24.02.2013 Views

Phosphoproteomics-identified ERF110 affects ... - Plant Physiology

Phosphoproteomics-identified ERF110 affects ... - Plant Physiology

Phosphoproteomics-identified ERF110 affects ... - Plant Physiology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

30<br />

63: 37-44<br />

Liu YD, Zhang SQ (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic<br />

acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase,<br />

induces ethylene biosynthesis in Arabidopsis. <strong>Plant</strong> Cell 16: 3386-3399<br />

Lu BW, Pei LK, Chan WK, Zhang H, Zhu G, Li JY, Li N (2001) The dual effects<br />

of ethylene on the negative gravicurvature of arabidopsis inflorescence, an<br />

intriguing action model for the plant hormone ethylene. Chinese Science<br />

Bulletin 46: 279-283<br />

Lu BW, Yu HY, Pei LK, Wong MY, Li N (2002) Prolonged exposure to ethylene<br />

stimulates the negative gravitropic responses of Arabidopsis inflorescence<br />

stems and hypocotyls. Functional <strong>Plant</strong> Biology 29: 987-997<br />

Morandell S, Stasyk T, Grosstessner-Hain K, Roitinger E, Mechtler K, Bonn GK,<br />

Huber LA (2006) <strong>Phosphoproteomics</strong> strategies for the functional analysis of<br />

signal transduction. Proteomics 6: 4047-4056<br />

Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the<br />

ERF gene family in Arabidopsis and rice. <strong>Plant</strong> <strong>Physiology</strong> 140: 411-432<br />

Ogawa T, Pan L, Kawai-Yamada M, Yu LH, Yamamura S, Koyama T, Kitajima<br />

S, Ohme-Takagi M, Sato F, Uchimiya H (2005) Functional analysis of<br />

Arabidopsis ethylene-responsive element binding protein conferring resistance<br />

to Bax and abiotic stress-induced plant cell death. <strong>Plant</strong> <strong>Physiology</strong> 138:<br />

1436-1445<br />

Ogawa T, Uchimiya H, Kawai-Yamada M (2007) Mutual regulation of Arabidopsis<br />

thaliana ethylene-responsive element binding protein and a plant floral<br />

homeotic gene, APETALA2. Annals of Botany 99: 239-244<br />

Ogawara T, Higashi K, Kamada H, Ezura H (2003) Ethylene advances the<br />

transition from vegetative growth to flowering in Arabidopsis thaliana. Journal<br />

of <strong>Plant</strong> <strong>Physiology</strong> 160: 1335-1340<br />

Oh MH, Wang XF, Kota U, Goshe MB, Clouse SD, Huber SC (2009) Tyrosine<br />

phosphorylation of the BRI1 receptor kinase emerges as a component of<br />

brassinosteroid signaling in Arabidopsis. Proceedings of the National<br />

Academy of Sciences of the United States of America 106: 658-663<br />

Ohmetakagi M, Shinshi H (1995) Ethylene-inducible DNA-binding proteins that<br />

interact with an ethylene-responsive element. <strong>Plant</strong> Cell 7: 173-182<br />

Ouaked F, Rozhon W, Lecourieux D, Hirt H (2003) A MAPK pathway mediates<br />

ethylene signaling in plants. EMBO Journal 22: 1282-1288<br />

Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of<br />

flowering time. Bioessays 26: 363-373<br />

Qiao H, Shen Z, Huang SS, Schmitz RJ, Urich MA, Briggs SP, Ecker JR (2012)<br />

Processing and subcellular trafficking of ER-tethered EIN2 control response to<br />

ethylene gas. Science 338: 390-393<br />

Quesada V, Dean C, Simpson GG (2005) Regulated RNA processing in the control<br />

of Arabidopsis flowering. International Journal of Developmental Biology 49:<br />

773-780<br />

Raz V, Fluhr R (1993) Ethylene signal is transduced via protein-phosphorylation

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!