26.12.2013 Views

Universlty of Manitoba, ln Partîal Fulfiìlment - MSpace at the ...

Universlty of Manitoba, ln Partîal Fulfiìlment - MSpace at the ...

Universlty of Manitoba, ln Partîal Fulfiìlment - MSpace at the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

E}4BRYOGENES IS OF EXPERIHENTALLY INDUCED NEURAL TUBE<br />

DEFECTS IN THE CH I CK EMBRYO<br />

A Thes i s<br />

Presented to <strong>the</strong> Faculty <strong>of</strong> Gradu<strong>at</strong>e Studies,<br />

<strong>Universlty</strong> <strong>of</strong> <strong>Manitoba</strong>, <strong>ln</strong> <strong>Partîal</strong> <strong>Fulfiìlment</strong><br />

. <strong>of</strong> <strong>the</strong> Requirements for <strong>the</strong> Degree <strong>of</strong><br />

Doctor <strong>of</strong> Ph i losophy<br />

by<br />

Ra I ph Aì I an l,lann<br />

September '1977


EMBRYOGENESiS OF FXPERII¡ENTALLY INDUCED NEURAL TUBE<br />

DEFECTS iN THE CHTCK EMBRYO<br />

BY<br />

RALPH ALLAN MANN<br />

A dissert<strong>at</strong>ion submitted to <strong>the</strong> Facutty <strong>of</strong> Gradu<strong>at</strong>e Studies <strong>of</strong><br />

ttre University <strong>of</strong> Manitobl in partial fulfillment <strong>of</strong> <strong>the</strong> requirements<br />

<strong>of</strong> <strong>the</strong> degree <strong>of</strong><br />

DOCTOR 'OF PHILOSOPHY<br />

ð rgzg'<br />

Permissio¡¡ h¡s l¡eon grantctl to th(} LIBRARY OF Tllti UNIvUR'<br />

SITY OIr MANITOITA to lcnd or scll copies <strong>of</strong> tlìis dissert tiolì' to<br />

thc NATIONAL LIBRAIìY OIr CANADA to microli<strong>ln</strong>r this<br />

dissert<strong>at</strong>ion and to lend or sell copies <strong>of</strong> <strong>the</strong> film, and UNlvtjRSITY<br />

MICROFILMS to publish <strong>at</strong>¡ abstract <strong>of</strong> this dissert tion'<br />

The ¿uthor reserves o<strong>the</strong>r pu¡lic<strong>at</strong>ion ìights, und nei<strong>the</strong>r ttre<br />

dissert<strong>at</strong>ion nor extensivo extructs tionr it tnay be printed or otlìerwise<br />

reproduced without tho author's writtcn ¡rertltission'<br />

ffi<br />

\1<br />

K<br />

or a{Ai¡roBA ll<br />

\\<br />

\¡ansnrrsl<br />

-\>n-:#1,Éc_


MY PARENTS<br />

c.J.H.<br />

G. M.


. ACKNOl4lLEDGEMENTS<br />

l',lany peopie have given me <strong>ln</strong>valuable help <strong>ln</strong> carry<strong>ln</strong>g out <strong>the</strong><br />

work for this <strong>the</strong>sls. I would lîke to thank:<br />

Èis. l"larlene Stoddart, 1,1s. Susan pylypas an¿ Mr. David Gray for<br />

technlcal asslstance; lrs. Brenda Bell and Ms. Jean Hay for prepar<strong>at</strong>îon<br />

<strong>of</strong> <strong>the</strong> photographs; Mr. Glen Reld, Ms. Lauri Rlchardson and l,ls. Karen<br />

selcho for <strong>the</strong> l<strong>ln</strong>e illustr<strong>at</strong>îons; Mr. üralter Jones for construction <strong>of</strong><br />

equipment; Dr. l/.H. Tþurlbeck, 11r. l,layne Gal lagher and l,ls. El izabeth<br />

tJaskîewicz for <strong>the</strong> use <strong>of</strong> <strong>the</strong> Lei tz lmage Analyser; Dr. K,L. Moore,<br />

Dr. F.R. Tucker, Dr. R.K. Greenlaw, Dr. J.B. Hyde, Dr. K. Nagy,<br />

Dr. A.1.1. llaI lbank, Dr. D.V. Cormack, Dr. Helen B<strong>at</strong>tle, Dr. A.F. Holoway,<br />

and Dr. J. Hoogstr<strong>at</strong>en for advlce and assistance; t4r. Tim Ful lerton<br />

for st<strong>at</strong>istical consult<strong>at</strong>fon; and Hs. Frances Kas,per for typíng <strong>the</strong><br />

mênuscr¡pt.<br />

Above all I am gr<strong>at</strong>eful to Dr. J.C. Haworth and <strong>the</strong> Research<br />

Committee <strong>of</strong> <strong>the</strong> Chíldrenrs Centre for contÍnued financial supportrand<br />

Dr' T.v.N' Persaud for his unfairing encouragement and enthusrasm through<br />

so many vl ciss i tudes.


lt<br />

Congenital malformêtlons <strong>of</strong> <strong>the</strong> ðentral nervous system may be open<br />

or closed. 0pen defects involve <strong>the</strong> braîn or <strong>the</strong> spinal cord, or both.<br />

<strong>ln</strong>vestîg<strong>at</strong>ion <strong>of</strong> <strong>the</strong> etiology <strong>of</strong> <strong>the</strong>se defects involves epìdemiological<br />

stud¡es <strong>of</strong> <strong>the</strong>ir distribution in human populaiions and embryological<br />

studies <strong>of</strong> <strong>the</strong>ir development in experimental animals and human abortuses.<br />

For this investig<strong>at</strong>ion <strong>the</strong> chick embryo was ¡nìtíâl ly selected,<br />

because <strong>of</strong> its accessibil ¡ty to tre<strong>at</strong>ment and observ<strong>at</strong>ion through a<br />

wíndow in <strong>the</strong> overìyìng shell; <strong>the</strong> use <strong>of</strong> an 4n o7)o system al lowed<br />

culture <strong>of</strong> <strong>the</strong> embryos to 12 days <strong>of</strong> incub<strong>at</strong>ion. <strong>ln</strong> addition, early<br />

neurogenesÌs in avian and human embryos is very similar, wÌth development<br />

<strong>of</strong> <strong>the</strong> spÌnal cord from neural pl<strong>at</strong>e and tai l-bud m<strong>at</strong>erials, which<br />

fuse in an overlap zone.<br />

Prel iminary experiments, in which early chîcl< enrb ryos were exposed<br />

to several known ter<strong>at</strong>ogenic agents through a window în <strong>the</strong> shell, revealed<br />

th<strong>at</strong> windowing alone was highly ter<strong>at</strong>ogenic. By using a standard<br />

windowing technic <strong>at</strong> 26 - l0 hours <strong>of</strong> incub<strong>at</strong>ion a range <strong>of</strong> neurôl ånd<br />

non-neural mal form<strong>at</strong>ions were obtained.<br />

The morial ity and malform<strong>at</strong>ions produced by windowîng <strong>at</strong> l4 hours<br />

<strong>of</strong> incub<strong>at</strong>¡on were gre<strong>at</strong>er than those <strong>at</strong> 26 hours, but by lB houis <strong>the</strong><br />

ter<strong>at</strong>ogenic effect was less pronounced. 0bl íter<strong>at</strong>¡on <strong>of</strong> <strong>the</strong> introduced<br />

air space,by <strong>the</strong> addition <strong>of</strong> albumen or F 12 medîum or by reexpansion <strong>of</strong><br />

<strong>the</strong> air celì, almost abol ished <strong>the</strong> ter<strong>at</strong>ogenic effect <strong>of</strong> wíndowing if<br />

performed immedi<strong>at</strong>ely.<br />

Skeletal staining <strong>of</strong> 11 - 12 day embryos showed th<strong>at</strong> vertebral<br />

lesions increased in severîty in a cranio-caudal sequence, spina bifida occuì ta


ii¡<br />

occurred in <strong>the</strong> cerV¡cal and upper thoracic regions¡spina bifida manifesta<br />

(associ<strong>at</strong>ed wiih opeá cord defects) from <strong>the</strong> lower thoracic to sacral<br />

regÎons, whlle vertebral deletionswere almost confirmed to <strong>the</strong> caudal '<br />

r.eg ion ,<br />

Examîn<strong>at</strong>ion <strong>of</strong> a closely-spaced series <strong>of</strong> embryos recovered wíthin<br />

42 hours <strong>of</strong> window<strong>ln</strong>g revealed open braîn and cord defects. These<br />

occurred <strong>at</strong> every Stage after <strong>the</strong> expected closure <strong>of</strong> <strong>the</strong> anterior<br />

neuropore and rhomboid sinus, suggesting a process <strong>of</strong> non-closure.<br />

Fur<strong>the</strong>rmore, <strong>ln</strong>cípient non-closure <strong>of</strong> <strong>the</strong> spinal cord could be predicted ..<br />

from <strong>the</strong> abnormal triangular shape <strong>of</strong> <strong>the</strong> rhomboíd sinus.<br />

Serial sectioning <strong>of</strong> selected early.embryos revealed two types<br />

<strong>of</strong> open cord defects. HyeloschisÌs arose by eversÌon <strong>of</strong> <strong>the</strong> neural<br />

folds <strong>at</strong> <strong>the</strong> rhomboid sinus, and formed regular defects w¡th separ<strong>at</strong>ion<br />

between <strong>the</strong> neural pl<strong>at</strong>e and taÌl-bud sources <strong>of</strong> neural tissue. The<br />

development <strong>of</strong> myeloschisis was associ<strong>at</strong>ed wi th local separ<strong>at</strong>ion <strong>of</strong><br />

<strong>the</strong> notochord from <strong>the</strong> open neural tissue, but not with trovergrowthr¡<br />

<strong>of</strong> neural tíssue.<br />

<strong>ln</strong> myelodysplasia neural pl<strong>at</strong>e m<strong>at</strong>erial was absent from <strong>the</strong> êrea<br />

<strong>of</strong> <strong>the</strong> open defect, and <strong>the</strong> spinal cord u¡as derived from tail-bud<br />

m<strong>at</strong>erial êlone. Myelodysplasia was characterized by a local reduction<br />

in neural volume, and assocî<strong>at</strong>ed wîth cystic and hemorrhagic changes<br />

in mesoderm and reductìon in <strong>the</strong> volume <strong>of</strong> adjacent somites.


TABLE OF CONTENTS<br />

SECT ION<br />

PAGE<br />

1 INTRODUCT ION 1<br />

1 .1 TERATOLOGY 2<br />

I . 2 CL IN I CAL IHPORTANCE OF B I RTH DEFEETS 2<br />

1.3 INCIDENCE OF BIRTH DEFECTS 3<br />

1.4 coNGENITAL ¡IALFORI'IATIONS OF<br />

THE CENTRAL NERVOUS SYSTEM 3<br />

1.5 SPINA BIFIDA 4<br />

1.5.t Spina Bîfida Occul ta .and<br />

Cystica 5<br />

1 .5 .2 l4en i ngoce I e 5<br />

1 .5 .3 l,lye I omen i ngoce I e 5<br />

1.5.4 l4yelocystocele :<br />

6<br />

1.5,5 Anterlor Spina Bifida 7<br />

1.6 CRANIUI,IBIFIDUM 7<br />

1.6..l Anencephaly, Exencephaly 7<br />

1.6.2 Heningocele,Encephalomenìngocele. . . . I<br />

. 1.6.3 Cranium Bifídum Occul tum. B<br />

1 .7 DYSRAPH IC STATES 8<br />

1.8 PRoGNoSts. 9.<br />

2 REVIEI.I OF LITERATURE 12<br />

2,1 ETIOLOGY OF THE DYSRAPHIC STATES 13<br />

2.2 EPIDEI.1I0LoGICAL STUDIES. 13<br />

2.2.1 <strong>ln</strong>cidence . 13<br />

2.2.2 . Temporal Fl uctu<strong>at</strong> ions<br />

2.2,3 Seasonal Vari<strong>at</strong>,îon, 15


2.2.4 Sex R<strong>at</strong>io 15<br />

2.2.5 Geograph i c Dlstributîon 15<br />

2.2.6 Ethnlc Distrîbution. . 16<br />

2.2t7 Famlly Studles ' . 16<br />

2,2.9 l4<strong>at</strong>ernal Age and Parì ty .. 17<br />

2.2.g soc io-Econornic St<strong>at</strong>us. 17<br />

2.2.10 Urban i z<strong>at</strong>lon 17<br />

2.2.11 Concluslons 17<br />

t2<br />

EI4BRYOLOGICAL STUDIES 18<br />

2.3.1 Human Specìmens. . . 18<br />

2.3.2 Exper¡mental Oysraphism in Animals 19<br />

2.3.3 Heredi tary Dysraphîsm. 21<br />

2-l+<br />

HYPOTHESES OF THE EMBRYOGENESIS<br />

OF DYSRAPHISM 22<br />

2,\.1 Slmple Non-Closure . . :-. 22<br />

2.\,2 Overgrowth and Non-Closure ' . . 22<br />

2,4.3 Rupture <strong>of</strong> <strong>the</strong> Closed.Neural Tube 22<br />

2.1!,\ Abnormal Braîn Growth . , .23<br />

2.,\,5 Abnormal Spínal Flexion . . . 23<br />

2.\.6 Primary Vascular Defects 73<br />

2,4.7 Amniotlc Adhes ions 24<br />

2.4.8 Abnormal Development <strong>of</strong> <strong>the</strong> Tail-Bud 2\<br />

2.4.9 Trauma 2\<br />

2.4. t 0 <strong>ln</strong>fection 25<br />

2.4.11.. Summary 25


},I.ATE R I ALS<br />

3.1 THE CHICK EI4BRYO,<br />

3.2 SoURCE 0F ËûGS AND tNCUBATi0N<br />

3.3 oTHER EqUlPl4ENr<br />

GENERAL ¡4ETHODS<br />

4.I SELECTION OF EGGS<br />

4.f.1<br />

d.1.2<br />

<strong>ln</strong>cub<strong>at</strong> î on<br />

candl ing<br />

\.2 TECHNIc OF OPENING AND cLoSIIIG EGGS<br />

\,2.1 Prel lminary Exper¡ments<br />

\.2.2 Standard Techn i c<br />

4.2.3 Exami n<strong>at</strong>ion <strong>of</strong> Embryos<br />

\.2.4 Closure <strong>of</strong> Eggs<br />

4.2.5 Effect <strong>of</strong> Embryonic Age.<br />

4.3 RE rNcuBATr0N AFTER r,JiNDor,/rNc .<br />

4.+ TERAToGENtc EFFECT 0F opENtNG THE SHELL<br />

4.4.1 Vibr<strong>at</strong>ion<br />

4,4.2 Parafi lm and Plasticine . . . .<br />

4;4.3 Art if ic ia I Air Space<br />

\.5 BACTERIOLOGIcAL CULTURE<br />

4.6 EXAI'iINATION: OF EARLY EI'IBRYOS<br />

4.6.1 Fix<strong>at</strong>ion and Staging<br />

\.6.2 Problems in Examin<strong>at</strong>îon. . . .<br />

4.7 EXAt.lINATION OF OLDER EMBRYOS<br />

\,7,1 Five Day Emb rYos<br />

\,7,2 Eleven and Twelve DaY EmbrYos<br />

z6<br />

27<br />

27<br />

2B<br />

32<br />

33<br />

33<br />

33<br />

12<br />

33<br />

34<br />

3\<br />

35<br />

35<br />

3B<br />

38<br />

3B<br />

38<br />

\5<br />

\t<br />

45<br />

\5<br />

\6<br />

t+6<br />

\6<br />

46


4.8 H ISTOLOûI CAL EXAMINATION<br />

4.8.<br />

1<br />

Ser ia l Sectloning<br />

4.8.2 Group ing <strong>of</strong> Embryos<br />

4.8.3 Subd ivi s ion ¡nro Regions<br />

4.8.4 Histo¡ogical Descriptions<br />

\.9 ANALYSIS oF NEURAL CLOSURE<br />

4.lo Rruelysts oF NEURAL voLuMEs<br />

RESULTS OF TERATOLOGICAL PROCEDURES<br />

5.1 TERATOGENIC EFFECT OF t.,INDOWING<br />

5.2 HALFOR}IATIONS PRODUCED BY I,'INDOWING<br />

5.3 INVEST¡GATION OF EFFECT OF WINDOI^'ING<br />

5.3.1 Vibr<strong>at</strong>îon <strong>of</strong> Unopened Eggs<br />

5.3,2 Parafi lm and Plasticine Alone<br />

5.3.3 0bl iter<strong>at</strong>ion <strong>of</strong> <strong>ln</strong>troduced Air Space . . .<br />

5.\ BACTERIOLOGICAL CULTURE<br />

RESULTS OF EMBRYOLOGICAL STUDIES<br />

6.1 EI"IBRYoGENESIS oF OPEN NEURAL DEFECTS<br />

L-l<br />

47<br />

47<br />

4B<br />

5\<br />

54<br />

55<br />

56<br />

57<br />

65<br />

69<br />

69<br />

'72<br />

75<br />

92<br />

95<br />

96<br />

6.1.1 Embryoníc Sízes <strong>at</strong> 26 Hours<br />

6.1.2 Mortal i ty wi th Varying periods<br />

<strong>of</strong> <strong>ln</strong>cub<strong>at</strong>ion after l/ïndowing -102<br />

6.1.3 Neural Closure and Neural Defects lO9<br />

6.1.4 Development <strong>of</strong> open Neural Defects ll4<br />

6.1.5 Dlstribution <strong>of</strong> 0pen Cord Defects 144<br />

6.2 SPINAL LEVELS OF oPEN CORD DEFECTS IN 12-DAY E}4BRYos 154<br />

6.3 DESCRIPTIoN oF HISTOI.OGIcAL APPEARANCES 165<br />

6.3.1 Stage l0 controt Embryos 165<br />

96


vt I I<br />

6.3.2 Stage 10 Experímentel Embryos 166<br />

6.3.3 Stage Il-12 Control Embryos 167<br />

63.\ Stage 1l-12 Experimental Embryos 168<br />

6.3.5 Stage 1l-16 Control Embryos 171<br />

6.3.6 Stege f3-16 Experìmental. Embryos 172<br />

6.3.7 Stage 1/-20 Contro¡ Embryos 175<br />

6.3.8 Stage t7-20 Experimental Embryos 176<br />

. 6.3.9 Review <strong>of</strong> Hîstologïcal Changes 180<br />

6.3.10 Sequentîal ll lustr<strong>at</strong>Îons 199<br />

6.4 DETAILED REVIE}¡ OF HISTOLOGIcAL FINDINGS. . 212<br />

6.5 col'lpARtsoN oF HtsroloctcAL FtÑDtNGs<br />

!úlTH APPEARANCE 0F I,,HOLE E}4BRY0S 253<br />

6.6 DEVELOPMENT OF THE RHOMBIC RoOF 262<br />

6.7 HtSToLoGIcAL CHANGES AssoctATED<br />

WITH NEURAL DEFECTS 276<br />

6.8 EXTENT OF THE OVERLAP ZONE . 302<br />

6.9 ANALYSIS OF NEURAL VOLUMES 318<br />

Dtscuss toN 340<br />

Animal |lodels 341<br />

lJindowing <strong>of</strong> Eggs 342<br />

open Neural Defects in Chick Embryos , 3\2<br />

Spinal Defects <strong>at</strong> 11-12 Days. . 3\3<br />

. Somíte and Vertebral Levels . 3\4<br />

Process ing Art i facts 3\6<br />

No rrna I Neurul<strong>at</strong>îon. 3\6<br />

l,lyeloschisis 347<br />

l,lye I odyspl as ia 3\B


tx<br />

Rhombic Ro<strong>of</strong> 3\9<br />

Notochord 349<br />

Som i rês 351<br />

Cystic Changes ...<br />

35tt<br />

Ectoderm 355<br />

Ta i l -B ud<br />

Overlap Zone 356<br />

Neura I Vol ume 357<br />

Neural l4itosis ... 355<br />

Hypo<strong>the</strong>ses <strong>of</strong> Human Dysraphîsm 359<br />

Slmple Non-C l os ure<br />

. Overgrowth and Non-Closure 361<br />

Closure and Rupture 362<br />

0<strong>the</strong>r Hypo<strong>the</strong>ses 363<br />

Spina Bifida occul ta .....-¡. 363<br />

' Chíck Embryo as a Hodel 365<br />

I'lechanisms <strong>of</strong> Neurul<strong>at</strong>ion . . . 365<br />

Neural <strong>ln</strong>ductîon .. 367<br />

Ce.l I De<strong>at</strong>h 369<br />

Regul<strong>at</strong>ive Ab¡ ¡ í ry 3'69<br />

'370<br />

. . Principles <strong>of</strong> Ter<strong>at</strong>ogenesis .<br />

Phys ical Ter<strong>at</strong>ogenic Agents 371<br />

Chenlcal Ter<strong>at</strong>ogen i c Agents 372<br />

Windowi¡g as a Ter<strong>at</strong>ogenlc Agent 373<br />

SUMHARY AND C0NCLUSI0NS . 375


9 APPENDTCES 378<br />

APPENDIX A .<br />

379<br />

1 Prepar<strong>at</strong>lon <strong>of</strong> Earìy Chick Embryos for<br />

APPENDIX B<br />

Ser ia I Sectioning<br />

Staining <strong>of</strong> Carti laginous Skeleton <strong>at</strong> ll-12 Days<br />

l0 B |BLI0GRAPHY 382


I NTRODUCT I ON


1.1 TERATOLOGY<br />

Birth defects have <strong>at</strong>tracted popular curîosity from <strong>the</strong> earlìest<br />

tlmes, and scientífic <strong>at</strong>tentìon more recently. Thei r study constitutes<br />

<strong>the</strong> specÌal ity <strong>of</strong> Ter<strong>at</strong>ology, whîch combines many dîscipl¡nes with¡n <strong>the</strong><br />

areas <strong>of</strong> Developmental Bíology and Cl inical l4edicine. Ter<strong>at</strong>ology originally<br />

implled <strong>the</strong> study <strong>of</strong> rmonstersr, but has now expanded to embrace <strong>the</strong><br />

whole fleld <strong>of</strong> structurâl and functional defects present <strong>at</strong> birth.<br />

Three degrees <strong>of</strong> structural abnormal í tíes may be defîned:<br />

a) \,ari<strong>at</strong>ions are slight devi<strong>at</strong>ions from <strong>the</strong> range <strong>of</strong> normal, such as<br />

<strong>the</strong> delayed appearance <strong>of</strong> an ossific<strong>at</strong>¡on centre.<br />

b) Anomalies are minor structural defects which may remain undetected<br />

and do not produce marked functionaì disability, Examples in <strong>the</strong> vertebral<br />

column are sacral iz<strong>at</strong>îon <strong>of</strong> a lumbar vertebra or a symptomless spina bifida<br />

occu I ta .<br />

c) Malform<strong>at</strong>ions are more extensive defects present <strong>at</strong> birth. They may<br />

be major, as in anencephaly (which ís uniformly f<strong>at</strong>al) or more mînor, as in<br />

<strong>the</strong> congenital fusíon <strong>of</strong> two vertebral bodies.<br />

1.2 CLtNICAL il'1PoRTANCE q!: BrRTH pEFECTS<br />

<strong>ln</strong> recent years congenital malform<strong>at</strong>ions have become increasingly<br />

important in cl inical prêctice. Appl ic<strong>at</strong>ion <strong>of</strong> <strong>the</strong> prînciples oi publ ic<br />

health and preventive medicîne, followed by <strong>the</strong> introductlon <strong>of</strong> antimicroblal<br />

êgents, have produced a steady decl ine in nrortality from acute<br />

infections. Thus a rel<strong>at</strong>lvely hîgher proportion <strong>of</strong> de<strong>at</strong>hs in înfancy and<br />

childhood are now <strong>at</strong>tributable to congenital nalform<strong>at</strong>ions. Horeover,


improvements in <strong>the</strong> quality <strong>of</strong> anten<strong>at</strong>al carg and in <strong>the</strong> tre<strong>at</strong>ment<br />

<strong>of</strong> certâ1n deformîtles after birth have produced an absolute increase<br />

<strong>ln</strong> <strong>the</strong> popul<strong>at</strong>ion <strong>of</strong> affected children.<br />

1.3 tNctpENcE oF B!¡I!_!!!!!I!<br />

There is an extensivc Iiter<strong>at</strong>ure on <strong>the</strong>'incidence <strong>of</strong> bi ¡-ih defects<br />

but <strong>the</strong> st<strong>at</strong>istics are subject to mâny sources <strong>of</strong> error, such as:<br />

a) <strong>the</strong> unknov<strong>ln</strong> r<strong>at</strong>e <strong>of</strong> pren<strong>at</strong>al loss<br />

b) incomplete d i agnos is<br />

c) under-reporting <strong>of</strong> defects<br />

d) vâri<strong>at</strong>ions în recordíng methods<br />

è) <strong>the</strong> preponderãnce <strong>of</strong> dâta from hospital series,<br />

<strong>ln</strong> addition, <strong>the</strong> figures are gre<strong>at</strong>ly êltered by <strong>the</strong> inclusîon or<br />

exclusìon <strong>of</strong> stillbirths (Keonedy, l!6/; Persaud , 1g7il. <strong>ln</strong> an intern<strong>at</strong>ional<br />

survey <strong>of</strong> two huridred and thirty-eight reports,covering twenty<br />

million b¡rths, congenital defects occurred ¡n one to five per cent <strong>of</strong><br />

líve births according to <strong>the</strong> cr¡teria used (Kennedy, 1!6/).<br />

one <strong>of</strong> <strong>the</strong> most meticulous investig<strong>at</strong>ions <strong>of</strong> <strong>the</strong> incidence <strong>of</strong><br />

bîrth defects by <strong>the</strong> World Heal th Organiz<strong>at</strong>ion has achieved a high degree<br />

<strong>of</strong> comparabil'ity between twenty-four centres in sixteen countries, by<br />

uniform recording methods and standardiz<strong>at</strong>ion <strong>of</strong> frequencies for,m<strong>at</strong>ernal<br />

age (Stevenson et al ., 1966).<br />

t.4 coNer¡!!rA!_lALroRr{nloHs or rú¡ cr¡lrRnl NeRvous sysreil<br />

Abnormal development <strong>of</strong> <strong>the</strong> central nervous system may produce a<br />

wide range <strong>of</strong> malform<strong>at</strong>ions <strong>of</strong> <strong>the</strong> bra<strong>ln</strong> and spinal cord. A simple<br />

class¡fic<strong>at</strong>ion <strong>of</strong> <strong>the</strong>se defects, however, ís difficult to achieve because


4<br />

<strong>of</strong> <strong>the</strong> complexity <strong>of</strong> normal development (t/arkany, 1971). Thus <strong>the</strong><br />

sp<strong>ln</strong>al coid may be asymmetrical, double (d¡plonyelìa), or even ôbsent<br />

(arnyeìia). These cord defects are col lectively known as myelodysplasias.<br />

The brain nay be enlarged (macrencephaly) or reduced în size<br />

(microcephaly) , or show more locallzed enclosed defects <strong>of</strong> <strong>the</strong> cerebel lum,<br />

corpus caìlosum, cerebral cortex (porencephaly) or <strong>the</strong> whole forebrain<br />

(arhinencephal.les). Dil<strong>at</strong>ion <strong>of</strong> <strong>the</strong> central canal <strong>of</strong> <strong>the</strong> cord or <strong>of</strong> <strong>the</strong><br />

bra<strong>ln</strong> ventrì cles consti tute hydromyel ia and hydrocepha ly respective'ly.<br />

Hydrocephaly, however, is not a single disease, but <strong>the</strong> end resul t <strong>of</strong> many.<br />

dlfferent and <strong>of</strong>ten unreì<strong>at</strong>ed processes.<br />

<strong>ln</strong> a r<strong>at</strong>her separ<strong>at</strong>e group <strong>of</strong> malform<strong>at</strong>ions neural tlssue is eî<strong>the</strong>r<br />

exposed or herní<strong>at</strong>ed. <strong>ln</strong>volvement <strong>of</strong> <strong>the</strong> spine produces spína bifida<br />

(<strong>of</strong> several distinct types), and involvement <strong>of</strong> <strong>the</strong> skull c¡-anium blfidum.<br />

<strong>ln</strong> some câses ân extensíve open lesion called craniorachischisis (fig. 2)<br />

involves both skull and spine, suggesting a close rel<strong>at</strong>ionship between<br />

<strong>the</strong> tv'ro defects.<br />

As a fur<strong>the</strong>r compl ic<strong>at</strong>ion spina bifida is very frequently accompanied<br />

by hydrocephalus (Fol tz and Shurtleff, 1972), usually in <strong>the</strong> presence<br />

<strong>of</strong> an Arnold ChíarÍ malform<strong>at</strong>ion (Russell and Donald, 1935) Emery and<br />

llacken z ie, 1971 ) .<br />

1.5 SPINA BIFIDA<br />

The tern spina bifida rvas ¡ntroduced by Nicolas Tulp (1652), and<br />

lrnplles a nidl<strong>ln</strong>e defect <strong>of</strong> <strong>the</strong> vertebral column.


5<br />

1.5.1 SÞlri¿i B_!ll i dê Occúl rå ând Cysr¡ca<br />

<strong>ln</strong> spina blfîda occulta <strong>the</strong>re ls no open neural lesion,but ro_<br />

en tgenog rans revda I a defect <strong>of</strong> or¡e or more spinous processes or raminae.<br />

The site <strong>of</strong> this bony defect may occasionar ry be marked by abrrormar ities<br />

<strong>of</strong> overlying skin, such as pigmented or. hairy p<strong>at</strong>ches. Though <strong>of</strong>ten<br />

undetected, spína bifida occulta is sometimes accompanied by symptoms<br />

suggesting ínvolvement <strong>of</strong> <strong>the</strong> spinal cord or cauda equina. This could be<br />

caused by ê tight filum terminale, fibrous bands, ¡ntr<strong>at</strong>hecal I ipomas,<br />

or frank myelodysplasia (¡ames and Lassman, ,|967). The symptomless and<br />

symptom<strong>at</strong>ic forms <strong>of</strong> spina bífida occulta may represent two distinct<br />

leslons, <strong>the</strong> former being prima,r.iry a skeretar defect and <strong>the</strong> r<strong>at</strong>ter<br />

secondary to cord or cauda equ¡na defects,<br />

By contrast, ân external ly visible defect is called a spina bifida<br />

manífesta, or apertâ, or cystica (if cystíc). Several types may be distínguished.<br />

I.5.2 Men!!rgoce I e<br />

A meningocele invorves defects <strong>of</strong> severar neurar arches wrth herní<strong>at</strong>ion<br />

<strong>of</strong> meninges but not <strong>of</strong> neural tissue, though <strong>the</strong> underlying cord may be<br />

dysplastíc. For this reason a meningocete cannot always be diagnosed<br />

w¡th certa¡nty, and may prove on explor<strong>at</strong>ion to be myelocele (Laurence,<br />

1964',).<br />

1,5.3. Myelomeningocele<br />

An open lesion consisting <strong>of</strong> neural tissue, accumul<strong>at</strong>ed fluld,<br />

abnormal vasular tíssue, and a variable amount <strong>of</strong> epi<strong>the</strong>l íumrwith <strong>the</strong><br />

loss <strong>of</strong> several neural arches is tradítionar ry calred a myeromeningocere<br />

(fig.3 ¡. However, it is now bel ieved th<strong>at</strong> <strong>the</strong> tesion origin<strong>at</strong>es as a


6<br />

fl<strong>at</strong>, exposed plaque <strong>of</strong> neural tissue (a m'¡,e¡6t"¡¡rts or neuroschlsls).<br />

<strong>ln</strong> most èases thls open plaque undergoes secondary changes. Accumul<strong>at</strong>ion<br />

<strong>of</strong> fluld (which elev<strong>at</strong>es and disrupts <strong>the</strong> plaque) leads to form<strong>at</strong>ion <strong>of</strong> a<br />

cyst which ís progressívely covered by squamous epi<strong>the</strong>l îum and scar<br />

tissue, suggesting ên ¡ncorrect diagnosis <strong>of</strong> ulcer<strong>at</strong>ing rmyelomeningocelet<br />

(Cameron, 1956). <strong>ln</strong> a few cases <strong>the</strong> exposed neural plaque is still<br />

evident <strong>at</strong> <strong>the</strong> tíme <strong>of</strong> birth.. Some authors, <strong>the</strong>refore, call any lesion<br />

with cord involvement a myelocele (Cameron, 1!!6; Laurence, 1964).<br />

Roentgenograms <strong>of</strong> a typical mye I omen i ngoce I e <strong>at</strong> birth show absence<br />

<strong>of</strong> spinous processes and reduction <strong>of</strong> <strong>the</strong> laminaeuextending from <strong>the</strong><br />

upper end <strong>of</strong> <strong>the</strong> lesíôn ¡nto <strong>the</strong> sacrum. The pedicles <strong>of</strong> affected<br />

vertebrae are splayed out i¡n an oval shape, with <strong>the</strong> distances between<br />

art¡culãr processes increasíng to a maximum <strong>at</strong> <strong>the</strong> centre <strong>of</strong> <strong>the</strong> lesion.<br />

The intervertebral disc spaces are reduced, and <strong>the</strong>re may be abnorr,ral<br />

verticaì bars between <strong>the</strong> l<strong>at</strong>eral masses <strong>of</strong> involved vertebrae (FiS.. 4).<br />

<strong>ln</strong> many myelomeningoceles <strong>the</strong> vertebrôl bodies are well formed,<br />

but some cases may show associ<strong>at</strong>ed skeletal defects such as:<br />

a) hemivertebrae with congenital scol ìosis<br />

b) anteríor. wedging with congenital kyphosîs<br />

c) partial or complete sacral agenesîs (Sharrard, l97l).<br />

1.5.4 Myeloqlllqqele<br />

A much rarer form <strong>of</strong> spina bifída cystica (representing ano<strong>the</strong>r<br />

form <strong>of</strong> myelocele) is <strong>the</strong> myelocystocele, ín which <strong>the</strong> leston contê<strong>ln</strong>s<br />

both meninges and dil<strong>at</strong>ed spinal cord, Thís is associ<strong>at</strong>ed with local<br />

enlargement <strong>of</strong> <strong>the</strong> centrai canal <strong>of</strong> <strong>the</strong> ¡ntact spìnal cord (hydromyelia),<br />

so thêt <strong>the</strong> sac is not traversed by spínal nerves.


7<br />

1.5.5 Anter ìor Spina _Bif idg<br />

F<strong>ln</strong>ally, defects <strong>of</strong> <strong>the</strong> vertebral bodies r<strong>at</strong>her than <strong>the</strong> neural<br />

arches may occur. These anterior spina blfidas appear to be <strong>of</strong> two<br />

dist<strong>ln</strong>ct types ;<br />

a) lsol<strong>at</strong>ed anter¡or meningoceles in <strong>the</strong> thgracic cr lumbar region<br />

are very <strong>of</strong>ten associ<strong>at</strong>ed w¡th cutaneous neur<strong>of</strong>ibrom<strong>at</strong>osis, and may be<br />

a complic<strong>at</strong>îon <strong>of</strong> von Reckr inghausenrs disease (ta viene and campber r,<br />

1958; Sammons and Thomas, '|959).<br />

b) <strong>ln</strong> ano<strong>the</strong>r group varying degrees <strong>of</strong> connection may occur between<br />

<strong>the</strong> gastro¡ntestinal tract or an enteric cyst,ând <strong>the</strong> spina.l cord or<br />

even overlying skin. These connect.ions pass through <strong>the</strong> anterior spina<br />

blfida, which may be accompanied by dupl ic<strong>at</strong>íon óf <strong>the</strong> notochord or even<br />

<strong>of</strong> <strong>the</strong> spinal cord (Bremer, 1952; Fal lon et el., 1954).<br />

<strong>ln</strong> some cases <strong>the</strong> neuro-ente¡¡c connectícn and.anterior spina<br />

bífida are combîned with an open posterior spina bíf¡da (Saunders, 1943).<br />

1.6 CRANIUM BIFIDUM<br />

The term cranium bifidum may be used to embrace a comparable group <strong>of</strong><br />

open defects <strong>of</strong> <strong>the</strong> skul l.<br />

1.6,I Anencepha,b¡, Exenqeph¡¡ Ly<br />

The commonest <strong>of</strong> <strong>the</strong>se malform<strong>at</strong>ions involving both skult Ur"in<br />

ls "n¿<br />

known as anencephaly, though <strong>the</strong> term is misleading as <strong>the</strong> brain is<br />

rarely completely absent. riost fut term fetuses show ross <strong>of</strong> a variabre<br />

amount <strong>of</strong> braín tissue and replacement by abnormal neuro-vascular m<strong>at</strong>eriar,<br />

sometlmes called pseudencephaly (<br />

Ge<strong>of</strong>froy_St. Hílaire, t836).(Fis. l).


8<br />

However, several early embryos in <strong>the</strong> I iter<strong>at</strong>ure show wellpreserved<br />

brain tlssue protruding through <strong>the</strong> cranial defect, formîng<br />

an exencephaly r<strong>at</strong>her thên <strong>the</strong> anencephaly <strong>of</strong> l<strong>at</strong>er stages (Huntet, 1|g34-?¡51 .<br />

1 ,6 .2 t4en î njc!:e I e , Enrephq I gmed rìgoce I e<br />

<strong>ln</strong> ano<strong>the</strong>r group <strong>of</strong> lesions cranium bifidum is accompanied by<br />

hernî<strong>at</strong>ion <strong>of</strong> cranial contents,without direct exposure <strong>of</strong> <strong>the</strong> brain tissue.<br />

A cranial meningocele involves. herni<strong>at</strong>ion <strong>of</strong> meninges through <strong>the</strong> skull<br />

defect, and may be compared to a meningocele <strong>of</strong> <strong>the</strong> spine.<br />

Protrusion <strong>of</strong> brain tlssue as wel I as meninges through a cranium<br />

blfidum constîtutes an encepha I omen i ngoce I e. This is perhaps nÌo re comparable<br />

to â myelocystocele than to a mye I omen i ngoce I e în <strong>the</strong> spine,<br />

as <strong>the</strong> herni<strong>at</strong>ed brain is invariably enclosed by meninges and sometimes<br />

covered by normal skin (Bal lantyne, l!04).<br />

1.6.3 Cran ium Bifidum Occultum<br />

Finally, examples <strong>of</strong> cranium bifîdum occultum,without -hern¡<strong>at</strong>ion <strong>of</strong><br />

<strong>the</strong> underlying brain or meninges,are occasional ly seen (Caffe)r, 1972)..<br />

1.7 DYSRAPHIC STATES<br />

The dîversity <strong>of</strong> neural malform<strong>at</strong>ions reflects <strong>the</strong> complexity <strong>of</strong><br />

neural development. However, ê fundamental áistinction may be made between<br />

open and closed defects <strong>of</strong> <strong>the</strong> central nervous system. .Spina biîida and<br />

cranium bifidum constitote <strong>the</strong> open defects (or dysraphic conditîons),<br />

and are <strong>of</strong> considerable clinical împortance.<br />

Open defects have been described in both human and experimental<br />

embryos <strong>at</strong> stages <strong>of</strong> development as early as <strong>the</strong> perîod <strong>of</strong> normal neural<br />

closure. Any experimental study <strong>of</strong> <strong>the</strong> p<strong>at</strong>hogenesis <strong>of</strong> spina bifida and


cranlum bifidum thus involves <strong>the</strong> establ ishment <strong>of</strong> a regular serles <strong>of</strong><br />

speclmens between pre-neurul<strong>at</strong>ion and I<strong>at</strong>e fetal stages.<br />

1.8 PROGNOS tS<br />

The current emphasis on early surgical correct¡on, facilit<strong>at</strong>ed by<br />

<strong>the</strong> development <strong>of</strong> antibiotics and <strong>the</strong> control led drainage <strong>of</strong> hydrocephal<br />

ic fluîd, l^:s gre<strong>at</strong>ly increased <strong>the</strong> survivar <strong>of</strong> dysraphic infants<br />

(Sharrard et al., 1967) . However where neural tissue ís involved <strong>the</strong><br />

damage is irreversible, so th<strong>at</strong> anencephaly is always f<strong>at</strong>al vrhí le myelcmen<strong>ln</strong>gocele<br />

invariably produces some degree <strong>of</strong> neurological impairment,<br />

The survival <strong>of</strong> an increasing number <strong>of</strong> affected infants poses serrous<br />

social and economic problems (Tizard, l968; Lîghtowler, 1971). These<br />

wîll only be avoíded when <strong>the</strong> dysraphic st<strong>at</strong>es <strong>the</strong>mselves are preventable<br />

through a fuller understanding <strong>of</strong> <strong>the</strong>ir etio¡ogy.


.1-<br />

5


REV IEW OF L ITERATURE


l2<br />

2.1 ErI0L0rL!! fïE qYs34t!1!!jrArEs<br />

<strong>ln</strong>vestlg<strong>at</strong>îon <strong>of</strong> <strong>the</strong> etîology <strong>of</strong> neural defects falls into <strong>the</strong> two<br />

separ<strong>at</strong>e fîelds <strong>of</strong> Epídemiology and Embryology. Ëp l clem i o log i ca l studies<br />

descrìbe <strong>the</strong> distribution <strong>of</strong> defects within a defined popul<strong>at</strong>ion,and<br />

<strong>at</strong>tempt to analyse <strong>the</strong> factors producing this distrîbution. Embryologîcal<br />

studies involve both human m<strong>at</strong>erial and experimental lesions in animal<br />

models.<br />

The lack <strong>of</strong> unÍform termínology to describe <strong>the</strong> dysraphic conditions._<br />

complic<strong>at</strong>es any review <strong>of</strong> <strong>the</strong> I iter<strong>at</strong>ure, Host authors exclude <strong>the</strong> occult<br />

I es ions and refer to:<br />

a) anencephaly, pseuclen cepha I y, cranioschisis, meningocele or menîngoencepha<br />

locele cran ial ly;<br />

b) spîna bifida, rachischisis, meningocele, mye I omen i ngoce I e , myelocystocele,<br />

or myeloceIe caudal ly.<br />

<strong>ln</strong> addition, <strong>the</strong> lesions seen in experimental animals may bê called:<br />

a) exencephaly, brain hernia, cleiencephaly, or acleiencephaly cranially;<br />

b) myeloschisis or neuroschisis caudal ly.<br />

2.2 E!_LDExlqror!!êL_gM t Es<br />

2.2.1 <strong>ln</strong>c idencq<br />

L'arge vari<strong>at</strong>ions in <strong>the</strong> estim<strong>at</strong>ed incidence <strong>of</strong> neural malform<strong>at</strong>ions<br />

are found in different publ ic<strong>at</strong>ions. A compar<strong>at</strong>ive review <strong>of</strong> fifteen<br />

hospital seríes (Alter, 19621 showed a frequency per l,OOO.births varying<br />

between :<br />

0.5 and 5.9 for anencephaly<br />

0.2 and ).2 for spina bifida manifesta<br />

0.J and 4.2 for hydrocephalus


t3<br />

The value <strong>of</strong> such col lected series is limited by heterogeneìty <strong>of</strong> <strong>the</strong><br />

d<strong>at</strong>a,gnd correl<strong>at</strong>ion wìth n<strong>at</strong>ernal age and parlty. Stevenson et al.<br />

(1966) <strong>the</strong>refore collected d<strong>at</strong>a from twenty-four centres simultaneously<br />

and appl ied a correction for m<strong>at</strong>ernal age per thousand births. They<br />

found th<strong>at</strong> anencephaly, spîna bifida, encephalocele and hydrocephalus<br />

occu!- th!'eughout <strong>the</strong> vlorld, though <strong>at</strong> very dî'fferent frequenc?es. The<br />

hÌghest values were shown by Belfast and Alexanclría,with high levels<br />

<strong>ln</strong> Helbourne, Bombay and Mexico City. Some towns in eastern lJales have<br />

recently been shown to have an incidence as high as 12 per thousand<br />

births <strong>of</strong> anencephaly and spina bîfida cystica combined (Laurence, 1976) .<br />

2.2.2 Temporal Fluctu<strong>at</strong>¡ons <strong>ln</strong> <strong>ln</strong>cidence<br />

<strong>ln</strong> areas where records are available for a long periodr,gradual<br />

changes in incídence mây be detectable. Rogers and Morris (197.|) found<br />

th<strong>at</strong> mortal íty from spina bifida in England and kales showed a steady<br />

<strong>ln</strong>crease between 1848 and 1920, wirh a sharper r.ise between lgZO and ,l942,<br />

followed by a declíne until <strong>the</strong> present (apart from rr"l i". peak in<br />

"<br />

1954 ).The recent fall in mortal ity might partly result from <strong>the</strong> improved<br />

prognosis due to early closure, but <strong>the</strong> peaks must have some sepa!.<strong>at</strong>e<br />

significancå. A dram<strong>at</strong>îc epidemic <strong>of</strong> anencephaly and spina bifida<br />

occurred in Birl in between 1946 and 1950 (Gesenius, 1952). These postwar<br />

European peaks, however, were not seen in New England.where a r+<strong>the</strong>r<br />

uníform incidence <strong>of</strong> anencephaly and spìna bif¡da between 1890 and 1920,<br />

and sharp increase between 1920 and 1932,have been followed by a ãteady<br />

decl ine (Macl'lahon and Yen, 1!/t).<br />

Edwards (1958) found th<strong>at</strong> <strong>the</strong> overall reductîon in anencephaly and<br />

spina biflda <strong>ln</strong> Bl rmingham and in Scotland since 1939 has not been<br />

accompanîed by a similar fall in <strong>the</strong> íncÍdence <strong>of</strong> congenital hydrocephalus,


4<br />

which has rema¡ned fairly constant.<br />

2,2,3 Seasgna I Vari<strong>at</strong>ion<br />

<strong>ln</strong> Br'ltain durÌn9 <strong>the</strong> 1940ts and 1950rs thè r<strong>at</strong>e <strong>of</strong> anencephalic<br />

births was higher in winter than in summer (McKeown and Record, l95t;<br />

Edwards, l95B; Record, 196t), Allowi.ng for prem<strong>at</strong>urlty (commonly found<br />

In anencephaly) <strong>the</strong> highest conception ,."r", to occur between<br />

"OOu".ud<br />

l4arch and July. This seasonal vari<strong>at</strong>ion, however, was not apparent in<br />

New England (HacMahon, Pugh and <strong>ln</strong>galfs, 1953) and has subsequently disappeared<br />

în Britain (Leck and Record, 1!66).<br />

2.2,4 Sex R<strong>at</strong> io<br />

<strong>ln</strong> both anencephaly and spina bïfida females predomin<strong>at</strong>e. The sex<br />

r<strong>at</strong>¡o for spina bifida is around 1.2 (MacMahon, pugh and <strong>ln</strong>gal.ls, 1953),<br />

but r<strong>at</strong>ios quoted for anencephaly vary between .I.1 (Sea.rle, .l959) and<br />

4.2 (C<strong>of</strong>fey and Jessop, 1957). The reason for this disproportion is<br />

not clear, though a hígher loss <strong>of</strong> male fetuses is <strong>of</strong>ten suggested.<br />

Correl<strong>at</strong>ion <strong>of</strong> sex chrom<strong>at</strong>in with sex. fe<strong>at</strong>ures shows concordance<br />

in âlmost every case (Benirschke, 1966).<br />

¡n contrast with dysraphism,<strong>the</strong> sex r<strong>at</strong>ío for congenital hydrocephâlus<br />

shows a slight excess <strong>of</strong> maìes (Record and McKeown, 1!4!;<br />

Alter, 1!62), probably due to a group <strong>of</strong> sex-l inked cases (Shannon<br />

and Nadler, 1968).<br />

2.2.5 GeograÞh ic Di str î but ion<br />

The ì,/.H.0. survey (Stevenson et al, 1966) allowing direct comparison<br />

<strong>of</strong> hospital del iveries in different centres,shows wide variàtions between<br />

different countries. Hany o<strong>the</strong>r studies <strong>of</strong> individual popul<strong>at</strong>ions have<br />

also shown local vari<strong>at</strong>ions wlthin a country or region.


t5<br />

<strong>ln</strong> general <strong>the</strong> <strong>ln</strong>cldence <strong>of</strong> dysraphlsm shows an east-west cl<strong>ln</strong>e,<br />

whlch decreases across Nôrth Amer¡ca (Hewitt, 1963) and increases across<br />

<strong>the</strong> British lsles (Elwood, 1970). Th¡s p<strong>at</strong>tern could be due to genetic<br />

or envlronmental factors, or both.<br />

2.2.6 Ethnìc DistributîoL<br />

There are deÍlonstrable differences in incidence between different<br />

ethnic ArouPs. living within <strong>the</strong> same region (Naggan and t4acHahon, 1967) '<br />

<strong>ln</strong> <strong>the</strong> sou<strong>the</strong>rn U.S'A. and in South Africa, Negroes show a much<br />

I ot¡er incidence <strong>of</strong> dysraphism than whites (Alter, 1962; Penrose, 1957) '<br />

Thls may partly be due to under-rePort¡ng.r ðs <strong>the</strong> ínc¡dence among<br />

Negroes in Kenya is comparable to th<strong>at</strong> in <strong>the</strong> white Popul<strong>at</strong>ion (Khan,<br />

1965). A similar paradox is seen in <strong>ln</strong>dia where reported dysraphism<br />

ls uncommon except êrnong Sikhs, who show one <strong>of</strong> <strong>the</strong> h¡ghest r<strong>at</strong>es in<br />

<strong>the</strong> vrorld th<strong>at</strong> persists after emigr<strong>at</strong>ion (Searle, 1959) '<br />

These ethnic differences within a community might also reflect<br />

genet¡c or envîronmental variables, though some insìght into <strong>the</strong>ir<br />

rel<strong>at</strong>lve roles is <strong>of</strong>fered by studies <strong>of</strong> imrnigr<strong>at</strong>ion. l-ect (t969)<br />

found th<strong>at</strong> immigrant groups in Birmingham showed a change toward <strong>the</strong><br />

nBlform<strong>at</strong>ion .r<strong>at</strong>es<br />

<strong>of</strong> <strong>the</strong> host commun î ty, though marked ethnlc differences<br />

were st¡ll âpparent. Th¡s suggests an envi rorimental modiflc<strong>at</strong>lon<br />

<strong>of</strong> underlying genetic d i fferences.<br />

2.2.7 Fami ly Studïes<br />

Neural defects tend to be repe<strong>at</strong>ed in a slbship,but <strong>the</strong> recurrence<br />

pâtterns <strong>of</strong> dysraphism and congenital hydrocephalus differ from each<br />

o<strong>the</strong>r (!4acHahon, Pugh and <strong>ln</strong>gal ls, 1950). The recurrence risk for<br />

dysraphism has been calcul<strong>at</strong>ed as about 53 after oi¡e affected slbl<strong>ln</strong>g


6<br />

and about 112 after two (Laure,nce, 1969). These r<strong>at</strong>es fall well short<br />

<strong>of</strong> <strong>the</strong> 257. level suggesti,,,e <strong>of</strong> recessive inheiîtance (Pen'rose, l!å$) .<br />

Twîn studies show a lower concordance than might be expected, with<br />

a risk to <strong>the</strong> co-twin <strong>of</strong> about lt% (Record and l"lcKeown, 195]). When a<br />

woman remarries <strong>the</strong> recurrence risk for m<strong>at</strong>ernal half-síbl ings is <strong>at</strong><br />

¡east ês gre<strong>at</strong> as for fuii sibiings (Yen and l"iact4ahon, 1968).<br />

2.2.8 M<strong>at</strong>ernal Age and Parity<br />

M<strong>at</strong>ernal age and parÍty are difficult to anâlyse separ<strong>at</strong>ely. Dysraphic<br />

pregnancies are commoner ín primipara and grand multipara than <strong>at</strong> inter- ..<br />

medì<strong>at</strong>e parities (Record and McKeown, ,|949). Some (though not all)<br />

¡nvest¡g<strong>at</strong>ors êlso report a higher frequency in older mo<strong>the</strong>rs as an<br />

independent effect (Edwards, t95B; Record, l96l).<br />

2.2,9 Soc io- Ecojgdqlta tus<br />

Poorer fami I íes show a higher incidence <strong>of</strong> dysraphism (Ceffey and<br />

Jessop, 1957; Edwards, l95B; Pleydell, 1960) though nor <strong>of</strong> -o<strong>the</strong>r<br />

lethal<br />

bîrth defects (Anderson, BaÍrd and Thomson., I95B). This social gradient<br />

however is not shown by Jewish famil ìes (Naggan and HacMahon, i967) and<br />

does not apply to <strong>the</strong> Negro, popul<strong>at</strong>íon <strong>of</strong> <strong>the</strong> sou<strong>the</strong>rn U.S.A. (Alter,<br />

1962) .<br />

2.2.10 Urbanîz<strong>at</strong>ion<br />

u".,1* ,JJreport<br />

ê hígher incidence <strong>of</strong> dysraphísm in industri<strong>at</strong><br />

and urban communities, especially among poor familíes (Anderson, Baird<br />

and Thomson, 1958; Edwards, .t958; Pleydelt, f960).<br />

2.2.11 0o0c Llq íons_<br />

Epidemiological studíes have thus revealed many assocî<strong>at</strong>ions but<br />

no clear etîology for neural tube defects. lmportant environmental


t7<br />

factors êre suggested by <strong>the</strong> correl<strong>at</strong>ion w¡th m<strong>at</strong>ernal age, parity,<br />

economic st<strong>at</strong>us and urbaniz<strong>at</strong>ion, as well as by temporal fluctu<strong>at</strong>îons<br />

and <strong>the</strong> discordance <strong>of</strong> most twins.<br />

Genetic factors are suggested by <strong>the</strong> marked dìfferences between<br />

ethnîc groups (only slov¡ly modified by ìmmigr<strong>at</strong>ion), and perhaps by <strong>the</strong><br />

famîl ial trend and high proportion <strong>of</strong> affected females. However, if<br />

a genet¡c component is ínvolved it is likely to be polygenic (Penrose,<br />

l)jf; Carter, 1969).<br />

2.3 EMBRYOLOGrcAl STUDIE!<br />

The I iter<strong>at</strong>ure contains many descriptions <strong>of</strong> dysraphic human<br />

înfants or abortuses, and many hypo<strong>the</strong>ses to explain <strong>the</strong>ir development.<br />

Unfortun<strong>at</strong>ely, <strong>the</strong> dearth <strong>of</strong> very early human m<strong>at</strong>er¡al.limits <strong>the</strong><br />

extent <strong>of</strong> embryological studies. Experirnental ter<strong>at</strong>ology however can<br />

partly compens<strong>at</strong>e for this deficiency by producing simi lar,.malform<strong>at</strong>ions<br />

in many animal nrodels, though <strong>the</strong> lesions.induced may not be strictly<br />

comparable to <strong>the</strong> human defects.<br />

2.3.1 Human Spec i mens<br />

Anencephalic human fetuses are ei<strong>the</strong>r stiìlborn or die soon after<br />

birth. Most specimens show an open cranial vault with abnormal vascular<br />

tissue- replacing <strong>the</strong> cerebral and cerebel tar hemispheres, but tÈe midbrain<br />

and pons are usually present. The eyes, olfactory bulbs and cranial<br />

nerves are <strong>of</strong>ten well developed, showing th<strong>at</strong> different¡<strong>at</strong>îon <strong>of</strong> <strong>the</strong><br />

forebrain preceded <strong>the</strong> loss <strong>of</strong> cerebral and cerebel lar tissue. However,<br />

this degree <strong>of</strong> differenti<strong>at</strong>íon is not ¡n itself evidence th<strong>at</strong> <strong>the</strong> brain<br />

had developed normally until <strong>the</strong> onset <strong>of</strong> <strong>the</strong>se secondary changes.


l8<br />

<strong>ln</strong> some very early human embryos wlth cranioschisís an exposed<br />

mass <strong>of</strong> well-preserved brain tissue is seen, forming an exencephaly<br />

r<strong>at</strong>her than an anencephaly (Hunter, 1934-,35; van der Zrrran,..195l). Thts<br />

suggests th<strong>at</strong> exencephaly gives rise to anencephaly by necrosis and<br />

sloughing <strong>of</strong> <strong>the</strong> exposed mass <strong>of</strong> brain tîssue, followed by vasculariz<strong>at</strong>ion<br />

<strong>of</strong> <strong>the</strong> open area.<br />

<strong>ln</strong> spina bifida cystica a comparable process wâs demonstr<strong>at</strong>ed<br />

by Cameron (1956) who found th<strong>at</strong> <strong>the</strong> basic dêfect was probably an open<br />

neural plaque. Secondary overgrowth by squamous ep¡<strong>the</strong>lium and scar<br />

tissue with accumul<strong>at</strong>ion <strong>of</strong> fluid suggested an încorrect diagnosis <strong>of</strong><br />

ul cer<strong>at</strong> i ng meningocele or rrmyelomeningocele't.<br />

Several early human embryos with establ ished spina bif¡da cystica<br />

do indeed show an exposed neural plaque and open ependymal cana! wíth<br />

no covering <strong>of</strong> epi<strong>the</strong>l ial or vascular tissue (<strong>ln</strong>galls, 1932i p<strong>at</strong>ten,<br />

1953; Lemire et al,, 1965).<br />

2,3.2 Productíon <strong>of</strong> Experimental Dysraphis¡n in AnÍmal Molþls<br />

The belief th<strong>at</strong> external factors may influence embryonic development<br />

is an ancîent concept common to many cul tures. <strong>ln</strong> <strong>the</strong> nineteenth<br />

century congenital malform<strong>at</strong>ions were frequently produced in lower<br />

animals, but <strong>the</strong> mammalian embryo was thought to be protected by its<br />

uterine envlronment. During <strong>the</strong> present century, however, experimental<br />

terêtology has produced many defects in mammalian embryos, and demonstr<strong>at</strong>ed<br />

many malform<strong>at</strong>ion syndromes in man due to environmental êgents.<br />

Agents whích have been reported to produce experîmental dysraphism<br />

in mammalian embryos by m<strong>at</strong>ernal tre<strong>at</strong>ment are shown in Table l.


9<br />

TABLE l._<br />

EXPERTHENTAL pySRApH_t SM tN MAMi"1ALt4N E}4BRYO_S<br />

Agent Species Refe rences<br />

X-rays rêt t{arkany a Schraffenberger, l!4/; Hicks, f954<br />

. mouse Rugh ê Grupp, 1959<br />

Hypoxla<br />

mouse <strong>ln</strong>gal ls et al., f953<br />

Trypan blue r<strong>at</strong> Gillman et al,, l94B¡ 1951; ütarkany et al., l!!B<br />

. mouse Hamburgh, 1952; l9I\<br />

. hamster Ferm, l !!B<br />

Hypervi taminosis A rêt Cohlan, 1954: Giroud Ê l,lartin et, 1957<br />

hamster Marin-padilla o Ferm, l!6!<br />

Dimethyl sulfoxide harnster Ferm, .l966<br />

Sal icyl<strong>at</strong>es îìouse tJarkany ê Takacs, 1.959<br />

Urethane mouse Sinclair, l9!0<br />

Morphine mouse Harpel ê Gautieri, 1!68<br />

Sodium arsen<strong>at</strong>e hamster Ferm 6 Carpenter, 1968<br />

Avian embryos are usuaìly tre<strong>at</strong>ed dírectly, ei <strong>the</strong>r in ouo or .ín uitro,<br />

and may be observed directly. Agents whích have produced experímental<br />

dysraphism in chick embryos are shown ín Table 2.<br />

TABI-E 2 . -<br />

EXPERIHENTAL DYSRAPHISI,I IN THE CHICK EMBRYO .<br />

Agent<br />

References<br />

X-rays Reyss-Bríon, 1956<br />

Ultrasound Lutz et al., 1955<br />

Ul traviolet-l ight Davis, 1!44<br />

Vl ruses lJi I I iamson et al . , 1953<br />

Robertson et al., 1960<br />

Hypoxia Gàl lera, 1951<br />

Hypercarbîa Gallera, 1951 , Lutz s Lepy, 1958


2l<br />

and kinky-ta¡l as disorders <strong>of</strong> segment<strong>at</strong>ion<br />

c) congenital hydrocephalus and screw-têil as dlsorders <strong>of</strong> <strong>the</strong> membrenous<br />

ske leton<br />

d) diminutive, blebs, and disorganiz<strong>at</strong>ion as more generêl dîsorders.<br />

This classific<strong>at</strong>ìcn emphasizes <strong>the</strong>. diversity <strong>of</strong> processes causing<br />

heredÎtary neural defects .in<br />

a single experimental animal. The rel<strong>at</strong>ïonship<br />

<strong>of</strong> hereditary lesions to experimental dysraphism in <strong>the</strong> mouse is<br />

not clear.<br />

2.\ HYP0.rHEgEs_!E JIE !t4!|RYoGENEslg 0F qlqRAPHIs¡,t<br />

Many <strong>at</strong>tempts have been made to explain <strong>the</strong> embryological mechanisms<br />

producíng dysraphism, though some <strong>of</strong> <strong>the</strong>se hypo<strong>the</strong>ses are <strong>of</strong> only<br />

h i stor ica I ¡nterest.<br />

2.4.1 Sìmple Non-elosu[e<br />

Von Recklinghausen (l886) suggested th<strong>at</strong> â primary defect <strong>of</strong> neurul<strong>at</strong>ion<br />

led to non-closure <strong>of</strong> <strong>the</strong> anterior poster¡or neuropore, followed<br />

_or<br />

by <strong>the</strong> invasion <strong>of</strong> epi<strong>the</strong>lial and vascular tissuE,to produce anencephaly<br />

or spína b îf ida manifesta.<br />

2.4,2 OvergrowtLand Ncn-Closure<br />

P<strong>at</strong>ten (1952; 1953) described a marked infolding or excess <strong>of</strong> neural<br />

tissue in several embryos, some <strong>of</strong> whîch had no external defect.. He<br />

suggested th<strong>at</strong> local rrovergrowthrr <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e might prevent closure<br />

and lead to dysraphism. More extensive overgrowth might be responsíble<br />

for development <strong>of</strong> an associ<strong>at</strong>ed hydroceph<strong>at</strong>us and <strong>the</strong> Arnòld-Chiari malform<strong>at</strong>ion<br />

(Barry, Pêtten and Stewart, 1957).<br />

2,4,3 Rupture <strong>of</strong> <strong>the</strong> Closgd_lleural Tubg<br />

More recently Gardner (l9Sg; t964; 1972) and padger (1968; 1970)<br />

have revived an altern<strong>at</strong>ive hypo<strong>the</strong>sis, first proposed by I'lorgagn i (176Ð,


22<br />

suggest¡ng th<strong>at</strong> dysreph¡sm resul ts from di i<strong>at</strong>ion and rupture <strong>of</strong> a<br />

previous ly closed neura l tube.<br />

Gardner maintains th<strong>at</strong> dil<strong>at</strong>ion <strong>of</strong> <strong>the</strong> closed neural tube could<br />

êccount for hydrocepha I us, encepha locel e, hydromye I i a, syr ì ngomye loce I e<br />

and <strong>the</strong> Arnold-chiarl malform<strong>at</strong>îon. Dil<strong>at</strong>ion and rupture <strong>of</strong> <strong>the</strong> neural<br />

tube,followed by varying degrees <strong>of</strong> heal ing could account for exencephaly"<br />

anencephaly, mye I omen i ngoce I e , meningocele, spína bifìda occulta, distem<strong>at</strong>omyelia,<br />

anterior spina bifida and various neuro-enteric connections.<br />

2.4.4 AbnormAL-:Lrain G rowth<br />

Because <strong>of</strong> <strong>the</strong> íntact hindbrain and well developed eyes and craníal<br />

nerves' several authors have argued th<strong>at</strong> anencephaly results from degener<strong>at</strong>Îon<br />

with¡n a fully-formed braïn.<br />

Frazer (1921-22) suggested th<strong>at</strong> ¡nadequ<strong>at</strong>e flexion <strong>of</strong> <strong>the</strong> enlarging<br />

braîn shears <strong>of</strong>f <strong>the</strong> major arteries <strong>at</strong> <strong>the</strong> base <strong>of</strong> <strong>the</strong> brain, producing<br />

ischemic necrosîs and sloughing <strong>of</strong> brain tissue and <strong>the</strong> ovérlyíng cranial<br />

vault.<br />

2.\.5 Ab¡orEl *spinal Fl ex ion<br />

Browne (1934; 1967) maintained th<strong>at</strong> a variety <strong>of</strong> malform<strong>at</strong>íons,<br />

including spina bifida, were produced by embryoníc compress-ion in uteto-<br />

He suggested th<strong>at</strong> rtundue sp<strong>at</strong>ial pressurerr might cause hyperflexion<br />

<strong>of</strong> <strong>the</strong> primitive trunk and trinterfere w¡th <strong>the</strong> fusing oi <strong>the</strong> ridge<br />

which should form <strong>the</strong> spinal canalr'.<br />

2.\.6 Primary Vqscular Defects_<br />

Anencephalîcs typically show a dÍsorganîzed network <strong>of</strong> sinusoîds<br />

and anomalous pêttern <strong>of</strong> larger vessels ãt <strong>the</strong> exposed brain surface,<br />

combined with rel<strong>at</strong>ively normal development <strong>of</strong> brainstem and midbraín.


