25.02.2013 Views

BLYP MS-EVB2

BLYP MS-EVB2

BLYP MS-EVB2

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

O 1X identity<br />

O 0 identity<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

SUPPORTING ONLINE MATERIAL:<br />

Special Pair Dance and Partner Selection:<br />

Elementary Steps in Proton Transport in Liquid Water<br />

Omer Markovitch, Hanning Chen, Sergei Izvekov, Francesco Paesani, Gregory A. Voth<br />

and Noam Agmon*<br />

SP dance<br />

L o n g<br />

<strong>BLYP</strong><br />

Zundel<br />

Short<br />

5 6<br />

Time [ps]<br />

7<br />

Figure S1. The identity of the hydronium oxygen (bottom, black) and its nearest neighbor<br />

(top, red) during an exemplary 3 ps of <strong>BLYP</strong> and <strong>MS</strong>-<strong>EVB2</strong> trajectories. Note that <strong>BLYP</strong><br />

shows the “SP dance”, but not <strong>MS</strong>-<strong>EVB2</strong>, which exhibits many more successful PT<br />

events. Both trajectories show rapid fluctuations of the hydronium identity which are<br />

coupled, in the Zundel complex, to fluctuations in the identity of O1x.<br />

S 1<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

<strong>MS</strong>-<strong>EVB2</strong><br />

10 11 12 13<br />

Time [ps]


g i (r)<br />

g i (r)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

4<br />

3<br />

2<br />

1<br />

0<br />

<strong>BLYP</strong><br />

<strong>MS</strong>-<strong>EVB2</strong><br />

2.5 3.0 3.5 4.0 4.5 5.0<br />

S 2<br />

r [Å]<br />

g 0<br />

g 1x<br />

g 1yz<br />

Figure S2. Equilibrium O—O radial distribution functions for the hydronium (black)<br />

and its first-shell neighbors (1x − red & 1yz − green) using all time-frames from <strong>BLYP</strong><br />

and <strong>MS</strong>-<strong>EVB2</strong> trajectories.


g Short<br />

(r) 0<br />

g Long<br />

(r) 0<br />

4<br />

3<br />

2<br />

1<br />

0<br />

5<br />

4<br />

3<br />

2<br />

1<br />

EVB3<br />

< 5 fs<br />

600 fs<br />

> 500 fs<br />

> 400 fs<br />

> 300 fs<br />

S 3<br />

HCTH<br />

> 726 fs<br />

> 581 fs<br />

> 436 fs<br />

> 218 fs<br />

2.2 2.4 2.6 2.8 3.0<br />

r [Å]<br />

Figure S3. Conditional O—O radial distribution functions for the first solvation layer of<br />

the hydronium for trajectory segments of different lengths (indicated). From the long<br />

segments the first and last 50 fs were deleted. The RDFs for the Long intervals converge<br />

when their length > 300 fs. The RDFs for the Short intervals converge when their length<br />


g 0 (r)<br />

g 0 (r)<br />

g 0 (r)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

4<br />

3<br />

2<br />

1<br />

0<br />

4<br />

3<br />

2<br />

1<br />

0<br />

2.5 3.0<br />

r [Å]<br />

S 4<br />

Eq.<br />

Long<br />

Short<br />

f*L + (1-f)*S<br />

<strong>BLYP</strong><br />

<strong>MS</strong>-<strong>EVB2</strong><br />

q<strong>MS</strong>-EVB3<br />

Figure S4. Conditional O—O radial distribution functions for the hydronium using timeframes<br />

from long (blue) and short (cyan) trajectory segments from <strong>BLYP</strong>, <strong>MS</strong>-<strong>EVB2</strong><br />

and quantal <strong>MS</strong>-EVB3 trajectories. The yellow line shows a best fit to the equilibrium<br />

RDF (black, Fig. S2) using a linear combination of the two conditional RDFs with a<br />

factor f= 0.74 for <strong>BLYP</strong> and f=0.77 for <strong>MS</strong>-<strong>EVB2</strong>. The fit did not succeed for the q<strong>MS</strong>-<br />

EVB3 trajectory.


