24.02.2013 Views

GNSS I Principle and Concept - SIRAJ

GNSS I Principle and Concept - SIRAJ

GNSS I Principle and Concept - SIRAJ

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

G N S S I P r i n c i p l e a n d C o n c e p t<br />

Anne-Laure Vogel – Egis Avia<br />

Rabat, 17-10-2011


GPS GLONASS <strong>GNSS</strong> Operations Comparison<br />

Table of Contents<br />

Core constellations<br />

GPS<br />

GLONASS<br />

<strong>GNSS</strong><br />

<strong>Concept</strong><br />

ABAS<br />

SBAS<br />

GBAS<br />

Operational aspects<br />

System Comparison<br />

Conclusion<br />

Conclusion


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

<strong>Principle</strong> Error Sources<br />

GPS Global Positioning System<br />

Broadcast-<br />

Receiving<br />

Antenna<br />

Monitor<br />

Master Center<br />

5 US Ground Stations<br />

navigational update:<br />

- Synchronization of satellites atomic<br />

clocks<br />

- Adjustment of the ephemeris of each<br />

satellite's internal orbital model<br />

ICAO<br />

Constellation<br />

24 satellites (nominal)<br />

Six orbital planes, four<br />

satellites per plane<br />

The receiver<br />

computes position<br />

<strong>and</strong> time<br />

L2<br />

1227.6 MHz<br />

P(Y)-Code<br />

L1<br />

1575.42<br />

MHz<br />

C/A Code


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

<strong>Principle</strong> Error Sources ICAO<br />

GPS <strong>Principle</strong><br />

1. Distance measurement<br />

(pseudo-range) between user<br />

<strong>and</strong> satellite based on the<br />

difference of time<br />

2. Knowledge of the satellite<br />

position at the time of<br />

transmission<br />

3. Determination of navigation<br />

solution<br />

4. Errors computation<br />

3<br />

4<br />

1<br />

2


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

<strong>Principle</strong> Error Sources ICAO<br />

GPS: Error Sources<br />

Pseudo-range measurements may be affected by:<br />

different type of errors:<br />

Atmospheric propagation<br />

(ionosphere, troposphere)<br />

Multipath


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

<strong>Principle</strong> Error Sources ICAO<br />

GPS: Error Sources<br />

Pseudo-range measurements may be affected by:<br />

different type of errors:<br />

95% of the time,<br />

position within<br />

a radius of 45 m<br />

Ephemeris <strong>and</strong> clock errors<br />

Satellite failures<br />

Selective Availability (artificial falsification of the time in the signal,<br />

obsolete � turned off in 2000)<br />

With SA ON With SA OFF<br />

95% of the time,<br />

position within a<br />

radius of 6.3 m


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

<strong>Principle</strong> Error Sources ICAO<br />

GPS: Error Sources<br />

GPS Error source GPS error (meters)<br />

Satellite Clock 2<br />

Ephemeris 2.5<br />

Receiver 1<br />

Ionospheric<br />

Propagation<br />

5<br />

Tropospheric<br />

Propagation<br />

0.5<br />

Multipath 1<br />

Ionosphere is the main error contributor for GPS L1 only civil users


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

<strong>Principle</strong> Error Sources<br />

ICAO<br />

GPS: ICAO <strong>GNSS</strong> <strong>Concept</strong><br />

GPS alone is sufficient in terms of<br />

acurracy but NOT integrity from Enroute<br />

to NPA<br />

Different<br />

augmentations<br />

have been<br />

designed by<br />

ICAO to<br />

minimize GPS<br />

errors <strong>and</strong><br />

provide<br />

integrity for<br />

different phases<br />

of flight<br />

Signal In Space<br />

requirements<br />

(Annex 10)


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

1 2 3 4<br />

GLONASS GLObal NAvigation Satellite System<br />

GLONASS achieved 100% coverage of Russia's territory by<br />

2010<br />

The full orbital constellation of 24 satellites was restored,<br />

enabling full global coverage in October 2011<br />

4 more satellites to be launched before the end of 2011


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

<strong>Concept</strong> ABAS SBAS<br />

<strong>GNSS</strong>: Global Navigation Satellite System<br />

Core<br />

Constellations<br />

GPS<br />

GLONASS<br />

<strong>GNSS</strong> I<br />

GBAS<br />

ABAS<br />

Airborne Based<br />

Augmentation<br />

System<br />

SBAS<br />

Satellite Based<br />

Augmentation<br />

System<br />

GBAS<br />

Ground Based<br />

Augmentation<br />

System<br />

RAIM<br />

AAIM RAIM<br />

EGNOS<br />

WAAS<br />

MSAS<br />

…<br />

GBAS / LAAS


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

<strong>Concept</strong> ABAS SBAS GBAS<br />

ABAS Augmentation: RAIM & AAIM<br />

Receiver Autonomous Integrity Monitoring (RAIM):<br />

Uses redundant measures of <strong>GNSS</strong> pseudo-ranges<br />

RAIM availability allows aviation operations from en route to NPA – current<br />