23<br />

Vogel and McClenahan (1952) tnus s.uggested thðt a prîmary defect <strong>of</strong> <strong>the</strong><br />

cerebral vessels produces local hypoxia and degener<strong>at</strong>ion <strong>of</strong> <strong>the</strong> involved<br />

area <strong>of</strong> <strong>the</strong> bra i n.<br />

2,4,7 Amn i ot ic- Adhesions<br />

During <strong>the</strong> nineteenth century fetal constriction by amniotic bands or<br />

adhesîons was held to be responsîble for' many'congenital malform<strong>at</strong>ions<br />

(Dareste, 1877). Certainl¡i amnÌotic adhesion to open.brain defects does<br />

occur ín man (Torpin, 1968) as well as in experimental animals. However<br />

this is now usually regarded ês <strong>the</strong> resul t rã<strong>the</strong>r than <strong>the</strong> cause <strong>of</strong><br />

anencepha I y.<br />

2.4.8 Abnormal Development <strong>of</strong> <strong>the</strong> Tai l-Bud<br />

The origîn <strong>of</strong> <strong>the</strong> most caudal part <strong>of</strong> <strong>the</strong> spinal cord must differ<br />

from th<strong>at</strong> <strong>of</strong> <strong>the</strong> rest <strong>of</strong> <strong>the</strong> neuraxis, as <strong>the</strong> posterîor neuropore closes<br />

before <strong>the</strong> definitive length <strong>of</strong> <strong>the</strong> embryonic axis has been achieved. The<br />

terminal section <strong>of</strong> <strong>the</strong> cord is apparently developed by growth <strong>of</strong> <strong>the</strong> undífferenti<strong>at</strong>ed<br />

taíl bud, <strong>at</strong> least in <strong>the</strong> chick (Roman<strong>of</strong>f, 1960; Hami ìton,<br />

1952), <strong>the</strong> r<strong>at</strong> (Benrl iff and Gordon, .l965) and perhaps in man (Lemire, 1969).<br />

Crlley (1969) demonstr<strong>at</strong>ed an area <strong>of</strong> overlap and fr,lsìon between <strong>the</strong>se two<br />

sources <strong>of</strong> neural m<strong>at</strong>erial in <strong>the</strong> chick embryo.<br />

tenire (1969) suggests th<strong>at</strong> some neuraì malform<strong>at</strong>ions în <strong>the</strong> lower<br />

lumbar and sacral regíons (especial ly those covered by skin) mig[t arise<br />

by abnormal development <strong>of</strong> <strong>the</strong> tail bud m<strong>at</strong>erial.<br />

2.4.9 Trauma<br />

Reviewing <strong>the</strong> co¡ lection <strong>of</strong> embryos studied by Sternberg fi929),<br />

Pol ltzer (1954) note¿ th<strong>at</strong> some narrow mídline braîn or cord defect'showed<br />

a break in continuity between neural tissue and <strong>the</strong> skìn. He suggested th<strong>at</strong><br />

<strong>the</strong>se particular lesíons m¡ght be trãum<strong>at</strong>ìc in origin.


24<br />

2,4.10 <strong>ln</strong>fect ion<br />

FInally, some <strong>of</strong> thè earlier authors such as Brouwer (1916) conãidereC<br />

th<strong>at</strong> <strong>the</strong> marked disturbance <strong>of</strong> neural tissue in anencephaly might be<br />

due to embryonic infectionrcausing an extensive encephalomyel itis.<br />

2.lt.11 Surlma rL<br />

Many <strong>of</strong> <strong>the</strong>se conflicting hypo<strong>the</strong>ses are based on <strong>the</strong> study <strong>of</strong><br />

establ ished Iesions in human specímens collected <strong>at</strong> random. Assessment<br />

<strong>of</strong> <strong>the</strong>ir validity requíres fur<strong>the</strong>r stud¡es <strong>of</strong> early human embryos, and<br />

experimental studies <strong>of</strong> <strong>the</strong> development <strong>of</strong> dysraphism in a range <strong>of</strong><br />

animal ¡nodels.


I'IATE R IALS<br />

25


26<br />

3.1 THE CHTCK EMBRYo<br />

The chlck embryo was se¡ected as <strong>the</strong> expêrimental model in <strong>the</strong><br />

present study for <strong>the</strong> fol lowîng reasons (H<strong>at</strong><strong>the</strong>ws et al., 1974):<br />

a) fertile eggs êre cheap and avaìlable throughout <strong>the</strong> yeâr<br />

b) avian embryology has a long history añd.an extensive I iter<strong>at</strong>ure,<br />

with a well defined system <strong>of</strong> Staging based on simple morphological<br />

criteria (Hamburger and Hamilton, 1951)<br />

c) <strong>the</strong> developing chick embryo is more readily accessible than <strong>the</strong><br />

mammalîan embryo to dìrect observ<strong>at</strong>ion and manipul<strong>at</strong>îon th.rough<br />

a window in <strong>the</strong> shell (though thìs has certaîn concomitant disadvantages)<br />

d) whole embryos as well as ísol<strong>at</strong>ed fragments can be cul tured in oityo<br />

or 4n uiuo, with direct observ<strong>at</strong>ion <strong>of</strong> <strong>the</strong> embryo by ei<strong>the</strong>r technic.<br />

Despîte <strong>the</strong> advantages <strong>of</strong>fered by <strong>the</strong> varÍous in oitro techirics, an<br />

in oi¡to (in ouo) method was finally chosen because:<br />

a) it provided a method <strong>of</strong> producing open neural defects by <strong>the</strong> use <strong>of</strong><br />

a simple physical procedure<br />

b) it allowed prolonged culture <strong>of</strong> embryos with various congenîtal malform<strong>at</strong>ions<br />

to advanced stages <strong>of</strong> developmeni.<br />

3.2 souRcE oF Ëqq ¿N!__!xlrjBiqll0N<br />

The eggs used for this work were obtained from a second gener<strong>at</strong>ion<br />

hybrid tfhite Leghorn flock c.ontainíng one colored and three pure Leghorn<br />

línes, maintained by <strong>the</strong> Department <strong>of</strong> Animal Science <strong>of</strong> <strong>the</strong> Uníversity<br />

<strong>of</strong> I'lanítoba. The incidence <strong>of</strong> spontaneous malfornr<strong>at</strong>ions in this flock<br />

cannot be establ îshed because <strong>of</strong> <strong>the</strong> reluctance <strong>of</strong> <strong>the</strong> oríginal commerc!<strong>at</strong><br />

suppl iers <strong>of</strong> <strong>the</strong> stock to supply appropri<strong>at</strong>e inform<strong>at</strong>ion.


27<br />

lf necessary, eggs were stored <strong>at</strong> 10oC for up to four days before use.<br />

The two incub<strong>at</strong>ors used were both suppl ìed by <strong>the</strong> Blue M Electric<br />

company (Blue lsland, ll l.). The larger convection model (2004) measured<br />

48 cm. x f6 cn. x 4! cm.,and contained a 15 cm. x lB cm. x 5 cm. dísh <strong>of</strong><br />

w<strong>at</strong>er for regul<strong>at</strong>ion <strong>of</strong> humidîty. lt was used maînly for reincub<strong>at</strong>lon<br />

<strong>of</strong> eggs after some form <strong>of</strong> tre<strong>at</strong>ment, especially in experiments involving<br />

prolonged culture. S<strong>at</strong>isfactory regul<strong>at</strong>ion <strong>of</strong> temper<strong>at</strong>ure (37.50 t loC)<br />

and humidity(60?. t 4%) was achieved.<br />

The smal ler forced-draught model (VP-1004T-1) consigted <strong>of</strong> a 42 cm.'<br />

x \2 cn. x 30 cm. plexiglass contaìner above a humidifier, wlth a fan<br />

provídîng a continuous airflow <strong>at</strong> wel l-control led tenper<strong>at</strong>ure (37.50 t<br />

0.5oc) and humidity (60Z ! 1Zl. lt was used mainly for short term<br />

exper¡ments and for <strong>the</strong> ¡nitial incub<strong>at</strong>¡on <strong>of</strong> eggs before tre<strong>at</strong>ment<br />

(Fis. 5).<br />

The work descrîbed in thîs <strong>the</strong>sîs was performed ín a single room<br />

facing south, with large windows and no air-condítioning. Regul<strong>at</strong>ion<br />

<strong>of</strong> he<strong>at</strong>ing and ventil<strong>at</strong>ion gave partial control <strong>of</strong> <strong>the</strong> ambient env¡ronmentrand<br />

<strong>the</strong> two incub<strong>at</strong>ors used provided stable incub<strong>at</strong>ion conditions.<br />

Exper¡ments were performed throughout <strong>the</strong> yeâr.<br />

J.3 OTHER EQUIPI4ENT<br />

All oper<strong>at</strong>ions were performed under steríle or semi-steriÌá<br />

conditions in a dust-free plexiglass cabinet cleaned with 70% alcohol<br />

before each exper iment.<br />

stainless steel instruments, such as forceps, were steril ized<br />

before use and passed through <strong>the</strong> flame <strong>of</strong> an alcohol burner several<br />

tlmes during an oper<strong>at</strong> ¡ on.


2B<br />

To expose each embryo a w<strong>ln</strong>dow was cut in <strong>the</strong> shell rvith a 1.5 cm.<br />

dental separ<strong>at</strong>íng dlsc on a 5 cm. mandrel,mounted in a hand_held<br />

electrlc drîll (B¡ãck and Decker, model /010).<br />

Albumen was removed from opened eggs wíth disposable sterile 5 ml .<br />

syi'inges artd #16 gauge urrpointed needles (Bec.ton Dickinson e Co.).<br />

After tre<strong>at</strong>ment, those eggs cultured with an artificial air_space<br />

above <strong>the</strong> embryo were sealed with a J cm. circle <strong>of</strong> ster¡le parafilm<br />

(American Can Co., Neenah, t^/is. ),<strong>at</strong>tached to <strong>the</strong> shell by a ring <strong>of</strong><br />

plasticîne-l ike m<strong>at</strong>eriar (caurking cord, gtop Hardware products, ttontrear,<br />

Ouá.¡. These eggs were not turned during subsequent íncub<strong>at</strong>îon (Fîg. 6).<br />

O<strong>the</strong>r eggs, from whích <strong>the</strong> introduced aír was removed (ei<strong>the</strong>r by<br />

re-expansion <strong>of</strong> <strong>the</strong> punctured air cell or by filiing <strong>the</strong> eggs rvith<br />

albumen or Fl2 medium) were closed with â I cm. circle <strong>of</strong> sterile para_<br />

film, sealed to <strong>the</strong> shet with a square <strong>of</strong> frexibre Erastoprast(product<br />

1211; Smith E Nephew Ltd., Hull, England)


FÍg. 5.<br />

<strong>ln</strong>cub<strong>at</strong>or allowing precise controi <strong>of</strong> temperâture<br />

and humidity. Chamber contains a b<strong>at</strong>ch <strong>of</strong><br />

windowed eggs.<br />

Fís. 6.<br />

Windowed eggs seen frorn above,


GENERAL I.,IETHODS


3l<br />

4. r sELEcr I oN !F EGGq<br />

4.1,1 . lricub¿it i on<br />

Experlmental and controì .eggs were rout¡nely cul tured from <strong>the</strong><br />

beg<strong>ln</strong>ning <strong>of</strong> <strong>ln</strong>cub<strong>at</strong>ion <strong>at</strong> 37.54C and 60? humidlty, lying on <strong>the</strong>lr<br />

sldes wlth <strong>the</strong> long axls horizontal.<br />

At 26 hours <strong>of</strong> incub<strong>at</strong>lon (al low<strong>ln</strong>g one extra hour for rewarmìng<br />

after remova l from <strong>the</strong> refríger<strong>at</strong>or) candl ing "ras perfo¡:med în <strong>the</strong> dark,<br />

by layîng each egg horizontal ly over a 4 cm. x 3 cm. lîght-source and<br />

marking <strong>the</strong> shell with a penci I <strong>at</strong> <strong>the</strong> site <strong>of</strong> <strong>the</strong> embryo<br />

\ .1 .2 Cand I ïng<br />

Ëmbryos were graded (accord<strong>ln</strong>g to an êrbitrêry scale determined<br />

by previous experience) ¡nto three sizes -small, medium and largewhîle<br />

infertile eggs were rejected. <strong>ln</strong> this study only <strong>the</strong> eggs with<br />

medlum-sized embryos were used. Eggs with large-sized embryos were<br />

rejected, while those wîth smal l-sized embryos wåre al lowed to deveìop<br />

for a fur<strong>the</strong>r two to four hours and <strong>the</strong>n used only if <strong>the</strong>y had reached<br />

medium size.<br />

\.2 TECHNtq 0F_Q!!¡r!NG ANp cl0stNq EGGS<br />

4.2,1 PreliminqllExperiments<br />

<strong>ln</strong> ê ser¡es <strong>of</strong> prel iminary experiments, <strong>at</strong>tempts were,made to produce<br />

open defects <strong>of</strong> <strong>the</strong> central nervous system by <strong>the</strong> use <strong>of</strong> several proven<br />

ter<strong>at</strong>ogenic agents introduced through a shall window. These experiments"<br />

however th<strong>at</strong> <strong>the</strong> well-known technic <strong>of</strong> openíng a wíndow in <strong>the</strong><br />

"showed<br />

shel I above <strong>the</strong> embryo and removing 1 - 2ml . <strong>of</strong> albumen (to prevent adheslon<br />

<strong>of</strong> <strong>the</strong> embryo to <strong>the</strong> cut edges <strong>of</strong> shell),was in itself highly<br />

ter<strong>at</strong>ogenic <strong>at</strong> early stages <strong>of</strong> avian development. ll<strong>ln</strong>dowed but o<strong>the</strong>rwise


7.2<br />

untre<strong>at</strong>ed embryos showed almost as hÌgh an incidence <strong>of</strong> de<strong>at</strong>hs and malform<strong>at</strong>ions<br />

as windowed and tre<strong>at</strong>ed embryos. l,loreover <strong>the</strong> defects produced<br />

<strong>ln</strong>volved predom<strong>ln</strong>antly <strong>the</strong> central nervous system.<br />

4.2.2 Standard Techn îc<br />

From thîs observ<strong>at</strong>ion a standard experimental method was developed<br />

which produced a high incídence <strong>of</strong> open neural defects. Each egg wíth<br />

an embryo <strong>of</strong> medlum-size on candl ing <strong>at</strong> 26 to 30 hours <strong>of</strong> incub<strong>at</strong>ion<br />

was wiped wíth a gauze square <strong>of</strong> 702 alcohol and cuts made in <strong>the</strong> shell.<br />

During <strong>the</strong> oper<strong>at</strong>ion <strong>the</strong> egg was held obliquely to avoid damaging <strong>the</strong><br />

embryo, and <strong>the</strong> shell membrane careful ly preserved. A short cut was<br />

made over <strong>the</strong> air cell and a 1.0 cm. x 1.5 cm. hexagonal or rectangular<br />

window made over <strong>the</strong> embryo. The egg was cleaned with 7Oy" alcohol and<br />

transferred to a holder in tlre experimental cabinet, with <strong>the</strong> shell<br />

window uppermost. The shelI membrane was <strong>the</strong>n punctured gently with<br />

sterile forceps, first over <strong>the</strong> air cell and <strong>the</strong>n over <strong>the</strong>-embryo, allowíng<br />

air to be drawn into <strong>the</strong> egg with col lapse <strong>of</strong> <strong>the</strong> air cell. 2 ml . <strong>of</strong><br />

albumen were <strong>the</strong>n carefulìy withdrawn with a sterile syringe and widebore<br />

unpoînted needle. E99s in which <strong>the</strong> vitelline membrane was damaged or<br />

those where <strong>the</strong> embryo was not îmmedi<strong>at</strong>ely bene<strong>at</strong>h <strong>the</strong> shell window were<br />

rej ected .<br />

By this means embryos <strong>of</strong> quite a narrow range <strong>of</strong> developmenial stages<br />

were exposed to <strong>the</strong> act¡on <strong>of</strong> an artíficial. air space, with no protect¡on<br />

from an overlying layer <strong>of</strong> albumen but Iittle distortion from excessive<br />

f l<strong>at</strong>teníng or stretching.<br />

\.2.3 Examin<strong>at</strong>íon <strong>of</strong> Embryo.s<br />

As each blastoderm was fully exposed by this technic <strong>of</strong> windowing,<br />

It was <strong>ln</strong>spected and its diameter measured 1n nillimeters with a plast¡c


uler. Accur<strong>at</strong>e Staging (Hamburger and Hamllton, t95l) <strong>at</strong> <strong>the</strong> tlme <strong>of</strong><br />

w<strong>ln</strong>dow<strong>ln</strong>g was not <strong>at</strong>tempted,as thls necessltêtes vltal sta<strong>ln</strong><strong>ln</strong>g, whlch<br />

has several disadvantages:<br />

a) <strong>the</strong> tlme cluring whîch <strong>the</strong> egg rs out <strong>of</strong> <strong>the</strong> incub<strong>at</strong>or rs increased<br />

b) dlrect manipul<strong>at</strong>ion <strong>of</strong> <strong>the</strong> embryo ls unavoídable<br />

c) ter<strong>at</strong>ogeníc effects bave been demonstrèted for several <strong>of</strong> <strong>the</strong> vltal<br />

stains commonly used such as Nl le blue sulf<strong>at</strong>e and neutr<strong>at</strong> red (Menkes,<br />

et al., 1964).<br />

For...lhese reâsons embryonic age êt <strong>the</strong> time <strong>of</strong> tre<strong>at</strong>ment was assessed in ":<br />

terns <strong>of</strong> sîze r<strong>at</strong>her than Stage.<br />

\.2.\ Closure <strong>of</strong> Eggs<br />

After measurement <strong>of</strong> <strong>the</strong> blastoderm, each e99 was sealed with a 3 cm.<br />

clrcle <strong>of</strong> sterile parafilm applied to <strong>the</strong> shell with a 2 cm. ring <strong>of</strong><br />

plastícine, leaving ên artîfícial air space above <strong>the</strong> embryo (FÌS.7 ).<br />

The eggs were reíncub<strong>at</strong>ed in a horizontar positíon without being turned.<br />

' Thls technîc <strong>of</strong> wíndowing eggs with medium-sized embryos <strong>at</strong> 26 to 30<br />

hours <strong>of</strong> incub<strong>at</strong>ion was found to produce open neurar defects ín about 502<br />

<strong>of</strong> <strong>the</strong> tre<strong>at</strong>ed ernb ryos .<br />

4.2.5 Effec! <strong>of</strong> gmbryolíc Age<br />

The rel<strong>at</strong>ionshíp between embryonìc êge <strong>at</strong> <strong>the</strong> time <strong>of</strong> wrndow<strong>ln</strong>g and<br />

<strong>the</strong> development <strong>of</strong> neural defects rvas investig<strong>at</strong>ed by perforring'thu ,"r"<br />

procedure on eggs <strong>at</strong> f4 and J8 hours <strong>of</strong> incub<strong>at</strong>ion.<br />

l{here appl icabie, <strong>the</strong> significance <strong>of</strong> differences between experímentar<br />

and control values in windowing experîments was determined Uy <strong>the</strong> Cni<br />

Square test.


Ëigs.<br />

t4. Human neurcr*sp ina I d)¡sraphism:<br />

Fis. t.<br />

Anencephal ic înfarit with typîcal facies and<br />

a cap <strong>of</strong> neurovascular tìssue (pseudencephaly)<br />

Fig. 2.<br />

Craniorachischisis involving <strong>the</strong> bra¡n and<br />

spinal cord. No external defect in <strong>the</strong> sacral<br />

regîon.<br />

Fis. 3"<br />

Child with a healcd myclomenìngoccle lesion<br />

and paralysis <strong>of</strong> <strong>the</strong> lower ìimbs.<br />

Fis. 4.<br />

Rad iograph <strong>of</strong> myelr:meningocele extending<br />

from thoracic to sacral regions. Shows<br />

l.<strong>at</strong>eral dìsplacement <strong>of</strong> pedicles, a l<strong>at</strong>eral<br />

bar, wedging <strong>of</strong> <strong>the</strong> body <strong>of</strong> L. 5, and<br />

reduct i on <strong>of</strong> <strong>the</strong> sacrum


.\lz<br />

'?.<br />

t


JO<br />

,\.3<br />

REIN!UBATION AFTER. li,INDOh,Illc<br />

A large humber <strong>of</strong> experimental and control embryos were fixed <strong>at</strong><br />

<strong>the</strong> tlme <strong>of</strong> opening (O hours) or 6, lB, 30, or 42 hours after wíndowing.<br />

These embryos (design<strong>at</strong>ed Oc,6E,6c, lgE, lBc, 30E, 3oc, \28, and 42C)<br />

were exam<strong>ln</strong>ed, drawn by camera iucida, and selected for serial sect¡oning.<br />

' o<strong>the</strong>r embryos were curtured for severar days to estabrish <strong>the</strong> fu<br />

range <strong>of</strong> external malform<strong>at</strong>ions produce! by this techníc. Some were<br />

fixed after five days, when <strong>the</strong> externar embryonic form was fuly estabr ished.<br />

0<strong>the</strong>rs were cultt¡red for ereven or twerve days to assess <strong>the</strong> rer<strong>at</strong>ionship<br />

<strong>of</strong> neural de fects to skeletal development in <strong>the</strong> spine.<br />

\.4 FURTHER tNVEsflçAIr0N 0J THE TERAToGENtc EFFECT 0F 0pENtNG THE SHELL<br />

The ter<strong>at</strong>ogenic effect <strong>of</strong> <strong>the</strong> standard windowing technic might be due to3<br />

a) vibr<strong>at</strong>ion <strong>of</strong> <strong>the</strong> embryo by <strong>the</strong> dentð¡ separ<strong>at</strong>¡ng disc during windowing<br />

b) toxicíty <strong>of</strong> <strong>the</strong> plasticine or parafîlm used to crose <strong>the</strong> window<br />

c) <strong>the</strong> ¡ntroduction <strong>of</strong> infectíon<br />

d) a direct effect <strong>of</strong> <strong>the</strong> art¡f ¡ål air ipace above <strong>the</strong> embryo.<br />

These possible factors vúere system<strong>at</strong>ícal ry investig<strong>at</strong>ed by fur<strong>the</strong>r experîments.<br />

4.4. t V ibr<strong>at</strong> ion Alone<br />

One group <strong>of</strong> eggs was subjected to vibrêtíon <strong>of</strong> <strong>the</strong> shelr above <strong>the</strong><br />

embryo for thîrty seconds(without opening a window) <strong>at</strong> 0,26 and-33 hours <strong>of</strong><br />

incub<strong>at</strong>ion.<br />

4,4.2 Parafilm and plasticÍne Alone<br />

<strong>ln</strong> ano<strong>the</strong>r group <strong>the</strong> plasticine ring and parafîlm clrcle were appl ied to<br />

<strong>the</strong> areas <strong>of</strong> shell overrying each embryo <strong>at</strong> 1,26, and 33 hours <strong>of</strong> incub<strong>at</strong>ion,<br />

wi thout openíng <strong>the</strong> shell.


Fis. I AsB,<br />

Windowìng followed by obl iterâtìon <strong>of</strong> <strong>the</strong><br />

ïntroduced air space by adding albumen or<br />

F 12 med i um.


IÆ<br />

6


Fis. 9 Aã8.<br />

t/indow?ng followed by oblìter<strong>at</strong>ion <strong>of</strong> rhe<br />

introduced air space by reexpansion <strong>of</strong> <strong>the</strong><br />

air-cel ¡.


4ì<br />

,'ä:<br />

1<br />

Æ(o)<br />

\/u<br />

I


42<br />

( \--l /)<br />

^<br />

)<br />

t0


43<br />

\,\.3 Effect <strong>of</strong> Artìficial Aìr S<br />

The role played by <strong>the</strong> artificîal air space was thus fur<strong>the</strong>r examined<br />

by ei<strong>the</strong>r restor<strong>at</strong>îon <strong>of</strong> <strong>the</strong> originâl stête <strong>of</strong> <strong>the</strong> eggs, or by modific<strong>at</strong>ions<br />

<strong>of</strong> <strong>the</strong> external envíronment <strong>of</strong> unwindowed eggs during incub<strong>at</strong>îon.<br />

Experiments designed to avoid exposure <strong>of</strong> <strong>the</strong> developing embryo<br />

to <strong>the</strong> air space took two forms. After closure <strong>of</strong> <strong>the</strong> window with ê 3 cm,<br />

circle <strong>of</strong> parafilm and a squaqe <strong>of</strong> elastoplast, a second 5 mm. x 5 mm,<br />

window was made near <strong>the</strong> pointed end <strong>of</strong> <strong>the</strong> egg. <strong>ln</strong> some cases <strong>the</strong> egg vJas<br />

fll ted with F, culture medíum (Ham, 1!6!),<br />

cr with ålbumen from '<br />

an egg <strong>of</strong> <strong>the</strong> same developmental age (fig, Bn ¿ s) .<br />

Altern<strong>at</strong>îvely <strong>the</strong> introduced air was removed by re-expansion <strong>of</strong> <strong>the</strong><br />

collapsed air cell (with air from a rubber bal loon) before seal ing <strong>the</strong><br />

second window. (Pig. 9n a g) .<br />

4.5 BACTERIOLoGIcAL CULTURE<br />

The sterility <strong>of</strong> <strong>the</strong> oper<strong>at</strong>ive techn¡c was assessed by making<br />

bacteriological cul tures <strong>of</strong> albumen on bldod-agar pl<strong>at</strong>es <strong>at</strong> <strong>the</strong> time <strong>of</strong><br />

wîndowîng and <strong>at</strong> fix<strong>at</strong>ion <strong>of</strong> <strong>the</strong> embryos.<br />

\.6 ExAMtNAT|oN oF EARLY EMBRyQ!<br />

4.6.1 Fi x<strong>at</strong> ïon and Stagíng<br />

,^oñto-;ãr,<br />

embryos recovered 0 tq 4z.hours afrer windowins<br />

were washed in Howardrs salÍne, fixed in Bouints fluid, and bleached in 702<br />

alcohol contaíning 22 ammonia solution. Curl ing during fix<strong>at</strong>lon was prevented<br />

by includîng a square <strong>of</strong> filter paper in <strong>the</strong> dish above <strong>the</strong> embryo.<br />

For full details <strong>of</strong> <strong>the</strong> method see Appendíx A.<br />

After bìeaching, all <strong>the</strong> embryos were examined for defects and Staged<br />

(Hamburger and Hanilton, t95t)'. To Preserve a permênent record. before


44<br />

serîal sectlon<strong>ln</strong>g a camera lucida drawi.ng was made <strong>of</strong> every embryo.<br />

4.6.2 Problems in Exam<strong>ln</strong><strong>at</strong>ion<br />

Exam<strong>ln</strong><strong>at</strong>ion.<strong>of</strong> <strong>the</strong>se early embryos presented severê'l problems:<br />

a) Staging by somîte counts was not always easy because <strong>of</strong> necrosis or<br />

cyst-form<strong>at</strong>lon in <strong>the</strong> somite regíons, and torsôon or opacity <strong>of</strong> older<br />

embryos<br />

b) <strong>the</strong> same processes <strong>of</strong>ten involved <strong>the</strong> neural folds, making assessment<br />

<strong>of</strong> neural closure diffîcult<br />

even de<strong>at</strong>h was not always obvious because some embryos showed<br />

")<br />

excessîve. necrosís when still alive, whereas o<strong>the</strong>r embryos without a be<strong>at</strong>ing<br />

heart mîght be well-preserved though technically dead.<br />

\.7 EXAMtNATIoN oF oLDER EMBRYoS<br />

defects.<br />

0lder embryos were fixed in Carnoyrs fluid and exdm<strong>ln</strong>ed for external<br />

\.7.1 F ive Day Embryos<br />

'<br />

Some embryos were recovered <strong>at</strong> a totâl <strong>of</strong> fíve days incub<strong>at</strong>ion, with<br />

<strong>the</strong> externâl configur<strong>at</strong>ion establ ished but well before <strong>the</strong> second peak <strong>of</strong><br />

embryonic mortal ity (Hamilton, 19!2).<br />

\.7.2 Eleven - Twelve Day Embryo:<br />

To correl<strong>at</strong>e skeletal defects <strong>of</strong> <strong>the</strong> spine with spinal cord lesions,<br />

however, a fur<strong>the</strong>r period <strong>of</strong> development was necessary, "f,i"t'<br />

resulted in<br />

fur<strong>the</strong>r mortal ity. As windowing produced some growth retardêtion, experîmenta¡<br />

embryos were recovered <strong>at</strong> twelve days and control embryos <strong>at</strong> èleven<br />

days <strong>of</strong> total incub<strong>at</strong>ion. After examin<strong>at</strong>ion and measurement <strong>of</strong> all open<br />

neural defects, <strong>the</strong> cartîlaginous skeleton was stained with alcian blue<br />

(O;eda et al, 1970) and <strong>the</strong> embryos cleâred <strong>ln</strong> xylol and benzyl benzo<strong>at</strong>e


4S<br />

or 22 KOH. Three types <strong>of</strong> skeleta¡ defects were recc¡rded în <strong>the</strong> spine:<br />

a) part¡al or conplete deletions <strong>of</strong> vertebrae<br />

b) sp<strong>ln</strong>a biflda manifesta in <strong>the</strong> region <strong>of</strong> an open neural defect<br />

c) and spina bifida occulta.<br />

Detalls <strong>of</strong> skeletal stainÌng and clearance <strong>of</strong> <strong>the</strong>se older embryos are given<br />

in Appendix B .<br />

4.8 HISTOtOG¡cAt FEATURES OF. NEURAL cLosURE AND NEURAL DEFEcTS<br />

u.r.,|<br />

A representôtlve series <strong>of</strong> experirnental and control embryos (from<br />

Sectlon 4.6), in good condition <strong>at</strong> fix<strong>at</strong>ion 0 to 42 hours after windowing,<br />

were selected for serial sectioning. 0nly those control embryos showing<br />

normal development and little necrosís were included.<br />

After light staining with eosin in 702 alcohol, embryos were dehydr<strong>at</strong>ed<br />

<strong>ln</strong> 802, 902 and 952 alcohols, processed wíth amyl acet<strong>at</strong>e, and embedded in<br />

pa raff í n wax.<br />

Some !0,000 seríal sect¡ons were cut, gach <strong>at</strong> a thicknèss <strong>of</strong> 10 microns,<br />

and stained with hem<strong>at</strong>oxyl ìn and eosin.<br />

4.8,2 Group<strong>ln</strong>lqf E¡Þq¿os<br />

Because <strong>of</strong> <strong>the</strong> rapid progress <strong>of</strong> <strong>the</strong> early part <strong>of</strong> neurul<strong>at</strong>ion (after<br />

Stage B), exper¡nental and control embryos could only be compared ât identical<br />

Stages. <strong>ln</strong> l<strong>at</strong>er neurul<strong>at</strong>ion several Stages were combinäd.<br />

As no experimental embryos were available <strong>at</strong> Stage 9, <strong>the</strong> four groups<br />

cons ¡ sted <strong>of</strong>:<br />

Group 1 Stage 10<br />

Group 'l 1 Stages 1 1- l2<br />

Qroup 111 Stases tr3-16<br />

Group 1V Stages I /-20


46<br />

Thus <strong>the</strong> embryos selected for serial sectioning were rearranged<br />

and examined by developnentar stages r<strong>at</strong>her than hours <strong>of</strong> incub<strong>at</strong>ion,<br />

4.8.3 súbdivislón lrirö Rédións<br />

Exam<strong>ln</strong><strong>at</strong>ion <strong>of</strong> <strong>the</strong> serial sectrons reveared marked differences in<br />

<strong>the</strong> development <strong>of</strong> <strong>the</strong> neural tube, notqchord., and somites <strong>at</strong> dìfferent<br />

levels <strong>of</strong> al I embryos.<br />

Each group <strong>of</strong> embryos was thus subdivîded into regions <strong>of</strong> neurar<br />

development on <strong>the</strong> basls <strong>of</strong> non-neural morphological markers. These<br />

markers were - found to correspond quite closely to developmental changes<br />

along <strong>the</strong> length <strong>of</strong> <strong>the</strong> neural tube.<br />

Because <strong>of</strong> <strong>the</strong> striking changes between Stage 10 and Stage 20 <strong>the</strong><br />

regîons werê not identîcal in each group, but were ¿rranged to encomp¿rss<br />

<strong>the</strong> same developmental areas. For this reason <strong>the</strong> rela.tive size <strong>of</strong> each<br />

region varied in <strong>the</strong> embryos <strong>of</strong> different groups.<br />

The most important non-neural marker was somite mesoderm, divided by<br />

reg lons in to:<br />

a) presomite regîon: grouped w¡th <strong>the</strong> brain region,because after rot<strong>at</strong>Ìon<br />

<strong>of</strong> <strong>the</strong> head fotd <strong>the</strong> two areas courd not be separ<strong>at</strong>ed rrn obr ique sections<br />

b) upper and lower somite regions: grouped toge<strong>the</strong>r for lack <strong>of</strong> çlear<br />

morphol og i ca I separ<strong>at</strong>îon<br />

c) protosom¡te regîon: with club-shaped protosomites showing líttle<br />

separ<strong>at</strong>ion into derm<strong>at</strong>ome, myotome, and sclerotome<br />

d) unsegmented mesoderm region: with loosely arranged mesoderm not con_<br />

densed into protosot¡î te s<br />

e) posterlor region: with developing notochord ( p rotonotocho rd) still<br />

continuous wlth developing mesoderm and neural t¡ssue.


47<br />

I'leurul<strong>at</strong>ion showed a comparable series <strong>of</strong> changes characterîstìc<br />

<strong>of</strong> each region în each group <strong>of</strong> control embryos. These changes Ìn <strong>the</strong> crosssectîonal<br />

shape <strong>of</strong> neural tissue were described as:<br />

a) closed neural tube O<br />

b) closíng neural rube C)<br />

c) inverted neural folds (-)<br />

d) elev<strong>at</strong>ed neural folds tJ<br />

e) everted neural folds --.\ñ<br />

f) fl<strong>at</strong>tened neural pl<strong>at</strong>e<br />

-v<strong>ln</strong><br />

thís way <strong>the</strong> normal progress <strong>of</strong> neurul<strong>at</strong>ion could be closely<br />

def<strong>ln</strong>ed for each group <strong>of</strong> embryos in terms <strong>of</strong> six regions,<br />

(Tabtes 3 -6 ).


48<br />

TABLE 3. srAGE t0 El,tBRyos (cnoue | ¡<br />

Reg.i ons<br />

l4a rke rs<br />

A) forebrain (short)<br />

opt ic veslcle J<br />

midbra<strong>ln</strong><br />

I<br />

h<strong>ln</strong>dbra<strong>ln</strong><br />

t<br />

presomlte area (short) f<br />

1 no notochord<br />

J<br />

I<br />

neural tube closed or closìng,<br />

notochord, pharynx, heart, head<br />

mesenchyme, anterior intestinal<br />

Porta I '<br />

B) upper somite area I neural folds closing or inverted,<br />

lower somite area<br />

Þ<br />

J<br />

notochord, somites.<br />

C) protosomî te a reê neuraI folds înverted, notochord,<br />

protósom i tes .<br />

D) anteríor rhomboid sinus neural .folds elev<strong>at</strong>ed, notochord, unsegmented<br />

mesoderm.<br />

E) poster¡or rhomboid sinus neural folds elev<strong>at</strong>ed or fl<strong>at</strong>tened,<br />

protonotochord, fused mesoderm.<br />

F) Hensenrs node deep primîtive pit, developinþ neural<br />

t i ssue.<br />

prlmitive s t reak<br />

shal low primitive groove, no neural<br />

t l ssue,


49<br />

TABLE 4.<br />

. .STAGE. t 1:l2. .EtrtBRYoS. . (GR0UP. il)<br />

Reg l onsr ...... . . . . . . . l-4arkers .<br />

A) forebra in<br />

optic ves¡cle<br />

mldbrain<br />

h<strong>ln</strong>dbrain<br />

p resom i te area<br />

]<br />

l<br />

no notochord<br />

neurql tube closed, notochord, pharynx,<br />

dorsal aortae.<br />

neural tube closed, notochord, pharynx,<br />

heart, dorsal êortâe, anterior intesti¡al<br />

portá I .<br />

B) upper somi te area<br />

Iower somi te a rea<br />

C) protosomi te a reê<br />

neural tube closed, notochord, somites,<br />

heart, dorsal aortae.<br />

neural folds closed or closîng, notochord,<br />

p rotosom I tes.<br />

D) anterior rhomboid sinus neural folds ¡nverted or elev<strong>at</strong>ed, notochord,<br />

.upper overlap zone without accessory<br />

cana I s, unsegmented mesoderm.<br />

E) posterior rhomboid sinus neural folds elev<strong>at</strong>ed, protonotochord,<br />

'<br />

overlap zone with accessory canals, fused<br />

mesoderm.<br />

F) Hensen¡s node<br />

prim¡t¡ve s t reak<br />

deep primitive pit, developing neural tissue.<br />

shallow primitive groove, no neural tissue.


50<br />

TABLE 5 ,<br />

Reg i ons<br />

srAGE 13:16' EMBRYOS (enour ttt¡<br />

l'larkers<br />

A) forebra í n<br />

mldbra in<br />

h<strong>ln</strong>dbrain<br />

presomîte a rea<br />

(åbsent by st. 16)<br />

B) upper somite area<br />

lower somi te a rea<br />

c) protosomi te a rea<br />

-t<br />

)<br />

no notochord<br />

overlappîng mî dbra i n and hînclbrain,<br />

otocysts, notochord , pharynx, heart,<br />

dorsa I aor Èae.<br />

notochord, pharynx, heart, dorsal aortae<br />

neural tube closed, notochord, somîtes,<br />

anterior intestinal porta I .<br />

neural tube closed, notochord, protosomites,<br />

upper overlap zone.<br />

D) unsegmented mesoderm area closed neural tube dorsal to accessory<br />

canals, notochord, unsegmented mesoderm.<br />

E) caudal a rea<br />

closed or closing neural tube dorsal to<br />

accessory cana I s, protonotochord, fused<br />

mesoderm.<br />

f) anterior tai t-bud<br />

(absent by St. 16)<br />

posterior tai I -bud<br />

short primitive streak<br />

sha I low surface pit,<br />

no notochord.<br />

no surface pit.<br />

prîrnitive groove,<br />

(absent by st. 16)


5l<br />

TABLE 6,<br />

%<br />

STAGE lT-20 EHBRyos lcRo p tvl ... ... . ..<br />

Reglons Markei.s.. .......<br />

B) prebrachial cord -l overlapping brain and cord, notochord,<br />

forebrain<br />

brachial cord<br />

forebra<strong>ln</strong><br />

postbrachla¡ cord<br />

J<br />

1<br />

J<br />

It<br />

somltes, foregut, heart, dorsal aortðe.<br />

overlapp<strong>ln</strong>g bra<strong>ln</strong> and cord, notochord,<br />

somltes, wîng b,uds, single dorsal aorta.<br />

cord, notochord, somites, midgut, dorsal<br />

aortae, mesonephroi , Wolffian ridges.<br />

C) crural cord cord, notochord, somites, leg buds,<br />

mesonephroi , mesonephric- ducts, cloaca.<br />

D) postcrural cord cord, notochord, somites or unsegmented<br />

rnesoderm, cloaca, developing tail .<br />

F) tail tip no cord, no somites,<br />

E) caudal cord cord, taÍl-bud, caudal somites or unsegmented<br />

mesoderm, protonotochord, caudal gut.


52<br />

4.8.4 HistologÌcal_De:plþtÍons<br />

To test <strong>the</strong> hypo<strong>the</strong>sis th<strong>at</strong> delãyed onset <strong>of</strong> <strong>the</strong> passage <strong>of</strong> cerebrosp<strong>ln</strong>al<br />

fluíd across <strong>the</strong> rhombic ro<strong>of</strong> might produce rupture <strong>of</strong> <strong>the</strong> closed<br />

neural tube, <strong>the</strong> progressive thinning <strong>of</strong> <strong>the</strong> rhombìc ro<strong>of</strong> was tabul<strong>at</strong>ed<br />

for each group <strong>of</strong> embryos (Tables 113-46<br />

).<br />

The possìble contributicn <strong>of</strong> excessive cãvit<strong>at</strong>ion <strong>of</strong> <strong>the</strong> tail-bud to<br />

abnormal neurul<strong>at</strong>ion was assessed by tabul<strong>at</strong>ing <strong>the</strong> nunbers <strong>of</strong> accessor¡.<br />

canals in <strong>the</strong> overlap zone and tai l-bud <strong>of</strong> each group (Tables 5l - 54).<br />

However, a detal led .ieview<br />

<strong>of</strong> <strong>the</strong> histological changes during neurul<strong>at</strong>ion<br />

revealed varlous dífferences between experimentâl and control embryos<br />

(Section 6.4.). These differences were thus analysed ín terms <strong>of</strong> <strong>the</strong><br />

reprèsent<strong>at</strong>ive ãppearance <strong>of</strong> Regions A-E in each group <strong>of</strong> embryos, to<br />

determine whe<strong>the</strong>r <strong>the</strong>y were significant (Tables 35-38).<br />

4,9 ANALYStS oF NEURAL cLosuRE<br />

From <strong>the</strong> results <strong>of</strong> <strong>the</strong> histological studieè (section-6,4)<br />

several aspects <strong>of</strong> neurul<strong>at</strong>ion were analysed quantÌt<strong>at</strong>ively, as percentages<br />

<strong>of</strong> each regilon and percentages <strong>of</strong> each embryo (Tables. 47-50),<br />

Histological fe<strong>at</strong>ures analysed ín this manner were:<br />

a) progress. <strong>of</strong> neural closure<br />

b) extents <strong>of</strong> myeloschisis<br />

c) extents <strong>of</strong> myelodysp I as ia<br />

d) length <strong>of</strong> <strong>the</strong> overlap zone<br />

e) cover <strong>of</strong> neural tissue by ectoderm<br />

f) contact <strong>of</strong> neural tissue with notochord<br />

S) contâct <strong>of</strong> neural tlssue wîth somîtes<br />

h) possible reduction <strong>of</strong> somìte volume with cystic changes.


53<br />

Because <strong>of</strong> <strong>the</strong> difficulty in separ<strong>at</strong>íng <strong>the</strong> brain from <strong>the</strong> upper<br />

cord this analysis was confined to <strong>the</strong> spinal cord and tail-bud (Regions B,<br />

C, D and E).<br />

4. to ANALYS ts !r ],IEURAL voLUt4Es<br />

F<strong>ln</strong>ally, an <strong>at</strong>tempt was made to compäre <strong>the</strong> volumes <strong>of</strong> neural tíssue<br />

în embryos with and without neural lesions over regions C and D. To<br />

el imin<strong>at</strong>e vari<strong>at</strong>ions due to dífferent sizes <strong>of</strong> indivídual embryos,and<br />

dîffering lengths <strong>of</strong> regions C and D, values were expressed in <strong>the</strong> form<br />

<strong>of</strong> r<strong>at</strong>ios <strong>of</strong> mean neural tissue to mean notochord (which showed little<br />

fluctu<strong>at</strong>ion), and analysed by multiple T-tests.


5 RESULTS OF TERAÎOLOGICAL PROCEDURES<br />

54


55<br />

5.1 TERAToGEN!! !FFECT 0F,WtNp0I{1!Nq<br />

Tt¡e effect <strong>of</strong> windowîng 999s in <strong>the</strong> early developmental period<br />

ls closely rel<strong>at</strong>ed to embryonic age. To învestig<strong>at</strong>e this effect, <strong>the</strong><br />

standard w<strong>ln</strong>dowing. technîc was performed on eggs <strong>ln</strong>cub<strong>at</strong>ed for l\, 26<br />

and 38 hours. After windowi.ng, enbryos were reincub<strong>at</strong>ed to a tot¡l <strong>of</strong><br />

/2 hours.<br />

Eggs <strong>ln</strong> <strong>the</strong> control group were not opened, but were removed from<br />

<strong>the</strong> <strong>ln</strong>cub<strong>at</strong>or for a simîlar length <strong>of</strong> time to <strong>the</strong> experimentâl groups.<br />

None <strong>of</strong> <strong>the</strong> eggs were turned.<br />

4t.72 hours all <strong>the</strong> embryos were fixed and examined under a<br />

dissect<strong>ln</strong>g mlcroscope. Table 7 and Fîg. l0 show <strong>the</strong> mortal lty and<br />

overall malform<strong>at</strong>ion r<strong>at</strong>es for experrmentar embryos windowed <strong>at</strong> r4, 26,<br />

and l8 hours, toge<strong>the</strong>r wlth <strong>the</strong> control embryos.<br />

Hany experlmental embryos, especially those windowed <strong>at</strong> l4 hours,<br />

showed early de<strong>at</strong>h and such complete degener<strong>at</strong>ìon th<strong>at</strong> embryonic<br />

structures were.unrecognizab,le within <strong>the</strong>_smal I nodule <strong>of</strong> necrotic tissue.<br />

For this reason, individual malform<strong>at</strong>ion r<strong>at</strong>es are not given as percentages<br />

<strong>of</strong> <strong>the</strong> number <strong>of</strong> embryos whìch continued to develop after windowing.<br />

survivî.ng embryos deveroped to stages 13-20 and were recovered dead<br />

or al ive, w¡th or without malform<strong>at</strong>ions, <strong>at</strong> 72 hours. Fig.l0 ¿s¡q¡strâtes<br />

a decrease in early de<strong>at</strong>hs betv,reen <strong>the</strong> four groups, and.an increãse in<br />

survival wlthout defects âmong <strong>the</strong> embryos which contínued to develop.<br />

St<strong>at</strong>lstical analysls reveals slgnificant dlfferences in:<br />

(a) early de<strong>at</strong>hs and survivrng embryos between <strong>the</strong> combrned experimenta¡<br />

groups and <strong>the</strong> control group (p < O.Ol)<br />

(b) early de<strong>at</strong>hs and survlving embryos in each experimentêl group<br />

(p < o.ot)


(c) de<strong>at</strong>hs and defects in <strong>the</strong> surviving embryos <strong>of</strong> each experimental group<br />

(p < o.o5) .<br />

56


Numbers <strong>of</strong> Eggs 31 73 31 135 47<br />

Eârly De<strong>at</strong>hs 28 (90.32) zo (27.40) 2 (6,4Ð 50 .2 (\.26)<br />

Developing Ernbryos 3 53 29 gS<br />

45<br />

38 (80.85)<br />

1 ( 2.13')<br />

r ( 2.13)<br />

5 (10.64)<br />

TABLE 7. MORTALITY AFTER l,/lNpOwtNG AT 14, 26.and 38 HoURS<br />

. llindow ì./indow l,/îndow Ëxperimentêl No VJindow<br />

<strong>at</strong> l4 Hrs. (%) <strong>at</strong> 26 Hrs.(?) <strong>at</strong> !8 Hrs. (%) 'iot"ilcontràrr<br />

tzl<br />

Al ive wíth No Defects<br />

Al ive wi th Defects<br />

Dead wi th No Defects<br />

Dead wi th Defects<br />

0 (0)<br />

1 (3.26)<br />

0 (b)<br />

2 (6.\5)<br />

21 (28.77)<br />

25ß\.25)<br />

1 ( r.37)<br />

6(8.22)<br />

17 ß4.84)<br />

I (25.81)<br />

2 (6.4r)<br />

2 (6.45)<br />

38<br />

34<br />

?<br />

10<br />

Stages <strong>at</strong> Fix<strong>at</strong> ion 13-17<br />

15-20<br />

13-'t9<br />

13-20<br />

14-20


Fi g.<br />

Percentagcs <strong>of</strong> early de<strong>at</strong>hs and l<strong>at</strong>er de<strong>at</strong>hs<br />

and deformitîes after windowing aL 14, 26 and<br />

JB hours. Embryos recovered <strong>at</strong> 72 hours.


14 HRS" 2ó HRS. 38 HRS. CONTROLS<br />

:<br />

Nl Eorly Deoths<br />

N=182<br />

N Al¡ve, No Defecfs<br />

Nl Alive, Defects<br />

Nl Deod, No Defects<br />

N Deod, Defecis<br />

tn<br />

o<br />

cô<br />

t, ''<br />

tu<br />

u-<br />

o<br />

Èe<br />

MORTALITY AFTER WINDOWING AT .14,26 & 38 HOURS


6o<br />

MoRTALtTY, AFTER ì,'tNpowtNq,AT t¡;26; AND 38 H0uRS<br />

. Analysís <strong>of</strong> early de<strong>at</strong>hs and developing embryos in <strong>the</strong> combîned<br />

experimental groups and <strong>the</strong> control group:<br />

Observed Va I ues 50 2<br />

85 .4s<br />

D.eg rees <strong>of</strong> Freedom<br />

t<br />

Chi Square (Y<strong>at</strong>es Correction)' 16.7g<br />

P < 0.01<br />

Analysls <strong>of</strong> early de<strong>at</strong>hs and develop<strong>ln</strong>g embryos ¡n <strong>the</strong> experlmental<br />

I roups :<br />

0bserved Val ues<br />

Degrees <strong>of</strong> Freedom<br />

Chl Square<br />

P<br />

28202<br />

35329<br />

2<br />

53.09<br />

< 0.01<br />

Analysls <strong>of</strong> l<strong>at</strong>er de<strong>at</strong>hs and defects in developing embryos <strong>of</strong> each<br />

expêr lmenta I group:<br />

Observed Va I ues<br />

Degrees <strong>of</strong> Freedom<br />

Ch i Sq ua re<br />

P<br />

021 17<br />

1258<br />

012<br />

262<br />

6<br />

14.46<br />

< 0.05


6t<br />

0n exam<strong>ln</strong>ing. <strong>the</strong> survivi.ng embryos (table I ), <strong>the</strong> commonest malform<strong>at</strong>ions<br />

were found to <strong>ln</strong>volve <strong>the</strong> central nervous system and <strong>the</strong> eyes.<br />

The bra<strong>ln</strong> was <strong>of</strong>ten reduced în slze Ìn <strong>the</strong> experlmental embryos, as well<br />

as ¡n some controls. Two embryos windowed <strong>at</strong> 26 hours, and one control<br />

enbryo showed an open anterlor neuropore. As. <strong>the</strong> bráin normally closes by<br />

Stage 12 (Haml I ton, 1965),. <strong>the</strong>se embryos were regarded as showìng open<br />

bra<strong>ln</strong> defects after Stage 12. Closure <strong>of</strong> <strong>the</strong> rhomboid sinus, which is<br />

normal ly complete by Stage 15 (Haml t ton, t965), was êssessed in <strong>the</strong> four<br />

groups. <strong>ln</strong> many embryos w<strong>ln</strong>dowed <strong>at</strong> 26 hours <strong>the</strong> neural folds proximal<br />

Éo <strong>the</strong> rhomboîd s<strong>ln</strong>us were st¡ll open. At Stãges 13 and 14 <strong>the</strong>se open<br />

areas were adjacent to <strong>the</strong> rhombold s<strong>ln</strong>us, but after Stage 1! <strong>the</strong>y<br />

extended up <strong>ln</strong>to <strong>the</strong> somlte reglon. As <strong>the</strong>se defects were ín continuity<br />

wlth <strong>the</strong> rhombold sinus <strong>the</strong>y appeared to aríse through non-closure <strong>of</strong> <strong>the</strong><br />

neural folds. <strong>ln</strong> embryos older than stage l6 <strong>the</strong>y are <strong>the</strong>refore recorded<br />

as open defects <strong>of</strong> <strong>the</strong> neural tube.<br />

Many embryos, especially those dead by /2 hours, showed hemorrhages<br />

and cysts <strong>of</strong> <strong>the</strong> trunk, sometimes causîng gre<strong>at</strong> distorsion, and obscuring<br />

<strong>the</strong> structures in this region. There were few non-neural defects apparent<br />

by 72 hours.


TABLE B.'DEVEIOPI{ENT'AFTER'WINDOIiIING AT 14;'26:IAND' 38'HOURS<br />

W<strong>ln</strong>dowing Windowing l,/î ndow Î ng No<br />

<strong>at</strong>..14 hr;. .. . <strong>at</strong> 26 hr.s, . <strong>at</strong>..38 hrs. \Jindowing<br />

Developing Emb ryos<br />

53<br />

45<br />

open Anterior Neuropore<br />

tJ<br />

2<br />

¡<br />

0pen Rhomboìd S inus<br />

?<br />

5<br />

2<br />

\<br />

Open Neural Tube Defects<br />

I<br />

25<br />

3<br />

0<br />

Mlcrocephal y<br />

3<br />

t4<br />

5<br />

4<br />

Eye Defects<br />

1<br />

4<br />

3<br />

2<br />

Facia I Defects<br />

1<br />

0<br />

2<br />

0<br />

Cardiac Deiects<br />

2<br />

3<br />

0<br />

0<br />

Trunk Cys ts<br />

0<br />

6<br />

3<br />

0<br />

Limb Bud Defects<br />

0<br />

0<br />

0<br />

0


63<br />

5.2 MALFoRMAT I 0NS .P¡OpUCEp BY \ir l ND0Vill NG .<br />

Analysîs <strong>of</strong> <strong>the</strong> nalform<strong>at</strong>lons produced by <strong>the</strong> windowing technic<br />

required culture <strong>of</strong> tre<strong>at</strong>ed embryos to <strong>the</strong> perìod when <strong>the</strong> external embryonic<br />

form had been establ lshed. By this time, however, <strong>the</strong> mortal ity among<br />

developing embryos was substantial, and many <strong>of</strong> <strong>the</strong> dead embryos were so<br />

necrotlc th<strong>at</strong> full examìn<strong>at</strong>lon was impossible.<br />

For thîs reason, embryos w<strong>ln</strong>dowed <strong>at</strong> 26 hours and developing to<br />

5 days or 12 days were compared to <strong>the</strong> 72 hour (3 days) group in Section<br />

5.1.<br />

-<br />

Rs ihis was an analysis <strong>of</strong> <strong>the</strong> external malform<strong>at</strong>îons produced by<br />

<strong>the</strong> w<strong>ln</strong>dowing technlc, it includetl only well-preserved experimental embryos<br />

showing con'tinued dèvelopment after windowìng. Table 9<br />

and Fi9.11<br />

show <strong>the</strong> external defects recorded <strong>at</strong> 3,5 and 12 days <strong>of</strong> incub<strong>at</strong>ion,<br />

expressed âs percentages <strong>of</strong> those develop<strong>ln</strong>g embryos which could be examined<br />

fully. These values do not represent <strong>the</strong> ou..ull malformadion r<strong>at</strong>es in<br />

tre<strong>at</strong>ed embryos but, r<strong>at</strong>her, reflect <strong>the</strong> changing p<strong>at</strong>tern <strong>of</strong> malform<strong>at</strong>ions<br />

wi th prolonged g rowth .<br />

<strong>ln</strong> Fi9. Il <strong>the</strong> most striking finding is <strong>the</strong> uniformly high incidence<br />

<strong>of</strong> open cord defects in all three groups.<br />

0f <strong>the</strong> non-neural ma I fo rma t,îions , def ects învolving <strong>the</strong> face-and beak,<br />

trunk, rump and ta¡1, anterior body wall,and lower I imbs appear with íncreasing<br />

frequency <strong>at</strong> progressively l<strong>at</strong>er stages <strong>of</strong> development.


TABLE 9. ¡4ALFORMATIONS PRODUCED'BY [TINDO\iING'AT'26'HOURS<br />

?:?:v: {ll::: ¡ ?ly: {Tì<br />

l2 Days (Z)<br />

Develop<strong>ln</strong>g Emb ryos<br />

53<br />

109<br />

69<br />

open Cord Defects<br />

25&7.12')<br />

ç3 (57 .8)<br />

41(59.42)<br />

0pen Bra <strong>ln</strong> Defects<br />

2(3,77)<br />

4 (3.671<br />

6 (8.70)<br />

Ml crocepha I y<br />

14(26.\z',)<br />

1o (9. r 7)<br />

6 (8.70)<br />

Eye Defects<br />

\0.55)<br />

\2(38.53)<br />

19Q7.5\)<br />

Face E Beak Defects<br />

0 (0)<br />

1l (10.09)<br />

21(30.43',)<br />

Trunk Defects<br />

6(11.32)<br />

8 (7.34)<br />

lo(14.49)<br />

' Rump e Tail Defects<br />

0 (0)<br />

30(27.521<br />

31(44.93)<br />

Ectopia V I sce rum<br />

0 (0)<br />

0 (0)<br />

27 ß9.13)<br />

Lowe r Llmb Defects<br />

0 (0)<br />

\ß.67',)<br />

17 Q\.6\)<br />

Upper Llrnb Defects<br />

0 (0)<br />

1(0.92)<br />

0 (0)


Fis.<br />

Percentages <strong>of</strong> neural arrd non-neural defects<br />

in survîvìng experimental embryos windowed<br />

êt 26 hours. Embryos recovered <strong>at</strong> 3, 5 ancl<br />

12 days.


N=231 ffil e ooyi<br />

ffi s oays<br />

[il t2 ooys<br />

OPEN CORD ÞETECTS<br />

OPEN BRA¡N DEFECTS<br />

MICROCEPHALY<br />

EYE DEFECTS<br />

FACE & BE.AK DEFECTS<br />

TRUNK DEFECTS<br />

RUMP & T,AIL DEFECTS<br />

ECTOPIA VISCERUM<br />

LOWER LIMB DEFECTS<br />

0r020304050ó0<br />

EXTERNAT MATFORMATTONS (%) AFTER WtNDOW|NG<br />

(2ó HOURSI


67<br />

5.3 INVFSïIGATtON 0F THE TERAToGENTC EFFECT:0F t;/lNpor,ilNG<br />

<strong>ln</strong> an <strong>at</strong>tempt to define some <strong>of</strong> <strong>the</strong> factors leading to abnorrnal<br />

development after windowing, several experiments were performed to<br />

investig<strong>at</strong>e varlous aspects <strong>of</strong> <strong>the</strong> windowi.ng technic, <strong>ln</strong> one group <strong>of</strong><br />

experiments eggs were trear:ed bv vîbr<strong>at</strong>ion, <strong>of</strong> by <strong>the</strong> applic<strong>at</strong>íon <strong>of</strong><br />

parafî lm and a plasticine iing, wÌthout windowîng. <strong>ln</strong> o<strong>the</strong>r experiments<br />

<strong>the</strong> ¡ntroduced air space was obl iter<strong>at</strong>ed <strong>at</strong> <strong>the</strong> time <strong>of</strong> windowing.<br />

5.3.1 Vibf¡itiori óf UnoÞened Eggs,<br />

,.m;r<strong>at</strong>ÎonProducedby<strong>the</strong>dentalsandIngdiscusedto<br />

cut <strong>the</strong> shell w<strong>ln</strong>dows, unopened eggs were vlbr<strong>at</strong>ed for J0 seconds wlth a<br />

carborundum ball mounted on <strong>the</strong> dr¡ll. Thls procedure was performed ât<br />

0, 26 and 33 hours <strong>of</strong> încub<strong>at</strong>lon, and <strong>the</strong> eggs <strong>the</strong>n re<strong>ln</strong>cub<strong>at</strong>ed to a total<br />

<strong>of</strong> / days without be<strong>ln</strong>g turned.<br />

Tables 10 and tt show <strong>the</strong> mortal ìty and malform<strong>at</strong>ion r<strong>at</strong>es for <strong>the</strong><br />

three experîmental groups and <strong>the</strong> controls. Bêcause <strong>of</strong> <strong>the</strong> rel<strong>at</strong>ively<br />

small numbers ín each group, values are not converted to percentages.<br />

Desplte <strong>the</strong> small numbers ît is clear thðt V¡br<strong>at</strong>¡on by itself is not<br />

responsîble for <strong>the</strong> ter<strong>at</strong>ogenic effect <strong>of</strong> <strong>the</strong> windowíng techníc. There<br />

werè no open èord defects in any <strong>of</strong> <strong>the</strong> experimentêl or control groups.


6B<br />

TABLEt loj lloRTALtTy AFTER VtBRAT|0N ALoNË AT 0; 26 AND 33 H0URS<br />

Vi bra t ìon Vl br<strong>at</strong> ion Vibr<strong>at</strong> i on No<br />

<strong>at</strong> 0 Hrs. <strong>at</strong> 26 Hrs. <strong>at</strong> 33 Hrs. Vibr<strong>at</strong>ion<br />

Number <strong>of</strong> Eggs<br />

12<br />

22<br />

10<br />

22<br />

Early De<strong>at</strong>hs<br />

0<br />

1<br />

0<br />

1<br />

Develop<strong>ln</strong>g Emb ryos<br />

Al ive wlth No Defc.cts<br />

12<br />

II<br />

21<br />

r5<br />

10<br />

9<br />

21<br />

18<br />

Al lve wîth Defects<br />

1<br />

3<br />

1<br />

2<br />

Dead with No Defects<br />

0<br />

0<br />

0<br />

I<br />

Dead wîth Defects<br />

0<br />

3<br />

0<br />

0


69<br />

ÏABLE 1 I. MALFORMATIONS AFTER' V I BRATI ON'AIONE'AT O ; . 26' ärid' 33 HOURS<br />

Vi br<strong>at</strong> ion Vìbr<strong>at</strong>ion Vibr<strong>at</strong>ion No<br />

<strong>at</strong> 0..Hrs. . .. <strong>at</strong>.26..Hrs,......<strong>at</strong>..33..Hrs.... Vibr<strong>at</strong>ion<br />

Numbers <strong>of</strong> Emb ryos<br />

12<br />

22<br />

10<br />

22<br />

0pen Cord Defects<br />

0<br />

0<br />

0<br />

.0<br />

Open Brain Defects<br />

1<br />

I<br />

0<br />

0<br />

Ml crocepha ly<br />

0<br />

2<br />

0<br />

1<br />

Eye Defects<br />

0<br />

3<br />

0<br />

t<br />

Face E Beak Defects<br />

I<br />

0<br />

0<br />

0<br />

Trunk Defects<br />

1<br />

3<br />

0<br />

0<br />

Rump e Tai I Defects<br />

2<br />

0<br />

0<br />

0<br />

Ectop la Vlscerum<br />

0<br />

0<br />

I<br />

0<br />

Limb Defects<br />

0<br />

0<br />

0<br />

0


70<br />

5,3.2 Pa-rôf i Idì ¿irid PIèsticIrie l,Jìthoút 1^1î ridoli,î n9<br />

Chemical agents ¡n <strong>the</strong> plasticÌne or parafi lm used to seal rv i ndowed<br />

eggs, r<strong>at</strong>her than vîbr<strong>at</strong>îon by <strong>the</strong> dental disc, might altern<strong>at</strong>îvely be<br />

responsible for <strong>the</strong> ter<strong>at</strong>ogenîc effect <strong>of</strong> window<strong>ln</strong>g. This possibil ity<br />

was tested by apply<strong>ln</strong>g a parafílm circle and.plasticìne ring to <strong>the</strong><br />

intact shell overty<strong>ln</strong>g three groups <strong>of</strong> embryos.<br />

Eggs were first candled to locête <strong>the</strong> postion <strong>of</strong> <strong>the</strong> embryos,<br />

and <strong>the</strong> plasticîne,/parafl lm covers applìed <strong>at</strong> 0,26, and 33 hours <strong>of</strong><br />

incub<strong>at</strong>ion. Embryos were recovered after a total <strong>of</strong> / days.<br />

Tables 12 and 13' show th<strong>at</strong> <strong>the</strong> mortal ity and overall malform<strong>at</strong>ion<br />

r<strong>at</strong>es are lowest <strong>ln</strong> <strong>the</strong> control group and hlghest in embryos tre<strong>at</strong>ed<br />

from <strong>the</strong> begînning <strong>of</strong> incub<strong>at</strong>ion. Because <strong>of</strong> <strong>the</strong> smaìl numbers in each<br />

group values are not converted to percentages. The results, however,<br />

show th<strong>at</strong> <strong>the</strong>re ls no obvious ter<strong>at</strong>ogenic factor eman<strong>at</strong>îng from <strong>the</strong> parafilm/<br />

plastic<strong>ln</strong>e covers alone. <strong>ln</strong> <strong>the</strong> control group <strong>the</strong>re was onu ,pont"nou,<br />

open cord defect.


