>alize large<br />

gold nanoparticles (>5 nm) that cannot be formed<br />

directly with a protective layer <str<strong>on</strong>g>of</str<strong>on</strong>g> thiols. 466 For<br />

example, dodecanethiol h<strong>as</strong> been used to extract gold<br />

nanoparticles from water (where they were formed<br />

via <strong>as</strong>corbic acid reducti<strong>on</strong> in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> CTAB)<br />

into organic solvents. 438,446 Caruso and co-workers<br />

also dem<strong>on</strong>strated the extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gold nanoparticles<br />

from toluene into aqueous soluti<strong>on</strong>s; this method<br />

relies <strong>on</strong> the displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrophobic n-alkanethiols<br />

with water-soluble thiols. 435,446

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!