RAIM techniques do not support integrity monitoring for vertical guidance<br />

during approaches<br />

Widely implemented from general aviation to commercial aviation - INS may be<br />

used in complement to improve continuity of service.<br />

Two basic functions (receiver dependant):<br />

Fault Detection (FD)<br />

Fault Detection <strong>and</strong> Exclusion (FDE)<br />

Aircraft Autonomous Integrity Monitoring (AAIM):<br />

Uses INS filtering techniques to control the integrity of <strong>GNSS</strong> pseudo-ranges<br />

AAIM availability allows aviation operations from en route to NPA – current<br />

AAIM techniques do not support integrity monitoring for vertical guidance<br />

during approaches<br />

Implemented on higher end commercial aviation only.<br />

Supports Fault Detection <strong>and</strong> Exclusion (FDE) with an increased availability wrt<br />

RAIM


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

<strong>Concept</strong><br />

ABAS<br />

SBAS GBAS<br />

ABAS Augmentation: RAIM performance<br />

With 24 satellites, in average:<br />

For receivers that cannot take advantage of SA being discontinued,<br />

RAIM availability is 99.99 % for En-route <strong>and</strong> 99.7 % for NPA<br />

FDE availability is 99.8 % for En-route <strong>and</strong> 89.5 % for NPA<br />

For receivers that can take advantage of SA having been<br />

discontinued (e.g. SBAS receivers), with 24 satellites, in average:<br />

RAIM availability is 100 % for En-route <strong>and</strong> 99.998 % for NPA<br />

FDE availability is 99.92 % for En-route <strong>and</strong> 99.1 % for NPA


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

<strong>Concept</strong><br />

SBAS Augmentation: <strong>Principle</strong><br />

Central<br />

Control<br />

Facility<br />

ABAS<br />

SBAS<br />

Uplink<br />

Stations<br />

GBAS<br />

GPS Satellites<br />

Master<br />

Stations<br />

Network of ground<br />

reference stations<br />

Geostationnary<br />

satellites


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

<strong>Concept</strong> ABAS SBAS GBAS<br />

SBAS Augmentation: <strong>Principle</strong><br />

SBAS provides, via geostationary satellites:<br />

integrity<br />

differential correction information<br />

GPS-like ranging signal<br />

SBAS comprises:<br />

a) a network of ground reference stations that monitor satellite signals;<br />

b) master stations that collect <strong>and</strong> process reference station data <strong>and</strong><br />

generate SBAS messages;<br />

c) uplink stations that send the messages to geostationary satellites; <strong>and</strong>,<br />

d) transponders on these satellites that broadcast the SBAS messages on<br />

the GPS frequency.


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

<strong>Concept</strong><br />

ABAS SBAS<br />

GBAS Augmentation: <strong>Principle</strong><br />

© EUROCONTROL<br />

GBAS


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

<strong>Concept</strong><br />

ABAS SBAS<br />

GBAS<br />

GBAS Augmentation<br />

The GBAS ground installation monitors GPS <strong>and</strong>/or GLONASS signals at an<br />

aerodrome <strong>and</strong> broadcasts locally relevant:<br />

integrity monitoring for ranging sources<br />

pseudorange corrections<br />

provide GBAS related data<br />

approach data (final approach segment) via a VHF Data Broadcast (VDB) to<br />

aircraft within a nominal range of 23NM.<br />

When an SBAS GEO is available, GBAS can provide differential corrections for<br />

the GEO ranging signal.<br />

A single GBAS ground installation may provide guidance<br />

for:<br />

up to 49 precision approaches within its VDB coverage,<br />

serving several runways <strong>and</strong> possibly several aerodromes,<br />

an unlimited number of users (aircraft) within its<br />

coverage volume.