71<br />

TABLE I2;},IORTALITY AFTE-R PLASTICINE,/PARAFILH ALONE AT O; 26 AND.33 IIOURS<br />

' Cover Cover Cover No<br />

<strong>at</strong> 0 Hrs. <strong>at</strong> 26 Hrs. <strong>at</strong> 33 Hrs. Cover<br />

Number <strong>of</strong> Eggs<br />

Early De<strong>at</strong>hs<br />

Develop<strong>ln</strong>g Emb ryos<br />

Al lve wlth No Defects<br />

lt<br />

2<br />

?<br />

r<br />

2<br />

18<br />

1<br />

17<br />

12<br />

12<br />

0<br />

12<br />

t0<br />

32<br />

0<br />

32<br />

26<br />

Al ive with Defects<br />

3<br />

I<br />

4<br />

Dead wi th No Defects<br />

1<br />

0<br />

1<br />

I<br />

Dead wl th Defects<br />

1<br />

2<br />

0<br />

t


TABLE 13; MALFORI4ATIONS AFTER PLASTICINE/PARAFILl:I'AtOi{E<br />

Cover Cover Cover<br />

<strong>at</strong> 0 Hrs. <strong>at</strong> 26 Hrs. <strong>at</strong> 33 Hrs.<br />

No<br />

Cover<br />

Numbers <strong>of</strong> Emb ryos<br />

0pen Cord Defects<br />

0pen Brain Defects<br />

Mi c rocepha I y<br />

Eye Defects<br />

Face ê Beak Defects<br />

Trunk Defects<br />

Rump € Ta 1l Defects<br />

Ectopla Visceru¡h<br />

Limb Defects<br />

11<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

2<br />

1<br />

0<br />

12


73<br />

5.3.3 .o¡liter<strong>at</strong>ion,l<strong>of</strong><br />

lt¡tro¿u¿¿¿<br />

eir space<br />

There fs llttle evidence th<strong>at</strong> vibr<strong>at</strong>ion <strong>of</strong> <strong>the</strong> eggs or m<strong>at</strong>erials<br />

<strong>ln</strong> <strong>the</strong> p!astîcine/parafilm covers are responslble for <strong>the</strong> malform<strong>at</strong>ions<br />

produced by wÌndowÌng. Thîs suggesb th<strong>at</strong> <strong>the</strong> presence <strong>of</strong> an introduced<br />

alr space above <strong>the</strong> developing embryos may be <strong>the</strong> causa¡ agent. To<br />

test this posslbilîty <strong>the</strong> <strong>ln</strong>troduced alr space was oblíter<strong>at</strong>ed in three<br />

dlfferent ways <strong>at</strong> varying ìntèrva¡s after windowing <strong>at</strong> 26 hours <strong>of</strong><br />

<strong>ln</strong>cub<strong>at</strong>lon. <strong>ln</strong> each experlment eggs were sealed wîth parafilm and re<strong>ln</strong>cub<strong>at</strong>ed<br />

to 72 hours wlthout turn<strong>ln</strong>g but w¡th <strong>the</strong> sealed lirindow facing<br />

downwards (figs. 8n and B and 9A and B),<br />

' <strong>ln</strong> <strong>the</strong> first experiment <strong>the</strong> <strong>ln</strong>troduced aîr space was filled with<br />

albumen from unwindowed eggs <strong>of</strong> <strong>the</strong> same b<strong>at</strong>ch, <strong>at</strong> 26,32,38, 44 and 50<br />

hours <strong>of</strong> încub<strong>at</strong>ion (or 0, 6, 12, l8 and 24 hours after wîndowing).<br />

Tables 14 and 15 and Fig.12, show th<strong>at</strong> mortal ity and <strong>the</strong> overall malform<strong>at</strong>ion<br />

r<strong>at</strong>es decl ined with earlier obl iter<strong>at</strong>íon <strong>of</strong> <strong>the</strong> air space.<br />

<strong>ln</strong> <strong>the</strong> second experiment F 12 culture medium (ttam, I965).<br />

was used to obl îter<strong>at</strong>e <strong>the</strong> introduced air space êt <strong>the</strong> same intervals<br />

after windowing. Tables l6 and 17 and Fi9. l3 also reveal a<br />

reduction in.mortality and overal I malform<strong>at</strong>ion r<strong>at</strong>es with earlier<br />

obliter<strong>at</strong>¡on.<br />

Finally, reexpansion <strong>of</strong> <strong>the</strong> air cell with a rubber ¡al loon,to<br />

dlsplace <strong>the</strong> introduced air space, was performed <strong>at</strong> 26, 38 and 50 hours<br />

<strong>of</strong> íncub<strong>at</strong>ion (or 0, 12 and 24 hours after windowing). Tables 18 and<br />

19 and FiS. l¡r show th<strong>at</strong> aîr cell reexpansion also reverses <strong>the</strong> terâtogenic<br />

effect <strong>of</strong> wîndowing, especlal ly when performed Ímmedi<strong>at</strong>ely.


41<br />

13<br />

0<br />

23<br />

No l^l i ndow<br />

Control s (Z)<br />

l1<br />

l1<br />

o (o)<br />

9 (81 .82)<br />

2(18.18)<br />

0 (0)<br />

0 (0)<br />

TABLE 14. I4ORTALITY FOLLO}'ING INTRODUCTION OF ALBUMEN AT,VARIOUS INTERVALS AFÎER WINDOT,.IING<br />

Al bumen<br />

<strong>at</strong><br />

50 Hrs. (?)<br />

Al bumen<br />

<strong>at</strong><br />

44 Hrs. (Z)<br />

Al bumen Al bumen<br />

<strong>at</strong> <strong>at</strong><br />

JB Hrs. (l) 32 Hrs. (%l<br />

Albumen Tota I s<br />

<strong>at</strong> with<br />

26 Hrs. (?) Albumen<br />

Number <strong>of</strong> Eggs 17 27<br />

Earfy De<strong>at</strong>hs 4(23.53) 2(7.41')<br />

Developing Embryos 13 25<br />

17 15<br />

,+(23,531 2(13,33)<br />

13 13<br />

13 89<br />

o(o) 12<br />

13 77<br />

Al ive w¡th No Defects<br />

Al Íve wi th Defects<br />

5Q9 .\1) 1 1 (40. 74)<br />

2(11.76) 4(14.81)<br />

9$2.94') 5ß3.33)<br />

2(11.76) \(26.67)<br />

1 1 (84.62)<br />

1(7 .69)<br />

Dead wl th No Defects<br />

0 (0) 0 (0)<br />

0 (0) 0 (0)<br />

0 (0)<br />

Dead wî th Defects<br />

6(35.29 10(37.04)<br />

2(11.76',) \(26.67)<br />

1(7 .69)


No t'i i ndow<br />

Controls<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

TABLE I5. I'{ALFORHATIONS FOLLOI"'ING INTRODUCTION OF ALBUMEN AT VARIOUS INTERVALS AFTER I,JINDOl^'ING<br />

Albumen Albumen Albumen Albumen Albumen<br />

êt 50 Hrs. <strong>at</strong> 44 Hrs. <strong>at</strong> 38 Hrs. êt 32 Hrs. <strong>at</strong> 26 Hrs.<br />

Open tord Defects<br />

'5<br />

0<br />

1<br />

0<br />

Open Brain Defects<br />

I<br />

2<br />

I<br />

I<br />

0<br />

Microcephaly<br />

6<br />

5<br />

1<br />

4<br />

0<br />

Eye Defects<br />

5<br />

1<br />

2<br />

6<br />

1<br />

Facl al Defects<br />

1<br />

2<br />

2<br />

0<br />

0<br />

Trunk Defects<br />

0<br />

0<br />

0<br />

0<br />

n<br />

Trunk Cys ts<br />

t<br />

?<br />

0<br />

2<br />

t<br />

Limb Bud Defects<br />

0<br />

0<br />

0<br />

2<br />

0


Fíg.<br />

Percentages <strong>of</strong> early de<strong>at</strong>hs and l<strong>at</strong>er de<strong>at</strong>hs<br />

and deformities fol lowing ìntroduction <strong>of</strong> albumen<br />

<strong>at</strong> varying perïods after windowing <strong>at</strong> 26 hours.<br />

Embryos recovered ðt 72 hours.


N Eorly Deoths<br />

N=100<br />

.n<br />

9óo<br />

d<br />

co<br />

=!r¡<br />

lJo40<br />

ñ<br />

N<br />

N<br />

N<br />

N<br />

Alive, No Defects<br />

Alive, Defects<br />

Deod, No Defects<br />

Deod, Defects<br />

5O HRS.<br />

44 HRS. 3B HRS. 32 HRS. 2ó HRS. CONTROLS<br />

MORTATITY AFTER INTRODUCTION OF ALBUMEN<br />

AT VARYTNG PERIODS AFTER WINDOWING {2ó HOURS}


78<br />

ALBUMEN INTRODUCTION<br />

Analysís <strong>of</strong> early de<strong>at</strong>hs and developing embryos ín <strong>the</strong> combined<br />

experîmental groups and <strong>the</strong> control group:<br />

Observed Val ues 12 0<br />

77 lt<br />

Degrees <strong>of</strong> Freedom 1<br />

Chî Square (Y<strong>at</strong>es Correction) 0.65<br />

P<br />

groups:<br />

N.S.<br />

Analysís <strong>of</strong> early de<strong>at</strong>hs and developing embryos ¡n <strong>the</strong> experimental<br />

observed Values 4 2 4 2 0<br />

13 25 13 13 13<br />

Degrees <strong>of</strong> Freedom 4<br />

Chi Square 5,82<br />

P<br />

N.S.<br />

Analysis <strong>of</strong> ì<strong>at</strong>er de<strong>at</strong>hs and defects' în develop<strong>ln</strong>g embryos <strong>of</strong><br />

each experimental group cannot be performed because <strong>of</strong> 0 vˡlues for<br />

embryos classified as Dead w¡th No Defects.


F 12 I'IEDIUH AT VARIOUS INTERVALS AFTER WINDOI,/ING<br />

97<br />

8<br />

89<br />

33<br />

33<br />

4<br />

r9<br />

9<br />

0 (0)<br />

9<br />

7 07 .78)<br />

1(11.11)<br />

1(11.1f)<br />

0(0)<br />

\l<br />

\o<br />

. F12 F12 F12<br />

ât <strong>at</strong> <strong>at</strong><br />

50 Hrs. (t) 44 Hrs. (Z) 38 Hrs. (?)<br />

F12 F12<br />

<strong>at</strong> <strong>at</strong><br />

32 Hrs . (Z) 26 H rs . (%)<br />

Totals wî th No Window<br />

F12 Control s (Z)<br />

Numbers <strong>of</strong> Eggs<br />

Êarly De<strong>at</strong>hs<br />

Deve lop ing Emb ryos<br />

16<br />

2(12.501<br />

l4<br />

32 ?o<br />

4(r2.50) 1(5)<br />

28 19<br />

14<br />

13<br />

r(7.r4)<br />

15<br />

15<br />

o(o)<br />

Al ive wlth ¡¡o Defects<br />

2(12.501<br />

11(34.38) 6(30)<br />

5ß5.71)<br />

e (60)<br />

Al îve wîth Defects<br />

Dead wÌth No Defects<br />

3fi9.75)<br />

0 (0)<br />

9þ8.13, 10(50)<br />

4(12.50) 0(0)<br />

6 (42.86)<br />

0 (0)<br />

5ß3.331<br />

0 (0)<br />

Dead wìth Defect s<br />

9G6.25')<br />

4(12.50) 9(ì5)<br />

2(14.29)<br />

t (6.67)<br />

.,,.


0<br />

1<br />

0<br />

0<br />

a<br />

o<br />

TABLE 17. I'lALF0RÌ1ATi0NS F0LL0l/lNG INTRODUCTI0N 0F F 12 MEDIUM AT VARI0US INTERVALS AFTER !/INDO!/ING<br />

F12 F12 F12 F12 F12 No \^l indow<br />

<strong>at</strong> 50 Hrs. <strong>at</strong> 44 Hrs. <strong>at</strong> 38 Hrs, <strong>at</strong> 32 Hrs. <strong>at</strong> 26 l1rs. Controls<br />

open Cord Defects<br />

Open Brain Defects<br />

6<br />

0<br />

I<br />

I<br />

0<br />

1<br />

2<br />

1<br />

1<br />

1<br />

0<br />

0<br />

Microcephaìy<br />

10<br />

5<br />

E<br />

2<br />

3<br />

Eye Defec t s<br />

B<br />

3<br />

2<br />

1<br />

2<br />

FacÌal Defects<br />

2<br />

0<br />

1<br />

0<br />

1<br />

Trunk Defects<br />

I<br />

I<br />

0<br />

4<br />

0<br />

Trunk Cys ts<br />

L imb Bud Defects


Fis.<br />

13.<br />

Percentages <strong>of</strong> early de<strong>at</strong>hs and lâter de<strong>at</strong>hs<br />

and deformÌties following ìntroduction <strong>of</strong><br />

F 12 medium <strong>at</strong> varying periods after windowing<br />

<strong>at</strong> 26 hours. Ernbryos recovered <strong>at</strong> 7Z hours.


N Eorly Deothi<br />

N=10ó<br />

N<br />

a<br />

ú,<br />

o<br />

d,<br />

cô<br />

=¡t¡<br />

u-<br />

o<br />

Èe<br />

ó0<br />

N Al¡re, No Defects<br />

N Al¡ve, Defects<br />

Nl Deod, No Defects'<br />

Nl Deod, Defects<br />

50 HRS.<br />

44 HRS. 3B HRS. 32 HRS. 2ó HRS. CONTROLS<br />

MORTATITY AFTER INTRODUCTION OF FI2 AT VARY¡NG PERIODS<br />

AFTER WINDOWING (2ó HOURS)


B3<br />

Fl2 INTR0DUCTtqN<br />

Analysis <strong>of</strong> early de<strong>at</strong>hs and developing embryos in <strong>the</strong> combined<br />

experimental groups and <strong>the</strong> control group:<br />

Observed Va I ues 8 0<br />

899<br />

Degrees <strong>of</strong> Freedom<br />

I<br />

Chì Square (Y<strong>at</strong>es Correction) 0.06<br />

P<br />

N.S.<br />

i<br />

group:<br />

Analysls <strong>of</strong> eorly de<strong>at</strong>hs and developing embryos în experimental<br />

0bserved Values 2 4 1 1 0<br />

Degrees <strong>of</strong> Freedom<br />

14 28 19 13 15<br />

lr<br />

Chi Square 2.80<br />

P<br />

N.S.<br />

Analysls <strong>of</strong> l<strong>at</strong>er de<strong>at</strong>hs and defects in developing embryos <strong>of</strong><br />

each experimental g roup:<br />

Observed Va I ues<br />

Degrees <strong>of</strong> Freedom<br />

Chi Square<br />

P<br />

211 659<br />

3glo65<br />

04000<br />

94321<br />

12<br />

30. 44<br />

< 0.01


103<br />

51<br />

52<br />

28<br />

14<br />

4<br />

6<br />

No W î ndow<br />

Control s (2)<br />

11<br />

tt<br />

0 (0)<br />

r0(90.91)<br />

1 (9 .09)<br />

0 (0)<br />

0 (0)<br />

CELL REEXPANS iON AT<br />

Not Reexpand. Reexpand. Reexpand.<br />

Reexpand.(8) <strong>at</strong> êt ar<br />

50 Hrs. (*) 38 Hrs. (B) 26 Hrs. (%)<br />

l/lNDol.,lNG<br />

Tota l s<br />

Reexpanded<br />

I'lumber <strong>of</strong> Eggs \7<br />

23<br />

23<br />

10<br />

Early De<strong>at</strong>hs 29ß1 .7ol<br />

1 1 (47.83)<br />

1 1 (47.83)<br />

0 (0)<br />

Developing Embryos lB<br />

12<br />

12<br />

t0<br />

Al Íve with No Defects 8(17.02)<br />

5þ1.741<br />

5Q1.74)<br />

1o(1oo)<br />

Al îve with Defects 5(10.64)<br />

501.7\)<br />

4(17.39)<br />

0 (0)<br />

Dead with No Defects 1(2,13)<br />

1 (4.35)<br />

2 (8. 70)<br />

0 (0)<br />

Dead wi th Defecrs 4(8.51)<br />

I (4 .35)<br />

1 (4.35)<br />

0 (0)


No Wi ndow<br />

Control s<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

co<br />

Not Reexpand.<br />

Reexpand. <strong>at</strong> 50 Hrs.<br />

ANS ION AT VAR I<br />

Reexpand.<br />

ãt 38 Hrs.<br />

Reexpan d .<br />

<strong>at</strong> 26 Hrs.<br />

Open Cord Defects<br />

7<br />

2<br />

1<br />

ll<br />

open Bra in Defects<br />

2<br />

0<br />

2<br />

0<br />

Mi c rocepha I y<br />

2<br />

0<br />

I<br />

0<br />

Eye Defects<br />

5<br />

1<br />

2<br />

0<br />

Facial Defects<br />

4<br />

0<br />

2<br />

0<br />

Trunk Defects<br />

0<br />

1<br />

0<br />

0<br />

Trunk Cys ts<br />

0<br />

3<br />

1<br />

0<br />

Lîmb Bud Defects<br />

0<br />

0<br />

0<br />

0


Fi g. 14. Percentages <strong>of</strong> early de<strong>at</strong>hs and ì<strong>at</strong>er de<strong>at</strong>hs<br />

and deformÍtìes fol lowÌng reexpansion <strong>of</strong> <strong>the</strong><br />

air-ceìl <strong>at</strong> varying periods after windowing <strong>at</strong><br />

26 hours. Embryos recovered êt 72 hours.


NOT REEXP. 50 HRS. 38 ¡-IRS. 2ó HRS. CONTROTS<br />

¡.\<br />

oo<br />

N Eorly Deothi<br />

Nl Aliue, No Defects<br />

Nl Alive, Defects<br />

N beod, Nlo Defects<br />

N Deod, Defects<br />

MORTATITY AFTER REEXPANSION OF AIR CEIL AT..VARYING<br />

pERroDs AFTER WTNDOW¡NG 12ó HOURS)


88<br />

AtR qELL, REEXPANSI0N<br />

Analysls <strong>of</strong> early de<strong>at</strong>hs and developing ernbryos in <strong>the</strong> combined<br />

experímental groups and <strong>the</strong> control group:<br />

Observed Val ues Sl 0<br />

Degrees <strong>of</strong> Freedom<br />

52 tl<br />

Chi Square (Y<strong>at</strong>es Correction) 7.g5<br />

p<br />

. O.OI<br />

l<br />

groups:<br />

Analysis <strong>of</strong> early de<strong>at</strong>hs and deveroping embryos in <strong>the</strong> experimentar<br />

Observed Values 29 lt ll 0<br />

18 12 12 rO<br />

Degrees <strong>of</strong> Freedom 3<br />

Ch i Square n.65<br />

P < 0..01<br />

Analysis <strong>of</strong> l<strong>at</strong>er de<strong>at</strong>hs and defects in developing embryos <strong>of</strong> each<br />

experimental group:<br />

Observed Val ues<br />

Degrees <strong>of</strong> Freedom<br />

Chi Sq ua re<br />

P<br />

8 5 5 ro<br />

5540<br />

r120<br />

41 o<br />

9<br />

14.05<br />

N.S.<br />

\


Ro<br />

Comparison <strong>of</strong> Figs. 12, lJ and 14 shows thät obliter<strong>at</strong>ion <strong>of</strong> <strong>the</strong><br />

introduced air space reduces its ter<strong>at</strong>ogenic effect, part¡cularly when<br />

performed immedi<strong>at</strong>ely after windowíng. comparlson <strong>of</strong> <strong>the</strong> st<strong>at</strong>isticêl<br />

analyses, however, shows some incons¡stencies between <strong>the</strong> three<br />

expe r¡ ments 3<br />

(") early de<strong>at</strong>hs and deveroping embryos in <strong>the</strong> combined experimental<br />

groups and <strong>the</strong> control group:<br />

albumen ¡ n troduct ¡on<br />

F12 înt roduct i on<br />

air cell reexpanslon<br />

N.S.<br />

N.S.<br />

P < 0.01<br />

(b) early deêths and developing embryos in each experimental group:<br />

albumen introduction<br />

F12 i nt roduct i on<br />

aír cell reexpansion<br />

N.S.<br />

N.S.<br />

P < 0.01<br />

(") de<strong>at</strong>hs and defects in developíng embryos <strong>of</strong> each developing group<br />

<strong>of</strong> experimental emb ryos<br />

albumen ¡ntroduction<br />

F12 introduction<br />

air cel.l reexpansion<br />

P < 0.01<br />

N.S.<br />

0bl iter<strong>at</strong>ion <strong>of</strong> <strong>the</strong> introduced air space thus reduces <strong>the</strong> early<br />

deãth r<strong>at</strong>es within and between <strong>the</strong> experímental groups when albumen or<br />

F12 (but not air cell reexpansion) are emproyed. A more subtre reduction<br />

<strong>ln</strong> l<strong>at</strong>er de<strong>at</strong>hs and malform<strong>at</strong>íons is achieved by air cerr reexpansion<br />

(but not by albumen or Fl2), Despite <strong>the</strong>se difference <strong>the</strong> experiments<br />

confirm th<strong>at</strong> <strong>the</strong> presencè <strong>of</strong> an artìf ical. air space above.<br />

chick embryos <strong>at</strong> early developmental stages is hlghly ter<strong>at</strong>ogenic.


90<br />

5.4 BACTERt4L CUTTURE 0F UlNpohrEp EGGS<br />

One <strong>of</strong> <strong>the</strong> hazards <strong>of</strong> <strong>the</strong> windowing technic is <strong>the</strong> possibîlity <strong>of</strong><br />

acquired infection, which might play a role Ín <strong>the</strong> ter<strong>at</strong>ogen¡c action<br />

<strong>of</strong> ân introduced air space. Fur<strong>the</strong>rmore, one <strong>of</strong> <strong>the</strong> hypo<strong>the</strong>ses to<br />

account for <strong>the</strong> p<strong>at</strong>hogenes¡s <strong>of</strong> anencephaly s.uggests thât it may result<br />

from an extensive întra-uterine encephalomyel îtis (Brouwer, t9l6).<br />

For both <strong>the</strong>se reasons <strong>the</strong> sterility <strong>of</strong> <strong>the</strong> standard wîndowing<br />

techníc was assessed by making aerobic cultures <strong>of</strong> albumen on bloodagar<br />

ât <strong>the</strong> times <strong>of</strong> windowing (26 hours) and <strong>of</strong> fix<strong>at</strong>ion (72 hours).<br />

Bacterial cultures were taken from experimentêl eggs wíth embryos<br />

shovring early de<strong>at</strong>h and necrosis, as wel I as those developing to l<strong>at</strong>er<br />

stages' The control eggs were only cultured <strong>at</strong> <strong>the</strong> time <strong>of</strong> fix<strong>at</strong>ion.<br />

Examín<strong>at</strong>ion <strong>of</strong> <strong>the</strong> pl<strong>at</strong>es after A days growth <strong>at</strong> 3go0 reveôled<br />

some colonies on <strong>the</strong> track smeared by <strong>the</strong> wire loop,and some on background<br />

areas <strong>of</strong> <strong>the</strong> medium (which were regarded "a<br />

contaminants).<br />

"¡a-uoan.<br />

Tables 20 e 2_1: show th<strong>at</strong> <strong>the</strong> rnortal ity and malform<strong>at</strong>ions rêtes in<br />

experîmental (windowed) and control embryos <strong>at</strong> 72 hours correspond to<br />

those in o<strong>the</strong>r exper¡ments. <strong>ln</strong> Table 22 a number <strong>of</strong> blood-agar pl<strong>at</strong>es<br />

show Oorynebacterium colonies as background contam¡nants. There is no<br />

evídence <strong>of</strong> significant ínfection in wíndowed eggs.


9l<br />

TABLE 2P" MORTALITY AFTER Ii'INDOl,,'ING AT 26 HOURS..(FOR BACTERI{L CULTURE)<br />

Exper ¡ men ta l s<br />

Control s<br />

Number <strong>of</strong> Egg s<br />

Early De<strong>at</strong>hs<br />

Developing Emb ryos<br />

34<br />

7<br />

27<br />

l0<br />

0<br />

10<br />

Al ive wîth No Defecrs<br />

Al ive wi th Defecrs<br />

Deâd wi th No Defects<br />

Dead wi th Defects<br />

9<br />

t0<br />

1<br />

7<br />

9<br />

1<br />

0<br />

0<br />

TABLE 21. l"lALFoRI4ATtl<br />

I,,IALFORI4ATI ONS AFTER Ì,'I NDOhII NG AT<br />

(FOR BACTERIAL<br />

Exper í menta I s<br />

Control s<br />

Numbers <strong>of</strong> Emb ryos<br />

0pen Cord Defects<br />

open Brain Defects<br />

llî crocepha I y<br />

Eye Defects<br />

Facial Defects<br />

Trunk Defects<br />

Trunk Cys ts<br />

Limb Bud Defects<br />

27<br />

l0<br />

0<br />

tl<br />

t0<br />

3<br />

1<br />

4<br />

D<br />

10<br />

0<br />

0<br />

I<br />

1<br />

i<br />

0<br />

0<br />

0


92<br />

TABLE 22. ¡¡UI'ISELTS OF PLATES {ITH COLONIES AFTER,,¡[,DAYS GROWTH<br />

Bacl I I us<br />

Staph. albus Corynebâct.<br />

Exp erlmenta I s 0n Track<br />

0<br />

1<br />

f<br />

(2.6 Hrs. ) Backg round<br />

t<br />

2<br />

2<br />

Experimentaìs 0n Track<br />

(72 Hrs. ), Backg round<br />

Controls<br />

(72 Hrs. )<br />

0n Track<br />

Background


6 RESULTS OF EMBRYOLOG I cAL STUD I Es


94<br />

6.1 EMBRY0ûIIES I s 0L 0!!\- NEUR4L lErElrs<br />

To study <strong>the</strong> development <strong>of</strong> open neural defects, embryos were<br />

recovered <strong>at</strong> various intervals after windowing <strong>at</strong> 26-30 hours. Large<br />

groups <strong>of</strong> experímental and control embryos were fixed êt thê tíme<br />

<strong>of</strong> windowing, or 6, 18, _32<br />

and 42 hours l<strong>at</strong>eÉ (groups 0C,6E, 6C,!BE,l8C,<br />

30E, 30C, \2E \ZC). Excluding embryos showing early de<strong>at</strong>h and necrosis,<br />

each embryo was Staged, examîned for defects, and drawn with a camera<br />

I ucida <strong>at</strong>tachment.<br />

'<br />

Embryos in good condîtion <strong>at</strong> fix<strong>at</strong>ion were selected for serial<br />

sectîoning. Their histological changes were l<strong>at</strong>er compared to <strong>the</strong>lr<br />

appearance as whole embryosoas recorded in <strong>the</strong> camera lucída drawings<br />

(see Section 6.5 ) .<br />

6.1.1 Embryoníc- 9izes <strong>at</strong> 26 Houri.<br />

Because <strong>of</strong> diffîculty în Staging early emb,ryos without vîtal<br />

sta<strong>ln</strong>ing, development <strong>at</strong> <strong>the</strong> t¡me <strong>of</strong> windowing *", "r."r."1<br />

in terms <strong>of</strong><br />

blastoderm diameter (measured with a miliimeter ruler). <strong>ln</strong> embryos<br />

recovered <strong>at</strong> <strong>the</strong> time <strong>of</strong> windowing (OC), tneir sízes could be compared<br />

to <strong>the</strong> range <strong>of</strong> Stages, to índic<strong>at</strong>e <strong>the</strong> Stages <strong>of</strong> all <strong>the</strong> o<strong>the</strong>r exper¡-<br />

mental and cdntrol groups <strong>at</strong> 26 hours. The embryos recovered <strong>at</strong> <strong>the</strong> t¡me<br />

<strong>of</strong> wîndowín9 (OC) provided a base line for all <strong>the</strong> experimental ,groups<br />

(6E, tBE, 30E,428) and conrrol groups (6C, tBc,30c,42c).<br />

The sizes and Stages <strong>of</strong> group 0C embryos are given in Table 2l ,<br />

ênd <strong>the</strong> sizes <strong>of</strong> all o<strong>the</strong>r windowed groups are shown in Table 24.<br />

The range <strong>of</strong> sizes in group 0C is compared with sizes <strong>of</strong> group 6E, lBE,<br />

JOE, and 42E embryos <strong>ln</strong> Fig.l5A bB,and with <strong>the</strong> range <strong>of</strong> Stages ín Fig. 16A e B.


95<br />

TABLE 2?, SI,ZES AND STAGES OF DEVqIOIINC GLOUP OC EMBRYOS<br />

Slzes (mm)<br />

Stages (H¿H)<br />

1i<br />

1Z<br />

13<br />

5 6 7 8 9 t0 Totals (2)<br />

I<br />

2<br />

3<br />

3<br />

4<br />

7 ¡3.\6'<br />

7 (13.46)<br />

I (15.38)<br />

14<br />

4<br />

5<br />

I r (21.15)<br />

15<br />

l6<br />

1<br />

1<br />

2<br />

3<br />

2<br />

I<br />

7 u3.\6,<br />

7 (3.46)<br />

17<br />

1<br />

1<br />

2 (3.85)<br />

18<br />

1<br />

2<br />

3 ß.77)<br />

rotårs 3ß.77) 2(3.85)lo(19.23)13QÐ 18(34.62) 6(11.54152<br />

TABLE 24. SIZES OF DEVELOPING GROUP 6E. 18E. 3OE Ê 42E EMBRYOS<br />

S izes (mm)<br />

Groups<br />

r8Ê Tota I s (?)<br />

il<br />

3<br />

0<br />

1<br />

I<br />

5 Q'1t+)<br />

12<br />

13<br />

2<br />

,7<br />

3<br />

11<br />

2<br />

7<br />

7<br />

3<br />

14 (5.98)<br />

28(11.97)<br />

14<br />

15<br />

1'<br />

17<br />

15<br />

62(26 50)<br />

15<br />

16<br />

13<br />

4<br />

14<br />

t4<br />

r5<br />

2\<br />

14<br />

I<br />

56(23.93)<br />

50(21,37)<br />

17<br />

t<br />

3<br />

5<br />

5<br />

14( 5.98)<br />

r8<br />

t<br />

2<br />

2<br />

0<br />

5( 2.14)<br />

Tota I s<br />

\6<br />

73<br />

53<br />

23,9.


Fis. I5 A¿8, Range <strong>of</strong> s izes (mm.)<br />

68, tBE, 3cE and 42E<br />

<strong>of</strong> embryos in g roups<br />

conpared to group 0C.


97<br />

N=234<br />

ttt<br />

o<br />

d,<br />

ao<br />

ã<br />

t¡¡<br />

llo<br />

bq<br />

Ir t2 13 14 15 16 17 l8<br />

SIZES (mm) lN GROUPS óE,l8E,308,42E<br />

N=52<br />

il1213 14 15 ló17 18<br />

SIZES (mm) tN GROUP OC<br />

stzEs tN GRouPs oc,óE,l8E,3oE,42E


Figs. 16 AaB.. Range <strong>of</strong> sizes (mm. ) and Stages (UaH) ¡n<br />

group 0C.


N=52<br />

56789r0<br />

STAGES (H.&H.) rN GROUP rOC<br />

an<br />

o<br />

d<br />

co<br />

ñro<br />

IL<br />

o<br />

bq<br />

It 12 t3 t4 t5 ló t7 t8<br />

SIZES (mm) !N GROUP OC<br />

SIZES AND STAGES IN GROUP OC


100<br />

6.1.2 f4ortal í!y with Vsrying Periods <strong>of</strong> <strong>ln</strong>cub<strong>at</strong>ion _Af<br />

ter"}jindowin-9.<br />

The experimental embryos recovered 0, 6, 18, 30 and 42 hours after<br />

w<strong>ln</strong>dowing showed an increasing mortal íty with longer periods <strong>of</strong> incub<strong>at</strong>ìon<br />

(Table 25A and Fis. 17 ). The controls, by contrast, showed very<br />

few early de<strong>at</strong>hs. (ta¡le Z5S and Fig. l/i.<br />

St<strong>at</strong>istical analysis revealed a signÌficant dìfference in early<br />

de<strong>at</strong>hs between <strong>the</strong> combined experímental groups and <strong>the</strong> combined controls<br />

(P . 0.01). There were also signîficant dífferences in de<strong>at</strong>hs ênd defects<br />

betwêen (P


\28<br />

73<br />

20(27 .40)<br />

53<br />

21 (28.77')<br />

25ß4.25)<br />

1(1 .37)<br />

6(B,zz)<br />

15.20<br />

TABLE 2<br />

I'tO RTAL I TY<br />

URS AFTER I,J I N<br />

(EXPERIMENTAL GROUPS)<br />

qc<br />

Expe !'i men ta I<br />

6E<br />

Groups (%)<br />

188 308<br />

Number <strong>of</strong> Eggs<br />

iz<br />

h7<br />

66<br />

77<br />

Early De<strong>at</strong>hs<br />

0 (0)<br />

1 (2.13)<br />

4 (6.06)<br />

4(5.19)<br />

Develop<strong>ln</strong>g Emb ryos<br />

52<br />

46<br />

62<br />

73<br />

Al ive with No Defects<br />

48(92.31)<br />

350\.47)<br />

19Q8.79)<br />

20 (25.97)<br />

Al ive with Defects<br />

3ß.77)<br />

6(12.77)<br />

17 Q5.76)<br />

26(33.77)<br />

Dead with No Defects<br />

1(1.92)<br />

3 (6.38)<br />

16 (z\.2\)<br />

8 ( 10.39)<br />

Dead wi th Defects<br />

0 (0)<br />

z(4,26)<br />

10(15.15)<br />

19 (24 .68)<br />

Stages <strong>at</strong> F Í x<strong>at</strong> ìon<br />

5 -10<br />

5.- 12<br />

9-15<br />

11 -17


421..<br />

26<br />

25<br />

I (3.85)<br />

20 (76 .92)<br />

1 (3.85)<br />

0 (0)<br />

4(15.38)<br />

r4-20<br />

25 S. t'loRTALtrY' O. 6. 18. 30; e 42 HOURS AFTER lllND0WlNG (CoNTRoL ûRoUPS)<br />

0c<br />

cont rol<br />

6c<br />

eroups (E)<br />

18C 30c<br />

N¡rmbe rs <strong>of</strong> Eggs<br />

52<br />

22<br />

27<br />

25<br />

Early De<strong>at</strong>hs<br />

0 (0)<br />

0 (Ò)<br />

1 (3.70)<br />

0 (0)<br />

Developing Embryos<br />

52<br />

22<br />

26<br />

25<br />

Al ive with No Defects<br />

48(92.31)<br />

20 (90. 91 )<br />

20 (74.07)<br />

22 (88)<br />

Al ive with Defects<br />

3ß.77)<br />

0 (0)<br />

2(7.41)<br />

2 (8)<br />

Dead wl th No Defects<br />

1(r.92)<br />

1(4.55)<br />

0 (0)<br />

0 (0)<br />

Dead with Defects<br />

0 (0)<br />

1(4.55)<br />

4(14.81)<br />

1 (4)<br />

Stages <strong>at</strong> Fl x<strong>at</strong> ion<br />

5 - l0<br />

I - 11<br />

1t 13+<br />

13 - 1'Ì


Fig. 17.<br />

Percenteges <strong>of</strong> early de<strong>at</strong>hs and l<strong>at</strong>er de<strong>at</strong>hs<br />

and deformities 0, 6, 18, 30 and 42 hours after<br />

windowing <strong>at</strong> 26 hours.


00<br />

N Eorly Deoths<br />

,n<br />

-¡<br />

F-<br />

ô-<br />

xu.t<br />

Èa<br />

b\<br />

N<br />

N<br />

N<br />

N<br />

Alive, No Defects<br />

Alive, Defects<br />

Deod, No Defects<br />

Deod, Defects<br />

0c<br />

óE<br />

r8E<br />

30E<br />

428<br />

0c<br />

óc<br />

18C<br />

30c<br />

42C<br />

al,<br />

J<br />

L.'<br />

d.<br />

t-<br />

z<br />

o<br />

(J<br />

Ès<br />

100<br />

MORTALITY O,ó,18,30&42 HOURS AFTER WINDOWING (2ó HOURS)


05<br />

I,IORTALITY O; 6; IB: 30 Ê.42'IIOURS AFTER WINDOI,/ING<br />

Analysls <strong>of</strong> de<strong>at</strong>hs and developing embryos in <strong>the</strong> combined experimentâl<br />

groups and <strong>the</strong> combined control groups:<br />

Observed Val ues 29 z<br />

286 l5o<br />

Degrees <strong>of</strong> Freedom 1<br />

Chí Square (Y<strong>at</strong>es Correction). 9.07<br />

P < 0.01<br />

Analysis <strong>of</strong> early de<strong>at</strong>hs and developing embryos in <strong>the</strong> experimental<br />

groups:<br />

. observed Values o t 4 4 20<br />

52 46 62 73 53<br />

Degrees <strong>of</strong> Freedom '4<br />

Chl Square 39.25<br />

P < 0.01<br />

Analysîs <strong>of</strong> early de<strong>at</strong>hs and developing embryos ¡n <strong>the</strong> control groups:<br />

Observed Values O O I 0 l<br />

,2 22 26 25 25<br />

Degrees <strong>of</strong> Freedom 4<br />

Chi Square 3.79<br />

P<br />

N.s.<br />

Analysís <strong>of</strong> l<strong>at</strong>er de<strong>at</strong>hs and defects in developing embryos <strong>of</strong> each<br />

experlmental g roup :<br />

0bserved Vâ I ues 48 35 19 20 21<br />

36172625<br />

1 3 11 8 1<br />

0210196


ì06<br />

Degrees <strong>of</strong> Freedom 12<br />

Chi Square 102.\7<br />

P < 0.01<br />

Analysls <strong>of</strong> l<strong>at</strong>er de<strong>at</strong>hs and defects in developîng embryos <strong>of</strong> each control<br />

g roup:<br />

observed Values 48 Zo 20 Zz zO<br />

30221<br />

11000<br />

0l4tt1<br />

Degrees <strong>of</strong> Freedom 12<br />

Chi Square 15.15<br />

P<br />

¡1.s.


107<br />

6.1.3 l:legral Cþ;ure and Neglq I qe!e!:ts<br />

By exam<strong>ln</strong><strong>ln</strong>g and drawing such large numbers <strong>of</strong> embryos, normal and<br />

abnormal neural closure could be followed ín detall. The anteríor neuro,<br />

pore, normally closed by Stage 12 (Hami lton, 1965), hras still open in some<br />

experìmental and control ernbryos <strong>at</strong> Stailes 13 - ZO. Such a contînuous<br />

series <strong>of</strong> embryos showing an open anterior neuropore <strong>at</strong> Stâges immedi<strong>at</strong>ely<br />

after normal closure suggests th<strong>at</strong> <strong>the</strong> establ ished open brain defects seen<br />

În groups 3OE, l+28, € 42C ar¡se by non-closure (Table 26; Fi9s. tg €. 20)..<br />

During normal development, <strong>the</strong> rhomboid sinus assumes an oval shape<br />

and closes by Stage 15 .(Hami lton, 1965), though fÌnal closure cannot be<br />

fully confirmed until Stage 16 in whole embryos. <strong>ln</strong> sonie embryos with<br />

ên open rhomboid sínus, <strong>the</strong> neural folds formed an inverted triangular<br />

outl íne r<strong>at</strong>her than <strong>the</strong> normal oval shape (F¡gs. 24 ê 29. <strong>ln</strong> groups lgE,<br />

t8C, 30E 6 JOC open neural defects were present just craniaì to <strong>the</strong><br />

rhomboîd sinus, sometimes showing contînuity with <strong>the</strong> neu.al fold, <strong>of</strong> a<br />

triangular rhomboid sinus. This suggests th<strong>at</strong> establ ished open cord<br />

defects aríse by non-closure <strong>of</strong> <strong>the</strong> rhomboid sinus, whose neural folds<br />

form a trìangular r<strong>at</strong>her than an oval contour during non-closure<br />

(Flss. 19 È 2A.<br />

Ar<br />

.<br />

slightly l<strong>at</strong>er Stages (30E, 3OC, \zE, 42c) <strong>the</strong> additíon- <strong>of</strong> more<br />

somític mesodern in <strong>the</strong> caudal region resulted in open cord defects beíng<br />

loc<strong>at</strong>ed in <strong>the</strong> somite regîon. lJhen <strong>the</strong>se lesíons were examîned careful ly<br />

some formed a regular open area while o<strong>the</strong>rs showed an irregular contour<br />

(F¡s . 20).<br />

The histological appearances <strong>of</strong> regular and irregular<br />

open defects were l<strong>at</strong>er found to be quite d¡stinct (see Section 6.3 ).


hzE<br />

53<br />

42C<br />

z5<br />

51(96.4)2\(96)<br />

2(3.77) r (4)<br />

14(26.\2) 3(2)<br />

\0.55) 4(16)<br />

1(1.89) o(o)<br />

48 (90. 57) z r (84)<br />

r3(24.53) 0(o)<br />

12(22.64) 1(\l<br />

15-20 1\-20<br />

co<br />

TABLE 26. NEURAL CLOSURE O, 6, 18" 30 E 42 HOURS AFTER I,/INDOI,,IING (BY GROUPS) (Z)<br />

0c 6E<br />

18E 18C<br />

308<br />

30c<br />

Numbers <strong>of</strong> Eggs 49<br />

45<br />

22<br />

62<br />

26<br />

73<br />

25<br />

Open Ánter¡or Neuropore 40(81.63)<br />

25 (55. 56) 1 1 (50)<br />

7 (1.29)<br />

3 (1r .54)<br />

Closed Anterior Neuropore 9(1r8.37')<br />

20 (44.44) il (50)<br />

55 (88. 71 )<br />

23 (88.46)<br />

68(93.15) 25(1oo)<br />

open Brain Defects<br />

Hiçrocephaly 0 (0)<br />

2 (4.44) o(o)<br />

2(3.23)<br />

0 (0)<br />

5 (6.85) 0 (0)<br />

23ß1.5Jt 2 (8)<br />

Oval Rhomboid Sinus 49(100)<br />

4\(97 .78)22(1oo)<br />

42(67 .7\l<br />

26(roo)<br />

\2(57.531 19Q6)<br />

Triangul ar Rhombold Sînus 0(0)<br />

Closed Rhomboid Sinus 0(0)<br />

Regular Cord Defects 0 (0)<br />

1(2.22) 0(0)<br />

o(o) o(o)<br />

o(o) o(o)<br />

19 (30. 65)<br />

1(1.61)<br />

r (1 .61)<br />

0 (0)<br />

o (o)<br />

1 (3.85)<br />

18(24.66) o(o)<br />

13(17.81) 6(2\l<br />

26(35.62',) 1 (4)<br />

lrregular Cord Defects 0 (0)<br />

0 (0) 0 (0)<br />

1 (r .61)<br />

0 (0)<br />

5 (6.85) o (o)<br />

Stages <strong>at</strong> Fìx<strong>at</strong>lon 7-10<br />

7-12 8-11<br />

9-15<br />

t1-t3'<br />

11- -17 13-17<br />

)


Fig'<br />

18.<br />

Percentages <strong>of</strong> experimental ancl conirol embryos<br />

showing closure <strong>of</strong> <strong>the</strong> anterior neuropore 0, 6,<br />

18, J0 and 42 hours after windowing <strong>at</strong> 26 hours.


ffil Op"n Anterior Neuropore<br />

I I0<br />

N=38o<br />

f] Closed Anteiior Neuropore<br />

i-i Opun Broin Defecl<br />

,n<br />

F<br />

o-<br />

xt¡¡<br />

ñ<br />

óc<br />

r8E<br />

GROUPS<br />

lBc<br />

30E<br />

30c<br />

42Ê<br />

V'<br />

o üFz<br />

o()<br />

bq<br />

CLOSURE OF ANTERIOR NEUROPORE BY GROUPS


Fi g'<br />

19.<br />

Percentages <strong>of</strong> experimental and control embryos<br />

showing closure <strong>of</strong> <strong>the</strong> rhomboid sínus 0, 6, 18,<br />

30 and 42 hours after wìndowîng <strong>at</strong> 26 hours.


N=380<br />

El Ovol Rhonnboid 'Sinus ì<br />

looun<br />

ffi Triongulor Rhomboid SinusJ<br />

I Closed Rhomboid Sinus<br />

lD<br />

t-<br />

o-<br />

xu¡<br />

ÈE<br />

óc<br />

r8E<br />

GROUPS<br />

t8c<br />

30E<br />

30c<br />

428<br />

tn<br />

o<br />

ü,<br />

F.<br />

z<br />

o<br />

U<br />

Èq<br />

CLOSURE OF RHOMBOID S¡NUS BY GROUPS


lig. 20. Development <strong>of</strong> open brain and cord defects<br />

0, 6, 18, 30 and 42 hours after wíndowing <strong>at</strong><br />

26 hours.


Øl Open Broin Defecls<br />

N=384<br />

ffi F"sulor Cord oefects I<br />

Iopen<br />

El lrregulor Cord DefectsJ<br />

t,<br />

t-<br />

È<br />

x¡¿¡<br />

Èe<br />

30E<br />

428<br />

30c<br />

42C<br />

<strong>at</strong>,<br />

o<br />

æ,<br />

z.<br />

o<br />

u<br />

Èq<br />

OPEN NEURAT DEFECTS BY GROUPS


I l5<br />

l'/hen neural closure was assessed, only embryos with neural tissue<br />

(after St¿ge 6) could be incìuded (Hamilton, 1952). <strong>ln</strong> Table 26 and<br />

Flgs, 18 ê 19, closure <strong>of</strong> <strong>the</strong> anteríor neuropore and rhomboîd sìnus can be<br />

followed from 26 to 72 hours (Stages 7 - 2O'). The open braîn defects,:.regarded<br />

as arÌsing by non-closure <strong>of</strong> <strong>the</strong> anterior neuropore, were only clearly<br />

establ ¡shed in groups 30E g 42E, with one ,pont"n.ou, defect <strong>ln</strong> group 4ZC<br />

(nig. zo)<br />

Regular cord defects, regarded as arising from a tr¡angular rhomboid<br />

s<strong>ln</strong>us, coexist with an open rhomboid sînus as <strong>the</strong> position <strong>of</strong> <strong>the</strong> rhombold .l<br />

s<strong>ln</strong>us changes wlth <strong>ln</strong>creasing growth <strong>of</strong> <strong>the</strong> embryo. Open cord defects were<br />

recognlsable in groups 18E, 30E, ê q2E, with spontaneous exarñples in groups<br />

18C, 30C, E 42Ci in Fig. 20 <strong>the</strong>y are subdivided inro regular and irregular<br />

les lons.<br />

Figures 21-J0 show camera lucida drawíngs <strong>of</strong> <strong>the</strong> typical changes in<br />

embryos <strong>of</strong> <strong>the</strong> collected series:<br />

St. 9 - <strong>at</strong> <strong>the</strong> time <strong>of</strong> windowing (0C 15)<br />

St. 11 - open anterior neuropore and cysts (l8E 9)<br />

St. 1B - open brain defect and anophthalmia (42E'20)<br />

St. 13 i normal oval rhomboid sinus (l8c zo)<br />

St. l3 - abnormal triangular rhomboîd sinus (l8E 6l)<br />

st. 15 - early regular cord defect (30E 25)<br />

St. 19 - l<strong>at</strong>er regular cord defect (4iE l)<br />

St. 16 - early lrregular cord defect (lOt 73¡<br />

St. 17 - l<strong>at</strong>er irregular cord defect (4ze 52¡<br />

St. f5 - large cyst <strong>of</strong> caudal resion (3Og 3Z).


ligr. 21 - 30. Camera lucida drawings <strong>of</strong> a series <strong>of</strong> whole<br />

embryos (1 mm scaìe indic<strong>at</strong>ed) :<br />

FiS. 21 ,<br />

Normal St, 9 - embryo <strong>at</strong> <strong>the</strong> time <strong>of</strong><br />

windowing <strong>at</strong> 26 hou rs .


117<br />

lmm<br />

AT WINDOWING<br />

2ó-30 HOURS<br />

STAGE 9'<br />

octS


Fi s.<br />

22.<br />

lrregular open anteríor neuropore and trunk<br />

cysts in St. 11 embryo 1B hours after windowing.<br />

Fi g.<br />

23.<br />

Establ ished open braîn defect and anophthalmia<br />

in St. 1B embryo 42 hours after windowing.


lmm<br />

OPEN ANTERIOR NEUROPORE<br />

TRUNK CYSTS<br />

48 HOURS<br />

STAGE II<br />

l8E9


lmm<br />

OPEN BRAIN DEFECT<br />

Á,NOPHTHALMIA<br />

72 HOURS<br />

STAGE I8<br />

42820


Fis.<br />

2l+ .<br />

Normal oval shape <strong>of</strong> <strong>the</strong> rhomboid sinus in<br />

St. 13 control embryo lB hours after <strong>the</strong><br />

t i me <strong>of</strong> w i ndowi rrg.<br />

Fis.<br />

tE,<br />

Abnormal tr¡angular shape <strong>of</strong> <strong>the</strong> rhonboid<br />

sÍnus in St" 1l embryo 1B hours after windowing,


lmm<br />

OVAL RHOMBOID S¡NUS<br />

48 HOURS<br />

STAGE I3<br />

r8c20


123<br />

t1<br />

lmm<br />

TRIANGUTAR RHOMBOID SINUS<br />

48 HOURS<br />

STAGE 13<br />

18EóI


FiS. 26,<br />

Open neural folds extending from <strong>the</strong> rhomboid<br />

. sinus into <strong>the</strong> somite region, forming an early<br />

egulirr open cord defect, in St. 15 embryo<br />

J0 hours after wÌnciowìng.<br />

FiS, 27.<br />

Establ ished regular open cord defect in<br />

St. 19 embryo 42 hours after wíndowing.


t--J<br />

lmm<br />

EARLY OPEN CORD DEFECT<br />

REGUTAR TYPE<br />

óO HOURS<br />

STAGE I5<br />

30 E2s


t-l<br />

lmm<br />

IATER OPEN CORD DEFECT<br />

.<br />

REGULÁ,R TYPE<br />

72 HOURS<br />

STAGE 19<br />

42Et


Fìs. 28.<br />

lrregular neural folds without an open rhomboìd<br />

sinus, forming an early irregular open cord<br />

defect, ¡n St, 16 embryo 30 hours after windowîng.<br />

FiS. 29.<br />

Estãbt ¡shed i rregular op.n "o.d<br />

defect in<br />

St. l7 embryo 42 hours after windowing.


l2B<br />

t--l<br />

lmm<br />

EARLY OPEN CORD DEFECT<br />

IRREGULAR TYPE<br />

óO HOURS<br />

STAGE Ió<br />

30E73


129<br />

lmm<br />

LA,TEROPEN CORDDEFECT<br />

¡RREGULAR TYPE<br />

72 HOURS<br />

STAGE 17<br />

42E 52


Fis.<br />

30.<br />

Large caudal cyst Ìn an o<strong>the</strong>rwise normal<br />

St. 15 enbryo 30 hours after wÍndowing.


3ì<br />

lmm<br />

CAUDAL CYST<br />

óO HOURS<br />

STAGE 15,<br />

30E32


132<br />

6.1 .4 DeveloÞñent <strong>of</strong> oÞen Neúr¿il Deþslq<br />

l,lhen embryos are analysed in experlmental and control groups<br />

(Section 6.1.3) <strong>the</strong> exact tlmîng <strong>of</strong> neural closure cannot be assessed<br />

because each group incorpor<strong>at</strong>es a range <strong>of</strong> Stages. Analysîs <strong>of</strong> <strong>the</strong><br />

comb<strong>ln</strong>ed experímental groups and <strong>the</strong> coribined control groups ¡n terms<br />

<strong>of</strong> indlvÌdual Stages. (including group 0C ín both c<strong>at</strong>egories), provides<br />

more Inform<strong>at</strong>ion about neural closure after Stage 6.<br />

<strong>ln</strong> Table 2l and Fis. 3t , closure <strong>of</strong> <strong>the</strong> ânterîor neuropore is ._ "i<br />

complete in <strong>the</strong> control embryos by Stage .l3, so th<strong>at</strong> an open neuropore<br />

after thís Stêge cên be regarded as an open brain defect.<br />

Closure <strong>of</strong> <strong>the</strong> rhomboid sinus (taUle Z8 e Fig,32 ) occurs <strong>at</strong><br />

Stages l!:.l6 ¡n both experimental ênd control groups. A triangular<br />

rhomboid sînus is seen only in experimental embryos between Stages 11<br />

and 16. Open cord defects first appear <strong>at</strong> Stage i3 (Table 29 and FiS. 33 ),<br />

and occur <strong>at</strong> all Stages in <strong>the</strong> experímental group, as well as in three<br />

control embryos. The first appearance <strong>of</strong> open cord defects <strong>at</strong> Stage 13<br />

ls consístent w¡th <strong>the</strong> suggest¡on th<strong>at</strong> <strong>the</strong>y are preceded by a triangular<br />

rhomboid s i nus.


133<br />

TABLE 27, ANTERIOR NEUROPORE CLOSURE BY STAGES<br />

S tages Expe r I men ta I s (?)<br />

Open<br />

C I osed<br />

controts(%)<br />

Open e I osed<br />

7<br />

I<br />

12(4.26)<br />

15ß.32)<br />

0 (0)<br />

0 (0)<br />

¡2(8.16) o(o)<br />

16(1o.BB) o(o)<br />

9<br />

24 (8.5 r)<br />

0 (0)<br />

21(1t+.2-9) 0 (0)<br />

10<br />

tl<br />

12<br />

13<br />

l3 (4. 61 )<br />

6(2.13)<br />

2(o .71,<br />

2(0.71)<br />

r I (3.90)<br />

23 (8. 16)<br />

10 (3. 55)<br />

21(7 .45)<br />

2(1.36') l1(7.48)<br />

2(1.36) 12(8.16)<br />

1(0.68) 8(5.44)<br />

o(o) r3(8.84)<br />

r4<br />

15<br />

16<br />

1 (0.35)<br />

2(0.71)<br />

0 (0)<br />

40(r4.18)<br />

23ß.16')<br />

20(7.09)<br />

o(o) 2(1.36)<br />

0(0) 7$.76)<br />

o(o) r3(8.84)<br />

17<br />

18<br />

19<br />

1 (0. 35)<br />

r (0. 35)<br />

o (o)<br />

23 (8. 16)<br />

21(7.45)<br />

8 (2. 84)<br />

I (0.68) 8(5.44)<br />

0(0) 5(3.40)<br />

0(0) 10(6.80)<br />

20<br />

0 (0)<br />

3(r.06)<br />

0 (0) 3 (2.04)<br />

Totals Numbers<br />

<strong>of</strong> Embryos


Fig.<br />

31 .<br />

Percentêges <strong>of</strong> experinental and control embryos<br />

with an open or cìosed anterior neuropore <strong>at</strong><br />

each Stage. Open anterior neuropore after<br />

Stage 12 regarded as an open braìn defect,


ffi Opàn Anterior Neuropore<br />

135<br />

I Closed Anlerior Neuropore<br />

lrl = 3Bo<br />

[-Ì Op"n B¡'oin Defects<br />

EXPERIMENTATS<br />

gi ro<br />

À<br />

xtf,¡<br />

Àe5<br />

0<br />

0<br />

sT.7 I 9 r0 il 12 t3 14 15 tó 17 18 19 20<br />

.n<br />

.J.<br />

oa'<br />

e,<br />

z<br />

o(,<br />

E<br />

Èe l0<br />

coNTROTS<br />

CLOSURE OF ANTERIOR NEUROPORE BY STAGES


36<br />

TABLE ?8. RH0I4B0lD stNUs ctôs RF Ry ç-rarìF(<br />

Stages Experìmentals (?) Controls (%)<br />

Ova I Trìangu I ar Cl.osed Ova I Tr Iangul ar C I osed<br />

7<br />

I<br />

9<br />

10<br />

t1<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

12(4.26)<br />

15ß32)<br />

29 ( 1 0.28)<br />

24(8.5t)<br />

22(7.8o)<br />

15$32')<br />

12(4.26)<br />

27 ß.57)<br />

23ß.16)<br />

2(0.7r)<br />

o (o)<br />

0 (0)<br />

o (o)<br />

0 (0)<br />

0 (0)<br />

0 (0)<br />

0 (0)<br />

2 (o.71')<br />

t (0.35)<br />

g(r. rg)<br />

14 (4.96)<br />

5(.77¡<br />

I (2. 84)<br />

0.(0)<br />

0 (0)<br />

0 (0)<br />

0 (0)<br />

o (o)<br />

0 (0)<br />

o (o)<br />

0 (0)<br />

0 (0)<br />

o (o)<br />

0 (0)<br />

1 (0.35)<br />

4(1 .t+2)<br />

24(8.5t)<br />

22(7.80<br />

8 (2. 84)<br />

r2(8.16)<br />

,16 ( 10.88)<br />

25fi7)<br />

l3 (8. B4)<br />

1o (6.80)<br />

9ß.12)<br />

13 (8.84)<br />

2(1.361<br />

1 3 (8. 84)<br />

7 G.76)<br />

0 (0)<br />

0 (0)<br />

o (o)<br />

o(o) o(o)<br />

0 (0) 0 (0)<br />

o(o) o(o)<br />

o(o) o(o)<br />

o(o) o(o)<br />

0(0) o(0)<br />

o(o) o(o)<br />

0(0) 0(0)<br />

0(0) 5(3.40)<br />

o(o) 3(2.04)<br />

o(o) 6(4.08)<br />

-o(o)<br />

5(3.40)<br />

o(o) 5(3.40)<br />

20<br />

0 (0)<br />

0 (0)<br />

3(1.06)<br />

0 (0)<br />

o (o) 32.o\l<br />

Total! Numbers<br />

<strong>of</strong> Emb ryos


Fì s.<br />

32.<br />

Percentages <strong>of</strong> experImental and control embryos<br />

with an open or closed rhomboid sinus <strong>at</strong> each<br />

Stage. Open rhomboid sìnus divìded into oval<br />

and tríangular types.


N=38o<br />

H ovol Rhomboid sinus l^ r38<br />

ffi Triongrlor Rhomboid Sinusl<br />

fl Closed Rhomboid Sinus<br />

l(Jpen<br />

:i to<br />

t-<br />

o-<br />

xu¡<br />

ñ5<br />

sT.7 I<br />

9 l0 rr t2 '¡3 t4 15 ló 17 18 19 20<br />

CLOSURE OF RHOMBOID SINUS BY STAGES


t39<br />

DEFECTS BY STAGES<br />

Experimentals .(Z)<br />

Regular lrregular<br />

Control s (Z)<br />

Regular lrregular<br />

13<br />

r4<br />

15<br />

7 Q.48',)<br />

5(.77)<br />

B (2. 84)<br />

0 (0)<br />

I (0. 35)<br />

r (0. 35)<br />

I (0.68) o(o)<br />

0(0) 0(0)<br />

0(0) 0(0)<br />

16<br />

17<br />

IB<br />

19<br />

20<br />

I (2. 84)<br />

4(1 . \z)<br />

\(1.\2)<br />

2(o .71')<br />

2(0.711<br />

5u.77)<br />

6(2.13)<br />

56.tt',t<br />

0 (0)<br />

0 (0)<br />

I (0.68) o(o)<br />

0(0) 1(0.68)<br />

0(0) o(o)<br />

0(0) o(0)<br />

0(0) 0(0)<br />

Total Numbers<br />

Emb ryos


F¡ S. 33. Percentages Õf open cord defects <strong>at</strong> each Stage<br />

after St. 13. Defects divíded into regular<br />

and i rregul a r types.


4l<br />

N=38o<br />

ffi! Regulcr Cord<br />

ffil lrregulcr Cord<br />

O"f".t, l<br />

Iop*n<br />

DefecrsJ<br />

.J'<br />

o-<br />

xl¡.¡<br />

Èe<br />

.n<br />

o<br />

É<br />

t-<br />

z<br />

o<br />

L'<br />

Be<br />

OPEN CORD DEFECTS BY STAGES


142<br />

6.1.5 Distríbution <strong>of</strong> 0pen CorrJ Defects<br />

Thé condtant addition <strong>of</strong> somltes during embryonic growth results<br />

<strong>ln</strong> open corcl defects being found <strong>at</strong> a gre<strong>at</strong>er distance from Hensenrs node i¡<br />

older embryos. This is demonstr<strong>at</strong>ed by dividing <strong>the</strong> trunk into somite<br />

and post-soml te reglons,<br />

Table 30 and Fig.J4 show <strong>the</strong> numbers <strong>of</strong> embryos with regular and<br />

irregular cord defects ín each <strong>of</strong> <strong>the</strong>se two regions, <strong>ln</strong> <strong>the</strong> experímental<br />

embryos, lesíons occur <strong>at</strong> <strong>the</strong> post-somite region in group l8E, <strong>at</strong> both<br />

regíons in group 30E, and <strong>at</strong> <strong>the</strong> somite region in group 42E,<br />

When <strong>the</strong> experimental and control groups êre rearranged in terms <strong>of</strong><br />

Stêges, experimental embryos show lesions in both regions êt Stages<br />

t3-16, but only in <strong>the</strong> som¡te region by Stages 1/-20 (taUle 3l and Fi9.35 ).<br />

lf <strong>the</strong> mid-point <strong>of</strong> each lesion în experinental embryos <strong>of</strong> Stages<br />

17-20 is determined in <strong>the</strong> camera lucida drawings, <strong>the</strong> distribution <strong>of</strong><br />

open cord defects can be expressed in terms <strong>of</strong> <strong>the</strong>ír somite levels.<br />

Table 32 and Fig.36 show th<strong>at</strong> <strong>the</strong> mid-poínts <strong>of</strong>most lesions ¡ie between<br />

somítes 21 and ll, with little difference between <strong>the</strong> regular and i rregular<br />

defects.


143<br />

TR IBUTION OF<br />

D DEFECT5<br />

N umbe rs<br />

<strong>of</strong><br />

Embryos<br />

Regular<br />

Somî te<br />

level<br />

Q)<br />

Below<br />

somitgs<br />

lrregular (?)<br />

Somite<br />

level<br />

Below<br />

som i tes<br />

18E<br />

62<br />

0 (0)<br />

1(0.53)<br />

o(o) r (0.53)<br />

3oE<br />

4zE<br />

73<br />

53<br />

eþ.7e)<br />

13,(6.91)<br />

19(10.1r)<br />

0 (0)<br />

3 (l .60) 2 (1 .06)<br />

r2(6.38) o(0)<br />

r8c<br />

30c<br />

42c<br />

26<br />

25<br />

25<br />

0 (0)<br />

1(1 .32)<br />

0 (0)<br />

1(r.32)<br />

0 (0)<br />

0 (0)<br />

0(0) o(o)<br />

0(0) o(o)<br />

1(132) o (o)


Fi s.<br />

"l!<br />

Percentage distrìbution <strong>of</strong> open cord defects<br />

<strong>at</strong> somÌte or post-somite levels 18, 30 and<br />

42 hours after windowing. Defects divided<br />

into regular and irregular types.