g 1X (r)<br />

g 1X (r)<br />

g 1X (r)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

4<br />

3<br />

2<br />

1<br />

0<br />

4<br />

3<br />

2<br />

1<br />

0<br />

<strong>BLYP</strong><br />

<strong>MS</strong>-<strong>EVB2</strong><br />

q<strong>MS</strong>-EVB3<br />

2.5 3.0<br />

r [Å]<br />

Figure S5. Conditional O—O radial distribution functions for the hydronium nearest<br />

oxygen, O1x, using time-frames from long (blue) and short (cyan) trajectory segments<br />

from <strong>BLYP</strong>, <strong>MS</strong>-<strong>EVB2</strong> and quantal <strong>MS</strong>-EVB3 trajectories. The yellow line shows a best<br />

fit to the equilibrium RDF (black, Fig. S2) using a linear combination of the two<br />

conditional RDFs with a factor f= 0.74 For <strong>BLYP</strong> and f=0.77 for <strong>MS</strong>-<strong>EVB2</strong>. The fit did<br />

not succeed for the q<strong>MS</strong>-EVB3 trajectory.<br />

S 5<br />

Eq.<br />

Long<br />

Short<br />

f*L + (1-f)*S


g (r), |<br />

| δδδδ |<br />

| < ∆<br />

Z<br />

g (r), | δδ<br />

δδ<br />

|<br />

| > ∆<br />

E<br />

4<br />

3<br />

2<br />

1<br />

0<br />

5 Eigen<br />

4<br />

3<br />

2<br />

1<br />

0<br />

EVB3<br />

2.2 2.4 2.6 2.8<br />

r [Å]<br />

Figure S6. The RDFs for Zundel and Eigen cations for various cutoff distances, ∆ (in Ǻ),<br />

in the geometric criterion of Marx et al. [23,41]. Our conditional RDFs for small and<br />

large non-transfer intervals are shown for comparison (black lines). The comparison<br />

shows that the best choice of cut-off distances is ∆Z ≤ 0.1 Ǻ and ∆E = 0.2 Ǻ.<br />

S 6<br />

Zundel<br />

∆ Z =<br />

0.01<br />

0.1<br />

0.2<br />

0.3<br />

0.5<br />

∆<br />

∆<br />

∆ E =<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1


g (r)<br />

g (r)<br />

g (r)<br />

g (r)<br />

g (r)<br />

4<br />

2<br />

0<br />

4<br />

2<br />

0<br />

4<br />

2<br />

0<br />

4<br />

2<br />

0<br />

4<br />

2<br />

0<br />

HCTH<br />

+5 fs<br />

−5 fs<br />

−10 fs<br />

−20 fs<br />

−40 fs<br />

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0<br />

r [Å]<br />

Figure S7. Time-dependent radial distribution functions for the hydronium [g0(r;t), in brown] and<br />

its nearest oxygen [g1x(r;t), in magenta] just before a proton hopping event in a HCTH simulation.<br />

The dashed and dotted lines show the same RDFs from the ensembles of long (Eigen, blue) and<br />

short (Zundel, cyan) trajectory segments. The larger noise for AIMD trajectories is due to their<br />

limited duration, dictated by their significantly greater computational cost.<br />

S 7<br />

g 0<br />

g 1x<br />

g 0 -Short<br />

g 1x -Short<br />

g0 g1x g0-Long g 1x -Long


g (r)<br />

g (r)<br />

g (r)<br />

g (r)<br />

4<br />

2<br />

0<br />

4<br />

2<br />

0<br />

4<br />

2<br />

0<br />

4<br />

2<br />

4<br />

2<br />

g (r) 0<br />

0<br />

<strong>BLYP</strong><br />

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0<br />

S 8<br />

+5 fs<br />

−5 fs<br />

−10 fs<br />

−20 fs<br />

−40 fs<br />

r [Å]<br />

g0 g1x g0-Short g 1x -Short<br />

g 0<br />

g 1x<br />

g 0 -Long<br />

g 1x -Long<br />

Figure S8. Same as Figure S5 for an AIMD simulation with the <strong>BLYP</strong> functional.


g (r)<br />

g (r)<br />

g (r)<br />

g (r)<br />

g (r)<br />

4<br />

2<br />

0<br />

4<br />

2<br />

0<br />

4<br />

2<br />

0<br />

4<br />

2<br />

0<br />

4<br />

2<br />

0<br />

<strong>MS</strong>-<strong>EVB2</strong><br />

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0<br />

S 9<br />

+5 fs<br />

−5 fs<br />

−10 fs<br />

−20 fs<br />

−40 fs<br />

r [Å]<br />

Figure S9. Same as Figure S5 for a <strong>MS</strong>-<strong>EVB2</strong> simulation.<br />

g 0<br />

g 1x<br />

g 0 -Short<br />

g 1x -Short<br />

g0 g1x g0-Long g 1x -Long

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!