01.03.2013 Views

Hassan Ibrahim Sayed - MSpace at the University of Manitoba

Hassan Ibrahim Sayed - MSpace at the University of Manitoba

Hassan Ibrahim Sayed - MSpace at the University of Manitoba

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

THE<br />

TI-IE UNIVERSITY OF MÄNITOBA<br />

ISOLATION AND CYTOGENETICS OF Ä. ¡4ONOTELOTRISOMIC<br />

SERIES AND ACCESSORY CHROMOSOI'{ES IN BARLEY<br />

(irORlEUM WLGARE r.)<br />

by<br />

<strong>Hassan</strong> <strong>Ibrahim</strong> <strong>Sayed</strong><br />

A THESIS<br />

SUB}IITTED TO TIIE FACULTY OF GRADUATE STUDIES<br />

IN PARTIAL FULFILMEM OF THE REQUIREMEMS FOR THE DEGREE<br />

OF DOCTOR OF PHILOSOPHY<br />

DEPARTMETÌI OF PLA}TI SCIENCE<br />

I^7INNIPEG, MANITOBA<br />

Febrrnrv- I 973


To<br />

My Parents<br />

Naima and lbrahím <strong>Sayed</strong><br />

+1


ACKNOI^ILEDGEMEIfIS<br />

The author wíshes to express his gr<strong>at</strong>itude to Dr. S B. Helgason,<br />

Pr<strong>of</strong>essor <strong>of</strong> Plant Breeding, Department <strong>of</strong> Plant Science for suggesting<br />

<strong>the</strong> project. and for providing stimul<strong>at</strong>ing conrnents, Similarly to Dr.<br />

E. N. Larter, Rosner Research Pr<strong>of</strong>essor, for supervising <strong>the</strong> project<br />

during Lhe absence <strong>of</strong> Dr. Helgason in Njoro, Kenya, and for his helpful<br />

suggestions in preparing <strong>the</strong> manuscript.<br />

ledged.<br />

Financial support from <strong>the</strong> N<strong>at</strong>ional Research Council is acknow-<br />

ltr


lHE ISOLATION AND CYTOGENETICS OF A MONOTELOIRISOMIC<br />

SERIES AND ACCESSORY CHROMOSOMES IN BARLEY<br />

(HORDEIIM WLGARE L-)<br />

ASSTRACT<br />

Trisomic lines for each <strong>of</strong> chromosomes r, 3, 4, 5, 6 and 7 <strong>of</strong> barlev<br />

(Hordeum vulgare, L.) were subjected to mutagens viz", EMs, DEs, HAe FUdR<br />

and Ú -rays rvith <strong>the</strong> objective <strong>of</strong> inducing telocentrícs in <strong>the</strong> extra<br />

chromosome. Lethality <strong>of</strong> DES and El.fS on trisomic seeds and steril:Ltv<br />

caused by IIA and Í -rays in meiosís tre<strong>at</strong>ments accounË for failure to re-<br />

cover any telocentrics from <strong>the</strong>se tre<strong>at</strong>menËs" rn contrast, low doses <strong>of</strong><br />

d-rays, alone or in combin<strong>at</strong>ion with FLldR, significantly increased fre:<br />

quencies <strong>of</strong> telocentrics over <strong>the</strong> conËro1. All chromosome breaks in_<br />

duced in chromosome 7 were locarízed <strong>at</strong> <strong>the</strong> cenËromere and. <strong>the</strong> adjacent<br />

region <strong>of</strong> <strong>the</strong> long arm.<br />

A Ëotal <strong>of</strong> L7 telotrisomics studied represented 11 disËinct ehromo-<br />

some arms. Analysis <strong>of</strong> karyotype, and crosses to transl0c<strong>at</strong>ions and gene:<br />

tíc markers, showed <strong>the</strong>se telotrisomics to constitute a series which lacks<br />

onry short arms <strong>of</strong> chromosomes 2 and 4 and <strong>the</strong> long arm <strong>of</strong> chromosome 7 "<br />

The karyotype analysis índic<strong>at</strong>ed an arm raLio higher than <strong>the</strong><br />

standard for chromosome I but a lower arm r<strong>at</strong>Ío for chromosome 3. Assign-<br />

menË <strong>of</strong> genetic markers to specific arms <strong>of</strong> chromosomes 3 and 5 contra-<br />

dicted prior assumptions based on karyotype analysis, indic<strong>at</strong>íng thaË <strong>the</strong><br />

existÍng genetic maps <strong>of</strong> Èhese chromosomes are reversed"<br />

1\/


TelotrÍsomics for long arms resembled <strong>the</strong>ir rel<strong>at</strong>ed trisomics where-<br />

as those for short arms \'üere virtually indistinguishable from normal dip-<br />

loids. The extra telocentric associaËed with its homologues in a hetero-<br />

morphic trivalenË ín 827" and 77.6% <strong>of</strong>. PMC's <strong>at</strong> diakinesis and Mr, respec-<br />

Ëively" UnivalenË telocentrics divided precociously <strong>at</strong> Ar, lagged aË T,<br />

and T,. resulting in a frequency <strong>of</strong>. 26"7% quartets with micronuclei"<br />

II<br />

Comparisons beËween s<strong>at</strong>ellited and non-s<strong>at</strong>ellited telocentrics <strong>of</strong> chromo-<br />

some 6 suggested th<strong>at</strong> <strong>the</strong> err<strong>at</strong>ic behavior <strong>of</strong> Ëhe s<strong>at</strong>ellited telocentric<br />

r^ras due to <strong>the</strong> presence <strong>of</strong> <strong>the</strong> nucleolus and its interference with chiasma<br />

form<strong>at</strong>ion" Transmission <strong>of</strong> telocenËrics in. selfed progenies averaged<br />

3I"l% wiËh no obvious Ëransmission through pol1en"<br />

Correl<strong>at</strong>ions <strong>of</strong> arm length in rel<strong>at</strong>ion to chromosome associ<strong>at</strong>ion and<br />

transmission were posítive and highl)' signíficanË" Correl<strong>at</strong>íon between<br />

Ëhe frequency <strong>of</strong> univalents <strong>at</strong> M, and quartets with micronuclei (meíotic<br />

Índex) was also positive and highly significant, suggesting th<strong>at</strong> <strong>the</strong><br />

meiotic index may be used as a convenient measure for chromosome sËabilitv.<br />

A telocentric shifË r{as detected in <strong>the</strong> progeny <strong>of</strong> f:elotrisomic 2nl-2L.<br />

Accessory chromosomes in barley occurred spontaneously among <strong>the</strong> pro-<br />

geny <strong>of</strong> trisomics " They are smaller than normal telocentrics with a glo-<br />

bular appearance. Their number per cel1 varied in both som<strong>at</strong>ic and germi-<br />

naI cells" At meiosis, <strong>the</strong>y were positíoned <strong>at</strong> <strong>the</strong> equaLorial pl<strong>at</strong>e,<br />

divided precociously <strong>at</strong> A, and Tr, and<br />

<strong>the</strong> quartet stage" It is assumed th<strong>at</strong>.<br />

normal chromosomes resulting in l-oss <strong>of</strong><br />

lagged and formed micronuclei <strong>at</strong><br />

<strong>the</strong>y arose through misdivision from<br />

<strong>the</strong>ir pairing arms.


GENERÀT, INTRODUCTION<br />

TA3LE OF CO}.TIEI{IS<br />

SECTION I: Induction <strong>of</strong> Telocentrics<br />

I}{IRO]]UCTION<br />

REVIEW OF LITERATURE<br />

Telocentr ic Chromosomes<br />

Mutagens<br />

Radi<strong>at</strong>ion<br />

Chemicals<br />

MATERIAI AND }GTHODS<br />

Experiment A<br />

Experiment B,<br />

Experiment D<br />

Experiment A<br />

Experiment B,<br />

Experiment D<br />

LITERATURE CITED<br />

and C<br />

RESULTS AND DISCUSSION<br />

and C<br />

SECTION II: CytogeneEics <strong>of</strong> Telotrisomics<br />

IIvIRODUCTION<br />

REVIEI^] OF LITERATURE<br />

'l' amiñ^1^ô"<br />

Identif ic<strong>at</strong>ion <strong>of</strong> Telotrisomics<br />

Cytological Behavior <strong>of</strong> Telotrisomics<br />

Breeding Behavior <strong>of</strong> Telotrisomics<br />

Chromosome Mapping<br />

Thresholds<br />

MATERIAL AND }{ETIIODS<br />

Mono tel o tris omics<br />

RESULTS<br />

The<br />

The<br />

AND DISCUSSION<br />

Compens<strong>at</strong>ing Te lotrisomic<br />

True Monol-elotrisomics<br />

vi<br />

Paße<br />

IJ<br />

IJ<br />

IJ<br />

5<br />

5<br />

a<br />

B<br />

T4<br />

L6<br />

L6<br />

t9<br />

2L<br />

25<br />

30<br />

31<br />

Jl.<br />

JI<br />

J+<br />

35<br />

JO<br />

39<br />

/, 1<br />

/,1<br />

46<br />

46<br />

53


Identif íc<strong>at</strong>ion <strong>of</strong> Telotrisomics<br />

Plant Morphology<br />

Meiotic Behavior <strong>of</strong> TelotrisomÍcs<br />

Pollen Viability<br />

Transmission <strong>of</strong> Telocentrics<br />

Correl<strong>at</strong>ion Studies <strong>of</strong> Chromosome Associ<strong>at</strong>ion<br />

and Arm Length and Behavior<br />

Telocentric Shift<br />

LITERATURE CITBD<br />

SECTION III: Cytogenetics <strong>of</strong> Accessory Chromosomes<br />

INTRODUCTION<br />

REVIEI^I OF TITERATURE<br />

Accessory Chromosomes (General)<br />

Chromosome Number and Morphology<br />

Origin <strong>of</strong> Accessory Chromosomes<br />

Heterochrom<strong>at</strong> iniz<strong>at</strong> ion<br />

Cytological Behavior <strong>of</strong> Accessory Chromosomes<br />

Phenotypic Effects <strong>of</strong> Accessory Chromosomes<br />

I,IATERIAL AND }.æTHODS<br />

RESULTS<br />

Mitosis<br />

Meiosis<br />

Transmission <strong>of</strong> Accessory Chromosomes<br />

DISCUSSION<br />

LITERATURE CITED<br />

GENERAL DISCUSSTON<br />

BIBLIOGRAPHY<br />

v1-1<br />

Page<br />

62<br />

66<br />

B1<br />

B1<br />

B5<br />

B9<br />

92<br />

96<br />

q7<br />

Q7<br />

97<br />

9B<br />

99<br />

100<br />

L02<br />

103<br />

L04<br />

LO4<br />

I07<br />

115<br />

118<br />

t22<br />

L25<br />

135


Table<br />

r-1<br />

T-2<br />

r-3<br />

T-4<br />

II-5<br />

II-6<br />

TT-7<br />

II -8<br />

II-9<br />

II -10<br />

II-11<br />

LIST OF TABLES<br />

Survival <strong>of</strong> disomics and trisomics among M1<br />

seedlings from dormant seeds tre<strong>at</strong>ed. with<br />

EMS and DES<br />

Chromosome segreg<strong>at</strong>ion among<br />

from M" -irradí<strong>at</strong>ed trisomics<br />

M, -s eedl ings<br />

The effect <strong>of</strong> HA and yl-rays on trisomic<br />

and disomic plants treaËed during meiosis<br />

Chromosome const.itution <strong>of</strong><br />

from plants irradi<strong>at</strong>ed <strong>at</strong><br />

Source <strong>of</strong> telotrisomic (2n<br />

stocks used in <strong>the</strong> present s tudy<br />

M, -proBenies<br />

seõdling stage<br />

* a fragment)<br />

Transloc<strong>at</strong>ion Ëesters and genetic markers<br />

used to identify telotrisomics<br />

Chromosome configur<strong>at</strong>ion <strong>at</strong> diakinesis<br />

and M, <strong>of</strong> a compens<strong>at</strong>ing telotrisomic<br />

I'<br />

Chromosome behavior <strong>at</strong> A_, T_ and tetrad<br />

stage <strong>of</strong> a compens<strong>at</strong>ing treloårísomic<br />

Breeding behavior <strong>of</strong> compens<strong>at</strong>íng<br />

telotrisomic<br />

M, configur<strong>at</strong>ions <strong>of</strong> F.' -hybrids betrveen<br />

têlotrisomics and tr"r,åloc<strong>at</strong>ion testers<br />

)<br />

TT-L2 X- analysis <strong>of</strong> F,<br />

monotelo trisomics<br />

sibs from crosses<br />

II -13<br />

Rel<strong>at</strong>ive length<br />

chromosomes <strong>of</strong><br />

compared to <strong>the</strong><br />

and arm r<strong>at</strong>io <strong>of</strong> som<strong>at</strong>ic<br />

eleven telotrisomics as<br />

standard karyotype<br />

-popul<strong>at</strong>ions <strong>of</strong> F -<br />

-1<br />

and <strong>the</strong>ir disomic<br />

to genetic markers<br />

Morphological characteristics<br />

telotrisomics, <strong>the</strong>ir clisomic<br />

parcntal trisomics<br />

<strong>of</strong> barley<br />

sibs and<br />

v]-1 t<br />

Page<br />

L7<br />

18<br />

20<br />

23<br />

42<br />

4¿r<br />

50<br />

50<br />

51<br />

55<br />

59<br />

60<br />

OJ


Table<br />

Tf-L4 Frequencies <strong>of</strong><br />

dialcines is and<br />

II-16<br />

TT-T7<br />

II-18<br />

II-19<br />

chromosome configur<strong>at</strong>ions <strong>at</strong><br />

M, in monotelotrisomics<br />

II-15 Position <strong>of</strong> telocentrics rel<strong>at</strong>ive to<br />

equ<strong>at</strong>orial pl<strong>at</strong>e<br />

Chromosome behavior <strong>at</strong> A_ and T<br />

monotelotrisomics -l-^--<br />

I<br />

Frequencíes <strong>of</strong> micronuclei in quartets<br />

<strong>of</strong> monotelotrisomics<br />

Percentages <strong>of</strong> stained pollen in<br />

monotelotrisomíc<br />

Transmission frequencies <strong>of</strong> telocentrics<br />

in <strong>the</strong> progenies <strong>of</strong> selfed and (2n + telo)<br />

x 2n crosses<br />

II-20 A sunrnary <strong>of</strong> chromosome and breeding<br />

behavior (percentages) <strong>of</strong> eleven telo_<br />

trisomics listed in order <strong>of</strong> long to<br />

short telocentrics<br />

II-21<br />

TTT-22<br />

LTT-23<br />

TTT-24<br />

III.25<br />

List <strong>of</strong> correl<strong>at</strong>ions carried ouË on<br />

telotrisomics<br />

<strong>of</strong><br />

eleven<br />

Chromosome numbers in root-tips from two<br />

lines <strong>of</strong> barley carryíng accessory chromosomes<br />

Frequencies <strong>of</strong> different configur<strong>at</strong>ions <strong>of</strong><br />

accessories in plants with one, two and<br />

three agcessories<br />

Chromosome configuraLions <strong>at</strong> diakinesis and<br />

M, in PMCts frgm a plant v/ith 2n * 3 acc<br />

Frequencies <strong>of</strong> cells<br />

tions <strong>at</strong> meiosis in with different configur<strong>at</strong>eloËrisomics<br />

and accessory<br />

chromosomes<br />

1l¿<br />

Page<br />

Áo<br />

7T<br />

72<br />

/ó<br />

82<br />

83<br />

B6<br />

88<br />

108<br />

110<br />

111<br />

I16


II.1<br />

TT-2<br />

II-3<br />

TT-4<br />

II-5<br />

III-6<br />

TTT-7<br />

LIST OF FIGTIRES<br />

Chromosome mappíng by telotrisomícs<br />

Chromosome configur<strong>at</strong>ions <strong>at</strong> diakinesis<br />

in PlvfCrs <strong>of</strong> a compens<strong>at</strong>ing telotrisomic<br />

Cytological identific<strong>at</strong>ion <strong>of</strong> telotrisomics<br />

Chromosome configur<strong>at</strong>ions <strong>of</strong> monoteloËricomics<br />

<strong>at</strong> diakinesis and M,<br />

Chromosome behavior<br />

A- and guartet sfâeê<br />

I'<br />

Som<strong>at</strong>ic and<br />

chromosomes<br />

Meiotic<br />

(cont . )<br />

<strong>of</strong> monotelotrisomics <strong>at</strong><br />

meiotic behavior <strong>of</strong> accessorv<br />

behavior <strong>of</strong> accessory chromosomes<br />

106<br />

113<br />

Page<br />

37<br />

4&<br />

57<br />

6B<br />

75


GENERAL I}TTRODUCTION<br />

Chromosome engineering is a very fruitful technique for plant improve-<br />

ment and is extensively used in breeding programs. Interspecifíc and<br />

intergeneric hybridiz<strong>at</strong>ion, induced ploidy and aneuploidy are good examples<br />

<strong>of</strong> th<strong>at</strong>. use.<br />

Although a gre<strong>at</strong> deal <strong>of</strong> genetic and cytological work has been con-<br />

ducted with cultiv<strong>at</strong>ed barley (Hordeum vulgare L. Edmend. Larn.), its diploid<br />

n<strong>at</strong>ure had limited chromosome engineering in most cases to transloc<strong>at</strong>ions.<br />

Tsuchiya (1960) established <strong>the</strong> first complete trisomic series in barlev.<br />

Therefore, it was used to assign <strong>the</strong> seven linkage groups to <strong>the</strong> individual<br />

chromosomes. Hor¿ever, Lrisomic analysis, has not been capable <strong>of</strong> establish-<br />

ing <strong>the</strong> rel<strong>at</strong>íonship between <strong>the</strong> genetic and cytological map with regard<br />

to <strong>the</strong> centromere position. It seems th<strong>at</strong> telocenLrics are <strong>the</strong> only suit-<br />

able method to achieve such a purpose. A telocentric chromosome ís a<br />

single chromosome arm r¿ith a termínal centromere. It may replace a normal<br />

homologue in polyploids (monotelosomics) or may exist in addítion to <strong>the</strong><br />

normal disomic complement (monoËelotrisomics). Since deficiencies or<br />

deletions even for small segments are generally leËhal in diploids, only<br />

telotrisomics are Ëoler<strong>at</strong>ed.<br />

Telotrisomics are very useful in <strong>the</strong> study <strong>of</strong> geneËic activity <strong>of</strong><br />

each chromosome arm as well as for linkage analysis and for loc<strong>at</strong>.ing <strong>the</strong><br />

cenlromere. Since telotrisomics carry only an extra chromosome arm, <strong>the</strong>y<br />

are more vigorous and fertile t.han <strong>the</strong>ir rel<strong>at</strong>ed trisomics (Fedak, L969).


To d<strong>at</strong>e, less than<br />

studied in barley.<br />

trisomic series in<br />

different mutagens<br />

half <strong>of</strong> <strong>the</strong> fourteen possible telocentrics have been<br />

The aim <strong>of</strong><br />

barley and<br />

in order to<br />

this investig<strong>at</strong>Íon \"¡as to establish a telo-<br />

to this end, trisomics were subjected to<br />

induce telocentrics in <strong>the</strong> extra chromosome<br />

Using karyotype analysis <strong>the</strong> isol<strong>at</strong>ed telocentrics <strong>the</strong>n were classified<br />

into acrocentrics, true telocentrics and accessory chomosomes. True telo-<br />

trisomics were identified by means <strong>of</strong> crossing each to appropriaËe trans-<br />

loc<strong>at</strong>ion and genetic marker stoclcs and studying <strong>the</strong> meiotic behavior <strong>of</strong><br />

<strong>the</strong> F- -prosenv. Each identified<br />

I'<br />

logically and cytologically, in<br />

t\"zeen arm length and chromosome<br />

telotrisomic was studied in detail morpho-<br />

order to establish <strong>the</strong> rel<strong>at</strong>ionship be-<br />

behavior, as well as chromosome behavior<br />

and stability. In addition, accessory chromosomes r^/ere identified and<br />

studied cytologíca1ly ín som<strong>at</strong>ic and sporogenous ce11s.<br />

The present <strong>the</strong>sis is divided into <strong>the</strong> following sections:<br />

Section I: Induction <strong>of</strong> telocentrics.<br />

Section II: Cytogenetícs <strong>of</strong> telotrisomics.<br />

Section III: Cytogenetics <strong>of</strong> accessory chromosomes.


SECTION - I<br />

INDUCTION OF TELOCENTRTCS


IlflRODUCTION<br />

Although trisomics have been utilized cxtensively in genetic studies<br />

<strong>of</strong> plants, in some specíes (e.g. Hordeum vulgare L.) cerLain difficulties<br />

have been encountered ín <strong>the</strong>ir use. Among <strong>the</strong>se characteristics are poor<br />

growth <strong>of</strong> trisomics rel<strong>at</strong>ive to normal diploids and low fertility and in-<br />

frequent transmission <strong>of</strong> <strong>the</strong> extra chromosome. For <strong>the</strong>se reasons <strong>at</strong>ten-<br />

Ëion has been dravrn to <strong>the</strong> use <strong>of</strong> telotrisomics which in comparison with<br />

trisomics are more vigorous and fertile.<br />

Telotrisomics involve only an addit.íonal chromosome arm r<strong>at</strong>her than<br />

a whole chromosome and <strong>the</strong>reby provide an opportunity to map <strong>the</strong> position<br />

<strong>of</strong> <strong>the</strong> centromere rel<strong>at</strong>ive to knorvn genes loc<strong>at</strong>ed on each arm. To=d<strong>at</strong>e<br />

<strong>the</strong> position <strong>of</strong> <strong>the</strong> cenËromere on most <strong>of</strong> <strong>the</strong> seven linkage groups <strong>of</strong><br />

barley has not been clearly demonstr<strong>at</strong>ed"<br />

Although telotrisomics in barley occur spontaneously, <strong>the</strong>y do so <strong>at</strong><br />

a frequency too low for pracËical purposes (Tsuchiya, L971; Yu, 1968).<br />

The observ<strong>at</strong>ions <strong>of</strong> some r¿orkers (Rarnage et al., Lg6L; Hagberg et al.,<br />

1963) th<strong>at</strong> certaín induced transloc<strong>at</strong>ions involved breaks within centro-<br />

meres suggest th<strong>at</strong>. mutagenic Ëre<strong>at</strong>ments may be an effective method to<br />

produce telocentrics.<br />

In <strong>the</strong> following section, <strong>the</strong> results <strong>of</strong> four experiments are re-<br />

ported, each designed Lo measure <strong>the</strong> effect.s <strong>of</strong> various mutagenic agents<br />

on <strong>the</strong> induction <strong>of</strong> telotrisomics <strong>of</strong> barley (H. vulgare L.).


Telocentric Chromosomes<br />

FJrIEI.I OF LITERATURE<br />

Yisdivisíon" Darlington (1939) considered th<strong>at</strong> centromers <strong>of</strong><br />

different. chromosomes hrere all alike in <strong>the</strong>ir form and behavior. LÍma<br />

De Faria (1958), could distinguish four chromomeres in pachytene chromo-<br />

somes <strong>of</strong> maize, disposed in a longitudinal line within <strong>the</strong> centromere<br />

region" He suggested th<strong>at</strong> <strong>the</strong> centromere structure is a tandem reverse.<br />

Darlington (1939) and sears (L952) ouË1ined deËailed srudies <strong>of</strong><br />

univalent misdivision in Fritillaria and whe<strong>at</strong>, respectively. Their<br />

observ<strong>at</strong>ions indic<strong>at</strong>ed thaË univalenËs may divide Ëransversely (misdivide)<br />

<strong>at</strong> <strong>the</strong> centromere eiËher during A, or <strong>the</strong>ir division products <strong>at</strong> A' to<br />

give rise to chromosontes with terminal centromeres (telocenËrics). More-<br />

over, a single centromere could misdivide into four functional parËs"<br />

Bror,¡n (1958) believed th<strong>at</strong> misdivision <strong>of</strong> <strong>the</strong> centromere depends more<br />

uPon a change in timing <strong>of</strong> normal centromere behavior than upon centro-<br />

mere structure. Marks (L957) considered four points <strong>of</strong> break; Ëhree <strong>of</strong><br />

Ëhem within <strong>the</strong> centromere, giving rise Ëo true telocentrics with a eentro-<br />

mere ei<strong>the</strong>r complete or deficient, while <strong>the</strong> fourth occurs in <strong>the</strong> ad'iacent<br />

arm resulting in an acrocentric. However, from <strong>the</strong> genetic viewpoint,<br />

recombinaLion within a very shorÈ arm would be seriously affected due to<br />

Ëhe r'estriction in <strong>the</strong> frequency <strong>of</strong> crossing over.<br />

9ccurrence. The first observ<strong>at</strong>ion <strong>of</strong> a telocentric was made by<br />

Huskins (1934) in wheaË. He described a heteromorphic bivalent caused


y <strong>the</strong> loss <strong>of</strong> approxim<strong>at</strong>ely one half <strong>of</strong> a chromosome. Among <strong>the</strong> progeny<br />

<strong>of</strong> trÍsomíc-S in maíze, Rhoades (1936) isol<strong>at</strong>ed a plant with an extra f.rag-<br />

menË chromosome and identified iL as <strong>the</strong> short arm <strong>of</strong> chromosome-S. More-<br />

over, ín Dgtura, many planËs wiËh one or tT¡ro extra telocentrics were found<br />

in <strong>the</strong> progeny <strong>of</strong> trisomics (Blakeslee and Avery, 1938) . Smith G947)<br />

found a compens<strong>at</strong>ing telotrisomíc in <strong>the</strong> progeny <strong>of</strong> an irradiaËed spike<br />

<strong>of</strong> T_" gqlococcum. He assumed th<strong>at</strong> a break occurred within <strong>the</strong> centromere<br />

and one <strong>of</strong> <strong>the</strong> resulËing arms subsequenËly formed an isochromosome.<br />

I{hil-e telocenËrics are comrnon in <strong>the</strong> progeny <strong>of</strong> wheaË aneuploids,<br />

Ëhey are very seldom found in <strong>the</strong> progeny <strong>of</strong> barley trisomics. Tsuchiya<br />

(1960) and Yu (1963) observed th<strong>at</strong> about 24% <strong>of</strong> microsporocytes (PMC's)<br />

wiËh an extra chromosome conËained a univalent. In 50% <strong>of</strong> Ëhese cells,<br />

<strong>the</strong> univalent was positioned <strong>at</strong> Ëhe equ<strong>at</strong>orial pl<strong>at</strong>e and occassionally<br />

iÈ misdivided. Therefore, Lhe actual frequency <strong>of</strong> telocentrics in Ëhe<br />

progeny <strong>of</strong> <strong>the</strong>se trisomics lras very low (0"17% Tsuchiya, L97I). For this<br />

reason iË was necessary Ëo explore some artificial meËhods such as using<br />

muËagens to induce Ëelocentrics in barley.<br />

Mutagensis has been one <strong>of</strong> <strong>the</strong> most extensively investig<strong>at</strong>ed fields<br />

and as a result, literaËure pertaining to this field <strong>of</strong> research is volu-<br />

minous "<br />

However, several excellent reviews are available including those<br />

<strong>of</strong> Praaken (1959), Gaul (1964), I^Iallace (1964), and Auerbach (1967) who<br />

presenËed a deEailed survey <strong>of</strong> <strong>the</strong> physical properties, biological mani-<br />

festaLions, methodology and some <strong>of</strong> <strong>the</strong> results obtained wiEh mutagenic


tre<strong>at</strong>ment <strong>of</strong> plant species. In addition Nilan and his co-workers (1963,<br />

L964' 1968) discussed <strong>the</strong> factors which modify mutagenic effects. The<br />

following reviel^I deals with only certain specific aspects <strong>of</strong> induced<br />

chromosomal- aberr<strong>at</strong>ions as Ehey pertain to <strong>the</strong> presenE study.<br />

Mutagens<br />

Two main groups <strong>of</strong> mutagens are recognized, physical radi<strong>at</strong>íon and<br />

chemicals. Although both groups induce similar effects, <strong>the</strong>ir mode <strong>of</strong><br />

action is quite different<br />

RadíaËion. The penetr<strong>at</strong>ion. <strong>of</strong> radiaËion ínto m<strong>at</strong>erial is accompanied<br />

by an energy transfer known as excit<strong>at</strong>ion. In addition, ionizing radia-<br />

tíon is capable <strong>of</strong> producing í.on pairs when <strong>the</strong>y interact wiËh m<strong>at</strong>ter"<br />

This ionizaËion, as it is called, as well as excit<strong>at</strong>ion may cause a direct<br />

change in nucleíc acids resulting in mut<strong>at</strong>ions.<br />

Ultraviolet 1ight, <strong>the</strong> only form <strong>of</strong> non-ionizing radi<strong>at</strong>ion, does noL<br />

have <strong>the</strong> ability to Í.oni-ze but transfers its energy by excitaËion" Due<br />

to íts low penetr<strong>at</strong>ion ability, its use in planË mut<strong>at</strong>ion work is generally<br />

i-ímiËed to pol1en irradialion (Fabergé, L957; stienitz-sears and sears,<br />

L957) " The mutagenic influence <strong>of</strong> ultraviolet rays is highest <strong>at</strong> vrave<br />

lengths th<strong>at</strong> show <strong>the</strong> highest absorption by nucleic acids (Praaken, 1959).<br />

tlltraviolet radi<strong>at</strong>ion increases point mut<strong>at</strong>ions rel<strong>at</strong>ive to chromosome<br />

breaks, and when Ehey occur <strong>the</strong>y tend to rejoin less easily and <strong>the</strong>refore<br />

are likely to produce deficiencies which are <strong>of</strong> lirnited values.<br />

In contrasË, Ëhe deep penetr<strong>at</strong>ion <strong>of</strong> ionizing radiaEions (x-rays,<br />

d-rays ancl neutrons) causes chronlosome breakage. However, <strong>the</strong>ir effi-


ciency is dependent on <strong>the</strong> energy dissip<strong>at</strong>ion and/or ion density along<br />

Êhe track <strong>of</strong> <strong>the</strong> ionizing particles Ëh<strong>at</strong> are ejected ín <strong>the</strong> tissue.<br />

Since x-rays and C -rays dissip<strong>at</strong>e <strong>the</strong>ir energy in biological m<strong>at</strong>eríal<br />

by <strong>the</strong> production <strong>of</strong> <strong>the</strong> smaller electrons, fast neutrons by ejection<br />

<strong>of</strong> <strong>the</strong> larger protons, and <strong>the</strong>rmal neutrons to a gre<strong>at</strong> extent by emission<br />

<strong>of</strong> <strong>the</strong> even larger alfa parËicles, a successively increased ability to<br />

break chromosomes is <strong>the</strong>refore expected from <strong>the</strong> use <strong>of</strong> <strong>the</strong>se Ëhree muta-<br />

gens " This was confirmed by Leroy (1968) who found th<strong>at</strong> neutrons had a<br />

gre<strong>at</strong>er mutagenic efficiency than f-rays for <strong>the</strong> same survival <strong>of</strong> Mr-<br />

plants " In contrast to non-ionÍ-zíng rays, all breaks índuced by ionizing<br />

radí<strong>at</strong>ions have generally a rel<strong>at</strong>ively high rejoining ability which favor<br />

chromosome rearrangements such as transloc<strong>at</strong>ions, inversions, and dupli-<br />

c<strong>at</strong>íons.<br />

Chemicals A large variety <strong>of</strong> chemical muLagens are knor¿n. Alkyl<strong>at</strong>-<br />

ing agents, <strong>the</strong> most potenË chemical mutagens, produce in addition Ëo<br />

point. muË<strong>at</strong>ions all Ëypes <strong>of</strong> chromosome aberr<strong>at</strong>ions. Because <strong>the</strong>ir gene-<br />

tical effects are very similar to those <strong>of</strong> ionizing radí<strong>at</strong>ion, <strong>the</strong> term<br />

0tradiomimeËic agentsrr is <strong>of</strong>ten applied to <strong>the</strong>m. The alkyl<strong>at</strong>ing agents<br />

exert <strong>the</strong>ir biological effects by alkyl<strong>at</strong>ion <strong>of</strong> nucleophilic sites in DNA,<br />

and more specifically, <strong>the</strong>y <strong>at</strong>tack <strong>the</strong> N-7 <strong>at</strong>om <strong>of</strong> guanine which is thought as<br />

Ëhe most important biological action <strong>of</strong> <strong>the</strong>se agents (Caspersson et al. Lg67).<br />

Ano<strong>the</strong>r important class <strong>of</strong> chemical mutagens are <strong>the</strong> base analogs or<br />

ínhibitors <strong>of</strong> DNA synchesis. They induce mainly chromosmoal aberr<strong>at</strong>ions


consisting <strong>of</strong> gaps and open breaks which are due to interruptions in<br />

DNA replic<strong>at</strong>ion in cells completing <strong>the</strong> syn<strong>the</strong>sis phase" Torsions and<br />

tensions produced by chromosome coilíng <strong>at</strong> prophase as well as anaphase<br />

movement would result in fragment<strong>at</strong>ion <strong>of</strong> <strong>the</strong>se chromosomes. The fact<br />

th<strong>at</strong> chromosome reârrangements are rare or enËirely absenË among aber-<br />

raËions induced by some base analogs as 5-fluorodeoxyurídine (FUdR) in-<br />

dic<strong>at</strong>e th<strong>at</strong> rejoining <strong>of</strong> chromosomal breaks is inhibited. Taylor et al.<br />

(1962) reported ËhaE FUdR binds irreversibly to Ëhe enzyme thymidl<strong>at</strong>e<br />

syn<strong>the</strong>Ëase and inhibits thymidlic acid syn<strong>the</strong>sj-s v¡hich is needed for<br />

DNA replic<strong>at</strong>ion. Thus, <strong>the</strong> muËagen ís noË only capable <strong>of</strong> inducing<br />

chromosome breaks, but it should also inhibit <strong>the</strong> rejoining <strong>of</strong> breaks<br />

induced by irradi<strong>at</strong>ion. This \¡ras accomplished by usíng concentr<strong>at</strong>ions<br />

lower than those needed for <strong>the</strong> production <strong>of</strong> chromosomal breaks. Irra-<br />

di<strong>at</strong>ion in Ëhe presence <strong>of</strong> FUdR gre<strong>at</strong>ly increased <strong>the</strong> frequency <strong>of</strong> free<br />

fragmenËs accompanied by a decrease in <strong>the</strong> frequency <strong>of</strong> chromosomal<br />

bridges (Kihlman, L962; Taylor et a1. L962; Moutschen-Dahmen et_ al. Lg66)<br />

Chromosome breaking agents exerË <strong>the</strong>ir effects during different<br />

stages <strong>of</strong> <strong>the</strong> cell cycle. Most radiomimetic agents have only a delayed<br />

effect, í.e. chromosome aberr<strong>at</strong>ions induced ín early interphase cel1s<br />

(Kihlman, 1963). Ionizing radi<strong>at</strong>ion induce aberr<strong>at</strong>ions <strong>at</strong> all sËages<br />

<strong>of</strong> <strong>the</strong> cel1 cyc1e, i.e. non-delayed and delayed effects. Base analogs<br />

have a non-delayed effect resultíng in <strong>the</strong> imrnedi<strong>at</strong>e appearance <strong>of</strong> chro-<br />

mosomal gaps and open breaks in addition to a delayed effect.


