27.02.2013 Views

Electronic and optical properties of graphene- and graphane ... - MIFP

Electronic and optical properties of graphene- and graphane ... - MIFP

Electronic and optical properties of graphene- and graphane ... - MIFP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Electronic</strong> <strong>and</strong> <strong>optical</strong> <strong>properties</strong> <strong>of</strong><br />

<strong>graphene</strong>- <strong>and</strong> <strong>graphane</strong>-like<br />

SiC layers<br />

Paola Gori, ISM, CNR, Rome, Italy<br />

Olivia Pulci, Margherita Marsili, Università di Tor<br />

Vergata, Rome, Italy<br />

Friedhelm Bechstedt, IFTO, Friedrich-Schiller-<br />

Universitat, Jena, Germany<br />

ESF Workshop on Polaritonics, March 20-23, 2012 - Marino (Rome), Italy


Outline<br />

• Graphene <strong>and</strong> <strong>graphane</strong>-like SiC based 2D sheets: structure<br />

• <strong>Electronic</strong> <strong>properties</strong>: face-dependent behaviour<br />

• Optical <strong>properties</strong>: polarizability, bound excitons<br />

• Conclusions <strong>and</strong> outlook


c<br />

Theoretical tools: ab-initio methods<br />

v<br />

hn<br />

DFT GW<br />

c<br />

v<br />

MBPT<br />

ground state B<strong>and</strong> structure, I, A<br />

c<br />

EXC<br />

hn W<br />

wcv<br />

v<br />

BSE<br />

Optical <strong>properties</strong>


c<br />

Theoretical tools: ab-initio methods<br />

v<br />

hn<br />

DFT GW<br />

c<br />

v<br />

MBPT<br />

c<br />

EXC<br />

hn W<br />

wcv<br />

v<br />

BSE<br />

1) 2) 3)


Quasiparticle equation<br />

�<br />

� iGW<br />

G: single particle Green’s function<br />

�1<br />

W � � V<br />

W: screened Coulomb interaction<br />

Lars Hedin 1965


c<br />

Optical <strong>properties</strong>: Bethe Salpeter<br />

equation<br />

v<br />

hn<br />

DFT GW<br />

c<br />

v<br />

MBPT<br />

c<br />

EXC<br />

hn W<br />

wcv<br />

v<br />

BSE<br />

1) 2) 3)


hn<br />

GW BSE<br />

Bethe Salpeter equation<br />

c<br />

v<br />

Absorption spectra<br />

A photon excites an electron from an occupied<br />

state to a conduction state<br />

e<br />

h<br />

4<br />

4 4<br />

P � PIQP<br />

� PIQP<br />

Bethe Salpeter Equation (BSE)<br />

Kernel:<br />

�<br />

e-h exchange<br />

�<br />

v �<br />

W<br />

4<br />

�<br />

4<br />

P<br />

bound excitons


SiC nanotubes<br />

SiC-based nanostructures<br />

Sun et al., JACS 124, 14464 (2002)<br />

SiC nanowires<br />

Pan et al., Adv. Mater. 12, 1186 (2000)<br />

Applications for hydrogen storage,<br />

nanoelectronics, microelectromechanical<br />

systems


Graphene <strong>and</strong> <strong>graphane</strong>-like 2D SiC layers<br />

Silicon<strong>graphene</strong> Silicon<strong>graphane</strong><br />

Flat honeycomb structure (sp 2 +p z )<br />

C-Si bond length = 1.79 Å<br />

intermediate between<br />

<strong>graphene</strong> (C-C = 1.42 Å) <strong>and</strong> silicene<br />

(Si-Si = 2.28 Å)<br />

Buckling (�z) = 0.58 Å<br />

(sp 3 hybridization)<br />

C-Si bond = 1.9 Å<br />

intermediate between<br />

<strong>graphane</strong> (C-C = 1.54 Å) <strong>and</strong><br />

silicane (Si-Si = 2.36 Å)


2D SiC:H from a SiC surface?<br />

Is it possible to obtain 2D SiC:H form a slab <strong>of</strong> hydrogenated<br />

C-terminated 3C-SiC(111)?<br />

[E tot(SiC:H 5bil_slab) + E tot(2D-SiC:H)]-[E tot(SiC:H 6bil_slab) + E tot(H 2)]<br />

= -0.15 eV,<br />

E tot(SiC:H 5(6)bil_slab) = total energy <strong>of</strong> a 5(6)-bilayer 1x1 SiC(111) slab<br />

E tot(H2) = total energy <strong>of</strong> an hydrogen molecule<br />

� An hydrogenated slab <strong>of</strong> 3C-SiC(111) in presence <strong>of</strong><br />

hydrogen can give rise to a stable 2D hydrogenated sheet<br />

<strong>of</strong> SiC


Quasiparticle b<strong>and</strong> structures<br />

SiC SiC:H


Quasiparticle b<strong>and</strong> gaps<br />

2D sheet<br />

GW direct<br />

gap (eV)<br />

SiC 3.7 (K)<br />

SiC:H 5.3 (G)<br />

C:H 5.4 (G)<br />

Si:H 3.6 (G)


SiC:H b<strong>and</strong> edge density <strong>of</strong> states<br />

The fundamental gap <strong>of</strong> SiC:H approaches the value found for <strong>graphane</strong>:<br />

near the gap the DOS is dominated by C <strong>and</strong> H(C) states.


