01.03.2013 Views

ECRH / ECCD Scenarios on W7-X Stellarator - Ciemat

ECRH / ECCD Scenarios on W7-X Stellarator - Ciemat

ECRH / ECCD Scenarios on W7-X Stellarator - Ciemat

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CWGM 4, Madrid, 20 - 22 October 2008<br />

<str<strong>on</strong>g>ECRH</str<strong>on</strong>g> / <str<strong>on</strong>g>ECCD</str<strong>on</strong>g> <str<strong>on</strong>g>Scenarios</str<strong>on</strong>g><br />

<strong>on</strong> <strong>W7</strong>-X <strong>Stellarator</strong><br />

N.B. Marushchenko<br />

with H. Maaßberg, Maa berg, Yu. Turkin, Turkin C.D. Beidler, V. Erckmann, J. Geiger,<br />

H.P. Laqua and <strong>W7</strong>-X Team<br />

Max-Planck-Institut für Plasmaphysik, EURATOM-Associati<strong>on</strong>,<br />

Greifswald, Germany<br />

1


Introducti<strong>on</strong><br />

C<strong>on</strong>tent<br />

Numerical tools for predictive modeling<br />

Low and moderate density plasma: X2 scenario<br />

High density plasma: O2 scenario<br />

High density plasma: X3 scenario?<br />

Net current c<strong>on</strong>trol<br />

Summary<br />

2


<strong>W7</strong>-X stellarator:<br />

Introducti<strong>on</strong><br />

large scale device with superc<strong>on</strong>ducting coils<br />

no ohmic transformer<br />

low-shear magnetic c<strong>on</strong>figurati<strong>on</strong> of Helias type with 5 periods<br />

Scientific objectives:<br />

steady state operati<strong>on</strong> with the reactor relevant parameters<br />

stable operati<strong>on</strong> with high-pressure plasma (up to β ~ 5%)<br />

good plasma c<strong>on</strong>finement<br />

explore the magnetic c<strong>on</strong>figurati<strong>on</strong> space<br />

- bootstrap current minimized for “high-mirror” c<strong>on</strong>figurati<strong>on</strong><br />

- neoclass. c<strong>on</strong>finement optimized for “standard” c<strong>on</strong>figurati<strong>on</strong><br />

divertor operati<strong>on</strong> with good density and impurity c<strong>on</strong>trol<br />

3


<str<strong>on</strong>g>ECRH</str<strong>on</strong>g> / <str<strong>on</strong>g>ECCD</str<strong>on</strong>g> scenarios<br />

X2-scenario is well tested and no troubles are expected<br />

O2-scenario can be performed by transiti<strong>on</strong> from X2-scenario<br />

operati<strong>on</strong> with <strong>on</strong>ly X3-scenario seems doubtful, but possible in<br />

combinati<strong>on</strong> with X2 / O2


<str<strong>on</strong>g>ECRH</str<strong>on</strong>g> tools:<br />

<str<strong>on</strong>g>ECRH</str<strong>on</strong>g> aims:<br />

plasma start-up and heating<br />

<str<strong>on</strong>g>ECRH</str<strong>on</strong>g> / <str<strong>on</strong>g>ECCD</str<strong>on</strong>g> scenarios<br />

10 Gyrotr<strong>on</strong>s 140 (104) GHz 1 MW each<br />

angle fr<strong>on</strong>t steering<br />

quasi-steady-state<br />

positive NBI<br />

current drive for the rotati<strong>on</strong>al profile tailoring<br />

feedback c<strong>on</strong>trol of the net plasma current<br />

c<strong>on</strong>figurati<strong>on</strong> c<strong>on</strong>trol in operati<strong>on</strong> with high β<br />

operati<strong>on</strong> with over-dense plasma: Bernstein waves<br />

(far future plans…)<br />

<str<strong>on</strong>g>ECRH</str<strong>on</strong>g><br />

negative NBI<br />

7


Numerical tools: ray tracing code<br />

TRAVIS: multi-bandle & multi-pass ray-tracing code<br />

works stand-al<strong>on</strong>e and coupled self-c<strong>on</strong>sistently with 1D transport code<br />

the anomalous dispersi<strong>on</strong> taken into account<br />

(the weakly-relativistic Hamilt<strong>on</strong>ian for tracing, Westerhof-Tokman model)<br />

fully-relativistic model for absorpti<strong>on</strong> & CD (for arbitrary distributi<strong>on</strong> functi<strong>on</strong>)<br />