Although chemicals have similar effect,s to those induced by lonizing<br />

radi<strong>at</strong>ions, three major differences betr,¡een <strong>the</strong>se tv¡o muiagens are known<br />

Ëo exist. These are;<br />

(1) Tre<strong>at</strong>ment with chemical results in a deficiency <strong>of</strong> chromosome<br />

rearrangements rel<strong>at</strong>ive Eo gene mut<strong>at</strong>ions. This deficiency is not due<br />

to a shorËage in chromosome breaks but to<br />

<strong>of</strong> rejoining (annealing) (Auerbach, 1967) .<br />

<strong>the</strong> inhibition <strong>of</strong> <strong>the</strong> process<br />

Froese-Gertzeî et al. (L964) found th<strong>at</strong> x-rays caused símilar de-<br />

creases ín seedlings gro\^rth and spike fertility whereas EMS affected<br />

fertility more than seedlings groivth. The cytological analysis <strong>of</strong> <strong>the</strong><br />

tre<strong>at</strong>ed maËerial showed th<strong>at</strong> reduction in fertility was directly rel<strong>at</strong>.ed<br />

Ëo <strong>the</strong> frequency <strong>of</strong> chromosome aberr<strong>at</strong>ions after x-rays Lre<strong>at</strong>ment. In<br />

contrast, Ëhe pronounced decrease in fertility after EMS tre<strong>at</strong>menË .r¡/as<br />

accompanied by a very low frequency <strong>of</strong> chromosome abnormalities. These<br />

results confirm those <strong>of</strong> S<strong>at</strong>o and Gaul (L967) who pointed out th<strong>at</strong> chromo-<br />

some abnormalities \¡rere not considered to be high enough to accounË for<br />

Ëhe extreme steriliLy induced in barley by El'fS. They concluded th<strong>at</strong> small<br />

deficiencies may be <strong>the</strong> main cause <strong>of</strong> sterility in EMS-tre<strong>at</strong>ed m<strong>at</strong>erial.<br />

In an <strong>at</strong>tempt to study <strong>the</strong> n<strong>at</strong>ure <strong>of</strong> sterility exhibited by irra-<br />

di<strong>at</strong>ed M, plants, Ekberg (1969) anaLyzed 95 lines <strong>of</strong> barley in which par-<br />

tial sterility had been induced by various mutagenic agents. She found<br />

th<strong>at</strong> in radi<strong>at</strong>ion tre<strong>at</strong>ed m<strong>at</strong>erial transloc<strong>at</strong>ions and invcrsions r¡/ere <strong>the</strong><br />

most predomin<strong>at</strong>e form <strong>of</strong> chromosomal aberr<strong>at</strong>ions (82%), while <strong>the</strong>se types<br />

10


vTere in minoriÈy (27%) after EMS tre<strong>at</strong>ment. The majority in Ëhe l<strong>at</strong>ter<br />

case were lethals which cause abortion <strong>of</strong> seeds and/or gametes in hetero-<br />

zygous plants.<br />

(2) A tendency exists for chemical-induced injuries to genetic<br />

m<strong>at</strong>erial to remain l<strong>at</strong>ent over a period th<strong>at</strong> may extend over many cell<br />

cycles, i.e. delayed effect Since <strong>the</strong> form<strong>at</strong>ion <strong>of</strong> a chromosome re-<br />

arrangement requires <strong>the</strong> simultaneous break <strong>of</strong> two chromosomes withín<br />

<strong>the</strong> same cell, a potenËial rearrangement. is lost if <strong>the</strong> two breaks open<br />

<strong>at</strong> differenË stages <strong>of</strong> <strong>the</strong> ce1l cycle. This could be due to a linited<br />

ínjtrry to Dl{A after <strong>the</strong> completion <strong>of</strong> its synËhesis, resulting ín chro-<br />

m<strong>at</strong>íd type aberr<strong>at</strong>ions.<br />

(3) The occurrence <strong>of</strong> a nonrandom distribution <strong>of</strong> chromosome break-<br />

ages after tre<strong>at</strong>ment with chemical mutagens. In contrast Ëo radia¡ion"<br />

chromosome breaks induced by chemical mutagens are, in most cases, loca-<br />

Lized <strong>at</strong> certain regions known Lo be heterochrom<strong>at</strong>ic (KihIman, 1963;<br />

caspersson et al. L969; N<strong>at</strong>arajan et al. Lg6g). Tre<strong>at</strong>ments <strong>of</strong> vicia<br />

febg roots !üith B-ethoxycaffiene and maleic hydrozide induced chromosome<br />

aberr<strong>at</strong>ions localized to <strong>the</strong> secondary constriction and Ëhe cenËromere<br />

regíon <strong>of</strong> metacentric M-chromosome, respectively (Kihrman, 1963).<br />

Caspersson et 41. (1967) reported th<strong>at</strong> chromosome breaks induced by quina-<br />

crine mustard occurred predominantly in <strong>the</strong> same well defined regions<br />

known in VicÍa to be heterochrom<strong>at</strong>ic. In barley, Singh et a1" (1970)<br />

found th<strong>at</strong> about 50%<br />

<strong>of</strong> chromosomal breaks induced by L.S.D. were con-<br />

fi-necl to <strong>the</strong> centromere region. The probable limit<strong>at</strong>ion <strong>of</strong> chromosome<br />

11


aberr<strong>at</strong>ions to heterochrom<strong>at</strong>in indic<strong>at</strong>e th<strong>at</strong> though <strong>the</strong> effect <strong>of</strong> chemi-<br />

cals may be due<br />

tible (Grant and<br />

It should be<br />

certain loci is a<br />

to alhvl<strong>at</strong>ion <strong>of</strong> DNA. not all chromosomal DNA is suscep-<br />

Heslot, L966) .<br />

kept in mind th<strong>at</strong> localizaËion <strong>of</strong> chromosome breaks <strong>at</strong><br />

specific fe<strong>at</strong>.ure<br />

mut.agen. Thus, generalizaËion in<br />

for<br />

only<br />

any<br />

<strong>the</strong><br />

species tre<strong>at</strong>ed with certain<br />

broadest terms can be made,<br />

L2


MATERIAL AND METTTODS<br />

Tr¿o trisomic series <strong>of</strong> barley (H. vulgare L. 2n=15), one a 6-rowed<br />

ÊyPe (oAC-21 x Montealm) initially produced by Larter (personal conrnuni-<br />

c<strong>at</strong>íon) and <strong>the</strong> o<strong>the</strong>r a Z-rowed type cv. Betzes, Eslick and Ramage (L969)<br />

¡.rere used ín <strong>the</strong> PresenË study" Ei<strong>the</strong>r dry seeds or trisomic seedlings<br />

and planËs <strong>of</strong> each line were subjecÈed Ëo various mutagenic agents<br />

with <strong>the</strong> objective <strong>of</strong> producíng individual telocentrics for <strong>the</strong> extra<br />

chromosome. Four experiments r¡rere carried out, each <strong>of</strong> which is dis-<br />

cussed indivj-dually in <strong>the</strong> secËion to follow.<br />

Experiment A<br />

ïn this experiment, dry seeds <strong>of</strong> two trisomic stocks (TrÍsornics 4<br />

and 5) lTere tre<strong>at</strong>ed independently with tr¿o chemical muËagens, diethyl<br />

sulf<strong>at</strong>e (DES) and ethylmethanesulfon<strong>at</strong>e (EMS). Prior to tre<strong>at</strong>ment, seeds<br />

ürere presoaked in distilJ-ed w<strong>at</strong>er for 2 hours and subsequently trans-<br />

ferred to freshly prepared 0"2M solutions <strong>of</strong> <strong>the</strong> mutagen. Tre<strong>at</strong>ment<br />

Ëimes r¡ere 2 and 24 hours <strong>at</strong> room temper<strong>at</strong>ure for DES and EMS respectively.<br />

Following tre<strong>at</strong>ment, seeds were r¿ashed thoroughly in Ëap \,/<strong>at</strong>er, chilled<br />

for one week (+2oC) and <strong>the</strong>n allowed to germin<strong>at</strong>e on moist blotters. Tri-<br />

somic planËs were idenËified on <strong>the</strong> basis <strong>of</strong> root-tip analyses and were<br />

grown to m<strong>at</strong>urity.<br />

Experiments B and C<br />

These experimenLs vüere designed to test <strong>the</strong> effect <strong>of</strong> hydroxylamine<br />

(HA) and d-rays on mej-osís" rn experiment B, aqueous solutions <strong>of</strong> IIA<br />

13


!¡ere injected into <strong>the</strong> upper culm <strong>of</strong> inctividual tillers <strong>of</strong> trisomics 3<br />

and 7 <strong>at</strong> <strong>the</strong> premeioLic stage (Sinha, 1967). The tre<strong>at</strong>ment was timed so<br />

th<strong>at</strong> meiotíc cells would be in conract with <strong>the</strong> solution durins rheír<br />

actively dividing st<strong>at</strong>e. A concentr<strong>at</strong>ion <strong>of</strong> 10 ug/mr <strong>of</strong> freshry pre-<br />

pared HA solution \..¡as used to which 5 m1/100 m1 <strong>of</strong> solution <strong>of</strong> 0.01%<br />

ttTween 20tt was added as a wetting agent. For control purposes, a few<br />

tillers were injected r,/ith distilled i,v<strong>at</strong>er containing rrTween 2Off only.<br />

The tre<strong>at</strong>ed heads and <strong>the</strong> control were tagged, and to prevent outcrossing<br />

each spike \,ras bagged <strong>at</strong> <strong>the</strong> time <strong>of</strong> headíng. rn experiment c, five<br />

plants ("v. Betzes) trisomic for each <strong>of</strong> chromosomes 4, 5 and 6 were<br />

írradi<strong>at</strong>ed usíng " Co60 source. Two disomic plants served as contror.<br />

one being cv. Betzes, <strong>the</strong> o<strong>the</strong>r oAC-21. PlanËs \¡rere tre<strong>at</strong>ed when it was<br />

esËim<strong>at</strong>ed Lh<strong>at</strong> most <strong>of</strong> <strong>the</strong>ir tillers were initi<strong>at</strong>ing meiosis. A total<br />

<strong>of</strong> approxim<strong>at</strong>ely 10,000 rads were given <strong>at</strong> a dose r<strong>at</strong>e <strong>of</strong> l0B rads/hour.<br />

Following irradi<strong>at</strong>íon, both Ërisomic and control plants were allowed t,o<br />

reach m<strong>at</strong>urity in <strong>the</strong> greenhouse.<br />

Experiment D<br />

rn this experimenË, <strong>the</strong> effect <strong>of</strong> lov¡ dosages <strong>of</strong> g -rays alone and<br />

in combin<strong>at</strong>ion with 5-fluorodeoxyuridine (FUdR) were applied to seedlings<br />

trisomic for chromosomes 1, 4 and 7, respectively. For each trisomic.<br />

seedlings were divided into three lots <strong>of</strong> 10 plants each and subiected<br />

to Y -irracli<strong>at</strong>ion from t Co60-"ource acljusted to deliver 25 rads/second"<br />

The following tre<strong>at</strong>menLs were applied:<br />

T4


Lot (1) 150 rads (6 sec.)<br />

Lot (2) 500 rads (20 sec.)<br />

Lot (3) 150 rads to seedlings th<strong>at</strong> r,\¡ere pre-soalted.<br />

aqueous solution <strong>of</strong> FUdR for three hours, <strong>the</strong>n washed in<br />

in a 1O-7M<br />

tap w<strong>at</strong>er for<br />

one hour immedi<strong>at</strong>ely prior to irradi<strong>at</strong>ion. Following tre<strong>at</strong>ment, <strong>the</strong><br />

seedlings were planted"<br />

All plant m<strong>at</strong>erial, both tre<strong>at</strong>ed and conËrol rn¡as grovr'n under a con-<br />

Ëro1led temperaLure <strong>of</strong> LB*zoc wíth a 16 hour photoperiod. on <strong>the</strong> assum'-<br />

t.ion thaL induced Lelotrisomics would exhibit híeher ferrilirw ¡þ¿n <strong>the</strong>ir<br />

parental trísomics, those spikes <strong>of</strong> tre<strong>at</strong>ed planLs which exceeded <strong>the</strong><br />

trisomíc in seed-set \,/ere threshed indivídually, <strong>the</strong> remaining spikes<br />

were bulk harvested" Ten seedlings from each individual spike, as r¿ell<br />

as a random sample from <strong>the</strong> bulk, v/ere cytologically anaryzed, on <strong>the</strong><br />

basis <strong>of</strong> root-tip counts" If trisomic segreg<strong>at</strong>ion occurred in individual<br />

samples, <strong>the</strong> d<strong>at</strong>a were pooled for staËistical analysis. For Chi-square<br />

analyses <strong>of</strong> daËa on chromosome frequencies, <strong>the</strong> transmission r<strong>at</strong>.es <strong>of</strong><br />

control for each chromosome \.üere used to calcul<strong>at</strong>e <strong>the</strong> expected frequen-<br />

cies. Because <strong>of</strong> <strong>the</strong> low frequencies <strong>of</strong> telotrisomícs in <strong>the</strong> control<br />

m<strong>at</strong>erial, an average r<strong>at</strong>e established over all trisomic lines was used<br />

to calcul<strong>at</strong>e <strong>the</strong> expected values.<br />

15


Experiment A<br />

RESULTS AND DISCUSSION<br />

A comparison between <strong>the</strong> effect <strong>of</strong> <strong>the</strong> two chemical mutagens DES<br />

and BIS on dry seeds <strong>of</strong> trisomics 4 and 5, showed th<strong>at</strong> DES caused 52 and<br />

65% Lethality respectively compared to 34 and 307. inducecl by EMS (Table<br />

I-1). This lethalíty may be due in part to <strong>the</strong> post-Ëre<strong>at</strong>ment srorage<br />

períod. Mikaelsen et al. (1968) found Ëh<strong>at</strong> storing barley seeds tre<strong>at</strong>ed<br />

with DES and EMS increased <strong>the</strong> frequencies <strong>of</strong> fragments per cell and<br />

after 15 days <strong>of</strong> storage, <strong>the</strong> tre<strong>at</strong>ed. seeds failed to germin<strong>at</strong>e. rt<br />

seemed th<strong>at</strong> trisomic seeds r.^/ere more sensitive to both muLagens than<br />

disomics as revealed by a significant reduction in <strong>the</strong> frequencies <strong>of</strong><br />

Ërisomics in rre<strong>at</strong>ed popul<strong>at</strong>ions (p < .005 for each trisomic). This<br />

could be expected since trisomic seeds are smaller than disomic ones<br />

(Tsuchiya, 1960) and sma1l seeds show more physiologicar damage from<br />

mutagenic tre<strong>at</strong>ment than do large seeds (Heiner, 1963).<br />

DES tre<strong>at</strong>ment resulted in a marked reduction in seed-set (Table<br />

r-r) accompanied by an increase in transmission <strong>of</strong> <strong>the</strong> extra chro-<br />

mosome (Table T-2). rn contrast, EMS tre<strong>at</strong>ment díd not result in<br />

<strong>the</strong> same degree <strong>of</strong> reduction in seecl-set as did DES, However. Ít re-<br />

sulted in a slight decrease in transmission <strong>of</strong> trisomic-4 onlv. These<br />

results agree with <strong>the</strong> finding th<strong>at</strong> DES tends to induce more acentric<br />

fragments (deficiencies) tl-ran does EMS (Mikaelsen et a1., 1968), which<br />

could be compens<strong>at</strong>ed for by <strong>the</strong> presence <strong>of</strong> an extra chromosome. <strong>the</strong>re-<br />

L6


Table I-1. Survival <strong>of</strong> Disomics and Trisomics<br />

&fS and DES.<br />

Mutagen<br />

EMS<br />

DES<br />

Contro I (2)<br />

No. <strong>of</strong><br />

Ëre<strong>at</strong>ed<br />

seeds<br />

150<br />

r00<br />

L20<br />

Survival<br />

66.0<br />

48.0<br />

oq ?<br />

(t) x2 calcul<strong>at</strong>ed for transmíssÍon<br />

(2) Soaked in disrilled warer"<br />

Trisomic 4<br />

Chr. number<br />

L+ I)<br />

o/ ol<br />

to lo<br />

95 .0 5 .0 JJ . Q:'r:k 4L .2<br />

96.0 4.0<br />

66 "0 34 "0<br />

Among M., -Seedlings from DormanË Seeds Tre<strong>at</strong>ed With<br />

2<br />

x-%<br />

Fert í -<br />

(1) litY<br />

f $. Q:'o'r ZB.6<br />

- 6L.4<br />

<strong>of</strong> <strong>the</strong> extra chromosome.<br />

Trisomic 5<br />

Chr. number<br />

Survival 14 15<br />

d/ ol ot<br />

to lo lo<br />

70.0<br />

35 .0<br />

93. 1<br />

83.0<br />

91 .0<br />

72.0<br />

L7 "0<br />

9.0<br />

28.0<br />

.?!<br />

5 . B+dr<br />

60.2'k*<br />

Ferti-<br />

_-wJ<br />

ol<br />

49 "3<br />

35.9<br />

oJ")


Table I-2. Chromosome Segreg<strong>at</strong>ion Amon8 Mr-Seedlings from M., -Irradi<strong>at</strong>ed Trisomics.<br />

No. <strong>of</strong><br />

Mutagen Seedlings<br />

EMS<br />

DES<br />

180<br />

I24<br />

co'tror(3) r:o<br />

Trisomic 4<br />

Chr. Constitution<br />

L4 ts i++I(r)<br />

ol ùl ol<br />

to to lo<br />

78.9<br />

)o.)<br />

67 "3<br />

2L.L<br />

43 "5<br />

32 "2<br />

2Q)<br />

,f.<br />

9.6r'c[-<br />

$ " J:t'.t<br />

No. <strong>of</strong><br />

Seedlings<br />

(1) l.4*tz 2n * an extra fragment.<br />

(2) x2 calcul<strong>at</strong>ed for transmission <strong>of</strong> <strong>the</strong> extra chromosome.<br />

(3) Untre<strong>at</strong>ed trisomics.<br />

100<br />

109<br />

111<br />

Trisomic 5<br />

Chr. ConstiËution<br />

14 15 L4+t<br />

ql ol ol<br />

,o to to<br />

7 4 .0 26.0<br />

64.3 3s.7<br />

7L.0 28.l<br />

0.9<br />

2<br />

Ã<br />

0.1<br />

4 "3*


fore favorecl higher frequencies <strong>of</strong> trisomics.<br />

ment did not reveal any telocentrics.<br />

Experiments B and C<br />

Results from this experí-<br />

Tre<strong>at</strong>ment <strong>of</strong> hydroxylamine and ú -rays <strong>at</strong> meiosis drastically de-<br />

creased <strong>the</strong> s íze <strong>of</strong>. popul<strong>at</strong>ion <strong>of</strong> <strong>the</strong> tre<strong>at</strong>ed m<strong>at</strong>erial so th<strong>at</strong> conclu-<br />

sive results were not achieved. It r¿as evident however, th<strong>at</strong> injection<br />

<strong>of</strong> HA into <strong>the</strong> individual tillers (average <strong>of</strong> 3 tillers/plant) caused<br />

complete sterility <strong>of</strong> 15 plants <strong>of</strong> trisomic-3 and a reduced seed-set on<br />

13 plants <strong>of</strong> Lrisomic-7 from which 67 seeds \,/ere recovered. Of <strong>the</strong>se"<br />

l0 seeds (L4"9%) germin<strong>at</strong>ed giving rise to dÍsomics and trisomics onlv"<br />

control plants (injected with distilled \,raLer and wetting agent) gave<br />

slightly lower seed-set than non-tre<strong>at</strong>ed m<strong>at</strong>eríal (Table r-3).<br />

On <strong>the</strong> o<strong>the</strong>r hand, irradi<strong>at</strong>ion with 6-rays d.uring meiosis (Experi-<br />

ment C) severely damaged <strong>the</strong> plants and all tillers on trisomÍc plants<br />

were ki1led. Disomics, in contrast, m<strong>at</strong>ured and produced near-normal<br />

seed-set. seeds harvested on 3 trisomic-6 'plants (secondary gror^/Ëh)<br />

showed a parental chromosomal segreg<strong>at</strong>ion with a decrease in <strong>the</strong> fre-<br />

quency <strong>of</strong> trisomics than unLre<strong>at</strong>ed m<strong>at</strong>erial (Table I-3).<br />

It seems th<strong>at</strong> some tillers <strong>of</strong> <strong>the</strong> control planËs r/üere more developed<br />

and probably had passed <strong>the</strong> sËage <strong>of</strong> meiosis before tre<strong>at</strong>ment. Hence.<br />

radiosensitivity <strong>of</strong> disomics and trisomics could be <strong>at</strong>tributed to diffe-<br />

rences in ontogenetic stages <strong>of</strong> plants <strong>at</strong> <strong>the</strong> time <strong>of</strong> tre<strong>at</strong>ment In<br />

general, results from tre<strong>at</strong>ments <strong>at</strong> meiosis were inaclequ<strong>at</strong>e and did not<br />

19


Table I-3. The Effect <strong>of</strong> IIA and Ú -Rays on Trisomic and Disomic Plants Tre<strong>at</strong>ed During Meiosis.<br />

Tre<strong>at</strong>ment<br />

ï{Â<br />

( inj ect ion)<br />

ú-rays<br />

(10 Kr)<br />

Trisomic<br />

Line<br />

J<br />

Control<br />

1<br />

Control<br />

-<br />

5<br />

6<br />

Control:<br />

. (2)<br />

oAC-21<br />

BeËzes<br />

(I) Secondary gro\^rth.<br />

(2) UntreaËed m<strong>at</strong>erial.<br />

(3) One disomic plant each.<br />

No. <strong>of</strong><br />

Tre<strong>at</strong>ed<br />

Heads<br />

+J<br />

L4<br />

35<br />

t1<br />

z, (3)<br />

3 (3)<br />

No. <strong>of</strong><br />

Seeds<br />

0<br />

79<br />

ot<br />

L87<br />

,)<br />

266<br />

L92<br />

B4<br />

Germin<strong>at</strong>.ion<br />

85"1<br />

L4 "9 B0 .0 20 .0<br />

82 "3<br />

90<br />

q? Á<br />

94.O<br />

B6 .0<br />

L4<br />

Chr. Segreg<strong>at</strong>ion<br />

87 "B L2.2<br />

72 "2 27 "B<br />

15 L4+t<br />

ol o1<br />

lo lo<br />

No. <strong>of</strong><br />

S eedl ings<br />

Examined<br />

10<br />

B1<br />

249<br />

t$


esult in <strong>the</strong> development, <strong>of</strong> telocentrics.<br />

Experiment D<br />

The effect <strong>of</strong> f-rays alone or in combin<strong>at</strong>ion with FUdR on Ërisomic<br />

seedlings <strong>of</strong> chromosomes<br />

Irradi<strong>at</strong>ion <strong>at</strong> <strong>the</strong> early<br />

lings and all 80 tre<strong>at</strong>ed<br />

Trisomic-1. Plants<br />

1, 4 and 7 was studied in this experiment.<br />

seedling stage did not disturb <strong>the</strong> growing seed-<br />

seedlings grerü to m<strong>at</strong>urity.<br />

with an extra chromosome-1 are readilv identified<br />

by a bushy type appearance. The form<strong>at</strong>ion <strong>of</strong> non-bush tillers may indÍ-<br />

c<strong>at</strong>e a loss <strong>of</strong> <strong>the</strong> extra long arm <strong>of</strong> chromosome-l. Two tre<strong>at</strong>menLs (irra-<br />

di<strong>at</strong>ion rvith 150 and 500r) \¡/ere carried out on trisomic-I <strong>of</strong> lvhich 20 Ml<br />

plants were classified morphologically <strong>at</strong> m<strong>at</strong>urity into three appropri<strong>at</strong>e<br />

classes: (a) one chimeric plant, (b) 4 non-bushy and (c) 15 bushy plants.<br />

A cytological analysis <strong>of</strong> <strong>the</strong>se classes was conducted and <strong>the</strong> following<br />

observaLíons v/ere made:<br />

(a) in <strong>the</strong> chimeric p1ant, all early tillers v/ere muLant characterized<br />

by normal height and carried normal highly fertile heads. Root tips <strong>of</strong><br />

M2-mutant seedlings showed disomic counts, while those <strong>of</strong> l<strong>at</strong>e tillers<br />

(non-mutant) were trisomics.<br />

(b) <strong>the</strong> non-bush class included four plants with near-normal vigor<br />

and short heads exhibiting a considerable degree <strong>of</strong> sËerility (average<br />

30%) "<br />

Mr-seedlings <strong>of</strong> <strong>the</strong>se plants involved disomics and trisomics but<br />

only a trisomic progeny from one plant rvas raised which segreg<strong>at</strong>ed into<br />

20% bush and B0% non-bush (parental) plants.<br />

Meiosis in <strong>the</strong> last mentioned group showed it Ëo carry an isochromo-<br />

2L


some in addition to <strong>the</strong> normal complement (seconclary trisomícs). The<br />

fact th<strong>at</strong> all tillers <strong>of</strong> <strong>the</strong>se plants rvere mutant may indic<strong>at</strong>.e th<strong>at</strong> dip-<br />

lont.ic selection was effective so as to preferentially promote mutanE,<br />

tissue growth and/or <strong>the</strong> development <strong>of</strong> isomutants ruas enhancecl since<br />

trisomics origin<strong>at</strong>e from smal1, less differenti<strong>at</strong>ed seeds (Tsuchiya,<br />

1960; Jacobsen, 1966).<br />

(c) due to <strong>the</strong> low fertility on <strong>the</strong> bushy plants, only a fer,r heads<br />

I.,rere cytologÍcal1y examined individually and most seeds v/ere checked in<br />

bulk. One <strong>of</strong> <strong>the</strong>se heads yielded in addition to disomics and trisomics,<br />

a'compens<strong>at</strong>ing telotrisomic, i.e., a plant carrying 13 normal chromo-<br />

somes, a telocentric, and an isochromosome. The compens<strong>at</strong>,ing Ëelotri-<br />

somic, though isol<strong>at</strong>ed among disomics and trisomics, seemed to have arisen<br />

from a small sector involving few florets or even most <strong>of</strong> <strong>the</strong> spike. Simi-<br />

lar small muËant sectors have been observed in irradi<strong>at</strong>ed barley by o<strong>the</strong>r<br />

workers (Ge1in, 1956; Eriksson, L965). The bulk seeds <strong>of</strong> <strong>the</strong> first trear-<br />

ment (150 rads) yielded only disomics and trisomics (Table I-4) whereas<br />

<strong>the</strong> second tre<strong>at</strong>ment (500r) yielded 2 plants each carrying an exËra frag-<br />

menË.<br />

Trisomics 4 <strong>at</strong>d 7. Unlike trisomic-1 plants, trísomics for chromo-<br />

some 4 and 7 $/ere not distinguishable from normals under favorable gro\¡¡-<br />

ing conditions. Subsequently, no selection for non-parental types r^ras<br />

practiced. Fifty-seven heads were selected from both trisomics showing<br />

high fertility and all were l<strong>at</strong>er confirmed as trisomics except for two<br />

22


TabIe I-4. Chromosome Constltution <strong>of</strong> Mr-ProBenles from Plants lrradl<strong>at</strong>ed <strong>at</strong> Seedllng Stage.<br />

Chr. Constitution<br />

ToLal 14 15 I4+f, Total<br />

Tre<strong>at</strong>ment Seedlfng % "L % Seedllngs<br />

150 rads<br />

'I r ls omlc -L<br />

500 rads 120 66.7 30.8 2.5+'<br />

150 rads *<br />

f'llrìP<br />

6B<br />

Toral <strong>of</strong><br />

Iines 188<br />

Control<br />

105<br />

69.1 30.9<br />

28.6 30.8 1.6<br />

72.4 26.7 0.9<br />

Slgnfficant <strong>at</strong> .05 (X2<br />

#slgnlf lcanc <strong>at</strong> . oo5 (X2<br />

183<br />

20L<br />

207<br />

591<br />

295<br />

Trlsomic 4<br />

Chr. Constftution<br />

14 15 L4+f, Total<br />

% % % Seedlings<br />

65. t 34,9<br />

79.r 20.4** 0.5<br />

63.3 37.2 0.5<br />

68"9 30.8 0.3<br />

67 .L 32.9<br />

calculaÈed for freqrrency <strong>of</strong> 14+f).<br />

calcul<strong>at</strong>ed for transnlsslon).<br />

118<br />

90<br />

Lt+<br />

382<br />

298<br />

Trisomlc 7<br />

Chr. ConstituLion<br />

L4 15 L4+f.<br />

ot ot ol<br />

62.8 34.7 2.5*<br />

72.3 26 .6 I .1<br />

63.9 35.0 1.1<br />

66.5 33.0 1.5*<br />

69.3 30.1 0.6<br />

Toral <strong>of</strong> TreaEments<br />

No. <strong>of</strong> il-5 l4+f<br />

Seedllngs 7" 7" 7"<br />

369. 65.1 34.L 0.8<br />

4rl<br />

381<br />

161<br />

t4 24.8 L.2<br />

sL.2 48,0 0.8<br />

68.6 31.5 0.9<br />

f.J<br />

UJ


heads <strong>of</strong> trisomic-4 and one head <strong>of</strong> trisomic-7 which had disomic com_<br />

pLements. Never<strong>the</strong>less, from <strong>the</strong> bulk seeds <strong>of</strong> trisomic-4, a plant con-<br />

taining an acrocentric and ano<strong>the</strong>r a true Lelocentric, were isol<strong>at</strong>ed from<br />

500 rads and 150 rads t FUdR, respectively. Arso, <strong>the</strong> six fragments iso-<br />

l<strong>at</strong>ed from different tre<strong>at</strong>ments <strong>of</strong> trisomic-7 (Table I-4) were ei<strong>the</strong>r<br />

telo- or acrocentrics for <strong>the</strong> short arm <strong>of</strong> chromosome 7 "<br />

th<strong>at</strong> all breaks vrere localized aË <strong>the</strong> centromere or in a<br />

one-third <strong>of</strong> <strong>the</strong> long arm <strong>of</strong> chromosome 7.<br />

This indic<strong>at</strong>ed<br />

region <strong>of</strong> about<br />

As shown in Table I-4, <strong>the</strong> transmission r<strong>at</strong>e <strong>of</strong> <strong>the</strong> three studied<br />

trísomics hras not affected by tre<strong>at</strong>ment except for <strong>the</strong> second dosage<br />

(500 rads) applied to trisomic-4 which showed a significantly lower fre-<br />

quency <strong>of</strong> Mr-trisomics (P


LITERATURN CITED<br />

Auerbach, C" L967. The chemícal production <strong>of</strong> mut<strong>at</strong>ions. Science 158:<br />

LT4T.TL47 "<br />

Blakeslee, A. F,, and A. C" Avery" 1938" Fifteen year breeding records<br />

<strong>of</strong> 2n*1 types ín D<strong>at</strong>ura stramonium" Co-operaËion in Res.,<br />

Carnegie Inst. I^Iash. Publ. 501: 3I5-482"<br />

3rown, M" S. 1958. The division <strong>of</strong> univalent chromosomes in Gossypium.<br />

Am. J. Bot " 452 24-32.<br />

Casperson, T., S. Farber, G. E. Fo1ey, J" Kudynowski, E. J. Modest, E.<br />

SÍmonsson, U" hlagh, and L. Zech" L967 " Chemical differentia-<br />

tion along <strong>the</strong> meËaphase chromosomes. ExpË1. Ce1l Res. 492<br />

4L9 -222 "<br />

, L. Zech, E. J. ModesË, G. E" Foley, U" I+lagh, and E.<br />

Simonsson. 1969 "<br />

DNA-bindíng fluorochromes for <strong>the</strong> study <strong>of</strong><br />

<strong>the</strong> organLz<strong>at</strong>Lon <strong>of</strong> metaphase nucleus. ExpËl. Cell Res" 58:<br />

L4L-r52 "<br />

Darlingt,on, C. D. 1939. Misdivision and <strong>the</strong> genetics <strong>of</strong> <strong>the</strong> centromere"<br />

J" Genet " 372 322-364"<br />

Ekberg, I. L969. Different Ëypes <strong>of</strong> sËeriliËy induced in barley by ionizLng<br />

radL<strong>at</strong>ion and chemical mutagens" IleredÍtas 63: 257-278"<br />

Eriksson, G. L965. The size <strong>of</strong>. <strong>the</strong> mut<strong>at</strong>ed secËor in barley. Hereditas<br />

53: 307 -326"<br />

Eslick, R. F., and R. T. Ramage" L969" Primary Ërisomics in varíeËy<br />

Betzes. Blv" Newsletter 12: L7"<br />

Fabergé, A. C. L957. A meËhod for tre<strong>at</strong>ing whe<strong>at</strong> pollen with ultravioleË<br />

radi<strong>at</strong>ion for genetic experiments" Genetics 42: 618-<br />

622.<br />

Froese-Gertzerl, E. E., C" F. Konzak, R. J" Foster, and R. A. Nilan" 1964"<br />

The effect <strong>of</strong> ethyl methanesulfon<strong>at</strong>e on <strong>the</strong> growth response,<br />

. chromosome sLructure and mut<strong>at</strong>ion r<strong>at</strong>e in barley; Rad" Bot.<br />

4: 6L-69 "<br />

Gaul, H" L964" Mut<strong>at</strong>ions in plant breeding. Rad. BoË. 4: L55-232"<br />

25


Gelin, O. 1956. The meiotic response to <strong>the</strong> mitotic disËurbances in<br />

x-rayed barley. Agri. Hortigue GeneËica 14: L06-L26"<br />

Grant, C. J., and H" Heslot. 1966. Chromosome aberr<strong>at</strong>ions and <strong>the</strong><br />

chromosome cycle in Vicia faba, after tre<strong>at</strong>menËs l¡ith nitroso<br />

meËhy1 urthane and nitroso ethyl urthane. Ghromosomes Today<br />

I: ILB-LZ7.<br />

Hagberg, 4., G. Persson, and A. trliberg. 1963. Induced mutaËions in Ëhe<br />

improvemenË <strong>of</strong> self-pollin<strong>at</strong>ed crops. pp. 105-124. Tn !tr" LI.<br />

Mayen (ed " ) , Recgnt plant Lreeding res earch . I'Iiley, N" Y "<br />

Almquist & Wiksell, Uppsala, Stockholm.<br />

Heiner, R. C. 1963. cf. Nilan et al" 1963" Chemical mutagens in<br />

barley. Bly" Genetics I. Proc. I InË. Bly" Genetics Symposium.<br />

Wageningen. pp.49.<br />

Huskins, C. L., and J. D. Spier. 1934" The segreg<strong>at</strong>íon <strong>of</strong> heËeromorphic<br />

homologous chromosomes in pollen-mo<strong>the</strong>r ce1ls <strong>of</strong> Tritiçum<br />

vulsare. Cytologia 5: 269-277.<br />

Jacobsen, P. L966" DemarcaËion <strong>of</strong> mutant-carrying regions in barley<br />

planËs after ethyl meËhanesulfon<strong>at</strong>e seed tre<strong>at</strong>ment" Rad. Bot"<br />

6z 313-338.<br />

Kihlman, B. A" L962" The producLíon <strong>of</strong> chrom<strong>at</strong>íc aberr<strong>at</strong>ions by 5fluorodeo>


Mikaelsen, K., G. Ahnstrom, and Lr. c. Li" Lg6B. GenetÍc effects <strong>of</strong><br />

alkylaring agents in barley" Heredítas 59: 353-374.<br />

Moutschen-Dahmen, M., J. Moutschen, and L" Ehrenberg. 1966. on post<br />

meiotic modific<strong>at</strong>ion <strong>of</strong> biological effects <strong>of</strong> neu¡rons" II"<br />

Effect <strong>of</strong> 5-fluorodeoxyuridine on chromosomal aberr<strong>at</strong>ions in<br />

neutron irradi<strong>at</strong>ed seeds" Rad. Bot" 6: h25_43I.<br />

Nilan, R. A. 1964" The cytorogy and genetics <strong>of</strong> barley. Monographic<br />

supplement No" 3. Ialashington st<strong>at</strong>e univ. vol. 32, No. 1"<br />

pp. 28-72"<br />

, c. F. Konzak, R" E. Heiner, and E. Froeze-Gertzen" Lg63.<br />

chemical mutagenesis in barley" B1y. GeneËics r. proc. r"<br />

ïnt" Bly" Symposium. I^Iageníngen" pp" 35_54"<br />

J' P' Pov¡ell, B. v" conger, and c. E" Muir. 1968. rntroduction<br />

and ultiliz<strong>at</strong>íon <strong>of</strong> inversions and muËaËions in barley"<br />

rn Mut<strong>at</strong>iong in plant brqerl_ing. r" A. E. A., vienna" Lg3-203"<br />

NaËarajan, A. T", and G. A" Ahnstrom. 1969" HeËerochrom<strong>at</strong>in and chromo-<br />

-, some aberr<strong>at</strong>,ions" Chromosoma 2gz hB_6I"<br />

Praaken, R. 1959. rnduced ûn¡taËions" EuphyËica g: 270-322"<br />

Ramage, R. T", c. R. Burnham, and A. Hagberg" Lg6r" A sunrnary <strong>of</strong> translocaËion<br />

studies in barley" crop sci. 1: 277-27g.<br />

Rhoades, M. M. 1936" A cytological study <strong>of</strong> a chromosome fragment in<br />

maLze. Genetics 21: 49L-502"<br />

saËo, M", and H. Gau1. 1967" Effects <strong>of</strong> EMS on fertility <strong>of</strong> barley.<br />

Rad. Bor" 7: 7 -I5.<br />

sears, E. R. L952. Misdivision <strong>of</strong> univalents in conrnon whe<strong>at</strong>" chromosoma<br />

4: 535-550"<br />

Singh, M. P., C. S. Kalia and H" K. Jain. 1970. Chromosomal abber<strong>at</strong>ions<br />

induced by L"S.D. Science 169: 4gL_492"<br />

Sinha, R. P. L967. Recombin<strong>at</strong>ion effecË <strong>of</strong> certain chemicals applied to<br />

<strong>the</strong> genus Hordeum. ph"D" Thesis, univ. <strong>of</strong> <strong>Manitoba</strong>, I^Iinnipeg.<br />

27


Smith, L. L947" A fragmented chromosome ín T" monococcum and its use l-n<br />

studies <strong>of</strong> inheritance. Genetics 32: 431.<br />

somers, c. 8., and T. c. Hsu. L962. chromosomal damage induced by hydroxylamine<br />

in mamalian cells" p.N,A"S., U.S.A. 48: 937-943"<br />

Stadler, L. J. 1928. Mut<strong>at</strong>ions in barley induced by x-rays and radium.<br />

cience 68: 186-187.<br />

Steinitz-Sears, L. M., and E" R. Sears. 1957. UltravioleË and x-ray<br />

induced chromosomal aberr<strong>at</strong>ions in whe<strong>at</strong>. Genetics 422 623-630"<br />

Taylor, J. H., w" F. Haut, and J. Tung. L962. Effects <strong>of</strong> fluorodeoxyuridine<br />

on DNA replic<strong>at</strong>ion, chromosome breakage and reunion.<br />

P.N.A.S., U.S.A. , 48: 190-198.<br />

Tsuchiya, T. 1960. cytogenetic studies <strong>of</strong> trisomics in barley" Jap. J"<br />

Bot. L7 : I77 -I2L3.<br />

L97L. Telocentríc chromosomes in barley. proc. II Int"<br />

Bly . Genetics Sympos ium. I^lashington St<strong>at</strong>e Univ. pp " 7 2-BI .<br />

Inlallace, A. T. 1964. Mutagenic agents; <strong>the</strong>ir use for plant and animal<br />

improvemenË. Agríc. Scí. Rev. 2: 1-8"<br />

Yu, R" 1968. Deriv<strong>at</strong>ion and sËudy <strong>of</strong> primary trisomics <strong>of</strong> cortrnon barley,<br />

Hordeum vulgare L. Ph.D. Thesis, univ. <strong>of</strong> ManíËoba, winnipeg.<br />

2B


SECTION - II<br />

CYTOGENETICS OF TELOTRTSO}trCS


INTRODUCTION<br />

Telotrisomics in barley were first isol<strong>at</strong>.ed by l(erber (personal<br />

conrnunic<strong>at</strong>ion) in Ehe progeny <strong>of</strong> Herta x wong triploid hybrid, l<strong>at</strong>er by<br />

Tsuchiya (1960) in <strong>the</strong> progeny <strong>of</strong> an autotriploid plant <strong>of</strong> cultivar,<br />

S.E.16. O<strong>the</strong>r telotrisomics were found among <strong>the</strong> progenies <strong>of</strong> 6-rowed<br />

oAc-21 x Montcalm trisomics (Yu, 1968) " To d<strong>at</strong>e, out <strong>of</strong> <strong>the</strong> 14 possible<br />

telotrisomics, only 7 have been isol<strong>at</strong>ed from different trisomic series<br />

(Tsuchíya, I97Ia, Lg72b). Of <strong>the</strong>se, 5 were identified as: (2n*1L),<br />

(2rrfls), (2n+2L), (2n*4S) and (2n+5L). The orher rwo tines belong Lo<br />

chromosomes 2 and 3 but have not as yet. been assigned to <strong>the</strong>ir specific<br />

anns (Tsuchiya, I972b). The morphological and cytological aspects <strong>of</strong><br />

<strong>the</strong>se telotrisomics have been investig<strong>at</strong>ed. Moreover, most <strong>of</strong> <strong>the</strong>se telo-<br />

trisomics were used to determine Ëhe arm loc<strong>at</strong>ion <strong>of</strong> several genes (Fedak,<br />

L969; Tsuchiya, I972b) "<br />

In <strong>the</strong> present sËudy, a total <strong>of</strong> 11 monoteloËrisomics in addition to<br />

a compens<strong>at</strong>ing telotrisomic were isol<strong>at</strong>ed among <strong>the</strong> progeny <strong>of</strong> trisomics,<br />

Of <strong>the</strong>se, three resulted from mutagen tre<strong>at</strong>ment r¿hi1e <strong>the</strong> remaining occurred<br />

spontaneously. By crossing each telotrisomic to transloc<strong>at</strong>ion markers,<br />

<strong>the</strong> chromosome involved in <strong>the</strong> telocenLric condition was identified. The<br />

specific arm existing as a telocentric was determined by using a karyotype<br />

analysis and crosses to genetic markers. The identified<br />

telotrisomics<br />

\¡¡ere studied morphologically and cytologically. In addition, transmission<br />

and fertility were investig<strong>at</strong>ed. The following section is devoted to a<br />

discussion <strong>of</strong> <strong>the</strong>se asDecËs.<br />

30


Terminologv<br />

RTVTEW OF LITERATURE<br />

Plants with an extra telocentric were termed telosomic trisomics<br />

(Burnham, 1962), monotelotrisomics (Kimber and sears, 1968) and Triplo-<br />

followed by an abbrevi<strong>at</strong>ion to designaËe <strong>the</strong> arm involved (Ktrush and Rick,<br />

1968). Tsuchiya (L972b) recently, used <strong>the</strong> last terminology to design<strong>at</strong>e<br />

barley telotrisomics " For example, teloËrisomic for <strong>the</strong> long arm <strong>of</strong><br />

chromosome 2 is design<strong>at</strong>.ed Triplo-2L" In <strong>the</strong> present investig<strong>at</strong>ion how-<br />

ever, <strong>the</strong> designaËion <strong>of</strong> Kimber and Sears (1968) will be used throughout"<br />

Identific<strong>at</strong>ion <strong>of</strong> teloËrisomics<br />

Morphological IdenLif ic<strong>at</strong>ion. Ihe presence <strong>of</strong> an extra chromosome<br />

arm within a diploid complemenË may manifest itself in a change in <strong>the</strong><br />

plantrs morphology. Such effecËs may be comparable Ëo those produced by<br />

<strong>the</strong> presence <strong>of</strong> an extra r¿hole chromosome in <strong>the</strong> rel<strong>at</strong>ed trisomic. In<br />

Nicotiana<br />

a<br />

svlvestris, out <strong>of</strong> 22 monotelotrisomics studied, only t\¡ro \^rere<br />

similar to <strong>the</strong> corresponding primary trisomics. AnoËher three were diffe-<br />

rent from both diploids and trísomícs, while <strong>the</strong> rest vrere more or less<br />

similar to diploids (Goodspeed and Avery, 1939). TomaËo telotrisomics<br />

for <strong>the</strong> long arms rvere sËrikingly similar in gross morphology to <strong>the</strong><br />

corresponding primary trisomics (xhush and Rick, l_968). Those for short<br />

arms rùere nondescript, being distinguishable from diploids only under<br />

optimum conditions. In barley, telotrisomics (2n+fl) and (2n*2L) were<br />

described as bush and slender, respectively, like Èheir puË<strong>at</strong>ive t.risomic<br />