145<br />

ffit Regulor Cord Defects<br />

ñ=2ó4<br />

El lrregulor Cord Defects<br />

SOMITE<br />

ar)<br />

o<br />

æ<br />

cô<br />

ã<br />

It¡<br />

Dq<br />

BELOW SOMITES<br />

t8E 30E 428 ,t8C 30C 42C<br />

DISTRIBUTION OF OPEN CORD DEFECTS AT SOMITE<br />

oR POST-SOMTTE LEVELS (BY GROUPS)


lrregul ar (Z)<br />

somi te be low<br />

level somites<br />

0(0) 0(0)<br />

0 (0) 0 (0)<br />

o(o) o(o)<br />

o(o) o(o)<br />

l(1.32) o(o)<br />

o (o) o (o)<br />

0 (0) 0 (0)<br />

0(0) 0(0)<br />

o\<br />

TABLE 31 . DISTRIBUTION OF OPEN CORD DEFECTS BY STAGES<br />

Stage<br />

Regu l.a r<br />

somi te<br />

level<br />

Exper i men ta I s<br />

&) lrregular (?)<br />

below som ï te below<br />

somites level somi tes<br />

Controls<br />

Regular (%)<br />

somi te below<br />

level somites<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

3(r.60) 5Q.66) o(o)<br />

2(r.06) \(2.13) o(o)<br />

2(1.06) 52.66]. 1 (0.53)<br />

2(t.06) 6(3.19) 3(r.60)<br />

5Q.66) o (o) 6(3.19)<br />

4(2.13) o(o) 5Q.661<br />

2(1.06) o(o) o(o)<br />

2(r.06) 0(0) 0(o)<br />

o (o) o (o)<br />

1(0.53) 0(0)<br />

0 (0) 0 (o)<br />

2(1.06) 1(1.32)<br />

o(o) o(o)<br />

0(0) 0(0)<br />

o(o) o(o)<br />

0(0) 0(0)<br />

1(1.32)<br />

o (o)<br />

0 (0)<br />

0 (0)<br />

o (o)<br />

0 (0)<br />

0 (0)<br />

0 (o)<br />

Numbers <strong>of</strong> Emb ryos<br />

188<br />

76


Fis.<br />

35.<br />

Percentage d¡stribution <strong>of</strong> open cord defects<br />

<strong>at</strong> somlte or pcst-somite ìeveìs <strong>at</strong> each<br />

Stage after St. 13. Defects divíded into<br />

regular and irr:egular types"


ì48<br />

N=2ó4<br />

ffi<br />

m<br />

Regulor Cord Defects<br />

trregulor Cord Defects<br />

,t;<br />

l--<br />

A-<br />

X<br />

¡¡l<br />

ñ<br />

5<br />

5<br />

tn<br />

o<br />

&L<br />

'20<br />

o<br />

I<br />

ñ.<br />

sr. t3<br />

SOMITE LEVEL<br />

BELOW SOMITES<br />

t8 19j 20<br />

SOMITE IEVEt<br />

BELOW SOM¡TES<br />

D¡STRIBUTION OF<br />

OR POST.SOMITE<br />

OPEN CORD DEFECTS AT SOMITE<br />

TEVELS (BY STAGES)


149<br />

TABLE 32. SOI4ITE LEVELS OF l4ID;POINTS.OF OPEN NEURAL DEFETTS<br />

Som i tes Resular (%) I rr"eg u I ar (Z)<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

2l+<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

3l<br />

1(0.53)<br />

0 (0)<br />

o (o)<br />

0 (0)<br />

0 (0)<br />

I (0.53)<br />

2(1.06)<br />

2(f.06)<br />

0 (0)<br />

0 (0)<br />

0 (0)<br />

6(3.19)<br />

I (0.53)<br />

2(1.06)<br />

0 (0)<br />

0 (0)<br />

0 (0)<br />

0 (0)<br />

0 (0)<br />

r (0.53)<br />

r (0.53)<br />

0 (0)<br />

0 (0)<br />

2Il .06)<br />

7 ß.72')<br />

3(r.60)<br />

1(0.53)<br />

r (0.53)<br />

0 (0)<br />

r (0.53)<br />

_.<br />

Total Number <strong>of</strong><br />

Experimental Embryos<br />

188


Fis.<br />

36.<br />

Percentage distrîbution <strong>of</strong> <strong>the</strong> somite level.s<br />

<strong>of</strong> mid points <strong>of</strong> open neural defects ¡n<br />

experimental embryos <strong>of</strong> Stages 1/-20,


SOMITE LEVELS OF MID-POINTS OF OPEN NEURAL DEFECTS<br />

ffil Regulor Cord Defects<br />

N =188<br />

I lrregulor Cord Defects<br />

<strong>at</strong>,<br />

F<br />

Â-<br />

X<br />

l¡J<br />

ÈR<br />

soM.r7.<br />

t8<br />

19<br />

20 2'l 22 ¿3 24 25 26 27 28 29 30 3r<br />

¡N EXPTAI. EMBRYOS AT STAGES 17.20


152<br />

6.2 sPtIA! LFVELS 0F oPEN CORp DEF.ECTS rN 12 pAY EMBRYoS<br />

The range <strong>of</strong> malform<strong>at</strong>ions produced by windowing <strong>at</strong> 26 hours încreases<br />

wlth prolonged embryonic growth. Embryos recovered <strong>at</strong> 72 hóurs show neural<br />

defects and trunk cysts. At 5 days non-neural defects are apparent, and <strong>the</strong>se<br />

êre more widespread by f2 days (Sect.ion j.2)..<br />

The group <strong>of</strong> experimental embryos th<strong>at</strong> survîved to 12 days were<br />

examîned for external .malform<strong>at</strong>ions, and <strong>the</strong>n :ubjected to cartìlage<br />

staining with alcian blue .(Ojeda et aì., 1970) to display any skeletal .. .:<br />

defects. This revealed <strong>the</strong> level and extent <strong>of</strong> <strong>the</strong> vertebral abnormal ities<br />

associ<strong>at</strong>ed with each open neural defect.<br />

Because <strong>the</strong> distinction between myeloschisis and myelodysplasia was<br />

not absolutely clear <strong>at</strong> 12 days, <strong>the</strong> two are combined în Table 33 and Figs.3?a38.<br />

Control embryos (with no growth retârd<strong>at</strong>ion) were recovered <strong>at</strong> 11 days,<br />

to provide a comparable range <strong>of</strong> Stages.<br />

Figs. 39 and 40 demonstr<strong>at</strong>e <strong>the</strong> difference in grosa appeârance between<br />

<strong>the</strong> two types <strong>of</strong> open cord defects in <strong>the</strong>ir extreme forms. Myelosch,î.sis<br />

consists <strong>of</strong> an exposed, regular neural plaque, while myelodysplasia<br />

involves a more irregular defect, part¡ally covered by skin.<br />

A coìlection <strong>of</strong> four embryos with open neural defects (Fig. 41)<br />

demonstr<strong>at</strong>es <strong>the</strong> fairly uniform level <strong>of</strong> <strong>the</strong> defects, with reduc.t¡on <strong>of</strong> <strong>the</strong><br />

rump and tail in two embryos.<br />

Non-neural malform<strong>at</strong>ions (Fig. À2 ) consist <strong>of</strong>:<br />

a) ectopia v i s cerum<br />

b) uni l<strong>at</strong>eral anophthalmia (wlth a crossed beak)<br />

c) bil<strong>at</strong>eral anophthalmia (wíth a short but central upper beak)<br />

d) reduction <strong>of</strong> <strong>the</strong> rump and tail


t53<br />

TABLE- 33,.VER,TE-BRAL qEFqcTs AT 11' 12 DAYS FOLLqvJING.l¡/INDOT.¡ING-<br />

4T 26 tIOUBs<br />

Numbers <strong>of</strong> Emb ryos<br />

Spina<br />

.Bifida Occul ta<br />

Spîna Bifida Manífesta<br />

Vertebra I Del et i ons<br />

Lengths <strong>of</strong> S. B. 0cculta<br />

Lengths <strong>of</strong> S.B. l4anifesta<br />

69<br />

t8<br />

42<br />

30<br />

1-11 verteb rae<br />

3-15 vertebrae<br />

62<br />

0<br />

1<br />

l1<br />

0 verteb rae<br />

6 verteb rae<br />

Lengths <strong>of</strong> vertebrar Deretions 1-1g vertebrae 6-t5 vertebrãe<br />

Range <strong>of</strong> S tages 35-39 35-39


Fìgs. 37'38,<br />

Vertebral defecrs in Ìndividual experimenral<br />

and control embryos <strong>at</strong> 1Z.and ll days. Each<br />

bar represents one embryo.


CERVICAL<br />

THORACIC<br />

LUMBAR<br />

FUSED<br />

CAUDAL<br />

FREE<br />

CAUDAL<br />

PYGOSTYTE<br />

N=ó9<br />

ø Spino Bifido Occulto<br />

n Vertebrql Deletions<br />

tr Spino Bifidq Monifesto<br />

I Open Cord Defect<br />

.n<br />

l¡¡<br />

lt¡<br />

J<br />

d.<br />

cô<br />

t¡l<br />

t-<br />

æ,<br />

1¡¡<br />

w<br />

VÅ øt<br />

wm<br />

w<br />

!ND|VIDUAL EXPER|MENTAI EMBRYOS (12 DAYS)<br />

VERTEBRAL DEFECTS IN EXPERIMENTAT EMBRYOS


CERVICAT<br />

THORACIC<br />

LUMBAR<br />

FUSED<br />

CAUDAL<br />

FREE<br />

CAUDAT<br />

PYGOSTYTE<br />

\o<br />

N=ó2<br />

@<br />

@<br />

Spino Bifidq Oèculto<br />

Verîebrol Deletions<br />

tr<br />

I!<br />

Spino Bifido Monifesto<br />

Open Cord Defects<br />

.u,<br />

t¡¡<br />

u¡<br />

d.<br />

co<br />

t¡¡<br />

l-<br />

É,<br />

t¡¡<br />

INDIVIDUAL CONTROT<br />

,VERTEBRAT DEFECTS IN<br />

EMBRYOS {il DAYS}<br />

CONÏROL EMBRYOS


Figs. 39 - 42. Malform<strong>at</strong>ions ¡n exper¡rneñtal embryos êt i2 ciays:<br />

Fis. 39. Oþen cord defect (probably regular type) .<br />

FîS. 40,<br />

Unil<strong>at</strong>eral anophthalmia, crossecl beak, rumplessness,<br />

and open cord defect (probabîy írregular type) .<br />

FiS. 41.<br />

0pen cord defects and varying degrees <strong>of</strong> rumplessness<br />

ìn four emb ryos .<br />

Fig. 42,<br />

Ectopìê vìscerum, open brain ¿efect and short upper<br />

beakrbil<strong>at</strong>eral anophthalmîa and short upper beak,<br />

un¡l<strong>at</strong>erâl anophthalmiã and crossed beak.


---l<br />

r<br />

r'I<br />

*<br />

40


ì58<br />

One embryo shows ðn open brain (with a short upper beak), which can be<br />

compa red to rhe same defect <strong>at</strong> 72 hours (f¡g. Z3 ).<br />

Skeletal stain<strong>ln</strong>g <strong>of</strong> <strong>the</strong> experimental and control embryos revealed<br />

three types <strong>of</strong> vertebral defects:<br />

a) sp<strong>ln</strong>a biflda occulta (with no external neural defect)<br />

b) sp<strong>ln</strong>a bifida mênîfesta (associ<strong>at</strong>ecl with myeloschisis and myelodysplasia)<br />

c) reduction oi irregularíty.<strong>of</strong> <strong>the</strong> lumbar, sacral and caudal<br />

vertebrae. F.igs.43-46 demonstràte spîna bifida occul ta, spina blflda<br />

manifesta, rumplessness, and lumbo-sacral irregularity in four cleared<br />

emb ryos .<br />

There is not full agreement on <strong>the</strong> number <strong>of</strong> vertebrae in each<br />

region <strong>of</strong> <strong>the</strong> chick spine, because <strong>of</strong> <strong>the</strong> difficulty in assigning<br />

transitional vertebrêe to a particulãr region. The control embryos in<br />

this study general ly possessed:<br />

l4<br />

cervi ca I vertebrae<br />

7 thorac i c vertebrae<br />

4 I umbar verteb rae<br />

2 sacral verteb räe<br />

6 (5-7) fused caudal vertebrae<br />

6 (5-7) free caudal vertebrae<br />

4 (3-5) pygostyle segmenrs.<br />

Table ll<br />

and Figs. 37 and JB show <strong>the</strong> numbers <strong>of</strong> experimental<br />

and control embryos with three recognisable vertebral defects -spina<br />

bifida occulta, spina bifida manifesta (enclosing <strong>the</strong> Open neural defects),<br />

and deletîons <strong>of</strong> whole vertebrae. From Fí9.J/ ît is apparent th<strong>at</strong>:


t59<br />

a) spîna bif¡da occulta is seen mainly in <strong>the</strong> cervical region<br />

b) sp<strong>ln</strong>a b.ifida manifesta occurs from <strong>the</strong> rower thoracic to <strong>the</strong> upper<br />

caudal reg ions<br />

c) vertebral deletions are almost conf<strong>ln</strong>ed to <strong>the</strong> caudal region.<br />

The control embryos show a simílar p<strong>at</strong>tern <strong>of</strong> spontâneous vertebral<br />

deletions, and one spontêneous spîna bifida manlfesta(Fig; 38 ).


FÌgs. 43 - 46, Vertebral defects in <strong>the</strong> lumbo*sacral region<br />

<strong>of</strong> 12 day embryos I<br />

Fis.. tú.<br />

Spina bifìda manìfesra.<br />

FiS. 144.<br />

Spina bifída manifestâ and rumplessness.<br />

Fig. 45.<br />

Spina bifida occul ta (only rarely seen in lumbosacral<br />

region).<br />

Fig. 46,<br />

Spina bÌfida manifesta, rumplessness, and extensîve<br />

vertebral i rregulari ty <strong>of</strong> cauilal region.


:al .<br />

'**Ç- 4<br />

ff,<br />

À(,)<br />

ftø 9-' o-<br />

,.¡å ,S,<br />

À<br />

o


t6l<br />

6.3 DESCRIPTION OF HISTOLOGICAL APPEARANCES<br />

Embryos recovered 0 to lt2 hours after wíndowing (Section 6.1)<br />

were exam<strong>ln</strong>ed hîstological ly in serlal sections. Because <strong>the</strong> neural<br />

defects observed after dífferent perìods <strong>of</strong> incub<strong>at</strong>ìon showed a progresslon<br />

<strong>of</strong> changes, <strong>the</strong> embryos were examined <strong>ln</strong> four groups <strong>of</strong> Stages<br />

(see Sect ion 4.8.2) .<br />

The general description <strong>of</strong> <strong>the</strong> histology typical <strong>of</strong> Group I - lV<br />

embryos ís based on <strong>the</strong> appeêrance <strong>of</strong> each embryonic system.<br />

<strong>ln</strong> some embryos <strong>the</strong>re was dorsal splitting <strong>of</strong> <strong>the</strong> closed neural tube<br />

(<strong>at</strong> l<strong>at</strong>er s tages ) ,...or- sepa ra t î on <strong>of</strong> notochord and somites from <strong>the</strong> neural<br />

tissue (<strong>at</strong> earl ier stages). Both were caused by shrinkage <strong>of</strong> <strong>the</strong> embryos<br />

during processing and were quíte different from <strong>the</strong> appearance <strong>of</strong> open<br />

neural defects (figs. 89 - 94).<br />

6.3.1 Stage !0 Control Embryos (Group l)<br />

The neural pl<strong>at</strong>e was closed or closing cver <strong>the</strong> brain-and presomite<br />

areas, closing or inverted in <strong>the</strong> somite area, inverted <strong>ln</strong> <strong>the</strong> protosomlte<br />

area, elev<strong>at</strong>ed <strong>at</strong> <strong>the</strong> anter¡or rhomboid s<strong>ln</strong>us, and elev<strong>at</strong>ed or<br />

fl<strong>at</strong>tened <strong>at</strong> <strong>the</strong> posteiior rhomboid sinus,<br />

The neural folds about to close showed swell ing and rounding <strong>of</strong><br />

<strong>the</strong> free edges, which were <strong>of</strong>ten inverted into <strong>the</strong> future neural- canal.<br />

At thê rhomboid sinus differentî<strong>at</strong>¡on <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e was revealed<br />

by marginal foldîn9 and elev<strong>at</strong>ion above <strong>the</strong> level <strong>of</strong> <strong>the</strong> adjacent<br />

ectoderm. This region <strong>of</strong> neural pl<strong>at</strong>e showed a regular êrrangement <strong>of</strong><br />

cells perpendicular to <strong>the</strong> exposed dorsal surface. After neural closure<br />

(<strong>at</strong> more cranial levels), <strong>the</strong>se cells retaîned <strong>the</strong> same orîent<strong>at</strong>ion to<br />

each o<strong>the</strong>r and to <strong>the</strong> surface (which <strong>the</strong>n enclosed <strong>the</strong> lumen <strong>of</strong> <strong>the</strong> neural<br />

tube).


162<br />

lmnedi<strong>at</strong>ely after closure, separ<strong>at</strong>ion <strong>of</strong> neural crest tissue was<br />

apparent: Cránially <strong>the</strong>. rhombîc ro<strong>of</strong> was seen to be closing <strong>at</strong> Stage lO,<br />

and thìckened by Stage 10. Caudal ly <strong>the</strong>re were no âccessory neural canals,<br />

and no o<strong>the</strong>r signs <strong>of</strong> an overlap zone. Differenti<strong>at</strong>ion <strong>of</strong> neural tissue<br />

from ectoderm was alreâdy apparent, though <strong>the</strong> ectoderm was cont¡nuous<br />

w¡th <strong>the</strong> neural folds <strong>at</strong> unclosed areas and ¡n contact v,r¡th <strong>the</strong> neural<br />

tube <strong>at</strong> closed areas.<br />

The notochord was <strong>ln</strong> close contact with neural tissue from <strong>the</strong> future<br />

midbra<strong>ln</strong> down to <strong>the</strong> protonobchord. Somitic mesoderm was general ly in .. ":<br />

contact with neural t¡ssue <strong>at</strong> <strong>the</strong> level <strong>of</strong> <strong>the</strong> somites, but not in <strong>the</strong> areas<br />

<strong>of</strong> unsegmented and fused mesoderm <strong>at</strong> <strong>the</strong> rhomboid sinus. The somìtes were<br />

all well formed, with no evidence <strong>of</strong> reduced volume and no cyst¡c or<br />

hemorrhag i c changes .<br />

The prîmitive streak and Hensenrs node were prominent, with no form<strong>at</strong>ion<br />

<strong>of</strong> a ta¡l-bud <strong>at</strong> thîs Stage.<br />

63,2 Stage l0 Experimental Embryos (Gtoup l)<br />

The histologícal appearances <strong>of</strong> <strong>the</strong>se embryos were similar to those <strong>of</strong><br />

Stage 10 control s for:<br />

a) neural cJosure<br />

b) neural foldins<br />

c) form<strong>at</strong>îon <strong>of</strong> neural crest<br />

d) development <strong>of</strong> <strong>the</strong> rhombic ro<strong>of</strong><br />

e) absence <strong>of</strong> an overlap zone<br />

f) continulty <strong>of</strong> neural folds with ectoderm<br />

S) close contact <strong>of</strong> notochord with neural tissue<br />

h) contact <strong>of</strong> somites with neural tïssue<br />

î) no cyst¡c or hemorrhagic changes


t63<br />

j) ênd prom¡nence <strong>of</strong> Hensenrs node and <strong>the</strong> primltive streak.<br />

Howéver in two embryos (68 4l , 6E 45) <strong>the</strong>re was a defînite appeêr_<br />

ance <strong>of</strong> sllght eversion <strong>of</strong> <strong>the</strong> neurar fords <strong>at</strong> <strong>the</strong> posteríor rhomboid sinus,<br />

r<strong>at</strong>her than <strong>the</strong> wlde erev<strong>at</strong>ron or fr<strong>at</strong>tenrng seen in <strong>the</strong> contro¡ and o<strong>the</strong>r<br />

experlmental embryos. These two embryos still showed an orderly arrange_<br />

ment <strong>of</strong> cells perpendicular to <strong>the</strong> well-preserved dorsal surface <strong>of</strong> <strong>the</strong><br />

open neural pl<strong>at</strong>e (Fi9. 47 and 48).'<br />

6.3.3 Stage l1-.|2 Control Embryos (Grouo ll)<br />

Neural closure extended from <strong>the</strong> brain down to <strong>the</strong> antèrior rhomboid"<br />

s<strong>ln</strong>us, with closing or elev<strong>at</strong>ed neural folds <strong>at</strong> <strong>the</strong> posterior rhomboid<br />

sinus. The rhombic ro<strong>of</strong> was thinner by Stage ll+ than <strong>at</strong> Stage tO<br />

(rls. lo3).<br />

The first signs <strong>of</strong> accessory neural canars were seen <strong>at</strong> <strong>the</strong> rhomboid<br />

sinus. The overlap zone could in fact be traced up as far as <strong>the</strong> proto_<br />

somite area when asymmetry <strong>of</strong> <strong>the</strong> neurar tube r<strong>at</strong>her than <strong>the</strong> presence <strong>of</strong><br />

accessory canals was taken as a criterion..<br />

As în Stage lO <strong>the</strong> areas <strong>of</strong> unclosed neura.l pl<strong>at</strong>e were continuous<br />

wlth, but sharply distinguishable from, adjacent ectoderm, .<strong>ln</strong> <strong>the</strong> bra<strong>ln</strong><br />

regign, ectoderm was separ<strong>at</strong>ed from <strong>the</strong> underlying neural tube by neural<br />

crest cells,but not <strong>at</strong> this stage by migr<strong>at</strong>ing somit¡c mesoderm,<br />

The notochord was in close contact with <strong>the</strong> neurêl tube or neural<br />

pl<strong>at</strong>e over <strong>the</strong> somite, protosomíte, and anterior rhomboid sinus areês, but<br />

was general ly not in contact with <strong>the</strong> midbrain and hindbrain. somites and<br />

protosom¡tes were also in contact with <strong>the</strong> neurar tube,but this contact was<br />

not maintained with unsegmented and fused mesoderm <strong>of</strong> <strong>the</strong> rhomboid sinus.<br />

The somltes showed a normal sequence <strong>of</strong> changes, wlth no cyst¡c or hemo_<br />

rrhagic areas and no reduction .in volume.


164<br />

Hensenrs node and <strong>the</strong> primitive streak were stil I prominent, w¡th<br />

no eví de¡ice <strong>of</strong> ta I I -bud form<strong>at</strong> Ìon.<br />

6.1.t+ Stagé 1l-12 Exöéf irhérital Embivos (Groun I l)<br />

All experimental embryos showed retard<strong>at</strong>ion <strong>of</strong> neural closure.<br />

<strong>ln</strong> general, <strong>the</strong> braÌn region was closed but <strong>the</strong> neural pl<strong>at</strong>e wss still<br />

clos<strong>ln</strong>g over <strong>the</strong> somite and protosomlte areas, inverted or elev<strong>at</strong>ed <strong>at</strong><br />

<strong>the</strong> anter¡or rhomboid s<strong>ln</strong>us, and elev<strong>at</strong>ed or fl<strong>at</strong>tened <strong>at</strong> <strong>the</strong> posterior<br />

rhombold s inus .<br />

One embryo (6E 34) showed definite eversion <strong>of</strong> <strong>the</strong> neural folds <strong>at</strong><br />

<strong>the</strong> posterîor rhomboid s<strong>ln</strong>us, similar to <strong>the</strong> appearance <strong>of</strong> <strong>the</strong> two stage to<br />

experimental embryos. Toge<strong>the</strong>r with <strong>the</strong> retarded closure <strong>of</strong> <strong>the</strong> neural<br />

folds was an appêrent delay ín appearânce <strong>of</strong> <strong>the</strong> overlap zone, as no<br />

accessory canals were visible (f¡gs. 49 and 50)<br />

<strong>ln</strong> o<strong>the</strong>r respects <strong>the</strong> appearances <strong>of</strong> <strong>the</strong>se experîmental embryos resembled<br />

those <strong>of</strong> <strong>the</strong> contro¡s, in th<strong>at</strong>:<br />

a) <strong>the</strong> rhombic ro<strong>of</strong> was thîckened<br />

b) ectoderm was in continuity with <strong>the</strong> neural folds<br />

c) <strong>the</strong>rê were no somitic mesoderm and few neural crest cells between<br />

areas <strong>of</strong> cìosed neural tube and <strong>the</strong> overlyîng ectoderm<br />

d) notochord was in close contact with <strong>the</strong> neurar tube over <strong>the</strong> somite,<br />

protosomite, and anterior rhomboid sìnus areas, but not generally in <strong>the</strong><br />

brain regîon<br />

e) somitic mesoderm was usually in contact ur¡th <strong>the</strong> neural tube in <strong>the</strong><br />

somite and protosomite areas, but not <strong>at</strong> <strong>the</strong> levels <strong>of</strong> unsegmented and<br />

fused mesoderm<br />

f) <strong>the</strong> somîtes were well-developed, wíth no cysts or hemorrhages and no<br />

reduct ion in vo I ume.


Figs. l+7 ^ 5A, Ëversic¡n <strong>of</strong> <strong>the</strong> neuraT foÏds as <strong>the</strong> first sígn oi'<br />

non-closure <strong>of</strong> <strong>the</strong> rhomboîd sinus. Developing protonotqchord<br />

(l ¿ r; x4o) :<br />

Fíg. l+7.<br />

Control St. 10 embryo, 6 hours af ter <strong>the</strong> tîr'le <strong>of</strong><br />

windor,ring, with clevaied neuraì folds <strong>at</strong> <strong>the</strong> posterior<br />

rhomboi d s i nus (6C Z1) .<br />

Fig. 48.<br />

Experimental St. t0 embryo, 6 hours after windowing,<br />

with everted neural folds êt <strong>the</strong> posterior rhomboid<br />

sinus (61 45) .<br />

FiS. 49.<br />

ContrÕl St, l1+ embryo, 18 hours after <strong>the</strong>. time <strong>of</strong><br />

windowing, wi th fur<strong>the</strong>r differenti<strong>at</strong>ion <strong>of</strong> elev<strong>at</strong>ed<br />

neural folds ar <strong>the</strong> posrerior rhomboid sinus (18C 4).<br />

FiS. 50.<br />

Experìmental St. f l-F embryo, 6 hours after wîndowing,<br />

w¡th fur<strong>the</strong>r differenti<strong>at</strong>îon <strong>of</strong> everted neural folds<br />

<strong>at</strong> <strong>the</strong> posrerior rhomboid sinus (6E 34).


-l<br />

::<br />

l<br />

48<br />

I<br />

49<br />

i<br />

:.<br />

t:<br />

.lì<br />

50 ì:


166<br />

6.3.5 staEe 13-16 córitról Embryos (Qroup lll)<br />

All stage l6 control embryos showed complete neural closure, whereas<br />

<strong>the</strong> stage l3 cont!'ol embryos were stlr crosing ât <strong>the</strong> posterior rhomboid<br />

sinus. The overlap zone was fuly deveroped, with êccessory canals <strong>at</strong> <strong>the</strong><br />

unsegmented mesoderm and caudal areas, and recognizabre overrapping w¡thout<br />

canals in <strong>the</strong> protosomite area. rhe rhombic ro<strong>of</strong> was th¡n <strong>at</strong> stage rJ and<br />

very thin <strong>at</strong> Stage f6.(Figs. 104 and 105).<br />

The neural tube wâs separ<strong>at</strong>ed from overlying ectoderm by neural<br />

crest ceìls in <strong>the</strong> bra<strong>ln</strong> region <strong>at</strong> stage rJ, and by somitîc mesoderm and<br />

neural crest cells over <strong>the</strong> braìn and somite areas by stage 16. The notochoid<br />

was in contact with neurar tube în <strong>the</strong> regions <strong>of</strong> <strong>the</strong> somites,<br />

protosomites and unsegmented mesoderm but not in <strong>the</strong> brain or caudal<br />

âreas.<br />

Somite development was normal,<br />

.<br />

with no reductlon ín volume and no<br />

cys ts or hemorrhages.<br />

Posteríorly, Hensenrs node had given way to a recognizable taìl_<br />

bud. This was associ<strong>at</strong>ed with <strong>the</strong> form<strong>at</strong>ion <strong>of</strong> <strong>the</strong> protonotochord,<br />

fused mesoderm, and <strong>the</strong> tail-bud contribution to <strong>the</strong> neural tissue <strong>of</strong><br />

<strong>the</strong> caudal region. The primitive streak was much shorter than în<br />

Stage .11-f2.<br />

. In Stage 1l embryos, with an open posterior neuropore, an" iup".-<br />

ficíal neural folds (deríved from neural pl<strong>at</strong>e) could be traced down<br />

from above,othrough continuity <strong>of</strong> <strong>the</strong>ir future lumen with <strong>the</strong> lumen <strong>of</strong><br />

<strong>the</strong> closed neural tube. Deep to this was canaljzed neural tissue<br />

(derived from <strong>the</strong> tail-bud) with no singre rumen. There was however no<br />

clear l<strong>ln</strong>e <strong>of</strong> demarc<strong>at</strong>ion between <strong>the</strong>se two sources <strong>of</strong> neurar m<strong>at</strong>eriar.<br />

Neural tissue derived from <strong>the</strong> taîr-bud could be traced up to <strong>the</strong> proto*


t67<br />

somite area (through asymmetry <strong>of</strong> <strong>the</strong> neural tube) but lts fusion to<br />

<strong>the</strong> neural plåte m<strong>at</strong>erîa.l was so gradual th<strong>at</strong> <strong>the</strong> upper limit <strong>of</strong> <strong>the</strong><br />

overlap zone was difficult to determîne (Fîgs. !1-54 änd 55-66).<br />

t/here neurâl closure was st¡ll occurfing în <strong>the</strong> caudal region <strong>of</strong><br />

Stage 13 embryos, <strong>the</strong> exposed surface <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e was wellpreserved,<br />

with normal or¡ent<strong>at</strong>ion <strong>of</strong> cells perpendicular to thÍs surface.<br />

6.3.6 Staqe I3-16 Experîmental Embrvos. (Grouo I I t)<br />

<strong>ln</strong> this group <strong>of</strong> experimental embryos two types <strong>of</strong> establ ished<br />

defects were ev i den t.<br />

The majoríty <strong>of</strong> Stage ll-1! embryos showed elev<strong>at</strong>lon or eversîon<br />

<strong>of</strong> <strong>the</strong> neural folds in <strong>the</strong> protosom¡te, unsegmented mesoderm and caudal<br />

êreas, constitut<strong>ln</strong>g neural defects whích could be followed into Group lV<br />

embryos. The defects consisted <strong>of</strong> unclosed neural folds, showîng marked<br />

necrosis <strong>of</strong> <strong>the</strong> exposed surface and loss <strong>of</strong> cell orient<strong>at</strong>ion, lying dorsal<br />

to more normal neural tissue derived from <strong>the</strong> ta.i l-bud. <strong>ln</strong> many cases<br />

<strong>the</strong>re was some dist<strong>ln</strong>ction between <strong>the</strong> two sources <strong>of</strong> neural tissue <strong>at</strong><br />

some part <strong>of</strong> <strong>the</strong> lesions,though no clear line <strong>of</strong> separ<strong>at</strong>ion. As similar<br />

lesions were present <strong>ln</strong> a more advanced foim.in many Group lV experimental<br />

embryos, <strong>the</strong>se were regarded as <strong>the</strong> f¡rst stage <strong>of</strong> estêbl ished myeloschisis.<br />

<strong>ln</strong> experîmental embryos wìth and without myeloschísís <strong>the</strong> notochord<br />

was in contact with both closed and open sections <strong>of</strong> <strong>the</strong> neural .tube over<br />

<strong>the</strong> somite, protosom¡ìe, and unsegmented mesoderm areas, but not ¡n <strong>the</strong><br />

braîn or caudal areas. Areas <strong>of</strong> myeloschisis showed continuity with adjacent<br />

ectoderm, implying th<strong>at</strong> <strong>the</strong> neural folds <strong>at</strong> <strong>the</strong>se sítas had never<br />

c I osed. (r¡gs. 6S-Zo).<br />

Somltic mesoderm was generally ín contact with neural tube <strong>at</strong> <strong>the</strong><br />

somite level , but separ<strong>at</strong>ed from neural tube <strong>at</strong> <strong>the</strong> unsegmented mesoderm<br />

and caudal areas. <strong>ln</strong> <strong>the</strong> protosomite area <strong>the</strong> degree <strong>of</strong> cóntact varied,


t68<br />

with lack <strong>of</strong> contact in severar embryos showing myeroschisis. somite<br />

developmènt aþpeared to be normal, with no cysts or hemorrhages.<br />

0f <strong>the</strong> Stage 16 experlmental embryos several showed normal neural<br />

closure. Several o<strong>the</strong>rs showed rnyeloschisis <strong>at</strong> <strong>the</strong> lower somlte, protosom¡te,<br />

êrid unsegmented mesoderm areas, giving way to a closed neural tube<br />

(showing accessory canars and so derived from tair-bud m<strong>at</strong>eria¡) in <strong>the</strong><br />

caudal reg ion.<br />

Two <strong>of</strong> <strong>the</strong> Stage t6 embryos however (lOf 35, 3OE 76) showed a different<br />

type <strong>of</strong> neural defect in <strong>the</strong> lower somîte, protosomite, unsegmented meso-.<br />

derm, and caudal areas. <strong>ln</strong> <strong>the</strong>se embryos <strong>the</strong> neural tissue formed a<br />

V-shaped or U-shaped mass, open on <strong>the</strong> dorsal aspect. The total volume<br />

<strong>of</strong> neural tissue <strong>at</strong> <strong>the</strong> site <strong>of</strong> each lesion (but not <strong>at</strong> more cranîal levels)<br />

was reduced when compared to Stage 16 contror or normar experimentar embryos.<br />

0n fol lowing <strong>the</strong> canal <strong>of</strong> <strong>the</strong> neural tube down from <strong>the</strong> somite region<br />

în <strong>the</strong>se two embryos' it courd not be trêced con.tinuous¡y into <strong>the</strong> dorsar<br />

half <strong>of</strong> <strong>the</strong> lesions. The neurar pr<strong>at</strong>e m<strong>at</strong>eriar was progressivery reduced<br />

<strong>at</strong> <strong>the</strong> cran¡al end <strong>of</strong> each lesion, wh¡ch thus appeared to be composed<br />

entlrely <strong>of</strong> ta¡l-bud marerial.(F¡gs. 77-82).<br />

An absence <strong>of</strong> accessory canals, in contrast to <strong>the</strong> multiple canals <strong>of</strong><br />

Stage 16 control and normal experímental embryos, suggested an early<br />

m<strong>at</strong>ur<strong>at</strong>¡on <strong>of</strong> <strong>the</strong> tail-bud m<strong>at</strong>erial in <strong>the</strong> two resions. The defects were<br />

covered by ectoderm above end berow and open in <strong>the</strong> mîddre section, though<br />

not so smoothly contínuous with ectoderm as in <strong>the</strong> examples <strong>of</strong> myeloschisîs.<br />

<strong>ln</strong> <strong>the</strong> caudal region, each les,ic¡n gave wây to a ctosed neural tube covered<br />

by ectoderm and closely resembr in9 <strong>the</strong> caudar tube <strong>of</strong> Stage 16 control and<br />

normal experimental embryos, though slightly reduced ín size.


t69<br />

<strong>ln</strong> both embryos <strong>the</strong> volume <strong>of</strong> neural tÌssue was so reduced th<strong>at</strong><br />

somitic ñesoderm encroached on <strong>the</strong> midlìne, dorsal to <strong>the</strong> les¡ons where<br />

<strong>the</strong>y were covered by ectoderm. This again suggested th<strong>at</strong> <strong>the</strong> dorsal<br />

contrlbution to <strong>the</strong> neural tube (derived from neural pl<strong>at</strong>e m<strong>at</strong>erîal)<br />

was considerably reduced in <strong>the</strong> area <strong>of</strong> <strong>the</strong> lesions (Flg,. 77) .<br />

Exam<strong>ln</strong><strong>at</strong>ion <strong>of</strong> somitic mesoderm în one embryo (SOf lü revealed some<br />

reductlon in volume <strong>at</strong> <strong>the</strong> protosomíte and unsegmented mesoderm areas<br />

(though not elsewhere) with a diffuse arrangement <strong>of</strong> cells and some<br />

cystic spaces (f ígs. 77-8Zl ... "r<br />

Unsegmented mesoderm was in contact with neural tissue in one<br />

embryo (30E l!) because <strong>of</strong> <strong>the</strong> encroachment <strong>of</strong> somitic mesoderm across<br />

<strong>the</strong> midline dorsal to <strong>the</strong> lesîon<br />

The.lesions in <strong>the</strong>se two embryos thus appeared to show:<br />

a) reduction <strong>of</strong> total neural volume<br />

b) marked reduction in <strong>the</strong> neural pl<strong>at</strong>e contiibution, but faîrly normal<br />

ta I I -bud contribution<br />

c) early m<strong>at</strong>ur<strong>at</strong>îon <strong>of</strong> <strong>the</strong> tail-bud m<strong>at</strong>erial<br />

d) form<strong>at</strong>ion <strong>of</strong> normal cord from tail-bud m<strong>at</strong>erial in <strong>the</strong> caudal<br />

reg i on<br />

e) exposure <strong>of</strong> <strong>the</strong> central part <strong>of</strong> <strong>the</strong> lesion, but ectodermal cover<br />

above and below this<br />

f) encroachment by somitic mesoderm ôcross <strong>the</strong> dorsal aspect <strong>of</strong> <strong>the</strong><br />

lesion where ectodermal cover was preserved<br />

9) some reduction ín <strong>the</strong> local volume <strong>of</strong> postsomitic mesoderm<br />

h) <strong>the</strong> occurrence <strong>of</strong> cyst¡c areas within <strong>the</strong> local somitic mesoderm.


170<br />

These two lesions were clearly separable from myeloschisis and so<br />

were called myelodysplasias. Because <strong>of</strong> <strong>the</strong> U-shaped contour <strong>of</strong> <strong>the</strong><br />

defects and <strong>the</strong> apparent reduction <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e contrîbutìon,<br />

this form <strong>of</strong> myelodysplasla was called a hemÌmyel îa.<br />

<strong>ln</strong> all <strong>the</strong> experlmental embryos <strong>of</strong>.this group (Stages 1l-16)<br />

histologîcal appearances away from <strong>the</strong> a!'eas <strong>of</strong> neural defects closely<br />

resembled <strong>the</strong> findings ¡n Stages tJ-16 control embryos for:<br />

a): th<strong>ln</strong>ning <strong>of</strong> <strong>the</strong> rhombic ro<strong>of</strong><br />

b migr<strong>at</strong>ion <strong>of</strong> neural crest and somitic mesoderm cells<br />

c) reduction <strong>of</strong> <strong>the</strong> primîtive streak .<br />

6.3.7 Staqe 17-20 Control Embrvos (Group lV)<br />

As well as full neural closure <strong>the</strong>se control embryos showed complete<br />

fusion between <strong>the</strong> two sources <strong>of</strong> neural tissue in <strong>the</strong> overlap zone.<br />

There were no accessory canals,and it was imposslble to dîstinguish neural<br />

pl<strong>at</strong>e m<strong>at</strong>erial from taíl-bud m<strong>at</strong>erial"by any criterion (inCluding asymmetry<br />

<strong>of</strong> <strong>the</strong> closed tube). H¡toses were restr¡cted to cells lining <strong>the</strong> lumen.<br />

Llmb buds were cleaily distinguishable and provided boundarîes for<br />

subdivision <strong>of</strong> <strong>the</strong> embryonic spinal cord. <strong>ln</strong> <strong>the</strong>"caudal region <strong>the</strong> taílbud<br />

showed progressive reduction, with disappearance <strong>of</strong> <strong>the</strong> primitive<br />

streêk. By Stage l9 a differentî<strong>at</strong>ed notochord was replacing <strong>the</strong> protonoiochord<br />

and caudal somîtes were replacing unsegmented mesoderm in <strong>the</strong><br />

caudal regíon (figs. 6t - 64).<br />

The caudsl notochord preserved its close contact wíth .<strong>the</strong> spinal<br />

cord, whereas <strong>the</strong> caudal somites were not ¡n contact with <strong>the</strong> cord <strong>at</strong><br />

<strong>the</strong> lower postcrural and caudal areas. At <strong>the</strong> upper somite region,<br />

however, <strong>the</strong> neural tube was separ<strong>at</strong>ed from notochord by mesenchyme cells<br />

in one Stage 20 Embryo (42C 21),


171<br />

The rhomblc ro<strong>of</strong> became membranous by Stage 18, w¡th a choroid<br />

plexus developing in <strong>the</strong> fourth ventricle (F¡g.. 109 ).<br />

Between <strong>the</strong>.spìnal cord and overlying ectoderm somitic mesoderm<br />

cells were present in <strong>the</strong> brain and somite <strong>at</strong>eas, whereas neural crest<br />

cells were observed from <strong>the</strong> sonite region down to <strong>the</strong> caudal areâ by<br />

Stage 1!. Somîte dlspersal was well advancèd down to <strong>the</strong> postcrural<br />

region, whíle fully developed somltes (with no cystÍc areas) extended<br />

to <strong>the</strong> tip <strong>of</strong> <strong>the</strong> tail by Stage 20.<br />

6.3.8 Staqe 17-20 Experîmental Embrvos. (Grouo lV)<br />

These experîmentâl embryos could be divided înto three types -<br />

those wíth-no defects, those wíth myeloschisis, and those with myelodysplasia.<br />

A sinþle embryo (42E 21) showed both myeloschisis and<br />

myelodysplas í a.<br />

The embryos wlth no defects close¡y resembled Stage 1/-20 control<br />

embryos (Sectîon 6,3,71 . By Stage 20 <strong>the</strong> closed neural tube was sêparôted<br />

from notochord by mesenchyme cells <strong>at</strong> <strong>the</strong> somîte region in one case (t+ZE 73).<br />

The embryos with myeloschísis showed a progression <strong>of</strong> <strong>the</strong> Iesions<br />

seen in experimental embryos <strong>of</strong> Group llt (Secrîon 6.3.6r. llyeloschisis<br />

occurred in <strong>the</strong> êreas <strong>of</strong> postbrachîal, crural, and postcrural cord, giving<br />

way to an âpparently normal cord in <strong>the</strong> caudal region (Fi9s. 71-76).<br />

The cranial part <strong>of</strong> each defect consisted <strong>of</strong> a widely euurtåd pl"te<br />

<strong>of</strong> neural tissue, with <strong>the</strong> cells perpendîcular to <strong>the</strong> well-preserved dorsal<br />

surface. <strong>ln</strong> most cases <strong>the</strong> notochord was widely separ<strong>at</strong>ed from neural<br />

t¡ssue <strong>at</strong> this level by mesenchymal cells (Fig. 72).<br />

l,{ í toses were<br />

restrlcted to cells <strong>of</strong><strong>the</strong> exposed surface <strong>of</strong> <strong>the</strong> everted neural pl<strong>at</strong>e.


172<br />

The centraì part <strong>of</strong> each defect showed separ<strong>at</strong>ìon <strong>of</strong> neural m<strong>at</strong>erial<br />

<strong>ln</strong>to an open plaque (ly<strong>ln</strong>9 <strong>at</strong> <strong>the</strong> same level as adjacent ectoderm) dorsal<br />

to a closed tube (whlch was deficlent <strong>ln</strong> dorsal m<strong>at</strong>erlal). <strong>ln</strong> almost all<br />

cases <strong>the</strong>re was a clear ì <strong>ln</strong>e <strong>of</strong> demarc<strong>at</strong>ion between <strong>the</strong> superficlal plaque<br />

(apparently derived from unclosed neural pl<strong>at</strong>e m<strong>at</strong>erial) and <strong>the</strong> deeper<br />

tube (apparently derlved from taìl-bud m<strong>at</strong>erlal). The cells <strong>of</strong> <strong>the</strong> plaque<br />

were arranged perpendicular to <strong>the</strong> exposed dorsal surfacerwhi le those <strong>of</strong><br />

<strong>the</strong> tube were perpendiculâr to <strong>the</strong> lum<strong>ln</strong>al surface. llithín a few sections<br />

<strong>of</strong> <strong>the</strong> first appearance <strong>of</strong> <strong>the</strong> tail-bud m<strong>at</strong>erial <strong>the</strong> notochord was ìn close<br />

contêct wlth neural t¡ssue (Fi9. 73) . H¡toses were seen ín cells on<br />

<strong>the</strong> exposed surface <strong>of</strong> <strong>the</strong> dorsal plaque and ín cells ìîning <strong>the</strong> lumen <strong>of</strong><br />

<strong>the</strong> closed tube.<br />

At <strong>the</strong> caudal end <strong>of</strong> each defect <strong>the</strong> neural pl<strong>at</strong>e m<strong>at</strong>erial dísappeared,<br />

leavîng a narrowly everted mass (whose cells were perpendicular to <strong>the</strong><br />

exposed surface) continous with <strong>the</strong> caudal cord. The notochord remained<br />

<strong>ln</strong> closè contaét with <strong>the</strong> neural tube (r¡g. 75).<br />

<strong>ln</strong> <strong>the</strong> lower postcrural and caudal regíons an apparently normal neural<br />

.<br />

tube reformed from tail-bud m<strong>at</strong>eríal (Fig, 76).<br />

Because <strong>of</strong> <strong>the</strong> clear<br />

separ<strong>at</strong>lon between neural pl<strong>at</strong>e and tail-bud m<strong>at</strong>erials <strong>the</strong> development <strong>of</strong><br />

myeloschîsîs thus revealed <strong>the</strong> true extent <strong>of</strong> <strong>the</strong> overlap zone <strong>at</strong> Stages<br />

17-20.<br />

<strong>ln</strong> myeloschisis <strong>the</strong> neural tlssue uras in contact, but no longer in<br />

continuity, with adjacent ectoderm by Stage 17. (F¡gs. 72-74). The rhombïc<br />

ro<strong>of</strong> in embryos wlth myeloschisis was membranous and indistinguishable from<br />

<strong>the</strong><br />

âppearance în both control and normal experimental embryos, w"ith<br />

a chorold plexus developing after Stage 17. (Fi9 111)'


173<br />

At areas <strong>of</strong> myeloschisîs contact between somitïc mesoderm and<br />

neuraì tissue was general ly lost, whereas contact was mainta<strong>ln</strong>ed <strong>at</strong> <strong>the</strong><br />

same levels in control and normal experimental embryos. . Somîte develop-<br />

'ment was general ly well mainta<strong>ln</strong>ed, wlth normal somite volume and no<br />

cysts or hemorrhages.<br />

The development <strong>of</strong> myeloschisis dîd not prevent <strong>the</strong> local form<strong>at</strong>ion<br />

<strong>of</strong> neural crest tissue (riss. 73-75 ). Migr<strong>at</strong>lon <strong>of</strong> neuraì crest and<br />

somitic mesoderm cells between neural tube and ectoderm in areas away<br />

from <strong>the</strong> defects however showed sl ight delay when compared to control<br />

embryos. Regression <strong>of</strong> <strong>the</strong> tail bud was almost complete by Stage 20.<br />

Embryos with myelodysplasia also showed progression <strong>of</strong> <strong>the</strong> lesions<br />

seen <strong>at</strong> Stage 16 (Section 6.3.6). Myelodysplasia occurred <strong>at</strong> a slîghtly<br />

more caudal level than myeloschisis, extending from thè postbrachial<br />

area înto <strong>the</strong> crural ênd posÈcrural regions and somet¡mes down to <strong>the</strong><br />

caudal reg i on<br />

llith only two exceptions myelodysplasia took <strong>the</strong> form <strong>of</strong> hemimyelía,<br />

One embryo however (428 561 showed two smal I and irregular masses <strong>of</strong><br />

neural tíssue wîth residual accessory canals in <strong>the</strong> caudal region<br />

(diplomyel ia).. The o<strong>the</strong>r exception was an embryo (\28 69) showing<br />

marked local necrosis associ<strong>at</strong>ed hrith complete absence <strong>of</strong> neural tîssue<br />

in <strong>the</strong> postcrural and caudal regions (amyel ia).<br />

Exam<strong>ln</strong><strong>at</strong>ion <strong>of</strong> <strong>the</strong> hemîmyálias revealed no obvious demarc<strong>at</strong>ion<br />

between neural pl<strong>at</strong>e and tal l-bud m<strong>at</strong>erials. The craníal end <strong>of</strong> each<br />

leslon was covered by ectoderm and marked by reduction in size <strong>of</strong> <strong>the</strong><br />

neural tube, w¡th <strong>the</strong> wide gap between ectoderm and neural tube filled<br />

by migr<strong>at</strong>ing mesenchyme cells. The reduction in neural volume affected<br />

ma<strong>ln</strong>ly <strong>the</strong> dorsal part <strong>of</strong> <strong>the</strong> closed tube, producing a r<strong>at</strong>her triangular


t74<br />

contour and an Irreguìar central canaì (F¡g ' 83)'<br />

<strong>ln</strong> <strong>the</strong> central part <strong>of</strong> each hemimyel îa neural tissue formed a<br />

V-shaped or U-shaped plaque in cont¡nuîty with <strong>the</strong> tall-bud m<strong>at</strong>erial<br />

<strong>of</strong> <strong>the</strong> caudal region. The volume <strong>of</strong> neural tissue was consíderably<br />

reduced and lay <strong>at</strong> a deoper level than <strong>the</strong> adjacent 6ctoderm' givìng <strong>the</strong><br />

lmpresslon <strong>of</strong> reduced neural pl<strong>at</strong>e m<strong>at</strong>erial (Figs' 84-85) '<br />

The mîd-zone<br />

<strong>of</strong> each plaque was exposed for a short distance but just cranial to thîs <strong>the</strong><br />

plaque was covered by ectoderm and <strong>of</strong>ten by mesoderm encroaching on <strong>the</strong><br />

mldl ine from <strong>the</strong> adjacent somites (fig 5. 84 , 85,88).Mìtoses were largely<br />

restrlcted to cells <strong>of</strong> <strong>the</strong> dorsal surface <strong>of</strong> <strong>the</strong> plaque but were not as<br />

numerous as in myeloschisls.<br />

<strong>ln</strong> <strong>the</strong> caudal part <strong>of</strong> each hemimyel ia a closed neural tube was reformed,<br />

though reduced in size when comparec to control and normal experimental<br />

embryos, and usualty covered by somìtic mesoderm across <strong>the</strong> midline<br />

( Frs. 88)<br />

The notochord was uniformly în contact with neural tÎssue <strong>at</strong> all<br />

levels <strong>of</strong> <strong>the</strong> myelodysplasias, in contrast to <strong>the</strong> wîde separ<strong>at</strong>ion <strong>of</strong> notochord<br />

from <strong>the</strong> cranial part <strong>of</strong> most myeloschisis lesions <strong>at</strong> stages l7-20.<br />

Accessory canals were present in <strong>the</strong> caudal regïon <strong>of</strong> three embryos<br />

wlth myelodysplasia, suggesting some deìay <strong>ln</strong> m<strong>at</strong>ur<strong>at</strong>îon <strong>of</strong> <strong>the</strong> tail-bud<br />

¡n <strong>the</strong>se embryos. The rhombic ro<strong>of</strong> in dysplastic embryos had a membranous<br />

appearance and an early choroîd pìexus, similar to thât in all o<strong>the</strong>r<br />

Stage 17-20 emb ryos .<br />

Somitic mesoderm adjacent to myelodysplasia was <strong>of</strong>ten'reduced În<br />

volume and loosely arranged, wlth cystic spaces in some areas and occasional<br />

hemorrhages from ìocal vessels (Figs' 83-88) '<br />

Contact <strong>of</strong>


175<br />

neurêl tîssue wíth mesoderm however was maintained <strong>at</strong> <strong>the</strong> sites <strong>of</strong><br />

myelodysplasias because <strong>of</strong> <strong>the</strong> encroachment <strong>of</strong> somitic mesoderm dorsaj<br />

to <strong>the</strong> I es ions .<br />

The most marked cystlc and hemorrhagic. changes extended from <strong>the</strong><br />

postbrachlal area to <strong>the</strong> caudal region and were a:íoci<strong>at</strong>ed with defective<br />

mâtur<strong>at</strong>îon <strong>of</strong> <strong>the</strong> tail-bud. The embryo wìth ãmyel ìa (4Zf 6!) provided<br />

<strong>the</strong> most extreme example <strong>of</strong> this process, with hemimyelia <strong>of</strong> <strong>the</strong> crural<br />

regîon, amyel ia <strong>of</strong> <strong>the</strong> postcrural region, and loss <strong>of</strong> all recognîzable<br />

structures în <strong>the</strong> cauda! region.<br />

The embryo with diplomyel ia (42E 56) simllarly showed hemimyelia in<br />

<strong>the</strong> postbrachiaì, crural and postcrural regions, giving way to d¡plonryel<br />

ia in <strong>the</strong> caudal region assocl<strong>at</strong>ed ùrith <strong>the</strong> persistence <strong>of</strong> accessory<br />

cana I s.<br />

<strong>ln</strong> <strong>the</strong> s<strong>ln</strong>gle embryo showing both myeloschlsis and myelodysplasia<br />

(428 21'r, ê r<strong>at</strong>her smal I cord în <strong>the</strong> postbrachial region gave bray to an<br />

everted myetoschisis (showing wide separ<strong>at</strong>ion from <strong>the</strong> notochord) and<br />

<strong>the</strong>n ên exposed dysplastîc plaque (in contact with notochord) <strong>at</strong> <strong>the</strong> crural<br />

region. There was a smal I irregular mass <strong>of</strong> uncanalized neural tlssue<br />

(covered by ectoderm and somitic mesoderm across <strong>the</strong> midline) ín <strong>the</strong> postcrural<br />

regfonl and amyelia in <strong>the</strong> caudal region. Neural. pì<strong>at</strong>e and taÌlbud<br />

m<strong>at</strong>erials were not clearly separ<strong>at</strong>ed <strong>at</strong> <strong>the</strong> êrea <strong>of</strong> myeloschisis.<br />

6.3.9 BgyjeU pt Histologîcal Changes in Experimenral Embrvos<br />

A review <strong>of</strong> <strong>the</strong> histological fe<strong>at</strong>ures descríbed in Sectíon 6.3<br />

revealed certain dlfferences between experimental and control embryos <strong>ln</strong><br />

each g roup.<br />

<strong>ln</strong> <strong>the</strong> regions <strong>of</strong> myeloschisîs or myelodyspìasia experimental embryos<br />

showed varlous changes which appeared to be assocl<strong>at</strong>ed consistently with<br />

\


t76<br />

<strong>the</strong> lesions. The interpret<strong>at</strong>ion <strong>of</strong> <strong>the</strong>se cha.nges was complic<strong>at</strong>ed by<br />

<strong>the</strong> artifactual distorsion <strong>of</strong> some embryos, which was assessed by a<br />

detaÌled tabul<strong>at</strong>îon <strong>of</strong> <strong>the</strong> appearance <strong>of</strong> each region in every embryo<br />

(see Sect ion 6.4) .<br />

Group I {Stajç ll0 Embryós)<br />

a) <strong>the</strong> neural pl<strong>at</strong>e în two experimena"l .rb.yo, showed slight eversion<br />

<strong>of</strong> <strong>the</strong> neural fo¡ds <strong>at</strong> <strong>the</strong> pos.terior rhomboid sinus, compared to <strong>the</strong><br />

elev<strong>at</strong>îon or fl<strong>at</strong>tening seen in control embryos.<br />

Group ll (Staqe 11-12 Embrvos)<br />

a) <strong>the</strong> neural pl<strong>at</strong>e in all experimental embryos showed some delay in<br />

closui'e, and in one case showed defînlte eversion <strong>of</strong> neural folds <strong>at</strong><br />

<strong>the</strong> posteríor rhomboid sinus<br />

b) <strong>the</strong> appearance <strong>of</strong> <strong>the</strong> overlap zone was retêrded in all experimental<br />

emb ryos .<br />

Group lll<br />

(Stagg t3-16 Embryos)<br />

a) early myeloschlsis (caudar to <strong>the</strong> somite region) consisted <strong>of</strong> wrdery<br />

everted neural folds in continuity wittr adjacent ectoderm, lying dorsal<br />

to more normal taîl-bud m<strong>at</strong>erîal<br />

b) several embryos wìth myeloschisis when compared to <strong>the</strong>ir controls<br />

showed loss <strong>of</strong> contact between protosomite mesoderm and neural tissue<br />

c) early myelodysplasla showed narrowly everted neural tissue 'in<br />

cont¡nuity with tail-bud m<strong>at</strong>erial, but apparently deficient in neural<br />

pl<strong>at</strong>e m<strong>at</strong>er i a I<br />

d) ectoderm wâs present over <strong>the</strong> cranial and caudal sections <strong>of</strong> myelodysplasia,<br />

but in <strong>the</strong> exposed middle sectíon was not in such smooth<br />

cont¡nuity wlth adjacent neural tissue as in myeloschisis


t77<br />

e) encroachment <strong>of</strong> somitîc mesoderm towards <strong>the</strong> mîdline dorsal to<br />

areas <strong>of</strong> myelodysplasiã was assocî<strong>at</strong>ed wíth reduced neural volume<br />

f) below <strong>the</strong> level <strong>of</strong> myelodysplasia rhere was slight reduction <strong>ln</strong><br />

<strong>the</strong> volume <strong>of</strong> protosomite and unsegmented mesoderm, wìth some local<br />

cystic changes but no loss <strong>of</strong> contact with neural tissue.<br />

Groúp lV (Staqe l7-20 Embrvos)<br />

a) myeloschisis showed clear demarc<strong>at</strong>ion between neurar pr<strong>at</strong>e m<strong>at</strong>eríal<br />

and tâ î I -bud m<strong>at</strong>erial<br />

b) <strong>ln</strong> most cases <strong>the</strong> notochord was wldely separ<strong>at</strong>ed from <strong>the</strong> upper<br />

thlrd <strong>of</strong> an area <strong>of</strong> myelosihisls (derived from neural pl<strong>at</strong>e m<strong>at</strong>erial)<br />

c) somite mesoderm showed loss <strong>of</strong> contact *lth nuur"l tissue <strong>at</strong> areas<br />

<strong>of</strong> myeloschisis when compa red to <strong>the</strong> contro.l s<br />

d) myelodysplasia occurred <strong>at</strong> a slightly more caudal .level than<br />

myeloschîsis, and consisted <strong>of</strong> hemimyel ia, diplomyel ia, or amyel ía<br />

e) in myelodysplasla <strong>the</strong>re hras no separêtÍon between neural plête ênd<br />

ta i I -bud m<strong>at</strong>er¡âls<br />

f) <strong>the</strong> myelodysplasias showed reduction in neural volume, and were<br />

pêrtly covered by ectoderm<br />

S) three embryos with myelodysplasia showed prolonged retention <strong>of</strong><br />

accessory canalsh)<br />

somitic mesoderm <strong>of</strong>ten encroached on <strong>the</strong> midrine dorsar to ãreas<br />

<strong>of</strong> myelodysplasîa and <strong>the</strong> caudêl cord<br />

¡) somitic mesoderm adjacent to myerodysprasia was in contact with<br />

neural tube, but <strong>of</strong>ten cyst¡c and reduced in volume.<br />

These histological findings were tabul<strong>at</strong>ed by regions for all control<br />

and experimental embyos (See Section 6.4).


Figs. 51 - 54, Normai de'¡elopment Ìn a St. l3 control enrb ryo shovring<br />

<strong>the</strong> overlap zone from above down (lBC 27) (H â Ë; x40):<br />

Fig. 51 .<br />

Protosomîtesi notochord; slightly. âsymmetrical neural<br />

canal marking upper end <strong>of</strong> overlap zone.<br />

FiS. 5?. Protosomí tes; notochord; one accessory canal .<br />

FiS. 53.<br />

.Unsegmented<br />

sornì.tic mesoderm; notochordl one accessory<br />

canel opening <strong>ln</strong>to neural canal.<br />

[¡s. 54, Unsegmented sonitic mesoderm; protonotochord; several<br />

accessory cânals.


ôt<br />

rf)<br />

, ,,. ì _ ^iiir¡:ù\. I r i.


Fí9s" 55 - 60. llcrmaI development in a St. I6 control embryo showing<br />

<strong>the</strong> overlap zone from above do¡in (30c Zz). Mitotic<br />

fîgures adjacent to lumina <strong>of</strong> neural canal and<br />

----^^ory canals. Ectodermal cöver. but no neuraì<br />

crest m<strong>at</strong>erial (H.a E; x4O) :<br />

FÎS. 55,<br />

Protosomites i notochord; asymmetrical neural canal<br />

reveals upper end <strong>of</strong> <strong>the</strong> o.¡erlap zone.<br />

FiS. 56.<br />

L<strong>ln</strong>segnented somitic mesoderml notochord; asymmetrical<br />

neura I tube.<br />

FiS. 57.- 60. Unsegmented somitic mesoderm; protonotochord; neural<br />

canal extending dor¡rn to caudal region; accessory<br />

canals extending up from caudál regîon.


l<br />

55<br />

56<br />

57<br />

58<br />

59<br />

ó0


F;gs 51 - 64. Normal devcìopn¿¡ii il a St. 1B controì etrìbiyu s¡rüia¡i¡,g<br />

<strong>the</strong> caudal regîon from above down (hZC 7) " NeuraÏ<br />

. canal symmetrical . Notôchord in close contact with<br />

neural tube. Large somitesshowing differentÌ<strong>at</strong>ion<br />

Neural crest present, Cl


Fiss. 65<br />

Early myeloschisis in a St. 14+ experimental embryo,<br />

1B hours after wincion,î¡g (tBe 36) . Open neural folds<br />

extending ciovr¡r to <strong>the</strong> cauciaì region anc{ overìying<br />

eccessory canals in <strong>the</strong> tail-bud m<strong>at</strong>erial. Extensive<br />

necrosis <strong>of</strong> cells on exposed surface <strong>of</strong> open neural<br />

pl<strong>at</strong>e. Normal protosomîtes. Notoch


:<br />

ó5<br />

66<br />

67<br />

69<br />

70


fiSr. 71 - 76. L<strong>at</strong>er myeloschisis in a St. i7 experîmentâl embryo,<br />

42 hours afrer windowins (428 3) (H s E; x4o) :<br />

FiS. 7.1 .<br />

'<br />

Synrmetrical neural canel with mï ios,es along ìu en.<br />

SomÌtes dîspers!ng. Notochord vácuol<strong>at</strong>ed,<br />

FiS. 72.<br />

llide eversion <strong>of</strong> neural pì<strong>at</strong>e m<strong>at</strong>erial with some<br />

mitótîc fïgures near exposed surface. l^lide separ<strong>at</strong>ion<br />

<strong>of</strong> notochord from neural pìaque. I'lo superficial<br />

ecros I s<br />

FiS. n ^ 7tt. Separ<strong>at</strong>ion <strong>of</strong> neural plut" *"t.ri"l from tail-bud<br />

m<strong>at</strong>erial. Neural crest present. Notochord in close<br />

contact wl th neural tissue. l"iitotic ì"ígures seen<br />

along lumen <strong>of</strong> neural tube (derived from tail-bud<br />

. m<strong>at</strong>erial). Sonites show dîfferenti<strong>at</strong>ion.<br />

Figs. 75 - 76. Neuraì tube composed <strong>of</strong> tail-bud m<strong>at</strong>e¡-¡al, with mit<strong>at</strong>ic<br />

figures along <strong>the</strong> lumen. SomÌtes slightly reduced in<br />

s ¡ze but well dîfferentÌ<strong>at</strong>ed.


\l\)<br />

ìr,jtr, r: : :;r:,irrliirqn<br />

^ù): I


Fiss. 77 -82.<br />

Early myelodysplesia in a St. 16 experinental ernbryo,<br />

J0 hours after windovqing (¡OE 76) . lleural tissue<br />

reduced irr rloìune and formíng a nårrow, open hemimyelia,<br />

partly covered by ectoderÍ.. Neural tube<br />

formed fronr taìl-bucl rn<strong>at</strong>erial in <strong>the</strong> caudal region.<br />

A few sc<strong>at</strong>terecl nitôt¡c f i5;ures. No neural crest.<br />

Notochord v¡e I I -fcrnreci a¡rd in contact with neui.êl<br />

tissue. Somites reduced ín volume and poorly<br />

differenti<strong>at</strong>ed <strong>at</strong> level <strong>of</strong> <strong>the</strong> lesion (H s. E; x40).


:<br />

F-<br />

77


FÌgs. B3 - BB. L<strong>at</strong>er myelodysplas Ìa in a St, lB experimental enbryo,<br />

42 hours after window!ns (tlzË 50) . Notochord ìnelI -<br />

formed and in coniact with neural.. tissue. l.lo neural<br />

crest (H s E; .x40) :<br />

,<br />

Figs. 83 - 85. Progressíve reduction in neural vôlurne to a small,<br />

fl<strong>at</strong> plaque covered by ectoderm and so¡¡itic mesoderm.<br />

Fig. 86,<br />

0pen hemÌmyel ia. Somîtes reduced in volume and poorly<br />

differenti<strong>at</strong>ed.<br />

Figs. 87 - 88. Smal I neural tube formed by tail*buc{ m<strong>at</strong>erial , and<br />

covered by fused somites in <strong>the</strong> midline. Vessels<br />

engorgàd with a probable local. hemorrhage.


''i<br />

l.l


Figs, 89 - 91. Processíng artifacts in experimental ûnd control embryos<br />

<strong>of</strong> different Stages (H a E; x40) :<br />

FiS. 89. Separ<strong>at</strong>ìon <strong>of</strong> neu¡-al tissue from sornites <strong>at</strong> St. 10-<br />

(oc 49) .<br />

FiS, 90,<br />

Separ<strong>at</strong>ion <strong>of</strong> neurai tissue from pfotosomites and<br />

notochord ar 5t. 1'l- (6E 28) .<br />

Fig. 91 .<br />

Reopening <strong>of</strong> neural tube with separ<strong>at</strong>ion from<br />

notochord and somites êr Sr. l3+ (1BE 25).<br />

FiS. 92.<br />

Separ<strong>at</strong>¡on <strong>of</strong> area <strong>of</strong> myeìoschisis from protosomites<br />

and norochord ar st. t4+ (lBE 54).<br />

Fis. 93 - 94. Reopening <strong>of</strong> ro<strong>of</strong> - pl<strong>at</strong>ê ar st. 19 (4zc lt; hzl 31).