SiC:H - Electrostatic potential


SiC:H - Electrostatic potential<br />

Two vacuum levels appear as a consequence <strong>of</strong> the sheet polarity.<br />

A dipole discontinuity �V=1.7 eV occurs, related to the electron<br />

transfer Qe between Si <strong>and</strong> C.<br />

According to Gauss law,<br />

4�<br />

Qe<br />

�V � �<br />

� A<br />

where � s=2.03, A 0=8.48 Å 2 , �=0.58 Å.<br />

This gives Q=0.25, smaller than expected for ionic bonding<br />

�significant covalent bonding contribution.<br />

Possible application <strong>of</strong> 2D SiC:H as electron/hole filter in<br />

LED or solar cells<br />

s<br />

0<br />

P. Gori, O. Pulci et al., APL 100, 043110 (2012)


Other systems with orientation-dependent<br />

ionization energy<br />

a-sexithiophene/Ag(111)<br />

Duhm et al., Nature Mat. 7, 326 (2008)<br />

St<strong>and</strong>ing 6T molecules<br />

Lying 6T molecules<br />

Ionization<br />

potential<br />

varied <strong>of</strong><br />

0.6 eV


Optical <strong>properties</strong> (RPA)<br />

SiC SiC:H


Bound excitons in 2D SiC, SiC:H


2D SiC: first exciton in k-space<br />

Holes in the last valence b<strong>and</strong>,<br />

Electron in the first conduction b<strong>and</strong>


2D SiC: third exciton in k-space<br />

Holes in the last valence b<strong>and</strong>,<br />

Electron in the first conduction b<strong>and</strong>


2D SiC:H: first exciton in k-space<br />

Holes in the two last valence b<strong>and</strong>s,<br />

Electron in the first conduction b<strong>and</strong>


2D SiC:H: third exciton in k-space<br />

Holes in the last valence b<strong>and</strong>,<br />

Electron in the first conduction b<strong>and</strong>


Bound excitons in 2D hydrogenated C, Si, Ge<br />

Ge:H<br />

Si:H<br />

C:H


Excitons in 2D systems<br />

• Exciton size <strong>and</strong>/or binding energies are heavily influenced by<br />

confinement<br />

• In particular, screening is hindered <strong>and</strong> binding energies are<br />

consequently very large<br />

• Rough estimate <strong>of</strong> the binding energy <strong>and</strong> excitonic radius for<br />

the lowest bound exciton through a simplified model similar to a<br />

2D hydrogenic model <strong>of</strong> the excitons


With the two limits:<br />

2D Screened Coulomb potential<br />

For vanishing sheet thickness, the screened Coulomb potential is r = in-plane radius<br />

W<br />

e<br />

2<br />

�<br />

�<br />

�r� � � �H<br />

�<br />

�<br />

�<br />

� � �<br />

�<br />

�<br />

�<br />

0 N0<br />

�<br />

4a 2D<br />

� � 2�a<br />

2D<br />

� � 2�a<br />

2D<br />

��<br />

r<br />

�<br />

�<br />

H 0 = Struve function<br />

N 0 = Neumann function<br />

2D electronic polarizability:<br />

� �<br />

2<br />

e<br />

W �r � � � for 2�a2 D �� r 2D hydrogen atom<br />

r<br />

2<br />

e � � r � �<br />

� � � � �<br />

2<br />

2�a<br />

2D<br />

� � 4�a<br />

2D<br />

� �<br />

�r� ln�<br />

� � 0.<br />

5772 for 2�a<br />

�� r<br />

W D<br />

r<br />

��<br />

a<br />

2D<br />

�<br />

L ���0 �1��<br />

4�<br />

L = distance between sheets<br />

Log e-h attraction


Log e-h attraction<br />

2D Screened Coulomb potential<br />

2D hydrogen atom


Log e-h attraction<br />

2D Screened Coulomb potential<br />

2D-C:H<br />

2D-Si:H<br />

2D-Ge:H<br />

2D-SiC<br />

2D-SiC:H<br />

2D hydrogen atom


Bound excitons in 2D systems<br />

SiC, Si:H, Ge:H<br />

Large oscillator strength � Short radiative lifetime � No possibility <strong>of</strong> BEC<br />

C:H, SiC:H<br />

Vanishing dipole matrix element � Not so small radiative lifetime � BEC?<br />

SiC, Si:H, Ge:H<br />

Large oscillator strength<br />

AND � Possible significant RT exciton-polariton effects<br />

Large exciton binding energy


Conclusions <strong>and</strong> outlook<br />

• 2D-based SiC <strong>and</strong> SiC:H: interesting <strong>properties</strong> + possibilities <strong>of</strong> integration<br />

with Si technology<br />

• Side-dependent electronic behaviour in SiC:H � applicability for<br />

hole/electrons filters<br />

• Strongly bound excitons both in SiC <strong>and</strong> in SiC:H. Similarities with 2D-C:H, Si:H,<br />

Ge:H<br />

• Laboratory for studies <strong>of</strong> fundamental physics, e.g. bosonic effects at room<br />

temperature<br />

• Possible applications for polaritons lasers

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!