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

Integrity Today Future<br />

<strong>GNSS</strong>: Integrity <strong>Concept</strong><br />

NPA <strong>and</strong><br />

APV Baro-VNAV<br />

APV SBAS<br />

50 m<br />

to<br />

35 m<br />

(LPV 200ft)<br />

Even if it is the same APV concept,<br />

40 m<br />

� APV SBAS is very similar to a Cat I approach<br />

APV SBAS PA Cat I<br />

PA Cat I<br />

10 to 15 m<br />

� APV Baro VNAV is actually a NPA with vertical guidance<br />

556 m (0.3NM)<br />

NPA <strong>and</strong> APV Baro-VNAV<br />

?? m


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

Integrity<br />

<strong>GNSS</strong> Approach <strong>and</strong> L<strong>and</strong>ing Operations:<br />

Today<br />

OPERATION En<br />

route<br />

ABAS<br />

SBAS<br />

GBAS<br />

Today Future<br />

Terminal NPA APV I PA<br />

CAT I<br />

PA<br />

CAT II<br />

PA<br />

CAT III<br />

Airport<br />

Surface<br />

Building aviation navigation operations requires:<br />

A signal in space supporting the target phase of flight requirements<br />

(Accuracy, Integrity, Continuity of service, Availablity)<br />

An airborne system certified <strong>and</strong> operationally approved for the<br />

target phase of flight<br />

Procedures assuring other aircraft protection <strong>and</strong> obstacle clearance


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

Integrity Today Future<br />

<strong>GNSS</strong> Approach <strong>and</strong> L<strong>and</strong>ing Operations:<br />

In the future<br />

Getting benefice from other constellations (Galileo for example), other usable<br />

frequencies (L5 for example), the following operations could be envisaged using<br />

augmentations:<br />

OPERATION En<br />

route<br />

ABAS<br />

SBAS<br />

GBAS<br />

Terminal NPA APV I PA<br />

CAT I<br />

Existing GBAS st<strong>and</strong>ards support Cat I operations<br />

PA<br />

CAT II<br />

PA<br />

CAT III<br />

Airport<br />

Surface<br />

Future st<strong>and</strong>ards will cover Cat II/III operations:<br />

Studies are on-going for middle term implementation with current mono-frequency<br />

GPS (concept GAST-D)<br />

In the long term, GBAS Cat II/III will be based on multi-frequencies / multiconstellations


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

Systems comparison (non exhaustive)<br />

System Advantages Drawbacks<br />

<strong>GNSS</strong> GPS /<br />

GLONASS<br />

�Can be used<br />

anywhere<br />

�Free system<br />

ABAS �Easy<br />

implementation<br />

�Different<br />

architectures<br />

exist<br />

�GPS is not compliant with ICAO<br />

requirements for civil aviation operations<br />

�Managed by 1 state (Selective<br />

Availability for example for GPS)<br />

�For the moment can only be used to<br />

reach NPA performance<br />

�Difficulty to predict performances for all<br />

users


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

Systems comparison (non exhaustive)<br />

System Advantages Drawbacks<br />

<strong>GNSS</strong> SBAS �Improve GPS signals (accuracy, integrity,<br />

availability <strong>and</strong> continuity)<br />

�Vertical guidance<br />

�Quasi CAT I can be reached (LPV 200 ft)<br />

�No local infrastructure on airports<br />

GBAS �Improve GPS signals (accuracy, integrity,<br />

availability <strong>and</strong> continuity)<br />

�Precision approaches (CAT I for the moment,<br />

CAT II/III under st<strong>and</strong>ardisation)<br />

�Improved airport capacity in low visibility<br />

conditions (no sensitive areas)<br />

�Single installation for multiple runways/airports<br />

precision approaches<br />

�Reduced frequency contention (1 frequency for<br />

VDB emission only)<br />

�It took a long time<br />

for users to show their<br />

interest particularly in<br />

Europe<br />

�CAT I suffers from<br />

high competition<br />

from ILS CAT I <strong>and</strong><br />

SBAS: no<br />

development plan for<br />

GBAS CAT I<br />

�CAT II / III<br />

approaches not<br />

available for the<br />

moment


GPS GLONASS <strong>GNSS</strong> Operations Comparison Conclusion<br />

Conclusion<br />

Development <strong>and</strong> improvement of <strong>GNSS</strong> is still on-going to<br />

have better performances, safer procedures, better capacity…<br />

<strong>GNSS</strong> more <strong>and</strong> more used for the different phases of flight<br />

(en route, terminal, approach <strong>and</strong> l<strong>and</strong>ing)<br />

CAT II/III operations can only be reached with conventional<br />

means for the moment<br />

<strong>GNSS</strong> is a key enabler for Performance Based Navigation<br />

(PBN) implementation

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!