<str<strong>on</strong>g>ECCD</str<strong>on</strong>g>: adjoint approach with momentum c<strong>on</strong>servati<strong>on</strong> taken into account<br />

(the package for arbitrary collisi<strong>on</strong>ality under development)<br />

dP/dV decomposed in c<strong>on</strong>tributi<strong>on</strong>s from trapped and passing electr<strong>on</strong>s<br />

energy range of electr<strong>on</strong>s resp<strong>on</strong>sible for absorpti<strong>on</strong> estimated<br />

package for quasi-optical technique under development<br />

(in collaborati<strong>on</strong> with IAP RAS)<br />

9


Geometry<br />

- Analysis<br />

- Diagnostics<br />

- Transport modeling<br />

g ik , V´, ιota, ‹…›<br />

Database<br />

- Analysis<br />

- Diagnostics<br />

- Transport modeling<br />

Equilibrium<br />

- Analysis<br />

- Diagnostics<br />

- Transport modeling<br />

Yu. Turkin<br />

Numerical tools: Transport Package<br />

Neoclassic transport<br />

Fluxes, E r , j BS<br />

- Analysis<br />

- Plasma current c<strong>on</strong>trol<br />

- Transport modeling<br />

Transport<br />

Equati<strong>on</strong>s:<br />

Evoluti<strong>on</strong> of<br />

n e, T e , T i , E r , j p<br />

Anomalous transport<br />

- Analysis<br />

- Transport modeling<br />

Sources & Sinks<br />

3d-Codes:<br />

<str<strong>on</strong>g>ECRH</str<strong>on</strong>g>, NBI, Pellets,<br />

Neutrals, Losses<br />

- Planning of experiments<br />

- Analysis<br />

- Transport modeling<br />

<str<strong>on</strong>g>ECCD</str<strong>on</strong>g>, NBCD<br />

Feedback C<strong>on</strong>trol,<br />

Current C<strong>on</strong>trol,<br />

Density C<strong>on</strong>trol,<br />

Heating C<strong>on</strong>trol:<br />

- Plasma c<strong>on</strong>trol<br />

- Transport modeling<br />

Development of TP implies development of modules needed<br />

for other activities; modules must be reusable <br />

Transport Package is a part of Software for <strong>W7</strong>-X<br />

10


Why neoclassical c<strong>on</strong>finement model<br />

Experience of <strong>W7</strong>-AS high-performance discharges<br />

Yu. Turkin<br />

P <str<strong>on</strong>g>ECRH</str<strong>on</strong>g> =1.2 MW in X2-mode; “electr<strong>on</strong> root”<br />

T e = 3 - 3.5 kev<br />

Experimental χ<br />

Neoclassical χ<br />

11


<str<strong>on</strong>g>ECRH</str<strong>on</strong>g> / <str<strong>on</strong>g>ECCD</str<strong>on</strong>g> scenarios<br />

X2-scenario is well tested and no troubles are expected<br />

O2-scenario can be performed by transiti<strong>on</strong> from X2-scenario<br />

operati<strong>on</strong> with <strong>on</strong>ly X3-scenario seems doubtful, but possible in<br />

combinati<strong>on</strong> with X2 / O2<br />

12


T e (0)<br />

[keV]<br />

Low and moderate densities: X2-scenario<br />

plasma start-up, <str<strong>on</strong>g>ECRH</str<strong>on</strong>g> / <str<strong>on</strong>g>ECCD</str<strong>on</strong>g> cw, up to 10 MW<br />

low densities, n e = 0.1 – 0.6 × 10 20 m -3 , high T e<br />

moderate densities, n e = 0.6 – 1.0 × 10 20 m -3 , high both T e and T i<br />

complete bootstrap current compensati<strong>on</strong><br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Yu. Turkin<br />

e-root<br />

P=2MW<br />

P=4MW<br />

P=8MW<br />

P=10MW<br />

0.1 0.4 0.7 1<br />

n e [ 10 20 m -3 ]<br />

χ e<br />

[m 2 /s]<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

neo<br />

Lackner-Gottardi<br />

anomalous<br />

0 0.1 0.2 0.3 0.4 0.5<br />

r eff [m]<br />

13


Single-pass absorpti<strong>on</strong>:<br />

Optimistic expectati<strong>on</strong>s!<br />

O2-scenario: O2-scenario:<br />

results of the density scan<br />

off-axis<br />

17


3 passes<br />

High densities: O2-scenario<br />

β=2% equlib. β=4% equlib.+0.12T<br />

T e > 4 keV is reached in the regi<strong>on</strong> of good absorpti<strong>on</strong> (see yellow regi<strong>on</strong>)<br />