B9<br />

90


ì86<br />

6.3.10 SequenJ¡¿il ll lúSti¡it¡on6 óf Sèléctéd Eríbryos<br />

To ¡l lustr<strong>at</strong>e <strong>the</strong> events <strong>of</strong> normal and abnormal neural closure a group<br />

<strong>of</strong>. sequent¡al. drawìngs <strong>of</strong> every tenth section are presented for eight<br />

embryos. Serlal sections under a Leltz Dialux microscrope were projected<br />

through a Sony DXC-1650 camera onto a Sony PYJ fO¡O micro-vìdeo monitor<br />

and traced <strong>at</strong> an in¡tial magnifîc<strong>at</strong>ion <strong>of</strong> x88. Embryos selected for<br />

illustr<strong>at</strong>ion are shown <strong>ln</strong> Table J4 and Fiç.95to 102.<br />

TABLE 34.<br />

SEOUENTIAL ILLUSTRATI ONS<br />

Embryo Stage Neural Ti ssue<br />

18C 4 lt+ elev<strong>at</strong>ed (normal) posterior rhomboíd sinus<br />

6f 34 1l+ everted (abnormal) posterior rhomboid sínus<br />

18C 27 13+ normal neural closure<br />

18E 36 14+ early myeloschlsis<br />

\28 8 17 l<strong>at</strong>er myeloschlsîs<br />

3OC 22 16 normal _neural closure<br />

3OE 76 16 early hemimyel ia<br />

428 50 18 larer hemlmyelia<br />

At Stâge. 1l+ non-closure <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e is first manifest as<br />

eversion <strong>of</strong> <strong>the</strong> neural folds (68 34,Fîg.96 ) r<strong>at</strong>her than elev<strong>at</strong>ion<br />

(18C 4iFig.95 ) <strong>at</strong> <strong>the</strong> posterior rhomboîd sinus. Nei<strong>the</strong>r embryo shows<br />

an overlap zone.<br />

slightly l<strong>at</strong>er, a control embryo (18C 27,Fis,97 ) shows <strong>the</strong> neural<br />

canaì traceable down to en open neural pl<strong>at</strong>e overlyîng one accessory<br />

canal <strong>at</strong> <strong>the</strong> poster¡or rhomboid sinus. <strong>ln</strong> a comparable embryo with<br />

early myeloschisis (l8e 36,Fig. 9B ) an open lrregular neural pl<strong>at</strong>e


187<br />

overl îes three accessory canals <strong>at</strong> <strong>the</strong> rhomboid sinus. Establ ished myeloschlsls<br />

(42E 8,f 19. 99) is assocî<strong>at</strong>ed with eversion <strong>of</strong> neural m<strong>at</strong>erîal<br />

<strong>at</strong> <strong>the</strong> upper and lower ends <strong>of</strong> <strong>the</strong> leslon, separ<strong>at</strong>¡on <strong>of</strong> neural sources<br />

wîth progresslve reduction <strong>of</strong> neural pl<strong>at</strong>e m<strong>at</strong>erlal, and separ<strong>at</strong>ion <strong>of</strong><br />

notochord from neural tÌssue <strong>at</strong> <strong>the</strong> cranial end <strong>of</strong> tbe leslon.<br />

<strong>ln</strong> hemlmyel¡a (30E 76 ,428 50,Fl9s. lot s 102)<strong>the</strong> open defecrs extend<br />

cranlally up from <strong>the</strong> ta¡l bud; <strong>the</strong>re is no sign <strong>of</strong> an overlap zone<br />

comparable to <strong>the</strong> control embryo (3OC ZZ,flg.100 ) showing accessory<br />

canals and a fully closed neural pl<strong>at</strong>e. The cross-sectlonal area <strong>of</strong><br />

':<br />

neural tîssue is reduced <strong>ln</strong> hemìmyel la and <strong>the</strong>re is no separ<strong>at</strong>ion<br />

<strong>of</strong> neural tissue from notochord.


Fígs. 95 - 102, Sequentiêl drawings <strong>of</strong> every tenth seriâl sectÌon <strong>of</strong> a<br />

group <strong>of</strong> control and experimental. embryos, to show <strong>the</strong><br />

development <strong>of</strong>. open cord defects. Drawings include<br />

only neuraì tissue and notochord, witir brain region<br />

ín first column, somite regíon <strong>of</strong> cord in seconcl<br />

column, and caudal region <strong>of</strong> cord Ín thírd column:<br />

Figs 95 - 96. Stage 11+ embryos (lBC 4; 6E 34) showing elev<strong>at</strong>ion<br />

<strong>of</strong> neural folds in control embryo (arrow) and<br />

eversion <strong>of</strong> neural folds in experímental embryo<br />

(a r row) .


189<br />

GoNTROL: STAGE ll+ (te c a)<br />

O<br />

G<br />

&<br />

@@<br />

I<br />

@<br />

Q@<br />

I<br />

@ q<br />

@<br />

a<br />

@<br />

@<br />

@<br />

@<br />

@e<br />

9U<br />

@u<br />

g<br />

a<br />

q 0-<br />

Eu<br />

et<br />

eV<br />

E<br />

ö{e<br />

.e<br />

e'I<br />

*<br />

0<br />

ø"@+<br />

---


l9o<br />

EVERsToN: srAGE rf (o r o+)<br />

o<br />

@<br />

@ v II<br />

a<br />

aeaIe<br />

@<br />

@<br />

q<br />

g<br />

@<br />

@<br />

I<br />

@<br />

q<br />

q<br />

q<br />

0<br />

I<br />

a<br />

I<br />

9.<br />

0<br />

0<br />

g<br />

0<br />

I<br />

g<br />

g


Fïgs. 97 " 99. Development <strong>of</strong> m)/eloschisis:<br />

Fî S. 97.<br />

Control embryo <strong>of</strong> 5t. 13+ (JrBC U) shor.,"ing an open<br />

neural pl<strong>at</strong>e and one accessory canal <strong>at</strong> <strong>the</strong> rhomboid<br />

sinus (arrow) but a closed neural tube above this<br />

level .<br />

FíS. 98,<br />

Early myeloschisis in St. l4+ experimental embryo<br />

(1BE 36) showing an open neural pl<strong>at</strong>e above <strong>the</strong><br />

rhomboid sínus (arrow) with several accessory canals.<br />

FiS. 99.<br />

L<strong>at</strong>er myeloschisis in a St. 17 experimental embryo<br />

(42E B) snowing ôn everted neural plaque separ<strong>at</strong>ed<br />

from notochord <strong>at</strong> <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> defect<br />

(arrow), separ<strong>at</strong>îon <strong>of</strong> neural m<strong>at</strong>erials <strong>at</strong> <strong>the</strong> lower<br />

. part <strong>of</strong> <strong>the</strong> defect (arron), and a normal neural tube<br />

i.n <strong>the</strong> caudal region.


@ @@<br />

"@ @<br />

e q<br />

q<br />

a<br />

a<br />

192<br />

CoNTROL: STAGE B+ (lBC27)<br />

o<br />

æ<br />

G?<br />

æ -:-,-Õ)<br />

GzY--<br />

@-@<br />

&-@<br />

43<br />

@


193<br />

MYELOSCHTSIS:STAGE ra.(re rea)<br />

b<br />

æ<br />

Æ<br />

fþe<br />

&'@<br />

@"@<br />

@<br />

@<br />

@<br />

Ø<br />

@<br />

@<br />

@<br />

Ø<br />

Ø<br />

Ø<br />

@<br />

Ø<br />

Ø<br />

.?<br />

ø<br />

e<br />

@<br />

aqq<br />

a<br />

q<br />

q<br />

q<br />

q<br />

q<br />

q<br />

q<br />

q<br />

q.<br />

q<br />

q<br />

q<br />

q<br />

ls<br />

s'<br />

æ<br />

õ<br />

#<br />

S , ltt<br />

,<br />

q q


MYELOSCHTSTS: STAGE tZ (tZeïl<br />

OOG<br />

194<br />

€ (t<br />

<<br />

o@<br />

@@@<br />

ê<br />

@<br />

go<br />

'@<br />

@ @@<br />

ø'<br />

ee<br />

ç<br />

ç<br />

9<br />

g<br />

quvvv<br />

IZ<br />

@&<br />

'o<br />

@<br />

e<br />

P<br />

ø<br />

p<br />

P<br />

e<br />

,a<br />

-@Y<br />

a< < o lmm<br />

<<br />

.t


Figs. 100 - 102, Development <strong>of</strong> myelodyspTasia:<br />

Fig. 100.<br />

Control embryo <strong>of</strong> St. 16 (30C ZZ), vtith a clcsed neural<br />

tube and âccessory canals in <strong>the</strong> caudai region<br />

(a r row) "<br />

Fig. 101.<br />

Early rnyelodysplasia in St. i6 experimental enib ryo<br />

ßOf n.<br />

Lower cord shows reduction in neural<br />

volume, close contact with notochord, and hemimyel ia<br />

in <strong>the</strong> caudal region (arrow).<br />

Fig. 102.<br />

L<strong>at</strong>er myelodysplas ia in St. 1B experimenta.l embryo<br />

(42E 50) w¡th reduction in neural volume, close<br />

contact with notochord, and hehimyelia in <strong>the</strong> caudal<br />

region (arrow). Taíl_bud has disappeared.


coNTRO[: STAGE tó (ro c zz) .<br />

a@<br />

Q=3<br />

a>9<br />

@<br />

%7<br />

% Ø<br />

V.@<br />

X'Q<br />

q<br />

Y'Ga<br />

e -G q<br />

@ Ð<br />

e<br />

æ"><br />

*2" g<br />

3<br />

qa<br />

ð@ö<br />

õ@&<br />

a<br />

q<br />

,a'¡----.....r..J<br />

q<br />

q<br />

a<br />

q<br />

q<br />

q<br />

q<br />

q<br />

a<br />

q<br />

ñ-<br />

a<br />

q<br />

a<br />

q<br />

196<br />

Q<br />

q'<br />

q<br />

q<br />

gè<br />

=/t-Ê<br />

f= z4<br />

. +._/<br />

tmm


HEMTMYELTA: STAGE ló (SO r ZA)<br />

@<br />

q<br />

q<br />

0<br />

0<br />

0<br />

0<br />

I<br />

g<br />

I I<br />

v vgI<br />

qt<br />

èaa<br />

-æ@ @ag<br />

p<br />

@<br />

@O<br />

@<br />

Õ<br />

a<br />

@


G<br />

(õ--==:<br />

\z--<br />

HEMTMYELIA: STAGE tA (+ZESO)<br />

ç--æ<br />

-@<br />

é<br />

@<br />

@<br />

e<br />

@<br />

@<br />

e<br />

@a<br />

@o<br />

eo<br />

e€<br />

@€<br />

@<br />

@e<br />

l9B<br />

øe<br />

- ç.<br />

ee<br />

Pv<br />

ps<br />

Øs q<br />

a<br />

g<br />

ø<br />

g , , t'e-,<br />

q<br />

9<br />

g<br />

o


6.4w<br />

t99<br />

The hlstologlcal study <strong>of</strong> neurui<strong>at</strong>ion (Section 6.3.9) revealed<br />

certa<strong>ln</strong> dlfferences between experímentar and contror embryos. The changes<br />

in <strong>the</strong> represent<strong>at</strong>lve appearance <strong>of</strong> each region in every embryo are shown<br />

<strong>ln</strong> Tables 35 -38,. The assessment <strong>of</strong> <strong>the</strong> separ<strong>at</strong>ion <strong>of</strong> neural tìssue<br />

from adjacent nobchord or somites was complic<strong>at</strong>ed by artifactual splittíng<br />

in some embryos. However, when experîmental (g) and control (C) embryos<br />

were compared in groups, some consîstent differences were evident.<br />

Each regíon <strong>of</strong> each embryo is presented cnanío-caudal ly, so th<strong>at</strong><br />

more than one description recorded for a region indic<strong>at</strong>es a change in<br />

<strong>the</strong> appearânce <strong>of</strong> th<strong>at</strong> region from above downwards (Tables 35 _ 3g ).<br />

Regions A,B,C,D and E <strong>of</strong> each embryo are described in terms <strong>of</strong>:<br />

(a) cond¡tion <strong>of</strong> embryo after processing<br />

(b) progress <strong>of</strong> neural closure<br />

(c) number <strong>of</strong> accessory canals<br />

(d) morphology <strong>of</strong> neural defects<br />

(") cover <strong>of</strong> neural tissue by ectoderm<br />

(f)<br />

cover <strong>of</strong> neural tissue by mesenchyme (neurar crest or somitic mesoderm)<br />

(s) contact.<strong>of</strong> notochord with neural tissue<br />

(h) contact <strong>of</strong> somitic mesoderm with neural tissue<br />

(l)<br />

abnormal ities <strong>of</strong> somitîc nesoderm.


Som i te<br />

Defects<br />

contact none<br />

sePa ra t ion none<br />

separ<strong>at</strong>ion none<br />

contact none<br />

contâct none<br />

separ<strong>at</strong>¡on none<br />

contact none<br />

contact none<br />

contact none<br />

contêct none<br />

contact none<br />

N'<br />

o<br />

Region Embryo Stage Condition Neural<br />

Cl osure<br />

Access.<br />

Cana I s<br />

Ectoderm Mesenchyme Notochord Somi te<br />

Cover Cover Contêct Contact<br />

6c 20 lo- good<br />

c I osed/<br />

closing<br />

covered/<br />

open<br />

contêct<br />

0C 49 t0- fai r<br />

clòsed/<br />

closing<br />

covered/<br />

oPen<br />

contact<br />

0C 52 10- good<br />

c I osed/<br />

cl os ing<br />

covered/<br />

open<br />

con têc t<br />

6c 21 10 good<br />

c I osed/<br />

closing<br />

covered/<br />

open<br />

con têct<br />

0C46 t0 fair<br />

closed/<br />

clos i ng<br />

covered/<br />

open<br />

contact<br />

6E 15 10' fair<br />

cl osed/<br />

closing<br />

.0<br />

covered/ none<br />

open<br />

contact<br />

6E 8 t0 fair<br />

c I osed/<br />

clos ing<br />

covered/ none<br />

oPen<br />

contact<br />

6E 30 i0 faîr<br />

c I osed/<br />

closing<br />

o<br />

covered/ none<br />

open<br />

con têct<br />

6E45 10 faìr<br />

cl osed/<br />

closîng<br />

covered/ none<br />

open<br />

con tact<br />

A<br />

6E 18 t0+ poor<br />

c I osed<br />

covered none<br />

contact<br />

6E 41 10+ fair<br />

c I osed<br />

covered nìone<br />

con tact


contact none<br />

contact none<br />

contact none<br />

contact none<br />

sepa ra t lon none<br />

contact<br />

contact<br />

contact<br />

con tac t<br />

con tact<br />

contact<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

NJ<br />

o<br />

6c 20 10- good<br />

clos i ngl<br />

i nverted<br />

open<br />

contact<br />

B<br />

0c 49 10- faîr<br />

i nverted<br />

0<br />

open<br />

none<br />

con tact<br />

B<br />

0C 52 10- gocd<br />

I nverted<br />

0<br />

open<br />

none<br />

contact<br />

B<br />

6c 21 10 sood<br />

c I osed/<br />

closing<br />

0<br />

cove redl<br />

open<br />

none<br />

contact<br />

0C46 10 fair<br />

clos i ngl<br />

i nverted<br />

open<br />

con tact<br />

6E 15 to- faír<br />

closing/<br />

i nverted<br />

open<br />

contact<br />

6E I l0 fair<br />

closing/<br />

i nverted<br />

open<br />

none<br />

con tact<br />

6e 3o to faîr<br />

closîng/<br />

i nverted<br />

open none<br />

contact<br />

6E 45 to fair<br />

c I osed/<br />

closing<br />

covered/ none<br />

op9n<br />

contact<br />

6E 18 lo+ poor<br />

c I osed/<br />

clos ing<br />

cove red,/ none<br />

open<br />

contact<br />

6E 4t lo+ fair<br />

closed/<br />

closîng<br />

covered,/ none<br />

open<br />

contact


Somite Som i te<br />

Contact Defects<br />

N'<br />

o<br />

N)<br />

TABLE 35B.STAGE.IO CoNTRO.L AND EXPERIMENTAL EMBRYoS (GRoUP I)<br />

Region Embryo Stage Condltlon Neural Access. Ectoderm Mesenchyme Notochord<br />

Closure Canals Cover Cover Contact<br />

c<br />

6C 20 'l 0- good<br />

i nverted<br />

0 open<br />

contact contact none<br />

c<br />

0c 49 10- fair<br />

i nverted<br />

0 open<br />

contact sepa r<strong>at</strong> ion none<br />

c<br />

OC 52 10- good<br />

inverted<br />

0 open<br />

none<br />

contact contact none<br />

c<br />

6C 21 10 good<br />

inverted<br />

0 open<br />

none<br />

contact contact none<br />

c<br />

0c 46 10 faír<br />

i nve rted<br />

0 open<br />

none<br />

contact sepa ra t Îon none<br />

6E 15 10- fair<br />

inverted<br />

,<br />

0<br />

open<br />

none<br />

contact separât¡on none<br />

6E 8 10 falr<br />

elev<strong>at</strong>ed<br />

0<br />

open<br />

none<br />

contact sepêr<strong>at</strong>¡on none<br />

6E 30 lo fair<br />

î nverted<br />

0<br />

open<br />

none<br />

con tact sepa r<strong>at</strong> ¡on none<br />

6E 45 10 fai r<br />

.closîng/<br />

inverted<br />

0<br />

oPen<br />

none<br />

sepa ra t ion separ<strong>at</strong>ion none<br />

6E 18 10+ poor<br />

inverted<br />

0<br />

oPen<br />

none<br />

contact contact none<br />

6E 41 10+ poor<br />

i nverted<br />

0<br />

open<br />

none<br />

contact contåct none<br />

D<br />

\<br />

6C 20 10' good<br />

i nverted<br />

0<br />

open<br />

none<br />

contact sepa ra t ion<br />

D<br />

0C 49 10- fair<br />

i nver ted<br />

0<br />

open<br />

none<br />

contâct separ<strong>at</strong>îon<br />

D<br />

OC 52 t0- sood<br />

I nverted<br />

open<br />

none<br />

eontact separ<strong>at</strong>¡on


none<br />

none<br />

N)<br />

o<br />

6c 21<br />

0c 46<br />

10<br />

10<br />

good<br />

fair<br />

¡ nverted<br />

i nverted<br />

0 open<br />

0 open<br />

none<br />

none<br />

contåct contact<br />

contact sepêr<strong>at</strong>ïon<br />

D<br />

6E 15 10- fal r<br />

i nverted<br />

0 open<br />

none<br />

cohtact<br />

separ<strong>at</strong>lon Rone<br />

D<br />

D<br />

D<br />

6E 8 to faîr<br />

6E 30 10 fair<br />

6E\5 to falr<br />

e I eva ted<br />

Înverted<br />

closing/<br />

inverted<br />

0 open<br />

0 open<br />

0 open<br />

none<br />

none<br />

none<br />

contact<br />

con tact<br />

sePär<strong>at</strong>¡on none<br />

separ<strong>at</strong>ion none<br />

separ<strong>at</strong>¡on sepa r<strong>at</strong> lon none<br />

D<br />

6E 18 10+<br />

POOr<br />

í nverted<br />

0 open<br />

none<br />

con tâct<br />

D<br />

6E 41 10+<br />

poor<br />

I nverted<br />

0 open<br />

nonè<br />

contact<br />

contact none<br />

sepa ra t lon none


Som i te<br />

Contact<br />

Som i te<br />

Defects<br />

contact none<br />

sepa ra t Ìon nonè<br />

contâct none<br />

separ<strong>at</strong>lon none<br />

sePa ra t Ion none<br />

separ<strong>at</strong>¡on none<br />

separ<strong>at</strong> ion nonè<br />

separ<strong>at</strong>ion none<br />

separ<strong>at</strong>ion none<br />

sepêr<strong>at</strong>ion none<br />

separ<strong>at</strong>¡on none<br />

¡\J<br />

o<br />

Regîon Embryo Stage Conditîon<br />

Neura I<br />

C losure<br />

Access.<br />

Ca na I s<br />

Ectoderm<br />

Cover<br />

Mesenchyme Notochord<br />

Cover Con têct<br />

E<br />

6c 20 10- good<br />

fl <strong>at</strong>tened<br />

0 open<br />

E<br />

0c 49 t0- fai r<br />

el ev<strong>at</strong>ed<br />

0 open<br />

E<br />

OC 52 10- good<br />

el ev<strong>at</strong>ed<br />

0 open<br />

none<br />

E<br />

6C 21 10 good<br />

e I eva ted<br />

0 open<br />

none<br />

E<br />

oc 46 10 faìr<br />

f I <strong>at</strong>tened<br />

0 open<br />

none<br />

E<br />

6E 15 10- fai r<br />

f I <strong>at</strong>tened.<br />

0<br />

open<br />

E<br />

6E I to fair<br />

fl <strong>at</strong> tened<br />

0<br />

open<br />

E<br />

6E 30 t0 falr<br />

fl<strong>at</strong>tened<br />

0<br />

oPen<br />

none<br />

E<br />

6E \5 10 faír<br />

everted<br />

0<br />

open<br />

none<br />

E<br />

6E t8 10+ poor<br />

el ev<strong>at</strong>ed<br />

0<br />

open<br />

none<br />

E<br />

6E 41 l0+ fai r<br />

e l eva ted/<br />

everted<br />

,0<br />

open<br />

none


Som i te<br />

Defects<br />

contact none<br />

contâct none<br />

contact none<br />

contâct none<br />

contâct none<br />

contact none<br />

contact none<br />

contact N)<br />

o<br />

AND EXPER I<br />

Region Embryo Stage Conditlon<br />

Neu ra I<br />

C I osure<br />

Acces s .<br />

Cana I s<br />

Ectoderm I'lesenchyme Notochord Somi te<br />

Cover Cover Contact Con tact<br />

lBc 4 t1+<br />

gqod<br />

cl osed<br />

covered none<br />

separ<strong>at</strong>ion contact none<br />

18C 23 12<br />

good<br />

c I osed<br />

covered crest/<br />

none<br />

seÞâ ra t ¡on contact none<br />

18c 7 1z+<br />

good<br />

c I osed<br />

covered cres t/<br />

none<br />

sepa r<strong>at</strong> íon contact none<br />

18C 22 12+<br />

good<br />

cl osed<br />

covered crest/<br />

none<br />

separ<strong>at</strong>íon contact none<br />

A<br />

6E t3 11- good<br />

closed<br />

0<br />

covered none<br />

separ<strong>at</strong> ion<br />

A<br />

6E 28 11- poor<br />

closed<br />

0<br />

covered none<br />

separ<strong>at</strong> ion<br />

A<br />

6E 31 11- fair<br />

c I osed<br />

0<br />

covered none<br />

sePa r<strong>at</strong> ¡on<br />

A<br />

6E 38 11- sood<br />

c I osed<br />

0<br />

covered none<br />

separ<strong>at</strong>¡on<br />

A<br />

6E 44 11- good<br />

closed<br />

0<br />

covered none<br />

sePar<strong>at</strong>ion<br />

A<br />

6E 2\ 11 sood<br />

c I osed<br />

0<br />

covered none<br />

sepa ra t ion<br />

A<br />

6E 34 l1+ good<br />

c I osed<br />

0<br />

covered none<br />

separ<strong>at</strong>ion<br />

18c 4 11+ good<br />

c I osed<br />

covered none<br />

6on tact


none<br />

none<br />

N)<br />

o<br />

o\<br />

B<br />

r8c 23<br />

12 good<br />

c I osed<br />

0<br />

covered none<br />

contêct contäct<br />

B<br />

18C 7<br />

12+ good<br />

c I osed<br />

0<br />

covered none<br />

contact con têc t<br />

B<br />

18C 22<br />

12+ g'ood<br />

closed<br />

0<br />

covered none<br />

contact contact<br />

6E 13 lt- good<br />

closed/<br />

closing<br />

covered<br />

contact contact none<br />

B<br />

6E 28 11- poor<br />

c I osed<br />

0<br />

covered none<br />

separ<strong>at</strong>ion separ<strong>at</strong>íon none<br />

B<br />

6831 n- faîr<br />

c I osed<br />

0<br />

covered none<br />

contact separ<strong>at</strong>ion none<br />

B<br />

6E 38 11- good<br />

closed/<br />

closing<br />

0<br />

covered none<br />

contâct sepa ra t ion none<br />

6E 44 11- good<br />

c i osed/<br />

closing<br />

covered none<br />

contact con tact none<br />

6E 24 rl<br />

good<br />

closed<br />

covered none<br />

contact contact non"<br />

6E 34 tl+<br />

good<br />

closed<br />

covered none<br />

contact contact none


contáct<br />

contact<br />

con tâc t<br />

contêct<br />

Som í te<br />

Defects<br />

sepa r<strong>at</strong> ion none N'<br />

o<br />

\<br />

TABLE 368. STAGE 11-12 CONTROL AND EXPERIMENTAL EMBRYOS (<br />

Regìon Embryo Stage<br />

Condl tîon Neural Access.<br />

Closure Cana I s<br />

Ectodêrm Mesenchyme Notochord Som i te<br />

Cover Cover Contact gon tact<br />

c<br />

18c 4 1t+<br />

good<br />

closed<br />

0<br />

covered none<br />

contact<br />

c<br />

18C 23 12<br />

good<br />

c I osed<br />

0<br />

covered none<br />

cùntact<br />

18c 7 12+<br />

good<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

c<br />

18C 22 12+<br />

good<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

/c<br />

6E 13 rr-<br />

6E 28 1.1-<br />

good<br />

poor<br />

clos<strong>ln</strong>g<br />

clos i ng<br />

0 open<br />

0 open<br />

nonè<br />

none<br />

contact contact none<br />

separ<strong>at</strong>ion separ<strong>at</strong>ion none<br />

c<br />

6E 31 11-<br />

falr<br />

clos<strong>ln</strong>g<br />

0 open<br />

contact separ<strong>at</strong>ion none<br />

c<br />

61 38 1r-<br />

good<br />

clos í ng<br />

0 open<br />

contâct separ<strong>at</strong>îon none<br />

c<br />

6E 46 11-<br />

good<br />

I nverted<br />

0 open<br />

contact sePar<strong>at</strong>ion none<br />

c<br />

6E 24 11<br />

good<br />

clos I ng<br />

0 open<br />

contact separ<strong>at</strong>ion none<br />

c<br />

6t 3\ il+<br />

good<br />

clos i ng<br />

0 open<br />

contêct separ<strong>at</strong>ïon none<br />

t8c 4 t1+<br />

goód<br />

clos<strong>ln</strong>g/<br />

<strong>ln</strong>verted<br />

covered/<br />

open<br />

con tact<br />

separ<strong>at</strong>lon<br />

18C 23 12<br />

good<br />

cl osed<br />

cove red none<br />

contact


separ<strong>at</strong> ion none<br />

contact/ none<br />

sepa rêt.¡ on<br />

none<br />

none<br />

NJ<br />

o<br />

oo<br />

D<br />

18C 7<br />

12+ good<br />

closed<br />

covered none<br />

con tact<br />

D<br />

t9c 22<br />

12+ good<br />

c I osed<br />

covered none<br />

contact<br />

D<br />

6E 13 11-<br />

good<br />

i nverted<br />

0<br />

oPen<br />

none<br />

separ<strong>at</strong>ion separ<strong>at</strong>Îon<br />

D<br />

6E 28 11-<br />

poor<br />

i nverted<br />

0<br />

open<br />

none<br />

separ<strong>at</strong>ion s epa ra t ion<br />

D<br />

6E 31 lt-<br />

faír<br />

i nverted<br />

0<br />

oPen<br />

none<br />

contaçt sepa rât ion<br />

D<br />

6E 38 r1-<br />

good<br />

i nverted<br />

el ev<strong>at</strong>ed<br />

0<br />

open<br />

none<br />

con tact sepa r<strong>at</strong> ion<br />

6E 4\ 11-<br />

good<br />

e ! eva ted<br />

open<br />

none<br />

contact sepa r<strong>at</strong> ¡ on<br />

6E 2\ 11<br />

good<br />

closing/'<br />

eIev<strong>at</strong>ed.<br />

open<br />

none<br />

contact sepê ra t ¡on<br />

6E 3\ 1r+<br />

good<br />

e I eva ted<br />

oPen<br />

none<br />

contact seParêt ion


Son i te<br />

Con têct<br />

sepa ra t ¡on<br />

sePa ra t ion<br />

separ<strong>at</strong>íon<br />

sepa ra t íon<br />

Som i te<br />

Defects<br />

sePe r<strong>at</strong> Íon none<br />

sepê r<strong>at</strong> ion none<br />

sepa r<strong>at</strong> lon none<br />

separ<strong>at</strong>îon none<br />

sepå rât îon none<br />

sepâr<strong>at</strong>ion none<br />

separ<strong>at</strong>ion none<br />

l\)<br />

\o<br />

TABLE ?6C- STAGE 1I-12 CONTROL AND EXPERTMENTAL E¡4BRYOS (GROUP II)<br />

Region Embryo Stage CondÎtion Neural Access. Ectoderm l'lesenchyme Notochord<br />

Closure Canals Cover Cover Contact<br />

l8c 4 11+<br />

good<br />

el ev<strong>at</strong>ed<br />

open none<br />

18C 23 12<br />

good<br />

closed/<br />

closing<br />

covered/ none<br />

open<br />

18C 7 12+<br />

good<br />

c I osed/<br />

closîng<br />

covered/ none<br />

open<br />

18C 22 12+<br />

good<br />

closed/<br />

clos<strong>ln</strong>g<br />

covered/ none<br />

open<br />

E<br />

6E 13 11- good<br />

è I eva ted<br />

0<br />

oPen<br />

E<br />

6E 28 11- poor<br />

e I eva ted<br />

0<br />

open<br />

E<br />

6E 31 il- fair<br />

e I eva ted<br />

0<br />

open<br />

E<br />

6E 38 tt- sood<br />

f I a t tened<br />

0<br />

open<br />

E<br />

6E 44 11- good<br />

fl <strong>at</strong>tened<br />

0<br />

open<br />

E<br />

6E 2\ 11 good<br />

e I eva ted<br />

0<br />

oPen<br />

none<br />

E<br />

6E 34 'l t + good<br />

everted<br />

0<br />

open<br />

none


Regíon Embryo Stage Conditîon Neural Access. Ectoderm Mesenchyme Notochord Somite<br />

Closure Canal s Cover Cover Contact Contact<br />

Som i te<br />

.Def ect s<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

n orie<br />

none<br />

none<br />

none<br />

NJ<br />

none ã<br />

TABLE 37A. STAGE 13-16 CONTROL AND EXPERIMENTAL EI'IBRYOS (GROUP III)<br />

A<br />

A<br />

A<br />

A<br />

A<br />

18C 11<br />

18C 10<br />

18c r4<br />

r8c 21<br />

18C 27<br />

30c 2<br />

13-<br />

13<br />

13<br />

l3+<br />

13+<br />

16<br />

30c 3 16<br />

30c 15 16<br />

30c 12 16<br />

good<br />

good<br />

good<br />

good<br />

good<br />

poor<br />

Poor<br />

good<br />

good<br />

c I osed<br />

c I osed<br />

c I osed<br />

cl osed<br />

c I osed<br />

cl osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

covered<br />

covered<br />

covered<br />

covered<br />

covered<br />

covered<br />

covered<br />

covered<br />

cove red<br />

crest<br />

crest<br />

crest<br />

crest<br />

crest<br />

mesoderm/<br />

crest<br />

mesoderm<br />

mesode rm<br />

mesoderm,/<br />

crest<br />

sepa ra t i on con tact<br />

sepa ra t ìon contact<br />

sepa r<strong>at</strong> ion con tact<br />

sêpar<strong>at</strong> ìon con tac t<br />

separ<strong>at</strong>¡on con tact<br />

separ<strong>at</strong>¡on/ con tact<br />

con tact<br />

sepâ r<strong>at</strong> ion/ con tact<br />

contact<br />

sePêr<strong>at</strong> iony' con tact<br />

contact<br />

sepa r<strong>at</strong> ion/ con tâct<br />

con tac t<br />

30c 22 16<br />

good<br />

closed<br />

covered<br />

mesode rm/<br />

crest<br />

separ<strong>at</strong> ion/ contact<br />

contact<br />

30c 25 16<br />

900q<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

separ<strong>at</strong>ion/ contact<br />

contâct<br />

18E 10 13- very poor closed<br />

covered cres t<br />

separ<strong>at</strong> ion con tact


none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

nonê<br />

none<br />

none<br />

none<br />

none<br />

none<br />

N)<br />

A<br />

r8E 6l<br />

13<br />

poor c losed<br />

0<br />

covered<br />

cres t<br />

sepa ra t ¡ Crn con tact<br />

A<br />

18E 25<br />

13+<br />

very poor c I osed<br />

0<br />

covered<br />

crest<br />

separ<strong>at</strong>¡on contact<br />

A<br />

A<br />

18E 13<br />

r8E 28<br />

14<br />

14<br />

Poor c I osed<br />

verv Door ' .<br />

c losed<br />

0<br />

0<br />

covered<br />

covered<br />

crest<br />

cres t<br />

sePar<strong>at</strong>ion con tact<br />

sepa ra t ion contact<br />

A<br />

1BE 35<br />

14<br />

poor c I osed<br />

0<br />

covered<br />

crest<br />

sepa ra t ion contact<br />

A<br />

18E 47<br />

14<br />

góod c I osed<br />

0<br />

covered<br />

crest<br />

sePar<strong>at</strong> ion con tact<br />

A<br />

18E 58<br />

14<br />

poor c I osed<br />

0<br />

covered<br />

cres t<br />

sePêr<strong>at</strong>íon con tact<br />

A<br />

18E 36<br />

14+<br />

good' c I osed<br />

0<br />

covered<br />

cres t<br />

sePa ra t iÕn contact<br />

A<br />

18E 53 14+<br />

poor c I osed<br />

0<br />

covered<br />

crest<br />

separ<strong>at</strong>îon contact<br />

r8E 54 14+<br />

very Poor c I osed<br />

0<br />

covered<br />

crest<br />

separ<strong>at</strong>ion. contact<br />

A<br />

tBE 59 14+<br />

good cl osed<br />

0<br />

covered<br />

crest<br />

separ<strong>at</strong>ion contact<br />

A<br />

18E 44 15-<br />

good cl osed<br />

0<br />

covered<br />

crest<br />

sepa r<strong>at</strong> ion con tact<br />

A<br />

30Ê 4 15<br />

good c I osed<br />

0<br />

covered<br />

mesoderm/<br />

crest<br />

separ<strong>at</strong> ion/ con tact<br />

con tact<br />

30E 25 15<br />

fa î r cl osed<br />

covered<br />

mesoderm/<br />

crest<br />

separ<strong>at</strong> Íon/ contêct<br />

con tact<br />

3oE 9 16<br />

gool c I osed<br />

covered<br />

mesoderm<br />

sePar<strong>at</strong>ion/ con têct<br />

con tac t<br />

308 26 16<br />

good c I osed<br />

cove red<br />

mesoderm<br />

separ<strong>at</strong>îon/ contêct<br />

con tact<br />

30E 35 16<br />

faí r c I osed<br />

covered<br />

mesodeim<br />

sepa ra t lon/ contact<br />

contact


none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

l'.J<br />

l\)<br />

3oE 56 16<br />

good<br />

c I osed<br />

cove red<br />

mesoderm<br />

separ<strong>at</strong>ion/ con tâct<br />

contact<br />

3or 59 16<br />

good<br />

c I osed<br />

covered<br />

mesoderm<br />

separ<strong>at</strong>¡on/ con tact<br />

contact<br />

30E 69<br />

16<br />

good<br />

Cl osed<br />

covered<br />

mesoderm<br />

separ<strong>at</strong> lon/ contâct<br />

rîon tact<br />

3oE 76<br />

16<br />

good<br />

closed<br />

covered<br />

mesoderm<br />

separ<strong>at</strong>ìon/ contact<br />

contact<br />

3oE 52 16<br />

good<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

sepâ ra t l.pn/ contact<br />

contact<br />

3ot 77 16<br />

good<br />

closed<br />

covered<br />

mesoderm/<br />

crest<br />

sepa r<strong>at</strong> ion/ con tact<br />

contact


contact<br />

con tac t<br />

contact<br />

con tact<br />

contact<br />

contact<br />

contact<br />

contact<br />

con tact<br />

contact<br />

contact<br />

Somi te<br />

Defects<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

N)<br />

TABLE 378. STAGE I3-16 coNTRoL AND EXPERIHENTAL'EMBRYOS (GROUP III)<br />

Reg ì on Embryo Stage Cond I t lon Neural<br />

C I osure<br />

Access.<br />

Cana I s<br />

Ectoderm Mesenchyme Notochord Som I te<br />

Cover Cover Contact Contact<br />

B<br />

r8c 11<br />

13- good<br />

c I osed<br />

0<br />

covered<br />

none coñtact<br />

B<br />

r8c r0<br />

13 good<br />

closed<br />

0<br />

covered<br />

none con tac t<br />

B<br />

r8c 14<br />

13 good<br />

closed<br />

0<br />

covered<br />

none con tact<br />

B<br />

t8c 21<br />

13+ good<br />

c I osed<br />

0<br />

covered<br />

none con tâct<br />

B<br />

18C 27<br />

13+ good<br />

closed<br />

0<br />

covered<br />

none con tact<br />

B<br />

30c 2<br />

16 poor<br />

cl osed<br />

0<br />

covered<br />

crest/ con tact<br />

none<br />

30c 3 16<br />

POor<br />

c I osed<br />

covered<br />

mesoderm/ con tact<br />

crest<br />

3oc 15 16<br />

good<br />

c I osed<br />

covered<br />

mesoderm/ ccn tac t<br />

crest<br />

30c 12 16<br />

good<br />

c I osed<br />

0<br />

covered<br />

crest/ con tact<br />

none<br />

30c 22 16<br />

good<br />

c I osed<br />

10<br />

covered<br />

crest/ contact<br />

none<br />

3oc 25 16<br />

9o0d<br />

closed<br />

0<br />

covered<br />

crest/ contact<br />

none


18E 10 13- vëry poor<br />

closed 0<br />

covered none<br />

con tact<br />

contact/ none<br />

separ<strong>at</strong>îon<br />

B<br />

18E 61 13 poor<br />

closed 0<br />

covered none<br />

con tact<br />

contact none<br />

B<br />

tBE 25 13+ very poor<br />

closed 0<br />

covered none<br />

separ<strong>at</strong>¡on/ separ<strong>at</strong>ion none<br />

con tac t<br />

B<br />

B<br />

t8E 13 14 poor<br />

t8E 28 14 very poor<br />

closed 0<br />

closed 0<br />

covered none<br />

covered none<br />

contact<br />

con tâct<br />

contêct none<br />

contact none<br />

B<br />

l8E 35 14 poor<br />

closed 0<br />

covered none<br />

con tact<br />

contact none<br />

B<br />

18E 47 14 good<br />

closed 0<br />

covered none<br />

con tact<br />

contêct none<br />

B<br />

B<br />

18E 58 14 poor<br />

18E 36 14+ good<br />

closed 0<br />

closed 0<br />

covered none<br />

covered none<br />

contact<br />

con tac t<br />

contact none<br />

contact none<br />

B<br />

18E 53<br />

'I<br />

4+ poor<br />

closed 0<br />

covered none<br />

con tact<br />

B<br />

r8E 54<br />

14+ u.ry poor<br />

closed 0<br />

covered none<br />

contêct<br />

B<br />

18E 59<br />

14+ good<br />

closed 0<br />

covered none<br />

contact<br />

B<br />

188 44<br />

15- good<br />

closed 0<br />

covered none<br />

contact<br />

B<br />

30E 4<br />

15 good<br />

308 25 15 fai¡<br />

closed O<br />

closed/ 0/1<br />

myeloschisis<br />

J<br />

covered crest/<br />

none<br />

covered/ crest/<br />

open none<br />

contact<br />

con tact<br />

contact none<br />

contact none<br />

contâct none<br />

contâct none<br />

contact none<br />

contêct/ none<br />

sepa rê t ¡on<br />

30E 9 16 sood<br />

closed 0<br />

contact none<br />

covered mesoderm/ contêct<br />

crest N¡


Som i te<br />

Con tact<br />

Som i te<br />

Defects<br />

contact none<br />

contâct none<br />

contact none<br />

contact none<br />

contact none<br />

separ<strong>at</strong>ion none<br />

con tact none<br />

contact none<br />

contact none<br />

gepar<strong>at</strong>lon none<br />

contâct none<br />

EXPERIMENTAL EMBRYOS<br />

Region Embryo Stage Condltîon Neural<br />

C losure<br />

Access.<br />

Cana I s<br />

Ectoderm Mesenchyme Notochord<br />

Cover Cover Con tact<br />

¡^<br />

l8C 11 13- sood<br />

closed<br />

0<br />

covered none<br />

contêct<br />

c<br />

18C 10 13<br />

good<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

c<br />

r8c 14 13<br />

good<br />

c I osed<br />

0<br />

covered none<br />

con ta ct<br />

c<br />

18C 2t 13+<br />

good<br />

c I osed<br />

0<br />

covered none<br />

contâct<br />

c<br />

18C 27 13+<br />

good<br />

c I osed<br />

0<br />

covered none<br />

con tact<br />

c<br />

3oc 2 16<br />

POOr<br />

c losed<br />

covered none<br />

eon tact<br />

c<br />

3oc 3 16<br />

poor<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

c<br />

3oc 15 16<br />

good<br />

closed<br />

0<br />

covered none<br />

contact<br />

c<br />

30c t2 16<br />

good<br />

cìosed<br />

0<br />

covered none<br />

con tact<br />

c<br />

30c 22 16<br />

good<br />

c I osed<br />

0<br />

covered nonê<br />

contact<br />

c<br />

3oc 25. 16<br />

good<br />

c I osed<br />

0<br />

covered none<br />

con tact<br />

c<br />

18E 10<br />

13- very Poor cl osed<br />

0<br />

covered none<br />

separ<strong>at</strong>ion separ<strong>at</strong>ion<br />

c<br />

1BE 61<br />

13 poor c I osed<br />

0<br />

covered none<br />

contêct con tac t<br />

c<br />

188 25<br />

13+ very poor<br />

cl osed/<br />

everted<br />

0<br />

covered/ none<br />

open<br />

separ<strong>at</strong>ion separ<strong>at</strong> ¡on 19<br />

o\


separãtion none<br />

contact none<br />

contact none<br />

separ<strong>at</strong>ion none<br />

sepa ra t ion none<br />

contact none<br />

contact none<br />

separ<strong>at</strong>lon none<br />

contact none<br />

contêct none<br />

contact none<br />

separ<strong>at</strong>i,on/ none<br />

con ta ct<br />

contact none<br />

contact none<br />

sepa ra t ion none<br />

separêt ion/ none<br />

con tsct<br />

contact none<br />

NJ<br />

\<br />

l8E 13 14 poor<br />

c I osed/<br />

everted<br />

covered/ none<br />

' open<br />

con têct<br />

c<br />

18E 28 14 very poor<br />

c I osed<br />

0<br />

covered none<br />

con tact<br />

c<br />

18E 35 14 poor<br />

c I osed<br />

0<br />

covered none<br />

con ta ct<br />

c<br />

18E 47 14 sood<br />

closed<br />

0<br />

covered none<br />

contact<br />

c<br />

l8E 58 t4 poor<br />

closed/<br />

.myeloschlsls<br />

1<br />

covered/ none<br />

oPen<br />

con tê ct<br />

c<br />

tBE 36 14+ sood<br />

c I osed<br />

0<br />

covered none<br />

qon tact<br />

c<br />

18E 53 14+ poor<br />

c l'osed<br />

0<br />

covered none<br />

contact<br />

c<br />

18E 54 14+ very Poor<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

c<br />

18E 59 14+<br />

good<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

t<br />

r8E 44 15-<br />

good<br />

cl osed<br />

0<br />

coveeed none<br />

con tact<br />

c<br />

308 4 15<br />

good<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

30E 25 15<br />

fair<br />

myeloschisis<br />

2<br />

open none<br />

con tact<br />

c<br />

c<br />

30E 9 16 sood<br />

308 26 16 good<br />

closed<br />

c I osed<br />

0<br />

r0<br />

covered none<br />

covered none<br />

contact<br />

contact<br />

c<br />

3oE 35 16 fair<br />

hemi mye I ia<br />

0<br />

covered none<br />

contact<br />

c<br />

308 56 16 sood<br />

myeloschisis/'<br />

c I osed<br />

2<br />

open/ none<br />

covered<br />

con tact<br />

308 59 16 sood<br />

c I osed<br />

covered none<br />

con têct


sepa ra t lon none<br />

contact/ cys ts<br />

separ<strong>at</strong>îon<br />

separ<strong>at</strong>ion none<br />

contact none<br />

NJ<br />

@<br />

c<br />

3oE 69 16<br />

good<br />

myeloschîsîs<br />

1<br />

open none<br />

contact<br />

c<br />

30E 76 16<br />

good<br />

hem i mye I ia<br />

0<br />

oPen none<br />

con tact<br />

30Ê 52 16<br />

good<br />

mye I os ch I s 1sl<br />

c I osed<br />

open/ none<br />

covered<br />

con tact<br />

308 77 16<br />

good<br />

closed<br />

covered none<br />

con tact


Regíon Embryo Stage Condition Neural Access. Ectoderm Mesenchyme Notochord Somite<br />

, Closufe Canals Cover. Cover Contact Contact<br />

Soml te<br />

Defec t s<br />

separ<strong>at</strong>lon none<br />

sepa r<strong>at</strong> lon none<br />

sepa r<strong>at</strong> ion none<br />

separ<strong>at</strong>ion none<br />

sepâ ra t ion none<br />

sepa râ t lon none<br />

sepa r<strong>at</strong> ¡on none<br />

separ<strong>at</strong> ion none<br />

separ<strong>at</strong>ion none<br />

separ<strong>at</strong>ion none<br />

I<br />

\o<br />

TABLE 37D. slAGE 13-16 GONTRoL AND EXPERIMENTAL EMBRYoS (GROUP III)<br />

D<br />

18C 11 13- good c'losed<br />

0<br />

covered none<br />

contêct<br />

separât¡on .none<br />

D<br />

18C 10<br />

13<br />

good<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

D<br />

l8c r4<br />

13<br />

good<br />

c I osed<br />

0<br />

covered none<br />

contact<br />

D<br />

18C 21<br />

13+<br />

good<br />

c I osed<br />

1<br />

covered none<br />

con tact<br />

D<br />

18c 27<br />

13+<br />

good<br />

c I osed<br />

1<br />

covered none<br />

con tåct'<br />

D<br />

30c 2<br />

16<br />

poor<br />

closed<br />

2<br />

covered none<br />

contact<br />

D<br />

30c 3<br />

16<br />

poor<br />

closed<br />

3<br />

covered none<br />

contact<br />

D<br />

30c 15<br />

t6<br />

good<br />

c ¡ osed<br />

1<br />

covered none<br />

contact<br />

D<br />

D<br />

30c 12<br />

30c 22<br />

16<br />

16<br />

good<br />

good<br />

c I osed<br />

c I osed<br />

2<br />

'0<br />

covered none<br />

covered none<br />

con tact<br />

con tact<br />

D<br />

3oc 25<br />

16<br />

good<br />

closed<br />

3<br />

covered none<br />

contact<br />

lBE 10 13- u..r<br />

:oo. ":;::ij,<br />

covered/<br />

open<br />

separêt¡on separ<strong>at</strong> ion none<br />

D<br />

18E 61 13 poor myeloschisls<br />

1<br />

open<br />

contact sepa ra t ¡on none<br />

D<br />

188 25<br />

13+<br />

very poor myeloschisis<br />

3<br />

open<br />

sepa r<strong>at</strong> ion sepêr<strong>at</strong>ion none<br />

D<br />

lBE 13<br />

14<br />

poor myeloschîsïs<br />

\<br />

open<br />

contâct sepä râ t Îon none


N)<br />

N)<br />

o<br />

r8E 28 14 very poor<br />

18E 36 14+ good<br />

r8E 35 18E 47 18E 58 14 r4 14 poor<br />

good<br />

poor<br />

c I osed/<br />

elev<strong>at</strong>ed<br />

c I osed/<br />

myeloschîsis<br />

closed<br />

myeloschîsîs<br />

cìosed/<br />

myeìoschisis<br />

2<br />

3<br />

covered/ none<br />

open<br />

covered/ none<br />

qpen<br />

covered none<br />

open nonè<br />

covered/ none<br />

open<br />

separ<strong>at</strong> ion separ<strong>at</strong>ion none<br />

contact separ<strong>at</strong>ion none<br />

contact sepa ra t ion none<br />

contact<br />

contact<br />

separ<strong>at</strong>ion ñone<br />

separ<strong>at</strong>ion none<br />

1BE 53 14+ poor<br />

c I osed/<br />

myeloschisis<br />

covered/ none<br />

open<br />

contact<br />

sepa ra t ion none<br />

t8E 54 l lt+ v¿¡t ooot<br />

c I osed/<br />

myeloschìsìs<br />

covered/ none<br />

open<br />

sePa rê t ¡on<br />

separ<strong>at</strong>lon none<br />

18E 59 14+ good<br />

cl osed/<br />

myeloschisis<br />

covered/ none<br />

open<br />

con tact<br />

cpntact none<br />

18E 44 15-<br />

good<br />

c I osed<br />

2<br />

covered none<br />

con têct<br />

3oE \ 15<br />

good<br />

c I osed<br />

2<br />

covered none<br />

contact<br />

30Ê 25 1, faÎr<br />

myeloschisis<br />

open/ none<br />

covered<br />

contact<br />

D<br />

308 9 16<br />

soo.d<br />

c I osed<br />

t<br />

covered none<br />

con tact<br />

D<br />

D<br />

30E 26 16<br />

30E 35 16<br />

good<br />

fair<br />

closed<br />

closed<br />

2<br />

0<br />

covered none<br />

covered mesoderm<br />

contact<br />

con tac t<br />

D<br />

3oE 56 16<br />

good<br />

c I osed<br />

1<br />

covered none<br />

contact<br />

contêct none<br />

coñtact/ none<br />

sepa ra t ion<br />

contact none<br />

sepa ra t îon none<br />

separ<strong>at</strong>ion none<br />

contact cysts<br />

contact none


separ<strong>at</strong>ion none<br />

sepâ ra t îon none<br />

separ<strong>at</strong> îon cys ts<br />

separãtÎon none<br />

separêtlon none<br />

N¡<br />

NJ<br />

308 59 16<br />

3oE 69 16<br />

good<br />

good<br />

closed<br />

myeloschisis<br />

covered<br />

open /<br />

covered<br />

contact<br />

con tact<br />

3oE 76 16<br />

good<br />

' hem î mye I îal<br />

closed<br />

open/<br />

covered<br />

contact<br />

3oE 52 16<br />

good<br />

c I osed<br />

0<br />

covered<br />

contact<br />

3oz 77 16<br />

good<br />

c I osed<br />

0<br />

covered<br />

contact


Som i te Som i te<br />

Contact Defects<br />

sepê ra t ion none<br />

separ<strong>at</strong>íon none<br />

separ<strong>at</strong>ion none<br />

sepa rê t Ion none<br />

sepa ra t ion none<br />

separât ion none<br />

sepêr<strong>at</strong>¡on none<br />

sepa ra t ion none<br />

separ<strong>at</strong>ion none<br />

sepa r<strong>at</strong> Íon none<br />

separ<strong>at</strong>ion none<br />

N)<br />

N)<br />

TABLE 378. STAGE t3-16 coNTRoL AND EXPERII'ÍENTAL EMBRYoS (GRoUP III)<br />

Regîon Embryo Stage Condí tion Neural Access.<br />

Closure Canals<br />

Ectoderm Hesenchyme Notochord<br />

Cover Cover Con tâc t<br />

18c 11 13- good<br />

c I osed/<br />

closing<br />

covered/ none<br />

open<br />

18C 10 13 good<br />

cùosed/<br />

closing<br />

covered/ none<br />

open<br />

18c 14 13 sood<br />

c I osed/<br />

closing<br />

covered/ none<br />

oPen<br />

t8c 21 13+ good<br />

c I osed/<br />

closing<br />

covered/ none<br />

open<br />

18c 27 t3+ good<br />

c lbsed/<br />

closing<br />

covered/ none<br />

open<br />

E<br />

30C 2 16 poor<br />

c I osed<br />

covered none<br />

E<br />

30C 3 16 poor<br />

closed<br />

4<br />

covered none<br />

E<br />

30C 15 16 sood<br />

closed<br />

1<br />

covered none<br />

E<br />

30C 12 16 good<br />

c I osed<br />

1<br />

covered none<br />

E<br />

3OC 22 16 good<br />

c I osed<br />

ll<br />

covered none<br />

E<br />

3OC 25 16 soo;<br />

closed<br />

3<br />

covered noné


separâtion none<br />

sepa ra t ion<br />

separ<strong>at</strong> ion none<br />

sepa ra t lon nonE<br />

sePar<strong>at</strong>íon none<br />

separ<strong>at</strong>ion none<br />

sePar<strong>at</strong>lon none<br />

sepê ra t ion nonè<br />

sePar<strong>at</strong>ion none<br />

separ<strong>at</strong>¡on none<br />

separ<strong>at</strong>ion none<br />

sePa ra t lon none<br />

sepa ra t ion none<br />

sePar<strong>at</strong> ion none<br />

sepa r<strong>at</strong> ion none<br />

sepa ra t íon none<br />

sepa r<strong>at</strong> ion none<br />

sepå ra t lon none<br />

I\J<br />

N<br />

E<br />

18E 10 13- very poor<br />

everted<br />

1<br />

open none<br />

E<br />

18E 61 13 poor<br />

myeloschisis<br />

1<br />

open none<br />

E<br />

188 25<br />

13+<br />

very poor<br />

myeloschisis<br />

0<br />

open none<br />

E<br />

18E 13<br />

r4<br />

poor<br />

myeloschisis<br />

0<br />

open none<br />

E<br />

18E 28<br />

r4<br />

very Poor<br />

elev<strong>at</strong>ed<br />

2<br />

open none<br />

E<br />

18E 35<br />

r4<br />

poor<br />

myeloschisis<br />

2<br />

open none<br />

E<br />

18E 47<br />

14<br />

good<br />

e I eva ted<br />

1<br />

open none<br />

E<br />

t8E 58 t4 poor<br />

everted<br />

0<br />

open none<br />

E<br />

18E 36 14+ sood<br />

myeloschisis<br />

2<br />

open none<br />

E<br />

18E 53 14+ poor<br />

myeloschisis<br />

3<br />

open none<br />

E<br />

18E 54 14+ very pôor<br />

myeloschisis<br />

0<br />

open none<br />

E<br />

18E 59 14+ good<br />

elev<strong>at</strong>ed<br />

-0<br />

open/ none<br />

covered<br />

E<br />

18E 44 15- sood<br />

closed<br />

3<br />

covered none<br />

E<br />

3oE 4<br />

15 good<br />

cl osed<br />

2<br />

covered none<br />

E<br />

30E 25<br />

15 fair<br />

c I osed<br />

3<br />

covered none<br />

E<br />

30E 9<br />

16 9ooà<br />

cl osed<br />

2<br />

covered none<br />

E<br />

3oE 26<br />

16 good<br />

closed<br />

t<br />

covered none<br />

E<br />

308 35<br />

16 fal r<br />

c I osed<br />

covered none


sePâr<strong>at</strong> Îon<br />

sepa ra t ¡on<br />

separ<strong>at</strong>Îon<br />

separ<strong>at</strong>ion<br />

sepa ra t ion<br />

sepa r<strong>at</strong> ion<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

N'<br />

N<br />

.È-<br />

E<br />

3oE 56<br />

16 good<br />

closed<br />

3<br />

covered<br />

none<br />

E<br />

30E 59<br />

16 good<br />

c I osed<br />

2<br />

covered<br />

none<br />

E<br />

30E 69<br />

16 good<br />

closed<br />

1<br />

covered<br />

none<br />

E<br />

3oE 76<br />

16 good<br />

c I osed<br />

I<br />

covered<br />

none<br />

E<br />

3OE 52<br />

16 good<br />

c I osed<br />

0<br />

covered<br />

none<br />

E<br />

30e 77<br />

16 good<br />

c I osed<br />

0<br />

covered<br />

none


Reglon Embryo Stagd cond¡t¡on Neural Access. Ectoderm Mesenchyme Notochord Somite<br />

Closure Canals Cover Cover Contact Contact<br />

Somi te<br />

Defects<br />

none<br />

none<br />

none<br />

none,<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

N'<br />

¡\'<br />

TABLE 38A. STAGE f7-20 CONTROL AND EXPERIMENTAL EHBRYOS (GROUP IV)<br />

42C 4 18<br />

POor<br />

c i osed<br />

covered<br />

mesoderm<br />

sePa ra t ion/ contact<br />

con tact<br />

\zc 7 18<br />

poor<br />

closed<br />

covered<br />

mesoderm<br />

separ<strong>at</strong> Ìon/ con tact<br />

con tact<br />

42c z 19<br />

good<br />

c I osed<br />

covered<br />

mesoderm<br />

separ€¡t¡on/ contact<br />

contact<br />

42c 6 19<br />

poor<br />

c I osed<br />

covered<br />

mesoderm<br />

separêtion/ contact<br />

con tact<br />

42c 11 t9<br />

poor<br />

c I osed<br />

covered<br />

mesoderm<br />

separ<strong>at</strong>¡on/ con tact<br />

contact<br />

42C 3<br />

20<br />

poor<br />

c I osed<br />

covered<br />

mesoderm<br />

separ<strong>at</strong>ion/ contact<br />

con tac t<br />

\2c 8<br />

42c 21<br />

428 I<br />

20<br />

20<br />

t7<br />

good<br />

poor<br />

good<br />

c I osed<br />

c I osed<br />

c I osed<br />

0<br />

0<br />

covered<br />

cove red<br />

covered<br />

mesoderm<br />

mesode rm<br />

mesoderm/<br />

crest<br />

sepa r<strong>at</strong> ion/ con tact<br />

con tact<br />

sepâ ra t îon/ contact<br />

con tact<br />

sePar<strong>at</strong> ion/ contact<br />

con tac t<br />

4zE 10 17<br />

good<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

separ<strong>at</strong> ion/ con tac t<br />

con tact<br />

\28 j2 t7<br />

POor<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

separ<strong>at</strong> icn/ contact<br />

con tact


none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

N)<br />

none ts<br />

428 1 18<br />

good<br />

closed<br />

covered<br />

mesoderm separ<strong>at</strong> ion/ con tact<br />

. contact<br />

428 21 18<br />

good<br />

c I osed<br />

covered<br />

mesoderm separ<strong>at</strong>ion/ contêct<br />

contâct<br />

\28 34<br />

18<br />

good<br />

c I osed<br />

covered mesoderm<br />

separ<strong>at</strong> íon/ con tact<br />

contact<br />

\2E htt<br />

18<br />

good<br />

c I osed<br />

covered mesoderm<br />

separ<strong>at</strong>¡on/ contãct<br />

contact<br />

\zE 49 rB<br />

good<br />

c I osed<br />

covered mesoderm<br />

sepâ!"<strong>at</strong>¡on/ contact<br />

contact<br />

\zE 50<br />

18<br />

good<br />

c I osed<br />

covered mes0derm<br />

sepâr<strong>at</strong> Îon/ contact<br />

contact<br />

hzE 5\<br />

18<br />

good<br />

c¡osêd<br />

covered mesoderm<br />

sepa r<strong>at</strong> ion/ contact<br />

contact<br />

\28 56<br />

18<br />

good<br />

c I osed<br />

covered mesoderm<br />

sePar<strong>at</strong> ion/ con tact<br />

contact<br />

42E 26 19<br />

good<br />

c ¡ osed<br />

covered mesoderm<br />

separ<strong>at</strong>âon/ contact<br />

contact<br />

\2E 3i<br />

19<br />

ooo:<br />

c I osed<br />

covered mesoderm<br />

separ<strong>at</strong>ion/ con tact<br />

con'tact<br />

428 57<br />

19<br />

good<br />

c I osed<br />

covered mesoderm<br />

separ<strong>at</strong>ion/ con tact<br />

contact<br />

\28 65<br />

19<br />

good<br />

closed<br />

covered mesoderm<br />

sepa ra t ion/ contåct<br />

gontact


none<br />

none<br />

none<br />

none<br />

N)<br />

NJ<br />

.{<br />

A<br />

A<br />

A<br />

A<br />

428 69 19 good<br />

\2E 73 20 good<br />

428 17 20 good<br />

4zE 72 20 good<br />

c I osed<br />

closed<br />

c I osed<br />

c I osed<br />

0<br />

0<br />

0<br />

0<br />

covered mesoderm<br />

covered resoi.rm<br />

covered mesoderm<br />

covered mesoderm<br />

separ<strong>at</strong>ion/ con tact<br />

con tac t<br />

sepâr<strong>at</strong> ¡on/ contact<br />

contact<br />

sePa ra t ion/ contact<br />

con tact<br />

sePar<strong>at</strong>¡on/ con tact<br />

contact


Region Embryo Stage Condltîon Neural Access. Ectoderm Mesenchyme Notochord Somíte<br />

Closure Canal s Cover Cover Contact Contêct<br />

Som i te<br />

'Defects<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

cysts<br />

N)<br />

l'.¡<br />

oo<br />

TABLE 3BB. STAGE 17-20 CONTROL AND EXPERIMENTAL EI'IBRYOS (GROUP IV)<br />

\zc 4 r8<br />

poor<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

contact contact<br />

42c 7 18<br />

poor<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

contact contact<br />

4zc z 19<br />

good<br />

cl osed<br />

coVered<br />

mesode rm/<br />

crest<br />

contact coR tact<br />

4zc 6 19<br />

poor<br />

closed<br />

cove red<br />

mesoderm/<br />

crest<br />

contact con tact<br />

42c 11 19<br />

poor<br />

c I osed<br />

cove red<br />

mesoderm/<br />

cres t<br />

contact con tact<br />

42C 3<br />

\zc I<br />

20<br />

20<br />

poor<br />

good<br />

c I osed<br />

c I osed<br />

0<br />

covered<br />

covered<br />

mesoderm/<br />

crest<br />

mesoderm<br />

contact con tact<br />

contact con tact<br />

\zc 21<br />

20<br />

poor<br />

c I osed<br />

0<br />

covered<br />

mesoderm<br />

contact/ contact<br />

sePar<strong>at</strong>ion<br />

\28 8 17<br />

soo9<br />

closed/<br />

myeloschisls<br />

covered/<br />

open.<br />

mesoderm/<br />

none<br />

contact/ con tact<br />

sepa rê t ion<br />

42E to 17<br />

good<br />

myeloschisls<br />

covered/<br />

open<br />

mesoderm/<br />

none<br />

contact/ con tact<br />

sePêr<strong>at</strong>ion<br />

\28 i2 17<br />

POOr<br />

c I osed<br />

cove red<br />

mesoderm/<br />

cres t<br />

contact contâct


contact/ none<br />

separ<strong>at</strong>lon<br />

contact none<br />

contact none<br />

contact none<br />

contact none<br />

contêct cysts<br />

contact none<br />

contact cys ts<br />

contact none<br />

contâct nonê<br />

contact none<br />

contâct none<br />

contact cys ts<br />

N'<br />

N¡<br />

\.o<br />

42Ê I 18<br />

good<br />

closed/<br />

m),e¡oschisis<br />

covered/<br />

open<br />

mesode rml<br />

none<br />

contact/<br />

separ<strong>at</strong>Ìon<br />

\zE 21 18<br />

4zE 34 r8<br />

good<br />

good<br />

c I osed/<br />

myeloschisis<br />

closed<br />

covered/<br />

open<br />

covered<br />

mesoderm/<br />

none<br />

mesoderm/<br />

cres t<br />

contact/<br />

separ<strong>at</strong>¡on<br />

con tac t<br />

\28 U+<br />

18<br />

good<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

con tact<br />

\zE 49<br />

18<br />

good<br />

c I osed<br />

covered<br />

mesoderm/<br />

cres t<br />

ccn tact<br />

42E 5a<br />

18<br />

good<br />

c I osed/<br />

hem î mye I ia<br />

covered<br />

mesoderm<br />

con tact<br />

LzE 54<br />

18<br />

good<br />

c I osed<br />

cove red<br />

mesoderm/<br />

crest<br />

contact<br />

\28 56 18<br />

good<br />

c I osed/<br />

hem i myel 1a<br />

covered<br />

mesoderm/<br />

crest<br />

contact<br />

:<br />

428 26 19<br />

good<br />

c I osed<br />

cove red<br />

mesoderm/<br />

cres t<br />

contêct<br />

4zE 31<br />

19<br />

poor<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

contact<br />

428 57<br />

19<br />

no.:<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

contact<br />

4zE 65<br />

19<br />

good<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

contact<br />

42E 69 19<br />

good<br />

c I osed/<br />

hem i mye I ia<br />

covered<br />

mesoderm/<br />

crest<br />

con tact


none<br />

none<br />

428 17 zo<br />

c I osed<br />

covered<br />

mesoderm/<br />

crest<br />

contact con tact<br />

\2E 72 20<br />

c I osed<br />

cove red<br />

mesoderm/<br />

crest<br />

contact con tact<br />

428 73 20<br />

c I osed<br />

cove red<br />

mesoderm/<br />

crest<br />

contêct/ con tact<br />

sepa ra t ion


Region Embryo Stage Conditlon Neural Access. Ectoderm Mesenchyme Notochord SomÎte<br />