31


parents (Tsuchiya, L97La). However, telotrisomic (2n+4S) shows some simi-<br />

larity to its relaËed trisomic and (2n+1S) ís not distinguishable from<br />

its díp1oíd sibs (Fedak, 1969; Tsuchiya, Lg72b)<br />

Çvtological rdentific<strong>at</strong>ion. Tsuchiya (1961) crossed 2 known trans-<br />

loc<strong>at</strong>íon testers carryíng one chromosome :.n coÍtrnon to each primary tri-<br />

somíc <strong>of</strong> barley. In Ëhe critÍcal cross.<br />

homologies with <strong>the</strong> chromosomes involved<br />

<strong>the</strong> extra chromosome v¡ill share<br />

in <strong>the</strong> quadrivalent and will<br />

form a heteromorphic pentavalent vrhile <strong>the</strong> remaining chromosomes form 5<br />

bivalents- In non-crÍtical crosses <strong>the</strong> extra chromosome will synapse<br />

with its homologues Ëo form a trivalent r¿hile <strong>the</strong> remainder <strong>of</strong> <strong>the</strong> genome<br />

will associ<strong>at</strong>e Ínto one quadrivalent and 4 bivalents. Thus, <strong>the</strong> observa-<br />

tion <strong>of</strong> pentavalenËs in PMCis indic<strong>at</strong>es th<strong>at</strong> <strong>the</strong> extra chromosome is homo-<br />

logous to one <strong>of</strong> <strong>the</strong> 2 known chromosomes involved in <strong>the</strong> inËerchange.<br />

Because <strong>of</strong> <strong>the</strong> abundance <strong>of</strong> transloc<strong>at</strong>ion testers th<strong>at</strong> involve aII seven<br />

chromosomes <strong>of</strong> barley, this technique lras succesfully used to identify<br />

differenË trisomics and telotrisomic lines (Tsuchíya, Lg66, lg67 i yu,<br />

1968; Fedak, 1969) "<br />

Geneti-c ÏdentificaËion" Since transloc<strong>at</strong>ion testers are only capable<br />

<strong>of</strong> identifying Lhe extra chromosome involved, genetic markers known for<br />

<strong>the</strong>Ír loc<strong>at</strong>ion are used to assign <strong>the</strong> specific arm which is present as an<br />

exËra Lelocentríc (Khush and Riclc, 1968; Fedak et a1. L97I; Tsuchiya, 197lb).<br />

Thus, <strong>the</strong> Lelotrisomic is crossed as a female Ëo a homozygous recessive<br />

genetic marker and <strong>the</strong> F, -monoteloËrisomic plants are ei<strong>the</strong>r selfed or<br />

backcrossed to <strong>the</strong> geneËic marlcer. An Fr-trisomic r<strong>at</strong>io or devi<strong>at</strong>ion<br />

32


fromaBC,-F. 1:1 r<strong>at</strong>io will indicaLe th<strong>at</strong> <strong>the</strong> marker is loc<strong>at</strong>ed on <strong>the</strong><br />

t¡<br />

extra telocentric, o<strong>the</strong>rrvise a disomic r<strong>at</strong>io is observed<br />

Karvotype Analysís. The chromosome complement <strong>of</strong> barley is one in<br />

lvhich all chromosomes are metacentrics and very similar in overall length.<br />

Genetic mapping has been used primarily in <strong>the</strong> chromosomal linkage studies<br />

with this species and as a result <strong>the</strong> rel<strong>at</strong>ionship between genetic and<br />

cytological maps is not yet definitely established. The identifíc<strong>at</strong>ion<br />

<strong>of</strong> telotrisomics using genetic markers is <strong>the</strong>refore conLroversial. Re-<br />

cently, Tsuchiya (L972a) using a karyotype analysis revealed th<strong>at</strong> a telo-<br />

trisomic assigned genetically as (2n+5S) by Fedak eL al. (r971) actually<br />

involves <strong>the</strong> long arm <strong>of</strong> chromosome 5 (2n+5L). Subsequently, he reversed<br />

<strong>the</strong> present map <strong>of</strong> chromosome 5, i.e. those genes Ëh<strong>at</strong> appear on <strong>the</strong> long<br />

arm are ín fact, loc<strong>at</strong>ed on <strong>the</strong> short one and vice-versa.<br />

On <strong>the</strong> oËher hand, Bentzer et al" (1971) poinËed out sources <strong>of</strong><br />

technical errors in karyotype analysis. In <strong>the</strong>ir work, three pairs <strong>of</strong><br />

chromosomes with different arrn r<strong>at</strong>ios r¡rere drawn and measured bv each <strong>of</strong><br />

<strong>the</strong> authors independently. Then, <strong>the</strong> same cel1s were photographed rvith<br />

differenË magnific<strong>at</strong>ions and <strong>the</strong> arm r<strong>at</strong>ios r,rere calcul<strong>at</strong>ed in all cases.<br />

They concluded Ëh<strong>at</strong>:<br />

(1) <strong>the</strong> degree <strong>of</strong> contraction <strong>of</strong> chromosomes should be uniform and<br />

(2)<br />

(3)<br />

maximal,<br />

<strong>at</strong> least 10 chromosome sets should<br />

in <strong>the</strong> course <strong>of</strong> an investig<strong>at</strong>ion,<br />

should be made by <strong>the</strong> same person<br />

be measured,<br />

all mcasurements andfor drawings<br />

33


Cvtological Behavíor <strong>of</strong> Telotrisomics<br />

Although telotrisomics have been deËected in many species, few studies<br />

have been conducted with <strong>the</strong>m" Fedak (1969) reviewed <strong>the</strong> expected cyto-<br />

logical behavior <strong>of</strong> telotrisomics during meiosis. The actual behavior<br />

<strong>of</strong> four barley telotrisomics v¡as described by Fedak e! al. (1971) who<br />

showed Ëh<strong>at</strong> Ëhe extra Ëelocentrics were associ<strong>at</strong>ed in heteromorphic tri-<br />

valents in 61.L% <strong>of</strong> <strong>the</strong> cells <strong>at</strong> Mr! in Ëhe remaining cells <strong>the</strong>y remained<br />

as unívalenËs. The predominant trivalent types wer:e ring-rods and tandem-<br />

chains. At MI, Ëhe univalent telocenLrics were posiËioned. on <strong>the</strong> equa-<br />

torial pl<strong>at</strong>e in 49 "87" af. cells, dividing precociousl.y ín L2.2%, and<br />

lagging in 15.7 and 16"0% <strong>at</strong> A, md Arr, respectively" As a resulr, an<br />

average <strong>of</strong> 16.2% <strong>of</strong> <strong>the</strong> guartets conLained one or more micronuclei and<br />

<strong>the</strong> frequency <strong>of</strong> stainable pol1en averaged 84"O%.<br />

The frequency <strong>of</strong> chromosome associ<strong>at</strong>ions in six telotrisomics <strong>of</strong><br />

Ëom<strong>at</strong>o (Khush and Rick, 1963) were much lower than in barley teloËrisomics,<br />

averaging onLy 44.7%" Their transmission raLes through <strong>the</strong> female !/ere<br />

rel<strong>at</strong>ively high (36"6%) as compared wirh zg.7% for barlev.<br />

Breeding Behavior<br />

Terotrisomics normarry produce n and n * telo gametes. rn most<br />

cases, both kinds <strong>of</strong> gametes function on <strong>the</strong> female side whereas only n<br />

gametes function on <strong>the</strong> male side (Khush and Rick, 1968; Fedak, 1969;<br />

Tsuchiya, 1971c). The progeny resulting from selfing such telotrÍsomics<br />

normally consisË <strong>of</strong> telotrisomics and disomics in proporEions depending<br />

34


upon <strong>the</strong> transmission frequencies <strong>of</strong> n and n * telo female gametes.<br />

However, ditelotetrasomics and <strong>the</strong> relaLed trisomics are occasionally<br />

detected <strong>at</strong> 1ow frequencies; <strong>the</strong> first resulting from male transmission<br />

while <strong>the</strong> second occurring when <strong>the</strong> 2 intact homologues undergo non-<br />

disjunction <strong>at</strong> Ar. On <strong>the</strong> average, about 29"7% <strong>of</strong> <strong>the</strong> selfed progeny<br />

<strong>of</strong> barley monotelotrisomics carry an exLra telo while <strong>the</strong> remainder are<br />

diploids.<br />

In D<strong>at</strong>ura, Blakeslee and Avery (1938) found about 44.L% <strong>of</strong> pro-<br />

genies <strong>of</strong> selfed telotrisomics carried an extra telocentric. Moreover,<br />

dítelotetrasomics and <strong>the</strong> rel<strong>at</strong>ed primary trisomics occurred <strong>at</strong> frequen-<br />

cies <strong>of</strong> 7.7 and 1.07", respectively. In <strong>the</strong> progeny <strong>of</strong> t.omaËo telotri-<br />

somics, ditelotetrasomics and <strong>the</strong> relaËed primary trisomics occurred <strong>at</strong><br />

a very low frequency. However, <strong>the</strong> transmission raLe <strong>of</strong> <strong>the</strong> extra Lelo-<br />

centric ranged from 10" - 48.5% with an average oÍ. 36"6%.<br />

In a ditelotetrasomic 1íne <strong>of</strong> barley, <strong>the</strong> Ëransmission r<strong>at</strong>e <strong>of</strong> <strong>the</strong><br />

extra telo through <strong>the</strong> pollen was much lower (44%) than <strong>the</strong> expected 977"<br />

(Fedak, 1969), indic<strong>at</strong>ing th<strong>at</strong> unbalanced gametes (n=7 * telo) are <strong>at</strong> a<br />

selective disadvantage (cert<strong>at</strong>ion effect). Tsuchiya (197lc) reported an<br />

average <strong>of</strong> 2"L9% ma1-e transmission <strong>of</strong> <strong>the</strong> extra telocentric in four bar-<br />

ley telotrisomics. Among 685 seedlings obtained from crossing disomic<br />

plants with pollen from telotrisomics, he found 15 telotrisomics , 2 Lîi--<br />

somics, I haploid and I triploíd plant, while Ehe remaining were disomics<br />

35


Chromosome Mapping<br />

Telotrisomics have been successfully used for loc<strong>at</strong>ing genes and<br />

mapping chromosomes (Rhoades, 1936; luloseman and Smith, Ig54; Fedak, 1969;<br />

Tsuchiya, 1972b), <strong>the</strong> usual technique being as follows:<br />

Telotrisomics carrying domínanr alleles are crossed as female<br />

.parents to homozygous recessive stocks and <strong>the</strong> Fr-telotrisomic plants<br />

are allowed to self-pol1in<strong>at</strong>e. The Fr-famílies ínvolving <strong>the</strong> non-<br />

critical arm would segreg<strong>at</strong>e as normal disomics (3:1 r<strong>at</strong>io) while those<br />

for <strong>the</strong> critical arm will exhibit a trisomí.c r<strong>at</strong>io for <strong>the</strong> gene in ques-<br />

tion (Fig. II-1) " Since <strong>the</strong> telocenËric carries <strong>the</strong> normal alleIe, all<br />

telotrisomic progeny should have <strong>the</strong> normal phenotype except where cross-<br />

ing over took place. lhus, Ëhe proportion <strong>of</strong> recessíve telotrisomics<br />

obtained reflects <strong>the</strong> recombinants and is subsequently used Ëo determine<br />

<strong>the</strong> gene-cenLromere distance.<br />

Rtroades (1936) used <strong>the</strong> same approach but instead <strong>of</strong> selfing <strong>the</strong><br />

Fr-telo-plants he backcrossed <strong>the</strong>m as female to <strong>the</strong> recessive sËock.<br />

The BC progeny, <strong>of</strong> <strong>the</strong> disomic parents segreg<strong>at</strong>ed 1:1 as expected while<br />

<strong>the</strong> trisomic parents devi<strong>at</strong>ed from such a r<strong>at</strong>io depending upon <strong>the</strong> fre-<br />

quency rvith which <strong>the</strong> telo, was included in <strong>the</strong> female gameËe.<br />

As ano<strong>the</strong>r approach (Rhoades, 1940), a telotrisomic carrying <strong>the</strong><br />

dominant alleles ttBm and A^tt on <strong>the</strong> telocentric chromosome and recessive<br />

2<br />

alle1es on both homologues r{as used as a male and was crossed to a homo-<br />

36


A. Crtt tcal cross .<br />

Bz<br />

E<br />

'1<br />

,f<br />

----------€--<br />

-----{}ù-<br />

>3<br />

I -oa<br />

I<br />

_o-__-<br />

o"<br />

__o___-_=<br />

6-----3<br />

B. Non-critical cross.<br />

F^ L<br />

1<br />

-€-<br />

--€-_<br />

+<br />

--{-<br />

o-<br />

3:<br />

ê<br />

_L_+__<br />

-3-o-<br />

ao<br />

_g-_o_<br />

o-<br />

I<br />

---s----- +<br />

------€¡-<br />

*-_l\<br />

BC -F1<br />

-g----o-<br />

-if--o-<br />

-€-<br />

o__J<br />

--+----:<br />

-o- o-<br />

>i<br />

_i_{_<br />

_a__o_<br />

o-<br />

o----=-Ux_g-*<br />

BC-Fl<br />

Flg. II-1. Chromoso¡nes mapplng by Eelotrisomlcs.<br />

* _oi<br />

_o-_-<br />

+<br />

# oê<br />

_s__-<br />

-l--o- - -+<br />

ã'c'<br />

___-o__-<br />

*<br />

"<br />

-3-o_-<br />

-g--o---4o-<br />

o-<br />

1:l<br />

o___-_3<br />

g


zygous recessive fcmale, i.e.,<br />

o<br />

+<br />

Gametes<br />

bm a2<br />

bm a2 bm a2<br />

bma2<br />

x<br />

bm a2<br />

1)<br />

bm a2 2)<br />

++<br />

3)<br />

4)<br />

++<br />

bm a2<br />

++<br />

*a2<br />

bm*<br />

& 0<br />

*a2 bm*<br />

bm a2 bm a2 bm a2 bm a2<br />

% = bm-centromere % = bm-a2<br />

Sínce Ëhe telocentric r,^Ias noL transmitted through <strong>the</strong> pollen, all progeny<br />

was diploid. Plants with dominant phenotype were <strong>the</strong> result <strong>of</strong> crossing<br />

over between <strong>the</strong> telocentric and normal homologues. Thus, <strong>the</strong> recombina-<br />

tion values were calcur<strong>at</strong>ed directly from frequencies <strong>of</strong> <strong>the</strong> progeny<br />

carrying <strong>the</strong> dominant phenotype. The gene ¡vith <strong>the</strong> lower recombinaËion<br />

value ttBmtt v¡as <strong>the</strong>refore loc<strong>at</strong>ed closer to <strong>the</strong> centromere.<br />

Moseman and Smith (i954) used a telocentric and a 3-point test Ëo<br />

determine <strong>the</strong> arm loc<strong>at</strong>ion and linear order <strong>of</strong> four genes in T. mono-<br />

coccum. Recombin<strong>at</strong>ion values vùere calcul<strong>at</strong>ed from F, and F, d<strong>at</strong>a by<br />

ei<strong>the</strong>r <strong>the</strong> product or naximum likelihood weighted methods.<br />

3B


lhresholds<br />

Although telocentrics, have been used successfully in cytological<br />

and genet.ical studies, certain problems may accompany <strong>the</strong>ir use. For<br />

instance in som<strong>at</strong>ic cel1s, t.elocentrics tend ocassionallv t.o be lost or<br />

Ëo give rise to isochromosomes. Nar¿ashin (1916) expressed <strong>the</strong> opinion<br />

th<strong>at</strong> all cenËromeres are inËerstitial and when telocentrícs arise through<br />

misdivision, <strong>the</strong>y are ei<strong>the</strong>r converted to isochromosomes or are lost.<br />

Marks (1957) however, defended <strong>the</strong> concept th<strong>at</strong> some species do have<br />

n<strong>at</strong>urally occurring and persistenË Ëelocentric chromosomes" He suggested<br />

th<strong>at</strong> Ëelocentrics are rare because <strong>of</strong> genetic imbalance <strong>of</strong> <strong>the</strong> gametes<br />

carry:i-ng <strong>the</strong>m brought about by chromosomal deficiencies or duplic<strong>at</strong>ions"<br />

This was supported by Jones and Coldent s (1968) observ<strong>at</strong>ions on <strong>the</strong> com-<br />

plement <strong>of</strong> TEg4e_gpe,ntia micrantha, in which al 1 chromosomes are true<br />

telocenÈrics. They pointed out th<strong>at</strong> this tetraploid species originaËed<br />

from a diploid bi-armed complemenL. In whe<strong>at</strong>, Steinitz-Sears (1966) found<br />

th<strong>at</strong> about 75% <strong>of</strong> Lelocentrics isol<strong>at</strong>ed among <strong>the</strong> progeny <strong>of</strong> monosomic-38<br />

Ì{ere unstable and cannot be recovered <strong>at</strong> meiosis" She <strong>at</strong>tributed telo-<br />

cenËric instability to centromere completeness r<strong>at</strong>her than posiËion.<br />

Yet, cytological examinaLions <strong>of</strong> pachytene chromosomes in tom<strong>at</strong>o indic<strong>at</strong>ed<br />

th<strong>at</strong> certain unstable t.elocentrics revealed a centromere about half <strong>the</strong><br />

size <strong>of</strong> <strong>the</strong> normal one, while sËable telocentrics had a centromere <strong>of</strong><br />

normal size (I6ush and Rick, 1968).<br />

Telocentrics may tend to reduce crossing over Ín <strong>the</strong> proximal regions<br />

(close to <strong>the</strong> centromere) resulting in shorter disËances than estim<strong>at</strong>ed<br />

39


y genetical methods. rn cotton , Endrízzi and Kohr (1966) detected a<br />

decrease in crossing over <strong>at</strong> <strong>the</strong> centromere region <strong>of</strong> chromosome-6 be-<br />

Ëvreen a telocentric'and its normal homologue. Sears and Briggle (1969)<br />

suggested th<strong>at</strong> reduced crossing over <strong>at</strong> <strong>the</strong> proximal regions <strong>of</strong> telo_<br />

centrics may be accounËed for by a distal shift <strong>of</strong> chiasm<strong>at</strong>a r<strong>at</strong>her<br />

than a reduction in <strong>the</strong>ir frequency" This phenomenon has <strong>the</strong> effect <strong>of</strong><br />

increasing <strong>the</strong> estimaËed distances between proximar genes on account <strong>of</strong><br />

those betr¿een distal ones "<br />

Moreover, Revees et a1. (196s) suggesËed th<strong>at</strong> segreg<strong>at</strong>ion among <strong>the</strong><br />

diploid progeny <strong>of</strong> heËerozygous telotrisomics could be rnodified if cross-<br />

Íng over takes place between Ëhe telocentric and íts normal homorogue.<br />

They concluded thaË devi<strong>at</strong>ion from normal Mendelian r<strong>at</strong>ios, though smal1,<br />

could be detected ín popul<strong>at</strong>ions <strong>of</strong> normal sizes if certaín types <strong>of</strong> dis-<br />

juncËion and failure <strong>of</strong> pairing <strong>of</strong> <strong>the</strong> telocentric occurred <strong>at</strong> a fre-<br />

quency high enough to be observed"<br />

sybenga (1965) reporËed th<strong>at</strong> pairing <strong>of</strong> Êhe short telocentric<br />

(s<strong>at</strong>ellited arm) <strong>of</strong> <strong>the</strong> s<strong>at</strong>ellited chromosome <strong>of</strong> rye vüas less efficient<br />

than th<strong>at</strong> <strong>of</strong> <strong>the</strong> non-s<strong>at</strong>ellited. one" He pointed out th<strong>at</strong> <strong>the</strong> presence<br />

<strong>of</strong> <strong>the</strong> nucleolus in species th<strong>at</strong> initi<strong>at</strong>e pairing <strong>at</strong> distal ends such<br />

as in rye, prevents <strong>the</strong> form<strong>at</strong>ion <strong>of</strong> a chiasma <strong>at</strong> <strong>the</strong> s<strong>at</strong>ellite region.<br />

on <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> form<strong>at</strong>ion <strong>of</strong> a chiasma between'<strong>the</strong> centromere and<br />

<strong>the</strong> nucleolus will result in a breakdown <strong>of</strong> <strong>the</strong> trivalent since no chiasma<br />

ç¡as formed <strong>at</strong> <strong>the</strong> saËellíte<br />

40


MATEPJA], AND METHODS<br />

The telotrisomics used in t.his study v/ere derived from <strong>the</strong> I tri_<br />

somic lines <strong>of</strong> barley (lI. vulgare, L., 2n=r5) initially produced by<br />

Larter (personal conrnunic<strong>at</strong>ion). A total <strong>of</strong> 30 lines (rable rr_5), each<br />

carrying an extra fragment, occurred ei<strong>the</strong>r spontaneously or upon <strong>the</strong><br />

mutagenic Ère<strong>at</strong>menËs described in Section I, and were classified cvto-<br />

logically on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> fragment morphology into <strong>the</strong> followÍng<br />

c<strong>at</strong>egoríes:<br />

(a) 14 * an acrocentric<br />

(b) 14 * a telocentríc (monotelotrisomic)<br />

(c) 14 + I or more tiny fragments design<strong>at</strong>ed as accessorv<br />

chromosomes.<br />

only <strong>the</strong> rast 2 grouPs were studied and <strong>the</strong> results are presented<br />

in this secËion and Ëhe next to follow.<br />

Monotelotris omics<br />

The i:elotrisomic group comprised 17 different rines, each carrying<br />

a true telocentric chromosome" <strong>of</strong> <strong>the</strong>se, 2 belonged to chromosome 3 and<br />

hTere unstable; 4 r¿ere duplic<strong>at</strong>es for tel0centrics ls, 6L, and 7s. rn<br />

those cases in which more than one telo r,ras obtained for a specific arm,<br />

only one <strong>of</strong> spontaneous occurrence r,ras chosen for study.<br />

'Thus, a total <strong>of</strong> 11 lines each representing a dÍfferent terocentric<br />

are reporÈed in this section. All occurred sponÈaneously except telo_<br />

eentrics lL and 4L which were obtained from irradi<strong>at</strong>ing trisomics I and<br />

ù,, resÞecÈively. Moreover, a compens<strong>at</strong>ing telotrisomic (13 normar * an<br />

4L


Table II-5 Source <strong>of</strong> Telotrisomic<br />

Present Study,<br />

(2n r- a fragment) Stocks Used ín <strong>the</strong><br />

Chromosome ParenËa1<br />

Number Trisomic Occurrence Identity <strong>of</strong> <strong>the</strong> Fragment<br />

L4+<br />

L4 t-<br />

14+<br />

14+<br />

L4+<br />

I¿+ f<br />

14+<br />

L4+<br />

L4+<br />

L4+<br />

1/, -L<br />

L4+<br />

L4+<br />

L4+<br />

L4+<br />

14+<br />

L4+<br />

14+<br />

L+ 'f<br />

L4+<br />

L4+<br />

T4+<br />

L4+<br />

14+<br />

L4+<br />

L4+<br />

14+<br />

14+<br />

L4+<br />

L4+<br />

f<br />

f<br />

f<br />

f<br />

t<br />

f<br />

f<br />

f<br />

f<br />

f<br />

f.<br />

f.<br />

f<br />

f.<br />

f<br />

f<br />

f<br />

r.<br />

f.<br />

f<br />

Í.<br />

!<br />

f.<br />

f<br />

f.<br />

f.<br />

r<br />

f.<br />

f.<br />

f.<br />

f<br />

Trisomic 1<br />

Trisomic I<br />

Compens<strong>at</strong>ing<br />

telo<br />

Trisomic I<br />

Trisomic I<br />

Trisomic 2<br />

Trísomic 2<br />

2n* 2L<br />

Trisomic 3<br />

Trisomic 3<br />

Trisomic 3<br />

Trisomic 3<br />

Trisomic 4<br />

Trisomic 4<br />

Trisomic 4<br />

Trisomic 5<br />

Trisomic 5<br />

Trisomic 5<br />

Trisomic 6<br />

Trisomic 6<br />

Trisomic 6<br />

Trisomic 6<br />

Trisomic 7<br />

Trisomic 7<br />

Trisomic 7<br />

Trisomic 7<br />

Trisomic 7<br />

Trisomic 7<br />

Trisomic 7<br />

Trisomic 7<br />

Trisomic 7<br />

Trísomic 7<br />

Trisomic 7<br />

Spontaneous<br />

I -rays (500r)<br />

Spontaneous<br />

I -rays (500r)<br />

l-rays (500r)<br />

Spontaneous<br />

Spontaneous<br />

Spontaneous<br />

Spontaneous<br />

Spontaneous<br />

Spontaneous<br />

SponËaneous<br />

Spontaneous<br />

I -rays (150r)<br />

ú -rays (f50r)<br />

Spontaneous<br />

Spontaneous<br />

Spontaneous<br />

SponLaneous<br />

Spontaneous<br />

Spontaneous<br />

Spontaneous<br />

Spontaneous<br />

Spontaneous<br />

Spontaneous<br />

Spontaneous<br />

Spontaneous<br />

5 -rays (150r)<br />

t -rays (150r)<br />

,l -ray" (500r)<br />

6 -rays (r50r)<br />

ú -rays (150r)<br />

,f -rays (150r)<br />

2n*15<br />

Compens<strong>at</strong>ing telotrisomic<br />

2nlLL<br />

2n f acrocentric<br />

A tiny fragment (losË)<br />

2r'*2L<br />

2n * acrocentric<br />

2n * acrocentric<br />

2n*3L<br />

2n*35<br />

2n * telo (lost)<br />

2n -i- telo (lost)<br />

2n * tí-ny fragment (Accessory)<br />

2n * acrocentric<br />

2n+4L<br />

2n*55<br />

2n* 5L<br />

2n * actocentric<br />

2n+65<br />

2n* 6L<br />

2n * telo (lost)<br />

2n * tiny fragment (Accessory)<br />

2n*75<br />

2n * acrocentric<br />

2n * tiny )<br />

2n*tiny ) Accessories<br />

2n * tiny )<br />

2n * acro<br />

2n * telo<br />

2n * telo<br />

2n * acro<br />

2n 1- acro<br />

2n * acro<br />

42


iso -l- a telocentric) which was obtained.among <strong>the</strong> progeny <strong>of</strong> an<br />

irradi<strong>at</strong>ed trisomic I seedlings was also studied but <strong>the</strong> d<strong>at</strong>a are pre-<br />

sented separ<strong>at</strong>ely because <strong>of</strong> its unusual chromosomal consLitution.<br />

Telotrisomics were first identified on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> trisomic<br />

parent from which each was isol<strong>at</strong>ed and in conjunction with <strong>the</strong> plant<br />

morphology <strong>of</strong> <strong>the</strong> parental plant in comparison with th<strong>at</strong> <strong>of</strong> <strong>the</strong> derived<br />

teloËrisomic. Each telotrisomic line r¡as <strong>the</strong>n crossed, as a female<br />

parent, to 2 homozygous transloc<strong>at</strong>.ions (tabte II-6) having in common <strong>the</strong><br />

transloc<strong>at</strong>ed chromosome from which <strong>the</strong> tenl<strong>at</strong>ivelv identifíed telocentric<br />

was derived. Identific<strong>at</strong>ion was considered positive when pentavalent<br />

associ<strong>at</strong>ions in PMCts <strong>of</strong> F.,-telotrisomic plants vr'ere observed.<br />

To assign <strong>the</strong> specific arm involved, each telotrisomic was crossed<br />

to knor¿n linkage markers chosen on <strong>the</strong> basis <strong>of</strong> <strong>the</strong>ir descripËion and<br />

arm loc<strong>at</strong>ion (table II-6) " A Chi-square analysis <strong>of</strong> Fr-d<strong>at</strong>a was made<br />

to distínguish between disomic and trisomic r<strong>at</strong>ios" In all cases, Ëhe<br />

goodness <strong>of</strong> fit to a trisomic Fr-r<strong>at</strong>io r¿as Ëhe criLerion used to identify<br />

Ëhe arm ínvolved (Tsuchiya, L967; Fedak, L969).<br />

Chromosome counts and karyotype analyses ü7ere based on root-tip<br />

squashes. Seeds were placed on moist blotters in germin<strong>at</strong>ion boxes and<br />

stored <strong>at</strong> +2oC f.or 2 to 3 weeks to obtain uniform germin<strong>at</strong>ion. Root-<br />

tips were pretre<strong>at</strong>ed <strong>at</strong> +2oC for 24 hours, fixed in Carnoyrs 3:l and<br />

stained wiEh Feulgen. A karyotype analysis was conducted by measuring<br />

<strong>the</strong> rel<strong>at</strong>ive length <strong>of</strong> a telocentric as a percent <strong>of</strong> Lhe total length<br />

43


Table rr-6. Transloc<strong>at</strong>ion Testers and Genetic Markers used to<br />

Identify Telotrísomics "<br />

Telotrisomic Transloc<strong>at</strong>ion Testers<br />

I ine<br />

1S<br />

1L<br />

2L<br />

3L<br />

3S<br />

4L<br />

5S<br />

5L<br />

6S<br />

6L<br />

7S<br />

Tt4a, Tr6a<br />

lr3a, Tr4a<br />

Tr3a, TrTb<br />

îr3a, T rTb<br />

Tr4a, TO5a<br />

Tr5a, To5a<br />

Crossed to line 55<br />

Tr6a, Tr6a<br />

Tr6a, 1r6a<br />

T37b, T57b<br />

Genetic Markers<br />

(arm loc<strong>at</strong>ion)<br />

br(S), n(L)<br />

or (S)<br />

al (t) , an (l-) , uz (S)<br />

uz (S)<br />

trd (S)<br />

trd (L)<br />

44


<strong>of</strong> <strong>the</strong> haploid complement. Ten cells were measurecl for each individual<br />

karyotype. Rel<strong>at</strong>ive measurements <strong>of</strong> t-elocenLrics r\rere compared to <strong>the</strong><br />

standard lcaryotype published by Burnham and llagberg (1956).<br />

Meiotic behavior <strong>of</strong> <strong>the</strong> identified telotrisomics r,,ras studied<br />

thoroughly in PMC's. spikes were killed and fixed in carnoy's 6:3:l for<br />

48 hours, Lhen stored Ln 70% ethanol. Slide prepar<strong>at</strong>ions were made using<br />

temporary acetocarmine smears. Pollen fertility was determined by stain-<br />

ing m<strong>at</strong>ure po11en with lactophenol in cotton blue (Johansen, rg4o) and<br />

scoring <strong>the</strong> percentage <strong>of</strong> stainable pollen. The eleven telocentrics<br />

were <strong>the</strong>n ranked in descending order <strong>of</strong> lengths and <strong>the</strong>se d<strong>at</strong>a rrrere used<br />

for correl<strong>at</strong>ion analysis to study <strong>the</strong> rel<strong>at</strong>ionship between arrn length<br />

and chromosome behavior <strong>at</strong> meiosis. In addition, telocentric chromosome<br />

behavior <strong>at</strong> different sËages <strong>of</strong> meiosis was also investig<strong>at</strong>ed.<br />

All plants r^/ere grov/n under controlled temper<strong>at</strong>ure <strong>of</strong> lB *2oC an¿<br />

a 16-hour photoperiod. Morphological d<strong>at</strong>a íncluding plant height, number<br />

<strong>of</strong> tillers, heading d<strong>at</strong>e and fertility were scored for each line on I0<br />

telotrisomic and disomic plants were gro\,/n toge<strong>the</strong>r on beds in <strong>the</strong> green-<br />

house. To complement <strong>the</strong>se daLa, a brief description <strong>of</strong> <strong>the</strong> most con-<br />

spicuous characters <strong>of</strong> each telotrisomic was <strong>at</strong>tempted.<br />

45


RESULTS AND DISCUSSION<br />

The results presented herein comprise a study <strong>of</strong> twelve telotri-<br />

somics. Three <strong>of</strong> <strong>the</strong>se, a compens<strong>at</strong>ing telotrisomic, and telotrisomics<br />

2nL+IL and 2r*4L were isol<strong>at</strong>ed in <strong>the</strong> progeny <strong>of</strong> irradi<strong>at</strong>ed trisomics 1<br />

and 4. The compens<strong>at</strong>ing teloËrisomic was first studied and in its progeny<br />

a true telotrisomic 2n*1L was isol<strong>at</strong>ed Hence, <strong>the</strong> results <strong>of</strong> eleven<br />

true telotrisomics including <strong>the</strong>ir<br />

phological and meiotic behavior are<br />

A. The Compens<strong>at</strong>ing Telotrisomic<br />

identific<strong>at</strong>íon as well as <strong>the</strong>ir mor-<br />

presented in <strong>the</strong> section to follow"<br />

A telotrisomic line isol<strong>at</strong>ed in <strong>the</strong> progeny <strong>of</strong> an irradí<strong>at</strong>ed tri-<br />

somic-l plant was sÍmilar in st<strong>at</strong>ure to normal dísomic plants. Spikes<br />

were slightly 1ax and highly fertile and occasionally some spikes showed<br />

multíple spikelets. In general, <strong>the</strong> plants were similar to true telo-<br />

trisomic 2rrf 15.<br />

The meioËic behavior <strong>of</strong> telotrisomíc plants showed 6 bivalent.s *<br />

a heteromorphic trivalent in mosË cells (Fig. TT-2a), o<strong>the</strong>rwise 7 biva-<br />

lents (including a heteromorphic) in addition to an isochromosome occur-<br />

red (Fig. II-2b). Although both <strong>the</strong> telocentric and isochromosome paired<br />

with ano<strong>the</strong>r homologue, <strong>the</strong>y did not pair with one ano<strong>the</strong>r indic<strong>at</strong>ing<br />

Ëh<strong>at</strong> <strong>the</strong>ir arms were nonhomologous and th<strong>at</strong> <strong>the</strong>y compens<strong>at</strong>ed for a missing<br />

homologue. In o<strong>the</strong>r words, <strong>the</strong> extra chromosome arm was carried by <strong>the</strong><br />

isochromosome and did not constitute <strong>the</strong> telocentric ícself, The frequen-<br />

cies <strong>of</strong> cells <strong>of</strong> <strong>the</strong> compens<strong>at</strong>ing telotrisomic with various configur<strong>at</strong>ions<br />

46


tr'i ørrra TT-?<br />

_ -o*-<br />

47<br />

Chromosome configur<strong>at</strong>ions <strong>at</strong> dialcinesis<br />

PMCrs <strong>of</strong> a compens<strong>at</strong>ing telotrisomic"<br />

(") 6t' + tilrt'<br />

(b) 6fr + Llrr + it<br />

t_n


@<br />

¡<br />

þ<br />

ww<br />

w *-% W*<br />

ñ<br />

@<br />

ffi ..,<br />

w *ffi"<br />

tuøWw<br />

W<br />

þ wwu<br />

w W


<strong>at</strong> diakinesis and M are shor¡n in Table II-7.<br />

I<br />

failure<br />

<strong>of</strong> <strong>the</strong> isochromosome to associ<strong>at</strong>e with<br />

It was evident th<strong>at</strong> <strong>the</strong><br />

its normal homologue was<br />

due to inter-arm pairing within <strong>the</strong> iso, which resulted in <strong>the</strong> forn<strong>at</strong>ion<br />

<strong>of</strong> a ring univalenË in 20 .7% <strong>of</strong> cells observed <strong>at</strong> diakinesis. Moreover,<br />

when a heteromorphic trivalent occurred, <strong>the</strong> 2 intact chromosomes asso-<br />

ci<strong>at</strong>ed in distal regions only since proximal regions <strong>of</strong> <strong>the</strong> isochromosome<br />

paired with <strong>the</strong>mselves. In contrast, <strong>the</strong> telocentric rn¡as seen as a uni-<br />

valent in approxim<strong>at</strong>ely oni-y 4% <strong>of</strong> <strong>the</strong> cells since no competition for<br />

pairing existed in íts arm.<br />

If random orient<strong>at</strong>ion <strong>of</strong><br />

<strong>of</strong> 7t -7'+tr and Bf -6t+tt in a<br />

percentage <strong>of</strong> cells undergoing<br />

<strong>the</strong> trivalent aL M I occurred, a disjunction<br />

r<strong>at</strong>io <strong>of</strong><br />

B'- 6r+Ër<br />

2:1 should<br />

49<br />

be observed. The actual<br />

disíunction was 8.6% instead <strong>of</strong> <strong>the</strong><br />

33% expected on <strong>the</strong> basis <strong>of</strong> random disjunction (Table II-B). Presumably<br />

this discrepancy <strong>of</strong> <strong>the</strong> non-random orient,<strong>at</strong>,ion and distribution <strong>of</strong> <strong>the</strong><br />

trisome occurred <strong>at</strong> M- and A-, respectively"<br />

II<br />

The frequency <strong>of</strong> quartets with micronuclei was similar to <strong>the</strong> fre-<br />

quency <strong>of</strong> cells with a lagging chromosome <strong>at</strong> AI (Table II-B). This indi-<br />

c<strong>at</strong>ed th<strong>at</strong> lagging chromosomes <strong>at</strong> A, were subsequently excluded. Po11en<br />

ferËility <strong>of</strong> <strong>the</strong> compens<strong>at</strong>ing telotrisomic was lower than th<strong>at</strong> <strong>of</strong> normal<br />

disomics and telotrisomí.cs 15 as might be expected since po11en carrying<br />

an isochromosome instead <strong>of</strong> a normal homologue is not viable"<br />

The compens<strong>at</strong>ing telotrisomic gave rise t.o a variety <strong>of</strong> plants with<br />

differenË chronosome numbers. lufeiosis v¡as examined in all 39 aneuploid<br />

plants arising from this stock (Table II-9) and tlre following observaLions


Table II-7 Chromosome Configur<strong>at</strong>ion <strong>at</strong> Dialcinesis and<br />

Compens<strong>at</strong>ing Telotrisomic.<br />

S tage<br />

Diakines is<br />

M I<br />

No" <strong>of</strong><br />

Cells<br />

135<br />

66L 72 .2<br />

Chromosome Configur<strong>at</strong>ion 7"<br />

M <strong>of</strong> a<br />

I<br />

6rr {. Lilrt t 7r + i-l 7tr + tl<br />

/4<br />

20 "7<br />

23.8<br />

Table II-8. Chromosome Behavior <strong>at</strong> Ar, T, and Tetrad Stage <strong>of</strong><br />

a Compens<strong>at</strong>ing Telotricomic.<br />

Stage<br />

A T<br />

T J-<br />

Tetrad<br />

No. <strong>of</strong><br />

Cel 1s<br />

22t<br />

528<br />

209<br />

I,rlithout Laggards<br />

ol<br />

lo<br />

oo.o<br />

84. B<br />

66 .0<br />

tt Thur. are 8 .6% B'-6'+t' and 58.0% 7'-7t+t' .<br />

5.2<br />

4.t<br />

With Laggards<br />

ot<br />

t"<br />

JJ.4<br />

L5.2<br />

34.0<br />

50


Table II-9. Breeding Behavior <strong>of</strong> Compens<strong>at</strong>ing TeloËrisomic"<br />

Chromosome No. <strong>of</strong> Meiotic 7" <strong>of</strong> Total<br />

No. Plants Chromosome Constitution PopulaËion Notes<br />

L4<br />

/,o<br />

Lî+t 2<br />

14+t 33<br />

13+2t I<br />

L4+2t I<br />

15<br />

TOTAL 88<br />

7tl<br />

7" )- x'<br />

6tt+Ëiltt I<br />

6lr+it+trl<br />

6rt+ilr+tll<br />

7tt + il<br />

55,7 Disomic<br />

2 "3<br />

3s.5<br />

1.1<br />

1"1<br />

2.3<br />

True (2n+1L)<br />

Compens<strong>at</strong>ing<br />

types<br />

Secondary<br />

Trisomic<br />

51


l,Jere made:<br />

(1) two plants carried an extra telocentric excluding <strong>the</strong> isochromo-<br />

some (true telotrisomics) and were idenËified by <strong>the</strong>ir rtbush typett charac-<br />

teristics as being telotrisomic lL,<br />

. (2) two plants \,rere isol<strong>at</strong>ed with an exLra-isochromosome, i.e.,<br />

secondary Lrisomics,<br />

(3) <strong>the</strong> remainíng 35 plants vrere compens<strong>at</strong>ing types, carrying one<br />

or more isochromosomes.<br />

The isol<strong>at</strong>íon <strong>of</strong> a true monotelot,risomic lL indic<strong>at</strong>ed th<strong>at</strong> <strong>the</strong> extra<br />

arm in <strong>the</strong> compens<strong>at</strong>ing telotrisomic was <strong>the</strong> short arm <strong>of</strong> chromosome 1<br />

while <strong>the</strong> telo I^ras <strong>the</strong> long arm. Moreover, <strong>the</strong> excess <strong>of</strong> <strong>the</strong> compens<strong>at</strong>ing<br />

types in <strong>the</strong> progeny r^/as expecLed on <strong>the</strong> basís <strong>of</strong> preferent.ial distribu-<br />

tion <strong>of</strong> trisome members <strong>at</strong> A, (table II-B) " This distribution increased<br />