Absorpti<strong>on</strong> rapidly increases for larger temperatures (absorpti<strong>on</strong> )<br />

Yu. Turkin<br />

! T<br />

2<br />

e<br />

18


Reduced magnetic field: X3<br />

“standard” c<strong>on</strong>figurati<strong>on</strong>, B ≈ 1.86 T :<br />

X3 at 140 GHz: HFS launch from the “triangular” plane<br />

can be supported by<br />

140 GHz, B = 1.67 T<br />

X3 stand al<strong>on</strong>e, P RF = 5 MW<br />

X2 / O2 at 104 GHz: LFS launch from the “bean-shaped” plane<br />

19


adjoint approach for <str<strong>on</strong>g>ECCD</str<strong>on</strong>g><br />

momentum c<strong>on</strong>servati<strong>on</strong><br />

collisi<strong>on</strong>less or collisi<strong>on</strong>al limits (with or without trapped particles)<br />

so far, the bootstrap current calculated w/o momentum c<strong>on</strong>servati<strong>on</strong><br />

new advanced model under development:<br />

momentum c<strong>on</strong>servati<strong>on</strong> & arbitrary collisi<strong>on</strong>ality<br />

Tasks:<br />

Net plasma current c<strong>on</strong>trol: theoretical models<br />

1. to check an ability of <str<strong>on</strong>g>ECCD</str<strong>on</strong>g> as counteracting tool<br />

2. to find an optimal scenario<br />

At the present moment, <strong>on</strong>ly preliminary results for the net current<br />

c<strong>on</strong>trol are obtained<br />

20


General c<strong>on</strong>diti<strong>on</strong>s:<br />

Net plasma current c<strong>on</strong>trol<br />

for both X2- and O2-scenarios: five beams 1 MW each<br />

B 0 = 2.53 T:<br />

LFS shift with off-axis X2- (w/o “electr<strong>on</strong> root”) and <strong>on</strong>-axis O2-depositi<strong>on</strong><br />

the O2-scenario, three passes are taken into account<br />

(2nd pass – reflecti<strong>on</strong> from the mirror, 3rd pass – reflecti<strong>on</strong> from the wall)<br />

choice of the density range:<br />

for X2-scenario: 0.1×10 20 < n e < 1.0×10 20 m -3<br />

for O2-scenario: 0.6×10 20 < n e < 2.2×10 20 m -3<br />

(absorpti<strong>on</strong> higher 90% after 3 passes)<br />

21


<str<strong>on</strong>g>ECCD</str<strong>on</strong>g> efficiency: density scan<br />

• X2: with launch angle for maximum efficiency<br />

• O2: launch angle defined by mirror <strong>on</strong> HFS<br />

22


Summarized <str<strong>on</strong>g>ECCD</str<strong>on</strong>g> profiles (five ( five beams, beams,<br />

P RF = 5 MW) MW<br />

n e (0) = 0.8×10 20 m -3 , Z eff = 1.5<br />

X2-scenario, off-axis:<br />

plasma is optically thick<br />

<str<strong>on</strong>g>ECCD</str<strong>on</strong>g> scales approx. as 1 / n e<br />

T e -dependence of <str<strong>on</strong>g>ECCD</str<strong>on</strong>g> efficiency<br />

is not str<strong>on</strong>gly pr<strong>on</strong>ounced<br />

O2-scenario, (almost) <strong>on</strong>-axis:<br />

plasma is optically “gray”<br />

(> 95% absorpti<strong>on</strong> after 3 passes)<br />

<str<strong>on</strong>g>ECCD</str<strong>on</strong>g> scales roughly as 1 / n e<br />

<str<strong>on</strong>g>ECCD</str<strong>on</strong>g> efficiency much more<br />

sensitive to T e<br />

X2: T e (0) ≈ 5.3 keV<br />

O2: T e (0) ≈ 6.7 keV<br />

23


Net plasma current c<strong>on</strong>trol for “standard” c<strong>on</strong>figurati<strong>on</strong><br />

density scan for 5 beams, P RF = 5 MW, β = 2%<br />

Ray-tracing + 1D transport<br />

modeling X2<br />

current drive<br />

X2-mode: <str<strong>on</strong>g>ECCD</str<strong>on</strong>g> c<strong>on</strong>trol of I bc is surely possible<br />

O2-mode: <str<strong>on</strong>g>ECCD</str<strong>on</strong>g> c<strong>on</strong>trol of I bc seems not reliable<br />