Closure Canals Cover Cover Contact Contact<br />

Som i te<br />

Defec t s<br />

none<br />

nOrre<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

¡\)<br />

TABLE 38C. STAGÊ 17-20 CONTROL AND EXPERIMENTAL EMBRYOS (GROUP IV)<br />

c<br />

c<br />

c<br />

c<br />

c<br />

42c 4 18<br />

\2c 7 18<br />

I+zC 21 20 poor<br />

poor<br />

poor<br />

\2C 2 19 good<br />

t+zc 6 19 poor<br />

hzc 11 19 poor<br />

\zc 3 20 poqr<br />

\zc I 20 good<br />

c I osed<br />

c I osed<br />

closed<br />

c I osed<br />

c I osed<br />

closed<br />

c I osed<br />

c I osed<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

covered none<br />

covered cres¡-/<br />

none<br />

covered crest<br />

covered cres t<br />

covered crest<br />

covered crest<br />

covered crest<br />

covered crest<br />

con tact<br />

contact<br />

contact<br />

con tact<br />

con tact<br />

contact<br />

contact<br />

con tact<br />

contact<br />

contact<br />

con tact<br />

contact<br />

contêct<br />

contact<br />

contêct<br />

contact<br />

\28 8 17<br />

good<br />

myeloschisis<br />

open/ none<br />

covered<br />

contact sepêrâtlon none<br />

\28 10 17<br />

good<br />

c I osed<br />

l0<br />

covered crest<br />

con tac t 6êpar<strong>at</strong>¡on none<br />

\zE 52 17<br />

poor<br />

hem i mye I ia<br />

0<br />

open/ none<br />

covered<br />

contact sepa r<strong>at</strong> í on cysts<br />

\zE 1 18<br />

good<br />

myeloschisis<br />

open/ none<br />

cove red<br />

separêt¡on/ separêtion none<br />

contact<br />

428 21 18<br />

good<br />

myeloschisis<br />

open/ none<br />

covered<br />

separ<strong>at</strong>¡on/ separ<strong>at</strong>îon/ cysts<br />

contact con tact


contact none<br />

contact/ none<br />

separ<strong>at</strong> íon<br />

contact none<br />

contêct none<br />

sepa ra t ion none<br />

contact/ cys ts<br />

sepa ra t lon<br />

contact/ none<br />

sepa ra t ion<br />

contact none<br />

contact/ none<br />

sepa r<strong>at</strong> ion<br />

contact/ none<br />

sepa ra t ion<br />

contact cysts<br />

contact none<br />

separ<strong>at</strong>lon cys ts<br />

contact/ none<br />

sepa ra t lon<br />

N)<br />

N'<br />

hzE 3\ 18<br />

good<br />

cl osed<br />

0<br />

covered<br />

crest<br />

contact<br />

\zE 44 18<br />

good<br />

myeloschlsls<br />

0<br />

covered/<br />

oPen<br />

crest/<br />

none<br />

con tact<br />

\zE 49 18<br />

good<br />

c I osed<br />

covered<br />

crest/<br />

none<br />

contact<br />

42E 50 t8<br />

good<br />

hem í mye I la<br />

0<br />

covered<br />

mesoderm<br />

con tact<br />

\zE 54 18<br />

good<br />

myeloschisis<br />

0<br />

covered/<br />

open<br />

none<br />

ccn tact<br />

\zE s6 18<br />

good<br />

hem I mye I la<br />

cove red/<br />

oPen<br />

mesoderm/<br />

none<br />

con tact<br />

428 26 19<br />

good<br />

c I osed<br />

cove red<br />

crest/<br />

none<br />

contact<br />

c<br />

4zE 31 t9<br />

poor<br />

c I osed<br />

0<br />

covered<br />

crest<br />

contact<br />

c<br />

hzl j7 t9<br />

good<br />

c I osed/<br />

myeloschisls<br />

0<br />

cove red/<br />

open<br />

crest/<br />

none<br />

contact/<br />

separ<strong>at</strong>¡on<br />

4zE 65 t9<br />

good<br />

c I osed/<br />

myeloschlsls<br />

covered/<br />

open<br />

crest/<br />

none<br />

contact<br />

c<br />

\zE 69 19<br />

good<br />

hem i mye I ia<br />

0<br />

covered<br />

mesoderm<br />

contact<br />

c<br />

,+28 17 20<br />

good<br />

c I osed<br />

0<br />

covered<br />

crest<br />

con têct<br />

c<br />

\zE 72 zo<br />

good<br />

myeloschisìs<br />

0<br />

open<br />

none<br />

sepa rê t ion<br />

c<br />

t+28 73 20<br />

good<br />

c I osed<br />

0<br />

covered<br />

crest<br />

contact


TABLE 38D. STAOE 17.20 CONTROL AND EXPERII,4ENTAL EMBRYOS (GROUP IV)<br />

Region Embryo stage Condltion Neural Access. Ectoderm Mesenchyme Notochord Somite somite<br />

Closure Canals Cover Cover Contact Contact Defects<br />

contact/ none<br />

separ<strong>at</strong>ion<br />

con tact/ none<br />

separ<strong>at</strong>¡on<br />

contact/ none<br />

separåtion<br />

contêct/ none<br />

sepa râ t ¡on<br />

sepa ra t îon none<br />

sepa ra t ion none<br />

sepa r<strong>at</strong> ion none<br />

sepa ra t î on cys ts<br />

sepa ra t i on none<br />

1..)<br />

D<br />

D<br />

D<br />

\2c 4<br />

ízc 7<br />

\zc z<br />

18 poor<br />

18 poor<br />

19 good<br />

c I osed<br />

c I osed<br />

c I osed<br />

0<br />

0<br />

0<br />

covered none<br />

covered none<br />

covered crest<br />

con tac t<br />

con tact<br />

contact<br />

sepa ra t ion none<br />

sepa ra t ¡on none<br />

contact/ none<br />

separ<strong>at</strong>ion<br />

\zc 6 19<br />

poor<br />

c I osed<br />

covered crest<br />

con tact<br />

\2C 11<br />

19<br />

poor<br />

c I osed<br />

covered crêst<br />

contact<br />

\zc 3<br />

20<br />

poor<br />

closed<br />

covered cres t<br />

con tact<br />

\2c I<br />

20<br />

good<br />

c I osed<br />

covered crest<br />

contact<br />

4zc 21<br />

20<br />

POOr<br />

c I osed<br />

covered crest<br />

contact<br />

D<br />

\28 I 17<br />

good<br />

c I osed<br />

0<br />

covered none<br />

con tact<br />

D<br />

42E 10 17<br />

good<br />

closed<br />

0<br />

cövered none<br />

contact<br />

D<br />

D<br />

\zE 52 17<br />

428 118<br />

poor<br />

good<br />

c I osed<br />

c I osed<br />

0<br />

covered none<br />

covered none<br />

contact<br />

contact


contact cys ts<br />

separ<strong>at</strong>ion none<br />

sepa ra t îon none<br />

contêct. none<br />

contact cys ts<br />

separ<strong>at</strong>ion none<br />

sepa ra t ion cys ts<br />

sepa ra t lon none<br />

separ<strong>at</strong>ion none<br />

separ<strong>at</strong>ion none<br />

separ<strong>at</strong>îon none<br />

separ<strong>at</strong>ion none<br />

sePâ ra t ion none<br />

seêpa r<strong>at</strong> ion none<br />

N)<br />

D<br />

42E 21 18<br />

good<br />

hemîmyel ïa<br />

0<br />

covered<br />

mesoderm con têc t<br />

D<br />

hzl 3\ 18<br />

good<br />

closed<br />

0<br />

covered<br />

crest con tact<br />

D<br />

428 44 18<br />

good<br />

myeloschlsls/<br />

c I osed<br />

0<br />

open/<br />

cove red<br />

nóne/ contact<br />

crest<br />

D<br />

428 49 18<br />

good<br />

c I osed<br />

0<br />

covered<br />

crest con tac t<br />

D<br />

\28 50 18<br />

good<br />

hem ì mye I ia<br />

0<br />

covered<br />

mesoderm con têc t<br />

D<br />

\28 5t+ t8<br />

good<br />

myeloschisis<br />

0<br />

open/<br />

covered<br />

none con têct<br />

hzE 56 18<br />

good<br />

hem i mye I îa<br />

open/<br />

covered<br />

none con tact<br />

D<br />

\28 26 19<br />

good<br />

c I osed<br />

0<br />

covered<br />

none contact<br />

D<br />

\zE 31 19<br />

poor<br />

closed<br />

0<br />

covered<br />

crest con tac t<br />

D<br />

\zE 57 19<br />

good<br />

myeloschîsis/<br />

c I osed<br />

0<br />

open/<br />

covered<br />

none/ con tact<br />

cres t<br />

428 65 19<br />

good<br />

myeloschlsls/<br />

c I osed<br />

open/<br />

cove red<br />

none con têct<br />

D<br />

D<br />

\zE 69 19<br />

428 17 20<br />

good<br />

good<br />

amyel îa<br />

closed<br />

'o<br />

covered<br />

crest contact<br />

D<br />

\zE 7z 20<br />

good<br />

c I osed<br />

0<br />

covered<br />

none contact<br />

D<br />

\2E 73 20<br />

good<br />

c I osed<br />

0<br />

covered<br />

crest contact


Reglon Embryo Stage Condition Neural Access. Ectoderm llesenchyme Notochor


contact cysts<br />

sepãr<strong>at</strong>ion none<br />

separ<strong>at</strong>ion none<br />

sepa r<strong>at</strong> Ion none<br />

contact cysts<br />

sepa r<strong>at</strong> ion none<br />

sepa ra t lon cysts<br />

separ<strong>at</strong>¡on none<br />

separ<strong>at</strong>¡on none<br />

sepêr<strong>at</strong>lon none<br />

sePa ra t Íon none<br />

sepê ra t ¡on none<br />

N)<br />

\, o\<br />

42E 21 18<br />

good<br />

hem î mye I ía<br />

covered<br />

mesoderm contact/<br />

\28 34 18<br />

good<br />

closed<br />

covered<br />

crest con tact/<br />

428 \4 18<br />

good<br />

c I osed<br />

covered<br />

crest con tact/<br />

428 49 18<br />

good<br />

c I osed<br />

covered<br />

crest con tact/<br />

\zE 50 18<br />

good<br />

hem Ìmye I îa<br />

covered<br />

mesoderm con têct/<br />

-.<br />

\zE jU tB<br />

good<br />

cl osed<br />

covered<br />

nonè contact/<br />

\28 s6 18<br />

good<br />

dlplomyel ia<br />

4<br />

covered<br />

mesoderm<br />

\2E 26 i9<br />

good<br />

closed<br />

0<br />

covered<br />

none contact/<br />

qzE<br />

31 19<br />

poor<br />

c I osed<br />

covered<br />

crèst coñ tact/<br />

\2E 57 19<br />

good<br />

c I osed<br />

covered<br />

none con têct/<br />

4zE 6i 19<br />

good<br />

ciosed<br />

covered<br />

none contact/<br />

E<br />

\28 69 19<br />

good<br />

amyel ia<br />

E<br />

\zE 17 zo<br />

good<br />

c I osed<br />

covered<br />

none contâct/


428 72 20<br />

closed<br />

covered none<br />

contact/ sepa ra t lon none<br />

hzE 73 20<br />

closed<br />

covered none<br />

contact/ sepê rât ion none


238<br />

This revlew <strong>of</strong> <strong>the</strong> histologlcal appearance <strong>of</strong> every sectloned embryo,<br />

after al lowing for some cracking durÌ.ng processing, reveals a series <strong>of</strong> rel<strong>at</strong>ed<br />

events during neurul<strong>at</strong>ion. The fl<strong>at</strong>tened neural pl<strong>at</strong>e, protonotochord,<br />

and fused somltic mesoderm lying adjacent to Hensenrs node show<br />

progresslve changes as <strong>the</strong>y are fol lowed cran.ially.<br />

Form<strong>at</strong>lon <strong>of</strong> <strong>the</strong> notochord ís accompanied by development <strong>of</strong> unsegmented<br />

mesoderm and elev<strong>at</strong>ion <strong>of</strong> <strong>the</strong> neural folds. Cranial to this,<br />

development <strong>of</strong> protosomites is accompanied by ínversion <strong>of</strong> <strong>the</strong> neuraì<br />

folds. As <strong>the</strong> somites develop, with încreasing differenti<strong>at</strong>¡on ¡nto<br />

centrêl and perlpheral regions, <strong>the</strong>y show progressive expansîon which<br />

ls accompanied by fur<strong>the</strong>r inversion and <strong>the</strong>n closure cif <strong>the</strong> neural folds.<br />

After fusion <strong>of</strong> <strong>the</strong> neural folds <strong>the</strong> closed tube is inîtlally in<br />

contact with <strong>the</strong> overlyîng newly-fused ectoderm. At stage l2 neural crest<br />

cells begin to infiltr<strong>at</strong>e between neural tube and ectoderm, beginning with<br />

<strong>the</strong> point <strong>of</strong> inltial closure <strong>at</strong> <strong>the</strong> hindbrarin. By Stage 1!, mesenchyme<br />

cells from locally-dispersing somites <strong>the</strong>n. migr<strong>at</strong>e between neural tube<br />

and ectoderm, also beginning <strong>at</strong> <strong>the</strong> hìndbrain. <strong>ln</strong> embryos with myelodysplasia<br />

a local reduction in neural volume allows <strong>the</strong> adjacent somites<br />

to fuse across <strong>the</strong> midl ine, dorsal to neural tissue.<br />

<strong>ln</strong> experimental and control embryos until Stage l! <strong>the</strong> notochord îs<br />

separ<strong>at</strong>ed from developing brain but lies in close contact *¡tn tÁ" developing<br />

cord, except for <strong>the</strong> upper part <strong>of</strong> establ ished myeloschisis tesions<br />

in most cases <strong>of</strong> myeloschisis.<br />

}Jhlle fused and unsegmented somít¡c mesoderm are separ<strong>at</strong>ed from neural<br />

tlssue dur<strong>ln</strong>g early neurul<strong>at</strong>ion, <strong>the</strong> protosom¡tes are in contact wlth


239<br />

neural tissue ât <strong>the</strong> l<strong>at</strong>er stages <strong>of</strong> closure ¡n most control and normal<br />

experlmental embryos. Hany embryos wÌth myeloschisis, however, show<br />

some loss <strong>of</strong> con.tact between neural tissue and protosomìtes (stages 13-16)<br />

or somìtes (Stages 17-20'). Embryos with myelodysplasia general ly retain<br />

contact between somite mesoderm and neural t¡ssue, but <strong>the</strong> mesoderm <strong>of</strong>ten<br />

shows cystic changes and reduced volume.<br />

Even though <strong>the</strong> distrlbution <strong>of</strong> Stages is not perfectly mêtched,<br />

<strong>the</strong>re ls no major difference ín <strong>the</strong> number <strong>of</strong> accessory canals between<br />

experimental and control groups, though embryos wîth myeloschisis and<br />

myelodysplasla show some delay in <strong>the</strong> disappearance <strong>of</strong> accessory canals<br />

<strong>at</strong> Stages I 3- 16.<br />

When <strong>the</strong> development <strong>of</strong> neural defects is followed, myeloschisis<br />

appeårs ât an eêrlier Stage ênd <strong>at</strong> a slightly higher level than <strong>the</strong> myelodysplaslas<br />

(see Tables 37 è 3B). Thus myeloschisis is first detectable as<br />

a wide eversìon <strong>of</strong> <strong>the</strong> neural folds, in smooth cont¡nu¡ty wíth ectoderm <strong>at</strong><br />

Stage 10 (6E 45), leading to non-closure and separ<strong>at</strong>ion <strong>of</strong> <strong>the</strong> two sources<br />

<strong>of</strong> neural m<strong>at</strong>erial by Stage 13 (18E 61). <strong>ln</strong> Stage 1/-20 embryos <strong>the</strong> lesíons<br />

lie in regions B, C and D, gíving way to a normal cord developed from<br />

tail-bud m<strong>at</strong>erial in region E.<br />

tlyelodysplasía fîrst appears âs a narrow eversion <strong>of</strong> <strong>the</strong> neural folds<br />

<strong>at</strong> Sta.ge 16 (3OE 35, 30E 76) wittr no separ<strong>at</strong>îon into rwo sorr".s <strong>of</strong> neural<br />

m<strong>at</strong>erlal and partial ectoderm cover. At Stages 17-20 <strong>the</strong> lesions occupy<br />

regions B, C, D and E, gîving way to a r<strong>at</strong>her small cord or to diplomyel ia<br />

or amyel ia in region E.<br />

0n <strong>the</strong> basls <strong>of</strong> <strong>the</strong>se findings several aspects <strong>of</strong> neurul<strong>at</strong>îon were<br />

analysed quantlt<strong>at</strong>lvely to determine <strong>the</strong> significance <strong>of</strong> differences<br />

between experiment<strong>at</strong> and control embryos (see Sections 6.7, 6.8 and 6.9).


240<br />

The histological fe<strong>at</strong>ures selected for analysis were:<br />

(a) pr.ogress <strong>of</strong> normal neuraI closure<br />

(b) development <strong>of</strong> myeloschisis<br />

(c) development <strong>of</strong> mye I odysp I as ia<br />

(d) length <strong>of</strong> <strong>the</strong> overlap zone (r<strong>at</strong>her than merely <strong>the</strong> number <strong>of</strong><br />

accessory canals)<br />

(e) cover <strong>of</strong> neural tíssue by ectoderm (though not by mesenchyme)<br />

(f)<br />

contact <strong>of</strong> neural tissue with notochord<br />

(g) contact <strong>of</strong> neural tissue with somites<br />

(h) cys.tlc changes and reduced volume <strong>of</strong> somites.<br />

6.5 coMpêRlsoN 0J !l!r!!qcrEÂL FrNprNGs r^,rrH AppEARAtlqE_eL r,/!e!Elf4!R\roå<br />

The histologîcal review <strong>of</strong> normal neural closure in controì embryos<br />

(Sectîon 6.4)may be compared with <strong>the</strong> appearances <strong>of</strong> <strong>the</strong> same whole<br />

embryos recorded by camera lucida drawings before seríal sectioning<br />

(Sectlon 6.t.¡),<br />

<strong>ln</strong> Tables 39-42, sectioned embryos <strong>of</strong> Gròups llland<br />

lV are divíded into four c<strong>at</strong>egories, based on neural defects:<br />

Stage 13-20 control emb ryos<br />

Stage 1l-20 experimental embryos w¡thout neural defects<br />

Stage 13-20 experimental embryos with Íryelosch¡sís<br />

Stage 13-20 experimental embryos w¡th myelodysplasia.<br />

The morphology <strong>of</strong> each whole embryo is compared with <strong>the</strong> histological<br />

appearance <strong>of</strong>:<br />

(a) <strong>the</strong> neural tube <strong>at</strong> somite and post-somite levels<br />

(b) <strong>the</strong> rhomboid s i nus.


241<br />

The control group (Table 99 ) show no neural defects; an oval<br />

rhomboid sinus corresponds to ínciplent histologìcal closure. <strong>ln</strong><br />

exper¡mental embryos without neural defects (Table 40 ) <strong>the</strong>re are again<br />

no cord defects, but in two cases (l8E 44, 30E 4) a closed rhomboid sinus<br />

<strong>ln</strong> serial sectlons was recorded as open in <strong>the</strong> whole embryos. Embryo<br />

l8E 10 should probably be regarded as an example <strong>of</strong> early myeloschisis,<br />

0f <strong>the</strong> embryos wÌth histologîcal myeloschisis (Table At<br />

) two were<br />

recorded with irregular, r<strong>at</strong>her than regular, defects în <strong>the</strong> whole embryos<br />

(30E 56,42E 8). At <strong>the</strong> rhomboid sinus one embryo (lBE 59) exhibited an<br />

oval rhomboid sinus and elev<strong>at</strong>ed neural folds caudal to <strong>the</strong> lesion, and<br />

ano<strong>the</strong>r (3OE 25) showed a triangular rhomboid s¡nus and closed neural folds.<br />

Apart from <strong>the</strong>se four exceptions <strong>the</strong>re is close âgreement between <strong>the</strong><br />

histological findings and <strong>the</strong> camera lucida drawings, with a trîangular<br />

rhomboid sinus corresponding to early myeloschisis <strong>at</strong> Stages lJ-14, and a<br />

regular cord defect correspondíng to establ ished myeloschisis <strong>at</strong> Stages<br />

16-20.<br />

l'lyelodysplasîa (taUle 4Z ) is characterized by an irregular cord<br />

defect wìth only one exception (\ZE 69). At <strong>the</strong> rhomboid sinus, apparent<br />

closure in <strong>the</strong> whole embryos corresponds to a closed neura¡ tube or to<br />

ectoderm covering <strong>the</strong> defects in <strong>the</strong> serial sectîons.<br />

This comparîson <strong>of</strong> <strong>the</strong> appearances <strong>of</strong> <strong>the</strong> neural tube and ifromUoia<br />

s<strong>ln</strong>us before and after seriaì sectioning reveals th<strong>at</strong>:<br />

(") an oval rhomboid sinus is followed by a normal neural closure<br />

(b) a triangular rhombold sinus precedes an open neural defect<br />

(myeloschisis)<br />

(c) a regular neural defect corresponds to hístological myeloschisis


242<br />

(d) an lrregular neural defect represents histologìcal myelodysplasia.<br />

As no embryos earlìer than Stage 16 show nyelodysplasìa no comment<br />

can be made on <strong>the</strong> appearance <strong>of</strong> <strong>the</strong> rhombold sînus. Thts is consistent,<br />

however, wlth <strong>the</strong> suggestÌon th<strong>at</strong> myelodysplasîa does not ar¡se by abnormal<br />

closure <strong>of</strong> <strong>the</strong> neural folds, but Lnvolves an absence <strong>of</strong> neurai pl<strong>at</strong>e<br />

m<strong>at</strong>erial and development <strong>of</strong> <strong>the</strong> dysplastic cord from tê¡ l-bud m<strong>at</strong>erial<br />

alone after Stage 15.


TABLE 39. APPEARANCE OF I,'HOLE EI4BRYOS COI4PARED TO HISTOLOGY OF RHOMBOID SINUS AND OPEN CORD DEFECTS,AT<br />

STAGES l3-20 (CoNTRoLS)<br />

closed/closing<br />

closed/closing<br />

closed/clos<strong>ln</strong>g<br />

closed/closing<br />

c I osed/cl os ing<br />

c I osed<br />

c I osed<br />

cl osed<br />

c I osed<br />

. c I osed<br />

cl osed<br />

cl osed<br />

cl osed<br />

c I osed<br />

closed N)<br />

Embryo<br />

S têge<br />

lJhol e Emb ryo<br />

Les i on<br />

H i stol ogy<br />

Les i on<br />

l/hoI e Emb ryo<br />

Rhomboid Sinus<br />

Histology<br />

Rhomboîd S ìnus<br />

18C I r<br />

13-<br />

none<br />

none<br />

ova I<br />

18C 10<br />

13<br />

none<br />

none<br />

ova I<br />

r8c 14<br />

13<br />

none<br />

none<br />

ova I<br />

t8c 21<br />

l3+<br />

none<br />

none<br />

ova I<br />

18c 27<br />

13+<br />

none<br />

none<br />

ova I<br />

30c 2<br />

16<br />

none<br />

none<br />

c I osed<br />

30c 3<br />

16<br />

none<br />

none<br />

c I osed<br />

3OC 15<br />

16<br />

none<br />

none<br />

cl osed<br />

3OC 12<br />

16<br />

none<br />

none<br />

c I osed<br />

3OC 22<br />

16<br />

none<br />

none<br />

c I osed<br />

3oc 25<br />

16<br />

none<br />

none<br />

cl osed<br />

42c 4<br />

\2c 7<br />

\zc 2<br />

\zc 6<br />

18<br />

18,<br />

19<br />

19<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

cl osed<br />

c I osed<br />

closed<br />

closed


c I osed<br />

closed<br />

closed<br />

c I osed<br />

NJ<br />

42c 11<br />

\zc 3<br />

19<br />

20<br />

42C 8<br />

20<br />

l42c 21<br />

20<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

none<br />

c I osed<br />

c I osed<br />

c I osed<br />

c¡osed


TABLE 40. APPEARANCE OF }/HOLE EI"IBRYOS COI-IPARED TO HISTOLOGY OF RHOIIBOID SINUS AND OPEN CORD DEFECTS,AT<br />

STAGES 13-20 (EXPERIMENTALS WITHOUT DEFECTS)<br />

everted<br />

el ev<strong>at</strong>ed<br />

e I eva ted<br />

c I osed<br />

c I osed<br />

c I osed<br />

cl osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

N)<br />

Lh<br />

Emb ryo<br />

S tage<br />

VJhole Emb ryo<br />

Les ion<br />

H ìstol ogy<br />

Les i on<br />

lJhole Embryo<br />

Rhombold Sinus<br />

H i stol ogy<br />

Rhombo id S inus<br />

t8E 10<br />

13<br />

none<br />

trianjulêr<br />

f8E 28<br />

14<br />

none<br />

none<br />

ova I<br />

lBE 47<br />

t4<br />

none<br />

none<br />

OVä I<br />

18E 44<br />

15<br />

none<br />

none<br />

ova_l<br />

'30E 4<br />

15<br />

none<br />

none<br />

ova I<br />

30E 9<br />

16<br />

none<br />

none<br />

c I osed<br />

308 26<br />

16<br />

none<br />

none<br />

cl osed<br />

308 59<br />

16<br />

none<br />

none<br />

c I osed<br />

3aE 77<br />

16<br />

none<br />

none<br />

closed<br />

\28 34<br />

18<br />

none<br />

none<br />

c I osed<br />

42Ê. \9<br />

r8<br />

none<br />

none<br />

c I osed<br />

428 26<br />

19<br />

none<br />

none<br />

c I osed<br />

4zE 3t<br />

19 '<br />

none<br />

none<br />

cl osed<br />

428 i7<br />

20<br />

none<br />

none<br />

c I osed<br />

428 73<br />

20<br />

none<br />

none<br />

c I osed


TABLE 41. APPEARANCE OF ì^IHOLE EMBRYOS COI',IPARED To HIsToLoGY OF RHoMBOID sINUS AND oPEN CORD DEFECTSI*AT<br />

STAGES 13-20 (EXPERI},lTNTALS WITH NYELOSCHISIS)<br />

mye I osch i s is<br />

myeloschisis<br />

myeloschlsis<br />

myeloschîsîs<br />

everted<br />

myeloschisìs<br />

mye I osch ls is<br />

myeloschlsis<br />

el ev<strong>at</strong>ed<br />

cl osed<br />

c I osed<br />

c I osed<br />

. c I osed<br />

closed<br />

Emb ryo<br />

Stêge<br />

l^/hole Embryo<br />

Les i on<br />

H I stology<br />

Les ion<br />

l{hol e Embryo<br />

Rhomboid S ìnus<br />

Histology<br />

Rhomboid S inus<br />

18E _6r<br />

13<br />

none<br />

myeloschísis<br />

triangular<br />

188 25<br />

13+<br />

regu lar<br />

myeloschisis<br />

tr i angu I ar<br />

188 13<br />

14<br />

none<br />

myeloschisís<br />

triangular<br />

188 35<br />

14<br />

nohê<br />

myeloschisis<br />

triangular<br />

18E 58<br />

14<br />

none<br />

myeloschisis<br />

triangular<br />

18E 36<br />

14+<br />

none<br />

myeloschisis<br />

trlangular<br />

18E 53<br />

14'<br />

none<br />

myel osch ls I s<br />

trlangular<br />

18E 54<br />

t4+<br />

none<br />

rnyeloschisls<br />

tr¡angular<br />

18E 59<br />

14+<br />

none<br />

myeloschisîs<br />

ova I<br />

30E 25<br />

15<br />

regular<br />

myeloschisls<br />

trîãngulêr<br />

30E 56<br />

16<br />

i rregu I a r<br />

myeloschisls<br />

closed<br />

30Ê 69<br />

16<br />

regular ì<br />

myel osch i s îs<br />

'closed<br />

308 52<br />

16<br />

regular<br />

myeloschisls<br />

c¡osed<br />

428 8<br />

17<br />

î rregular<br />

myeloschisls<br />

c I osed


closed<br />

closed<br />

c I osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

covered hem I mye I ia<br />

N<br />

.{<br />

42E 1o<br />

17<br />

regul ar<br />

myeloschlsis<br />

cl osed<br />

4zE 1<br />

r8<br />

regul ar<br />

myeloschisis<br />

c I osed<br />

4zE 4\<br />

r8<br />

regular<br />

myeloschisis<br />

-closed<br />

\zE 54<br />

r8<br />

regular<br />

myelosch¡sÎs<br />

c I osed<br />

42E 57<br />

19<br />

regular<br />

myelosch¡sis<br />

c I osed<br />

hzl 6,<br />

19<br />

regular<br />

myeloschlsîs<br />

closed<br />

hzl 72<br />

20<br />

regu la r<br />

myeloschls¡s<br />

c I osed<br />

42E 21<br />

18<br />

irregular myeloschlsls/<br />

closed<br />

hem i mye I ia


TABLE 42. APPEARANCE OF I,'HOLE EMBRYOS COMPARED TO HISTOLOGY OF RHOI'IBOID SINUS AND OPEN CORD DEFECTS,AT<br />

srAGEs r3-20 (rxpenHrnrnls t,/trH i.,tyELoDyspLAstA)<br />

covered amye I ia<br />

covered hem i myel la<br />

N)<br />

F<br />

Emb ryo<br />

Stêge<br />

30E 35<br />

16<br />

30E 76<br />

16<br />

428 Sz<br />

17<br />

428 50<br />

18<br />

\zE 56 18<br />

Whole Embryo H í stology<br />

Les ion Les ion<br />

i rregul ar<br />

î rregul ar<br />

I rregular<br />

I rregular<br />

i rregu I ar<br />

hemlmyella<br />

hemimyella<br />

hem imye I la<br />

hemi mye I la<br />

hem imye I ial<br />

d iplomyel la<br />

t{ho I e Emb ryo<br />

Rhomboîd S Ìnus<br />

a¡osed<br />

cl osed<br />

c I osed<br />

c I osed<br />

c I osed<br />

Histology<br />

Rhomboid S<strong>ln</strong>us<br />

closed<br />

c i osed<br />

c I osed<br />

covered hem i mye I ia<br />

covered dlp!omyel ia<br />

I42E 69<br />

19<br />

none<br />

hem i mye I îa/<br />

amyel la<br />

c I osed<br />

\zE 21<br />

18<br />

I rregular. myeloschlsis/<br />

hem imye I ia<br />

c I osed


249<br />

6.6 pEVEL0PMENT 0F rH!_¡Ho|4glc R00F<br />

Changes in <strong>the</strong> structure <strong>of</strong> <strong>the</strong> rhornbic ro<strong>of</strong> were also evalu<strong>at</strong>ed for<br />

Groups I - lV. They are presented, toge<strong>the</strong>r w¡th <strong>the</strong> norphology and levels<br />

<strong>of</strong> neurâl defects (from Section 6.2), in Tables 43 - 46. and Flgs. 103- I11.<br />

Tables 43 - 46 show th<strong>at</strong> <strong>the</strong> rhor¡rbic ro<strong>of</strong> undergoes progressive<br />

th i nn îng after neural closure:<br />

Stages l0 - 11+<br />

Stages 12 - 15<br />

Stâges 16 - 17<br />

Stages 18 - 20<br />

thick<br />

thin<br />

very th¡n<br />

membranous<br />

The choroid plexus <strong>of</strong> <strong>the</strong> fourth ventricle is not present before<br />

Stage 18 (f¡S. lO9 ) considerably l<strong>at</strong>er than <strong>the</strong> first appeêrance <strong>of</strong><br />

myeloschîsis and myelodysplasia. ìlîthin each g¡-oup <strong>the</strong>re is no difference<br />

in rhombic development between experimental and control embryos. <strong>ln</strong> this<br />

ser¡es <strong>of</strong> chick embryos, <strong>the</strong> form<strong>at</strong>íon <strong>of</strong> open neural defects cannot be<br />

secondary to excessive pressure within <strong>the</strong> cerebro-spinal fluid system.


RHOMB IC ROOF DEl/ELOPI,IENT<br />

N'<br />

o<br />

Emb ryo<br />

Stage<br />

Rhombic Ro<strong>of</strong><br />

Neural Defects<br />

Regions <strong>of</strong> Defects<br />

6c 20<br />

t0-<br />

èlosíng<br />

none<br />

oc 49<br />

t0-<br />

clos i ng<br />

none<br />

0c 52<br />

10-<br />

closing<br />

none<br />

6c 21<br />

t0<br />

thick<br />

none<br />

0c 46<br />

10<br />

clos<strong>ln</strong>g<br />

none<br />

6E 15<br />

6E8<br />

t0-<br />

t0<br />

closing<br />

thick<br />

none<br />

none<br />

6E 30<br />

6E \s<br />

t0<br />

10<br />

th ick<br />

thick<br />

none<br />

early myeloschisis<br />

E<br />

6E 18<br />

10+<br />

thick<br />

none<br />

6E 4r<br />

10+<br />

thlck<br />

early myeloschlsís<br />

E


Emb ryo<br />

Stage<br />

Rhombîc Roóf<br />

Neural Defects<br />

Regions <strong>of</strong> Defects<br />

18C \<br />

11+<br />

thick<br />

none<br />

18C 23<br />

12<br />

thin<br />

none<br />

lBc 7<br />

12+<br />

thîn<br />

none<br />

18C 22<br />

12+<br />

th in<br />

nonê<br />

6E 13<br />

il-<br />

thlck<br />

none<br />

6E 28<br />

t1-<br />

th ick<br />

none<br />

6t 3t<br />

t1-<br />

thick<br />

none<br />

6E.38<br />

11-<br />

thick<br />

none<br />

6E 44<br />

I t-<br />

th i ck'<br />

none<br />

6E 2\<br />

11<br />

thîck<br />

none<br />

6e 3\<br />

11+<br />

thick<br />

early myeloschisls


Emb ryo<br />

Stage<br />

Rhombic Ro<strong>of</strong><br />

Neural Defects<br />

Regions <strong>of</strong> Defects<br />

18C 11<br />

13-<br />

thin<br />

none<br />

18C 10<br />

13<br />

th in<br />

none<br />

r81 14<br />

13<br />

th in<br />

none<br />

t8c 21<br />

13+<br />

thin<br />

none<br />

18C t7<br />

13+<br />

thin<br />

none<br />

30c 2<br />

16<br />

vèry thÎn<br />

none<br />

30c 3<br />

16<br />

very th <strong>ln</strong><br />

none<br />

30c 15<br />

16<br />

very th¡n<br />

none<br />

30c 12<br />

16<br />

very th¡n<br />

none<br />

30c 22<br />

16<br />

very th¡n<br />

none<br />

30c 25<br />

16<br />

very thin<br />

none<br />

t8E l0<br />

13-<br />

)<br />

thin<br />

myeloschIsîs<br />

DE<br />

18E 6t<br />

13<br />

thin<br />

myel osch i s is<br />

DE<br />

18E 25<br />

13+<br />

thîn<br />

myeloschisis<br />

DE


CDE<br />

D'E<br />

DE<br />

CDE<br />

DE<br />

DE<br />

DE<br />

D<br />

BCD<br />

BC<br />

BC<br />

BCD<br />

N)<br />

188 13<br />

r4<br />

thin<br />

myeloschísls<br />

18E 28<br />

14'<br />

thin<br />

none<br />

r8E 35<br />

14<br />

thÎn<br />

myeloschisls<br />

188 47<br />

14<br />

thin<br />

myeloschlsis<br />

18E 58<br />

14<br />

th in<br />

myeloschisis<br />

18E 36<br />

14+<br />

thin<br />

myeloschisis<br />

188 53<br />

t4+<br />

th<strong>ln</strong><br />

myeloschisis<br />

18E 54<br />

l4+<br />

thin<br />

myeloschisis<br />

l8E 59<br />

l4+<br />

thin<br />

myeloschisis<br />

18E 4.lr<br />

15-<br />

th in<br />

none<br />

30E 4<br />

15<br />

thin<br />

none<br />

3oE 25<br />

15<br />

thin<br />

myeloschisis<br />

30E 9<br />

16<br />

very thin<br />

none<br />

3OE 26<br />

16<br />

very thin<br />

none<br />

308 35<br />

16<br />

very thin<br />

hem i myel ia<br />

3oE 56<br />

16<br />

very thin<br />

myeloschisis<br />

30E 59<br />

16<br />

very thin<br />

none<br />

30E 69<br />

16<br />

very th <strong>ln</strong><br />

myeloschlsls


B C DE<br />

BC<br />

1..)<br />

30E 76<br />

16<br />

very thin<br />

hemi myel i a<br />

30Ê 52<br />

16<br />

very th¡n<br />

myeloschîsis<br />

308 77<br />

16<br />

very thin<br />

none


TABLE q6,. STAGE 17-20 CoNTRoI AND EXPERI¡IENTAL EMBRYoS (GROUP lV)-çpnMRrî RooF DEVEL0PT'îENr<br />

Embryo Stage Rhombic Ro<strong>of</strong> Neural Defects Regîons <strong>of</strong> Defects<br />

BC<br />

B<br />

c<br />

BC<br />

BCDE<br />

N)<br />

42C 4<br />

42C 7<br />

18<br />

membranous<br />

t8<br />

memb ranous<br />

42c 2<br />

19<br />

membranous<br />

none<br />

42C 6<br />

19<br />

membranous<br />

none<br />

\zc 11<br />

19<br />

memb ranous<br />

none<br />

\zc 3<br />

20<br />

membranous<br />

none<br />

hzc 8<br />

20<br />

memb ranous<br />

none<br />

42C 21<br />

20<br />

memb ranous<br />

none<br />

428 I<br />

17<br />

very th¡n<br />

myeloschisis<br />

42E to<br />

17<br />

very thin<br />

myeioschisîs<br />

\zE Sz<br />

17<br />

very th in<br />

hem i mye I i a<br />

hzE l<br />

18<br />

memb ranous<br />

myeloschisis<br />

LzE 21<br />

r8<br />

membranous<br />

myelosch I s i slhemlmyel la<br />

\28 34<br />

18<br />

membranous<br />

none


CD<br />

BCD.E<br />

CD<br />

BCDE<br />

CD<br />

CD<br />

BCDE<br />

c<br />

NJ<br />

\¡r<br />

o\<br />

428 \\<br />

r8<br />

membrênous<br />

myeloschisis<br />

42E \9<br />

r8<br />

membranous<br />

none<br />

hzE 50<br />

18<br />

membranous<br />

hemimyel ia<br />

4zE Sh<br />

18<br />

memb ranous<br />

myeloschisis<br />

\2E 56<br />

18<br />

membrânous<br />

hem i mye I i a/d i pl omye I îa<br />

\zE 26<br />

19<br />

membranous<br />

none<br />

\zE 3t<br />

19<br />

membranous<br />

none<br />

\28 57<br />

19<br />

membranous<br />

myeloschisls<br />

4zE 65<br />

19<br />

membranous<br />

myeloschlsis<br />

hzE 69<br />

r9<br />

memb ranous<br />

hemimyel lalamyel ia<br />

428 17<br />

20<br />

membranous<br />

none<br />

\28 72<br />

20<br />

memb rênous<br />

myeloschisls<br />

42E 73<br />

20<br />

memb ranous<br />

none


Figs- 10J - i11. Development <strong>of</strong> <strong>the</strong> rhombic io<strong>of</strong> În control and<br />

experínental emb ryos (H ¿ f; xt6) :<br />

Fig. 103. Thick rhombic ro<strong>of</strong> in St, 11+ control ernf ryo (tBC 4).<br />

Fís. 104. 'fhîn rhombÍc ro<strong>of</strong> in St. l3+ control emOryo (1BC Z7) .<br />

Fis. 105.<br />

Very thin rhonrbic ro<strong>of</strong> in St. 16 con¡rol embryo<br />

ßoc zz)'.


7-<br />

4.<br />

103<br />

r05


Fî s.<br />

tub.<br />

Thick rhombic ro<strong>of</strong> in 5t.<br />

11+ experìmentai ernb ryo<br />

wi th neural folds everted<br />

<strong>at</strong> <strong>the</strong> rhombo rd srnus<br />

(6E 34)"<br />

Fis.<br />

147.<br />

Th in rhcrnb ic ro<strong>of</strong> i n St, 14+<br />

experimental emb ryo<br />

with earì;, mye losch is i s (tBE<br />

3ó )"<br />

Fig.<br />

loB.<br />

Very thin rhombic ro<strong>of</strong> in St. 16 experimental<br />

embryo with early nryelodysplasia (3or 76).


.t<br />

l<br />

l]]<br />

80t<br />

¿ot<br />

rfÞ'.<br />

!-d...---<br />

901


Fig. 109<br />

Hernbranous rhombic ro<strong>of</strong> with choroid plexus in St, lB<br />

cónrrot embryo (4ZC 7),<br />

Fig. ll0.<br />

Membranous rhombic ro<strong>of</strong> wÍth <strong>the</strong> first sign <strong>of</strong><br />

development <strong>of</strong> a choroíd plexus in St. 1B experimcntal<br />

embryo with myelodysplasia (Aze Sg),<br />

Fis. 111.<br />

|4embranous rhombic ro<strong>of</strong> with <strong>the</strong> fírst sign <strong>of</strong><br />

development <strong>of</strong> a choroid plexus în St. 17 experimental<br />

embryo with myeloschisis (428 B).


'Ì<br />

1ú<br />

111


260<br />

6.7 HrqroLoctcAL, cHANgË AssoctArEp tltrH NEURAT p;FEcrs_<br />

To assess <strong>the</strong> h¡stological differences between normal embryos<br />

and those with neural defects, <strong>the</strong> numbers <strong>of</strong> f0 mlcron sections<br />

show<strong>ln</strong>g a part¡cular fe<strong>at</strong>ure in each reglon were counted, and expressed<br />

as percentage lengths <strong>of</strong> each reglon and <strong>of</strong> <strong>the</strong> entire embryo.<br />

. Counts were confined to Groups lll and lV (Stages 13-20), excluding<br />

<strong>the</strong> embryos with amyet ia and myeloschísis/myelodysplasia<br />

(\2Ê69'\2E21)andthoseínverypoorcondítionafterprocessing<br />

(l8E 10, 188 28, 18E 25, t8E 54). Cnly regions B,c,Dand E (coverÌns<br />

<strong>the</strong> spinai cord) were counted, though <strong>the</strong>ir boundaries differ în Group lll<br />

and Group lV.<br />

For iomparison <strong>of</strong> <strong>the</strong> lengths <strong>of</strong> neural


261<br />

<strong>ln</strong> <strong>the</strong>se tables <strong>the</strong> contrors and <strong>the</strong> experimentar embryos w¡thout<br />

neural dèfects show extensive separ<strong>at</strong>ion between somites and neural<br />

m<strong>at</strong>erial; <strong>the</strong>re Issome separ<strong>at</strong>ion between notochord and neural m<strong>at</strong>erial<br />

by Stêge 20 in two embryos ('ZC Zl , 428 73). The embryos wìth neural<br />

defects also show extensive separ<strong>at</strong>¡on from somites, with separ<strong>at</strong>ion<br />

from notochord (especially <strong>ln</strong> myelosct isis after Stage ,t7) ¡and somite<br />

defects (especial ly ín myelodysptasia after Stage l6). There is no<br />

close associ<strong>at</strong>ion between <strong>the</strong> rength <strong>of</strong> ectoderm discontinuíty from<br />

neural tissue and <strong>the</strong> type <strong>of</strong> neural tesion<br />

.<br />

Figsi. 112-119 compare <strong>the</strong> percentage lengths <strong>of</strong> neural defects in<br />

regions B,c, D and E <strong>of</strong> each âffected experimental embryo with <strong>the</strong> correspondîng<br />

percentage I engths <strong>of</strong>:<br />

(a) ectoderm d iscont inu ity<br />

(b) somite separ<strong>at</strong>ion from neural tîssue<br />

(c) notochord separ<strong>at</strong>ion from neural tissue<br />

(d) local somi te defects.<br />

These figures demonstr<strong>at</strong>e <strong>the</strong> percentage distribution in <strong>the</strong> four<br />

regions <strong>of</strong> embryonic cord <strong>of</strong> myeloschisis irom Stage lJ and myelodysplasia<br />

from Stage 16. Horvever as region B is much larger than all <strong>the</strong> o<strong>the</strong>r<br />

regîons <strong>the</strong> size <strong>of</strong> each region in rel<strong>at</strong>ion to a whole embryo is disproportion<strong>at</strong>e.<br />

The assocî<strong>at</strong>ion <strong>of</strong> myeloschisis with notochord sãpar<strong>at</strong>ion<br />

after Stage 1/,and <strong>of</strong> myelodysplasia with somite defects after Stage l6<br />

are clearly i I lustr<strong>at</strong>ed.<br />

.An analysis <strong>of</strong> variance could not be performed with <strong>the</strong>se figures<br />

as so many <strong>of</strong> <strong>the</strong> histologîcar fe<strong>at</strong>ures showed zero varues in both<br />

exper imenta I and control embryos.


TABLE 47. CONTROL EMBRYoS.HISTOLOGICAL ANALYSIS<br />

Embryo Stêge Regions <strong>of</strong> Regions <strong>of</strong> *"r."<br />

Lesions Measurements Lesi'on<br />

- Díscontinu¡ty Separ<strong>at</strong>lon s"p"i"iiån ó;f¿;r.<br />

ZZZZZZZZZ.Á<br />

region embryo règion embryo regíon embryo region embryo ."gion urbryo<br />

o 9.80<br />

0<br />

o 15.08<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0-<br />

00<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

N)<br />

o\<br />

N)<br />

t8c rl 13<br />

B<br />

0<br />

0<br />

0<br />

00<br />

9.63 0<br />

c<br />

0<br />

0<br />

0<br />

0<br />

D<br />

0<br />

0<br />

0<br />

6 .12<br />

E<br />

0<br />

0<br />

0<br />

t00<br />

18C 10 13<br />

B<br />

0<br />

0<br />

0<br />

c<br />

0<br />

0<br />

0<br />

D<br />

0<br />

0<br />

0<br />

36.36<br />

E<br />

0<br />

0<br />

0<br />

.t 00<br />

r8c 14 13<br />

B<br />

0<br />

0<br />

0<br />

c<br />

c<br />

0<br />

0<br />

D<br />

0<br />

0<br />

0<br />

76.92<br />

E<br />

0<br />

0<br />

0<br />

100<br />

lgc 21 13+<br />

B<br />

0<br />

0<br />

0<br />

o 12.56<br />

c<br />

0<br />

0<br />

0<br />

0<br />

D<br />

0<br />

0<br />

.0<br />

28,57<br />

E<br />

0<br />

100


0<br />

0<br />

0<br />

.0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

a<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

6.76<br />

0<br />

0<br />

0<br />

100<br />

12.28<br />

100<br />

100<br />

100<br />

0<br />

88.89<br />

B5<br />

'0<br />

0<br />

55 .88<br />

28.57<br />

100<br />

2.22<br />

3.5<br />

19.15<br />

22.38<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

.0<br />

12.32<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

7 .8r<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

N)<br />

o\<br />

5.87<br />

B<br />

c<br />

D<br />

E'<br />

B<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

18C 27 13+<br />

30c 2 16<br />

30c 3 16<br />

30c 15 16<br />

30c 12 16


0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

o<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

NJ<br />

o\<br />

E<br />

0<br />

0<br />

42C 7 r8<br />

B<br />

0 )0<br />

0<br />

B<br />

c<br />

ó<br />

E<br />

B<br />

c<br />

D<br />

E<br />

\2C 4 18<br />

B<br />

c<br />

D<br />

E<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

o<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

30c 22 16<br />

30c 25 16<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

100<br />

3.17 10.56<br />

10<br />

77.7e<br />

100<br />

4.18 11.67<br />

32<br />

59.\6<br />

100<br />

o '21 .61<br />

82.8r<br />

100<br />

100<br />

0 20.25<br />

c<br />

0<br />

0<br />

0<br />

82.76<br />

D<br />

0<br />

0<br />

0<br />

100<br />

E<br />

0<br />

0<br />

0<br />

100<br />

0 5.48<br />

42C 2 19<br />

B<br />

0<br />

0<br />

0


0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

35.29<br />

100<br />

0<br />

0<br />

17.39<br />

100<br />

0<br />

0<br />

6o<br />

0<br />

.0<br />

0<br />

100<br />

100<br />

0<br />

0<br />

16.67<br />

100<br />

4. ol<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

,0<br />

2.34<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

.0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

7. 88<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0.<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

N)<br />

o\<br />

4.59<br />

c<br />

D<br />

E<br />

R<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

E<br />

42C 6 19<br />

\zc 11 19<br />

4zc j zo<br />

20<br />

4zc I


42c 21 zo B<br />

c<br />

D<br />

E<br />

0000<br />

00<br />

00<br />

00<br />

1\.62 12,23 o 6.70 o o<br />

0 6.25 0<br />

o 100 o<br />

0 100 0


00<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

N)<br />

o\<br />

\j<br />

TAB<br />

S,HISÎOLOGICAL ANALYS I S<br />

Embryo Stege Region <strong>of</strong> Region <strong>of</strong> Neural Ectoderm<br />

Les ion Measurements Lesion Discontinuity<br />

ZZ7.'Á<br />

, regîon embryo region embryo<br />

Notochord Soml te Soml te<br />

Separ<strong>at</strong>ïon Separ<strong>at</strong> ion Defects<br />

zzzzzz<br />

region embryo region embryo regíon embryo<br />

18E 47 ttt<br />

80000<br />

c00<br />

000<br />

ouo<br />

12.50<br />

18E 44 15<br />

30E 4 15<br />

30E 9 16<br />

DO<br />

EO<br />

BO<br />

c0<br />

DO<br />

EO<br />

BO<br />

c0<br />

DO<br />

EO<br />

BO<br />

c0<br />

DO<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

100<br />

100<br />

0<br />

,0<br />

36.36<br />

100<br />

0 1.48<br />

0<br />

14.29<br />

33.33<br />

0 4.33<br />

0<br />

20<br />

4.2\


l\t<br />

q\<br />

1oE 26 16<br />

30E 59 16<br />

3oE 77 16<br />

428 34 18<br />

h2E \9 t8<br />

EO<br />

BO<br />

c0<br />

DO<br />

EO<br />

BO<br />

c -0<br />

DO<br />

EO<br />

BO<br />

c0<br />

DO<br />

EO<br />

BO<br />

c0<br />

DO<br />

EO<br />

BO<br />

c0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

r00<br />

o 6.15<br />

0<br />

4o<br />

100<br />

0 7.74<br />

33.33<br />

28.57<br />

t00<br />

| .87 6.77<br />

0<br />

53.s5<br />

100<br />

o r1.96<br />

12,77<br />

100<br />

100<br />

o \.22<br />

0<br />

0<br />

00<br />

0<br />

0<br />

0<br />

00<br />

0<br />

0<br />

0<br />

75<br />

73.08<br />

26.32<br />

0 5.95<br />

00<br />

0<br />

0<br />

0<br />

00<br />

oco


N<br />

o\<br />

\o<br />

DO<br />

0<br />

0<br />

65.38<br />

0<br />

EO<br />

0<br />

0<br />

100<br />

0<br />

4zE 26 t9<br />

BO<br />

c'0<br />

DO<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

.,0<br />

61 .32<br />

80<br />

17.1\<br />

0<br />

0<br />

0<br />

EO<br />

0<br />

0<br />

100<br />

0<br />

4zE 31 19<br />

BO<br />

c0<br />

DO<br />

EO<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0 20.09<br />

73.55<br />

100<br />

100<br />

0<br />

0<br />

0<br />

0<br />

428 17 20<br />

\28 73 zo<br />

BO<br />

c0<br />

DO<br />

EO<br />

BO<br />

c0<br />

DO<br />

EO<br />

0<br />

0<br />

0<br />

g<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

5.64<br />

0<br />

0<br />

0<br />

3 .86<br />

0 3.61<br />

.0<br />

21 .05<br />

r00<br />

0 19.39<br />

44.58<br />

100<br />

100<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0


0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

N)<br />

.{<br />

Embryo Stage Regions <strong>of</strong> Reglons <strong>of</strong><br />

Les íons Measurements<br />

HISTOLOGICAL ANALYSIS<br />

Neural Ectoderm Notochord<br />

Les ion Di scont inu i ty Separ<strong>at</strong>ion<br />

%zzzzz<br />

reglon embryo regíon embryo region embryo<br />

Somí te Som ì te<br />

Sepa ra t ion Defects<br />

zzzz<br />

regÍon embryo reg ion embryo<br />

18E 61 13 DE<br />

B<br />

c<br />

0<br />

0<br />

10.97 0 0<br />

0<br />

00<br />

0<br />

0 7.04 .o o<br />

00<br />

D<br />

100<br />

0<br />

0<br />

,5.82<br />

0<br />

E<br />

190<br />

0<br />

0<br />

r00<br />

r8E 13 14<br />

CDE<br />

B<br />

0<br />

8.55<br />

0<br />

00<br />

27.61 B.\6<br />

c<br />

22.72<br />

0<br />

0<br />

25<br />

D<br />

100<br />

0<br />

0<br />

100<br />

E<br />

100<br />

0<br />

0<br />

100<br />

t8E. 35 l4<br />

B<br />

0 2.35<br />

0<br />

0<br />

20,24 ß,65<br />

c<br />

o<br />

0<br />

0<br />

0<br />

D<br />

0<br />

0<br />

0<br />

21 .t+3<br />

18E 58 14<br />

CDE<br />

E<br />

B<br />

8o<br />

o 9.29<br />

0<br />

0<br />

0<br />

0<br />

100<br />

16.67 22.\4<br />

c<br />

27.59<br />

0<br />

0<br />

100<br />

D<br />

100<br />

0<br />

0<br />

r00


0<br />

2.67<br />

0.<br />

N'<br />

!<br />

18E 36 14+<br />

DE<br />

22.22<br />

0 5.32<br />

100<br />

,0 r .82<br />

c<br />

D<br />

0<br />

69.7o<br />

'0<br />

12.12<br />

18E 53 14+<br />

DE<br />

60<br />

0 7.35<br />

loo<br />

0 8.90<br />

0<br />

0<br />

63.83<br />

80 .85<br />

E<br />

100<br />

100<br />

18E 59 14+<br />

DE<br />

B<br />

0 2,85<br />

c<br />

'0<br />

308 25 15<br />

BCD<br />

64.71 o<br />

4s.45 o<br />

5.52 12.75 0<br />

23.53<br />

r00<br />

3.07 4.ll<br />

100<br />

,<br />

0<br />

33.33<br />

79.07 0<br />

00<br />

0<br />

100<br />

3oE 56 - 16<br />

BC<br />

1\.4\ 12185 o<br />

600<br />

1 0 .90 14 .92<br />

7\.29


l\)<br />

\l N<br />

D<br />

E<br />

00<br />

00<br />

0<br />

0<br />

13.79 0<br />

100 0<br />

30E 69 16<br />

30Ê 52 16<br />

BCD<br />

B<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

E<br />

10.48 ß.93 o o<br />

190 0<br />

5\.17 0<br />

00<br />

14.7t 12.25 14.71 12.25<br />

60.87 60.87<br />

oo<br />

oo<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

4.s6 lo;07 o o<br />

100 0<br />

35.\2 o<br />

100 0<br />

12.75 18.55 2.70 2.81<br />

100 0<br />

r0o 28.57<br />

100 0<br />

t+28 I 17<br />

42E ro 17<br />

.B<br />

B<br />

c<br />

D<br />

E<br />

c<br />

D<br />

E<br />

29.81 23.01 0 0<br />

31 .87 o<br />

00<br />

gro<br />

13,\4 9.24 o o<br />

00<br />

00<br />

00<br />

\3.\3<br />

0<br />

0<br />

0<br />

35.40<br />

0<br />

0<br />

0<br />

29.27<br />

2\.33<br />

0 15.63 0 0.88<br />

65.93 o<br />

100 22.22<br />

100 0<br />

0 20,96 0 0.92<br />

77.46 o<br />

100 13.64<br />

100 0


N)<br />

.{<br />

\28 1 t8<br />

42Ê 44 18<br />

\zE 54 t8<br />

BC<br />

B<br />

c<br />

D<br />

E,<br />

B<br />

c<br />

D<br />

E<br />

B<br />

4.8 13.85 1.77 1.zo 18.40 19.43 3.10 26.06 o<br />

75 o \2.92 1oo o<br />

o o o 1oo o<br />

0 0 o loo o<br />

o 8.73 o 0.63 o ,.s\ o 13.97 o<br />

39.80 4.8g 16.33 43.88 o<br />

55.17oo1ooo<br />

0 0 0 100 o<br />

0 14.55 0 0.61 o o 18.45 18î45 o<br />

\28 s7 19<br />

428 65 t9<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

E<br />

B<br />

c<br />

D<br />

69 J1 3.96 o 61 ,3g o<br />

58.14 o o roo o<br />

o o o ìoo o<br />

o 17.02 o o.3o o 8.66 o 16.26 o<br />

78.57 1.79 50.89 5\.\6 o<br />

100, 001000<br />

0 0 0 loo o<br />

0 8.06 0 1.10 O O O 16.65 0<br />

22.99 6.90 o 49.40 o<br />

82.76odtooo


N)<br />

\¡<br />

\2E 72 20<br />

E<br />

B<br />

c<br />

D'<br />

E<br />

00<br />

0 15.81 0 0<br />

80..21 o<br />

00<br />

00<br />

0 100 o<br />

0 12.73 0 2\.2\ O 0<br />

64.58 77.08 o<br />

0 100 o<br />

0 loo<br />

0


16.76 13.52<br />

0<br />

29.57<br />

100<br />

0 14.04<br />

49.02<br />

89 .66<br />

33.33<br />

4¡.gA 38.31<br />

87.95<br />

44.77<br />

35 .71<br />

35.97 36.71<br />

61.5\ \ \JI<br />

100<br />

TABLE 50. EXPERII,TENTAL EI"IBRYOS I^'ITH I4YELODYSPLASIA. HISTOLOGICAL ANALYSIS<br />

Embryo Stage Regions <strong>of</strong> Regions <strong>of</strong> Neural Ectoderm Notochord Somìte Somlte<br />

Lesions I'leêsurements Lesion Dlscontinuity Separ<strong>at</strong>ion Separ<strong>at</strong>ion Defects<br />

zzzzzzzT"zz<br />

region embryò region embryo reglon embryo regÍon embryo regîon embryo<br />

308 35 16<br />

308 76<br />

16<br />

BCB<br />

c<br />

D<br />

E<br />

BCDE B<br />

c<br />

D<br />

E<br />

10.99 13.9<br />

100<br />

0<br />

3.05 16.64<br />

100<br />

100<br />

26.67<br />

3.30 8. 13 0<br />

10.81 0<br />

00<br />

00<br />

0 r.21 0<br />

12.74 o<br />

00<br />

00<br />

7.14 11.19<br />

86.49<br />

0<br />

50<br />

0 4.68<br />

11,76<br />

20.69<br />

!00<br />

\2E rz 17<br />

B<br />

o.09 13.68<br />

0 6.52<br />

0<br />

c<br />

D<br />

r00<br />

0'<br />

49.40<br />

0<br />

0<br />

0<br />

o 7.80<br />

3.61<br />

8\.21<br />

AzE jo<br />

18<br />

E<br />

B<br />

0<br />

r0.46 4.68<br />

0<br />

o 4.34<br />

0<br />

lì<br />

100<br />

15.05 16.09<br />

c<br />

100<br />

36.92<br />

0<br />

1 8.46<br />

D<br />

100<br />

0<br />

0


46. 15 76.92<br />

0 20.51 14.83 2i,92<br />

53.33 65.33<br />

o 48.28<br />

100 5\.05<br />

NJ<br />

\¡ o\<br />

E<br />

\zE s6 B<br />

't00<br />

11.92<br />

32.51<br />

0<br />

0<br />

0<br />

2.O2 8,72 7 .93<br />

c<br />

f00<br />

16.00<br />

14.67<br />

D<br />

100<br />

0<br />

0<br />

E<br />

64. 86<br />

0<br />

0


Figs. 112-119. Percentage lengths <strong>of</strong> histological changes associ<strong>at</strong>ed<br />

with myeloschisis and myelorlysplasia in experimental<br />

embryos <strong>of</strong> St. 13 to St. 20. Each dou!:le bar<br />

rePresents one emb ryo I<br />

Fig. 112.<br />

Ectoderm díscontinuity wíth myeloschisis,<br />

FiS. 113.<br />

Ectoderm discontinuity with myelodysplasia.<br />

FiS. 114.<br />

Somite separ<strong>at</strong>ion wi th myeloschisis,<br />

FiS. 115.<br />

Somite separ<strong>at</strong>Ìon with myelodysplasía.<br />

FiS. 116.<br />

Notochord separ<strong>at</strong>ion with myeloschisis.<br />

Fig. 117.<br />

Notochord separêtion rvith myelodysplasia,<br />

Fis. 118.<br />

Simite defects with myeloschisis.<br />

FiS. 119.<br />

Som¡te defects wïth myelodysplasia.