<strong>the</strong>.frequency <strong>of</strong> (6r*tt+it) and (n) gametes <strong>at</strong> Ëhe expense <strong>of</strong> (6t+it) and<br />

(7'.lt') gametes. Fedak (I969) and Tsuchiya (L972b) found thar rhe addi-<br />

Ëion <strong>of</strong> an extra short arm <strong>of</strong> chromosome-l had no deleterious effects on<br />

<strong>the</strong> gametes carrying it, subsequently ít was <strong>of</strong>ten Lransmitted through<br />

<strong>the</strong> pollen. This could be ano<strong>the</strong>r reason for <strong>the</strong> excess <strong>of</strong> compens<strong>at</strong>ing<br />

tyPes ín <strong>the</strong> progeny reported above. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> occurrence<br />

<strong>of</strong> telotrisomics 2n-þ1L and secondary trisomics (2nfit) in almost equal<br />

frequencies r/,/as a result <strong>of</strong> <strong>the</strong> rare occurrence <strong>of</strong> a type <strong>of</strong> disjunction<br />

<strong>of</strong> <strong>the</strong> trisome in which <strong>the</strong> normal homologue accompanied ei<strong>the</strong>r <strong>the</strong> telo<br />

or <strong>the</strong> isochromosome to <strong>the</strong> pole.<br />

52


The compensaËing telotrisomic described above, with <strong>the</strong> chromosomal<br />

complement <strong>of</strong> 13r+it+tr was isol<strong>at</strong>ed in <strong>the</strong> progeny <strong>of</strong> an irracli<strong>at</strong>ed<br />

trisomic-I plant. This genotype required fertlriz<strong>at</strong>ion <strong>of</strong> a (6t*Lt+tt)<br />

gamete v/ith a normal one (n=7). In diptoid barley, it is not possible<br />

th<strong>at</strong> such a genotype could arise r.rom 2 gametes, one carrying an iso and<br />

<strong>the</strong> o<strong>the</strong>r carrying <strong>the</strong> t.elo, or vice versa, because deficiencies could<br />

be involved on ei<strong>the</strong>r side. Darlington (1939) and Sears (1952) observed<br />

th<strong>at</strong> three arms <strong>of</strong> a misdividing univalent moved to one pole giving rise<br />

to ei<strong>the</strong>r a normal chromosome * a telo, or an isochromosome * a telo.<br />

In trisomics <strong>of</strong> diploid species such as barley, <strong>the</strong> occurrence <strong>of</strong> a uni-<br />

valent vras always accompanied by seven normal bivalents (yrr, 1968), thus<br />

<strong>the</strong> products <strong>of</strong> misdivision <strong>of</strong> a univalent are, in facL, additional com-<br />

ponents <strong>of</strong> a normal haploid complement <strong>of</strong> a gamete. This evidence dís-<br />

putes <strong>the</strong> possibility <strong>of</strong> spontaneous occurrence <strong>of</strong> <strong>the</strong> compens<strong>at</strong>ing telo-<br />

Ërisomic. Thus it was assumed th<strong>at</strong> irradi<strong>at</strong>ion resulted in <strong>the</strong> break <strong>of</strong><br />

one <strong>of</strong> <strong>the</strong> three members <strong>of</strong> chromosome-l rvithin <strong>the</strong> centromere, <strong>the</strong> long<br />

arm <strong>the</strong>n healed while <strong>the</strong> short arm formed an isochromosome.<br />

B. The True Monotelotrisomics<br />

The eleven monotelotrisomic lines listed in Table II-6 were identified<br />

on <strong>the</strong> basis <strong>of</strong> cytological and genetical methocls. They were <strong>the</strong>n studied<br />

for plant morphology and chromosome behavior <strong>at</strong> meiosis.<br />

53


Identific<strong>at</strong>ion <strong>of</strong> Tclotrisomics<br />

Cytological ldentific<strong>at</strong>ion<br />

(a) Crosses to Transloc<strong>at</strong>ion Testers: Chromosomes involved in <strong>the</strong><br />

telotrisomic condition were positively identified by crossing each telo-<br />

trisomic to t\,/o transloc<strong>at</strong>ion Lesters (Table rr-fO) having one trans-<br />

loc<strong>at</strong>ed chromosome in conrnon. At meiosis, pentavalents rüere observed <strong>at</strong><br />

diakinesis and M, <strong>of</strong> Fr-hybrid combín<strong>at</strong>ions involvíng <strong>the</strong> nine telotri-<br />

somics listed in Table rr-10 (nigs. rr-3a, 3b)" Thus, <strong>the</strong> telocentric<br />

r¡Ias collsidered to belong Lo <strong>the</strong> transloc<strong>at</strong>ed chromosome exisËing in contrnon.<br />

In case <strong>of</strong> telotrisomics <strong>of</strong> chromosome 5, Ëhe two lines were inter-<br />

crossed using a ditelotetrasomic derived from line 5a used as a pollen<br />

parent. Meiosis <strong>of</strong> an Fr-plant carrying L4t1-2tt (double telotrisomic)<br />

showed th<strong>at</strong> both telos paired with ano<strong>the</strong>r homologue <strong>at</strong> different arms<br />

(Fig. II-3c) indic<strong>at</strong>ing th<strong>at</strong> <strong>the</strong>y represent different arms <strong>of</strong> chromosome<br />

5' This test qlas not repeaLed for telotrisomics <strong>of</strong> chromosomes 1. 3 and<br />

6 because <strong>of</strong> a lack <strong>of</strong> ditelotetrasomics in this m<strong>at</strong>erial.<br />

(b) Karyotype Analysis: The use <strong>of</strong> karyoLype analysis in barley<br />

has been limited due to <strong>the</strong> fact th<strong>at</strong> 4 <strong>of</strong> <strong>the</strong> non-s<strong>at</strong>ellited chromosomes<br />

(i.e. chromosomes 1-4) are submedian r¿ith almost similar physical length.<br />

Tsuchiya (1960) and Yu (1968) reporred th<strong>at</strong> karyotype analysis <strong>of</strong> rri-<br />

somic-4 did not give any conclusive evidence as to <strong>the</strong> shape <strong>of</strong> <strong>the</strong> exLra<br />

chromosome. For <strong>the</strong>se reasons, karyotype analyses using telocentríc re-<br />

l<strong>at</strong>ive length, i.e. <strong>the</strong> length <strong>of</strong> an individual telocentric in per cenË<br />

)t+


Table II-10. M Configur<strong>at</strong>ions <strong>of</strong> F,-Hybrids Between Telotrisomics and<br />

I " L'-J-<br />

Transloc<strong>at</strong>ion TesLers "<br />

Trisomic<br />

Transloc<strong>at</strong>ion Tester<br />

Parent Tr4a Tr6a Tr6a Tr3a Tr4a T37b Tr5a TO5a T57b<br />

1a<br />

2b<br />

3a<br />


Figure rr-3. cytologicar identific<strong>at</strong>ion <strong>of</strong> terotrisomics.<br />

56<br />

(a) Diakinesis r,rith 5 " + 1tt (critical cross) .<br />

(b) M-' with 4,'.{' IIV + tzn, (non-critical<br />

I<br />

cross) "<br />

(") Diplotene with 6tr + 2tLß t + I' in a<br />

double telotrisomc from a cross betrveen<br />

5a and 5b lÍnes.<br />

(d) Som<strong>at</strong>ic chromosomes <strong>of</strong> 2n f 55.<br />

(e) Som<strong>at</strong>ic chromosomes <strong>of</strong> 2n * 65.<br />

(f) Som<strong>at</strong>ic chromosomes <strong>of</strong> 2n * 75.


@ø%<br />

^w+<br />

_-z ",e &**<br />

*%, & *&<br />

* i *w*w'gwe<br />

% '**<br />

æ w6<br />

%- k%<br />

w.g W"þg%<br />

3ùe<br />

þ;<br />

--<br />

.@<br />

%<br />

@<br />

wæ<br />

w<br />

'@<br />

æ<br />

æ<br />

@<br />

ffi<br />

æ<br />

ffi<br />

@wWu@%<br />

w-<br />

6\<br />

,Nru<br />

ffi<br />

%*<br />

ffi'l<br />

Wfu,¿ffi,,<br />

çt<br />

3


<strong>of</strong> <strong>the</strong> haploid complement, hrere used in <strong>the</strong><br />

1-ength <strong>of</strong> a telocent.ric in terms <strong>of</strong> th<strong>at</strong> <strong>of</strong><br />

present sLudy to rel<strong>at</strong>e <strong>the</strong><br />

both <strong>the</strong> short and long arms<br />

<strong>of</strong> a chromosome. Photomicrographs <strong>of</strong> ten ce1ls <strong>of</strong> each 1íne ¡^¡ere measured<br />

and <strong>the</strong> identity <strong>of</strong> each telocenLric r¿as cletermined ¡,rith <strong>the</strong> aid <strong>of</strong> com-<br />

parisons to <strong>the</strong> standard karyotype established by Burnham and Hagberg in<br />

1956. It should be pointed out th<strong>at</strong> comparisons between <strong>the</strong> observed<br />

rel<strong>at</strong>ive lengths and those <strong>of</strong> <strong>the</strong> st.andard karyotype indic<strong>at</strong>ed th<strong>at</strong> telo-<br />

cent.rics lL,4L,5s, 5L, 6s, 6L and 75 were very similar to those <strong>of</strong> <strong>the</strong><br />

standard (Table rr-1r). rn contrast, telocentrics ls, 2L and 3L in <strong>the</strong><br />

present m<strong>at</strong>erial were longer than<br />

compared to 6.79, 8.25 and 7 .3g"A,<br />

chromosome-3 was shorter than <strong>the</strong><br />

<strong>the</strong> arm r<strong>at</strong>ios <strong>of</strong> chromosome-l and<br />

and 0.752 compared to 0.746 and O<br />

Hagbergt s standard karyotype.<br />

2. Genetic ldentific<strong>at</strong>ion<br />

<strong>the</strong> standard (7.52, 9.02 and 8.29%<br />

respectively), lvhile <strong>the</strong> short arm <strong>of</strong><br />

standard (6.24 vs. 6.80%). Therefore,<br />

3 in <strong>the</strong> present m<strong>at</strong>erial were 0.793<br />

.920%, respectively, <strong>of</strong> Burnham and<br />

Monotelotrisomics \¡Iere crossed to genetic marlcer stocks in which<br />

gene arm rel<strong>at</strong>ionships were known and Fr-populaËions from both telotri-<br />

somic and disomic Fr-plants \¡/ere grov¡n. D<strong>at</strong>a for Fr-segreg<strong>at</strong>ions were<br />

scored on <strong>the</strong> progenÍes from individial Fr-llants and were <strong>the</strong>n checked<br />

t<br />

separ<strong>at</strong>ely for X--values. If <strong>the</strong> cl<strong>at</strong>a were consistent, <strong>the</strong>y were pooled<br />

for each cross and an overall X2-value was calcul<strong>at</strong>ecl. AIl Fr-polul<strong>at</strong>ions<br />

from disomic F1-plants showed a good fit for <strong>the</strong> expectecl clisomic (3:1)<br />

r<strong>at</strong>io (Tab1e II-f2).<br />

5B


Table II-11. Rel<strong>at</strong>ive Length and Arm<br />

Eleven Monotel otrisomics<br />

Standard Karyotype.<br />

Ohromosome<br />

No" Short Long<br />

1"<br />

2<br />

3<br />

4<br />

5<br />

6 (S<strong>at</strong>")<br />

7 (s<strong>at</strong>.)<br />

R<strong>at</strong>io <strong>of</strong> Som<strong>at</strong>ic Chromosomes <strong>of</strong><br />

as Compared to <strong>the</strong> Disomic<br />

Telotrisomic rel<strong>at</strong>ive<br />

length * Standard<br />

&&<br />

7 .s2 (a) 9.t4<br />

- 9"O2<br />

6.24 (a) 8 .29<br />

- 7"82<br />

5 "I7 (a) 7 "ts<br />

6.98 (") 7"11<br />

s.92 (a)<br />

R<strong>at</strong>io<br />

slL Short Long<br />

(b) 0 "7e3<br />

(b)<br />

(d) o "7s2<br />

(b)<br />

(b) 0 "723<br />

(b)<br />

6.79<br />

7 "O9<br />

6"80<br />

6"01<br />

5.t4<br />

6.80<br />

5.47<br />

9 .09<br />

8.2s<br />

7 .39<br />

7"80<br />

7.04<br />

7 .01<br />

9"10<br />

Length <strong>of</strong> individual Ëelocentric/length <strong>of</strong> <strong>the</strong> haploid complement<br />

(average <strong>of</strong> 10 cells).<br />

calcul<strong>at</strong>ed from <strong>the</strong> standard karyotype published by Burnham and<br />

Hagberg (1956).<br />

**:t Telotrisomic line design<strong>at</strong>ion.<br />

R<strong>at</strong>io<br />

SlL<br />

0.746<br />

0"8s9<br />

0"920<br />

0 "77L<br />

0.730<br />

0.610<br />

0.410<br />

59


,<br />

Table TT-I2. X- Analysis <strong>of</strong> F^-Popul<strong>at</strong>ions <strong>of</strong> F<br />

-- -1<br />

Linkage<br />

Their Disomic Sibs from Crosses to<br />

Marker<br />

Gene<br />

(arm loc<strong>at</strong>ion)<br />

No. <strong>of</strong> Plant.s<br />

-Monotelotrisomics and<br />

Genetic Markers.<br />

Group Total 3;1 5:1 7 :I<br />

Telo 1S Brbr (S)<br />

Disomics<br />

Nn(L)<br />

Disomics<br />

2L<br />

3S<br />

3L<br />

5S<br />

5L<br />

Or or (s)<br />

Disomic<br />

Alal(L)<br />

Disomics<br />

An an (L)<br />

Disomics<br />

Uz uz (S)<br />

Disomics<br />

Uz uz (S)<br />

Disomics<br />

Trd rrd(s)<br />

Disomics<br />

Trd rrd(s)<br />

Disomics<br />

172<br />

L24<br />

2I4<br />

93<br />

B7<br />

583<br />

LT2<br />

t37<br />

69<br />

202<br />

159<br />

370<br />

t73<br />

111<br />

206<br />

138<br />

B2<br />

40<br />

+J<br />

55<br />

25<br />

oa<br />

JI<br />

L2L<br />

30<br />

L4<br />

L7<br />

70<br />

4L<br />

53<br />

58<br />

39<br />

57<br />

2T<br />

32<br />

2L2<br />

LOt<br />

269<br />

118<br />

462<br />

-t 1L<br />

704<br />

r42<br />

r51<br />

B6<br />

272<br />

200<br />

423<br />

23r<br />

150<br />

263<br />

159<br />

LT4<br />

4.30<br />

0 .05<br />

3.00<br />

0.10<br />

1 .50<br />

22.90<br />

L.t4<br />

19.90<br />

1 .30<br />

0.07<br />

2.L6<br />

33.50<br />

0.00<br />

0 .08<br />

r.)¿+<br />

LL.79<br />

0 .57<br />

2<br />

X<br />

0.74<br />

0. 14<br />

s.94 r "43<br />

5.2L 0.00<br />

I .30<br />

X- values for one degree <strong>of</strong> freedom <strong>at</strong> .05 = 3.81r and, .01 = 6.63.<br />

60


The genes ttbrrt and "gtt golt"rning brachytic and naked respectívely,<br />

are rePorted to be locaLed on short and long arms <strong>of</strong> chromosome-l, res-<br />

pectívely (Nilan, L964) " The segreg<strong>at</strong>ittg F2-popul<strong>at</strong>ions obtained from<br />

monotelotrisomic Fr-hlbrids (2n+1s * "Etandttgtt) gave a good fiË to a<br />

disomic Fr-raÈio forrrnrr (P= ).05), and a trisomic r<strong>at</strong>io for genertbrrr<br />

(P= ( .05; Table II-12). This indic<strong>at</strong>ed th<strong>at</strong> <strong>the</strong> extra telocentric r¿as<br />

Ín fact <strong>the</strong> shorË arm <strong>of</strong> chromosome-l" similarly, a disomic raËio for<br />

<strong>the</strong> gene troct (for orange seedling) and which is loc<strong>at</strong>ed on <strong>the</strong> short<br />

arm <strong>of</strong> chromosome-2, indicaËed th<strong>at</strong> <strong>the</strong> telotrísomic line carried <strong>the</strong><br />

long arm <strong>of</strong> chromosome-2 as <strong>the</strong> teIo. These results confirmed <strong>the</strong>ir<br />

prior identifíc<strong>at</strong>ion using karyotype analysis, thus <strong>the</strong> cytological maps<br />

<strong>of</strong> chromosomes 1 and 2 correspond with <strong>the</strong>ir reported geneËic maps.<br />

Three genetic marker stocks carrying <strong>the</strong> genes itan't for albino seed-<br />

ling and 'fal" for a1bína lemma, both on Ëhe long arm <strong>of</strong> chromosome 3, as<br />

r¿ell as truzrtfor uzu on <strong>the</strong> shorË arm <strong>of</strong> chromosome 3, were crossed to<br />

telotrisomic 35. Meanwhíle, telotrisomic 3L r,{as crossed Ëo <strong>the</strong> genetic<br />

marker ituzrr only. Crosses involving telotrisomic 35 gave trisomic r<strong>at</strong>ios<br />

for u'antt, ttgl.tt, and disomic f.ot ,'*',, while t.elotrisomic 3L shor,¡ed a<br />

trisomic raËio for <strong>the</strong> gene rruz" (Table II-12). It was concluded on <strong>the</strong><br />

basis <strong>of</strong> <strong>the</strong>se r<strong>at</strong>ios th<strong>at</strong> genes ttal" and Italrr are on <strong>the</strong> short arm while<br />

ttgttit loc<strong>at</strong>ed on <strong>the</strong> long arm <strong>of</strong> chromosome-3. since genes ttan', and<br />

etalttwere previously mapped on <strong>the</strong> long arm anclrfuzr on <strong>the</strong> short arm<br />

<strong>of</strong> chromosome-3 respectively (Robertson, I97L>, iË is concluded Ëh<strong>at</strong> <strong>the</strong><br />

reported genetic map is a reversed.<br />

6L


The gene tttr¿itt for itthird outer glumett is purported to be loca¡ed<br />

on <strong>the</strong> short. arm <strong>of</strong> chromosome-5 (wilan, L964). The clear-cut r<strong>at</strong>ios<br />

observed upon crossing "trdrr with both telotrisomics <strong>of</strong> chromosome-5<br />

(rabte rr-12) clearly indic<strong>at</strong>ed th<strong>at</strong> contrary to previous reports, gene<br />

tttrdrt is loc<strong>at</strong>ed on Ëhe long arm <strong>of</strong> this chromosome. This agrees with<br />

Tsuchiy<strong>at</strong>s (L972a) recent suggestion th<strong>at</strong> <strong>the</strong> gene order on <strong>the</strong> existíng<br />

map <strong>of</strong> chromosome-5 should be reversed.<br />

Telotrisomic lines lL and 4L were not crossed to genetic markers but<br />

were design<strong>at</strong>ed as being <strong>the</strong> long arms <strong>of</strong> chromosome L and 4, by virtue <strong>of</strong><br />

karyotype analysis and on <strong>the</strong> basis <strong>of</strong> <strong>the</strong>ir morphological characters in com-<br />

parison with <strong>the</strong>ir corresponding trisomics, ttbushtt and ttrobusLrr respec-<br />

tively. Moreover, because monotelotrisomics 65 and 75 are s<strong>at</strong>ellited<br />

(figs. II-3e, 3f) <strong>the</strong>y were design<strong>at</strong>ed as being <strong>the</strong> short arms <strong>of</strong> chromo-<br />

somes 6 and 7, respectively. Conversely, <strong>the</strong> non-s<strong>at</strong>ellÍted arm <strong>of</strong> chro-<br />

mosome 6 represents <strong>the</strong> long arm <strong>of</strong> this chromosome.<br />

Plant Morphology <strong>of</strong> Derived Telotrisomícs<br />

Because <strong>the</strong> parenËal trisomics were initially derived from an inter-<br />

cultivar cross (4n OAC-2L x 2n Montcalm) morphological observ<strong>at</strong>ions Ì¡/ere<br />

made on both telotrisomics and <strong>the</strong>ir disomic sibs for five characters<br />

listed in Table II-13. The most significant morphological fe<strong>at</strong>ures <strong>of</strong><br />

each t,elotrisomic are described to complement <strong>the</strong> d<strong>at</strong>a in <strong>the</strong> table.<br />

A description <strong>of</strong> <strong>the</strong> morphological characLeristics <strong>of</strong> <strong>the</strong> telotri-<br />

somics observed in this study follows:<br />

62


Table II-13. Morphological Characteristics <strong>of</strong> Barley Telotrisomics,<br />

Their Disomic Sibs and <strong>the</strong> Parental Trisomics"<br />

Fertility <strong>of</strong><br />

Height No. <strong>of</strong> Days to Florets/ "/. Parental<br />

Genotype (ins.) Tillers Heading Spike Fertility Trisomic in %<br />

2n*15 27<br />

2n + llt' 13<br />

2n - Disomic 30<br />

2n + 2L'k 33<br />

2n - Disomic 30<br />

2n*35 23<br />

2n*3L 27<br />

2n - Disomic 32<br />

2n * 4L* L9<br />

2n - Disomíc 26<br />

2n+55 33<br />

.L<br />

2n* 5L 27<br />

2n - Disomic 30<br />

2n* 65 32<br />

J?<br />

2n * 6L" 27<br />

2n - Dísomic 30<br />

2n* 73 30<br />

2n - Disomíc 32<br />

3 76<br />

10 90<br />

s 74<br />

397<br />

)Õ)<br />

393<br />

494<br />

784<br />

480<br />

B 76<br />

665<br />

649<br />

855<br />

456<br />

, -/<br />

+ to<br />

774<br />

s60<br />

l)Y<br />

44<br />

z9<br />

53<br />

44<br />

53<br />

46<br />

5B<br />

s4<br />

55<br />

s6<br />

52<br />

59<br />

JJ<br />

/,4<br />

60<br />

59<br />

6L<br />

81"7ì 1 s4"2<br />

s3.1j<br />

92.L<br />

56. B 3s .9<br />

93<br />

73.0ì \ 7.6<br />

T<br />

45.61<br />

94.2<br />

82.9 6L.4<br />

o/,<br />

7 6.9\<br />

I<br />

64.61<br />

93.0<br />

e1.4ì<br />

7B "e1<br />

94.3<br />

T<br />

63.s<br />

4s.1<br />

7 6.8 sB .7<br />

95.6<br />

Similar to <strong>the</strong>ir trisomic parenËs (parental types).<br />

63


Telo lL: Di¿arf plants with high tillerÍng capacity, short narrovl<br />

dark green leaves, occasionally fused; short reduced heads with long<br />

ar^¡ns; usual1y, one <strong>of</strong> <strong>the</strong> three an<strong>the</strong>rs degener<strong>at</strong>e; narro\,r seeds with a<br />

naked gap on both sides because <strong>of</strong> incomplete <strong>at</strong>tachment between palea<br />

and lenrna; very l<strong>at</strong>e m<strong>at</strong>urity.<br />

Telo 1S: Slightly shorter than normal in st<strong>at</strong>ure vríth nearly com-<br />

plete fertility; virtually indistinguishable from disomics.<br />

Telo 2L: Plants taller Ëhan disomics; thin culms with long narrow<br />

drooping leaves, light-green (yellowish) in color; spikes long and lax<br />

with compressed awns (accordion like); <strong>of</strong>ten one <strong>of</strong> <strong>the</strong> l<strong>at</strong>eral spike-<br />

lets missing; seeds thin and slender; m<strong>at</strong>.urity l<strong>at</strong>e"<br />

Telo 3L: Plants similar in st<strong>at</strong>ure to disomics; leaves long, greyish<br />

green (pale) in color; flag leaves usually very small and drooping wíËh<br />

twisted tips; spikes do not emerge completely from <strong>the</strong> sheaËh, slightly<br />

compact; fertility poor; culms s<strong>of</strong>t <strong>at</strong>. m<strong>at</strong>urity.<br />

Telo 35: Plants shorter than disomics vriEh long hairy leaves; spikes<br />

short. and dense with about <strong>the</strong> normal number <strong>of</strong> spikelets; fertility high.<br />

Telo 4L: Plants were shorter than normals wiLh thick stems, short,<br />

broad, dark green leaves. Spikes had coarse diverged awns and high ferti-<br />

lity.<br />

Telo 55: Slightly taller than disomics with very long spikes; gene-<br />

rally, indistinguishable from disomics.<br />

Telo 5L: PlanËs nearly normal in appearance but all plant parts<br />

recluced in size; spilces small showing considerable steriliÉy.<br />

64


Telo 65: Tal1 with very few tillers; spikes short and reduced but<br />

almost completely ferrile; indistinguishablc from normals.<br />

Telo 6L: Plants slightly shorter than normal; leaves, broad, coarse<br />

and erect; some spikelets may be missing; seeds wide and plump.<br />

Telo 75; Plants similar to normal; semi-prostr<strong>at</strong>e tillers; spilces<br />

highly fertile wíth a number <strong>of</strong> <strong>the</strong> basal spikelets sterile because <strong>of</strong> <strong>the</strong><br />

absence <strong>of</strong> eiËher male or both male and female sex organs.<br />

Although phenotypic comparisons between different telotrisomics v/ere<br />

difficult to make, certain conclusions \^zere reached regarding <strong>the</strong>ir iden-<br />

tity:<br />

(1) Monotelotrisomícs carrying <strong>the</strong> long arms are quite distinct<br />

from each oËher morphologically and were similar to <strong>the</strong>ir trisomic parents "<br />

(2) Four Ëelotrisomics (1S, 55, 65 and 75) had no apparent effect<br />

on plant morphology and <strong>the</strong>refore were indistinguishable from normal.<br />

(3) The long arm <strong>of</strong> chromosome-l affects plant height and tillering<br />

capacity since it caused a remarkable decrease in plant height ( > 50%)<br />

and an increase in tiller number (1007.).<br />

(4) Four telotrisomics (1S, 4L, 6L and 75) has no effect on heading<br />

d<strong>at</strong>e, ano<strong>the</strong>r five (1L, 2L, 3L, 35 and 55) delay heading from 9 to 16<br />

days. In contrast, telotrisomics 5L and 65 headed 6 and 18 days respec-<br />

tively earlier than <strong>the</strong>ir disomic sibs.<br />

(5) l"fonotelotrisomics v/ere generally more vigorous and fertile than<br />

<strong>the</strong>ir trisomic parents (Table II-13). For insLance, <strong>the</strong> fertilicy <strong>of</strong><br />

telotrisomícs 35 and 3Lwere 73.0 and 45.6%, respectively compared to 7.6%<br />

65


for Ëheir parental trisomic"<br />

Meiotic Behavior <strong>of</strong> Telotrisomics<br />

Chromosome behavior <strong>of</strong> eleven different monotelotrisomics were stu-<br />

díed <strong>at</strong> different stages <strong>of</strong> meiosis. For each line, <strong>at</strong> least 3 plants<br />

were analyzed and a descripËion <strong>of</strong> chromosome behavior <strong>at</strong> <strong>the</strong> various<br />

meiotic stages follor¿s:<br />

Meiotic First Division"<br />

Diakinesís: PMCts <strong>of</strong> aLl monotelotrisomics contained associ<strong>at</strong>ions<br />

<strong>of</strong> 611'lt2tt r (heteromorphic trivalent) or 7rr*tr (Figs " TT-4a, 4b) with<br />

average frequencies <strong>of</strong> 19.1. and 20.47" respecËive1y for each configur<strong>at</strong>ion<br />

(Tab1e I-I-14) " In a fe¡¿ cel.ls (0"5%), <strong>the</strong> telo associaËed with one<br />

homologue in a hete-rmorphic bivalenË while <strong>the</strong> o<strong>the</strong>r homologue behaved as<br />

a unívalent" Monotelotrisomic (2n+1L) showed <strong>the</strong> highest frequency <strong>of</strong><br />

associ<strong>at</strong>ions (86.3%) while monotelotrisomics (2n+6S) exhibited <strong>the</strong> lowest<br />

(46.6%). The observed types <strong>of</strong> trivalents \,rere tandem-chain (56%), ring-<br />

rod (43 "O%) , and tri-radial in about L% <strong>of</strong> <strong>the</strong> ce1ls.<br />

Fedak (1969) observed thax 42.8% <strong>of</strong> telotrisomic-1S PMC's contained<br />

türo or more nucleolei per cell" In <strong>the</strong> present study, almost all PMCIs<br />

<strong>of</strong> nine telotrisomics (non-s<strong>at</strong>ellited) including Ëelo-15, had one and<br />

occasionally 2 nucleol-ei. Moreover, none <strong>of</strong> <strong>the</strong>se telocentrics was seen<br />

<strong>at</strong>tached to a nucleolus" These results indic<strong>at</strong>ed th<strong>at</strong> onlv <strong>the</strong> s<strong>at</strong>ellited<br />

Ëelocentrics 65 and 7S had nucleolar organizing activity.<br />

A study <strong>of</strong> PMCts i-n which telocentrics 65 and 75 vrere present re-<br />

vealed inform<strong>at</strong>ion regardÍng <strong>the</strong>ir nucleolar organizing activity. In<br />

66


Fígure TT-4. chromosome configur<strong>at</strong>ions <strong>of</strong> monotelotrisomics <strong>at</strong><br />

diakinesis and M_.<br />

I<br />

67<br />

(a) 6t + tTtt I (diakinesis) "<br />

(b) 7" + tr (diairinesis) .<br />

(") 6t' + t2t11 , a heteromorphic trívalent<br />

associ<strong>at</strong>ed with nucleolus (diakinesís<br />

<strong>of</strong>. 2n + 65) "<br />

(d) 6tt + tztt t (tandem v trívalent <strong>at</strong> Mr).<br />

(e) 6tt 1' tzt' t (triradial trivalent <strong>at</strong> Mr).<br />

(f) 7t1 + t' (Mr) .


ffi<br />

ffi<br />

ffi<br />

@w<br />

wq


Table II-14. Frequencies <strong>of</strong> Chromosome<br />

Genotype<br />

2n* 15<br />

ZN+IL<br />

2n* 2L<br />

2n*35<br />

2n*3L<br />

2n*4L<br />

2n+55<br />

¿n -r JL<br />

2n*65<br />

¿rL + oL<br />

2n* 75<br />

TÛfAT.<br />

Cells % % %<br />

Jto<br />

160<br />

TB2<br />

L46<br />

20L<br />

L79<br />

L92<br />

225<br />

227<br />

, )-7<br />

L43<br />

2258<br />

R'l o<br />

B6 .3<br />

85 "4<br />

82.2<br />

78"1<br />

84. B<br />

77 "6<br />

a/, o<br />

46.6<br />

86.3<br />

-/ ^<br />

/o"J<br />

Ave. 79.L<br />

18.1<br />

L2.I<br />

rJ O J<br />

,1 /,<br />

L7 .2<br />

L4.L<br />

22 "4<br />

15.1<br />

L3.7<br />

23 "7<br />

20 "4<br />

configur<strong>at</strong>ions <strong>at</strong> Diakinesis and M- in MonoteloLrisomics.<br />

I<br />

r"6<br />

1.3<br />

0.5<br />

0"6<br />

r")<br />

\r.)<br />

No. <strong>of</strong><br />

Cel1s<br />

TO2I<br />

64s<br />

985<br />

719<br />

850<br />

745<br />

552<br />

489<br />

o¿t<br />

766<br />

t>tJ<br />

6rr + lrrl<br />

ol<br />

/ ó.+<br />

82.6<br />

7 8.6<br />

-7/, O<br />

77 .2<br />

79,3<br />

72.L<br />

80.6<br />

42.7<br />

79.4<br />

73.2<br />

74.s<br />

\<br />

7tl<br />

-rr | 1l<br />

2r.6<br />

17 .4<br />

2L.4<br />

?)L<br />

20.7<br />

,7L<br />

19 "4<br />

s7 "3<br />

20 "6<br />

26 "B<br />

t\ /,<br />

6tt+tltt+l I<br />

el<br />

0"03


telotrisomic 65, 90.3% <strong>of</strong>. cells contained one nucleolus with an <strong>at</strong>tached<br />

telocentric (Fig. II-4c). The remaining cells contained two nucleoll<br />

<strong>of</strong> different sizes with <strong>the</strong> telocentric always associ<strong>at</strong>ed with <strong>the</strong> smaller<br />

<strong>of</strong> <strong>the</strong> two. On <strong>the</strong> o<strong>the</strong>r hand, telocentric 75 associ<strong>at</strong>ed with a nucleolus<br />

in approxim<strong>at</strong>ely 30.O% <strong>of</strong> Lhe observed cells and when a second small nucleolus<br />

was formed, <strong>the</strong> trivalent was seen aLtached to it. This agrees with pre-<br />

vious reports th<strong>at</strong> <strong>the</strong> nucleolar organizing capacity <strong>of</strong> telocentric 7S is<br />

weaker than th<strong>at</strong> <strong>of</strong> chromosome 65 (Tsuchiya, 1960i Yu, 1968; Fedak, 1969) "<br />

Met.aphase I: The frequencies <strong>of</strong> different types <strong>of</strong> configur<strong>at</strong>ions<br />

as observed <strong>at</strong> M- are shown in Table TT-L4. As might be expecLed, all<br />

I<br />

telotrisomics <strong>at</strong> M, exhibited <strong>the</strong> same trend as in diakinesis in th<strong>at</strong> a<br />

preponderance <strong>of</strong> <strong>the</strong> PMCrs contained (6"*tttr) configur<strong>at</strong>ions rel<strong>at</strong>ive to<br />

7rt+t' associ<strong>at</strong>ions. Also, a shift in trivalent types from ring-rod tri-<br />

valents Ëo tandem ones \,ras evident (Fígs. TL.4d, 4e) "<br />

In cells with (7"1-t') <strong>the</strong> position <strong>of</strong> <strong>the</strong> univalent rel<strong>at</strong>ive to Ëhe<br />

equ<strong>at</strong>orial pl<strong>at</strong>e varied from cell Ëo cell (Fig. II-4f) and appeared to<br />

be positÍoned on a random basis. However, a Chi-square analysis to<br />

determíne if differences existed among telocentrics, showed a s<strong>at</strong>isfact.ory<br />

fit to a 1:1 r<strong>at</strong>io for al1 telocentrics except 65 and 73 (table II-15).<br />

In this case, both telocentric univalents r¡/ere not distributed <strong>at</strong> random<br />

¡¿ith telocent.ric 65 exhibiting gre<strong>at</strong>er tendency to be positioned on <strong>the</strong><br />

equ<strong>at</strong>orial pl<strong>at</strong>e.<br />

Anaphase and Telophase I: Observ<strong>at</strong>íons <strong>at</strong><br />

disjunction in approxim<strong>at</strong>ely 72.0"/" <strong>of</strong> <strong>the</strong> cells<br />

¿\<br />

I<br />

dL<br />

ãl 5l<br />

cll-scloseG a I'-l'ft'<br />

A_ (rable II-r6).<br />

I<br />

'.1<br />

70


Table II-15. Position <strong>of</strong> TelocenLrics Rel<strong>at</strong>ive to Equ<strong>at</strong>orial Pl<strong>at</strong>e<br />

<strong>at</strong> lnf "<br />

I<br />

Genotype<br />

UnsaË. telos.<br />

2n*15<br />

2n*lL<br />

2n*2L<br />

2n*35<br />

2n*3L<br />

2n1 4L<br />

2n*55<br />

2n* 5L<br />

2n* 6L<br />

S<strong>at</strong>. telos.<br />

2n*65<br />

2n 'r 7S<br />

No. <strong>of</strong> Cells<br />

I¡IiEh a<br />

UnivalenL<br />

328<br />

90<br />

tJo<br />

247<br />

ro+<br />

L76<br />

208<br />

L07<br />

129<br />

380<br />

205<br />

Position <strong>of</strong> Univalent<br />

on plaËe <strong>of</strong>f pl<strong>at</strong>e<br />

198<br />

5B<br />

79<br />

L24<br />

92<br />

78<br />

Lt4<br />

63<br />

56<br />

L75<br />

L22<br />

230<br />

¿12<br />

57<br />

L23<br />

72<br />

98<br />

o/,<br />

44<br />

73<br />

105<br />

B3<br />

P<br />

(1:1)<br />

0.10-.05<br />

0.25-.1<br />

0.1 - .0s<br />

Þ o.e<br />

0.25- "L<br />

0 "25-.L<br />

0.25-.L<br />

0 . l0 -.05<br />

0.25-.r0<br />

{ o.ot<br />

0.05-.01<br />

7I


Table II-16. Chromosome Behavior <strong>at</strong> A- and T- <strong>of</strong> Monotelotrisomics.<br />

II<br />

Genotype<br />

2n*15<br />

t- -r 1T<br />

2n* 2L<br />

2n*35<br />

2n 1- 3L<br />

2n 1- 4L<br />

2n*55<br />

2n* 5L<br />

2nf65<br />

2n* 6L<br />

2n* 7S<br />

TOTAL<br />

No" <strong>of</strong><br />

Cell s<br />

284<br />

L66<br />

159<br />

96<br />

106<br />

Y><br />

L70<br />

101<br />

L27<br />

L20<br />

75<br />

r449<br />

o,<br />

Ce11s llith<br />

7-B Disjunction<br />

ol<br />

to<br />

75.4<br />

7q R<br />

t+ "o<br />

76.0<br />

B5.B<br />

82 "L<br />

7l "2<br />

72.3<br />

33.9<br />

7 5.0<br />

66.7<br />

Ave. 7L "7<br />

Cel1s With<br />

Lagging Telos<br />

ol<br />

l6<br />

24 "6<br />

24.2<br />

2s "4<br />

24.0<br />

L4.2<br />

L7 "9<br />

28 "L<br />

27 .7<br />

66.L"'<br />

25.O<br />

33 .3<br />

28 "3<br />

No" <strong>of</strong><br />

Cel1s<br />

608<br />

285<br />

377<br />

572<br />

44s<br />

481<br />

T73<br />

lBB<br />

463<br />

249<br />

356<br />

4t97<br />

tt<br />

I^IiËh<br />

Laggards<br />

%<br />

19 .3<br />

50.0 and L6.L% were in <strong>the</strong> divided and undivided st<strong>at</strong>e, respecLively"<br />

6.7<br />

L4.L<br />

17"0<br />

20.9<br />

t2.9<br />

27 .7<br />

25.5<br />

t9 "4<br />

15 .3<br />

L6.3<br />

17 .7<br />

72


Occasionally, a disjunction Bt-6'+tr htas observcd (Figs. II-5a, 5b)<br />

v¡hile in <strong>the</strong> remaining cel-1s, a univalent telo ei<strong>the</strong>r in <strong>the</strong> divided<br />

or undivided st<strong>at</strong>e was positioned on <strong>the</strong> equ<strong>at</strong>orial pl<strong>at</strong>e region. Tri-<br />

valents seemed to disjoin regularly on a 2-L basis <strong>at</strong> AI' consequently<br />

no irregulariLy occurred in <strong>the</strong>se cells <strong>at</strong> Tr. In contrast, univalents<br />

divided precociously and lagged in mosL cases <strong>at</strong> Tr. Telotrisomic 65<br />

showed rhe highesr frequency <strong>of</strong> cells with a lagging telocentric (66.I%)<br />

which divided precociously in 50.0% <strong>of</strong> <strong>the</strong> observed A, cells (Table II-16).<br />

À'l+l-,n,,ar. rhe trvo chrom<strong>at</strong>ids <strong>of</strong> a univalent occasionally showed signs<br />

ör Lllvuórr Ll<br />

<strong>of</strong> separ<strong>at</strong>ion <strong>at</strong> M, and Ar, this separ<strong>at</strong>ion was ordinarily completed too<br />

l<strong>at</strong>e for <strong>the</strong> monads to be included in one or both <strong>of</strong> <strong>the</strong> telophase nuclei"<br />

Thus, <strong>at</strong> T_ <strong>the</strong> univalent or its two separ<strong>at</strong>ed chrom<strong>at</strong>ids, \^7ere observed<br />

I<br />

lying in <strong>the</strong> cytoplasm <strong>at</strong> any position between <strong>the</strong> equ<strong>at</strong>orial pl<strong>at</strong>e and<br />

Ëhe po1es. As shown in Table II-16, <strong>the</strong> frequencies <strong>of</strong> cells with lag-<br />

gards <strong>at</strong> T, ín ten telotrisomics were somewhaË higher but comparable to<br />

<strong>the</strong> frequencies <strong>of</strong> cel1s with Lagging Ëelocentric <strong>at</strong> Ar. In contrast'<br />

telocenLric 65 although it divided precociously in 50.O% <strong>of</strong>. A, cells, only<br />

Lg,4% <strong>of</strong> <strong>the</strong> cel1s with laggards vlere observed <strong>at</strong> Tr. Since 66.f% <strong>of</strong> A,<br />

cells in this telotrisomic had unívalent telocentrics, it is obvious<br />

th<strong>at</strong> most univalent Lel.ocentrics th<strong>at</strong> divided <strong>at</strong> A, and T, were included<br />

in <strong>the</strong> daughter nuclei while those undivided univalents lagged in <strong>the</strong><br />

cytoplasm.<br />

Meiot.ic Second Division. Difficulties encountered in <strong>the</strong> study <strong>of</strong><br />

chromosome behavior <strong>at</strong> second meiotic division involve <strong>the</strong> short dur<strong>at</strong>ion<br />

73


Figure rr-5. chromosome behavior <strong>of</strong> monotelotrisomícs <strong>at</strong> A I<br />

and quartet sËage"<br />

t+<br />

(a) 7t -7'+Lr disjunction.<br />

(b) Bt-6t+Lr disSunctíon.<br />

(") Micronuclei <strong>at</strong> quarËet srage in (2n+6S):<br />

(1) 2 micronuclei <strong>of</strong> same size<br />

(2) 3 micronuclei <strong>of</strong> different sizes<br />

(d) Lagging and fragment<strong>at</strong>ion in telotrisomic<br />

2n*6S.<br />

(e) Som<strong>at</strong>ic chromosomes <strong>of</strong> a plant v/ith 16<br />

chromosomes (12 norrnaL + 2 teLo 2L *<br />

2 acro 2S).