O2<br />

bootstrap current<br />

(apart of “high-mirror” c<strong>on</strong>figurati<strong>on</strong>)<br />

24


Summary & Outlook<br />

The different <str<strong>on</strong>g>ECRH</str<strong>on</strong>g> / <str<strong>on</strong>g>ECCD</str<strong>on</strong>g> scenarios analyzed with help of self-c<strong>on</strong>sistently<br />

coupled ray-tracing and 1D transport codes<br />

X2-scenario the main scenario for low and moderate densities,<br />

0.1 × 10 20 m -3 < n e < 1.0 × 10 20 m -3 → good c<strong>on</strong>finement, high temperatures<br />

multi-pass O2-scenario the main scenario for high densities,<br />

0.8 × 10 20 m -3 < n e < 2.0 × 10 20 m -3 → good c<strong>on</strong>finement, high temperatures<br />

net plasma current c<strong>on</strong>trol:<br />

for X2-scenario surely possible<br />

for O2-scenario reliable for the “high-mirror” c<strong>on</strong>figurati<strong>on</strong><br />

(but not for the “standard” and “low-mirror”)<br />

Improved tools for calculati<strong>on</strong> of <str<strong>on</strong>g>ECCD</str<strong>on</strong>g> and bootstrap current under<br />

development (parallel momentum c<strong>on</strong>servati<strong>on</strong> + arbitrary collisi<strong>on</strong>ality)<br />

Since L / R time scale is about tens sec<strong>on</strong>ds, time dynamic has to be studied:<br />

X2 → O2 transiti<strong>on</strong><br />

net plasma current & iota time evoluti<strong>on</strong> (island divertor topology)<br />

25


CWGM 4, Madrid, 20 - 22 October 2008<br />

Thanks for attenti<strong>on</strong><br />

26


28<br />

Diffusi<strong>on</strong> model<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

"<br />

!<br />

T<br />

T<br />

n<br />

Q<br />

n<br />

D<br />

i<br />

e<br />

Q<br />

Q<br />

Q<br />

T<br />

T<br />

D<br />

T<br />

E<br />

z<br />

n<br />

n<br />

D<br />

T<br />

n<br />

Q<br />

T<br />

T<br />

D<br />

T<br />

E<br />

z<br />

n<br />

n<br />

D<br />

n<br />

an<br />

an<br />

an<br />

an<br />

an<br />

an<br />

neo<br />

an<br />

neo<br />

r<br />

neo<br />

r<br />

neo<br />

#<br />

+<br />

$<br />

%<br />

=<br />

$<br />

%<br />

=<br />

#<br />

=<br />

+<br />

=<br />

#<br />

+<br />

#<br />

=<br />

#<br />

&<br />

&<br />

'<br />

(<br />

)<br />

)<br />

*<br />

+ $<br />

+<br />

,<br />

,<br />

-<br />

.<br />

/<br />

/<br />

0<br />

1<br />

%<br />

$<br />

%<br />

=<br />

&<br />

&<br />

'<br />

(<br />

)<br />

)<br />

*<br />

+ $<br />

+<br />

,<br />

,<br />

-<br />

.<br />

/<br />

/<br />

0<br />

1<br />

%<br />

$<br />

%<br />

=<br />

#<br />

2<br />

5<br />

,<br />

,<br />

,<br />

,<br />

,<br />

, 22<br />

21<br />

12<br />

11<br />

Anomalous heat diffusivity at the edge <strong>on</strong>ly.<br />

e<br />

an<br />

n<br />

/<br />

1<br />

!<br />

"<br />

#<br />

D 22 neoclassical heat diffusivity<br />

Yu. Turkin


Low and moderate densities: X2-scenario<br />

Ray-tracing results for the RF beam from the port AC1:<br />

n e = 0.6 × 10 20 m -3 , T e = 5.2 keV (from 1D transport code),<br />

“standard” c<strong>on</strong>figurati<strong>on</strong>, B = 2.53 T, = 2%<br />

29


Low and moderate densities: X2-scenario<br />

near the cyclotr<strong>on</strong> res<strong>on</strong>ance, the anomalous dispersi<strong>on</strong> effects<br />

are significant<br />

power is absorbed by the bulk electr<strong>on</strong>s<br />

31


High densities: O2-scenario<br />

the anomalous dispersi<strong>on</strong> effects are negligible<br />

power is absorbed not <strong>on</strong>ly by the bulk but also by suprathermal electr<strong>on</strong>s<br />

34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!