ECTODERM DISCONTINUITY IN EXPERIMENTAL EMBRYOS WITH MYELOSCHISIS<br />

N=l9<br />

E NEURAT LESTON N ECTODERM DTSCONT|NUITY<br />

l8<br />

19 20<br />

REGION B<br />

IrNl En<br />

Ë<br />

T<br />

N<br />

t-<br />

Ë¿E<br />

REGION C<br />

o<br />

zul<br />

*Ë<br />

-t<br />

\o o\<br />

lIIE<br />

EE<br />

REGION D<br />

ã'¡<br />

E<br />

REGION E<br />

3<br />

5<br />

tó<br />

STAGES<br />

17


ECTODERM DISCONTINUITY IN EXPERIMENTAL<br />

EMBRYOS WITH MYELODYSPLASIA<br />

N_Ã I NEURAL LESION<br />

N ECTODERM DISCONTINUITY<br />

t IT<br />

S<br />

I<br />

tó 17 l8<br />

STAGES<br />

REGION B<br />

REGION C<br />

REGION D<br />

REGION E<br />

279 ::<br />

J-<br />

o<br />

zt¿¡<br />

ñ


279<br />

ECTODERM DISCONTINUITY IN EXPERIMENTAL<br />

EMBRYOS WITH MYELODYSPLASIA<br />

N_Ã<br />

I NEURAL LESTON<br />

N ECTODERM DISCONTINUITY<br />

REGION B<br />

I<br />

s<br />

IT<br />

N<br />

J-<br />

l-<br />

o<br />

zt¡¡<br />

ñ<br />

REGION C<br />

REGION D<br />

I<br />

REGION E<br />

tó<br />

17 l8<br />

STAGES


SOMITE SEPARATION IN EXPERIMENTAL EMBRYOS WITH MYELOSCHISIS<br />

E NEURAL LESION NI SOMITE SEPARATION<br />

16 17,<br />

STAGES<br />

EGION C<br />

:tr<br />

t-<br />

o<br />

zu¡<br />

J<br />

\o<br />

o\


SOMITE SEPARATION IN EXPERIMENTAL EMBRYOS<br />

WITH MYETODYSPLASIA<br />

N=5<br />

E NEURAL LEsloN<br />

N SOMITE SEPARATION<br />

REGION B<br />

R\-<br />

Nhr<br />

-<br />

o<br />

ztl¡<br />

ñ<br />

NN<br />

N<br />

REGION C<br />

REGION D<br />

N<br />

REGION E<br />

17 l8<br />

STAGES<br />

\


NgTOCHORD SEPARATTON rN EXPERTMENTAI- EMBRYOS- W|TH MYETOSCHTSTS<br />

N=I9 E NEURAL LESION øNOTOCHORD SEPARATION<br />

!¡<br />

13 14 l5 ló 17 r8 19 20<br />

STAGES<br />

I<br />

REGION B<br />

REc,oN D<br />

ã'H E REGION E<br />

Erl<br />

W.<br />

I v6%fu*"'*'<br />

-¡-<br />

o<br />

z¡l¡<br />

,-t<br />

às<br />

EE<br />

¡t¡¡Ë


283<br />

NOTOCHORD SEPARATION IN EXPERIMENTAL<br />

EMBRYOS WITH MYELODYSPLASIA<br />

¡ NEURAL LESTON<br />

YZ NOT OCHORD SEPARATION<br />

REGION B<br />

I<br />

()<br />

ztt¡<br />

REGION C<br />

àe<br />

REGION D<br />

REGION E<br />

STAGES<br />

17 l8


REGION E<br />

N=|9<br />

SOMITE DEFECTS IN EXPERIMENTAL EMBRYOS WITH MYETOSCHISIS<br />

E NEURAL LESIoN NSOMITE DEFECTS<br />

:tr<br />

t-<br />

o<br />

zt¡¡<br />

-t<br />

ã¡E* Et<br />

HH<br />

\o o\<br />

REG¡ON B<br />

tu<br />

Eå<br />

NN<br />

t¡<br />

!tE<br />

! REG,.N D<br />

13 14ì l5 16<br />

. STAGES<br />

17 8r t9, 20


285<br />

SOMITE DEFECTS IN EXPERIMENTAL EMBRYOS<br />

WITH MYELODYSPLASIA<br />

N=5 f NEURAL LEsloN<br />

NI SOMITE DEFECTS<br />

N S^<br />

REGION B<br />

.L<br />

l-<br />

o<br />

zt¿r<br />

N<br />

i\<br />

N<br />

N REGT.N c<br />

àq<br />

N<br />

REGION D<br />

N<br />

NN<br />

NN<br />

$<br />

REc,oN E<br />

16 17 18<br />

STAGES


286<br />

6.8. EXTENT OF THE OVERLAP ZONE<br />

The overlap zone is characterized by multiple accessory.canals<br />

wlth<strong>ln</strong> <strong>the</strong> tail-bud n<strong>at</strong>er¡al, lying deep to a closing or closed tube<br />

derlved fron neural pl<strong>at</strong>e m<strong>at</strong>erial. Even without accessory canals ìts<br />

presence is revealed by asymmetry <strong>of</strong> <strong>the</strong> definitive neural tube derived<br />

from both sources (Figs. 51 - 60).<br />

Us<strong>ln</strong>g this asymmetry to <strong>ln</strong>dic<strong>at</strong>e <strong>the</strong> extent <strong>of</strong> <strong>the</strong> overlap zone, <strong>the</strong><br />

numbers <strong>of</strong> sectlons containing neurêl pl<strong>at</strong>e m<strong>at</strong>erial and taíl-bud m<strong>at</strong>eriaì<br />

were counted în each region <strong>of</strong> Group lll embryos. Values were expressed ås<br />

percentages <strong>of</strong> each region and <strong>of</strong> each whole embryo .<strong>at</strong> Stages 13-,l6,<br />

cover<strong>ln</strong>g <strong>the</strong> developmental period in which <strong>the</strong> overlap zone ís most prominent.<br />

The results could not be expressed ¡n terms <strong>of</strong> somite levels as <strong>the</strong><br />

definitive number <strong>of</strong> èomîtes has not differenti<strong>at</strong>ed <strong>at</strong> Stages lJ-16.<br />

Group lV embryos could not be included because <strong>the</strong> overlap zone ís<br />

obscured by complete fusion <strong>of</strong> <strong>the</strong> two sources <strong>of</strong> neural m<strong>at</strong>erial after<br />

Stage 16 in <strong>the</strong> controls and în experimental embryos without neural defects.<br />

Tables !l - 54 show <strong>the</strong> percentage lengths <strong>of</strong> neural pl<strong>at</strong>e m<strong>at</strong>erial,<br />

tai l-bud m<strong>at</strong>erial and <strong>the</strong> overlap zone <strong>ln</strong> Group lll<br />

embryos, rearranged<br />

into four c<strong>at</strong>çgories:<br />

Stage 13- 16 control embryos<br />

Stage 13-16 experlmental embryos wîthout neural defects<br />

Stage Il-16 experimental embryos with myeloschisîs<br />

Stage 1l-16 experimental embryos wíth myelodysplasia ,<br />

Figs. 120 - 123 compêre <strong>the</strong> lengths <strong>of</strong> overlap zone with <strong>the</strong> lengths <strong>of</strong><br />

neural defects in <strong>the</strong> four c<strong>at</strong>egories. They show th<strong>at</strong> <strong>the</strong> length and distrlbut¡on<br />

<strong>of</strong> <strong>the</strong> overlêp zone in myeloschísls closely resembles lts length


287<br />

and distr¡bfrtíon in <strong>the</strong> controls and ín experimental embryos wlthout<br />

neural les ions.<br />

The two embryos wlth myelodyplasia show a very d¡fferent p<strong>at</strong>tern.<br />

The upper boundary <strong>of</strong> tail-bud m<strong>at</strong>eriar lies <strong>at</strong> a dimilar revel to th<strong>at</strong><br />

seen in <strong>the</strong> controls <strong>at</strong> Stage ,16. The lower boundary <strong>of</strong> neural pl<strong>at</strong>e<br />

m<strong>at</strong>erlal, however, lies <strong>at</strong>.almost <strong>the</strong> sême level, due to <strong>the</strong> absence <strong>of</strong><br />

neural pl<strong>at</strong>e m<strong>at</strong>erial <strong>ln</strong> Regions C, D and E.<br />

st<strong>at</strong>ist¡cal analysîs <strong>of</strong>, <strong>the</strong> resurts was not performed because <strong>of</strong> <strong>the</strong><br />

smal I number <strong>of</strong> embryos with myeiodysplasia.


100<br />

o 20.79<br />

47.50<br />

100<br />

,N'<br />

oo<br />

100 æ<br />

ZONE IN ST<br />

Emb ryo Stage Type <strong>of</strong> Regions <strong>of</strong> Regions <strong>of</strong><br />

Les ion Les ion Measurements<br />

E.<br />

93.33<br />

r 8c '¡4 13<br />

Neural Pl<strong>at</strong>e I'l<strong>at</strong>erial<br />

66<br />

reg ion emb ryo<br />

18C 11 t3'<br />

100 62.08<br />

c<br />

100<br />

D<br />

100<br />

r8c 10 13<br />

E<br />

95.8¡<br />

B<br />

100 69.95<br />

c<br />

100<br />

D<br />

100<br />

Þ<br />

c<br />

D<br />

100<br />

100<br />

'!00<br />

59.54<br />

Ta îl -Bud M<strong>at</strong>erial Overlap Zone<br />

zzzz<br />

regîon embryo regíon emb ryo<br />

0 22.6'<br />

100<br />

100<br />

100<br />

0 18.62<br />

27.03<br />

100<br />

100<br />

0 '19.09<br />

29.\1<br />

r00<br />

0 22.27<br />

100 .<br />

100<br />

95.83<br />

0 18.23<br />

27.03<br />

100<br />

100<br />

0 19.09<br />

29.41<br />

r00<br />

E<br />

)<br />

100<br />

100<br />

18C 21 13+<br />

B<br />

100<br />

70.62<br />

o 20.79<br />

c<br />

100<br />

47.50<br />

D<br />

t00<br />

100<br />

E<br />

100<br />

100


19.09<br />

r8.95<br />

r 1.84<br />

14.82<br />

15.20<br />

0<br />

17.76<br />

11.65<br />

14.17<br />

14.20<br />

t\,<br />

@<br />

\o<br />

18C 27 13+<br />

B<br />

100<br />

69,26<br />

0<br />

19 .09<br />

c<br />

100<br />

7\.50<br />

7\.50<br />

D<br />

100<br />

100<br />

loo<br />

E<br />

100<br />

100<br />

100<br />

30c 2 16<br />

B<br />

100<br />

73.43<br />

6'52<br />

6.s2<br />

c<br />

100<br />

100<br />

100<br />

D<br />

100<br />

100<br />

100<br />

E<br />

78.95<br />

.r 00<br />

78.95<br />

30c 3 16<br />

B<br />

100<br />

81.57<br />

0<br />

0<br />

c<br />

100<br />

55.560<br />

55.560<br />

D,<br />

100<br />

100<br />

r00<br />

E<br />

94.74<br />

100<br />

94.7\<br />

3oc 15 16<br />

B<br />

r00<br />

81.76<br />

0.72<br />

0.72<br />

c<br />

D,<br />

100<br />

100<br />

100<br />

t00<br />

100<br />

100<br />

E<br />

78.95<br />

100<br />

78,95<br />

30c 12 16<br />

B<br />

100<br />

' V5.t46<br />

5.32<br />

5.32<br />

c<br />

100<br />

100<br />

100<br />

D<br />

100<br />

100<br />

100<br />

E<br />

53.33<br />

100<br />

53.33


t4.09<br />

13.94<br />

0 1).59<br />

100<br />

100<br />

88. 89<br />

o 1 3.07<br />

88<br />

r00<br />

76.19<br />

N)<br />

\o<br />

3OC 22<br />

16 none<br />

B<br />

100<br />

77.18<br />

0'<br />

c<br />

100<br />

100<br />

D<br />

100<br />

r00<br />

E<br />

88.89<br />

100<br />

30c 25<br />

16 none<br />

B<br />

r00<br />

BoJz<br />

0<br />

c<br />

f00<br />

88<br />

D<br />

f00<br />

t00<br />

E<br />

76.19<br />

ioo


0 15. 89<br />

81 .08<br />

100<br />

100<br />

' 76.92<br />

0 14.38<br />

100<br />

70.59<br />

0 10.04<br />

15.79<br />

100<br />

f00<br />

o 9'66<br />

35.09<br />

1oo<br />

È<br />

88.24<br />

Embryo Stage Type <strong>of</strong><br />

Les ion<br />

IMENTAL EMB<br />

Reglons <strong>of</strong> Reglons <strong>of</strong><br />

Les lon l',leasurements<br />

Neural Plâte M<strong>at</strong>erÍal<br />

.t ø'<br />

4tô<br />

reglon emb ryo<br />

Ta I I -Bud H<strong>at</strong>erlal Overlap Zone<br />

zzzz<br />

region embryo reglon emb ryo<br />

18E r0 13-<br />

B<br />

r00<br />

65.65<br />

0 15.89<br />

c<br />

100<br />

81 .08 .<br />

D<br />

1oo<br />

100<br />

E<br />

100<br />

100<br />

lBE 28 r4<br />

Þ<br />

100<br />

64.04<br />

o 15'24<br />

c<br />

100<br />

76.92<br />

100<br />

100<br />

E<br />

70.59<br />

100<br />

r8E 47 14<br />

B<br />

100<br />

76.33<br />

0 10 .04<br />

c<br />

100<br />

15.79<br />

D<br />

E'<br />

loo<br />

100<br />

r00<br />

100<br />

18E 44 15-<br />

B<br />

'100 :<br />

68.8r<br />

0 10.00<br />

c<br />

100<br />

35.09<br />

D<br />

100<br />

100<br />

E<br />

88.24<br />

100


13.85<br />

10. 84<br />

14'5 t<br />

15.97<br />

11.06<br />

1.53<br />

100<br />

100<br />

91 .67<br />

0.67<br />

100<br />

100<br />

100<br />

3. 86<br />

100<br />

100<br />

91 .67<br />

2'9t<br />

100<br />

100<br />

87.50<br />

1 .40<br />

100<br />

100<br />

30E. 4 15<br />

30E 9 16<br />

308 26 16<br />

308 59<br />

308 77<br />

16<br />

16<br />

B 100<br />

c 100<br />

D 100<br />

E 9r.67<br />

B 100<br />

c 100<br />

D 100<br />

E 100<br />

B 100<br />

c 100<br />

D 100<br />

E 91 .67<br />

B 100<br />

c 100<br />

D 100<br />

E 87.50<br />

B 100<br />

c 100<br />

D 100<br />

77.27<br />

8\.67<br />

90.61<br />

80. oo<br />

78.55<br />

1.53<br />

i00<br />

100<br />

100<br />

0.67<br />

100<br />

100.<br />

100<br />

3 .86<br />

100<br />

100<br />

100<br />

2'9t<br />

100<br />

100<br />

100<br />

r .40<br />

r00<br />

100<br />

13.68<br />

10.84<br />

14. r6<br />

1j.49<br />

10.23<br />

N)<br />

to<br />

NJ<br />

E 73'68<br />

100.<br />

73.68


43. rB<br />

100<br />

100<br />

0 12.53<br />

74.07<br />

r00<br />

't00<br />

l\)<br />

\o<br />

0s l1| ITH t'lYEL0ScH r s I<br />

Embryo Stage Type <strong>of</strong> Regîons <strong>of</strong> Regions <strong>of</strong> Neural Pl<strong>at</strong>e M<strong>at</strong>er i a I<br />

Les i on Les i on l'leas urements zz<br />

reg ion ernb ryo<br />

l8E 6l ß nyeloschisis DE<br />

B<br />

c<br />

D<br />

E<br />

100 't00<br />

100<br />

r00<br />

66.87<br />

188 25 13+ myeloschlsis CDE<br />

B<br />

100 69.52<br />

c<br />

D<br />

E<br />

100<br />

100<br />

50<br />

B<br />

100<br />

68.59<br />

Tai l-Bud M<strong>at</strong>erial Overlap Zone<br />

zz%z<br />

region embryo reg ión embryo<br />

o 13.87<br />

\5.16<br />

100<br />

100<br />

0 1 3.90<br />

J6.67<br />

t00<br />

100<br />

0 10.34<br />

0 18.87<br />

\5.t6<br />

100<br />

100<br />

0 12.78<br />

16.67<br />

r00<br />

100<br />

o 10.34<br />

c<br />

100<br />

4:.tB<br />

D<br />

gl<br />

100<br />

100<br />

100<br />

100<br />

18E 35 14 myeloschls,ls E<br />

B<br />

100<br />

57.97<br />

0 12.53<br />

c<br />

t00<br />

7\.07<br />

D<br />

100<br />

100<br />

E<br />

100<br />

100


0 12.18<br />

62.07<br />

100<br />

77.78<br />

o t3.72<br />

78.38<br />

100<br />

100<br />

0 i1.4r<br />

25<br />

100<br />

100 .<br />

0 11.02<br />

66.57<br />

ï00<br />

75<br />

0 8.00<br />

36.5\<br />

NJ<br />

loo B<br />

81 .82<br />

18E 58 14 myelosch¡s¡s CDE<br />

B<br />

100<br />

60.73 0 12.57<br />

c<br />

100<br />

62.07<br />

D<br />

t00<br />

100<br />

E<br />

77.78<br />

. 100<br />

18E 36 1¡+ myeloschlsls<br />

DE<br />

B<br />

100<br />

69.87<br />

0 13.72<br />

|.<br />

100<br />

78. 38<br />

D<br />

100<br />

100<br />

E<br />

100<br />

100<br />

18E 53 l4+ nyeloschîsls DE<br />

B<br />

100<br />

69.79<br />

0 11.41<br />

c<br />

100<br />

25<br />

,D<br />

t00<br />

100<br />

E<br />

100<br />

100<br />

18E 54 t4+ myetoschisis<br />

B<br />

r0o<br />

65.67<br />

o 11.65<br />

c<br />

100<br />

,t6.67<br />

D<br />

I<br />

100<br />

100<br />

f8E 59 14+ myeloschl'sls DE<br />

E<br />

B<br />

75<br />

100<br />

7?.06<br />

100<br />

o 8.36<br />

c<br />

100<br />

36.5\<br />

D<br />

'100<br />

100<br />

E<br />

8r .82<br />

100


7.t6 16.03<br />

100<br />

100<br />

160<br />

7.90 18.22<br />

r00<br />

1oo<br />

75<br />

r 1 .85 20 :30<br />

100<br />

100<br />

83.33<br />

16.9t 21 .02<br />

100<br />

100<br />

87 'so<br />

t\,<br />

\o<br />

308 25 15 myeloschisis BCD<br />

B<br />

100<br />

71 .0\ 7.36 17.30<br />

c<br />

100<br />

100<br />

D<br />

100<br />

100<br />

E<br />

6o<br />

' 100<br />

308 56 l6 nryeloschlsls BC<br />

B<br />

100<br />

78.\7<br />

7.90 18.92<br />

c<br />

100<br />

100<br />

D<br />

100<br />

100<br />

E<br />

75<br />

.l00<br />

308 69 16 myeloschísis BCD<br />

B<br />

100<br />

85.24<br />

11.85 20.63<br />

c<br />

100<br />

100<br />

D<br />

100<br />

100<br />

e<br />

83.33<br />

100<br />

30E 52 16<br />

myeloschlsis BC<br />

B<br />

t00<br />

77.15<br />

16.9t 21 .36<br />

c<br />

100<br />

100<br />

D,<br />

100<br />

100<br />

E<br />

87.50<br />

100


Embryo Stage Type <strong>of</strong> Regîons <strong>of</strong> Regions <strong>of</strong> Neurêl P¡<strong>at</strong>e H<strong>at</strong>erial Tai l-Bud M<strong>at</strong>erial Overlap Zone<br />

Lesion Lesion l'leasurements Z Z Z Z .Z Z<br />

region embryo region embryo region embryo<br />

0<br />

o<br />

0<br />

2.54 1.73<br />

0<br />

0<br />

0<br />

N¡<br />

lo<br />

c<br />

I4-ale ¡q,ovERLAp zoNE tN srAGE t3-16 ExpERtMENTAL Er,tBRyos t^ltrH HyELoDyspLAStA<br />

30E 35 16 hem<strong>ln</strong>ryel la BC<br />

B<br />

9\.51 62.09 12.36 20.08 6.87 4.5r<br />

c<br />

0<br />

100<br />

D<br />

0<br />

100<br />

E<br />

0<br />

100<br />

308 76 16 heml mye I ia BCDE<br />

B<br />

95.42<br />

64.99<br />

7.12 21 .32<br />

c<br />

0<br />

100<br />

D<br />

0<br />

100<br />

E<br />

0<br />

r00


Figs. 120'123. Percentage ie.ngths <strong>of</strong> <strong>the</strong> overlap zone in control<br />

and experìmental embryos <strong>of</strong> St. l3 to st, 16. Each<br />

double bar represents one embryol<br />

FiS. 120.<br />

Overlap zone in control embryos.<br />

FiS. 121 .<br />

FiS. 122,<br />

0verlap zone in experimêntal embryos wîthout neural<br />

. defects.<br />

Overìap zone in experimental embryos with<br />

r'ryeloschisìs.<br />

FiS, 123.<br />

Overlap zone in experimental embryos with<br />

myelodysplas ia"


298<br />

OVERLAP ZONE IN<br />

CONTROL EMBRYOS<br />

N=11<br />

EÐ OVERLAP ZONE<br />

REGION B<br />

:tr<br />

Þ-<br />

o<br />

zllJ<br />

REGION C<br />

\oo\<br />

REGION D<br />

REGION E


299<br />

O\TERLAP ZONE IN EXPERIMENTAL EMBRYOS<br />

WITHOUT NEURAL DEFECTS<br />

N=9 Hl ovrnrAP zoNE<br />

REGION C<br />

T<br />

l-<br />

o<br />

zu.t<br />

-t<br />

\o o\<br />

REGION D<br />

REGION E<br />

15 ló<br />

STAGES


OVERLAP ZONE IN EXPERIMENTAL EMBRYOS<br />

WITH MYELOSCHISIS<br />

N=13<br />

tr NFURAL LESION<br />

@ OVERLAP ZONE<br />

o<br />

zllJ<br />

\o o\,<br />

14<br />

STAGES


301<br />

OVERLAP ZONE IN EXPERIMENTAL EMBRYOS<br />

WITH MYELODYSPLASIA<br />

N=2 f NeuR,qL LEsloN<br />

ffi oveRrap zoNE<br />

REGION B<br />

.L<br />

o<br />

zt¿¡<br />

REGION C<br />

àe<br />

STAGES


302<br />

6.9 ANALYSIS OF NEURAT VOTUHES<br />

Examin<strong>at</strong>ion <strong>of</strong> <strong>the</strong> serial sections showed th<strong>at</strong> <strong>the</strong> cross-sectional<br />

area <strong>of</strong> neural tissue was gre<strong>at</strong>ly reduced <strong>at</strong> <strong>the</strong> slte <strong>of</strong> all myelodysplasla<br />

lesions. <strong>ln</strong> rnyeloschisis leslons <strong>the</strong> sectional area <strong>of</strong> neural tissue was<br />

nel<strong>the</strong>r much reduced (as <strong>ln</strong> myelodysplasia) nor much <strong>ln</strong>creased (as would<br />

be expected in neural ttovergrowthtr). The sectional area <strong>of</strong> notochord în<br />

all experlmental and control e'mbryos, however, appeared to be fa¡rly<br />

un lform.<br />

For direct comparlson <strong>of</strong> indivldual embryos, <strong>the</strong> rêtio <strong>of</strong> rn""n n"rr"l<br />

tlssue to mean notochord was thus calcul<strong>at</strong>ed for Regions C and D. Region B<br />

was not <strong>ln</strong>cluded because <strong>of</strong> <strong>the</strong> considerable length <strong>of</strong> normal spinal cord in<br />

<strong>the</strong> upper somite areas <strong>of</strong> abnormal embryos.<br />

Region E could not be <strong>ln</strong>cluded because neural tlssue ând notochord<br />

were not fully dífferentí<strong>at</strong>ed. The embryos with amyel ¡a (42E 6!) and myeloschísis,/myelodysplasia<br />

(\28 21) were excluded<br />

calcul<strong>at</strong>ion <strong>of</strong> <strong>the</strong> r<strong>at</strong>ios <strong>of</strong> neural t¡ssue to notochord allowed pool in9<br />

<strong>of</strong> embryos in Groups lll and lv (stages l3-20) desÈite differences in <strong>the</strong>ir<br />

regional boundaríes. This províded comparison between:<br />

(a) embryos. <strong>of</strong> different sizes<br />

(b) reglons <strong>of</strong> different sizes<br />

(c) sect¡ons cut in different planes<br />

(d) well- or poorly - processed m<strong>at</strong>erial.<br />

A Leltz - ASI'I lmage Analyser was used to measure <strong>the</strong> cross-sectional<br />

area ( ,z ) <strong>of</strong> neural tube, neural canal (when present), and notochord ¡n<br />

every tenth sect¡on. The mean areas <strong>of</strong> notochord and neural tíssue (neural<br />

tube m<strong>ln</strong>us neural canal) were obta<strong>ln</strong>ed by dlviding <strong>the</strong> sum <strong>of</strong>'area measurements<br />

by <strong>the</strong> number <strong>of</strong> sections measured. As a!l sectíons were cut <strong>at</strong> lo microns


303<br />

ând every tenth sectlon was neasured, <strong>the</strong>se mean areas refrect <strong>the</strong> vorumes<br />

<strong>of</strong> notochord and neural tissue in each region.<br />

The mean areas <strong>of</strong> notochord and neural tissue, ù¿ith <strong>the</strong>¡r respect¡ve<br />

r<strong>at</strong>los for Regions C and D <strong>of</strong> embryos with and w¡thout neural levions,<br />

are gfven in Tables 55-5g and Figs. 124 _ 127.


R<strong>at</strong> io<br />

NT/N<br />

6.53<br />

6.zB<br />

6.78<br />

5.02<br />

8.26<br />

6.92<br />

6.96<br />

7 .07<br />

8.00<br />

5. 40<br />

6.6\<br />

7.60<br />

9.04<br />

8.59<br />

6,zo<br />

4. 89<br />

o<br />

.F.<br />

Embryo Stâge Regions <strong>of</strong> Regions <strong>of</strong><br />

Les ion Meas u remen ts<br />

Hean<br />

Neural Tissue ( p2)<br />

l'lean<br />

Notochord ( u2)<br />

18c 11 13<br />

c<br />

17695.11<br />

2709.94<br />

D<br />

1\935.79<br />

2376.88<br />

r8c 10 13<br />

c<br />

15611.88<br />

2301 .21<br />

D<br />

13027 .13<br />

2593.52<br />

18c 14 13<br />

c<br />

12045.92<br />

1\57 .91<br />

D<br />

11209.23<br />

1619.58<br />

t8c 21 13+<br />

c<br />

14257 .44<br />

2A\7.\0<br />

D<br />

15221 ,70<br />

2151 .7\<br />

tïc 27 13+<br />

c<br />

r9424.14<br />

2\27.12<br />

D<br />

16616.94<br />

3078. 31<br />

30c 2<br />

16<br />

c<br />

18191.20<br />

2740.36<br />

D<br />

17t472.7\<br />

2299.40<br />

30c 3<br />

16<br />

c<br />

21\70.54<br />

2375.\6<br />

D<br />

186il.46<br />

2167.35<br />

30c 15<br />

16<br />

c<br />

13680.02<br />

2207.07<br />

D<br />

12667.02<br />

2592.33


30c 12 16<br />

c<br />

17707,61<br />

2463.3\<br />

7.19<br />

D<br />

15\21 .59<br />

2384.81<br />

6.47<br />

30c 22 16<br />

c<br />

r 8261 .88<br />

2049.27<br />

8'9 t<br />

D<br />

17035.18<br />

2396.82<br />

7.11<br />

30c 25 16<br />

c<br />

22011 .75<br />

1985.70<br />

1r.09<br />

D<br />

21911.\z<br />

1849.85<br />

1r.86<br />

4zc 4 tB<br />

c<br />

23075.86<br />

283\.57<br />

8. 14<br />

D<br />

15344.00<br />

2134.61<br />

7.19<br />

42c 7. t8<br />

c<br />

2\007.6\<br />

2938.7\<br />

8.47<br />

D<br />

1q1 39 .01<br />

2113.3\<br />

6.69<br />

\2C 2 19<br />

c<br />

D<br />

23270.21<br />

r 8448. r I<br />

5410.r4<br />

3zb8. r o<br />

4. 3o<br />

5.61<br />

4zc 6 19<br />

c<br />

31037.73<br />

4085.82<br />

7.ê0<br />

D<br />

22594.20<br />

3574.01<br />

6.32<br />

42C 11 19<br />

c<br />

30579.56<br />

34\9.9\<br />

8 .86<br />

D<br />

21679.28<br />

3308.64<br />

6.55<br />

4zc 3 zo<br />

c<br />

36390.6\<br />

4664. 48<br />

9.93<br />

D<br />

31835.22<br />

4\36.03<br />

\2c I 20<br />

c<br />

3j809,99<br />

57t+6.95<br />

7.17<br />

(,<br />

o<br />

6.23 \¡<br />

D<br />

27096.33<br />

5297.28<br />

5.12


7.30<br />

6,5\<br />

o<br />

C'\<br />

\2c 21 29763.8\<br />

25897,29<br />

4079 .80<br />

3960.70


R<strong>at</strong>io<br />

NT/N<br />

4 .90<br />

4.11<br />

6.17<br />

7.14<br />

6.93<br />

7.75<br />

6.48<br />

4.85<br />

8.27<br />

8.99<br />

6.62<br />

5.71<br />

6.08<br />

5.85<br />

8. 3l<br />

8.06<br />

\¡<br />

Emb ryo<br />

Stage Reg lons <strong>of</strong> Reglons <strong>of</strong><br />

Les ion l4eas u remen ts<br />

Hean<br />

Neural Tí ssue (u2)<br />

l'1ea n<br />

Notochord (u')<br />

18E 10 13-<br />

c<br />

r 0104 .53<br />

2062.53<br />

188 28 rq<br />

D<br />

c<br />

13431 .45<br />

14\1\.26<br />

3271.63<br />

2336.59<br />

D<br />

16120.72<br />

2257.72<br />

18E 47 14<br />

c<br />

12063.37<br />

1740.59<br />

D<br />

1 3504 .85<br />

1 838. 54<br />

18E 44 15-<br />

|^<br />

1820\.95<br />

2808.93<br />

D<br />

20011.18<br />

\122.8\<br />

30Ê 4 15<br />

c<br />

21176,52<br />

2561 .63<br />

D<br />

20323.61<br />

2260.43<br />

30E 9<br />

16<br />

c<br />

15361 .89<br />

2320.80<br />

D<br />

1B8o.S3<br />

25?0.40<br />

308 26<br />

r6<br />

c<br />

15355.11<br />

2526.26<br />

D<br />

1 3308.84<br />

2276.53<br />

308 59<br />

t6<br />

c<br />

20740.19<br />

2495.89<br />

D<br />

17038.79<br />

2119.57


3.97<br />

4. B0<br />

8. 3g<br />

5.81<br />

6.37<br />

5.53<br />

8.88<br />

6.8r<br />

7.99<br />

6.27<br />

7.63<br />

4.96<br />

3.95<br />

3.52<br />

o<br />

@<br />

308 77<br />

r6<br />

c<br />

8480.76<br />

2134.62<br />

D<br />

6682.87<br />

1392.67<br />

428 34<br />

18<br />

c<br />

28229.64<br />

3365.52<br />

D<br />

16386.13<br />

2822.43<br />

428 \g<br />

18<br />

c<br />

3389\.29<br />

5318.37<br />

D<br />

2?835.72<br />

\126.zs<br />

4zE 26<br />

r9<br />

c<br />

24723.1\<br />

2785.70<br />

D<br />

16361 .79<br />

2\02,93<br />

\zE 31<br />

t9<br />

c<br />

35685.93<br />

\462.92<br />

D<br />

25229.\6<br />

4ozz.19<br />

428 1l<br />

20<br />

c<br />

29134.62<br />

3816.02<br />

D<br />

19326.99<br />

3895.g2<br />

42E 73<br />

20<br />

c<br />

19937.55<br />

50ll3 .48<br />

D<br />

r 4190 . 97<br />

\oz7.S3<br />

l


Rêtlo<br />

NT/N<br />

4.go<br />

\.36<br />

3 .44<br />

3. 18<br />

3.76<br />

4. 18<br />

4 .09<br />

4. 66<br />

4.58<br />

5.38<br />

5. oo<br />

5.\9<br />

7.2\<br />

8. 99<br />

5.71<br />

6.59<br />

5.90<br />

Embryo Stage Regions <strong>of</strong> Regions <strong>of</strong><br />

Les ion Meas uremen ts<br />

l.lea n<br />

Neural Tlssue ( u2)<br />

Mean<br />

Notochord ( u2)<br />

t8E 61 13<br />

DE<br />

c<br />

11106.91<br />

220\.99<br />

D<br />

I 1 306.04<br />

259a.85<br />

rgE 25 13+<br />

CDE<br />

c<br />

10409.27<br />

3024.80<br />

D<br />

951\.25<br />

2987.77<br />

r8E 13 14<br />

CDE<br />

c<br />

10699.99<br />

2842.79<br />

D<br />

15929,87<br />

3809.03<br />

r8E 35 14<br />

D<br />

c<br />

1105r.83<br />

2702.77'<br />

D<br />

10319.69<br />

2212.\6<br />

18E 58 t4<br />

CDE<br />

c<br />

11542.98<br />

2517.75<br />

D<br />

16496.84<br />

3068. 54<br />

18E 36 14+<br />

DE<br />

c<br />

12232.23<br />

244i.\1<br />

D<br />

14082.28<br />

2545.31<br />

i8¡ l¡ 14+<br />

DE<br />

c<br />

16313.7t+<br />

2254.53<br />

D<br />

18221 .77<br />

2025,31<br />

18E 54 14+<br />

DE<br />

c<br />

10902 . 68<br />

1909 . 05<br />

D<br />

11705.42<br />

1776.51<br />

18E 59 t4+<br />

DE<br />

c<br />

1\129.61<br />

2394.39


5.33<br />

q.40<br />

3.14<br />

3.88<br />

4.50<br />

4.75<br />

\.65<br />

3.22<br />

3.10<br />

5 .84<br />

7.29<br />

3.79<br />

5 .04<br />

8.62<br />

7.02<br />

8.36<br />

7.10<br />

6.69<br />

7.57<br />

o<br />

qzl 54 CD<br />

c<br />

308 25 15<br />

BCD<br />

D<br />

c<br />

D<br />

r6170.00<br />

13531 .40<br />

9795.97<br />

3oE 56 30E 69 308 52 4zÊ 8 42E ro LzE l \zÊ \4 16<br />

t6<br />

16<br />

17<br />

17<br />

t8<br />

r8<br />

BC<br />

BCD<br />

BC<br />

BC<br />

B<br />

BC<br />

CD<br />

c<br />

D<br />

c<br />

D<br />

c<br />

D<br />

c<br />

D<br />

c<br />

D<br />

c<br />

D<br />

c<br />

D<br />

10979.95<br />

10675.14<br />

14075. 30<br />

13692,85<br />

7\30.63<br />

8059.26<br />

18472.31<br />

10836. 53<br />

10123.53<br />

868S.1¡<br />

21369.09<br />

9664.56<br />

32564.19<br />

2r685.00<br />

r8<br />

20747.83<br />

13576.92<br />

3035.20<br />

3073.92<br />

3118,57<br />

¿8zB.7t<br />

2371.50<br />

2965.91<br />

29\4.03<br />

2304.\9<br />

2599.22<br />

3162.93<br />

1\87.37<br />

2671 .83<br />

1626.2\<br />

2480. I 4<br />

1376.51<br />

3903.74<br />

3c54.28<br />

3103.44<br />

1792.39


6.7t<br />

6.lt<br />

4.63<br />

4.60<br />

4.13<br />

3.48<br />

hzE 57<br />

428 65<br />

CD c<br />

D<br />

c<br />

D<br />

c<br />

D<br />

4oqo9. r 3<br />

2\661 .93<br />

18039.2\<br />

13392.88<br />

17414.\2<br />

12851 .82<br />

6020.97<br />

3908.29<br />

3897.63<br />

?914.10<br />

4216.91<br />

3694.39


(u2 )<br />

R<strong>at</strong>io<br />

NT/N<br />

1.72<br />

2,33<br />

2.19<br />

2.79<br />

1.99<br />

3. t9<br />

2.22<br />

1 .92<br />

r .47<br />

2.6\<br />

Embryo<br />

S tage<br />

Reg ions <strong>of</strong> Regions <strong>of</strong><br />

Les icin l'leasu remen ts<br />

Mean<br />

Neural Tissue (u2 )<br />

Hean<br />

Notochord<br />

30Ê. 35<br />

308 76 16<br />

16<br />

hzl 52 17<br />

4zE So 18<br />

\zE 56<br />

l8<br />

BC<br />

BCDE<br />

BC<br />

BC DE<br />

BC DE<br />

c<br />

D<br />

c<br />

D<br />

c<br />

D<br />

c<br />

D<br />

c<br />

3815.57<br />

52\3.32<br />

5674.14<br />

6299.43<br />

7921 .52<br />

7090.52<br />

9066.77<br />

181\.45<br />

7177.\7<br />

2219.02<br />

2252.72<br />

2595.16<br />

2261 .37<br />

4077.35<br />

222\.38<br />

4084 .47<br />

4060.84<br />

4890. 1 I<br />

D<br />

10131 .55<br />

4r 46.40


Fi9s, 124-127, Neurál tube-norochord r<strong>at</strong>ios in control and<br />

experimental embrycs <strong>of</strong> St. 13 to St, 20. Each bar<br />

rep res en ts one emb.ryo i<br />

Fis. 124. R<strong>at</strong>ios in control embryos.<br />

Fís. 125.<br />

R<strong>at</strong>ios in experimentar embryos with no neurar deflects.<br />

Fig. 126.<br />

R<strong>at</strong>ios in experlmental embryos w¡th myeloschis¡s.<br />

Fig. 127.<br />

R<strong>at</strong>ios in experimental embryos w¡th myeìodysplasia.


314<br />

NEURAL. TUBE -NOTOCHORD<br />

RATIOS IN CONTROL EMBRYOS<br />

N=I9<br />

¡ NEURAL LESION<br />

E NO LESION<br />

5<br />

tn<br />

o<br />

tr0<br />

É.<br />

REGION D<br />

ló l8 19<br />

STAGES


315<br />

NEURAL TUBE -NOTOCHORD<br />

RATIOS IN EXPERIMENTAL EMBRYOS<br />

WITHOUT NEURAL DEFECTS<br />

tr Nrun,ql LEstoN<br />

E No LEsIoN<br />

REGION C<br />

REGION D


316<br />

NEURAL TUBE_NOTOCHORD<br />

RAÏIOS IN EXPERIMENTAL EMBRYOS<br />

WITI.I MYELOSCHISIS<br />

N=21<br />

I NEURAL LESION<br />

trI NO LESION<br />

ttt<br />

I<br />

e,<br />

REGION D<br />

15 ló t7<br />

STAGES


317<br />

NEURAL TUBE-NOTOCHORD<br />

RATIOS IN EXPERIMENTAL EMBRYOS<br />

WITH MYELODYSPLASIA<br />

N=5<br />

| NEURAL LEsloN<br />

E No LEsroN<br />

an<br />

o<br />

tr<br />

ü,<br />

REGION D<br />

ló 17 18<br />

STAGES


3t8<br />

Figures fl:4-127 ' demons t ra te <strong>the</strong> r<strong>at</strong>ios. in <strong>the</strong> four c<strong>at</strong>egorîes <strong>of</strong><br />

enbryos, distinguishi.ng between regions with and w¡thout a neural lesion<br />

in affected embryos. The r<strong>at</strong>los are highest ìn <strong>the</strong> control embryos and<br />

sltghtly lower in <strong>the</strong> experimental embryos with no defects. l,,tyeloschisis<br />

is associ<strong>at</strong>ed w¡th a definite reductîon <strong>ln</strong> rptios,with no suggestion <strong>of</strong><br />

neural lrovergrowtht' before or after <strong>the</strong> stages <strong>of</strong> normar neural crosure.<br />

All embryos wíth nryelodysplasia show a marked reduction <strong>of</strong> r<strong>at</strong>los. ïhere<br />

is no obvious difference ín r<strong>at</strong>io between an affected and an adjacent<br />

unaffected region in ei<strong>the</strong>r myeloschlsís or myelodysplasia, implying<br />

th<strong>at</strong> <strong>the</strong> neuraì tube adjacent to a leslon shows a similar reduction in size.^<br />

St<strong>at</strong>istical analysis <strong>of</strong> <strong>the</strong> d<strong>at</strong>a in Tables 59-66 was restricred to<br />

embryos <strong>of</strong> Stages 16-20, to provide a comparable distribution <strong>of</strong> Stages<br />

within <strong>the</strong> four c<strong>at</strong>egoríes. The v<strong>at</strong>ues for <strong>the</strong> mean notochord area were<br />

f¡rst exam¡ned to test <strong>the</strong> assumption <strong>of</strong> uniform notochord s¡ze. An<br />

analysls <strong>of</strong> varíance showed no signifícant differences in mean notochord<br />

area between <strong>the</strong> four c<strong>at</strong>egoríes in both Regions C and D (Tables .59 ê 60).<br />

TABLE 59A.MEAN NOTOCHORD AREA IN REGION D<br />

Ca tegory Number l''lean S.D. s.D.H.<br />

Cont ro I s<br />

Norma I Exptls.<br />

l4yeloschisís<br />

llyelodysplas la<br />

Totâ I<br />

14<br />

10<br />

1t<br />

5<br />

4o<br />

2985.9<br />

2960.6<br />

2524.\<br />

2989,1<br />

2853.1<br />

1027.3 274.5<br />

980.7 310.t<br />

875.1 263.8<br />

t017,9 455.2<br />

958.4 15t..5


319<br />

TABLE 598 ' ANALYSIS OF VARIANCE (NOTOCHORD) REGION D<br />

Between<br />

}llth¡n<br />

Tota I<br />

D. F. s.s. 14.s.<br />

3 164377<br />

54792<br />

36 3\17713<br />

94%6<br />

39 3582090<br />

t:<br />

P.<br />

0,577<br />

NS<br />

TABLE 6On, ileRì{ NOTOCHOnn Rn¡R.lH.rEctotii C.<br />

. .. .... .. .,<br />

C<strong>at</strong>egory Numbe¡ llean .S.0. S.D.l,.l.<br />

Controls<br />

Ilorma I Expt I s.<br />

Mye I osch ls i s<br />

Itlyelodysplas ia<br />

14<br />

3350.1<br />

10<br />

3\27.o<br />

It<br />

3412.2<br />

5<br />

3573.2<br />

Toral 4o 341\.9<br />

TABLE 6od" AüALysts oF vARtANcE (NorocHoRD)<br />

1250.5<br />

334.2<br />

1173 .9 371.2<br />

1061 .7<br />

320.1<br />

1122.5<br />

502 .0<br />

1123.5<br />

177.6<br />

REGION C<br />

D. F. s.s. t'f. s . F.<br />

Between<br />

tlithin<br />

3<br />

36<br />

1855 t<br />

4904098<br />

6184<br />

136225<br />

0. 045 N.S.<br />

Totâ I<br />

39<br />

\9226t+9<br />

As <strong>the</strong> neural t i s s ue/notochord r<strong>at</strong>ios thus reflect <strong>the</strong> rel<strong>at</strong>ive<br />

volume <strong>of</strong> neural tissue in each regîon, <strong>the</strong> r<strong>at</strong>ios were <strong>the</strong>n.suU;ected<br />

to analys¡s. An omnibus (Anova) analysis <strong>of</strong> variance showed significant<br />

dlfferences (p . O.g) between <strong>the</strong> four c<strong>at</strong>egor¡es (Tables 62 and 65).<br />

Fínally, multiple T - tests <strong>of</strong> all possíble pairs were performed<br />

(Tables 63 arld 66).<br />

The Bonferroni procedure to partition alpha was<br />

used, to mainta<strong>ln</strong> <strong>the</strong> error r<strong>at</strong>e near <strong>the</strong> level employed in <strong>the</strong> Omnibus<br />

test (qq<br />

^â o.ot ).<br />

llelcþrs procedure was appl led as a conservarîve


adjustment for nominal alpha level <strong>ln</strong> <strong>the</strong> presence <strong>of</strong> heterogeneity <strong>of</strong><br />

varlance (as revealed by Bartlettrs test) and unequal numbers în <strong>the</strong><br />

four câtegor ies.


321<br />

TABLE 61., .NEURAL TISSUE/NOTOCHORD RATIOS IN REGION,C<br />

C<strong>at</strong>egory Nurnbe¡. ... Mean . .... ..s. D, s. D.t'|.<br />

Controts t4 7.g't\29 1,7345g0<br />

0.4635861<br />

Normal Exptls. t0 6.gtgooo 1.767074 0.5587979<br />

lilyetoschisls 11 5.510909 f:g66g60 0.5628795<br />

l.lyelodysplasia 5 1,907999 O,31g1{;;z o.144176<br />

Tot<strong>at</strong> 40 6.206750 z.hgoos3 0.3937120<br />

TABLE 62. ANALYSIs oF VARIANCE (RATIos) REGIoN c<br />

D. F. s.s. 1.1 . s - F.<br />

Between<br />

lr¡ rh in<br />

3<br />

36<br />

1 39.340<br />

102.474<br />

\6.\\7<br />

2.8\7<br />

16.317 < 0.05<br />

Tota I<br />

39<br />

241.814<br />

BARTLETTIS TEST FOR REGION C<br />

Chi qq.<br />

D. F.<br />

P<br />

TABLE 6<br />

C<strong>at</strong>egor i es<br />

= 9.25\<br />

=3<br />

< 0.10<br />

I'{ULTIPLE T- TS RAT I<br />

t<br />

G ION C<br />

D; F.<br />

Controls/Normal Expt¡ s. r.419<br />

Contro I s/l'lye losch i s i s 3,209<br />

Con t rol s/Mye I odyspl as i a 12.279<br />

Normal Exptls./t'tyeloschísis 1,649<br />

Normal Exp s. /Myelodysplas ia 8.502<br />

Ìlyeloschlsís/l.tyelodysplas i a 6.1g1<br />

19<br />

21<br />

15<br />

r9<br />

t0<br />

1t<br />

N.S.<br />

P < 0.0,|<br />

P < 0.01<br />

N.S.<br />

P < 0.01<br />

P < 0.01


322<br />

TABLE .64. ¡leunn|ilssue/norocro*o *ot'or''* REGtoN 0..<br />

C<strong>at</strong>egory Number Hean . S. D. s . D. i,f.<br />

Cont rol s<br />

Normal Expt I s.<br />

Hye I os ch 1s i s<br />

l4yelodysplas îa<br />

Tota ¡<br />

TABLE 65, ANALYSIS<br />

t4<br />

t0<br />

t1<br />

5<br />

4o<br />

OF VARIANCE<br />

6.979286 1.704087<br />

5,732000 1.2r5180<br />

5.51\545 1.599928<br />

2.593999 0. 478989<br />

5.713999 1.959256<br />

(RATros) REGtoN D<br />

0,4554363<br />

0.3842739<br />

0.4823966<br />

0.2142107<br />

0.3097856<br />

D. F. s.s. r't. s . F.<br />

P.<br />

Between<br />

3<br />

72.152<br />

2\.051<br />

1r.164 < 0.05<br />

l'/i th i n<br />

36<br />

77.556<br />

2.154<br />

Tota I<br />

39<br />

149.709<br />

BARTLETTIS TEST<br />

chí ôq.<br />

D. F.<br />

P<br />

FOR REGION D<br />

= 6.3\8<br />

-)<br />

< 0.10<br />

C<strong>at</strong>egor ies<br />

Control s/Norma I Exp s.<br />

2.o97<br />

22<br />

- N.S.<br />

Control s/Myel osch i s i s<br />

2.218<br />

22<br />

N.S.<br />

Cont ro I s,/Mye I odysp ì as i a<br />

8.779<br />

t7<br />

p < 0.01<br />

Normal Exptl s. /Myeloschisis<br />

o.356<br />

l8<br />

N.S.<br />

Norma l Expt I s. /l'lye lodysp I as i a<br />

7.161<br />

13<br />

P < 0.01<br />

Ìlye losch i s i s,/l'lye I odysp I as i a<br />

5.570<br />

13<br />

P < 0,01


323<br />

Apart f.rom <strong>the</strong> sîgnîficant difference between embryos with<br />

myeloschisìs and <strong>the</strong> controls in Reglon C, <strong>the</strong>re is little distinction<br />

between <strong>the</strong> control embryos and <strong>the</strong> exper¡mental embryos with myeloschlsls<br />

or wîth no defects. This suggests th<strong>at</strong> neural rrovergrowthrt is not<br />

an essential component <strong>of</strong> myeloschlsis between Stages l6 and 20.<br />

There are however slgniflcant differences in neural t¡ssue/notochord<br />

r<strong>at</strong>los between embryos wìth myelodysplasia and each <strong>of</strong> <strong>the</strong> o<strong>the</strong>r<br />

three c<strong>at</strong>egories in both Regions C and D. Myelodysplasia ls <strong>the</strong>refore<br />

characterized by reduction <strong>ln</strong> <strong>the</strong> volume <strong>of</strong> neural tlssue.


Dlscusst0N<br />

324


t25<br />

7. Dlscusst0N<br />

1'/i th progressive control <strong>of</strong> infectious diseasesi congenitar defects<br />

have become an inportant cause <strong>of</strong> ¡nfant mortal ity and morbidity. Open<br />

defects <strong>of</strong> <strong>the</strong> central nervous system form a signifrcant proportion <strong>of</strong><br />

<strong>the</strong> major malform<strong>at</strong>ions. Anencephaly ls uniformly f<strong>at</strong>al, but <strong>the</strong> effect<br />

<strong>of</strong> spina bifîda varles ¡¡îth <strong>the</strong> exrent and level <strong>of</strong> <strong>the</strong> cord lesion (Barson,<br />

1970).<br />

<strong>ln</strong> an êttempt to <strong>ln</strong>vestlg<strong>at</strong>e <strong>the</strong> embryogenesis <strong>of</strong> anencephaly and<br />

sp<strong>ln</strong>a bifida, ên exper¡mental method has been developed for produc<strong>ln</strong>g<br />

open defects <strong>of</strong> <strong>the</strong> brain and sp<strong>ln</strong>al cord in <strong>the</strong> chlck embryo, by a simple<br />

physlcal procedure.<br />

The dlscussion ls llmlted to cons¡der<strong>at</strong>ion <strong>of</strong> <strong>the</strong> malform<strong>at</strong>ions<br />

obtained by thls technlc - open neural lesions, skeletal defects <strong>of</strong> <strong>the</strong><br />

vertebra¡ column, and a range <strong>of</strong> associ<strong>at</strong>ed non-neural malform<strong>at</strong>ions.<br />

Anterîor spina bifida and neuro-enteric connectlons, hydrocephalus and<br />

<strong>the</strong> Arnotd-chlari nalform<strong>at</strong>ion, syringomyelia and myelocystocele were not<br />

diagnosed in <strong>the</strong> experimental enbryos, and so êre not consîdered in this<br />

d i scuss íon.<br />

A wlde renge <strong>of</strong> neural malform<strong>at</strong>íons has been produced in domestic<br />

and fabor<strong>at</strong>gly animals by a plethora <strong>of</strong> agents - vitamin and míneral<br />

deflciences, stêrv<strong>at</strong>¡on, hypervítaminosis A, ionizing radî<strong>at</strong>ions, infections,<br />

hypoxla, hypo<strong>the</strong>rmia, hyper<strong>the</strong>rrnía, and many drugs, dyes, hormones and<br />

chemîcal n<strong>at</strong>eriêls (Kalter, l!68; Shepard, 1976; persaud, 1977).<br />

0pen neural defects have been produced in <strong>the</strong> chick embryo by x-rays,<br />

ultraviolet light, ultrasound, víruses, hypoxla, hypercarbía, and a variety<br />

<strong>of</strong> drugs, hornones and chemicals (see Section 2.3.2 for references).


326<br />

Spontaneous neural defects have been reported in mice, r<strong>at</strong>s, gu<strong>ln</strong>ea<br />

plgs, rabbits, c<strong>at</strong>s, dogs, pigs, cows, horses, sheepr. go<strong>at</strong>s and non-human<br />

pr<strong>ln</strong><strong>at</strong>es, with occasional reports in o<strong>the</strong>r animals (Kalter, t96g). By far<br />

<strong>the</strong> most extensive investig<strong>at</strong>ions have beèn performed <strong>ln</strong> mice, where armost<br />

a hundred genes can be impr ic<strong>at</strong>ed in neurar marform<strong>at</strong>ion syndromes (sidman<br />

et al ., 1965) .<br />

<strong>ln</strong> <strong>the</strong> present study st<strong>at</strong>istical anarysis was performed for <strong>the</strong> overa<br />

malform<strong>at</strong>lon and mortår ity resurts after windowinq <strong>at</strong> 14,26, and lg hours,<br />

and fol low<strong>ln</strong>g remova I <strong>of</strong> <strong>the</strong> <strong>ln</strong>troduced alr space <strong>at</strong> varrous <strong>ln</strong>tervals after<br />

w<strong>ln</strong>dow<strong>ln</strong>g <strong>at</strong> 26 hours. Anaìysrs showed th<strong>at</strong> windowíng is highry ter<strong>at</strong>ogen¡c,<br />

w¡th ¡ts maxlmun effect <strong>at</strong> <strong>the</strong> earl rest stages. tn embryos windowed <strong>at</strong> 14,<br />

26 and 38 hours,<strong>the</strong> 14 hour group showed a high early mortal ity, while <strong>the</strong><br />

26 hour group showed a high <strong>ln</strong>cldence <strong>of</strong> neural mêlform<strong>at</strong>lons.<br />

After w<strong>ln</strong>dowing <strong>at</strong> 26 hours, <strong>the</strong> mortar ity increased steadi ry when<br />

embryos were recovered <strong>at</strong> progesslvely longer perlods <strong>of</strong> incub<strong>at</strong>ion.<br />

0bl iter<strong>at</strong>ion <strong>of</strong> <strong>the</strong> rntroduced aîr space, however, substantia y reduced<br />

<strong>the</strong> ter<strong>at</strong>ogenic effect <strong>of</strong> windowing when performed immedi<strong>at</strong>ely.<br />

<strong>ln</strong>dívidual malform<strong>at</strong>ions observed <strong>at</strong> 3, 5, and 12 days were not<br />

analysed st<strong>at</strong>lst¡cally, because <strong>the</strong> hí9h rncidence <strong>of</strong> earty and r<strong>at</strong>er<br />

de<strong>at</strong>hs reduces <strong>the</strong> value <strong>of</strong> any such analysis.<br />

Despite <strong>the</strong> high mortal ity <strong>of</strong> windowing in.<strong>the</strong> first lg hoúrs, it<br />

is clear th<strong>at</strong> with prolonged culture <strong>of</strong> <strong>the</strong> survivîng embryos <strong>the</strong> range<br />

<strong>of</strong> malform<strong>at</strong>ions increases. Rump and rimb defects were not apparent<br />

<strong>at</strong> three daysrand ectopia víscerum wâs not seen ât five days.<br />

<strong>ln</strong> <strong>the</strong> major experiment to investig<strong>at</strong>e <strong>the</strong> development <strong>of</strong> open<br />

hêurll dèfêets after w<strong>ln</strong>dowing <strong>at</strong> 26 - 30 hours, 4t! embryos were used, <strong>of</strong><br />

whlch 90 were selected for serl.al section<strong>ln</strong>g.


327<br />

C¡osure <strong>of</strong> <strong>the</strong> anterior neuropore was completed by Stâge lJ in <strong>the</strong><br />

control emhryos, apart fiom one Stage l/ embryo with an open anterior<br />

neuropore (regarded as an open bra<strong>ln</strong> defect by thls Stage). Several<br />

experimental embryos after Stage 12, however, showed open anter¡or neuropores<br />

(regarded as an open brain defects)<strong>at</strong> <strong>the</strong> Stages lmmedi<strong>at</strong>ely following<br />

Stage 12, provlding evidence <strong>of</strong> non-closure r<strong>at</strong>her than closure and<br />

reopen<strong>ln</strong>g <strong>of</strong> <strong>the</strong> bra<strong>ln</strong>. These defects were not seen <strong>ln</strong> large enough numbers<br />

to allow detai led hîstologlcal study. The appearance <strong>of</strong> open braÌn defects<br />

was very similar <strong>at</strong> 3 days and <strong>at</strong> 12 days, and closely resembles <strong>the</strong> welli<br />

preserved.human exencephal lc embryo l l lusrr<strong>at</strong>ed by Hunter (,|934-35).<br />

Closure <strong>of</strong> <strong>the</strong> rhombold sinus occurred <strong>at</strong> Stage 15-f6 in both experlmental<br />

and control groups. A trlangular rhombold s<strong>ln</strong>us, however, was<br />

seen only in exper<strong>ln</strong>ental embryos <strong>of</strong> Stages 11-16. Open cord defects<br />

first appeared <strong>at</strong> Stage 13, and were seen <strong>at</strong> all Stages after this, agaîn<br />

suggesting th<strong>at</strong> <strong>the</strong>y arose by non-cloSure r<strong>at</strong>her.than by reopening <strong>of</strong> <strong>the</strong><br />

closed neural tube.<br />

0n compar<strong>ln</strong>g <strong>the</strong> drawings <strong>of</strong> whole embryos with <strong>the</strong>ir subsequent<br />

histologlcal appearânce, It became apparent th<strong>at</strong> a tr¡angular rhomboid<br />

s<strong>ln</strong>us is <strong>the</strong> precursor <strong>of</strong> myeloschisis. The fact th<strong>at</strong> <strong>the</strong> development <strong>of</strong><br />

rryeloschlsis can be predícted from <strong>the</strong> shape <strong>of</strong> <strong>the</strong> rhomboid sînus before<br />

<strong>the</strong> perlod <strong>of</strong> normal closure is strong evidence th<strong>at</strong> myeloschîsís arîses<br />

by non-cl osure.<br />

Skeletal sta<strong>ln</strong>ing <strong>of</strong> l1-12 day embryos revealed an increasing<br />

sever¡ty <strong>of</strong> axial defects from cervlcal to caudal level's. Spina bifîda<br />

occulta was seen mainly <strong>ln</strong> <strong>the</strong> cervical r.egion. Spina blflda manifesta<br />

occurred (wlth open cord defects) from <strong>the</strong> lower thoracic to <strong>the</strong> upper


328<br />

caudal regions. rrregurar or dereted vertebrae were a¡most all roc<strong>at</strong>ed<br />

in <strong>the</strong> caudal region (rumplessness).<br />

Spontaneous rump defects were seen in ll <strong>of</strong> <strong>the</strong> 62 control embryos,<br />

and were much <strong>the</strong> cornmones t spontaneous defects observed <strong>ln</strong> <strong>the</strong>se exper_<br />

lmen ts .<br />

Rumplessness nây occur <strong>ln</strong> fowls as a dominant, recessive, or sporadic<br />

character (Landauer and Dunn, '|925; Dunn and Landauer, ,|934; Landauer, 1945);<br />

<strong>the</strong> enbryogenesis <strong>of</strong> each type is different (Zwill<strong>ln</strong>g, 1942i 19\Ð.<br />

Experirnental ly, rumpressness has been produced by injection <strong>of</strong> insul-in<br />

ín ot¡o (Landaue r and Bllss, '|946), and by vlbr<strong>at</strong>ion <strong>of</strong> unopened eggs<br />

(Landauer and Baumann, l!41). <strong>ln</strong> both cases <strong>the</strong> <strong>ln</strong>cidence <strong>of</strong> rump defects<br />

varled with <strong>the</strong> genetíc background <strong>of</strong> <strong>the</strong> frock and wrth <strong>the</strong> t¡me <strong>of</strong> year.<br />

<strong>ln</strong> <strong>the</strong> present exper¡ments rvíbr<strong>at</strong>lon <strong>of</strong> unopened eggs was not found to be<br />

signlficantly ter<strong>at</strong>ogeníc (for <strong>the</strong> smal number <strong>of</strong> eggs used) when compared<br />

to windowing. Although seasonal vari<strong>at</strong>íon was not specif ica.l ly tested,<br />

again no significant trend courd be detected when compa red to windowing.<br />

Because <strong>of</strong> continued embryonic Arowth, open cord defects were found<br />

<strong>at</strong> both somite and post-somite levels in Stage l3_16 chick embryos, but<br />

only <strong>at</strong> somite. levels by Stages l/-20.<br />

The posterior neuropore closes êt <strong>the</strong> 20-21 somite stage,<strong>at</strong> a level<br />

th<strong>at</strong> l<strong>at</strong>er lies opposite son't tes 27/29 after addition <strong>of</strong> a fur<strong>the</strong>r 6 somites<br />

(Hami I ton, 1952). As <strong>the</strong> first four permanent som¡tes contrlbute to <strong>the</strong><br />

form<strong>at</strong>ion <strong>of</strong> <strong>the</strong> occípitar regíon, <strong>the</strong> poster¡or neuropore thus coincides<br />

with a future spinal levet <strong>of</strong> vertebrae 23/24 (in <strong>the</strong> lumbar reglon). Uhen<br />

<strong>the</strong> distr¡bution <strong>of</strong> open neural defects <strong>ln</strong> lZ hour embryos was plotted,


329<br />

<strong>the</strong> mid-po<strong>ln</strong>ts <strong>of</strong> <strong>the</strong> defects were found to lie essentially between<br />

somltes 21 and.31, correspondi.ng to future vertebral levels <strong>of</strong> T.4 to S.2.<br />

<strong>ln</strong> <strong>the</strong> 12 day expêrimental embryos rÌrost lesions <strong>of</strong> spina biflda manifesta<br />

were <strong>ln</strong>deed centered <strong>at</strong> <strong>the</strong> lumbar r.egion. Those ly<strong>ln</strong>g <strong>at</strong> more caudal levels<br />

may have been nye I odysp I as ias , r<strong>at</strong>her than myeloschisls, though <strong>the</strong> two<br />

defects were dlfficul t to distinguish.<br />

The less serious defects <strong>of</strong> spina bifida occulta in 12 day embryos,<br />

were mainly locâted in <strong>the</strong> cervical and upper thoracic regions, and showed<br />

very llttle overlap w¡th sp¡na blflda manifesta.<br />

A slmllar d¡stríbutlon <strong>of</strong> lesions emerges from <strong>the</strong> study <strong>of</strong> human<br />

dysraphism. 0f 601 dysraphic infants admitted to hospital and examined<br />

by radlology and necropsy, skeletal defects lay mainly în <strong>the</strong> lumbar and<br />

sacral reglons. The low incidence <strong>of</strong> cranial and uppercervical defects<br />

was probably due to abortîons and stiltbirths caused by associ<strong>at</strong>ed anencephaly.<br />

Skeletal defects <strong>at</strong> <strong>the</strong> cervico-thorac¡c and lumbo-sacral areas<br />

were quite local ized, but bony lesions ¡n <strong>the</strong> thoraco-lumbar regîon and<br />

those involving anencephaìy were more extensive. This suggest th<strong>at</strong> <strong>the</strong>re<br />

are two types <strong>of</strong> dysraphic lesions in man - major defects (anencephaly and<br />

thoraco-lumbar. spína bifida) and more minor defects in o<strong>the</strong>r regions (Barson,<br />

1970') .<br />

- Rump defeòts observed in <strong>the</strong> chick embryos may be compared to sacral<br />

agenesîs in man, which varies in severity from loss <strong>of</strong> coccygeal sêgments<br />

to partíal reductîon <strong>of</strong> <strong>the</strong>.sacrum or even absence <strong>of</strong> all sacral and lumbar<br />

vertebrae. Extensîve sacral agenesis may be accompanied by neurological<br />

involvement and anal or genito-ur<strong>ln</strong>ary defects (Blumel et al., '|959; Russel I<br />

and Altken, 1963). ÌJhereês rumplessness is one <strong>of</strong> <strong>the</strong> commones t spontaneous


330<br />

defects seen <strong>ln</strong> fowls, human sacral agenesis is rare. This may be<br />

because phylogènetlc reductlon <strong>of</strong> caudal segments, already evident in<br />

chlckens, has been carried fur<strong>the</strong>r in <strong>the</strong> hur¡an sprne (Hughes and Freeman,<br />

19741 .<br />

A revlew <strong>of</strong> <strong>the</strong> histological differences between experiment<strong>at</strong> and<br />

control embryos was complîc<strong>at</strong>ed by shr<strong>ln</strong>kage <strong>of</strong> ,or" embryos during pro_<br />

cess<strong>ln</strong>g, producing sp!itt<strong>ln</strong>g <strong>of</strong> <strong>the</strong> neural tube ro<strong>of</strong> <strong>ln</strong> older embryos,<br />

and wide separ<strong>at</strong>ion <strong>of</strong> notochord, somites and neurar trssue rn earry embryos.<br />

These art,¡ facts could probably be avoided by using dloxane for processing._<br />

Examin<strong>at</strong>ion <strong>of</strong> <strong>the</strong> control emb ryos by serîal sectlons revealed a co_<br />

ordin<strong>at</strong>ed sequence <strong>of</strong> changes in chorda-mesoderm and neural tissue during<br />

¡eufol<strong>at</strong>ion, though <strong>the</strong> description is st<strong>at</strong>¡c r<strong>at</strong>her than dynamic.<br />

Duríng Stages l0-12 <strong>at</strong> <strong>the</strong> posterior rhombold sinus, neural pl<strong>at</strong>e<br />

dlfferenti<strong>at</strong>ed ín <strong>the</strong> region <strong>of</strong> Hensenrs node and <strong>the</strong> neural folds were<br />

fl<strong>at</strong>tened or elev<strong>at</strong>ed, while <strong>the</strong> chorda-mesoderm was fused l¡to an undiffer_<br />

entl<strong>at</strong>ed cell nass. At <strong>the</strong> anterior rhomboíd sfnus <strong>the</strong> neurar fords showed<br />

fur<strong>the</strong>r elev<strong>at</strong>íon, and accessory canars were present ín <strong>the</strong> t<strong>at</strong>-bud m<strong>at</strong>eriar;<br />

The notochord was estabr ished and somitic mesoderm became separ<strong>at</strong>ed, though<br />

not segmented. lmmedi<strong>at</strong>ely above <strong>the</strong> rhombold sinus <strong>the</strong> mesoderm showed<br />

separ<strong>at</strong>ion intå club-shaped protosom¡tes, while <strong>the</strong> neural pl<strong>at</strong>e was in_<br />

vertèdr. closing, or crosed. cranially <strong>the</strong> brain was crosing or irosed.<br />

During stages r3-20,Hensenrs node {ån¿ r"t.. <strong>the</strong> primitive streak)<br />

gave bray to a tail-bud by Stage 16, from which <strong>the</strong> caudal regíon developed,<br />

The rhomboíd sinus was crosed by stages l!-r6, but neurar m<strong>at</strong>eriar from <strong>the</strong><br />

ta¡ l-bud contributed ro <strong>the</strong> sp¡nal cord <strong>of</strong> <strong>the</strong> tail until Stages 1!_20.<br />

l'llth <strong>the</strong> onset <strong>of</strong> neurul<strong>at</strong>lon, thickening, elev<strong>at</strong>ion, folding, and


331<br />

'c¡osure <strong>of</strong> <strong>the</strong> neural folds were closely integr<strong>at</strong>ed with form<strong>at</strong>ion <strong>of</strong> <strong>the</strong><br />

notochordr and <strong>the</strong> developnent <strong>of</strong> n<strong>at</strong>ure somites from undifferentl<strong>at</strong>ed<br />

m<strong>at</strong>er¡al <strong>of</strong> <strong>the</strong> streak and node, and l<strong>at</strong>er <strong>the</strong> tail-bud.<br />

<strong>ln</strong> <strong>the</strong> experlmental embryos <strong>the</strong> development <strong>of</strong> <strong>ln</strong>yeloschîsis was<br />

preceded by everslon <strong>of</strong> <strong>the</strong> neural folds <strong>at</strong> <strong>the</strong> rhomboid sinus in<br />

serial sections, producî.ng a trlangular shape on examining <strong>the</strong> whole embryo.<br />

<strong>ln</strong> <strong>the</strong>'earl iest myeloschisis leslons <strong>the</strong> rhomboid sinus was s.tlll open.<br />

Exan<strong>ln</strong><strong>at</strong>ion <strong>of</strong> <strong>the</strong> serlal sect¡ons showed th<strong>at</strong> myeloschlsis consisted <strong>of</strong><br />

an open defect <strong>of</strong> <strong>the</strong> lower part <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e m<strong>at</strong>erial, extending<br />

caudally to involve <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> ta¡l bud m<strong>at</strong>erlal. <strong>ln</strong> older<br />

embryos an appêrently normal neural tube formed <strong>at</strong> a more caudal level.<br />

Establ ished myeloschisis lesions on hlstology showed a fl<strong>at</strong> surface<br />

plaque (continuous with neural pl<strong>at</strong>e), overlyíng neural m<strong>at</strong>erîal containing<br />

accessory canals (derived from <strong>the</strong> têíl-bud). The two sources <strong>of</strong> neural<br />

m<strong>at</strong>erial were clearly separ<strong>at</strong>ed,.wíth dîfferent orient<strong>at</strong>ion <strong>of</strong> <strong>the</strong>ir constituent<br />

cells. The majority <strong>of</strong> mitotîc figures were seen <strong>at</strong> <strong>the</strong> luminal<br />

surface <strong>of</strong> <strong>the</strong> closed neural tube, and along <strong>the</strong> dorsal surface <strong>of</strong> <strong>the</strong><br />

exposed plaque. The everted neural pl<strong>at</strong>e showed smooth continulty<br />

wi th adjacent .ectoderm.<br />

Neural crest cells were seen <strong>at</strong> <strong>the</strong> margin <strong>of</strong> most myeloschîsis lesions,<br />

and adjacent structures were wel I deveìoped. The notochord was uniformly<br />

normal <strong>ln</strong> appeârênce, but wldely separ<strong>at</strong>ed from neural tlssue <strong>at</strong> <strong>the</strong><br />

cranlal end <strong>of</strong> most myeloschisis lesions after Stage ,l6. The somîtes<br />

appeared normal , and <strong>the</strong> impressíon <strong>of</strong> separ<strong>at</strong>ion <strong>of</strong> somites from affected<br />

areas <strong>of</strong> neural tube wâs not confirmed quantít<strong>at</strong>ively.<br />

I'leasurements <strong>of</strong> neural tlssue/notochord r<strong>at</strong>ios provided no evidence<br />

<strong>of</strong> local overgrowthrr <strong>of</strong> neural tlssue, which could <strong>the</strong>refore not be


332<br />

lrnplic<strong>at</strong>ed in <strong>the</strong> p<strong>at</strong>hogenesls <strong>of</strong> nryeloschlsis. lt has to be concluded<br />

th<strong>at</strong> myeloschisis în <strong>the</strong> present series <strong>of</strong> chick embryos tre<strong>at</strong>ed by<br />

w<strong>ln</strong>dowi.ng .arises by simple non-closure <strong>of</strong> <strong>the</strong> neural folds, representing<br />

a fai I ure <strong>of</strong> neurul<strong>at</strong>ion.<br />

The development <strong>of</strong> rrúélódvsolasia was not preceded by any characterístic<br />

shape <strong>of</strong> <strong>the</strong> rhor¡bo ¡ d sînus, and did not occui befor. Stage 16. The neural<br />

canal could not be traced ilrectly înto <strong>the</strong> leslon, and <strong>the</strong>re was no<br />

separ<strong>at</strong>¡on ¡nto neural pl<strong>at</strong>e and tai l-bud m<strong>at</strong>er¡als. l',lyelodysplasia dld<br />

not coexist wlth an open rhombold sinus, and formed an lrregular open<br />

defect in whole embryos <strong>at</strong> /2 hours.<br />

<strong>ln</strong> serlal sections<strong>of</strong> myelodysplasia <strong>the</strong> neural tube <strong>at</strong> <strong>the</strong> upper<br />

end <strong>of</strong> <strong>the</strong> lesion was triangular (due to reduced neural pl<strong>at</strong>e m<strong>at</strong>erial),<br />

giving way.to a narrowly-everted or f l<strong>at</strong> plague(derived from tail-bud<br />

m<strong>at</strong>erial, and partly covered by ectoderm). Caudally, <strong>the</strong>re wês an<br />

apparently normal neural tube (derived from tail-bud m<strong>at</strong>erlal), or a<br />

disrupted region forming diplomyel ia or amyel ia. The myelodysplasia lesions<br />

were partly covered by ectoderm, and nowhere so smoothly contínuous with<br />

ectoderm as <strong>the</strong> myeloschisis lesions. l'lîtoses were not restricted to<br />

<strong>the</strong> surface <strong>of</strong> <strong>the</strong> plague.<br />

The notdchord was uniformly ¡n contact with neural tissue, except<br />

in one embryo th<strong>at</strong> showed a combin<strong>at</strong>íon <strong>of</strong> myeloschisis and myelodysplasia.<br />

Somites în <strong>the</strong> area <strong>of</strong> myelodysplasia were reduced in volume, and <strong>of</strong>ten<br />

reduced in densityrdue to a loose arrangement <strong>of</strong> cells suggesting edema.<br />

<strong>ln</strong> some areas blood vessels were dfl<strong>at</strong>ed., with hemorrhages into <strong>the</strong> local<br />

mesoderm. l'lhere neural tissue was very reduced, <strong>the</strong> somites fused dorsal ly<br />

<strong>ln</strong>to a s<strong>ln</strong>gle mldline mass. All myelodysplasia lesions showed reduction <strong>of</strong><br />

neural volume, both on lmpressidn and by measurement.