-äå '\*:<br />

iìl;$ \f..<br />

%<br />

a<br />

..4<br />

ñ<br />

$<br />

o,W<br />

J<br />

'N$<br />

N$.<br />

W<br />

W.<br />

'.$<br />

w.<br />

W<br />

W<br />

s<br />

c)<br />

-d<br />

çg<br />

Pd'"s*@ð<br />

"<br />

&dÞ<br />

.s ^@<br />

Þ \si-. *'<br />

¿\ry"e<br />

/ *n*<br />

{r@<br />

\ @<br />

g<br />

d@<br />

\<br />

ru


<strong>of</strong> stages and <strong>the</strong> aclded problem <strong>of</strong> scoring all observ<strong>at</strong>ions simultaneously<br />

on both daughter cells. Lindgren et al" (1969) and Bennet et 41. (1971)<br />

found th<strong>at</strong> <strong>the</strong> rel<strong>at</strong>ive clur<strong>at</strong>ion <strong>of</strong> second clivision <strong>of</strong> barley was less<br />

than 30% <strong>of</strong> <strong>the</strong> total meiotic cycle. n' and A* occupied, in equal pro-<br />

porËions, about one-third <strong>of</strong> this time and M,, and T-- each occupied about<br />

II II<br />

one-third <strong>of</strong> <strong>the</strong> total period. Such short dur<strong>at</strong>ions resulË in small num-<br />

bers <strong>of</strong> cells detected <strong>at</strong> each stage. Ano<strong>the</strong>r difficulty is th<strong>at</strong> <strong>of</strong> ob-<br />

Ëaining s<strong>at</strong>isfactory chromosome spreads in both daughter ce1ls. For <strong>the</strong>se<br />

reasons, observ<strong>at</strong>ions<br />

1 ^aj,-^1-- ^-^11 -.Umbef<br />

IdLrvcry ùllld!! tt<br />

divis ion .<br />

<strong>of</strong><br />

<strong>the</strong> second division stages were confined to re-<br />

cells compared to those scored <strong>at</strong> <strong>the</strong> first<br />

Abnormalitíes <strong>at</strong> <strong>the</strong> second division consisted maínly <strong>of</strong> non-synchrony<br />

<strong>of</strong> divisions in <strong>the</strong> two daughter cells coupled with a laggíng and fragmen-<br />

t<strong>at</strong>ion <strong>of</strong> <strong>the</strong> Ëelocentric chromosomes. It was observed th<strong>at</strong> cel1s with<br />

eight dyads (7'+telo), <strong>of</strong>ten divided l<strong>at</strong>er than <strong>the</strong> daughter cells with<br />

normal complements.<br />

At M- - , ce 11s with<br />

II<br />

observed. These monads<br />

average <strong>of</strong> 16.0% <strong>of</strong> <strong>the</strong><br />

\,Jere not aligned <strong>at</strong> <strong>the</strong><br />

to <strong>the</strong> equ<strong>at</strong>orial Pl<strong>at</strong>e<br />

disjoined and moved to<br />

elements finally moved<br />

seven dyads and 7 dyads f I or 2 monads were<br />

behaved as irregularly as l"l, univalents " An<br />

cells observed ta MII showed th<strong>at</strong> 1 or 2 monads<br />

equ<strong>at</strong>orial plaLe. However, monads which moved<br />

\^rere not able to migr<strong>at</strong>e "t AII when <strong>the</strong> dyads<br />

<strong>the</strong> poles as in a normal mitosis. Those lagging<br />

to <strong>the</strong> poles but too l<strong>at</strong>e to be included in T,,<br />

11uclei. They formed micronuclei when <strong>the</strong> second cytokinesis was completed.<br />

1/ /o


In t.eloLrísomic 65, monads which were aligned <strong>at</strong> <strong>the</strong> M' pl<strong>at</strong>e were fre-<br />

quently fragmented <strong>at</strong> Ar, .rd TII and resulted in two fragments <strong>of</strong> diffe-<br />

rent sizes (f ig. II-5d). Since one fragment Tdas approxim<strong>at</strong>ely t\^/ice <strong>the</strong><br />

length <strong>of</strong> <strong>the</strong> o<strong>the</strong>r, it was assumed th<strong>at</strong> <strong>the</strong> secondary constriction was<br />

<strong>the</strong> locus <strong>of</strong> disarticul<strong>at</strong>ion.<br />

Quartet Stage. It has been assumed th<strong>at</strong> <strong>the</strong> form<strong>at</strong>ion <strong>of</strong> micro-<br />

nuclei indic<strong>at</strong>e <strong>the</strong> exclusion <strong>of</strong> univalent chromosomes from daushter<br />

nuclei because <strong>of</strong> <strong>the</strong>ir abnormal meiotic behavior. Love (1940) used <strong>the</strong><br />

frequency <strong>of</strong> quartets with micronuclei as a rel<strong>at</strong>ive measure <strong>of</strong> meiotic<br />

stabilíty which he t.ermed rt<strong>the</strong> meiotic indexrt.<br />

Frequencíes <strong>of</strong> quartets vrith different numbers <strong>of</strong> micronuclei for<br />

eleven telotrisomics are shown in Table II-17. Telotrisomíc 1S had <strong>the</strong><br />

lowest frequency (16"2%) while telocentric 65 because <strong>of</strong> its aberrent<br />

behavior <strong>at</strong> <strong>the</strong> previous stages <strong>of</strong> meiosis exhibited <strong>the</strong> highest fre-<br />

quency (68.7%). Quartets wiËh more than two micronuclei were very rare<br />

in all teloLrisomics. An exception v¡as telocentríc 65 which because <strong>of</strong><br />

its fragment<strong>at</strong>ion, it caused a rel<strong>at</strong>ively high frequency <strong>of</strong> quartets with<br />

more Ëhan two micronuclei (I7 .2%). I,rlhen micronuclei r¿as con-<br />

sidered for telocentric 65, most quartet.s<br />

II-5c),<br />

(a) two micronuclei <strong>of</strong> <strong>the</strong> same size, with no<br />

following feaEures:<br />

fragment<strong>at</strong>ion (Fig.<br />

(b) three micronuclei <strong>of</strong> different sizes, i.e. fragment<strong>at</strong>ion <strong>of</strong><br />

onc chrom<strong>at</strong>id (Fig. II-5c) "<br />

Ëhe s ize <strong>of</strong><br />

showed <strong>the</strong><br />

77


Tal¡1e II-17. Frequencies <strong>of</strong> Mícronuclei in Quartets <strong>of</strong> lvlonotelotrisomics.<br />

Genotype<br />

2n*15<br />

2r'* IL<br />

2n* 2L<br />

2n*35<br />

2rr*3L<br />

2r'* 4L<br />

2n* 55<br />

2n* 5L<br />

2n*65<br />

2n* 6L<br />

2n*75<br />

TOTAL<br />

% <strong>of</strong> Total<br />

No. <strong>of</strong><br />

QuarteLs 0 m.n. 1 m.n. 2 m.n.<br />

L66T<br />

652<br />

67L<br />

927<br />

1070<br />

948<br />

84s<br />

723<br />

1030<br />

552<br />

7L6<br />

979s<br />

83.B<br />

77.9<br />

76.O<br />

80"5<br />

77.9<br />

70"0<br />

77.9<br />

76.6<br />

31"3<br />

79,O<br />

76.5<br />

Ave. 7 3 .3<br />

10"6<br />

8"4<br />

t2 "9<br />

L3.7<br />

13"3<br />

13 .3<br />

r0.9<br />

7"5<br />

13.1<br />

t3.7<br />

tt "4<br />

).o<br />

L2"6<br />

11.1<br />

s.B<br />

8.7<br />

10 /,<br />

8.9<br />

11.9<br />

44.0<br />

7.9<br />

9.8<br />

13"3<br />

or more<br />

m. n.<br />

1.1<br />

0.2<br />

'1 t<br />

0.6<br />

t7 "2<br />

2.O<br />

78


(c) four micronuclei, <strong>the</strong> truo members <strong>of</strong> a pair being <strong>of</strong> equaL<br />

size buE different from <strong>the</strong> o<strong>the</strong>r pair, i.e. fragmentaËion <strong>of</strong> both chro-<br />

m<strong>at</strong>.ids.<br />

Some <strong>of</strong> <strong>the</strong> abnormal configur<strong>at</strong>ions observed <strong>at</strong> meiosis <strong>of</strong> telotri-<br />

somics but. not listed include:<br />

(a) a cell v¡ith an asynaptic effect <strong>at</strong> AI,<br />

(b) four quarËets with most chromosomes forming micronuclei,<br />

apparently as a result <strong>of</strong> asynapsis,<br />

(") one linear quarËet.<br />

Observ<strong>at</strong>ions <strong>at</strong> different stages <strong>of</strong> meiosis in monotelotrisomics<br />

v/ere reported by Tsuchiya (L966, 1967) and Fedak (1969). In <strong>the</strong> present<br />

study frequencies <strong>of</strong> cells v¡ith ei<strong>the</strong>r a trivalent <strong>at</strong> Mr, a dividíng uni-<br />

valent <strong>at</strong> A-, laggards <strong>at</strong> T-, or quart,et.s with micronuclei r¿ere comparable<br />

I' I-<br />

to those reporLed before consídering th<strong>at</strong> a large number <strong>of</strong> telocentrics,<br />

were involved subsequently with gre<strong>at</strong>er vari<strong>at</strong>ion in chromosome behavior,<br />

Telotrisomic 65 showed <strong>the</strong> highest frequency <strong>of</strong>: (a) cells with uni-<br />

valent telos <strong>at</strong> diakinesis and M, (tabte II-14); (b) dividing univalents<br />

<strong>at</strong> A- and T- (table II-16) and (c) quartets with micronuclei (Table II-<br />

II<br />

L7). In addition it tended to position itself <strong>at</strong> <strong>the</strong> \-nl<strong>at</strong>e and to<br />

fragment <strong>at</strong> T--. Yu (1968) found th<strong>at</strong> among barley trisomics, trisomic-6<br />

Il.<br />

had <strong>the</strong> highest frequencies <strong>of</strong> abnormalities such as univalents aL Mr:<br />

laggards aE T- and T--, and quartets with micronuclei. Comparisons<br />

III<br />

between <strong>the</strong> two telotrisomics <strong>of</strong> chromosome-6 and <strong>the</strong>ir tent<strong>at</strong>ive Daren-<br />

tal trisomic, showed th<strong>at</strong> <strong>the</strong> short arm amplified <strong>the</strong> abnormalities<br />

79


cleËected in <strong>the</strong> parental trisomic while <strong>the</strong> long arm exhibited similar<br />

behavior as telotrisomics involving o<strong>the</strong>r chromosomes "<br />

The presence <strong>of</strong><br />

<strong>the</strong> long arm in <strong>the</strong> trisomic parent, i.e. intact chromosome-6, seemed<br />

to <strong>at</strong>tenu<strong>at</strong>e <strong>the</strong> effect <strong>of</strong> <strong>the</strong> short arm. Moreover, chromosome-$ is<br />

median with two arms almost similar in length but Lhe shortest arm<br />

carries a sLrong secondary constriction. The fact th<strong>at</strong> <strong>the</strong> short arm<br />

is very active as a nucleolar organizer indic<strong>at</strong>es th<strong>at</strong> <strong>the</strong> form<strong>at</strong>ion <strong>of</strong><br />

<strong>the</strong> nucleolus may interfere with <strong>the</strong> presence <strong>of</strong> chiasm<strong>at</strong>a thus <strong>the</strong><br />

ability <strong>of</strong> <strong>the</strong> telocentric and its <strong>at</strong>tached homologues to associ<strong>at</strong>e as<br />

a trivalent configur<strong>at</strong>ion' Subsequently, <strong>the</strong> univalent telocentric<br />

detaches from <strong>the</strong> bivalent prem<strong>at</strong>urely though still <strong>at</strong>tached to <strong>the</strong><br />

nucleolus. These findings are supported by Sybengars (f965) observa-<br />

Ëions on <strong>the</strong> nucleolar organizing chromosome <strong>of</strong> rye and its deriv<strong>at</strong>ive<br />

telocentrics. He found th<strong>at</strong> <strong>the</strong> r<strong>at</strong>io <strong>of</strong> rtcrossing over potentialsrr<br />

(long/short) was too large for a submedian chromosome and subsequently<br />

<strong>at</strong>tributed it to <strong>the</strong> nucleolus interfering with chiasma form<strong>at</strong>ion on<br />

<strong>the</strong> short arm.<br />

Some o<strong>the</strong>r conspicuous fe<strong>at</strong>ures <strong>of</strong> telocentric 65 were<br />

to be positioned on <strong>the</strong> equ<strong>at</strong>orial p1<strong>at</strong>e, its l<strong>at</strong>e division<br />

fast movement on <strong>the</strong> spindle allowing it to be included in<br />

nuclei, and fragment<strong>at</strong>ion <strong>at</strong> ,tfl t"d tff" It is suggested<br />

behavior ej.<strong>the</strong>r results from <strong>the</strong> presence <strong>of</strong> <strong>the</strong> secondary<br />

BO<br />

its Ëendency<br />

followed by<br />

<strong>the</strong> daughter<br />

th<strong>at</strong> such<br />

constriction<br />

or <strong>the</strong> occurrence <strong>of</strong> strong neocentric acfivity" The l<strong>at</strong>Ler is filore


probable and is considered <strong>the</strong> cause <strong>of</strong> fragment<strong>at</strong>ion"<br />

Pollen Viabilitv <strong>of</strong> Telotrisomics<br />

An estim<strong>at</strong>e <strong>of</strong> pol1en viability, as determined by stainability,<br />

was examined in <strong>the</strong> eleven derived telotrisomics (table II-18). All<br />

lines showed a rel<strong>at</strong>ively high frequency <strong>of</strong> st.ainable po1len with telos<br />

55 an d 75 exhibiting <strong>the</strong> highest frequency <strong>of</strong>. 96.5% f.oLlowed by telo-<br />

trisomic-lS <strong>at</strong> 95.6%. Telotrisomic lL had <strong>the</strong> lorvest frequency <strong>of</strong> 83"2%"<br />

Although both telotrisomics 3L and 33 showed similar frequencies (91.3<br />

and 9L4%, respectively) telo-3L had <strong>the</strong> lowest frequency <strong>of</strong> seed-set<br />

among <strong>the</strong> eleven telotrisomícs (ta¡1e II-f3). Telotrisomic 65, notrvith-<br />

standing its err<strong>at</strong>ic behavior during meiosis, exhibited a high frequency<br />

<strong>of</strong> srainable pollen (95.2%) . This is explainable on <strong>the</strong> basis th<strong>at</strong> <strong>the</strong><br />

exclusion <strong>of</strong> <strong>the</strong> extra telocenLric would increase <strong>the</strong> frequency <strong>of</strong> normal<br />

gametes.<br />

Transmission <strong>of</strong> Telocentrics<br />

1.<br />

Through Egg. D<strong>at</strong>a on transmission through Ëhe egg was obtained<br />

from crosses to transloc<strong>at</strong>ion testers and genetíc markers using monotelo-<br />

trisomícs as female parents. The transmission <strong>of</strong> <strong>the</strong> telo ranged from<br />

20% f.or telo 2L to 40% for telo 35. In most cases transmission in selfed<br />

progenies were much higher than in crosses (tab1e II-19).<br />

2. Through Pollen.' Out <strong>of</strong> 260 seeds obtained using monotelotri-<br />

somics as pollen only onc telotrisomic was recovered, th<strong>at</strong> from telo-<br />

trisomic 55" The d<strong>at</strong>a \Ärere very lirnited however, and did noE allow for<br />

conclusions regarding male transmission.<br />

B1


Table II-18. Percentage <strong>of</strong> Stained Po1len in Monotelotrisomics.<br />

Genotype<br />

2n<br />

2n*1S<br />

2n*<br />

2n*<br />

2n*35<br />

2r.*<br />

2n1<br />

2n*55<br />

2n<br />

2n<br />

2n<br />

T<br />

1T<br />

2L<br />

3L<br />

¿+L<br />

5L<br />

6S<br />

6L<br />

2n* 73<br />

TOTAL<br />

No. <strong>of</strong><br />

Pollen<br />

LOz6<br />

15 60<br />

L7 37<br />

2052<br />

L425<br />

L607<br />

L569<br />

2II4<br />

L374<br />

2255<br />

2494<br />

L7 82<br />

L9969<br />

"Average <strong>of</strong> eleven disomic sibs,<br />

Ave "<br />

% <strong>of</strong> Total<br />

Stained<br />

96 "9<br />

9s "6<br />

83 "2<br />

89.0<br />

9L "4<br />

9L.3<br />

91.2<br />

96 "s<br />

93.6<br />

95 "2<br />

89.7<br />

96.5<br />

92 .l<br />

B2


Table II-19. Transmission Frequencies <strong>of</strong> TelocenËrics in <strong>the</strong> Prosenías <strong>of</strong> Splfed and (2n * telo) x<br />

2n Crosses.<br />

GenoËype<br />

2n*15<br />

2n*1L<br />

2n* 2L<br />

2n*35<br />

¿n -f JL<br />

2ni- 4L<br />

¿nf )5<br />

2r,* 5L<br />

¿nro5<br />

¿n -r oL<br />

2n* 75<br />

TOTAL<br />

Prosenies <strong>of</strong> Selfed TeloËrisomics<br />

No. <strong>of</strong><br />

S eedl ings<br />

L62<br />

vo<br />

L/v<br />

1r9<br />

104<br />

103<br />

163<br />

L07<br />

25L<br />

LL4<br />

L02<br />

1500<br />

2n<br />

77.7<br />

ou")<br />

55.4<br />

Áo rì<br />

tL.¿<br />

64.L<br />

Áq n<br />

72"0<br />

öJ.J<br />

oo. /<br />

64.7<br />

2n * telo<br />

2L.6<br />

10<<br />

JJ.J<br />

43.5<br />

?1 n<br />

28.B<br />

3s. 9<br />

30 "7<br />

ta rì<br />

19 . V<br />

1/<br />

- LA"t<br />

3r .5<br />

35 .3<br />

Ave.31.1<br />

O<strong>the</strong>rs<br />

0. 61<br />

^ Transloc<strong>at</strong>ion Lesters and geneËic markers used as po1len parent.<br />

* R.1"E.d primary trisomics "<br />

1.1<br />

/,a<br />

1R<br />

Progenies <strong>of</strong> Telot.risomics x 2n Crossesj'<br />

No" <strong>of</strong><br />

Seedl íngs<br />

/, ,,<br />

22<br />

25<br />

50<br />

2L<br />

39<br />

2B<br />

67<br />

2L<br />

J+<br />

TOTAL 385<br />

2n<br />

79.0<br />

66.0<br />

to"v<br />

60.0<br />

75.0<br />

72.O<br />

6L.4<br />

77 .2<br />

70 .0<br />

76"8<br />

2n* t<br />

2r "0<br />

34.0<br />

20.0<br />

40.0<br />

25.0<br />

28"0<br />

35 "7<br />

33"0<br />

22.8<br />

30.0<br />

,")<br />

Lve. 28.2<br />

O<strong>the</strong>rs<br />

4"O<br />

5"6<br />

(^)


Tsuchiya (1971c) reported<br />

in four Lelotrisomics but th<strong>at</strong><br />

account for differences between<br />

an average <strong>of</strong> 2"19% pollen transmission<br />

such a low frequency \,/as<br />

transmission in crosses<br />

genies. Ramage (1955) found a delay in <strong>the</strong> development<br />

an extra chromosome compared to normal ones. This delay<br />

insuffícient to<br />

and selfed pro-<br />

<strong>of</strong> eggs carrying<br />

may favor cer-<br />

tain complements <strong>at</strong> <strong>the</strong> time <strong>of</strong> pollin<strong>at</strong>ion <strong>the</strong>reby may result in diffe-<br />

rences simílar to those observed in this study.<br />

3. In Selfed Progenies. I^Iith normal meiotic behavior, selfed telo-<br />

trisomics would be expected to produce equal proportions <strong>of</strong> n = 7 and<br />

î = 7 * telo gametes. Because <strong>the</strong> extra telocentric will 1ag and be<br />

subsequently elimin<strong>at</strong>ed in some cel1s, <strong>the</strong> expected frequency <strong>of</strong> gametes<br />

\"rith 7 * telo could be obtained by subtracting <strong>the</strong> frequency <strong>of</strong> mícrocytes<br />

with micronuclei from <strong>the</strong> maximum 507.. The calcul<strong>at</strong>ed frequency was found<br />

to be 38.8% on average which was in good agreement with <strong>the</strong> observed fre-<br />

quency (Ave. 31.3%). The low transmission <strong>of</strong> telotrisomics 65 (L6.7%)<br />

T¡/as expected due to its err<strong>at</strong>ic behavior and elimin<strong>at</strong>ion <strong>at</strong> meiosis '<br />

4. Primarv Trisomics. The rel<strong>at</strong>ed primary trisomics \¡/ere recovered<br />

<strong>at</strong> 1ow frequencies in selfed progenies and in Fr-hVbrids <strong>of</strong> telotrisomics<br />

x Lransloc<strong>at</strong>ion and genetic markers (Table II-19). Trisomics arise when<br />

an egg \,/ith B-chromosomes is fertilized by a normal 7-chromosome sperm<br />

nucleus. The form<strong>at</strong>ion <strong>of</strong> B-chromosome-eggs result from Br-6'+tr dis-<br />

îunct,ion <strong>at</strong> A- which rarely occurred in telotrisomics (Table II-16). This<br />

-t<br />

could explain <strong>the</strong> rarity <strong>of</strong> relaLed Ërisomics in <strong>the</strong> progeny <strong>of</strong> teloËri-<br />

somics.<br />

B4


Correl<strong>at</strong>ion Studies <strong>of</strong> Chromosome Associ<strong>at</strong>ion and Arm Length and Behavior<br />

In <strong>the</strong> present study, only telocentrics were observed undergoing<br />

irregulariLies <strong>at</strong> <strong>the</strong> various stages <strong>of</strong> meiosis. Also, <strong>the</strong> terminal posi-<br />

tion <strong>of</strong> <strong>the</strong> centromere in all eleven telocentrics excluded a maior variable<br />

(centromere position) in <strong>the</strong> study <strong>of</strong> chromosome behavior and subsequent<br />

chiasma form<strong>at</strong>ion. Therefore, <strong>the</strong> d<strong>at</strong>a rnrere used to study chromosome<br />

associ<strong>at</strong>ion <strong>at</strong> earlier stages <strong>of</strong> meiosis in rel<strong>at</strong>ion to:<br />

(a) chromosome (arm) length; (b) chromosome Iagging and elimin<strong>at</strong>ion<br />

<strong>at</strong> l<strong>at</strong>er stages <strong>of</strong> meiosis.<br />

Rel<strong>at</strong>ive measurements <strong>of</strong> telocentrics in som<strong>at</strong>ic cel1s were compared<br />

to <strong>the</strong> standard karyotype published by Burnham and Hagberg in 1956<br />

(Table II-11). The eleven telocenËrícs were <strong>the</strong>n ranked according to<br />

<strong>the</strong>ir length from <strong>the</strong> longest to <strong>the</strong> shortest (Table II-20) and were used<br />

for correl<strong>at</strong>ion analvses "<br />

Using all eleven telotrisomics, correl<strong>at</strong>ions between arm length,<br />

and frequency <strong>of</strong> cells with trivalents <strong>at</strong> diakinesis and M, were not sig-<br />

nificant. The analyses were Lhen repe<strong>at</strong>ed on only ten lines excluding<br />

telocentric 65 because <strong>of</strong> it.s err<strong>at</strong>ic behavior as discussed earlier.<br />

Einset (1943) observed th<strong>at</strong> in corn, trisomics for <strong>the</strong> short chromo-<br />

somes exhibited higher frequencies <strong>of</strong> univalents than t.hose t.risomic for<br />

<strong>the</strong> longer ones. This agrees with <strong>the</strong> present study where positive corre-<br />

1<strong>at</strong>íons were found between arm length and chromosome associ<strong>at</strong>.ions (tri-<br />

valents) <strong>at</strong> diakinesis ar-rd M- (r = l'.Blr and +.83, respectively, Table<br />

B5


Table II-20. A Summary <strong>of</strong> Chromosome<br />

Lísted in Order <strong>of</strong> Long<br />

Telotrisomic Trivalents TrÍvalents<br />

<strong>at</strong> DK <strong>at</strong> M,<br />

1L<br />

2L<br />

4L<br />

3L<br />

OL<br />

5L<br />

Jò<br />

o5<br />

1S<br />

7S<br />

5S<br />

AVE¿<br />

86"3<br />

Bs .4<br />

84. B<br />

78.1<br />

86.3<br />

a/, o<br />

82.2<br />

46.6<br />

al 0<br />

to"+<br />

/t"o<br />

82 .0<br />

82 "6<br />

78"6<br />

70 ?<br />

7-7 ,<br />

-70 /,<br />

80.6<br />

-7/, O<br />

42 "7<br />

I ö.+<br />

'7? 2<br />

72.1<br />

tt.o<br />

and Breeding Behavior (Percentages) <strong>of</strong> Eleven TelotrÍsomics<br />

Ëo Short Telocentrics.<br />

I^Iithout a Free <strong>of</strong> Quartets<br />

Univalent Laggards Free Stainable<br />

<strong>at</strong> A- <strong>at</strong>. T* Micronuclei Pollen<br />

II<br />

75.8<br />

7 4,6<br />

82.I<br />

85. B<br />

75.0<br />

72.3<br />

/o.u<br />

oo./<br />

7L.2<br />

7L.6<br />

93 .3<br />

aq o<br />

87"1<br />

7A 1<br />

ó+"/<br />

/+.)<br />

83.0<br />

80.6<br />

80. 7<br />

öJ. /<br />

72.3<br />

R??<br />

/o.u<br />

70.0<br />

77 .9<br />

70 n<br />

/o.o<br />

80.5<br />

91 1<br />

76.5<br />

77Q<br />

7? ?<br />

83 "2<br />

89"0<br />

q1 ?<br />

QO7<br />

93.6<br />

9L.4<br />

qq ,<br />

95.6<br />

96,5<br />

96 "5<br />

o|r<br />

Transmiss ion<br />

in Self<br />

Fertility Progenies<br />

53. 1<br />

sB. 5<br />

a?o<br />

7 8.9<br />

64 "6<br />

73.0<br />

9L.4<br />

81.7<br />

76.8<br />

76"9<br />

7L "2<br />

43.s<br />

35.9<br />

28 "B<br />

31 .5<br />

28 "O<br />

31.0<br />

L6 "7<br />

2L "6<br />

35 .3<br />

JU"/<br />

31"1


II-21) " This is interpreted to mean th<strong>at</strong> <strong>the</strong> longer <strong>the</strong> chromosome,<br />

<strong>the</strong> gre<strong>at</strong>er is <strong>the</strong> chance <strong>of</strong> it forming chíasm<strong>at</strong>a with its homologues<br />

<strong>the</strong>reby allowing <strong>the</strong> 3 chromosomes to remain associ<strong>at</strong>ed.<br />

A neg<strong>at</strong>ive correl<strong>at</strong>ion (r=-0.9 between arm length <strong>of</strong> telo and fre-<br />

quency <strong>of</strong> stainable pollen is explained by<br />

<strong>the</strong> fact th<strong>at</strong> short chromo-<br />

somes are more liable to failure in synapsis and elimin<strong>at</strong>ion than longer<br />

chromosomes, <strong>the</strong>reby increasing <strong>the</strong> frequency <strong>of</strong> normal po11en. Also,<br />

<strong>the</strong> genetic component carried by a telocentric may affect pollen viabi-<br />

lity. In this case, it is expected thaE long chromosomes (telos) may<br />

involve larger amounts <strong>of</strong> geneLic m<strong>at</strong>erial vital to gamete development<br />

than shorter t.elocentrics.<br />

Correl<strong>at</strong>ions for chromosome behavior <strong>at</strong> dífferent stages <strong>of</strong> meíosis<br />

were determined on d<strong>at</strong>a from eleven teloËrisomics, <strong>the</strong> results <strong>of</strong> which<br />

are presented in Table TT-ZL, The correl<strong>at</strong>ion between Ëhe frequency <strong>of</strong><br />

trivalents <strong>at</strong> \ and cells wiËh a trivalent <strong>at</strong> diakinesis was positive<br />

and highly significant (r = *0.97), as was <strong>the</strong> correl<strong>at</strong>ion between tri-<br />

valent frequency and <strong>the</strong> numbers <strong>of</strong>. Iaggard-free cells <strong>at</strong> A, (r = +0.93) "<br />

Interestíngly a poor correl<strong>at</strong>ion was obtained between trivalent frequency<br />

rt M, and laggard-free cells <strong>at</strong> Tr. A possíble explan<strong>at</strong>ion <strong>of</strong> this, in<br />

view <strong>of</strong> <strong>the</strong> highly positive correl<strong>at</strong>ion between M, and Ar, is if one<br />

assumes th<strong>at</strong> univalents <strong>at</strong> M, may ei<strong>the</strong>r migr<strong>at</strong>e to <strong>the</strong> poles or move to<br />

<strong>the</strong> equ<strong>at</strong>orial pl<strong>at</strong>e where <strong>the</strong>y divide <strong>at</strong> A, and Tr. The r<strong>at</strong>e <strong>of</strong> inclu-<br />

sion <strong>of</strong> univalents and/or <strong>the</strong>ir division products in daughter nuclei<br />

seems to be dependent more on <strong>the</strong> time <strong>of</strong> division and subsequent movemenL<br />

B7


Table IT-ZL. List <strong>of</strong> Correl<strong>at</strong>ions Carried Out on Eleven Telotrisomics.<br />

Correl<strong>at</strong>ion <strong>of</strong>: In Rel<strong>at</strong>ion to r-vaIue<br />

Arm length Frequency <strong>of</strong> cells with<br />

trivalents <strong>at</strong> diakinesís"<br />

Frequency <strong>of</strong> cells with<br />

trivalents <strong>at</strong>. M-.<br />

I<br />

Frequency <strong>of</strong> stainable pollen -0.90**<br />

Frequency <strong>of</strong> trivalents Frequency <strong>of</strong> trivalents <strong>at</strong> +0.97t"-t<br />

<strong>at</strong> M diakinesís.<br />

I<br />

Frequency <strong>of</strong> cells v¡íthout +0.93t"å<br />

a lagging univalent. <strong>at</strong> AI "<br />

Frequency <strong>of</strong> cells free'<strong>of</strong> +0.24<br />

laggards <strong>at</strong> T_.<br />

I<br />

Frequency <strong>of</strong> quartets free +0.93'åå'<br />

<strong>of</strong> micronuclei.<br />

Transmission r<strong>at</strong>es. T0.61*<br />

Frequency <strong>of</strong> stainable Frequency <strong>of</strong> trivalents <strong>at</strong> +0"50<br />

pollen<br />

\.<br />

:k S ignif icant <strong>at</strong> .05 .<br />

'k'k Significant <strong>at</strong> .01.<br />

\r.J.<br />

+0 .84""<br />

s!-.I.<br />

+0.83""<br />

Frequency <strong>of</strong> quartets free +0.21<br />

<strong>of</strong> micronuclei"<br />

Transmission r<strong>at</strong>es. +0.60<br />

BB


<strong>of</strong> univalents than on <strong>the</strong>ir number. This ís supported by <strong>the</strong> fact th<strong>at</strong><br />

<strong>the</strong> frequency <strong>of</strong> cells with laggards <strong>at</strong> Tr, seemed to be independent <strong>of</strong><br />

<strong>the</strong> frequency <strong>of</strong> cells v¡ith a lagging telocentric <strong>at</strong> Ar. For example<br />

telotrisomic 1S exhibited 2L.6% <strong>of</strong> its cells with univalents <strong>at</strong> M, com-<br />

pared to 57.3% f.or telotrisornic 65. However, <strong>the</strong> frequency <strong>of</strong> cells with<br />

laggards <strong>at</strong> T- were similar for both telocentrics (19.3 and 19.4%, res-<br />

I<br />

pectively). The positive correl<strong>at</strong>ion between chromosome associ<strong>at</strong>ions<br />

(trivalents) <strong>at</strong> MI and quartets free <strong>of</strong> micronuclei indicaËe th<strong>at</strong> most<br />

univalents observed <strong>at</strong> M, were excluded from <strong>the</strong> daughter nuclei <strong>at</strong> <strong>the</strong><br />

quartet stage.<br />

Correl<strong>at</strong>íons involving pollen viability in rel<strong>at</strong>ion to frequency <strong>of</strong><br />

trivalents <strong>at</strong> M-, to quartets free <strong>of</strong> micronucleí, and to transmission<br />

l-<br />

r<strong>at</strong>es, T^rere all non-significant (Table II-21). This indic<strong>at</strong>es th<strong>at</strong> <strong>the</strong>re<br />

are o<strong>the</strong>r non-cytological factors th<strong>at</strong> affect po11en viability.<br />

The positive correl<strong>at</strong>ion between trivalents <strong>at</strong> M, and transmissíon<br />

in selfed progenies (r = *0.61) agree with <strong>the</strong> concept th<strong>at</strong> long chromo-<br />

somes have a gre<strong>at</strong>er chance to associ<strong>at</strong>e with <strong>the</strong>ir homologues, conse-<br />

quently <strong>the</strong>y behave regularly and are transmitted more frequently than<br />

short chromosomes.<br />

Telocentric Shift<br />

In <strong>the</strong> progeny <strong>of</strong> telotricomic (2n+2L), a plant r¿as fround which<br />

had a chromosome constitution <strong>of</strong> 13'+2L+ an acrocentric chromosome. All<br />

PMCrs <strong>of</strong> this plant contained 6tt + a heteromorphic trivalent (Ëhe acro-<br />

centric and <strong>the</strong> telo pairing with ano<strong>the</strong>r homologue). Morphologically,<br />

B9


Ël-rís plant appeared as<br />

The origin <strong>of</strong> this<br />

2n*2L, Lhe telocentric<br />

a normal disomic with almosË complete ferttlity.<br />

plant is specul<strong>at</strong>ory, however in telotrisomic<br />

paired with one homologue r¿hile <strong>the</strong> o<strong>the</strong>r homologue<br />

behaved as a univalent. At anaphase-I, <strong>the</strong> heteromorphic bivalent dis-<br />

joined in a normal manner while <strong>the</strong> univalenË misdivided, giving rise to<br />

an acrocentric for <strong>the</strong> short arm. This event rvould result in a gamete<br />

vrith 6 normal chromosomes, a telocentric (2L) and an acrocentric (2S)<br />

which could give rise to a planL r¿ith <strong>the</strong> constitution <strong>of</strong> <strong>the</strong> one in ques-<br />

tíon. Cytological observ<strong>at</strong>ions supports this assumption since chromosomes<br />

involved in <strong>the</strong> telotrisomic condiLion occasionally failed to paír and<br />

behaved as univalents. The progeny from <strong>the</strong> aforementioned plant consísted<br />

<strong>of</strong> diploids, parentals (L3t+2L+ acro) plants ruith chromosome-2 replaced<br />

by 4 clnromosomes (L2t+2 Lelo f 2 acro, Fig. II-Se), plants with an extra<br />

telocenËríc (2L) and plants with an extra acrocentric (2S). The last<br />

mentioned class, although carrying an extra arm, (acrocentric) genetically<br />

speakíng had undergone a complete shift from a long arm telo (in parental<br />

2r*2L) to short arm Ëype.<br />

Telocentric shift has not been reported previously in self progenies<br />

<strong>of</strong> teloErisomics. However, Tsuchiya (1971d) observed a number <strong>of</strong> Lelo-<br />

trisomic-ll plants ín <strong>the</strong> progeny <strong>of</strong> a cross beLween Lelotricomic-lS and<br />

a disomic mLrtant. He assumed th<strong>at</strong> <strong>the</strong> centromere <strong>of</strong> chromosome-l fre-<br />

quently misdivided in certain genetic backgrounds. This finding should<br />

serve as a v/arning when using telotrisomics for genetical studies. The<br />

use <strong>of</strong> morphological characters as ari aicl in <strong>the</strong> identific<strong>at</strong>ion <strong>of</strong> telo-<br />

90


Lrisomics, could be <strong>of</strong> gre<strong>at</strong> importance since in mosL cases <strong>the</strong> two<br />

Lelocentrics <strong>of</strong> <strong>the</strong> same chromosome are not cytologically distinguishable.<br />

91


LITERATURE CITED<br />

Bennet, M. D., and R" A. Finch . Lg7l. Dur<strong>at</strong>ion<br />

Gener. Res . 17 z Z0g-2L4 "<br />

<strong>of</strong> Meiosis in barley.<br />

BenËzer, 8", R" V. Bothmer, L. Engstrand, M. Gustafsson, and<br />

L97r" some sources <strong>of</strong> errors ín <strong>the</strong> determin<strong>at</strong>ion<br />

<strong>of</strong> chromosomes. Bot. Notiser 123: 519_55i.<br />

S. Snogerup.<br />

<strong>of</strong> arm r<strong>at</strong>ios<br />

Blakeslee, A. F., and A. c. Avery" r93g. Fifteen year breeding records<br />

<strong>of</strong> 2n*1 types i-n Djltura sLramonium. Co-oper<strong>at</strong>ion in research"<br />

Carnegie Insr. T{ash. publ" 501: 315-351.<br />

Burnham, c. R" and A. Hagberg " Lg56. cytogeneËic noËes on chromosomal<br />

ínterchanges i-n barley" Hereditas 422 467-482.<br />

EinseË, J. L943. thromosome length in<br />

<strong>of</strong> maize trí-somics. Genetics<br />

Endrízzi, J. 8", and R. J. Kohel " Lg66. Use <strong>of</strong><br />

three chromosomes ín cotton. Genetics<br />

Fedak, G. 1969 " The behavior and uËility<br />

Hordeum. ph"D. Thesis, üniv. <strong>of</strong><br />

, and S. B. Helgason. L970. The<br />

tetrasomic líne in barley. Can" J.<br />

, T" Tsuchíya, and S" B. Helgason.<br />

monotelotrisomics in barley. Can.<br />

770 "<br />

rel<strong>at</strong>ion Ëo Ëransmission frequency<br />

28: 349-364"<br />

Ëelosomics in mapping<br />

54: 535-550"<br />

<strong>of</strong> some monoËeloËrisomics in<br />

<strong>Manitoba</strong>, tr{innipeg.<br />

cytogenetics <strong>of</strong> ditelo-<br />

Genet. Cytol . XII: .553 -559 .<br />

197T" CyLogenetics <strong>of</strong> some<br />

J. Genet" Cyrol. XII: 760-<br />

Goodspeed, T. H., and P. Avery. rg3g. Trisomics and o<strong>the</strong>r types in<br />

Nicotiane svlvestris" J. GeneË. 38: 3Bl_458.<br />

Johansen, D" A. 794A. plant microËechnique. McGraw_Hill, Inc., N. y.<br />

and London" pp. 24"<br />

Jones, K., and C. Colden. 1968. The ËelocenËric complement <strong>of</strong> Tradescantia<br />

micrantha" Chromosoma 24: 135 _L57 .<br />

Kamanoi, M., and B. C" Jenkins. 1962" Trisomics in<br />

cearale, L. Seiken Ziho 13: l1B_123.<br />

contrnon rye,<br />

l(hush, G" s. , and c. M. Rick " 1968 " Tom<strong>at</strong>o telocentrics :<br />

tÍfic<strong>at</strong>Íon and use ín linkage rnapping. Cytologia<br />

origin, iden-<br />

33: L37 -L48"<br />

92


. Kimber, G., and Il. R. Sears. 1968. Nomencl<strong>at</strong>ure for Lhe description <strong>of</strong><br />

aneuploids in <strong>the</strong> Triticinae" III Int. Whe<strong>at</strong> Genet. Symposium.<br />

Canberra, 468-469.<br />

'Lindgren, D., G. Eriksson, and I. Ekberg. 1969. The rel<strong>at</strong>ive dur<strong>at</strong>ion<br />

<strong>of</strong> <strong>the</strong> meioËic stages in po1len moËher ce1ls <strong>of</strong> barley. Herediras<br />

63: 205-212.<br />

'Love, R. M. 1940. Chromosome number and behavior in a pentaploid whe<strong>at</strong><br />

hybrid deriv<strong>at</strong>ives. Can. J. Res" 18(c) 4L4-434"<br />

.Marks, G. E" 1957. Telocentric chromosomes. Am" N<strong>at</strong>. XCI: 223-232"<br />

, luloseman, J" G", and L, Smith. L954. Gene loc<strong>at</strong>ion by three-point test<br />

and telocentric half-chromosome fragment in Triticum monococcum.<br />

Agr. J. 46: 120-124<br />

. Nawashin, S. G" L9I6" Sur quelque indices de lrorganis<strong>at</strong>ion interne des<br />

chromosomes. TimÍfaseffs. Festschrift,. LB5-274"<br />

. Nilan, R" A. 1964. The cytology and genetics <strong>of</strong> barley. Monographic<br />

supplement No" 3. I^lashingËon St<strong>at</strong>e Univ. Vol. 32. No" 1.<br />

Powell, J. 8., and R. A. Nilan. 1968. Evidence for spontaneous inversions<br />

in cultiv<strong>at</strong>ed barley. Crop Sci. B: LL4-L16"<br />

, Ramage, R. T. 1955. The trisomics <strong>of</strong> barley. Ph.D. Thesis, Univ" <strong>of</strong><br />

Minnesota.<br />

. Reeves, A. F., G. S. I{rush, and C. M. Rick. 1968. Segreg<strong>at</strong>ion and recombin<strong>at</strong>ion<br />

in trisomics: a reconsíder<strong>at</strong>ion. Can. J. <strong>of</strong> Genet.<br />

CyEol. 10: 937 -940 "<br />

Rhoades, M. M. 1936" A cytological study <strong>of</strong> a chromose¡¡¡s f¡¿monr in<br />

maLze" Genetics 21: 49L-502.<br />

L94O " Studies <strong>of</strong> a telocentric chromosome in maize with<br />

reference to <strong>the</strong> sËability <strong>of</strong> its centromere. Genetics 25:<br />

483-s20 "<br />

Robertson, D. W. 1971" Recent inform<strong>at</strong>ion <strong>of</strong> linkage and chromosome<br />

mapping. Bly. Genetics II" 22T-242. Proc. II. Int" Bly.<br />

GeneË. Symposium, tr^iashingcon Stage Univ.<br />

Sears, B. R. 1963. Chromosome mapping with <strong>the</strong> aid <strong>of</strong> t.elocentrícs.<br />

II Int. I^Ihe<strong>at</strong> Genet. Symposium. 370-381.<br />

93


sears, E" R", and L. I.I. Briggle, 1969. Mapping <strong>the</strong> gene prnl for resistance<br />

to Erysiphe graminis f. sp. tritici on chromosome 7A <strong>of</strong><br />

whe<strong>at</strong>. Crop Sci. 9z 96-97 "<br />

Steinitz-Sears, L" M. 1966. Som<strong>at</strong>ic instability <strong>of</strong> telocentric chromosomes<br />

in whe<strong>at</strong> and <strong>the</strong> n<strong>at</strong>ure <strong>of</strong> <strong>the</strong> centromere. Genetics 54:<br />

24t-248 "<br />

sybenga, J. 1965" The quant<strong>at</strong>ive analysís <strong>of</strong> chromosome pairing and<br />

chiasma form<strong>at</strong>ion based on <strong>the</strong> rel<strong>at</strong>ive frequencies <strong>of</strong> M.. configuraËions.<br />

III" Telocentric Trisomics. Genetica 36:- 351-<br />

361 "<br />

Tsuchiya, T. L960" CyËogenetic studies <strong>of</strong> Ërisomics in barley. Jap. J.<br />

Bot. 17 z L77 -2L3 "<br />

1961" Studies on Lhe trisomics ín barley. II. Cytological<br />

idenËÍfic<strong>at</strong>ion <strong>of</strong> <strong>the</strong> extra chromosome in crosses with Burnhamr s<br />

translocaËion Ëesters. Jap" J. Genet " 362 444-45L"<br />

L966" Telocentric fragments in barley. Barley Ner¡sletter<br />

9: 62"<br />

1967 " Cytogenetics <strong>of</strong> a telosomic Ërisomic type" Bush"<br />

Bly. Newsletter 10: 13.<br />

T971-a. Establishing telosomic trísomics in barley. Bly"<br />

Genet. II: 72-BL. Proc. II Int" Bly. Gener. Symposium.<br />

1971b. characteristics <strong>of</strong> teloËrisomics and oËher aneuploids<br />

in barley. Bly. Genet. NewslerËer l: 58-60"<br />

L97Lc. Male transmission <strong>of</strong> telocentric chromosomes in four<br />

LeloËrisomícs. Ibid" 1: 60.<br />

L97Ld. Occurrence <strong>of</strong> a plant with 2n=13* 2 telocentric<br />

chromosomes in barley. Ibid. 1: 63.<br />

1972a. Karyotype analysis <strong>of</strong> telotrisomic type for Ëelocenrric<br />

54" Ibid. 2z 90-91"<br />

r972b. cytogenetics <strong>of</strong> telorrisomics in barlev" rbid"<br />

2; 93 -98.<br />

Yu, R. 1968" Deriv<strong>at</strong>ion and study <strong>of</strong> primary trisomics <strong>of</strong> conrnon barley,<br />

Hordqum vulgare, L. Ph.D. Thesis, univ. <strong>of</strong> Manit.oba, I^Iinnipeg.<br />

94


SECTION - III<br />

CYIOGENETICS OF ACCESSORY CHROMOSOMES


INIRODUCTION<br />

During <strong>the</strong> course <strong>of</strong> <strong>the</strong> present study, a number <strong>of</strong> plants, each<br />

carrying one or more fragments \../ere isol<strong>at</strong>ed from <strong>the</strong> progeny <strong>of</strong> tri-<br />

somics. These fragment chromosomes shor¿ed distinct characteristics<br />

from <strong>the</strong> usual telotrisomics and in general, <strong>the</strong>y could be characterized<br />

by <strong>the</strong> following fe<strong>at</strong>ures:<br />

(1) <strong>the</strong>ir morphology was differenL from th<strong>at</strong> <strong>of</strong> normal chromosomes.<br />

(2) <strong>the</strong>y varied in number in som<strong>at</strong>ic tissues from cell to cel1 and<br />

also ffom som<strong>at</strong>ic J-o øprmín¡1 "e11s"<br />

(3) <strong>the</strong>y exhibited abnormal behavior aL meiosis such as orienta-<br />

tion and l<strong>at</strong>e movement <strong>at</strong>. M_ and A_, respecËively,<br />

II<br />

(4) <strong>the</strong>y had very little effect on planr morphology.<br />

For <strong>the</strong> purpose <strong>of</strong> this <strong>the</strong>sis, <strong>the</strong>se ttextr<strong>at</strong>t chromosomes \,Jere<br />

termed accessory chromosomes and r,.Jere considered as separ<strong>at</strong>e from <strong>the</strong><br />

usual telotrísomics. Because accessory chromosomes have never before<br />

been isol<strong>at</strong>ed in barley, a thorough study <strong>of</strong> <strong>the</strong>ir cytological behavior<br />

was carried out, <strong>the</strong> results <strong>of</strong> which are presented in <strong>the</strong> following<br />

s ect ion "<br />

96


Accessory Chromosomes: General<br />

REVIEW OF LITERATURE<br />

Normal chromosomes are indispensable elements <strong>of</strong> <strong>the</strong> hereditary con-<br />

stitution <strong>of</strong> organísms and changes in chromosome number generally have<br />

marked effects on <strong>the</strong> individual. In contrast, accessory chromosomes<br />

are by no means indispensable. They are as a rule deleterious and only<br />

occur in some indivíduals <strong>of</strong> a popul<strong>at</strong>ion.<br />

The Ëerm accessory chromosome has been reserved for Ëhose chromo-<br />

somes th<strong>at</strong> occur in varying numbers over and above <strong>the</strong> normal complemenË<br />

(¡rAtt chromosomes) <strong>of</strong> an individual or popul<strong>at</strong>ion and which have a minimal<br />

genetic effect on <strong>the</strong> organism possessing <strong>the</strong>m (BaËËaglia, L964). In<br />

general, accessory chromosomes constitute a miscellaneous assortment <strong>of</strong><br />

non-autosomal exËra-chromosomes. There are <strong>of</strong>ten more than one Ëype in<br />

<strong>the</strong> same species (B<strong>at</strong>taglia, 1964). Accessory chromosomes had been re-<br />

po::ted in more than 460 species <strong>of</strong> 163 genera most <strong>of</strong> <strong>the</strong>m being out-<br />

breeders (Brown and Bertke, 1969) " The subject, though controversial,<br />

has been reviewed in ful1 detail by Randolf (1928,1941), Muntzing (1949'<br />

1954) o B<strong>at</strong>taglLa (L964), and o<strong>the</strong>rs (Brown and Bertke, L969; Ostergren,<br />

Lg47). Because <strong>of</strong> <strong>the</strong> extensive iitu."t.rte on Ëhe subject this review<br />

wiLl be limited to <strong>the</strong> most relevant aspects which rnay help to explain<br />

<strong>the</strong> results obtained in <strong>the</strong> present. study.<br />

Chromosome Number and Morphologv<br />

The usual number <strong>of</strong> accessories in a nucleus is L ot 2, however<br />

hfgher numbers are knok/n in corn (Randolf, 194f), rYe (Muntzíng, 1954)<br />

97


and ÇreÈþ sp. (Frost, 1960, L962) " By appropri<strong>at</strong>e crossing, higher<br />

and higher numbers have been accumul<strong>at</strong>ed in Lhese same species. In terms<br />

<strong>of</strong> size, accessories show a wide range <strong>of</strong> various sizes, however most are<br />

smaller Èhan normal chromosomes as observed in rye (Muntzing, 1954), corn<br />

(Rar:dolf , 1-941) and in Crepis (Frost, 1960, 1962) " In rnany cases, one<br />

Èype <strong>of</strong> accessory may give rise to ano<strong>the</strong>r (Vosa, i966).<br />

Tüith regard to <strong>the</strong> posiLion <strong>of</strong> <strong>the</strong> centromere, accessory chromosomes<br />

may occur as metacentricse acrocentrics or telocent.rics (B<strong>at</strong>taglia, 1964) "<br />

Qgi-gíg <strong>of</strong> _Accessory Chroqg¡pngq<br />

lilhe mechanism <strong>of</strong> origin <strong>of</strong> accessory chromosomes is unknown, although<br />

it ís ¡¡enerally assumed th<strong>at</strong> <strong>the</strong>y are derivaËives <strong>of</strong> autosomes consisting<br />

<strong>of</strong> a normal centromere and'residual proximal heterochrom<strong>at</strong>.in (Brovm and<br />

Bertke, L969). There are <strong>at</strong> i-east two general hypo<strong>the</strong>ses regarding <strong>the</strong><br />

origin <strong>of</strong> accessory chromosomes.<br />

&çåglg_-q5!.gig. It has been currently suggested th<strong>at</strong> <strong>the</strong> origin <strong>of</strong><br />

accessory chromosomes is a primitive trait, probably<br />

(Ostergren, 1947; Muntzing, 1954, L957). In rye for<br />

t.ive strains have higher frequencies <strong>of</strong> accessories<br />

ones" Yet, Muntzíng (1954) considers Ëhe occurrence<br />

rye<br />

<strong>of</strong><br />

as a primitive t.rait and Ís <strong>of</strong> importance in determining <strong>the</strong> cenLer<br />

or.igin <strong>of</strong> culËiv<strong>at</strong>ed rye.<br />

Chromosome Rearrangements . Regardless <strong>of</strong> <strong>the</strong>ir<br />

many phenomena which cause chromosome rearrangements<br />

an rrnderlying mechanism for accessories formaËion"<br />

during speci<strong>at</strong>ion<br />

example, <strong>the</strong> primi-<br />

than <strong>the</strong> cultiv<strong>at</strong>ed<br />

<strong>of</strong> accessories in<br />

time <strong>of</strong> origin,<br />

\¡/ere suggested as<br />

B<strong>at</strong>taglia (1964)<br />

98


cited two events considered to be important:<br />

a) Misdivision: It seems th<strong>at</strong> rnisdivision <strong>of</strong> <strong>the</strong> centromere and<br />

successive form<strong>at</strong>ion <strong>of</strong> telocentrics and isochromosomes may be respon-<br />

sible for <strong>the</strong> occurrence <strong>of</strong> many existing accessories,<br />

b) Conserv<strong>at</strong>ion <strong>of</strong> <strong>the</strong> Centromere: The loss <strong>of</strong> <strong>the</strong> pairing ends<br />

<strong>of</strong> an A-chromosomes may gíve rise to smal1 chromosomes comprised <strong>of</strong> <strong>the</strong><br />

centromere and adjacent heLerochrom<strong>at</strong>in. This event could be <strong>the</strong> result<br />

<strong>of</strong> fragment<strong>at</strong>ion or unequal reciprocal transloc<strong>at</strong>ions for many successive<br />

gener<strong>at</strong>ions. Jackson (1960) found th<strong>at</strong> <strong>the</strong> small accessories <strong>of</strong> Haplo-<br />

pappus gracilis correspond in size and morphology to <strong>the</strong> centromeres and<br />

adiacent chrom<strong>at</strong>ín <strong>of</strong> H. ravenii chromosomes which were lost in <strong>the</strong> evo-<br />

'l<br />

rrf íon <strong>of</strong> H- h- øracilis.<br />

v<br />

Hetero chroma t iniz <strong>at</strong> ion<br />

Accessory chromosomes, although <strong>the</strong>y origin<strong>at</strong>ed from normal chromo-<br />

somes, seem to have a transítion in <strong>the</strong>ir chrom<strong>at</strong>in phase resulting in<br />

non-homology with Ëheir put<strong>at</strong>ive A-chromosomes.<br />

Fernandes (cf. B<strong>at</strong>taglia) suggested th<strong>at</strong> in triploids or inter-<br />

specific crosses involving genes r¿hich control <strong>the</strong> quanËity <strong>of</strong> active<br />

chrom<strong>at</strong>in, some <strong>of</strong> <strong>the</strong> extra euchrom<strong>at</strong>ic chromosomes may be transformed<br />

to heterochromaËin and result in heterochrom<strong>at</strong>ic accessories. Ano<strong>the</strong>r<br />

possibility is th<strong>at</strong> <strong>the</strong> lagging euchrom<strong>at</strong>in chromosomes which form micro-<br />

nuclei, persist in <strong>the</strong> cytoplasm and undergo a degener<strong>at</strong>ion or Lransfor-<br />

m<strong>at</strong>ion to heterochrom<strong>at</strong>in. L<strong>at</strong>er. such chromosomes will be included in<br />

99


<strong>the</strong> nucleus and be transmitted by fertiliz<strong>at</strong>ion. He also assumed th<strong>at</strong><br />

heterochrom<strong>at</strong>iniz<strong>at</strong>ion, though determined by genes, is an irreversible<br />

mechanism.<br />

Cytological Behavior <strong>of</strong> Accessorv Chromosomes<br />

The most unusual characteristic <strong>of</strong> accessories is <strong>the</strong>ir irregular<br />

behavior and distribution during cel1 division. This has given rise to<br />

<strong>the</strong> suggestion th<strong>at</strong> this class <strong>of</strong> chromosome has a genic system <strong>of</strong> its<br />

own rvhich determines <strong>the</strong>ir f<strong>at</strong>e. One such system would appear to involve<br />

L.he determin<strong>at</strong>ion <strong>of</strong> numbers <strong>of</strong> accessories persisting in specific tissues<br />

or organs <strong>of</strong> <strong>the</strong> species in question. In som<strong>at</strong>ic cel1s<br />

posed for this purpose involve:<br />

, mechanísms pro-<br />

a) Elimin<strong>at</strong>ion: A phenomenon which results in <strong>the</strong> elimin<strong>at</strong>ion <strong>of</strong><br />

accessories from certain tissues or organs is known to exist in several<br />

species, <strong>of</strong> which Crepis capillaris will serve as an example (Rutishauser<br />

and Rothlisberger, 1966). In this species, accessories may be elimin<strong>at</strong>ed<br />

from <strong>the</strong> primary and secondary roots as well as from <strong>the</strong> leaves. In all<br />

cases however, <strong>the</strong>y persist in shoots, <strong>the</strong> organs which pass <strong>the</strong>m to <strong>the</strong><br />

next gener<strong>at</strong>ion.<br />

b) Numerical Increases: Frost and Ostergren (1959) and Frost (1960,<br />

1962) observed a special mechanism for <strong>the</strong> increase <strong>of</strong> accessories 1n<br />

Crepis conzvaefolia and C. pannonica. Plants with 1, 2, or 3 accessories<br />

in som<strong>at</strong>ic tissues always contained twice <strong>the</strong> number <strong>of</strong> accessories in<br />

<strong>the</strong>ir PMCts. This was explained by an endomitotic reduplicaEion restricLed<br />

100


to <strong>the</strong> accessories. In C. capillaris such a mechanism acts through chro-<br />

maËic non-disjuncLion after transform<strong>at</strong>ion <strong>of</strong> <strong>the</strong> shoot apex so th<strong>at</strong> by<br />

<strong>the</strong> time a flower form<strong>at</strong>ion, about BO7. <strong>of</strong> <strong>the</strong> sporangeous tissue contained<br />

a doubled number <strong>of</strong> accessories (Rutishauser and Rothlisberger, Ig66)"<br />

O<strong>the</strong>r tissues <strong>of</strong> <strong>the</strong> inflorescence contained ei<strong>the</strong>r none or <strong>at</strong> <strong>the</strong> most,<br />

only one accessory. In o<strong>the</strong>r species such as rye and corn, <strong>the</strong> numerical<br />

increase (i.e" through chrom<strong>at</strong>id non-disjunction) occurs during fírst or<br />

second pollen mitosis so th<strong>at</strong> <strong>the</strong> gener<strong>at</strong>ive nucleus receives twice <strong>the</strong><br />

number <strong>of</strong> accessories while <strong>the</strong> veget<strong>at</strong>ive nucleus receives none (Randolf,<br />

194L; Muntzing, L946). This phenomenon \¡ras termed ttposË meiotic pre-<br />

ferential distributiontt .<br />

Símílar mechanisms for ei<strong>the</strong>r maintaining or varying <strong>the</strong> number <strong>of</strong><br />

accessory chromosomes in plant. popul<strong>at</strong>ions acË during <strong>the</strong> pol1en mo<strong>the</strong>r<br />

ce11 stage. For example, non-homologous pairing between accessories and<br />

normal chromosomes (A chromosomes) vras occasionally observed in some<br />

species (Li and Jackson, 1961). This type <strong>of</strong> pairing is described as<br />

end-to-end associ<strong>at</strong>ion and was <strong>at</strong>tributed to stickiness r<strong>at</strong>her than<br />

homology. Among accessory chromosomes, homorogous pairing is quiËe<br />

conmon. I^Ihen only one accessory chromosome is present, it behaves as a<br />

univalent, two may pair and form a bivalent while three or more accesso-<br />

ríes are capable <strong>of</strong> forming multivalents (Sarvella, 1959). In many cases<br />

<strong>the</strong> paired accessories may disassoci<strong>at</strong>e before M, (Bosmark, Lg5h). Uni-<br />

valent accessories <strong>of</strong> rye (Bosmark, L954; Muntzing, Lg66), corn (Randolf,<br />

L94L; Hakonsson, 1957) and crepis (FrosL, L960, 1962), rhough <strong>of</strong>ten<br />

101


divided by l<strong>at</strong>e Ar, were i-ncluded in <strong>the</strong> daughter telophase nuclei. Thus,<br />

<strong>at</strong> <strong>the</strong> second division, <strong>the</strong> divided univalents v¡ere unable to move, <strong>the</strong>re-<br />

fore <strong>the</strong>y lagged and<br />

somes <strong>of</strong> Anthoxanthum<br />

formed micronuclei. In contrast, accessory chromo-<br />

sp. dívide only .a AII (B<strong>at</strong>taglia, L964) " Conse-<br />

quently, <strong>the</strong>y gave rise to few if any micronuclei <strong>at</strong> <strong>the</strong> tetrad stage.<br />

Cytological analysis <strong>of</strong> <strong>the</strong> behavior <strong>of</strong> accessories in diploid and<br />

teËraploid rye revealed t-h<strong>at</strong> abnormalities in both cases r¿ere similar<br />

(Sarvella, 1959)" Stickíness, bridges, lagging, abnormal orient<strong>at</strong>íon <strong>of</strong><br />

bívalents, restítuËion. nucl-ei, and contracted Mr-chromosomes r¿ere observed<br />

in both diploid and tetraploi.d ?l4Cts. Moreover, in Ëetraploids, misdívi-<br />

sion <strong>of</strong> auËosomes and t,ripolar spindles were also seen" Chromosome pai-r-<br />

irg, though it increased in both diploids and tetraploids as <strong>the</strong> number<br />

<strong>of</strong> accessories increased, r{as rmrch poorer in tetraploids than in diploids.<br />

In addit.ion, univalents r,Íere more frequent than expected in an autotetra-<br />

ploid and high multivalent frequencies were also rare"<br />

Phenotvpic Effects <strong>of</strong> Accessorv Chromosomes<br />

In general, <strong>the</strong> presence <strong>of</strong> a limited number <strong>of</strong> accessories has no<br />

remarkable morphological effects on <strong>the</strong> carrier planËs. However, when<br />

present ín larger numbers <strong>the</strong>y do affect <strong>the</strong> phenotype. In corn, <strong>the</strong><br />

occurrence <strong>of</strong> accessories above a certain threshold caused decreased vígour<br />

and lowered fertility unti-l, <strong>at</strong> a maximum number <strong>of</strong> about 30 accessories<br />

per p1ant, <strong>the</strong> plants \^7ere poorly developed and highly sterile (Randolf,<br />

1941) " Muntzing (I966a) found an inverse correl<strong>at</strong>ion between kernel weight<br />

and number <strong>of</strong> accessories Ín rye. Conversely,Moss (1966) found ËhaÈ acces-<br />

sorles íncrease kernel wef-ght but delayed germin<strong>at</strong>ion.<br />

102


MATNRIAL AND METI{ODS<br />

The chromosomes described herein, were isol<strong>at</strong>ed among <strong>the</strong> progenies<br />

<strong>of</strong> a trisomic series from (OAC-21 x Montcalm) established by Larter<br />

(personal cornrnunic<strong>at</strong>ion). They were characterized by smal1 size and<br />

irregular behavior in both som<strong>at</strong>ic and germinal cells. The lack <strong>of</strong> pair-<br />

ing between <strong>the</strong>se chromosomes and <strong>the</strong> regular complement suggested a lack<br />

<strong>of</strong> homology. Subsequently, <strong>the</strong>y were considered as accessory chromosomes<br />

(B-type) and were studied separaLely from o<strong>the</strong>r true telotrisomics.<br />

Several different forms <strong>of</strong> <strong>the</strong>se chromosomes r.{ere observed but only<br />

tr¡/o, one carrying a s<strong>at</strong>ellíte, <strong>the</strong> ot.her a non-s<strong>at</strong>ellited chromosome,<br />

were thoroughly sËudíed in som<strong>at</strong>ic as well as reproductive Lissues "<br />

Cytological Lechniques described in section II (M<strong>at</strong>eríals and<br />

Methods) !r'ere used for <strong>the</strong> study <strong>of</strong> mitosis and meiosis.<br />

103


Mitos is<br />

RBSTILTS<br />

Chromosome Morphology <strong>of</strong> Accessories. Although <strong>the</strong> accessory chro-<br />

mosomes observed in this study showed a wide range <strong>of</strong> size, <strong>the</strong>y were<br />

generally smaller in dimensions than most telocentrics <strong>of</strong> barley.<br />

a) S<strong>at</strong>ellited Accessories: These chromosomes occurred ín <strong>the</strong> pro-<br />

geny <strong>of</strong> trisomic-6. Plants with one, two and three accessories r¡/ere<br />

observed. The accessory chromosome <strong>of</strong> this type v/as a submedian with a<br />

long arm carryíng a s<strong>at</strong>ellite (Fig" III-6b). One <strong>of</strong> <strong>the</strong> three segments<br />

comprising this chromosone may be deleted resulting in a small chromo-<br />

some with tl,ro segments on1y. However, sínce <strong>the</strong> deleËed accessory asso-<br />

ci<strong>at</strong>ed with <strong>the</strong> nucleolus <strong>at</strong> meiotic prophases, it v¡as concluded Eh<strong>at</strong><br />

Ëhe short arm lüas <strong>the</strong> missing segmenË. In som<strong>at</strong>ic prophases <strong>the</strong>se chro-<br />

mosomes seemed to be largely euchromaËin. Plant.s with one or tv/o acces-<br />

sories had <strong>the</strong> same number in all som<strong>at</strong>ic cells. whereas PMC|s from<br />

<strong>the</strong>se same plants contained different numbers <strong>of</strong> accessories from cel1<br />

Ëo cell.<br />

b) Non-S<strong>at</strong>ellited Accessories: These chromosomes generally were<br />

small and globular in appearance (Fíg. III-6a). Their length in rel<strong>at</strong>ion<br />

to <strong>the</strong> normal telocentrics was slightly shorter than <strong>the</strong> shortest chro-<br />

mosome arm <strong>of</strong> <strong>the</strong> barley complement (telo 55). In som<strong>at</strong>ic prophases <strong>the</strong>y<br />

v/ere positively heteropycnotic. ExaminaËion <strong>of</strong> som<strong>at</strong>ic anaphases indi-<br />

c<strong>at</strong>ed th<strong>at</strong> depending on <strong>the</strong> chromosome, <strong>the</strong> position <strong>of</strong> Lhe centromere<br />

104


Figure III-6"<br />

10s<br />

Som<strong>at</strong>ic and meiotic accessory chromosomes '<br />

(") 2n # one acc. chromosomes "<br />

(b) 2n * 3 s<strong>at</strong>ellited accessories.<br />

(c) Som<strong>at</strong>ic anaphase (2n t 2 acc.).<br />

(d) Pachytene (2n * one accessory).<br />

(e) l{-, 2n * univalent accessory.<br />

I<br />

(d) M-, 2n 'l 3 accessoríes (bivalent<br />

I<br />

f univalent and trivalenË).


c<br />

W<br />

e<br />

{<br />

ñ<br />

-_*@ æffi æ<br />

@þæ<br />

W &*,<br />

@@<br />

&*= *@ W<br />

eæ W øww&<br />

&:<br />

-+@<br />

øå<br />

*@*<br />

øw& . Å.<br />

w *M<br />

&&€ø<br />

% æbÑ<br />

%w<br />

%<br />

æ<br />

@p% ' &wffi<br />

W-<br />

Æ<br />

\<br />

\<br />

rYÅ@*"*'- *<br />

ffi "4'¿w %,<br />

@% ë&<br />

@&<br />

%'u<br />

,w<br />

@à**.<br />

@<br />

*ffi<br />

, @e.<br />

tj>-<br />

w@,,-<br />

æ<br />

%,wæ<br />

wñ<br />

w<br />

*"ffi<br />

"eF &æ<br />

w<br />

&ffi.<br />

ffi ñæ


varied from a median to a tcrminal position (Fig. III-6c).<br />

Root tip cells r"¡ith zero, one and two accessories rvere observed in<br />

Ehe same plant. It seemed probable th<strong>at</strong> <strong>the</strong> vari<strong>at</strong>ion in number as seen<br />

in som<strong>at</strong>ic anaphase cells resulted from chrom<strong>at</strong>id non-dis junction - a<br />

recognLzed mechanism for som<strong>at</strong>ic elimin<strong>at</strong>ion. Thus, one <strong>of</strong> <strong>the</strong> daughter<br />

cel1s would receive t\{o accessories while <strong>the</strong> o<strong>the</strong>r received none.<br />

Som<strong>at</strong>ic Elimin<strong>at</strong>ion. In order to study som<strong>at</strong>ic elimin<strong>at</strong>ion <strong>of</strong><br />

accessories, chromosome counts r¡/ere scored in cel1s from different roots<br />

<strong>of</strong> <strong>the</strong> same plant and from differenL plants (Table ]J1-22) " IL was clear<br />

th<strong>at</strong> in some roots most ce11s were devoid <strong>of</strong> accessories while o<strong>the</strong>r<br />

roots contained <strong>at</strong> least one accessory per cell. Also within any one<br />

rooË Ëip, <strong>the</strong> frequency <strong>of</strong> cells with two accessories vras not equal to<br />

those with a correspondingly reduced number as might be expected if both<br />

events aríse as a result <strong>of</strong> <strong>the</strong> same mechanism"<br />

Due to <strong>the</strong> vari<strong>at</strong>ion in number from cell to cell, <strong>the</strong>re was no<br />

basic number <strong>of</strong> accessories in <strong>the</strong>se plants. However, a minimum <strong>of</strong> one<br />

accessory per cell was always observed in pMCrs.<br />

Meios is<br />

Plants carrying one, tlvo or three s<strong>at</strong>ell it.ed accessories \¡rere stu-<br />

died in PMC|s. rn <strong>the</strong> case <strong>of</strong> non-s<strong>at</strong>erlited accessories, only one<br />

chromosome !ùas present in PMC's <strong>at</strong> any one time.<br />

Prophase-I: Because <strong>of</strong> <strong>the</strong> small size <strong>of</strong> non-s<strong>at</strong>ellited accessories.<br />

iL was not possible to loc<strong>at</strong>e <strong>the</strong>m in most cells whereas it was possible<br />

to idencífy <strong>the</strong> s<strong>at</strong>ellited accessories <strong>at</strong>tached to <strong>the</strong> nucleolus. In<br />

I07


Table ITT-22. Chromosome Numbers in Root Tips From Two Lines <strong>of</strong><br />

BarIey Carrying Acccssory Chromosomes.<br />

No. <strong>of</strong> Counted Cells<br />

T,ine PIanË<br />

No. 2n*0 2n*lacc 2n* 2 acc<br />

7L4<br />

7L0<br />

5<br />

5<br />

5<br />

9<br />

7<br />

a<br />

63<br />

63<br />

BB<br />

88<br />

19<br />

t2<br />

6<br />

13<br />

I<br />

2I<br />

13<br />

11<br />

101<br />

24<br />

19<br />

13<br />

1B<br />

40<br />

59<br />

32<br />

L6<br />

227<br />

J<br />

¿+<br />

27<br />

108


those cells in wirich ít could be fol1owed, a non-saLel1íted accessory<br />

was observed as a univalent as early as pachytene (fig. III-6d). At<br />

diplotene and<br />

'l wino in fhp<br />

<strong>the</strong> nucleolus as univalents, bivalent.s or trivalents depending upon <strong>the</strong><br />

nnmber exi s fi nø in PMC r s <strong>at</strong><br />

diplotene and diakinesis. PMCts with three<br />

accessories contained a trivalent in 20.8% <strong>of</strong> <strong>the</strong> cel1s, a bivalent *<br />

univalent in 63.9%, while <strong>the</strong> remaining cells (15.3%) had only univalents<br />

(Tab1e III-23). In addition, PMC's with two accessories showed a fre-<br />

qLrency <strong>of</strong> 83.7% and L6.3% <strong>of</strong> <strong>the</strong> cel1s with a bivalent and trvo univalents,<br />

racnonl.r'r¡alr¡<br />

A rel<strong>at</strong>ively high frequency <strong>of</strong> PMCrs (24.4%> <strong>of</strong> a plant carryíng<br />

three accessories \¡/ere tetraploid (Table. rTT-24). chromosome pairing<br />

within <strong>the</strong>se cells showed thaE about 62.2% contaLned 14 bivalents while<br />

Lhe remaining cells had one or two and occasionally 4 quadrivalents<br />

(Fig. III-7a). Also, some cells (3.2%) \,rere parrial teEraploids with<br />

ei<strong>the</strong>r lO bivalents or 6" + zTY only. Tetraploid cells exhibited a<br />

range <strong>of</strong> 5-7 accessories per cell while in comparíson all diploid cells<br />

contained only two or three accessories.<br />

Chromosome pairing between accessory chromosomes and those <strong>of</strong> <strong>the</strong><br />

normal complement \^/as observed in only a very few cel1s and appeared to<br />

be an end-to-end pairing, probably as a result <strong>of</strong> stickiness r<strong>at</strong>her than<br />

true homology.<br />

díakinesís, this chromosome appeared as a mass <strong>of</strong> chrom<strong>at</strong>in<br />

cyLoplasm. The s<strong>at</strong>ellited accessories r¡rere assocí<strong>at</strong>ed with<br />

109


Table III-23. Frequencies <strong>of</strong> Different Configur<strong>at</strong>ions <strong>of</strong> Accessories<br />

in plants hlÍtir one, Tv¡o and Three Accessories.<br />

Configur<strong>at</strong>ion Percent <strong>of</strong> Cells Observed (No. <strong>of</strong> Cells)<br />

Stage <strong>of</strong> Accessories 2n * 1 acc 2n * 2 acc 2n 4 3 acc<br />

Diakinesis Univalents<br />

Bivalents<br />

Tr ival en ts<br />

lvr<br />

I<br />

¿\<br />

I<br />

T -I<br />

M-.II<br />

On pl<strong>at</strong>e<br />

Dividing<br />

100 (Be) 16.3 (166) ls.3 (zte)<br />

- 83.7<br />

e7 "e (525) r00 (166) 100 (3s4)<br />

Be.B (76) r2.0 (117)<br />

I,Iith laggards 96.3 (189) 15.5 (233)<br />

0n pl<strong>at</strong>e Bs. e (1Bs)<br />

63.9<br />

20. B<br />

**<br />

Tetrad With micronuclei 75.0 (627) 1B.B (727) 47.6 (4t2)<br />

:k<br />

Two cells contained 2 accessories aËtached to a normal bivalent.<br />

Abnormal quartets (irregular shape).<br />

I10<br />

?r


Table TTT-24. chromosome configur<strong>at</strong>ions aË Diai


Lt2<br />

Figure rrr-7. Meiotic behavior <strong>of</strong> accessory chromosomes (cont.).<br />

(") M, in a terraploid cells.<br />

(b) TI, lagging and dÍviding univalent accessory.<br />

(c) 7 dyad * one monad accessory .a MII.<br />

(d) Lagging accessory ra TII.<br />

(e) Equ<strong>at</strong>ional division <strong>at</strong> Ar, asynaptic effect.<br />

(f) Accessories forming an extra meiocyt.e.


Ð<br />

wp<br />

$*E<br />

*4s<br />

w i+$-&.<br />

s'*N P<br />

lv<br />

*,w<br />

e \d!<br />

6Ë<br />

&'<br />

dry<br />

.rP I<br />

oT,¡e f,<br />

.pßo<br />

o AP- lß<br />

3 ñr'<br />

*d<br />

ot'r,<br />

^#^<br />

"ds<br />

{çpda<br />

þF<br />

-@Þ<br />

"\k,*Ñ<br />

1<br />

---@<br />

@<br />

"$<br />

o<br />

W<br />

**'/<br />

k-<br />

r&<br />

&ww<br />

t' ''*t #


Metaphase-r: All accessories trvere seen positioned peripherally on<br />

<strong>the</strong> equ<strong>at</strong>orial pl<strong>at</strong>e <strong>at</strong> MI as ei<strong>the</strong>r univalents, bivalents, or Ërivalents<br />

(Figs. III-6e, 6f)" The paired accessories disjoined in a regular manner<br />

while univalents divided precociously aË l<strong>at</strong>e A, or T, after all normal<br />

chromosomes had migr<strong>at</strong>ed to <strong>the</strong> poles (Fig. rrr-7b). Despite <strong>the</strong>ir l<strong>at</strong>e<br />

movement, <strong>the</strong> two monads <strong>of</strong> each accessory were included in <strong>the</strong> daughter<br />

nuclei in most cells " Subsequently, a very low frequency <strong>of</strong> cells with<br />

laggards (3.7%) was observed ar T, (fable III-23) .<br />

In some PMCts, once <strong>the</strong> Mr-chromosomes disjoined all chromosomes<br />

divided equ<strong>at</strong>ionally resulting in 14 or 28 monads <strong>at</strong> each pole, in addi-<br />

Lion to varying numbers <strong>of</strong> accessories (r'ig. rrr-7e) . Apparently, second<br />

division was not completed in such cells and only dyads with large nuclei<br />

I¡/ere seen <strong>at</strong> <strong>the</strong> quartet sËage. Multipolar spindles and non-equal distri-<br />

bution <strong>of</strong> <strong>the</strong> chromosomes \¡/ere also seen in both diploid and tetraploid<br />

cells which resulted in Ëhe form<strong>at</strong>ion <strong>of</strong> three or four nuclei <strong>at</strong> Tr.<br />

Thus when cytokinesis fol1owed, tetrads <strong>of</strong> different shapes and sizes<br />

¡¿ere observed.<br />

Second Division: As might be expected, in <strong>the</strong> second division most<br />

daughter cells shorved 7 dyads * one or more accessory monads (Fig" III-7c)<br />

These monads lagged "a AII and formed micronuclei <strong>at</strong> <strong>the</strong> quartet stage.<br />

As shown in Table rrr-23, <strong>the</strong> frequency <strong>of</strong> quartets with micronuclei<br />

ranged from 18.B% tor plants with two accessories to.75% for plants with<br />

one accessory chromosome, indic<strong>at</strong>ing th<strong>at</strong> eli¡nin<strong>at</strong>ion <strong>of</strong> univaleng<br />

114


accessories readily occurred ín most quarteËs" In PMCts with three<br />

accessories, almost all quarteËs contained micronuclei. Quartets with<br />

abnormal linear or orthodox arrangement <strong>of</strong> meiocytes occurred in a fre-<br />

quency <strong>of</strong> 47 .6% ot <strong>the</strong> observed quartets (fig. III-7f) "<br />

Transmission <strong>of</strong> Accessory Chromosomes<br />

The transmission frequencies <strong>of</strong> accessories hrere determined in selfed<br />

progeníes by counting chromosome numbers in som<strong>at</strong>ic meËaphase ce11s "<br />

The frequency <strong>of</strong> plants with one or more accessories ranged from 20.0 to<br />

6I"6% in <strong>the</strong> progeny <strong>of</strong> plants r¿iËh one and two accessories, respectively.<br />

On1-y one planË carrying L4t + 3 accessories r¿as recovered" Ilordever,<br />

som<strong>at</strong>ic eliminaEion ma'y have altered <strong>the</strong>se frequencies since verific<strong>at</strong>ion<br />

by chromosome counts \^/as not made <strong>at</strong> meiosis.<br />

The effect <strong>of</strong> accessory chromosomes on fertility vras pronounced<br />

depending upon <strong>the</strong> number present. Plants with one accessory had nearly<br />

normal seed set (average B9%); while those with two accessories had<br />

l-owered fertility. The one and only plant with three accessoríes \¡ras<br />

compleËely sËerile.<br />

Table III-25 shows a sununarv <strong>of</strong> <strong>the</strong> observed behavior <strong>of</strong> telocentrícs<br />

(averages <strong>of</strong> 11 telotrisomics) in comparison with accessories. It is<br />

'clear<br />

thaË <strong>the</strong>re vras a lack <strong>of</strong> homology as evidence by <strong>the</strong> absence <strong>of</strong><br />

chromosome pairing between univalenL accessories and o<strong>the</strong>r chromosomes.<br />

IË was also apparenE th<strong>at</strong> accessories l¡rere localized <strong>at</strong> <strong>the</strong> equ<strong>at</strong>orial<br />

region and subsequently divided precociously aE A-" In this respect <strong>the</strong>y<br />

115


Table TLT-25. Frequencies <strong>of</strong> Cells Ï^lith Different Configur<strong>at</strong>ions<br />

aË Meiosis in Telotrisomics* and Accessorv<br />

Chromosomes.<br />

Diakinesis 7rr f It<br />

",<br />

(on pl<strong>at</strong>e)<br />

O, (dividing)<br />

t, (with laggards)<br />

S tage 2n * acc"<br />

ol<br />

Tetrad (rvith micronuclei)<br />

Transmiss ion<br />

Average <strong>of</strong> eleven teloËrisomics.<br />

r00<br />

97<br />

89.9<br />

96 "3<br />

4s.0<br />

20"0<br />

2n * telo<br />

ol<br />

1B .0<br />

23.4<br />

28.4<br />

L7 .7<br />

26.7<br />

30 .3<br />

116


have <strong>the</strong> same<br />

Abnormal ities<br />

Property as univalent accessories observed in o<strong>the</strong>r species.<br />

<strong>at</strong> <strong>the</strong> second division \"/ere similar but <strong>the</strong>re occurred a<br />

much higher frequency <strong>of</strong> micronuclei <strong>at</strong> <strong>the</strong> quartet stage" Abnormalities<br />

in PÞlCts with three accessories v/ere noL recorded in telot.risomrcs<br />

Ll7


DISCUSSION<br />

White (i950) sr<strong>at</strong>ed rhar rrif enough individuals <strong>of</strong> enough popula-<br />

tions <strong>of</strong> almost any angiosperm species were examined one might expect to<br />

find accessory chromosomesrr. Thus, tl-re f inding <strong>of</strong> accessories in a spe-<br />

cies is more or less dependent on <strong>the</strong> number <strong>of</strong> individuals examined-<br />

however in any given species <strong>the</strong> number <strong>of</strong> individuals carrying <strong>the</strong>m is<br />

very small. Accessory chromosomes described in this study were isol<strong>at</strong>ed<br />

from a popul<strong>at</strong>ion <strong>of</strong> about 7000 plants descended from t.riploids and <strong>the</strong>ir<br />

trisomic deriv<strong>at</strong>ives. These triploids were derived from an intercultivar<br />

cross between OAC-21 (4n) and Montcalm (2n). The fact th<strong>at</strong> cv" OAC-21 is<br />

a selection from an o1d six-rowed variety (Mandscheuri) and was released<br />

some sixty years ago, makes ít a possible candidaËe for Ëhe orisin <strong>of</strong><br />

accessory chromosomes. According Lo Muntzing (1954) accessories are very<br />

rare in highly uniform European rye varieties but <strong>the</strong>y are more frequent<br />

in regions where more primitive strains are cultiv<strong>at</strong>ed. Subsequently,<br />

Moss (1966) maintained th<strong>at</strong> rigorous selection for uniformity and isola-<br />

Ëion in cultiv<strong>at</strong>ed rye has decreased <strong>the</strong> mean number <strong>of</strong> accessories. A<br />

similar situ<strong>at</strong>.ion may have existed in barley.<br />

Powell and Nilan (1968) reported <strong>the</strong> presence <strong>of</strong> one or two minute<br />

paracentric inversions in <strong>the</strong> variety OAC-21. Because <strong>of</strong> competition<br />

for pairing among Lhe three elements <strong>of</strong> a trivalent, an inverted chromo-<br />

some could be passed on unchanged even after many selfed gener<strong>at</strong>ions.<br />

AcenLric fragments produced by <strong>the</strong>se inversions cannot be <strong>the</strong> origin <strong>of</strong><br />

118


accessories unless <strong>the</strong>y were transloc<strong>at</strong>ed Eo ano<strong>the</strong>r centric fragmenc<br />

resulting from misdivision <strong>of</strong> extra chromosomes. However. ínter-<br />

change chromosomes though smal1, are expected to pair r¿ith <strong>the</strong>ir puta-<br />

tive parenËal chromosomes to form multivalents <strong>at</strong> lovr freguencies" Such<br />

multivalents v/ere not observed in this m<strong>at</strong>erial"<br />

Ano<strong>the</strong>r aspect is <strong>the</strong> finding th<strong>at</strong> s<strong>at</strong>ellited telocentrics are<br />

capable <strong>of</strong> fragment<strong>at</strong>ion <strong>at</strong> <strong>the</strong> s<strong>at</strong>ellite region" Very short telocen-<br />

trics lacking <strong>the</strong> s<strong>at</strong>ellite are thus formed. If such sma11 chromosomes<br />

ínvol"ved a change in <strong>the</strong>ir strrctuïe, ê.g., an inversion, it is tíkely<br />

th<strong>at</strong> <strong>the</strong>y will fail to associ<strong>at</strong>e with <strong>the</strong>ir homologues and subsequerrËly<br />

behave as univalents"<br />

<strong>the</strong> occurrence <strong>of</strong> centromere misdivision and successive form<strong>at</strong>ion<br />

<strong>of</strong> gelocentrics may give a clue to <strong>the</strong> origin <strong>of</strong> accessories. In barley<br />

t-risomics as in o<strong>the</strong>r species, <strong>the</strong> extra chromosome may misdivide givíng<br />

ri.se to telo- or acrocentrics. An acrocenËric r,¡ith a very short arm mav<br />

undergo anoËher misdivision within ei<strong>the</strong>r <strong>the</strong> centromere or <strong>the</strong> long arrn<br />

resulting in Ehe form<strong>at</strong>ion <strong>of</strong> a very short telocentric or metacênrrie-<br />

respectively. These short chromosomes may be exclusively heterochromaLin<br />

(Kusanagi'1966) and may exhibit its distinct characters such as heteropy-<br />

cnosis and chrom<strong>at</strong>ic non-disjunction. A1so, since chiasm<strong>at</strong>a are localized<br />

aË distal regions <strong>of</strong> barley chromosomes, one is unlikely Ëo deËect pairing<br />

beËr+een <strong>the</strong>se chromosomes even if it should occur¡<br />

Accessory chromosomes <strong>of</strong> barley exhibited characteristics observed<br />

1. L9


ln accessories <strong>of</strong> o<strong>the</strong>r species, vi-z. som<strong>at</strong>ic elimin<strong>at</strong>ion, vari<strong>at</strong>ion in<br />

number within plants, and irregular behavior <strong>at</strong> meiosis.<br />

The constancy <strong>of</strong> accessories within plants was studied in root-tip<br />

mitosis. It was found th<strong>at</strong> <strong>the</strong>re r,ras a small but obvious vari<strong>at</strong>ion in<br />

<strong>the</strong> number <strong>of</strong> accessories !¡íthin root tips <strong>of</strong> same plant. such varia-<br />

tion has been reported in o<strong>the</strong>r species (Muntzing, I96b;Frost, L960,<br />

L962) "<br />

During meiotic prophases, accessories paired with normal chromo-<br />

somes in only a very few cel1s. These associ<strong>at</strong>ions -r^rere probably due<br />

to some kind <strong>of</strong> stickíness r<strong>at</strong>her than homology similar to th<strong>at</strong> obserr¡ed<br />

in several species" However, t-he laek <strong>of</strong> homoJ-ory could be due to dras-<br />

tic changes in chromosome strucËure such as <strong>the</strong> presence <strong>of</strong> an inversíon<br />

in <strong>the</strong> chromosome region r¿hich gave rise Ëo accessories. The accessoïy<br />

chromosomes localize <strong>the</strong>mselves <strong>at</strong> Ëhe equaËorial region which suggest<br />

th<strong>at</strong> <strong>the</strong>y are no longer under Ëhe control <strong>of</strong> <strong>the</strong> normal complement. In<br />

PMCts r¡ith three accessories, tripolar anaphases and misdívision <strong>of</strong> nor-<br />

mal chromosomes <strong>at</strong> A, were observed. In additíon, restituted cells and<br />

unequal disËribuËion <strong>of</strong> <strong>the</strong> chromosomes, indic<strong>at</strong>ed a genic act,ion on<br />

spindle form<strong>at</strong>ion and funcËion. DarlíngËon and Thomas (1941) suggested<br />

th<strong>at</strong> in Sorghum a spindle defect leading to polymitosis was parËly caused<br />

by an excess <strong>of</strong> heterochrom<strong>at</strong>in. In rye, <strong>the</strong> action <strong>of</strong> accessories seemed<br />

to delay or prevent spindle form¿tion and appeared to be under genic con-<br />

trol and not merely mechanical in n<strong>at</strong>ure (Bosmark, 1954). Thus <strong>the</strong> fre-<br />

quency <strong>of</strong> abnormal cells increased with íncreasing numbers <strong>of</strong> accessories.<br />

120


Tsucl'riya (1960) observed th<strong>at</strong> some PMCrs v¡ere united to form syn-<br />

cytes. In <strong>the</strong> present m<strong>at</strong>erial, abouË half <strong>of</strong> <strong>the</strong> restituted cells con-<br />

Eainecl multivalents rvhich indic<strong>at</strong>ed th<strong>at</strong> restitution occurred during l<strong>at</strong>e<br />

mitotic divisions. In Crepís capillaris, Rut.ishauser and Rothlisberger<br />

(L966) found th<strong>at</strong> an endomitosis restricted to <strong>the</strong> accessory chromosomes<br />

occurred <strong>at</strong> one l<strong>at</strong>e mitotic division in those cells th<strong>at</strong> give rise to<br />

<strong>the</strong> sporangeous tissue. If a similar mechanism acts in barley, it means<br />

Ëh<strong>at</strong>. accumul<strong>at</strong>ion <strong>of</strong> certain genes carried by accessories had lead to a<br />

spontaneous restitution <strong>of</strong> <strong>at</strong> least some chromosomes to counter-balance<br />

<strong>the</strong> ef fect <strong>of</strong> <strong>the</strong>se genes. This \^/as supported by <strong>the</strong> observ<strong>at</strong>ion <strong>of</strong><br />

some partialty teËraploid cel1s rvíth ei<strong>the</strong>r 10" or 6tt + zTV only'<br />

12t


LITERATURE CITED<br />

B<strong>at</strong>taglia, E. L964. cytogeneLícs <strong>of</strong> B-chromosomes. caryol0gia<br />

299.<br />

Bosmark, N. O. L954. 0n accessory chromosomes<br />

The inheritance <strong>of</strong> <strong>the</strong> standard type<br />

Hereditas 40: 425-437 "<br />

L22<br />

245-<br />

in Festuca pr<strong>at</strong>ensis. IV"<br />

<strong>of</strong> accessory chromosolnes.<br />

Brown, I'I. v., and E" M" Bertke " 1969. Text book <strong>of</strong> cytorogy. The c" v.<br />

Mosoy Company, St. Louis" pp.376-391.<br />

Darlington, c. D., and p. T. Thomas" L94L. Morbid mÍËosis and <strong>the</strong> activity<br />

<strong>of</strong> inerË chromosomes in sorghum. proc" Royal soc., Lond.on<br />

B I30: I27-I50"<br />

FrosË, S. 1960. A new mechanism for numerical increase <strong>of</strong> accessory<br />

chromosomes in Crepis pannonica. Ibid. 46: 497-503"<br />

1,962. The Ínheritance <strong>of</strong> accessory chromosomes in planÉs<br />

especially in Ranunculus acris and phlerl4 nodosum. rbid" 4g:<br />

667 -67 6 "<br />

tt<br />

and G. OsËergren. L959. Crepis pannonica and Crepís conyzaefolía<br />

- tvro more specíes having accessory chromosomes. rbid.<br />

452 2Lt-2I4"<br />

Hakonsson, A. 1957. Meiosis and pollen miËosis in rye plants with many<br />

accessory chromosomes. Ibid" 43: 603-620 "<br />

Jackson, R. C. 1960" Supernumerary chromosomes in Haplopappus gracilis.<br />

EvoluËion 14: 135 "<br />

Kusanagi, A" L966. R<strong>at</strong>e <strong>of</strong> DNA syn<strong>the</strong>tic period <strong>of</strong> <strong>the</strong> barley chromosomes.<br />

Chromosoma 20 z L25-L32"<br />

Lí, N., and R" c. Jackson" 1961. cytology <strong>of</strong> supernumerary chromosomes<br />

in Haplopappus spinulosus ssp. cotula. Am. J. Bot. 48: 4Ig-<br />

426 "<br />

MosslJ. P. 1966. The adaptive significance <strong>of</strong> B-chromosomes in rve"<br />

Chromosomes Today. I. LS-23"<br />

Muntzing, A. L946. Cytological studies <strong>of</strong> extra fragment chromosomes in<br />

rye. III. The mechanism <strong>of</strong> non-disjunction <strong>at</strong> po1len mÍtosis.<br />

Hereditas 32: 97 -ILg "


MunEzing, A. 1949" Aceessory chromosomes in Secale and poa. proc. <strong>of</strong><br />

Eighth InL" Cong. <strong>of</strong> Genetics, Hereditas suppl" Vol., 402-4LL"<br />

L954. Cytogenetics <strong>of</strong> accessory chromosomes (B-Chromosomes).<br />

Caryologia suppl" 6, 282-30L"<br />

1957. Frequency <strong>of</strong> accessory chromosomes in rye strains<br />

from lran and Korea. Hereditas 43: 682-685"<br />

L966a" Some recent d<strong>at</strong>a on accessory chromosomes in Secale<br />

and Poa. Chromosomes Today I. 7-I4"<br />

L966b" Accessory chromosomes. 8u11. Bot. Soc. Bengal, 20(1),<br />

1-15.<br />

OsËergren, G. 1947. Heterochrom<strong>at</strong>ic B-chromosomes in Anthoxanthum.<br />

Hereditas 33: 26L-296 "<br />

Poehlman, J" M. 1959. Breeding field crops. IÏenry llolt and Company,<br />

Inc", N.Y" pp. 156-159.<br />

Powe11, J. 8., and R. A" Nilan. L968" Evidence for spontaneous inversíons<br />

in cultiv<strong>at</strong>ed barley" Crop Sci. B: 114-116.<br />

Randolf, L. F. L928" Types <strong>of</strong> supernumerary chromosomes in maize" An<strong>at</strong>.<br />

Rec" 4l-: 102"<br />

L94L" Genetic characteristics <strong>of</strong> <strong>the</strong> B-chromosomes in<br />

maíze" Genetics 76: 608-631"<br />

RuËishauser, 4., and E" Rothlisberger . 1966. BoosËíng mechanism <strong>of</strong> Bchromosomes<br />

Ín Crepis capillaris. Chromosomes Today I. 28-30"<br />

Sarvella, P" 1959 " The behavior <strong>of</strong> accessory chromosomes in tetraploid<br />

rye" Hereditas 45: 505-583.<br />

Tsuchiya, T. 1960. Cytogenetic studies <strong>of</strong> trisomics in barley" Jap. J"<br />

<strong>of</strong> Bot . 17 (2) z 177 -2I3.<br />

vosa, c. G" 1966" seed gerrnin<strong>at</strong>ion and B-chromosomes in Ëhe leek<br />

(4J1:!"* porru{r) . thromosomes Today I: 24-26"<br />

tr{hite, M" J. D" 1950. The chromosomes, Methuen & co., London.<br />

L23


GENERAL DISCUSSION<br />

and<br />

BIBLIOGRAPTIY


GENIR.AI DÏSCUSSION<br />

The establishment <strong>of</strong> a complete telotrisomic set (14 telos) involving<br />

all seven chromosomes has been <strong>the</strong> most urgent and import.ant task <strong>of</strong> barley<br />

cytogeneticists and breeders. The aim <strong>of</strong> <strong>the</strong> present study was to derive<br />

a telotrisomic series in barley. Progenies <strong>of</strong> selfed trisomícs are <strong>the</strong><br />

most prolific source <strong>of</strong> telotrisomics in H. vulgare. However, <strong>the</strong> frequen-<br />

cies <strong>of</strong> telotrisomics in <strong>the</strong>se progenies are too low for practical pur-<br />

poses (Tsuchiya, L971a) and in addition <strong>the</strong> seed-set on some <strong>of</strong> <strong>the</strong> paren-<br />

tal trisomics is very low. Subsequently, it was necessary to explore some<br />

ner,¡ techniques to acceler<strong>at</strong>e <strong>the</strong> occurrence <strong>of</strong> telocentrics.<br />

Ramage et al. (1961) and Hagberg et al " (1963) found th<strong>at</strong> radi<strong>at</strong>ion<br />

induced transloc<strong>at</strong>ions involved breaks within <strong>the</strong> centromeres <strong>of</strong> some chro-<br />

mosomes. Therefore irradi<strong>at</strong>ion as well as o<strong>the</strong>r chemical mutaËíons were<br />

used in this study to induce telocentrics. On <strong>the</strong> assumption th<strong>at</strong> gametes<br />

carrying chromosome breaks involving <strong>the</strong> extra-chromosome would be viable,<br />

while breaks in o<strong>the</strong>r chromosomes would lead to deficiencies and gametic<br />

failure, trisomics \.^rere chosen for mutagen tre<strong>at</strong>.ments. Four chemícal muta-<br />

gens, ví2., diethyle sulf<strong>at</strong>e (DES), ethyle methanesulfon<strong>at</strong>e (EMS), hydroxy-<br />

lamine (HA), and 5-fluorodeoxyuridine (FUdR) in addition to x-rays \üere<br />

used. The first t\^ro chemicals \^Iere tested since <strong>the</strong>y are known as <strong>the</strong><br />

most potenE alkyl<strong>at</strong>ing agents. Results from DES and El"lS tre<strong>at</strong>ments coin-<br />

cide with <strong>the</strong> general concept th<strong>at</strong> boLh mutagens induce gene mut<strong>at</strong>ions and<br />

when chromosomal aberr<strong>at</strong>ions do occur <strong>the</strong>y are mainly deficiencies.<br />

L25


Somers and llsu (L962) reported th<strong>at</strong> tre<strong>at</strong>ing Chinese hamster cel1s<br />

with HA induced chromosome breahs <strong>at</strong> all regions with a high percentage<br />

<strong>of</strong> brealcs occurring <strong>at</strong> <strong>the</strong> centromere region. Plants injected with HA<br />

<strong>at</strong> meiosis were almost completely sLerile and too few progenies from<br />

tre<strong>at</strong>ed plants were obtained for analytical purposes.<br />

-^,.f LdJLvL ^- -u ^* ¿1. ^ (1962) reported th<strong>at</strong> FUdR suppressed thymidlíc acid<br />

syn<strong>the</strong>tase thus inhibited chromosomal interchanges induced by ionizing<br />

radi<strong>at</strong>ion. In this study FUdR was used in combin<strong>at</strong>ion with x-rays in<br />

order to increase <strong>the</strong> frequency <strong>of</strong> free fragments. The frequencies <strong>of</strong><br />

telotrisomics in <strong>the</strong> progenies <strong>of</strong> trisomics treaLed with x-rays alone<br />

and in combin<strong>at</strong>ion rvith FUdR were not significantly different from one<br />

ano<strong>the</strong>r thus did not support <strong>the</strong> assumpËion th<strong>at</strong> FUdR enhances free frag-<br />

ment form<strong>at</strong>ion"<br />

Trisomics v/ere tre<strong>at</strong>ed <strong>at</strong> different stages <strong>of</strong> plant development:<br />

dormant dry seeds (soaking); during meiosis (injection <strong>of</strong> HA and irradia-<br />

tion); and <strong>at</strong> <strong>the</strong> seedling stage (irradi<strong>at</strong>ion) . Soaking dry seeds ob-<br />

tained from Ërisomics in mutagen solutions, though useful to elucid<strong>at</strong>e<br />

<strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> ext.ra chromosome to mutagens,vras<br />

Trisomic seeds had to first be verified on <strong>the</strong> basis <strong>of</strong><br />

in popul<strong>at</strong>.ions<br />

<strong>the</strong> o<strong>the</strong>r hand,<br />

in which only aË 30% <strong>of</strong> <strong>the</strong> seedlings are<br />

a tedíous method"<br />

root-tip count<br />

trisomics. On<br />

mulaLions observed in root cells do not necessarilv<br />

involve <strong>the</strong> shoot cells. <strong>the</strong>refore <strong>the</strong> mut<strong>at</strong>ion sDectrum in<br />

may be independent <strong>of</strong> th<strong>at</strong> observed in <strong>the</strong> Mr-root ce1ls.<br />

plant-s ei<strong>the</strong>r injected with HA or irrdiaEed <strong>at</strong> meiosis were<br />

M, -PoPul <strong>at</strong> ions<br />

Trisomic<br />

almost com-<br />

L26


pletely sterile. These 1ethal effects agree with uermlinfs<br />

sults on irradi<strong>at</strong>ed barley plants. He found th<strong>at</strong> steririty<br />

(1970) re-<br />

levels <strong>of</strong><br />

50% or more \^Iere induced by irradi<strong>at</strong>ion <strong>at</strong> meiosis but rdas not reached<br />

even with a ten-fold dose clerivered <strong>at</strong> tillering scage. From simirar<br />

results from <strong>the</strong> irradi<strong>at</strong>ion <strong>of</strong> rice plants, Kawai and rnoshita (1965)<br />

suggested th<strong>at</strong> tre<strong>at</strong>ment <strong>at</strong> <strong>the</strong> tillering stage is a rel<strong>at</strong>ively effec_<br />

tive method for mut<strong>at</strong>ion induction"<br />

Ano<strong>the</strong>r advantage <strong>of</strong> tre<strong>at</strong>ment <strong>at</strong> early sËages <strong>of</strong> ontogenesis is <strong>the</strong><br />

ability <strong>of</strong> young plants to compens<strong>at</strong>e for damaged tillers. Jacobsen<br />

(1966) found th<strong>at</strong> up to seven addiËional prospective mutant sectors r..rere<br />

present in barrey embryos which may pray a part. when a large number <strong>of</strong><br />

<strong>the</strong> main merisLems are killed. rn <strong>the</strong> present study, ar1 <strong>the</strong> reriable<br />

resurts r^rere obtained from seedling tre<strong>at</strong>ments. Two <strong>of</strong> Lhe eight tre<strong>at</strong>_<br />

ments applied to <strong>the</strong> seedlings gave higher frequencies <strong>of</strong> telocentrics<br />

than <strong>the</strong> control" Moreover, among <strong>the</strong> eleven obtained telocentrics.<br />

three (1L,4L and 7s) were ísol<strong>at</strong>ed for <strong>the</strong> first time from.<strong>the</strong>se tri-<br />

somics . The locaI iz<strong>at</strong>íon <strong>of</strong> chromosome breaks <strong>at</strong> a proximar region <strong>of</strong><br />

<strong>the</strong> short arm <strong>of</strong> chromosome-7 may indic<strong>at</strong>e th<strong>at</strong> mucagens are not <strong>the</strong><br />

appropri<strong>at</strong>e method for <strong>the</strong> induction <strong>of</strong> telocentric 7L. Thus, it may be<br />

worthwhile to cross trisomic 7 to a desynaptic gene rrdsrr which eventuarry<br />

will reduce pairing beLween <strong>the</strong> extra-chromosome and its homologues r,¡hich<br />

in turn could result in a higher frequency <strong>of</strong> incruced terocentrics. A<br />

tertiary trisomic involving an exLra chromosome 7 transloc<strong>at</strong>ed within<br />

127


<strong>the</strong> centromere may also serve for <strong>the</strong> purpose <strong>of</strong> isol<strong>at</strong>ing telocentríc 7L.<br />

Diffcrences in response Ëo muLagens reflect <strong>the</strong> differences ín gene-<br />

tic background, i.ê., sensitivity <strong>of</strong> each chromosome to different mutagens<br />

For instance, chromosome-s T.^ras more resistant to <strong>the</strong> effect <strong>of</strong> DES and<br />

BIS than chromosome-4; trisomic 7 succeeded to set seed although somewh<strong>at</strong><br />

reduced from th<strong>at</strong> <strong>of</strong> <strong>the</strong> normal while trisomic-3 was completely sterile"<br />

Nearly a complete telotrisomic series (eleven out <strong>of</strong> fourteen) were<br />

established in this study. Níne <strong>of</strong> <strong>the</strong>se were chosen from <strong>the</strong> spontan-<br />

eously occurring telotrisomics while Ëhe o<strong>the</strong>r Ë\^ro occurred in tre<strong>at</strong>ed<br />

m<strong>at</strong>erial. On <strong>the</strong> basis <strong>of</strong> <strong>the</strong> put<strong>at</strong>,ive trisomic parent from which each<br />

telo was isol<strong>at</strong>ed, <strong>the</strong>y r,rere assigned to <strong>the</strong> seven linkage groups. Trans-<br />

locaËion testers were <strong>the</strong>n used to verifv <strong>the</strong> chromosome involved. Be-<br />

cause transloc<strong>at</strong>ions are incapable <strong>of</strong> identiiying <strong>the</strong> partícular chromo-<br />

some arm involved, karyotype analysis and linkage markers were used for<br />

this purpose.<br />

Identific<strong>at</strong>ion <strong>of</strong> <strong>the</strong> chromosome arm involved using linkage markers,<br />

though time consuming because <strong>of</strong> <strong>the</strong> need to calcul<strong>at</strong>e Fr-segreg<strong>at</strong>ion<br />

r<strong>at</strong>ios, T^ras employed to compare <strong>the</strong> genetic map wiËh <strong>the</strong> cytological one.<br />

DespiLe <strong>the</strong> fact th<strong>at</strong> barley chromosomes are metacenLrics, it was inescap-<br />

able to identify telocentrics by karyotype analysis ín order to establish<br />

<strong>the</strong>ir cytological idenfity. These identities r{ere <strong>the</strong>n compared Ëo <strong>the</strong><br />

existing linlcage maps using linlcage markers. Because mapping <strong>of</strong> barley<br />

T2B


chromosomes<br />

cytological<br />

coincide wi th <strong>the</strong> cytological map. In Lhe present study, however, <strong>the</strong><br />

cytological<br />

tical maps<br />

and disomic<br />

respectively "<br />

was done by means <strong>of</strong> gcnetical methods without <strong>the</strong> aid <strong>of</strong><br />

studies, <strong>the</strong>re is no assurance th<strong>at</strong> any <strong>of</strong> <strong>the</strong>se maps will<br />

maps <strong>of</strong> chromosomes 1 and 2 agreed with <strong>the</strong> existins eêne-<br />

since genes on short arms <strong>of</strong> <strong>the</strong>se chromosomes gave trisomic<br />

Fr-r<strong>at</strong>ios when <strong>the</strong>y vrere crossed Ëo telotrisomics 15 and 2L,<br />

In <strong>the</strong> present study, telocentrics 35 and 3L exhibited rel<strong>at</strong>ive<br />

lengths <strong>of</strong> 6.24 and 8,29% and arm r<strong>at</strong>io <strong>of</strong> 0.75 compared to 6.8, 7"39%<br />

and 0.93 <strong>of</strong> <strong>the</strong> standard karyotype published by Burnham and Hagberg in<br />

L956. The arm r<strong>at</strong>io observed in this m<strong>at</strong>erial is very similar Lo th<strong>at</strong><br />

reporLed for chromosome-4 in <strong>the</strong> standard. Also, it should be pointed<br />

out th<strong>at</strong> karyotype analysÍs <strong>of</strong> trisomic-4 did noË give conclusive evi-<br />

dence as to <strong>the</strong> shape <strong>of</strong> <strong>the</strong> extra chromosome (Tsuchiya, 1960, and yu,<br />

1968). However, iË is prem<strong>at</strong>ure to conclude wheËher chromosome-3 in<br />

<strong>the</strong> present m<strong>at</strong>erial carried a structural change or it is in fact <strong>the</strong><br />

same chromosome previously associ<strong>at</strong>ed with linkage group 4. Ano<strong>the</strong>r<br />

asPect <strong>of</strong> chromosome-3 is th<strong>at</strong> contrary to previous reports (Robertson,<br />

r97r) its genetic map should be reversed, i.e., those genes which appear<br />

on t.he short arm are in fact on long and vice-versa.<br />

The cytological identific<strong>at</strong>ion <strong>of</strong> telotrisomics 55 and 5L using a<br />

karyotype analysis did not agree with <strong>the</strong> genetical assignment. l,Ihen<br />

both telotrisomics r¡/ere crossed to |ttrdrr, a gene loc<strong>at</strong>ed on <strong>the</strong> short<br />

I29


arm <strong>of</strong> chromosome-5 (Robertson, I97L), <strong>the</strong> Lelotrisomíc for Ëhe short<br />

arm gave a disomic r<strong>at</strong>io while th<strong>at</strong>. for <strong>the</strong> long exhibited a trisomic<br />

r<strong>at</strong>io. Since telocentric 53 is <strong>the</strong> shortest <strong>of</strong> <strong>the</strong> twelve non-s<strong>at</strong>ellited<br />

telocentrics, moreover since <strong>the</strong> difference in length between 55 and 5L<br />

is clear cut (arm r<strong>at</strong>io S/L = .77), it was concluded th<strong>at</strong> <strong>the</strong> exist ing<br />

linkage map <strong>of</strong> chromosome 5 is reversed to th<strong>at</strong> previously reported for<br />

this chromosome. Recently, TsuchÍ-ya (I972a) arrived <strong>at</strong> <strong>the</strong> same conclu-<br />

sion by studying a ltaryotype analysis <strong>of</strong> a telotrisomic identified as<br />

5L by Fedak (1969).<br />

Telotrisomic 4L ruas identified in som<strong>at</strong>ic cells but vras not crossed<br />

to genetic markers. Tsuchiya (I972b) reported th<strong>at</strong> a telotrisomíc 45<br />

(as identified by crosses to geneLic markers) exhibited many characteris-<br />

t,ics similar to <strong>the</strong> primary trisomic rrRobusttr. From his description it<br />

seems th<strong>at</strong> this telocentric is <strong>the</strong> same chromosome arm identified in<br />

thís study as 4L. Cert.ain conclusions are not possíble since he did not<br />

<strong>at</strong>LempË a karyotype analysis as r,¡as done in <strong>the</strong> present study.<br />

The three telotrisomics <strong>of</strong> chromosomes 6 and 7 were identified on<br />

<strong>the</strong> basis <strong>of</strong> presence or absence <strong>of</strong> <strong>the</strong> s<strong>at</strong>ellite in som<strong>at</strong>ic cells.<br />

Thus no comparisons between cytological and genetical maps \Á/ere done on<br />

<strong>the</strong>se particular chromosomes.<br />

The phenotypic effect.s <strong>of</strong> <strong>the</strong> presence <strong>of</strong> an additional single<br />

chromosome arm \ùere studied in eleven telotrisomics. It was clear th<strong>at</strong><br />

long arm telotrisomics manifested similar effects, but <strong>of</strong> lesser magni-<br />

tude, Lo <strong>the</strong>ir rel<strong>at</strong>ecl trisomics. The short. arm telotrisomics vrere<br />

r30


índistinguishable in most cases from normal diploids. However, <strong>the</strong> un-<br />

disturbed growth and high fertility compared to trisomics, is a gre<strong>at</strong><br />

advantage <strong>of</strong> telotrisomics over <strong>the</strong>ir parental trisomics. This was also<br />

achieved in tom<strong>at</strong>o (Ktrush and Rick, f968) in which certain telotrisomics<br />

resembled <strong>the</strong>ir trisomic parents <strong>at</strong> Ëhe same Eime being highly vigorous<br />

and fertile.<br />

D<strong>at</strong>a on meiotic behavior <strong>of</strong> <strong>the</strong> present telotrisomics agree with<br />

previous reports by Tsuchiya (1969,<br />

TomaÉo telocentrics exhibited a much<br />

L967) and Fedak (1969) on barley"<br />

lower frequencíes <strong>of</strong> chromosome<br />

associ<strong>at</strong>ion (Ãve. 47%) <strong>at</strong> diakinesis compared to 82% in <strong>the</strong> present<br />

study" Since 23.4A <strong>of</strong> PMCts contained a univalent aË diakinesis, elimi-<br />

n<strong>at</strong>ion <strong>of</strong> telocentrics as micronuclei <strong>at</strong> <strong>the</strong> tetrad stage occurred as<br />

expected in about one fourth <strong>of</strong> <strong>the</strong> observed quarteËs. When Ëhe fre-<br />

quency <strong>of</strong> meiocytes with micronuclei was subtracted from <strong>the</strong> maxímum 50%<br />

about 38"8% <strong>of</strong> <strong>the</strong> total number <strong>of</strong> viable gametes \^rere expected to carry<br />

<strong>the</strong> exËra Ëelocentríc. This is in close agreement with <strong>the</strong> observed<br />

transmissËion frequencies in selfed progenies since <strong>the</strong> extra t.elocenLric<br />

ú¡as apparenËly not transmitted through <strong>the</strong> pollen.<br />

' One <strong>of</strong> <strong>the</strong> conspicuous observ<strong>at</strong>ions is Ëhe erraEic behavior <strong>of</strong> Eelo-<br />

centric 65, <strong>the</strong> main nucleolar organizing chromosome"<br />

half <strong>of</strong> PMC's (63.4%) <strong>of</strong> this EeloËrisomic contained a<br />

nesis " SubsequenËly, iË<br />

nuclei in 68.7% o1. cells<br />

misdivided in 50% <strong>of</strong> cells <strong>at</strong><br />

More than one<br />

univalent <strong>at</strong> diaki-<br />

131<br />

A- and formed microl<br />

observed <strong>at</strong> <strong>the</strong> quartet stage. The presence <strong>of</strong>


an inversion on this telocentric may explain its failure in pairlng,<br />

<strong>the</strong>refore <strong>the</strong> aberrent. behavior observed. Although Powell and Nilan<br />

(1968) reported <strong>the</strong> presence <strong>of</strong> one or tr¿o minute inversíons in cv.<br />

OLC-21, <strong>the</strong>re is no evidence th<strong>at</strong> any <strong>of</strong> <strong>the</strong>se inversions existed in<br />

chromosome 6. On <strong>the</strong> o<strong>the</strong>r hand, Fedak (1969) studying a telotrisomic<br />

65, isol<strong>at</strong>ed from Ërisomic 6 <strong>of</strong> (Herta x Wong) trisomic series, oberved<br />

a similar trend to th<strong>at</strong> reported in <strong>the</strong> present study. In his m<strong>at</strong>erial,<br />

<strong>the</strong> frequencies <strong>of</strong> cells with a unívalent <strong>at</strong> diakinesis, Mr, dividíng<br />

telo <strong>at</strong> A-, cells with laggards <strong>at</strong> T- and quartets rvíth micronuclei rvere<br />

T'r'<br />

64.9, 78.6, 11.3, 25.4 and 23.3%, respectively, compared to 63.4, 67.3,<br />

50.0, 19.4 and 68.7% in <strong>the</strong> present m<strong>at</strong>erial. However, <strong>the</strong> transmission<br />

<strong>of</strong> <strong>the</strong> extra telocentric v¡as rel<strong>at</strong>ively 1ow (9.9%) in his m<strong>at</strong>erial com-<br />

pared to L6.7% ín <strong>the</strong> present study, considering th<strong>at</strong> elimin<strong>at</strong>ion <strong>of</strong> Lhe<br />

exËra telocentric as mícronuclei occurred in only 23.3% <strong>of</strong> quartets in<br />

his m<strong>at</strong>erial . It is clear th<strong>at</strong> comparable frequencies \,{ere observed in<br />

both m<strong>at</strong>erials <strong>at</strong> early sËages <strong>of</strong> meiosis and transmissíon. O<strong>the</strong>rwise<br />

Fedakrs maLerial exhibited a very 1ow frequency <strong>of</strong> quartets with micro-<br />

nuclei compared to <strong>the</strong> present m<strong>at</strong>erial "<br />

Comparisons between <strong>the</strong> behavior <strong>of</strong> both teloËrisomics <strong>of</strong> chromo-<br />

some 6 sho'¿ed th<strong>at</strong> <strong>the</strong> non-s<strong>at</strong>ellited arm exhibiËed regular behavior<br />

similar to o<strong>the</strong>r telocentrics. The abnormal behavior <strong>of</strong> <strong>the</strong> short arm<br />

may be <strong>at</strong>tríbutable to <strong>the</strong> presence <strong>of</strong> <strong>the</strong> secondary constriction.<br />

Sybenga (1965) found th<strong>at</strong> <strong>the</strong> r<strong>at</strong>io (L/S) <strong>of</strong> ttcrossing-over potentíalsrt<br />

<strong>of</strong> <strong>the</strong> t\n/o arms <strong>of</strong> <strong>the</strong> saLellite chromosome <strong>of</strong> rye vr'as approxim<strong>at</strong>ely 2.0<br />

I32


which is large for a submedian chromosome. He explained such devi<strong>at</strong>ion<br />

Ëo a reduced efficiency <strong>of</strong> pairing in <strong>the</strong> region <strong>of</strong> <strong>the</strong> nucleolus, esPe-<br />

cially when three nucleoli are present before <strong>the</strong>ir fusion. In species<br />

in ¡vhich pairing is initi<strong>at</strong>ed <strong>at</strong> distal ends, such as barley (Kasha and<br />

Burnham, 1965), inhibition <strong>of</strong> pairing <strong>at</strong> a certain locus will result in<br />

<strong>the</strong> failure <strong>of</strong> paíring <strong>at</strong> distal segments. In <strong>the</strong> case <strong>of</strong> <strong>the</strong> s<strong>at</strong>ellited<br />

telocentric, a chiasma is formed betrveen <strong>the</strong> centromere and <strong>the</strong> nucleolus.<br />

Consequently, <strong>the</strong> trivalent will be reduced to a bivalent * a unívalent<br />

telocentric in <strong>the</strong> absence <strong>of</strong> a chiasma <strong>at</strong> <strong>the</strong> s<strong>at</strong>ellite regíon. Because<br />

<strong>of</strong> <strong>the</strong> increasing use <strong>of</strong> telocentrics in chromosome mapping, it is <strong>of</strong><br />

Ínterest to study <strong>the</strong> effect <strong>of</strong> <strong>the</strong> secondary constriction on crossing-<br />

over since ín rnany cases <strong>the</strong>y carry economically irnportant genes.<br />

CorrelaËion analysis for arm length and behavior <strong>at</strong> meiosis was in<br />

agreement with Einset (1943) findings thaË long chromosomes have a gre<strong>at</strong>er<br />

chance <strong>of</strong> pairing and forming chiasm<strong>at</strong>.a so th<strong>at</strong> chromosomes <strong>of</strong> a tri-<br />

valent are held intact. Subsequently, <strong>the</strong>y may be transmiËted <strong>at</strong> higher<br />

frequencies than shorter chromosomes. The highly positive correl<strong>at</strong>ion<br />

between univalent.s <strong>at</strong> M, and micronuclei <strong>at</strong> <strong>the</strong> tetrad stage suggest<br />

tha¡ <strong>the</strong> l<strong>at</strong>er stage may be suitable for screening for meiot.ic stability.<br />

Also, <strong>the</strong> neg<strong>at</strong>ive correl<strong>at</strong>ion between pollen viability and rneiotic<br />

behavior indic<strong>at</strong>ed <strong>the</strong> importance <strong>of</strong> <strong>the</strong> effect <strong>of</strong> genetic make-up <strong>of</strong><br />

pollen on its viability.<br />

Ilhen using telocentrics for chromosome mapping, <strong>at</strong>tention should be<br />

paid to <strong>the</strong> possible arm shift in telotrisomics. Thus, ít seems essential<br />

133


to use morphological<br />

The isol<strong>at</strong>ion <strong>of</strong><br />

markers on each line to cietect such events.<br />

accessorv chromosomes seems to rel<strong>at</strong>.e to <strong>the</strong> vast<br />

popul<strong>at</strong>ion examined in this scudy. There is no doubt th<strong>at</strong> accessories<br />

arise from <strong>the</strong> normal chromosomes regardless <strong>of</strong> whe<strong>the</strong>r <strong>the</strong>ir occurrence<br />

is an ancient or recent trait. Accessory chromosomes are identified on<br />

rhe basis <strong>of</strong> specific characters not known for normal chromosomes such<br />

as som<strong>at</strong>ic elimin<strong>at</strong>ion, non-homology and irregular behavior <strong>at</strong> meiosis"<br />

Certain events such as misdivision <strong>of</strong> <strong>the</strong> extra-chromosome and <strong>the</strong> pre-<br />

sence <strong>of</strong> inversions may also have acceler<strong>at</strong>ed <strong>the</strong> dífferenti<strong>at</strong>ion <strong>of</strong><br />

<strong>the</strong>se chromosomes. The fact th<strong>at</strong> accessories involve a miscellaneous<br />

group <strong>of</strong> chromosomes makes it diffícult to compare barley accessories<br />

with those in any certain species "<br />

However, it was possible to identify<br />

and characterize <strong>the</strong>se chromosomes in both som<strong>at</strong>ic and pollen moLher<br />

cells. However, fur<strong>the</strong>r investig<strong>at</strong>ions are needed to substanti<strong>at</strong>e <strong>the</strong><br />

present results and to elucid<strong>at</strong>e <strong>the</strong> role <strong>of</strong> accessory<br />

single plants and popul<strong>at</strong>ions <strong>of</strong> barley.<br />

chromosomes on<br />

1 L/,


. BIBLIOGRAPHY<br />

Arnason, T. J. 1966. The effect <strong>of</strong> varying some LreaLment conditíons on<br />

<strong>the</strong> frequency <strong>of</strong> RIS induced mut<strong>at</strong>ions in barley. Bly. Nervsletter<br />

10: 20.<br />

, L. M. El-Sadek, and J. L. Minocha. 1966. Bffect <strong>of</strong> vari<strong>at</strong>ion<br />

<strong>of</strong> tre<strong>at</strong>ment methods on mut<strong>at</strong>.ion frequency ín barley tre<strong>at</strong>ed<br />

with some mon<strong>of</strong>unctional alkyl<strong>at</strong>ing agents. Can. J. Genet. Cytol"<br />

B: 746-755.<br />

Auerbach, C. L967. The chemical production <strong>of</strong> mut<strong>at</strong>ions. Science 158:<br />

LL4T.LL47 .<br />

Ayonadu, U. V., and H. Rees. 1968. The regul<strong>at</strong>ion <strong>of</strong> mitosis by B-chromosomes<br />

in rye. Exptl. Cell Res, 52: 284-290"<br />

Barlow, P. I^i., and C. G. Vosa. L970. The effect <strong>of</strong> supernumerary chromosomes<br />

on meiosis in Pushkinia libanotica (Libiaceae). Chromosoma<br />

30: 344-355.<br />

B<strong>at</strong>taglia, E. L964. Cytogenetics <strong>of</strong> B-chromosomes. Caryología 17: 245'<br />

299 "<br />

Bennet, M. D., and R. A. Finch. I97L. Dur<strong>at</strong>ion <strong>of</strong> Meiosis in barley.<br />

Genet,. Res. L7: 209-2L4.<br />

Bentzer, 8., R. V. Bothmer, L. Engstrand, M. Gustafsson, and S. Snogerup.<br />

L97I" Some sources <strong>of</strong> errors in <strong>the</strong> determin<strong>at</strong>ion <strong>of</strong> arm r<strong>at</strong>ios<br />

<strong>of</strong> chromosomes . Bot. Notiser 123: 519-551.<br />

Blakeslee, A. F., and A. C. Avery. 1938. Fifteen year breeding records<br />

<strong>of</strong>. 2ntl types in D<strong>at</strong>ura stramonium. Co-oper<strong>at</strong>ion in research,<br />

Carnegie Inst. llash. Publ. 501: 315-351.<br />

Bosmark, N. O. L954. On accessory chromosomes in Festuca pr<strong>at</strong>ensis. IV.<br />

The inheritance <strong>of</strong> <strong>the</strong> standard type <strong>of</strong> accessory chromosomes.<br />

Hereditas 40: 425-437 .<br />

Brewbaker, J. L., and G" C" Emery. L96I. Pollen radiobotany. Rad. Bot.<br />

1: 101 -154<br />

Brown, M. S. 1958. The division <strong>of</strong> univalent chromosomes in Gossypium.<br />

Am. J. Bot. 45: 24-32"<br />

Brown, f,J. V., and B" M. Bcrtke. L969. Text book <strong>of</strong> cytology" The C. V.<br />

Mosby Company, SË. Louis. pp. 376-38L,<br />

135


Burnham, C. R. 1962" Discussions in cyt.ogenetics. Burgess Publ. Co",<br />

Minneapolis, Minn.<br />

Burns, J.4., and D. V. Gerstel. L969. Consequence <strong>of</strong> spontaneous<br />

breakage <strong>of</strong> heterochromaËin chromosome segments in Nicotiana<br />

hybríds. Genetics 63: 427 -439 "<br />

Carlson, W. R. 1969. Factors affecting preferential fertiliz<strong>at</strong>ion in<br />

1970. Nondisjunction and isochromosome form<strong>at</strong>ion ín <strong>the</strong><br />

B*hromosomes <strong>of</strong> maize. Chromosoma 3O: 356-365.<br />

casperssor, T., S. Farber, G" E. Foley, J. Kudynorvski, E. J. Modest, E.<br />

Simonsson, U. I,tragh, and L. Zech. T967 . Chemical differenti<strong>at</strong>ion<br />

along <strong>the</strong> metaphase chromosomes. Exptl. Cell Res. 48: 4I9-222"<br />

r36<br />

, L. Zech, E. J. Modest, G. E. Foley, U. Wagh, and E' Símonsson'<br />

Lg69. DNA-binding fluorochromes for <strong>the</strong> study <strong>of</strong> <strong>the</strong> organiz<strong>at</strong>ion<br />

<strong>of</strong> metaphase nucleus. Exptl. Cell. Res. 58: L4I-T52"<br />

Conger, B. V., R. A. Nilan, and C. F. Konzak. 1968. PosË-irradi<strong>at</strong>ion<br />

oxygen sensitivity <strong>of</strong> barley seeds varying slightly in w<strong>at</strong>er contenË.<br />

Rad" Bot" 8: 31-36.<br />

DtAm<strong>at</strong>o, F. 1950. Studio st<strong>at</strong>istico delle <strong>at</strong>tivita mut.agena dellrs acridine<br />

deriv<strong>at</strong>i. Caryologia 2: 229-297 "<br />

Darlington, C. D" lg3g. Mísdivision and <strong>the</strong> genetics <strong>of</strong> <strong>the</strong> centromere.<br />

J. Genet " 37 z 322-364"<br />

, and P. T. Thomas, L94I. Morbid mitosis and <strong>the</strong> activity<br />

<strong>of</strong> inert chromosomes in sorghum. Proc. Royal Soc., London B 130:<br />

L27 -L50.<br />

Driscoll, C. J. L966. Gene centromere distances in whe<strong>at</strong> by aneuploid F,<br />

observ<strong>at</strong>ions. GeneLics 54: 131-135.<br />

Ehrenberg, L., A. Gustafsson, and U. Lundquist. 196I. Viable mutants induced<br />

in barley try ionizLng racli<strong>at</strong>ion and chemical mutagens "<br />

Flereditas 47: 243-282.<br />

Einset, J. Lg43. Chromosome lengLh in rel<strong>at</strong>ion Lo transmission frequency<br />

<strong>of</strong>. maíze trisomics. Genetics 28: 349'364'<br />

Bkberg, I. Lg6g. Different tyPes <strong>of</strong> sterility induced in barley by Lonizing<br />

ra


Endrlzzl, J.8., ancl R. J. Kohel. 1966. Use <strong>of</strong> telosomics in mappíng<br />

three chromosomes in cotton. Genetics 54: 535-550'<br />

Brilcsson, G. 1965, The size <strong>of</strong>. <strong>the</strong> mut<strong>at</strong>ed sector in barley. Heredítas<br />

53: 307'326.<br />

Eslick, R. G., and R. T. Ramage. 1969. Primary trisomics in varieËy<br />

Betzes. BlY. Newsletter 12: L7 .<br />

Evans, H. J. Lg63. Chromosome aberr<strong>at</strong>ions and targets <strong>the</strong>ory. In Radía-<br />

Eion-induced chromosome aberr<strong>at</strong>ions. ed. S. l{olff. B-40.<br />

and A. H. Sparrow. 1961. Nuclear factors affecting radiosensitivity.<br />

II. Dependence on nuclear and chromosome structure<br />

and organiz<strong>at</strong>íon. Brookhaven Symposium in Biology" L4: IOL-LZ7 "<br />

Faberge, A. C " L957. A method for tre<strong>at</strong>ing v¡he<strong>at</strong> pollen with ultraviolet<br />

radi<strong>at</strong>ion for genetic experiments. Genetics 42: 618-622,<br />

Fedak, G. 1969. The behavior and utility <strong>of</strong> some monotelotrisomics in<br />

Hordeum. Ph . D. Thes is , Univ. <strong>of</strong> <strong>Manitoba</strong>, Inlinnipeg '<br />

, and S. B. Helgason. 1970. The cytogenetics <strong>of</strong> a ditelotetrasomic<br />

line ín barley. can. J. Genet. Cytol. XII: 553-559.<br />

, T. Tsuchiya, and S. B. Helgason. I97L. Cytogenetics <strong>of</strong> some<br />

monotelotrisomics in barley. can. J. GeneË. Cytol . XII: 7 60-<br />

I lu.<br />

Ford, J. H. Ig7L. Segreg<strong>at</strong>ion <strong>of</strong> univalents on mini spindles. N<strong>at</strong>ure<br />

229: 570-57L"<br />

Froese-GertzerL, E. 8., C" F. Konzak, R. J. Foster, and R. A. Ni1an. 1964,<br />

The effect <strong>of</strong> ethyle methanesulfon<strong>at</strong>e on <strong>the</strong> growth response,<br />

chromosome structure and mut<strong>at</strong>ion r<strong>at</strong>e in barley. Rad. Bot. 4:<br />

6L-69.<br />

Frost, S. Lg56" The cytological behavior <strong>of</strong> accessory chromosomes in<br />

Centaurea scabiosa. Hereditas 42: 4L5-43L"<br />

1959. The cyËological behavior and mode <strong>of</strong> transmission <strong>of</strong><br />

accessory chromosomes in Plantaga scrraria. Ibid. 452 Lgl-zLO.<br />

1960" A new mechanism for numerical increase <strong>of</strong> accessory<br />

chromosomes in Crepis Pelnonrca. Ibid, 46: 497 -503'<br />

L37


Frost, S. 1962. The ínheritance <strong>of</strong> accessory chromosomes ín plants especially<br />

in Ranunculus acris and Phleum noclosum. Ibid. 4Bz 667arl<br />

o/ o.<br />

L969. The meiotic behavior <strong>of</strong> accessory chromosomes in Ranunculus<br />

acris. llereditas 62: 42I-425"<br />

, and G. Ising. Cytogenetics <strong>of</strong> fragment chromosomes in barley.<br />

Hereditas 52: 176-180.<br />

, and G. ö"t"rgr"., . Lgsg. Crepis pannonica and Crepis conyzaefolia<br />

- two more species having accessory chromosomes. Ibid.<br />

45: 2LI-2L4 "<br />

Frydenberg, O. L963. Some <strong>the</strong>oritical Aspects <strong>of</strong> <strong>the</strong> scoring <strong>of</strong> mutaËion<br />

frequencies after mutagenic tre<strong>at</strong>ment <strong>of</strong> barley seeds. Rad.<br />

BoL. 3: 135-145.<br />

Gaul, H., J. Grunewaldt, and C. U. Hesemann. L968. Vari<strong>at</strong>ion <strong>of</strong> character<br />

expression <strong>of</strong> barley mutants in a changed genetic background.<br />

In Mut<strong>at</strong>ions in plant breeding. I.A.E.A. Vienna, 77-95"<br />

Gelin, O. 1956. The meiotic response to <strong>the</strong> mitotic disturbances in xrayed<br />

barley. Agri. Hortigue Genetica L4: L07-126"<br />

Gertsel, D. V., and J. A. Burns. 1967 . Phenotypic and chromosomal abnormalities<br />

associ<strong>at</strong>ed with introduction <strong>of</strong> heterochrom<strong>at</strong>in from<br />

Nicotiana otophora in N. tabacum. Genetics 56: 483-502"<br />

Goodspeed, T. H., and P. Avery. L939. Trisomics and o<strong>the</strong>r types in<br />

Nicotiana svlvestris. J. GeneË. 38: 381-458.<br />

Grant, C. J., and H. Heslot. L966. Chromosome aberr<strong>at</strong>ions and <strong>the</strong> chromosome<br />

cycle in Vicia faba, after tre<strong>at</strong>menLs with nitroso methyl<br />

urthane and nitroso ethyle urthane. Chromosomes Today 1: 118t27<br />

"<br />

Grell, R. F. L965. chromosome pairíng, crossing over and segreg<strong>at</strong>ion in<br />

Drosophilla melanogaster. N<strong>at</strong>l. Cancer Institute Monograph 18:<br />

2L5-242.<br />

Hagberg, 4., G. Persson and A. I^liberg. L963. Induced mut<strong>at</strong>ions in Ëhe<br />

improvenrent <strong>of</strong> self -pollin<strong>at</strong>ed crops. pp. 105 -L24. In l^1. W.<br />

Mayen (ed.). Recent plant breeding research. I^liley, N. y.<br />

Almquist & I^Iilcsell, Uppsala, Stockholm.<br />

138


Hakonsson, A. 1957 , Meiosis and pollen mitosis in rye plant.s with<br />

many accessory chromosomes . I-iereditas 43: 603_620 "<br />

Heiner, R. C. L963. cf. R. A. Nilan et al. 1963" Chemical mutagens<br />

in barley. Bly. Genetics I. Proc. I Int. Blv. Genetics<br />

Symposium. Wageningen. pp. 49 "<br />

Hermelin, T. 1970. Effects <strong>of</strong> acute gamna irradi<strong>at</strong>ion on growing barley<br />

plots. Herediras 65: 203-226.<br />

Hermsen, J. L970. Basic inform<strong>at</strong>ion for <strong>the</strong> use <strong>of</strong> primary trísomics<br />

ín genetícs and breeding research. Euphytica 19: I25-L40"<br />

Heslot, H. 1968. Mut<strong>at</strong>ion research done in L967 on barley, roses and<br />

marígolds. In Mut<strong>at</strong>ion in plant breeding. II. I.A.E.A.<br />

Vienna: 153-159"<br />

Huskíns, C. L., and J. D. Spier. 1934. The segreg<strong>at</strong>ion <strong>of</strong> heteromorphic<br />

homologous chromosomes in pollen-mo<strong>the</strong>r cells <strong>of</strong> Triticum<br />

vulgare. CytoLogia 5: 269-277.<br />

Jackson, R. C. 1960. Supernumerary chromosomes in Haplo "-ppus gracilis.<br />

Evolution 14: 135.<br />

Jacobsen, P. L966. Demarc<strong>at</strong>ion <strong>of</strong> mutant-carrying regions in barley<br />

plants after ethyle methanesulfon<strong>at</strong>e seed treaËment. Rad. Bot.<br />

6: 3r3 -338.<br />

Johansen, D. A. 1940. Plant microtechnique. McGraw-Hil1, Inc., N.Y.<br />

and London. pp. 24"<br />

Jones, K., and C. Colden. 1968. The telocentric complement <strong>of</strong> Tradescantia<br />

micrantha. Chromo soma 24: 135 -L57 ,<br />

Kamanoi, M., and B. C. Jenkins . 1962. Trisomics in contrnon rye, Secale<br />

cearale, L. Seiken ZLlno 13: ll8-123.<br />

Kasha, K. J., and C. R. Burnham. 1965. The loc<strong>at</strong>ion <strong>of</strong> interchange<br />

breakpoint ín barley. II. Chromosome pairíng and <strong>the</strong> intercross<br />

method. Can. J. Genet. Cytol . 7: 620-632 "<br />

Kawai, T., and T. Inoshita. L965. Effects <strong>of</strong>. $-ray irradi<strong>at</strong>ion on<br />

growing rice plants. I. Irradi<strong>at</strong>ion <strong>at</strong> four main developmental<br />

stages. Rad. Bot. 5: 233-255.<br />

Kilrlman, B. A. L962, The production <strong>of</strong> chrom<strong>at</strong>id aberr<strong>at</strong>ions by 5fluorodeoxyuridine<br />

alone and in combin<strong>at</strong>ion with x-rays and<br />

- B-ethoxycaffiene. Caryologia 15: 26L-277.<br />

139


Kihlman, B. A. 1962. Different effects <strong>of</strong> 5-fluorodeoxyuridine and 5bromodeoxyuridíne<br />

on <strong>the</strong> frequencies <strong>of</strong> chrom<strong>at</strong>id aberr<strong>at</strong>íons<br />

obtained in Vicia faba after irradi<strong>at</strong>ion with x-rays. Exptl.<br />

Cell Res . 27 z 604-607 .<br />

L963. Aberr<strong>at</strong>ions induced bv radiomimetic compounds<br />

and <strong>the</strong>ir rel<strong>at</strong>ions to radi<strong>at</strong>ion induced aberr<strong>at</strong>ions. In<br />

Radi<strong>at</strong>ion induced chro.mosome aberr<strong>at</strong>ions . ed. S "<br />

L22.<br />

tr^lolf f . 100-<br />

1966. Deoxvribonucleotide syn<strong>the</strong>sis and chromosome<br />

breakage. Chromosomes Today I: 108-117.<br />

ICrush, G. S., and C. M. Ríck. 1968. Tom<strong>at</strong>o t.elocentrics: Origin, identific<strong>at</strong>ion<br />

and use in linkage mapping. Cytologia 33: L37 -148.<br />

Kimber, G., and E. R. Sears. 1968. Nomencl<strong>at</strong>ure for <strong>the</strong> description <strong>of</strong><br />

aneuploids in <strong>the</strong> Triticinae. III Int. Inlhe<strong>at</strong> Genet. Symposium.<br />

Canberra. 468-469.<br />

Kivi, E" J. L964. Some aspects <strong>of</strong> sterility <strong>of</strong> radi<strong>at</strong>ion on <strong>the</strong> bas is<br />

<strong>of</strong> a ganrna and x-rays tre<strong>at</strong>ed barley . In The use <strong>of</strong> induced<br />

mut<strong>at</strong>ions in plant breeding. F.A.O. I.A.E.A. Rome. Pergamon<br />

Press, 151-158.<br />

Konzak, C F., R. A. Nilan, J. I^/agner, and R. J. Foster. 1964. Bffícienc<br />

chemical mutagensis. In The use <strong>of</strong> induced mut<strong>at</strong>ions in plant<br />

breeding, F.A.O. I.A.E.A" Rome. Pergamon Press, 49-70"<br />

I(ref t, J .<br />

1969. Cytological studies on an inversion in barley. Hereditas<br />

62: 14-25.<br />

Kumar, S., and A. T. N<strong>at</strong>arajan. L967. Some irradi<strong>at</strong>ion factors affecting<br />

<strong>the</strong> induction <strong>of</strong> chromosome aberr<strong>at</strong>ions by íonízíng radi<strong>at</strong>ion.<br />

Control <strong>of</strong> rejoining <strong>at</strong> sites. Mut<strong>at</strong>ion Res. 6: 601-<br />

604 "<br />

Kusanagi, A. L966. R<strong>at</strong>e <strong>of</strong> DNA syn<strong>the</strong>tic period <strong>of</strong> <strong>the</strong> barley chromosomes<br />

. Chromosoma 20: L25-L32 "<br />

Lea, D. E., and D. G. C<strong>at</strong>cheside. L942. The mechanism <strong>of</strong> <strong>the</strong> induction<br />

by radi<strong>at</strong>ion <strong>of</strong> chromosome aberr<strong>at</strong>ions in Tradescantia. J.<br />

Genet " 44: 2L6-245.<br />

140


Leroy, P. P. 1968. Bffects genetiques compares des rayons gamma et des<br />

neutrons sur lcs graines Drorge. Rad. Bot. B: 239-244"<br />

Li, N., and R. c. Jackson" 196r. cytology <strong>of</strong> supernumerary chromosomes<br />

in ]laplopappus spinulosus ssp" cotula. A. J. Bot" 4B: 419-<br />

426 "<br />

T,ima-De-Faria, A. 1958. Recent advances in <strong>the</strong> strrrlv <strong>of</strong> rhe l


Mikaelsen, K., G. Ahnstrom and I{. c. Li. Lg6B. Genetic effecËs <strong>of</strong><br />

alkyl<strong>at</strong>ing agents in barley. Hereditas 59: 353-374.<br />

Moseman, J. G., and L. Smith. L954. Gene loc<strong>at</strong>ion by three-point tesL<br />

and telocentric half-chromosome fragment in Triticum monococcum.<br />

Agr. J" 46: L20-L24.<br />

MouÈschen-Dahmen, J" and M. Moutschen-Dahmen" 1958. Ltact,ion du myleran<br />

sur les chromosomes chez Hordeum saLivum et chez Vicia faba<br />

Hereditas 44: 415-446.<br />

Moutschen-Dahmen, M., J" Moutschen, and L. Ehrenberg. L966a" On post<br />

irradiaËion modificaËion <strong>of</strong> biological effects <strong>of</strong> neutrons. I.<br />

Effect <strong>of</strong> myleran on chromosomal aberraËions in neutron irradiaËed<br />

seeds" Rad" Bot" 6: 251-264.<br />

. L966b. On post<br />

meiotic modífic<strong>at</strong>ion <strong>of</strong> biological effects <strong>of</strong> neutrons" 1I.<br />

EffecÈ <strong>of</strong> 5-fluorodeoxyuridine on chromosomal aberraËions in<br />

neutron irradi<strong>at</strong>ed seeds. Rad" Bot. 6: 425-431"<br />

Muntzing, A" 1930. Outlines to a geneËic monograph <strong>of</strong> <strong>the</strong> genus Galeopsis<br />

with special reference to <strong>the</strong> naËure and inheriËance <strong>of</strong><br />

partial sterÍlity. Hereditas 13: 185-341"<br />

L946" Cytological studies <strong>of</strong> exËra fragment chromosomes in<br />

rye. III. The mechanism <strong>of</strong> non-disjunction <strong>at</strong> po11en mitosis.<br />

Hereditas 32: 97 -II9<br />

1949" Accessory chromosomes in Secale and Poa" Proc" <strong>of</strong><br />

Eighth Int. Cong" <strong>of</strong> Genetics, Hereditas suppl. VoI." 402-41I"<br />

L954 "<br />

'i,42<br />

CytogeneËics <strong>of</strong> accessory chromosomes (B-Chromosomes) .<br />

Caryologia suppl " 6, 282-30L"<br />

L957. Frequency <strong>of</strong> accessory chromosomes ín rye strains<br />

from Iran and Korea" Hereditas 43:" 682-685"<br />

1966a. Some recent d<strong>at</strong>a on accessorv chromosomes in Secale<br />

and Poa. Chromosomes Today I. 7-14"<br />

1966b. Accessory chromosomes. 8u11. Bot. Soc. Bengal,<br />

20(1), 1-15, 1966.<br />

L967 "<br />

Some main results from investigaLions <strong>of</strong> accessory<br />

chromosomes . Hereditas 57: 432-438,


N<strong>at</strong>arajan, A. T., and G. Ahnstrom. 1969. lleterchrom<strong>at</strong>in and chromosome<br />

aberr<strong>at</strong>ions. Chromosoma 28: 48-6I.<br />

Nawashin, S. G. 1916. Sur quelque indices de ltorganisaLion interne des<br />

chromosomes" Timifaseffs. Festschrift: LBS-274.<br />

Nilan, R. A. L964. The cytology and genetics <strong>of</strong> barley. Monographic<br />

supplement No. 3. Washington St<strong>at</strong>e Univ. Vol. 32" No. l.<br />

, C. F. Konzak, R. E. Heiner, and E. Froeze-Gertzen. 1963.<br />

Chemical mutagenesis in barley. Bly. Genetics I" Proc. I<br />

Int. Bly. Symposium. Wageningen. pp. 35-54"<br />

, J. trfagner, and R. J. Foster. L964. Effectiveness<br />

and efficiency <strong>of</strong> radi<strong>at</strong>ions for inducing genetic and cytogenetic<br />

changes. In The use <strong>of</strong> induced mut<strong>at</strong>ions in plant<br />

breeding. F"A.O. I.A.E.A. Rome. Pergamon Press " 7I-89 "<br />

Lion and utiliz<strong>at</strong>íon <strong>of</strong> inversions and mut<strong>at</strong>ions in barley, In<br />

Mut<strong>at</strong>ions in plant breeding. I.A.E.A., Vienna, 193-203.<br />

Nishimura, Y., and H. Kurakami. 1952. Mut<strong>at</strong>íons in rice induced by x-rays"<br />

-,J.P.Powe11,B.V.Conger,andC.E.Muir.1968.Introduc-<br />

Jap" J. Pl. Breeding 2: 65-7I"<br />

Notani, N. K., B. K. Gaur, R. K. Joshi, and B. y. Bh<strong>at</strong>t. 1968. Effect <strong>of</strong><br />

moisture stabiliz<strong>at</strong>ion period on radiosensitivity <strong>of</strong> barley<br />

seeds " Rad. Bot. B: 375-380"<br />

Nur, U. L969. Harmful B-chromosomes in a mealy bug: addÍtional evidence.<br />

Chromosoma 2Bt 280-290.<br />

Nybom, N., A. Gustafsson, I. Granhall, and L. Ehrenberg. L956. The genetic<br />

effects <strong>of</strong> chronic gamma irradi<strong>at</strong>ion in barley. Hereditas 42:<br />

74-83 "<br />

Ostergren, G. 1957. Heterochrom<strong>at</strong>ic B-chromosomes in Anthoxanthum. Herediras<br />

33: 26L-296.<br />

Píeritz, W. J. 1966. Untersuchungen llber ¿ie ursachen der aneuploidie bei<br />

amphidiploiden I^Ieizen-Roggen-Bastarden und uber die funktionsfahigkeit<br />

inhrer mannlíchen und weiblichen gameten. Sonderdruck<br />

aus, Zeitchrift fur pf.Lanzenzuchtung l: 27-69"<br />

Poehlman, J. M. L959, Breeding field crops. Henry Hold and Company, Inc.,<br />

N. Y. pp. I56-L59.<br />

Powell, J. 8., and R. A. Nilan. f968. Evidence for spontaneous inversions<br />

- ín cultiv<strong>at</strong>cd barley. Crop Sci. B: 114-116.<br />

143


Praalcen, R" 1959. Induced mut<strong>at</strong>ions. Euphytica B: 270-322.<br />

Pritchard, B. 1968" A cytogenetic study <strong>of</strong> supernumerary chromosomes<br />

in }laplopappus gracilis. can. J. Genet. cytol. r0: 928-936.<br />

Put.eyevsicy, 8., and D. Zohary. 1970. Behavior and transmission <strong>of</strong> supernumerary<br />

chromosomes in diploid Dactylis glomer<strong>at</strong>a. Chromosoma<br />

32: 135 -141 .<br />

Ramage, R. T. 1955. The trisomics <strong>of</strong> barley. ph.D. Thesis. univ. <strong>of</strong><br />

Minnesota.<br />

, C. R. Burnham, and A. Hagberg. 196I. A sun¡nary <strong>of</strong> transloc<strong>at</strong>ion<br />

studies in barley. Crop Sci. l: Zl7-279.<br />

Randolf, L. F. L928. Types <strong>of</strong> supernumerary chromosomes in maize. An<strong>at</strong>.<br />

Rec. 41: I02.<br />

I94L. Genetic characLeristics <strong>of</strong> <strong>the</strong> B-chromosomes in<br />

maLze. Genetics 76: 608-631.<br />

Reeves, A. F. , G. s. I(hush, and c. M" Rick. 1968. segreg<strong>at</strong>ion and recombin<strong>at</strong>,ion<br />

in trisomics: a reconsider<strong>at</strong>ion. Can. J, <strong>of</strong><br />

Genet. Cytol. 10: 937-940"<br />

Reinbergs, E., K" N" Kao, B. L. Harvey, and L. H. Shebeski. 1970.<br />

Meiotic behavior and preferential pairing in autotetraploid<br />

barley. Crop Sci" 10: 569-57L.<br />

Reverl, s. H. 1963. chrom<strong>at</strong>ic aberraËions, <strong>the</strong> generari-ze <strong>the</strong>ory. rn<br />

Radi<strong>at</strong>ion induced chromosome aberr<strong>at</strong>ions. ed. s. h7olff. 4r-72"<br />

Rhoades, M. M. L936. A cytological study <strong>of</strong> a chromosome fragmenË in<br />

mai.ze. Genetics 21: 49I-502.<br />

L940. Studies <strong>of</strong> a telocenLric chromosome in maize v¡ith<br />

reference to <strong>the</strong> stability <strong>of</strong> its centromere. Genetics 25:<br />

483-520.<br />

and H. Vilkomerson. L942" On t.he anaphase movement <strong>of</strong><br />

chromosones. Genetics 2B: 433-436.<br />

Robertson, D. W. L97L. Recent inform<strong>at</strong>ion <strong>of</strong> linkage and chromosome<br />

rnapping. Bly. Generics II. 22I-242. proc. II Int. Blv.<br />

Genet" Symposium, I,Iashington St.<strong>at</strong>e Univ.<br />

Rutishauser, 4., and L. F. LaCour. 1956. Spontaneous chromosome breakage<br />

in hybrid endosperms. Chromosoma B: 3L7-340"<br />

t44


Rutislrauser, 4., and E. Rothlisberger. 1966. Boosting mechanism <strong>of</strong><br />

B-chromosomes in Crepis capillaris. Chro¡nosomes Today I.<br />

2B-30.<br />

Sandfaer, I. L970" High frequency <strong>of</strong> spontaneous triploids in barley.<br />

Hereditas 64: 131-134.<br />

Sarvel1a, P. 1959. The behavior <strong>of</strong> accessory chromosomes in tetraploid<br />

,<br />

rye. Hereditas 45: 505-583.<br />

S<strong>at</strong>o, M., and H" Gaul. 1967. Effects <strong>of</strong> EMS on fertility <strong>of</strong> barley.<br />

Rad. BoË. 7: 7-L5,<br />

Sears, E. R" L952 . l"fisdivision <strong>of</strong> univalents in conrnon whe<strong>at</strong> . Chromosoma<br />

4: 535-550.<br />

f963. Chromosome mapping lvith <strong>the</strong> aid <strong>of</strong> telocentrics.<br />

II Int . trlhe<strong>at</strong> Genet . Sympos ium. 370-3Bl .<br />

and I^I . G. Leogering. L968. Mapping <strong>of</strong> stem-rust genes<br />

Sr9 and Sr17 <strong>of</strong> whe<strong>at</strong>. Crop Sci. 8: 37I-373"<br />

and L. I^I. Briggle " 1969. Mapping <strong>the</strong> gene Pml for resis-<br />

Lance to Erysiphe graminis f. sp. tritici on chromosome 7A <strong>of</strong><br />

whe<strong>at</strong>. Crop Sci. 9: 96-97 .<br />

Sigurbjornsson, 8., and A. Micke. 1969. Progress in mut<strong>at</strong>is¡ þroarlino<br />

In Induced mut<strong>at</strong>ions in plants . I.A.E.A. 673-698 "<br />

Singh, M. P., C. S. Kalia, H. K. Jain. L970. Chromosomal aberr<strong>at</strong>ions<br />

induced in barley by L.S.D. Science 169: 49L-492"<br />

Sinha, R. P. L967. Recombin<strong>at</strong>ion effect <strong>of</strong> certain chemicals applied<br />

to <strong>the</strong> genus Hordeum. Ph. D. Thesis, Univ. <strong>of</strong> ManiLoba,<br />

I,Iinnipeg.<br />

Smith, L. 1947. Chromosomal fragments in diploid whe<strong>at</strong>. and <strong>the</strong>ir usefulness<br />

in genetic studies. Genetics 32: f05.<br />

1947. A fragmented chromosome in T. monococcum and iËs use<br />

in studies <strong>of</strong> inheritance. Genetics 32: 431"<br />

Somers, C. E., and T. C. Hsu. 1962. Chromosomal damage induced by<br />

hydroxylamine in mamalian celIs. P.N.A.S., U.S.A. 4Bz 937-<br />

943.<br />

L45


Sparrow, A. H., and ll. J. Ilvans. 1961. Nuclear factors affecting radiosensitivity.<br />

I" The influence <strong>of</strong> nuclear size and strucrure,<br />

chromosome complement and DNA content. Brookhaven Symposium<br />

in Biology. L4: 76-100.<br />

Sparrow, A. H., and I{. R. Singleton. 1953. The use <strong>of</strong> radiocobalt as<br />

a source <strong>of</strong> gamma rays and some effects <strong>of</strong> choronic:'-rradí<strong>at</strong>ion<br />

on growing plants. Am. N<strong>at</strong>uralist 87: 29-48.<br />

Stadler, L. J. 1928. Mut<strong>at</strong>ions in barley induced by x-rays and radium.<br />

Science 68: 186-187.<br />

Steinitz-Sears, L. M. L966" Som<strong>at</strong>ic instability <strong>of</strong> telocentric chromosomes<br />

Ín whe<strong>at</strong> and <strong>the</strong> n<strong>at</strong>ure <strong>of</strong> <strong>the</strong> centromere" Genetics 54:<br />

24r-248.<br />

Steinitz-Sears, L. M., and E. R. Sears. 1963. Ultraviolet and x-ray<br />

induced chromosomal aberr<strong>at</strong>ions in rvhe<strong>at</strong>. Genetics 422 623-<br />

630.<br />

stoilov, M., G. Jansson, G. Eriksson, and L. Ehrenberg. 1966" GeneLical<br />

and physiological causes <strong>of</strong> <strong>the</strong> vari<strong>at</strong>ion <strong>of</strong> radiosensitivity<br />

in barley and maize. Rad" Bot" 6: 457-467 "<br />

SËrid, A. 1968. Stable telocentric chromosome formed by spontaneous<br />

misdivision in Nisella doerfleri. Bot. Notiser 121: I53-L64"<br />

1969. Vari<strong>at</strong>ion in <strong>the</strong> s<strong>at</strong>ellite chromosomes <strong>of</strong> Nigella<br />

doerfleri. BoË" Notiser 122: 9-19.<br />

Sybenga, J. 1965a. The quant<strong>at</strong>ive analysis <strong>of</strong> chromosome pairing and<br />

chiasma form<strong>at</strong>ion based on <strong>the</strong> rel<strong>at</strong>ive frequencies <strong>of</strong> M,<br />

configur<strong>at</strong>ions . I. Introduction: normal diploids.<br />

Genetica 36: 243-252.<br />

f965b. The quant<strong>at</strong>ive analysis <strong>of</strong> chromosome pairing and<br />

chiasma form<strong>at</strong>ion based on <strong>the</strong> rel<strong>at</strong>ive frequencies <strong>of</strong> M,<br />

configur<strong>at</strong>ions . II. Primary Lrisomics. Ibid . 36: 339-350.<br />

1965c. The quant<strong>at</strong>ive analysis <strong>of</strong> chromosome pairing and<br />

chiasma form<strong>at</strong>ion based on <strong>the</strong> rel<strong>at</strong>ive frequencies <strong>of</strong> 1"1,<br />

configur<strong>at</strong>ions. III. Telocentric trisomics . Ibid . 36:<br />

351-361.<br />

L966 " The zygomere as hypo<strong>the</strong>tical unit, <strong>of</strong> chromosome<br />

pairing iniLi<strong>at</strong>ion. Ibid. 37: 187-198.<br />

L46


Tai' I{. 1970. Multipolar meiosis ín diploid crested wl-re<strong>at</strong>grass Agropyron<br />

crist<strong>at</strong>um. Am. J. Botany 57: 1160-1169.<br />

Taylor, J. ll. 1963. Radioiosotope studies on <strong>the</strong> structure <strong>of</strong> <strong>the</strong><br />

chromosome. In Radi<strong>at</strong>ion induced chromosomal aberr<strong>at</strong>ions.<br />

ed. S. I^lo1f f . L23-164.<br />

Taylor, J. H., w. F. Haut, and J. Jung. L962. Effects <strong>of</strong> fluorodeoxyuridine<br />

on DNA replic<strong>at</strong>ion, chromosome breakage and reunion.<br />

P.N.A,S., U.S.A. 48: 190-198.<br />

Tsuchiya, T. 1960. cytogenetic studies <strong>of</strong> trisomics in barley. Jap.<br />

J. Bot. L7 : L77 -ZL3 "<br />

L961. SËudies on <strong>the</strong> trisomics in barley. II. Cvtologicar<br />

identific<strong>at</strong>ion <strong>of</strong> <strong>the</strong> extra chromosome in crosses with<br />

Burnhamfs transloc<strong>at</strong>ion testers. Jap. J" GeneË. 36.. 444-45I"<br />

L967. Cytogenetics <strong>of</strong> a telosomic trisomic type, Bush"<br />

Bly. Newsletter 10: 13"<br />

1969. SË<strong>at</strong>us <strong>of</strong> studies <strong>of</strong> primary trisomics and o<strong>the</strong>r<br />

aneuploids in barley. Genetica 40: 2L6-232,<br />

L969. Cytogenetics <strong>of</strong> a nehr type <strong>of</strong> barley with 16 chromosomes.<br />

Chromosoma 26: 130-139.<br />

I97La. Establishing telosomic trisomics in barley. Bly.<br />

Genet" II: 7z-BL. Proc. II Int. Blv. Genet. Svmposíum.<br />

T97Ib. Characteristics <strong>of</strong> telotrisomics and o<strong>the</strong>r aneuploids<br />

in barley. Bly. Genet. Nervsletter 1: 58-60"<br />

L97lc. Male transmission <strong>of</strong> telocentric chromosomes in<br />

four telotrisomics. Ibid. 1: 60.<br />

L97Ld. Telocentric shift in telotrisomic barlev. Ibid.<br />

1: 63-64.<br />

I972a. Karyotype analysis <strong>of</strong> telotrisomic type for telocentric<br />

54. Ibid. 2: 90-91.<br />

L972b. Cytogenetics <strong>of</strong> telotrisomics in barley. Ibid.<br />

2:, 93 -98 .<br />

ItIaIlace, A. T. 1964. Mr"rtagenic agents; <strong>the</strong>ir r-rse for plant ancl animal<br />

improvement. Agríc. Sci. Rev.2: l-8.<br />

t47


tr^lalLers, M. S. 1970. Evidence on <strong>the</strong> Lime <strong>of</strong> chromosome pairing from<br />

<strong>the</strong> preleptotene spiral stage in Lilium t'Cr<strong>of</strong>t'r"<br />

þ¡gl!]gIg11<br />

Chromosoma 29: 375-418"<br />

White, lul. J. D. 1950. The chromosomes. Methuen & Co., London"<br />

Yu, R. 1968. Deriv<strong>at</strong>ion and study <strong>of</strong> primary trisomics <strong>of</strong> contrnon<br />

barley, Hordeum vulgare L. Ph. D. Thesis, Univ. <strong>of</strong> <strong>Manitoba</strong>,<br />

llinnipeg.<br />

Zecevic, L., and D. Paunovic" L969. The effecL <strong>of</strong> B-chromosomes on<br />

chiasma frequency in wild popul<strong>at</strong>ions <strong>of</strong> ry.e. Chromosoma 27:<br />

198-200.<br />

l4B

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!