333<br />

. These findings s.ugges r th<strong>at</strong> myelodysplasia does not ar¡se by simple<br />

non-closure <strong>of</strong> <strong>the</strong> neural folds, but develops from <strong>the</strong> tail-bud m<strong>at</strong>eriar<br />

after St¿ge 15, in <strong>the</strong> absence <strong>of</strong> neural pl<strong>at</strong>e m<strong>at</strong>erlal.<br />

Histologically, deveropment <strong>of</strong> <strong>the</strong> rhombic ro<strong>of</strong> showed no difference<br />

<strong>ln</strong> enbryos wi th and wÌthout neurar defects. The choroid prexuses did not<br />

âppear unt¡l Stage rB in ei<strong>the</strong>r control or experîmental embryo, after <strong>the</strong><br />

establ lshment <strong>of</strong> myeloschisis and nryeIodyspIasIa. rn <strong>the</strong>se w<strong>ln</strong>dowed chick<br />

embryos, open neural defects cannot be <strong>at</strong>trlbuted to delayed passage <strong>of</strong><br />

cerebro-sp<strong>ln</strong>al fluld across <strong>the</strong> rhombic ro<strong>of</strong> as suggested by Gardner (r!6r,<br />

1964, 1972).<br />

The role played by <strong>the</strong> ¡14çip¡¡L in neurul<strong>at</strong>ion ls stl I I not clear,<br />

desplte many investig<strong>at</strong>¡ons. Elong<strong>at</strong>ion <strong>of</strong> <strong>the</strong> notochord appears to be<br />

an essential componen t <strong>of</strong> neural pl<strong>at</strong>e form<strong>at</strong>ion (Holtfreter,<br />

1955). Jacobson and Gordon (1976) snowe¿ by cell counts in Tri turus<br />

th<strong>at</strong> <strong>the</strong> extending notochord does not creave through <strong>the</strong> neurar pr<strong>at</strong>e<br />

cells, but dísplaces <strong>the</strong>m anterîorly to contrlbute to <strong>the</strong> future brain.<br />

<strong>ln</strong> several mutant mice such as Danforthrs short taí1, brachyury,<br />

anury and trgncête, open and closed neural defects occur sporadical ly,<br />

but are probab.l y secondary to abnormarities <strong>of</strong> <strong>the</strong> notochord or pr¡m¡tive<br />

streak (Grüneberg, rg63). These mutants show extensive vertebrar defects<br />

<strong>of</strong> <strong>the</strong> sp<strong>ln</strong>e and tail, as well as some vîsceral defects, "rro"i"t"d<br />

*¡th<br />

<strong>the</strong> notochordal malform<strong>at</strong>îons. Thei r neurar defects may represent myerodysplas<br />

ia r<strong>at</strong>her than nryeloschisis.<br />

The slze <strong>of</strong> <strong>the</strong> notochord is reduced in amphibia by tre<strong>at</strong>ment wrth<br />

l¡thlum chlorlde (Lehmann, 1937), and enlarged by treêtmeñt wÍth sodium<br />

thlocyan<strong>at</strong>e (Ranzri and Tan<strong>ln</strong>l, 1939). These changes can be explained by<br />

act¡on <strong>of</strong> <strong>the</strong> postul<strong>at</strong>ed mesodeimal¡z¡ng factor (Tolvonen, l96l; Tolvonen


334<br />

et al. 1961). tríth <strong>the</strong> single exception <strong>of</strong> a severely affected embryo<br />

wlth myelodysplasia (showi.ng loss <strong>of</strong> all structures due to cystic<br />

changes <strong>ln</strong> <strong>the</strong> caudal region), no notochordal abnormal i ties were seen in<br />

<strong>the</strong> present series <strong>of</strong> chick embryos.<br />

Howeve r <strong>the</strong> embryos with establ ished myeloschlsis showed separ<strong>at</strong>ion<br />

<strong>of</strong> <strong>the</strong> notochord from neural tissue <strong>at</strong> <strong>the</strong> cránial end <strong>of</strong> <strong>the</strong> leslon. <strong>ln</strong><br />

<strong>the</strong> looptal I mutant mouse open neural defects are a predom<strong>ln</strong>ant expresslon<br />

<strong>of</strong> <strong>the</strong> gene, and appear to arise by non-closure represent<strong>ln</strong>g a myeloschlsis.<br />

Embryos lllustr<strong>at</strong>ed by Stein and Rudin (t953) sho" separ<strong>at</strong>¡on <strong>of</strong> notochord<br />

from <strong>the</strong> open neural defect <strong>at</strong> 10 days. Dav¡s (1942, 1944) by ,ultraviolet<br />

lrradl<strong>at</strong>ion <strong>of</strong> Stage 7-9 chick embryos produced nryeloschlsls, similar to<br />

<strong>the</strong> defects in <strong>the</strong> present embryos, also associ<strong>at</strong>ed wìth notochordal<br />

separ<strong>at</strong>ion. A similar finding was reported by Ancel (1946-\7,1956), who<br />

suggested th<strong>at</strong> <strong>the</strong> separ<strong>at</strong>¡on arose by incomplete separ<strong>at</strong>ion <strong>of</strong> mesodern<br />

<strong>ln</strong>to somltes <strong>at</strong> <strong>the</strong> end <strong>of</strong> gastrul<strong>at</strong>ion. .<strong>ln</strong> <strong>the</strong>.present embryos, however,<br />

<strong>the</strong> gap was filled by a loose mesenchyme after <strong>the</strong> establ îshment <strong>of</strong> myeloschisis,<br />

r<strong>at</strong>her than by fused somitlc mesoderm before <strong>the</strong> form<strong>at</strong>ion <strong>of</strong><br />

<strong>the</strong> neural' defect.<br />

Notochordal separ<strong>at</strong>ion from <strong>the</strong> neural tube occurs as a normal<br />

developmental process upon somíte díspersal and migr<strong>at</strong>ion <strong>of</strong> sclerotome<br />

cells. Even ôt Stage 10 in <strong>the</strong> present enbryos ¡t was seen <strong>at</strong> tbe<br />

cephal ic end <strong>of</strong> <strong>the</strong> notochord, and by Stage 20 had extended into <strong>the</strong><br />

sornite region. Separ<strong>at</strong>íon,rjid not occur in <strong>the</strong> early stages <strong>of</strong> myeloschisls,<br />

and so appears to follow r<strong>at</strong>her than cêuse non-closure. This<br />

suggests a reduced adhesion between notochord and neural pl<strong>at</strong>e, but<br />

it mlght reflect <strong>the</strong> fallure <strong>of</strong> some essent¡al inductlve process êt<br />

an earl lei srase r¡jllán (1968).


335<br />

Lendon (1968, 1975) and notos (1976) both described fiuid<br />

accumul<strong>at</strong>lon deep to <strong>the</strong> neu¡:al plaque, which <strong>the</strong>y regarded as a sequel <strong>of</strong><br />

separ<strong>at</strong>¡on, leadîng to <strong>the</strong> l<strong>at</strong>er elev<strong>at</strong>ion <strong>of</strong> <strong>the</strong> plaque and stretch<strong>ln</strong>g<br />

<strong>of</strong> <strong>the</strong> spinal nerves.<br />

Some indlc<strong>at</strong>lon <strong>of</strong> <strong>the</strong> <strong>ln</strong>fluence <strong>of</strong> <strong>the</strong> notochord on early neurogenesi's<br />

ls provided by studîes <strong>of</strong> <strong>the</strong> rrovêrgrowthlr phenomenon. Bergquist<br />

(1959) and rãlán (1965) found .th<strong>at</strong> remova I <strong>of</strong> <strong>the</strong> fourth neuromere <strong>of</strong> <strong>the</strong><br />

chlck bra<strong>ln</strong> produced marked overgrowth <strong>of</strong> local bra<strong>ln</strong> tissue only when<br />

<strong>the</strong> underly<strong>ln</strong>g notochord was removed or damaged by <strong>the</strong> oper<strong>at</strong>lon. They<br />

suggested th<strong>at</strong> an ¡ntact notochord may exert some controll îng influence<br />

over <strong>the</strong> ôdjacent neural tube. Refinement <strong>of</strong> <strong>the</strong> technic' to allow<br />

separ<strong>at</strong>lon or remova I <strong>of</strong> <strong>the</strong> tip <strong>of</strong> <strong>the</strong> notochord and replacement <strong>of</strong> <strong>the</strong><br />

overlying rhombencephalon <strong>at</strong> stðge 11-12 (Burda, 1968), also produced<br />

local overgrowth <strong>of</strong> brain tissue. Thís was accompanied by increased cell<br />

dlvision and <strong>the</strong> distribution <strong>of</strong> mitotic figures throughout_ <strong>the</strong> bra<strong>ln</strong><br />

wall. Autoradlography showed th<strong>at</strong> both experimental embryos with overgrovrth<br />

and normal controls lost <strong>the</strong> abilîty to <strong>ln</strong>corpor<strong>at</strong>e H3 - thymldîne<br />

by <strong>the</strong> fourth day'mafking <strong>the</strong> onset <strong>of</strong> differenti<strong>at</strong>ion (Bsrda-l,lilson, 19/1)'<br />

Fur<strong>the</strong>rmore <strong>the</strong> ânterior notochord'efter experimental . s.epar<strong>at</strong>îon from<br />

<strong>the</strong> rhombencephalon showed earlier vacuol<strong>at</strong>ion, nuclear pycnosls , and<br />

accumul<strong>at</strong>Íon <strong>of</strong> P.A.S. - posl tive m<strong>at</strong>erial than <strong>the</strong> notochord oí control<br />

emb ryos .<br />

Exam<strong>ln</strong><strong>at</strong>lon <strong>of</strong> somitic mesoderm in control embryos <strong>of</strong> <strong>the</strong> present<br />

serles showed close contact <strong>of</strong> -g.j-!gg with <strong>the</strong> neural tube, whereas<br />

<strong>the</strong> unsegmented and fused mesoderm <strong>of</strong> <strong>the</strong> rhomboid s<strong>ln</strong>us was general ly<br />

separ<strong>at</strong>ed from <strong>the</strong> neural pl<strong>at</strong>e by a smal I. gap. Somites had formed down<br />

to <strong>the</strong> t¡p <strong>of</strong> <strong>the</strong> tail by Stage 20.


336<br />

The inpresslon <strong>of</strong> somlte separât¡on in embryos wlth myeloschisis<br />

was not confirned by fur<strong>the</strong>r analysis, as <strong>the</strong> lengths <strong>of</strong> somite separ<strong>at</strong>îon<br />

dld not correspond to <strong>the</strong> revers <strong>of</strong> <strong>the</strong> defects, and extensîve somite<br />

separ<strong>at</strong>ion occurred in control embryos.<br />

<strong>ln</strong> , aaurans (with a bilaminar neural pl<strong>at</strong>e), analysis <strong>of</strong> <strong>the</strong> mech_<br />

anlsm <strong>of</strong> neurul<strong>at</strong>lon revears th<strong>at</strong> as well as'<strong>ln</strong>trinsic forces within <strong>the</strong><br />

neural pl<strong>at</strong>e, folding involves elev<strong>at</strong>ion <strong>of</strong> <strong>the</strong> differentl<strong>at</strong><strong>ln</strong>g somites,<br />

<strong>ln</strong> <strong>the</strong> presence oi tight adhesion between neural pl<strong>at</strong>e and notochord<br />

(Schroeder, 1!/0). Somite elev<strong>at</strong>ion does not appear to be împortant <strong>ln</strong><br />

<strong>the</strong> chick embryo, as disruptron <strong>of</strong> neuroepi<strong>the</strong>r iar mîcrotubures (by corchrcine)<br />

and mlcr<strong>of</strong>llaments (by cytochalasin B) înhiblts or even reverses neurul<strong>at</strong>ion<br />

(Karfunkel , 1972).<br />

<strong>ln</strong> mammals, open neural defects have been produced by m<strong>at</strong>ernal<br />

tre<strong>at</strong>ment wlth varlous agents, încludíng trypan blue <strong>ln</strong> r<strong>at</strong>s (Gillman et<br />

al., 1948; l,/arkany et ai., l95B; Lendon, t96gt 1915; Rokos et al., t97O;<br />

1976| or mice (tJaddington ênd Carrer, 1953; Hamburgh, 1954): and dímethyl<br />

sulfoxlde or high doses <strong>of</strong> vrtamin A in hamsters (Marin-padi a and Ferm,<br />

1965; Marin-Padilla, r966; 1966; Ferm t966). rn each cêse rhe development<br />

<strong>of</strong> <strong>the</strong> neural defects was crosery associ<strong>at</strong>ed with edema, cyst formâtion,<br />

and hemorrhages in local mesoderm. Rokos et al. (,|970) also descríbed<br />

extensive cell de<strong>at</strong>h ín mesoderm, heart, gut and neural pl<strong>at</strong>e.<br />

<strong>ln</strong> embryos recoùered within 48 hours <strong>of</strong> m<strong>at</strong>ernal injection with<br />

vitamin A or dimethyl sulfoxide, accumul<strong>at</strong>ion <strong>of</strong> f .luld and dil<strong>at</strong>ion <strong>of</strong><br />

local s<strong>ln</strong>usoids was observed in unsegmented nesoderm <strong>at</strong> g-10 hours, followed<br />

by necrosis and col lapse <strong>of</strong> somítes after 24 hours (l4arin-padil la and


337<br />

Ferm, 1965; l"larin-Padi r ¡a, r966; 1966). As <strong>the</strong>se mesoctermal changes preceded<br />

<strong>the</strong> development <strong>of</strong> open neuiar defects, <strong>the</strong>y were regarded as <strong>the</strong> cause<br />

<strong>of</strong> neural dys raph.i sn.<br />

The relevance <strong>of</strong> <strong>the</strong>se observ<strong>at</strong>¡ons to <strong>the</strong> production <strong>of</strong> neurar<br />

defects by m<strong>at</strong>ernal <strong>ln</strong>jection <strong>of</strong> trypan blue is complîc<strong>at</strong>ed by agent and<br />

species dlfferences. Trypan.blue êppears to ""t<br />

<strong>ln</strong> r<strong>at</strong>s and rnlce by<br />

Interfering with fetal n.utrition <strong>at</strong> <strong>the</strong> yolk sac (Beck et al., ,l967;<br />

l{llllams et al., 1976), and signlflcant levels <strong>of</strong> <strong>the</strong> dye have not been<br />

detected within <strong>the</strong> embryo (Wadd<strong>ln</strong>gton and Carrer, f953; tji lson et al.,<br />

1963't. Vitamin A, however, appears to cross <strong>the</strong> placentê when given in<br />

hlgh doses (cîroud and I'lartinet. , 1957), and <strong>the</strong> low molecular weight<br />

<strong>of</strong> dimethyl sutfoxide suggests th<strong>at</strong> placental transfer mí9ht occur (Ferm,<br />

1966). A more direct action by trypan brue wîthout prâcentar intervention,<br />

however, has also produced fluid accumul<strong>at</strong>ion, hem<strong>at</strong>omas, and tlssue<br />

damage in amphîbia (Waddíngton and perry, 1956) and chick embryos subjected<br />

to ¡ntravascular injection <strong>at</strong> J days (Kaplan and Johnson, i970) , or<br />

explant<strong>at</strong>ion on <strong>the</strong> f¡rst day (üurherkar, 1960) . rn each câse <strong>the</strong> brunr<br />

<strong>of</strong> <strong>the</strong> damage was borne by mesodermal tissues, wíth less severe involvement<br />

<strong>of</strong> neural tissue. The interpret<strong>at</strong>ion <strong>of</strong> trypan brue actívrty is fur<strong>the</strong>r<br />

conpllc<strong>at</strong>ed by <strong>the</strong> presence <strong>of</strong> various impurities în different commercial<br />

samples, and <strong>the</strong> existence <strong>of</strong> three fractìons withd,n <strong>the</strong> dye (BecÉ and Lroyd,<br />

r963) .<br />

<strong>ln</strong> <strong>the</strong> present experíments' sectíoned embryos with myeroschîsis showed<br />

no abnormal ities <strong>of</strong> notochord or somites, apart from <strong>the</strong> notàchordal<br />

separ<strong>at</strong>ion already discussed. l,lyeloschlsis could not.be regarded as<br />

secondary to somî te defects.


338<br />

Embryos wîth myelodysplasia however, showed changes crosely resembríng<br />

thos e produced by m<strong>at</strong>ernal hypervitaminosîs A or trypan blue <strong>ln</strong> r<strong>at</strong>s - fluid<br />

accumul<strong>at</strong>ion, vascular dll<strong>at</strong>lon, hen<strong>at</strong>omas, and somlte reductions. As a<br />

large number <strong>of</strong> embryos showi.ng cystic changes were not serected for<br />

serial section<strong>ln</strong>g, <strong>the</strong> histologlca¡ descriptions covered embryos showing<br />

<strong>the</strong> smallest nesodermal invorvement. Thrs suggests th<strong>at</strong> mye¡odysprasia,<br />

accompanled by extensive trunk and rump defects, resulted from extenslve<br />

tlssue damage after wîndowing, for rowed by a variabre degree <strong>of</strong> embryonic<br />

rggul<strong>at</strong>ion. Myeloschisîs, by contrast, resulted from a much more selective<br />

actlon, caus<strong>ln</strong>g non-closure <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e but <strong>of</strong>ten no o<strong>the</strong>r defects.<br />

separ<strong>at</strong>ion <strong>of</strong> notochord from establ ished myeloschrsls reslons <strong>ln</strong>dic<strong>at</strong>es<br />

loss <strong>of</strong> adheslon between neurar pl<strong>at</strong>e and notochord, but rs not sufficient<br />

evidence to postul<strong>at</strong>e fâiture <strong>of</strong> neurul<strong>at</strong>ion due to a loss <strong>of</strong> inductive<br />

interactlon.<br />

Form<strong>at</strong>lon <strong>of</strong> <strong>the</strong> avian tail from <strong>the</strong> ta¡l bud was clearly demo_<br />

str<strong>at</strong>ed by Zwill¡n9 (r942) who excised <strong>the</strong> taH-bud åt Stage r2-16 and<br />

obta<strong>ln</strong>ed embryos wlth no tail, which ended àbruptly just posterlor to<br />

<strong>the</strong> h<strong>ln</strong>d l[mbs when <strong>the</strong> entire tall-bud was removed. Zwilling (1942;<br />

1945) also followed <strong>the</strong> embryogenesis <strong>of</strong> dominant and recessive rumplessness.<br />

He found th<strong>at</strong> <strong>the</strong> dominant gene produced extensive celr de<strong>at</strong>h<br />

with<strong>ln</strong> <strong>the</strong> taÍl-bud and tail anlage by <strong>the</strong> Jrd day, whereas recesgíve<br />

rumplesSness arose by masslve necrosls within a formed tall on days<br />

4-5. <strong>ln</strong>vestig<strong>at</strong>ion <strong>of</strong> rnsur in-induced rumplessness showed a varrabre<br />

development, wlthout massrve ce de<strong>at</strong>h but w¡th frequent inversron <strong>of</strong><br />

<strong>the</strong> tail <strong>ln</strong>to <strong>the</strong> hindgut (ourentery) or defects <strong>of</strong> varlous caudal elemenrs<br />

(l4oseley, 1947).


339<br />

Kôplan (1965) and Kaplan and Grabowski (1967,t , afrer tre<strong>at</strong>ment <strong>of</strong><br />

48 hour chiòk embryos wlth trypan blue, observed extensive blisters and<br />

hem<strong>at</strong>omas <strong>of</strong> <strong>the</strong> trunk and rump, associ<strong>at</strong>ed with vascurar dîr<strong>at</strong>ion and<br />

rupture. These changes were fol lowed by rumplessness in older embryos,<br />

and dlrect observ<strong>at</strong>ion through a glass coverslip over <strong>the</strong> shell window<br />

revealed th<strong>at</strong> enbryos th<strong>at</strong> d¡d not form hem<strong>at</strong>omas did not l<strong>at</strong>er shour<br />

rump defects.<br />

The present series <strong>of</strong> wîndowed embryos recovered <strong>at</strong> 12 days were<br />

not subdivlded on <strong>the</strong> basÌs <strong>of</strong> myeroschrsls or myerodysprasra resrons.<br />

It seems reasonable to suppose th<strong>at</strong> embryos with an irregurar neurar<br />

defect and extenslve vertebral .rrregurarlty and deletions showed myerodysplasla,<br />

associ<strong>at</strong>ed with cysts, hemorrhages, and somlte reduct¡on <strong>at</strong><br />

72 hours. However, embryos with regular defects <strong>at</strong> 12 days also showed<br />

rump defects, în splte <strong>of</strong> <strong>the</strong> absence <strong>of</strong> assocl<strong>at</strong>ed mesodermal defects<br />

ât 72 hours. The embryogenesls <strong>of</strong> rump defects after wrndowíng crearry<br />

requi res fur<strong>the</strong>r <strong>ln</strong>vestig<strong>at</strong>ion.<br />

<strong>ln</strong> many stud¡es <strong>of</strong> neural dysraphism, continuity <strong>of</strong> <strong>the</strong> open neural<br />

t¡ssue with adjacent ectoderm has been taken as evídence <strong>of</strong> non-closure<br />

(Glroud and I'lart¡net, 1957; Dékaban, 1g6r. <strong>ln</strong> an investlg<strong>at</strong>îon <strong>of</strong> <strong>the</strong><br />

regul<strong>at</strong>lve abi'l lty <strong>of</strong> ectoderm in <strong>the</strong> early chíck embryo,. Rokos and<br />

Knowles (1976) split open <strong>the</strong> ro<strong>of</strong> <strong>of</strong> <strong>the</strong> neuraì tube dur¡ng <strong>the</strong> thírd<br />

day <strong>of</strong> <strong>ln</strong>cub<strong>at</strong>Íon. This produced an open defect <strong>of</strong> <strong>the</strong> neurar tube, w¡th<br />

close apposîtlon <strong>of</strong> <strong>the</strong>. cut edges <strong>of</strong> ectoderm and neural tissue w¡thin<br />

two hours. Thls demonstr<strong>at</strong>es th<strong>at</strong> neura r -ectode rma I continuity ls not<br />

clear pro<strong>of</strong> <strong>of</strong> non-closure. <strong>ln</strong> <strong>the</strong> present windowed embryos, however,<br />

<strong>the</strong>re was a perceptlble difference between smooth contrnurty <strong>of</strong> ectoderm<br />

wlth neural tissue in myeroschisís, and ress rntim<strong>at</strong>e contrgurty between


340<br />

ectoderm and neuraì tlssue <strong>ln</strong> myelodysplasia.<br />

The s.uggéstion th<strong>at</strong> caudal levels <strong>of</strong> <strong>the</strong> neural tube, formed after<br />

closure <strong>of</strong> <strong>the</strong> posterlor neuropore, are derived from <strong>the</strong> tail-bud was<br />

flrst made by Biaun (1882), who described a caudal mass <strong>of</strong> cells undergo<strong>ln</strong>g<br />

cavlt<strong>at</strong>ion in avian enhryos. Development <strong>of</strong> <strong>the</strong> terminal part <strong>of</strong><br />

<strong>the</strong> hur¡an spinal cord from <strong>the</strong> tail-buci was described by Keíbei and Elze<br />

(1908). Schumacher (1927) showed th<strong>at</strong> multiple cavìt<strong>at</strong>ion <strong>of</strong> caudal neural<br />

tlssue ls a normal process in <strong>the</strong> chick embryo.<br />

<strong>ln</strong> birds, Hensents node increases <strong>ln</strong> size and <strong>ln</strong>corpor<strong>at</strong>es <strong>the</strong><br />

rema<strong>ln</strong>der <strong>of</strong> <strong>the</strong> primlt¡ve streak, to form thê ta¡ l-bud <strong>at</strong> <strong>the</strong> 18-22<br />

somlte stage ($eevers, 1!J2). Wetzel (1929) regarded <strong>the</strong> actív¡ty <strong>of</strong> <strong>the</strong><br />

tall-bud ês <strong>the</strong> same as th<strong>at</strong> <strong>of</strong> <strong>the</strong> streak and node <strong>of</strong> earller stages, but<br />

Hunt (193.l) and Seevers (1932) showed th<strong>at</strong> it has ìost <strong>the</strong> capacity for<br />

primary induction, and ¡s restr¡cted to <strong>the</strong> form<strong>at</strong>lon <strong>of</strong> posteríor trunk<br />

structures.<br />

Criley (1969) demonstr<strong>at</strong>ed an overlap zone în <strong>the</strong> caudal region<br />

<strong>of</strong> <strong>the</strong> chlck neural tube, between m<strong>at</strong>erial derived from <strong>the</strong> neural pl<strong>at</strong>e<br />

(lying dorsalty) and m<strong>at</strong>erial derîved from <strong>the</strong> tall-bud (lying ventrally).<br />

This overlap zone (<strong>of</strong> 192-280 microns) was detectable between Stages I1<br />

and 18, with fìsion occurring maximal ly <strong>at</strong> Stages 13-15. The taîl-bud<br />

m<strong>at</strong>erlal extended up to <strong>at</strong> least somite 35, and <strong>the</strong> neural pl<strong>at</strong>e m<strong>at</strong>erial<br />

down to <strong>at</strong> least somíte 33. Removal <strong>of</strong> <strong>the</strong> most caudal section <strong>of</strong> <strong>the</strong><br />

neural pl<strong>at</strong>e showed th<strong>at</strong> an appârently normal segment <strong>of</strong> spÍnal cord can<br />

develop from <strong>the</strong> tail-bud ín complete isol<strong>at</strong>lon from <strong>the</strong> neural pl<strong>at</strong>e.<br />

<strong>ln</strong> <strong>the</strong> present embryos <strong>the</strong> extent <strong>of</strong> <strong>the</strong> overlap was revealed by<br />

qulte subtle changes in outl ine <strong>of</strong> neural tlssue <strong>at</strong>. caudal levels. ldentify<strong>ln</strong>g<br />

fe<strong>at</strong>ures from cranial to caudal were: fallure <strong>of</strong> <strong>the</strong> neural canal to


341<br />

reach <strong>the</strong> floor-pl<strong>at</strong>e; asymmetry <strong>of</strong> <strong>the</strong> neural canal; a pear-shaped external<br />

contoür <strong>of</strong> <strong>the</strong> neural tube; an hour-glass external shape <strong>of</strong> <strong>the</strong> neural<br />

tube; accessory canals în <strong>the</strong> tail-bud nr<strong>at</strong>erial; and finally a solid tailbud,<br />

deep to a foldi.ng neural pl<strong>at</strong>e. Using <strong>the</strong>se fe<strong>at</strong>ures, r<strong>at</strong>her than<br />

sirnply <strong>the</strong> presence <strong>of</strong> accessory canals, <strong>the</strong> overlap zone was detectable<br />

<strong>ln</strong> control embryos <strong>of</strong> Stage tl-16. After ttr¡s, complete fusion obscured<br />

<strong>the</strong> extent <strong>of</strong> overlap in normal enbryos, but <strong>the</strong> zone was still recognisable<br />

in myeloschisis lesions because <strong>of</strong> <strong>the</strong> contínued separ<strong>at</strong>ion <strong>of</strong> <strong>the</strong><br />

tv'ro sources <strong>of</strong> neural m<strong>at</strong>erlal<br />

The overlap zone could only be analysed quantlt<strong>at</strong>ively between<br />

Stages lJ and 16, when it was promînent ín control embryos. There was<br />

little dîfference in <strong>the</strong> extent <strong>of</strong> overlap between embryos wlth myeloschisis<br />

and <strong>the</strong> experímental and control embryos wi th no neural defects,<br />

show<strong>ln</strong>g th<strong>at</strong> myeloschisis does not arlse through changes <strong>ln</strong> <strong>the</strong> extent<br />

<strong>of</strong> <strong>the</strong> zone.<br />

The two embryos with myelodysplasía <strong>at</strong> Stage 16, however, showed<br />

a very short overlap zone due to a greâtly reduced contribut¡on by <strong>the</strong><br />

neural pl<strong>at</strong>e. The lower boundary <strong>of</strong> <strong>the</strong> zone (marking <strong>the</strong> lowest extent<br />

<strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e m<strong>at</strong>erial) lay <strong>at</strong> almost <strong>the</strong> same level as <strong>the</strong> upper<br />

boundary (markíng <strong>the</strong> h¡ghest extent <strong>of</strong> <strong>the</strong> taìl-bud m<strong>at</strong>erial).<br />

'<br />

For <strong>the</strong> analysis <strong>of</strong> volúmetric changes associ<strong>at</strong>ed with open neural<br />

defects, measurement <strong>of</strong> <strong>the</strong> r<strong>at</strong>ìo <strong>of</strong> neural tube to notochordal areas<br />

allowed comparison <strong>of</strong>: embryos <strong>of</strong> different sizes; reglons <strong>of</strong> different<br />

lengths; sections cut in different planes; poor I y-p rocessed and wellprocessed<br />

m<strong>at</strong>erial ¡ and groups <strong>of</strong> embryos with different reglonal<br />

boundarles. St<strong>at</strong>istical analysis revealed greât constancy in notochordal<br />

areas, wlth no evîdence <strong>of</strong> excesslve ¡eural tîssue in myeloschisls, but


3\2<br />

marked reduction in myerodysprasia. possible sources <strong>of</strong> error m¡9ht<br />

be <strong>at</strong>trlbuted toi inaccur<strong>at</strong>e tracing <strong>of</strong> thu tirrr. outl ines, measurements<br />

<strong>of</strong> only every tenth sectlon, and <strong>the</strong> extens¡ôn.<strong>of</strong> some lesions<br />

into Regions B and E (which were not incruded). Future volumetric<br />

analyses should: measure every section; include all four reglons (to<br />

abolish <strong>the</strong> effect <strong>of</strong> different regìonal boun¿aries); and include<br />

older embryos (to detect any overgrowth <strong>at</strong> l<strong>at</strong>er Stages).<br />

<strong>ln</strong>terk<strong>ln</strong>etic migr<strong>at</strong>ion <strong>of</strong> nuclel in neuroe p i<strong>the</strong>l ial cells after<br />

neural closure v/as suggested by F.C. Sauer (1935), and conflrmed by<br />

llarrerson et al. (1956), H.Ë. Sauer and Walker (1959), and Fuj îra (,|960).<br />

Hamburger (1948), by measuring mitotic densíty <strong>ln</strong> <strong>the</strong> neural tube <strong>of</strong> 2{ -<br />

8* day chick embryos, found th<strong>at</strong> <strong>the</strong> mitot¡c êct¡v¡ty in alar and basar<br />

pl<strong>at</strong>es was quite d¡fferent. Ì,ritotíc density in <strong>the</strong> basal pl<strong>at</strong>es reached a<br />

peak <strong>at</strong> 2å - 3 days and <strong>the</strong>n fe stead y, whereas mítoses in <strong>the</strong> alar<br />

pl<strong>at</strong>es rosê steadi¡y to a max¡mum <strong>at</strong> 6 days and <strong>the</strong>n fell sharply. After<br />

8* days, dlfferenti<strong>at</strong>ron follows this prori.fer<strong>at</strong>îve phase, and <strong>the</strong> enormous<br />

<strong>ln</strong>crease in <strong>the</strong> size. <strong>of</strong> <strong>the</strong> cord is due to growth, r<strong>at</strong>her than division,<br />

<strong>of</strong> individual nerve cells. Corllss and Robertson (1959 1963) measured<br />

mitot¡c dens¡ty in <strong>the</strong> chick neural tube before, duríng, and after neural<br />

closure (<strong>at</strong> Stages 9, 11-15, and 19-26). They found th<strong>at</strong> whíle <strong>the</strong> neuraì<br />

pl<strong>at</strong>e was wide open <strong>the</strong>re was no difference în mrtosis between arár and<br />

basal pl<strong>at</strong>es; in regions <strong>of</strong> active fording, mitotic density wês tr{ice as<br />

high in <strong>the</strong> basal pl<strong>at</strong>es, while after closure <strong>the</strong> r<strong>at</strong>io reversed, to be_<br />

come twlce as high in <strong>the</strong> alar pl<strong>at</strong>es. Early neurogenesis is thus accompanled<br />

by differential mltosls.<br />

Autoradiography <strong>of</strong> l-2 day chick embryos gîven two doses <strong>of</strong> H3 -<br />

thymldine, revealed th<strong>at</strong> all cells <strong>of</strong> <strong>the</strong> recently-closed neural tube


343<br />

took up <strong>the</strong> label, shovri.ng thêt differenti<strong>at</strong>ion had not yet occurred<br />

(l'lart I n and Langman, 1965).<br />

<strong>ln</strong> splotch and looptê¡ I mice <strong>the</strong> development <strong>of</strong> open neural defects<br />

(which are a major expressîon <strong>of</strong> <strong>the</strong> mutant genes) is accompanied by a<br />

prolonged cell cycle in <strong>the</strong> neuroe p i<strong>the</strong>lium, and an accumul<strong>at</strong>lon <strong>of</strong><br />

mitotic figures. This retard<strong>at</strong>ion îs followeó by a pericd <strong>of</strong> acceler<strong>at</strong>ed<br />

cel I divislon, producing oúergrowth <strong>of</strong> <strong>the</strong> open neural tissue (Hsu and<br />

Van Dyke, 1948; ì,/¡lson, t974; 1974). <strong>ln</strong> trypan blue - induced dysraphlsm<br />

<strong>of</strong> r<strong>at</strong> enbryos, autoradiography <strong>at</strong> l0| days provided no evidence <strong>of</strong> <strong>ln</strong>creased<br />

mltosls <strong>ln</strong> <strong>the</strong> neural tube (Lendon, l!/2).<br />

Reductlon <strong>of</strong> mltosis, however, may not be essential to <strong>the</strong> development<br />

<strong>of</strong> neural dysraphlsm. Davis (t942, 1944) found th<strong>at</strong> in neural<br />

dysraphîsm <strong>of</strong> chick embryos produced by ultraviolet irradi<strong>at</strong>ion, <strong>the</strong><br />

wavelengths th<strong>at</strong> were most effective in reducing mitoses in <strong>the</strong> neural<br />

pl<strong>at</strong>e were least effectíve in inhibitíng neurul<strong>at</strong>ion.<br />

<strong>ln</strong> <strong>the</strong> present chick embryos m¡totic figures appeared to be restricted<br />

to <strong>the</strong> exposed plaq,ue surface and <strong>the</strong> luminal surface <strong>of</strong> closed areas in<br />

myeloschîsis; figures were more sc<strong>at</strong>tered through <strong>the</strong> ta¡ l-bud m<strong>at</strong>erial in<br />

nryelodysplasia. 14Ítotic dens¡ties in <strong>the</strong>se lesions were not estim<strong>at</strong>ed<br />

because <strong>the</strong> sépar<strong>at</strong>ion <strong>of</strong> neural tissue into its two sources <strong>of</strong> orig<strong>ln</strong><br />

made ít impossible to count figures in rel<strong>at</strong>ion to a constant sur.face area.<br />

lilany <strong>of</strong> <strong>the</strong> changes associ<strong>at</strong>ed wîth <strong>the</strong> development <strong>of</strong> open neural<br />

defects in windowed chick embryos are relevant to <strong>the</strong> p<strong>at</strong>hogenesis <strong>of</strong><br />

dysraphism in man. <strong>ln</strong> <strong>the</strong> human developmental horizons formul<strong>at</strong>ed by<br />

Streeter (1942), <strong>the</strong> anter¡or neuropore closes during horlzon Xl (,l3-20<br />

somites) and posterior neuropore during horlzon Xll (2.|-29 somites).<br />

<strong>ln</strong> <strong>the</strong> chlck embryo <strong>the</strong> anterior neuropore closes <strong>at</strong> Stage ll (,|3 somites)


344<br />

and .<strong>the</strong> rhombo¡d s f nus <strong>at</strong> <strong>the</strong>, 21.-22 $oarl1e..þer tod . {St¿ges 13"j14¡ ,<br />

(Haril l ton,. 1952) ,<br />

Dekaban (1963) and Dekaban and Barrelmez (1964) descrÌbed a t4 somite<br />

(Horlzon xl) human embryo wlth complete neural dysraphism, a normal notochord,<br />

and slight reduction in somlte density ât <strong>the</strong> perlod when <strong>the</strong> anterior<br />

neuropore should be closi.ng. An older human embryo (<strong>of</strong> l3 mm) ,..¡! th exencephaly,<br />

consist<strong>ln</strong>g <strong>of</strong> everted cerebral hemispheres and exposed thalami<br />

and choroid plexus (Hunte r lgli-sil, demonstr<strong>at</strong>es th<strong>at</strong> an open human braîn<br />

can continue to deve I op.<br />

Experîrnental exencephaly produced in r<strong>at</strong>s by m<strong>at</strong>ernal hypervîtaminosis<br />

A and followed rn a closely-spaced series <strong>of</strong> embryos, lr lustr<strong>at</strong>es a very<br />

simllar evolution <strong>of</strong> <strong>the</strong> brain defect. Exencephaly wâs not analysed<br />

hlstotogically <strong>ln</strong> <strong>the</strong> present experiments (because <strong>of</strong> <strong>the</strong> smal'l number<br />

<strong>of</strong> embryos), but <strong>the</strong> existence <strong>of</strong> open anterior neuropores in w<strong>ln</strong>dowed<br />

embryos <strong>at</strong> each Stage after Stage l2 Ís strong evidence <strong>of</strong> ?gn_closure,<br />

Early human embryos with open neural defects <strong>of</strong> <strong>the</strong> lower cord<br />

have been described <strong>at</strong> 8 mm (p<strong>at</strong>ten, 195r,7 mm (<strong>ln</strong>galls, 1932), and<br />

5.5 mm (Lernire et al ., 1965). The smallest <strong>of</strong> <strong>the</strong>se specimens, with a<br />

regular 1 mm open cord defect opposite somite 25, wäs <strong>at</strong> Horizon XlV.<br />

It showed a wiuely everted neurar defect (with ross <strong>of</strong> regurar or¡ent<strong>at</strong>ion<br />

<strong>of</strong> cells), normal notochord, and abnormal somites.<br />

lrlarkany et al. (1958) in trypan blue - induced neural defects <strong>of</strong> r<strong>at</strong>s,<br />

found th<strong>at</strong> open cord defects (rnyeloschisis) could be detected before <strong>the</strong><br />

expected closure <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e. Simîlarly, in <strong>the</strong> present chlck<br />

embryos, <strong>the</strong> development <strong>of</strong> myeloschisis - courd be predicted from <strong>the</strong><br />

shape <strong>of</strong> <strong>the</strong> open rhomboid sinus. rrlye r odysp r as i a however did not rnvolve<br />

abnormallty <strong>of</strong> <strong>the</strong> rhomboid sinus, and deveroped from tafl-bud m<strong>at</strong>errar in<br />

<strong>the</strong> absence <strong>of</strong> <strong>the</strong> neurâl pl<strong>at</strong>e.


345<br />

The defects in early human embryos, toge<strong>the</strong>r with <strong>the</strong> f indi.ngs in<br />

experimental dysraþhism, suppoFt,<strong>the</strong> assertiori th<strong>at</strong> excencephaly, craniorachlschisIs,<br />

and nyeloschisis arise by neural non-closure. Secondary<br />

neural overgrowth and l<strong>at</strong>er degener<strong>at</strong>ive châ.nges <strong>the</strong>n produce <strong>the</strong> character¡stic<br />

lesions <strong>of</strong> anencephaly and mye I omen i ngoce I e . Form<strong>at</strong>¡on <strong>of</strong> <strong>the</strong><br />

caudal spinal cord fron thc ta¡l-bud wouid urpl"in sparing <strong>of</strong> <strong>the</strong> sacral<br />

reglon, though complic<strong>at</strong>ed by rel<strong>at</strong>ive shortening <strong>of</strong> <strong>the</strong> cord in <strong>the</strong> fetal<br />

per iod.<br />

Several forms <strong>of</strong> myelodysplasia can be explained as reductions în<br />

<strong>the</strong> vo I ume<br />

<strong>of</strong> neural pl<strong>at</strong>e m<strong>at</strong>erial, tail-bud m<strong>at</strong>erîêl, or both.<br />

Dipl'onryelía <strong>at</strong> <strong>the</strong> caudar rever. may arise by persistent cavît<strong>at</strong>ion <strong>of</strong> taí r.-<br />

bud m<strong>at</strong>erial. This cannot apply to dlplomyel ia <strong>at</strong> hlgher levels, which<br />

was not encountered in <strong>the</strong> windowed chíck embryos and so is not discussed<br />

fur<strong>the</strong>r.<br />

Local overgrowth <strong>of</strong> neural tissue was suggested by p<strong>at</strong>ten (1952,<br />

1953) as a posslble cause <strong>of</strong> non-crosure, because'¡t wês seen in embryos<br />

w¡thout visíble externar defects, as well as in dysraþhism. Neural overgrowth<br />

can fol low experimental incision <strong>of</strong> <strong>the</strong> ro<strong>of</strong> <strong>of</strong> <strong>the</strong> closed avian<br />

neural tube, <strong>at</strong> ei<strong>the</strong>r <strong>the</strong> cord level (Fowler, 19531 or in <strong>the</strong> brain<br />

(.lel ínek, 1960).<br />

Harked folding <strong>of</strong> <strong>the</strong> ruminar surface <strong>of</strong> <strong>the</strong> chick neurar tr¡be has<br />

been reported, w¡th and wíthout dysraphísm, after exposure to lead<br />

chlorlde (C<strong>at</strong>lzone and Gray, l94l), tentanus tox¡n (Corl íss et al., 1966)<br />

and several viruses (Hamburger and Haber, 19\7r He<strong>at</strong>h et ar"' r.956; rJir riamson<br />

et al., 1956). However analysis <strong>of</strong> closed brain overgrowth produced by<br />

influenza A vîrus revealed th<strong>at</strong> <strong>the</strong> apparent folding and thíckening <strong>of</strong>


346<br />

<strong>the</strong> bra<strong>ln</strong> wall were.due to marked reduction <strong>of</strong> ventricular volume(Robertson et<br />

al .', 1967 ); <strong>the</strong> volume <strong>of</strong> brain tissue and <strong>the</strong> mitotic densíty were<br />

actual ly reduced.. Neural overgrowth <strong>the</strong>refore cannot be <strong>the</strong> cause <strong>of</strong><br />

vIral-induced dysraphism. Similarly Bergguist (1960) found th<strong>at</strong> over-<br />

. growth <strong>of</strong> <strong>the</strong> chîck brain, produced by injury <strong>of</strong> <strong>the</strong> notochord wíth<br />

removal <strong>of</strong> <strong>the</strong> fourth neurornere <strong>at</strong> Stages I1"I4, was assoc¡<strong>at</strong>ed w¡th<br />

<strong>ln</strong>creased mÌtosis but not increased neural volume.<br />

Desplte P<strong>at</strong>tents description <strong>of</strong> overgrowth <strong>at</strong> early stêges, <strong>the</strong>re<br />

is no evidence th<strong>at</strong> non-closure (myeloschîsis) is caused by íncreased<br />

neural volume. <strong>ln</strong> <strong>the</strong> present series <strong>of</strong> chîck embryos,neural volume _dÌd<br />

not <strong>ln</strong>crease dur<strong>ln</strong>g or after <strong>the</strong> establ ishment <strong>of</strong> myeloschlsis. lt<br />

would be interesting to measure neural volumes in older embryos with<br />

rryeloschîsis.<br />

T¡s hypo<strong>the</strong>sis th<strong>at</strong> dysraphísm arises by ruÞture <strong>of</strong> <strong>the</strong> closed neural<br />

tube due to hydromyelia (Gardner 1961 , 196\, 1972), was ba_sed on studies<br />

by tJeed (1917¡ lgZZ; 1937-38) <strong>of</strong> <strong>the</strong> dynamics <strong>of</strong> cerebro-spinal fluid.<br />

These experiments, however, relied on perfusion <strong>of</strong> <strong>the</strong> venticular system,<br />

with consequent changes în hydrost<strong>at</strong>ic pressure. As fur<strong>the</strong>r evídence <strong>of</strong><br />

rupture <strong>of</strong> <strong>the</strong> rhombic ro<strong>of</strong> due to hydromyelia, Padget (1968, l97o) quotes<br />

studies by Bonnevie (1934) on <strong>the</strong> mouse mutênt l<strong>at</strong>er called myelencephalic<br />

blebs.. Bonnevie belíeved th<strong>at</strong> exencephaly and multiple congenîtál defects<br />

assocî<strong>at</strong>ed with subepìdermal fluid blebs, were secondary to brain rupture<br />

caused by hydronryelia. Reexamin<strong>at</strong>ion <strong>of</strong> <strong>the</strong>se mice by carter (1956, 1959) has<br />

shown th<strong>at</strong> exencephaly precedes bleb-form<strong>at</strong>ion, ând th<strong>at</strong> th'e blebs (which<br />

are responsible for some defects) are derived fron mesenchym¡l tissue fluíd.<br />

Hydromyelia and rupture <strong>of</strong> <strong>the</strong> neural tube after closure does not<br />

expla<strong>ln</strong> <strong>the</strong> ex¡stence <strong>of</strong> dysraphism in human embryos <strong>of</strong> horizons lmmedi<strong>at</strong>ely


347<br />

after pred¡cted closure (Lemîre et al., 1965; Dekaban, 1963i Dekaban and<br />

Bartelmez, 1964), and before <strong>the</strong> appearênce <strong>of</strong> <strong>the</strong> choroid plexuses.<br />

lloreover, studies <strong>of</strong> <strong>the</strong> ernbryology <strong>of</strong> <strong>the</strong> human rhombic ro<strong>of</strong> reveal<br />

an actîve developmental process, r<strong>at</strong>her than passive rupture <strong>of</strong> <strong>the</strong><br />

ro<strong>of</strong> and dissection <strong>of</strong> <strong>the</strong> subarachnold space (Brocklehurst, '|969).<br />

Exper<strong>ln</strong>ental exencephaly in r<strong>at</strong>s appears <strong>at</strong> stages immedi<strong>at</strong>ely<br />

after normal brain closure (ciroud and l,lartinet, 1957; Langman and<br />

lJelch, 1!66). Sinilarly in <strong>the</strong> present chick embryos, dysraphism is<br />

present lmmedi<strong>at</strong>ely after normal neural closure, and before <strong>the</strong> rhombic<br />

ro<strong>of</strong> shows a membranous structure or form<strong>at</strong>ion <strong>of</strong> a choroid plexus.<br />

The o<strong>the</strong>r hypo<strong>the</strong>ses <strong>of</strong> human neural dysraphism mentioned in <strong>the</strong><br />

<strong>ln</strong>troduction can be excluded as causes <strong>of</strong> open neural defects in chïck<br />

embryos. Prlmary vascular defects (Vogel and ttcClenahan, l!!2)<br />

cannot be impl ic<strong>at</strong>ed in <strong>the</strong> chick embryos, whose neural tube is not<br />

vascularized until 72-84 hours (Feeney ênd V<strong>at</strong>terson, 1946). Abnormal<br />

flexion <strong>of</strong> <strong>the</strong> brain (teuedeff, 188l; Frazer, 1921) or cord (Browne, 'l934)<br />

cannot be responsible, as no flexures had appeared by <strong>the</strong> period when<br />

dysraphîc lesions were al ready establ ished.<br />

Birth trauma (Pol îtzer, 1954) is riot appl icable to a non-mammalian<br />

model. nmniotîc adhesions can be dismissed, as open neural defects were<br />

present before <strong>the</strong> form<strong>at</strong>ion <strong>of</strong> <strong>the</strong> amníon. <strong>ln</strong>fection was excluded as a<br />

cause by performing bacterial cultures. Finally, abnormal fusion <strong>of</strong> <strong>the</strong><br />

tv,ro sources <strong>of</strong> neural m<strong>at</strong>erial in <strong>the</strong> overlap zone cannot be excluded as<br />

a factor in human cord defects (Lemlre, .1969), but wês not <strong>the</strong> underlying<br />

cause <strong>of</strong> myeloschisis and myelodysplasia in <strong>the</strong> windowed chick embryos.<br />

<strong>ln</strong> this díscussion <strong>of</strong> dysraphism, spîna bifida occulta has not been<br />

nent¡oned. Sp<strong>ln</strong>a bifida occulta may be subdivided <strong>ln</strong>to two types (James


348<br />

and Lassman, 1972). <strong>ln</strong> <strong>the</strong> sirnple form <strong>the</strong>re is a local ized absence <strong>of</strong><br />

spinous processes for a few ségments, usually without neurological ínvolvenìent.<br />

The spina blfida occuìta syndrome consists <strong>of</strong> neural arch defects<br />

overly<strong>ln</strong>g an abnormal (dysplastic) cord or nerve roots.<br />

The relåtion <strong>of</strong> occult to cystic forms <strong>of</strong> spÌna bifida is not clear.<br />

Lorber anc Levtck (r967) found th<strong>at</strong> parents oi chirdren with myelomeningocele<br />

showed an <strong>ln</strong>creased frequency <strong>of</strong> spina bifida occulta, suggest¡ng<br />

some etlologlcal connection. several mutant mice wîth open neural defects<br />

may also show spina bifida occulta (Gruneberg, I963).<br />

<strong>ln</strong> <strong>the</strong> present chick embryos mesodermal defects, which m¡ght l<strong>at</strong>er<br />

result <strong>ln</strong> spina bifida occul ta,. were seen in experimental embryos with<br />

rryeloschlsis or closed cords. Many 12 day chick embryos exhibited spina<br />

blfida occulta but <strong>the</strong> pôthogenesis <strong>of</strong> <strong>the</strong> lesion was not investig<strong>at</strong>ed.<br />

Trypan blue-induced dysraphism <strong>of</strong> r<strong>at</strong>s can result in exencephaly,<br />

spina bifida manifesta and spina bifida occulta in older embryos. The<br />

early development <strong>of</strong> <strong>the</strong> defects is associ<strong>at</strong>ed with extensive blebform<strong>at</strong>lon<br />

and hem<strong>at</strong>omas which l<strong>at</strong>er disappear, so th<strong>at</strong> small open defects<br />

mîght possibly close ât .l<strong>at</strong>er stêges. (Rokos et al., .|970; 1975; Lendon,<br />

1968; 1976).<br />

Rokos ani Knowles (1976) demonstr<strong>at</strong>ed a high regul<strong>at</strong>ive abílîty in<br />

chlck embryos after opening <strong>the</strong> ro<strong>of</strong> pl<strong>at</strong>e <strong>of</strong> <strong>the</strong> neural tube on <strong>the</strong> third<br />

day. Smal I incísions showed rapid closure and reconstitution. Larger<br />

înclslons produced an everted neural lesîon, <strong>at</strong> which <strong>the</strong> cut edges <strong>of</strong> neural<br />

tube and ectoderm <strong>of</strong>ten fused toge<strong>the</strong>r in 2-4 hours. Thus spìna bífida<br />

occulta could origin<strong>at</strong>e e¡ <strong>the</strong>r as a primary mesodermal defect, or by closure<br />

<strong>of</strong> a smâl I neural defect. <strong>ln</strong>vestig<strong>at</strong>ion <strong>of</strong> windowed chick embryos after 72


349<br />

hours could provide evidence for one or <strong>the</strong> o<strong>the</strong>r mechanîsrn.<br />

Use <strong>of</strong> a non¡.placental embryo for <strong>the</strong> experìmental nodel avoids<br />

problems associ<strong>at</strong>ed with m<strong>at</strong>ernal health and diet during gest<strong>at</strong>ìon,<br />

<strong>the</strong> sltes <strong>of</strong> lmplant<strong>at</strong>ion, and functlon <strong>of</strong> <strong>the</strong> placenta. <strong>ln</strong> <strong>the</strong> chÌck<br />

enbryo, <strong>the</strong> close series <strong>of</strong> morphological stages al lows comparîsons <strong>of</strong><br />

<strong>ln</strong>dlvidual embryos. Regia,ral subdi.¡lsion facil it<strong>at</strong>es analysis <strong>of</strong> a<br />

Particular developmental process <strong>ln</strong> embryos <strong>of</strong> different Stages oÉ through<br />

different regions <strong>of</strong> <strong>the</strong> same embryo.<br />

<strong>ln</strong> <strong>the</strong> case <strong>of</strong> early neurogenesis, <strong>the</strong> chíck is an excel lent experi;<br />

mental model for human malform<strong>at</strong>ions. Hughes and Freeman (1974) compared<br />

<strong>the</strong> development <strong>of</strong> <strong>the</strong> caudal region <strong>of</strong> <strong>the</strong> spinal cord in r<strong>at</strong>, mouse,<br />

oppossum, plg, chick, and human embryos. 0f <strong>the</strong>se embryos only <strong>the</strong> chick<br />

and man show development <strong>of</strong> <strong>the</strong> caudal region <strong>of</strong> <strong>the</strong> neural tube by cavi t-<br />

<strong>at</strong>¡on <strong>of</strong> tai l-bud m<strong>at</strong>erial, after closure <strong>of</strong> <strong>the</strong> neural plâte.<br />

<strong>ln</strong> amphibia, repti les, bìrds, and mammals <strong>the</strong> neural pl<strong>at</strong>e forms as<br />

an ectodermal thickening overlyíng <strong>the</strong> cho rda -mesode rm, "nO<br />

fold, to form<br />

a tube. At caudal levels, however, development <strong>of</strong> <strong>the</strong> cord ís not so uníform.<br />

l'lost work on neurul<strong>at</strong>ion has used amphibia, though studies on anurans<br />

(with a bilaminar neural pl<strong>at</strong>e) are not str¡ctly comparable to o<strong>the</strong>r groups<br />

(schroeder, t 97o) .<br />

With <strong>the</strong> advent <strong>of</strong> electron microscopy, investig<strong>at</strong>ions <strong>of</strong> lgglglg1lq<br />

,<br />

have revealed. <strong>the</strong> existence <strong>of</strong> intracellulêr structures involved in neural<br />

closure. Previous work <strong>at</strong>tempted to explain neurul<strong>at</strong>lon în terms <strong>of</strong> extr¡ns¡c<br />

forces, or by changes secondary to cell division and migr<strong>at</strong>.ion.<br />

Hls (187q) suggested th<strong>at</strong> <strong>the</strong> change <strong>ln</strong> shape <strong>of</strong> neuroepl<strong>the</strong>l ial cells,<br />

from cuboidal to columnar, might be due to cell compression after a period


350<br />

<strong>of</strong> rapid ectodermal mitosis. However Gillette (1944) found a reduction<br />

in <strong>the</strong> sl2e <strong>of</strong>. neural pl<strong>at</strong>e cêlls in Amblystoma during folding. Glaser ('l9.l4¡<br />

19l6) sugsested th<strong>at</strong> neuroepi<strong>the</strong>l iar ceüs change from cuboidar to corumnar<br />

and <strong>the</strong>n to pyramidal shapes, due tc differential uptake <strong>of</strong> w<strong>at</strong>er <strong>at</strong> <strong>the</strong><br />

basal parts <strong>of</strong> <strong>the</strong> ce s. This was shown to be unrikely by <strong>the</strong> detect¡on<br />

<strong>of</strong> only negliglble changes in <strong>the</strong> denslty <strong>of</strong> ,,uur"t pl<strong>at</strong>e cells during folding<br />

<strong>ln</strong> Rana and Amblystoma (Brown et al., l94l), and by Gillettés finding <strong>of</strong> a<br />

reduction <strong>ln</strong> cerr size. Derrick (1937) reported a hígher mitotic index in<br />

neurectoderm than ín adjacent ectoderm <strong>of</strong> chick embryos during neurur<strong>at</strong>ion,<br />

but Bragg (1938) courd not detect a simirar differentiar mitosís in Bufo.<br />

clllette (1944) and Holtfreter (1943) postul<strong>at</strong>ed a contractile surface<br />

co<strong>at</strong> <strong>at</strong> <strong>the</strong> free ends <strong>of</strong> neuroepi<strong>the</strong>r iar ceus, responsibre for changes rn<br />

cel I adhesion and shape.<br />

<strong>ln</strong> a detai red analysis <strong>of</strong> neurur<strong>at</strong>ion ín <strong>the</strong> bilaminar neurar pr<strong>at</strong>e <strong>of</strong><br />

xenopus, Schroeder (1970) described myotome erev<strong>at</strong>ion and epidermar expansíon,<br />

as well as changes <strong>of</strong> shape in both layers <strong>of</strong> neuroepi<strong>the</strong>l ial cells. Similar<br />

changes have not been detected in <strong>the</strong> uniraminar neurâr prêtes <strong>of</strong> o<strong>the</strong>r<br />

vertebrêtes, whích continue to show fording and crosure when cur tured rn ¡sol<strong>at</strong>lon<br />

(Roux, 1885; Boerema, 1g2Ð. The assertion by C. O. Jacobson (1962)<br />

th<strong>at</strong> neural elev<strong>at</strong>ion and folding in <strong>the</strong> Axolotl is produced<br />

by forces gener<strong>at</strong>ed in <strong>the</strong> underrying chorda-mesoderm has now been refuted by<br />

Karfunkel and Burnslde independently (Karfunkel , 197Ð. Thus intracellular<br />

mechanisms must be capable <strong>of</strong> gener<strong>at</strong><strong>ln</strong>g <strong>the</strong> forces needed for neurar closure.<br />

I'licrotubules running rn <strong>the</strong> long axis <strong>of</strong> neuroepi<strong>the</strong>r iar celrs have<br />

been reported in embryos <strong>of</strong> Triturus (Waddington and perry, 1966¡ Burnside,


351<br />

t971), Gal lus and Xenopus (l'lessier, 1969; Kêrfunkel , 1971). These nicrotubules<br />

are dlsrupted by vînblastine and colchicine (Karfunkel, 1971; 1972) ,<br />

w¡th arrest <strong>of</strong> neurul<strong>at</strong>ion and fl<strong>at</strong>tening <strong>of</strong> neuroepÌ<strong>the</strong>l ial cells. Burnside<br />

(197t) foun¿ th<strong>at</strong> <strong>the</strong> m¡crotubules were distributed obl iquely, suggesting<br />

th<strong>at</strong> <strong>the</strong>y might produce cell elong<strong>at</strong>Îon by displacing cytoplasm towards<br />

<strong>the</strong> expanding cell bases, rê<strong>the</strong>r than by'direét elong<strong>at</strong>ion.<br />

A system <strong>of</strong> contractíle micr<strong>of</strong>ilâments has also been described in<br />

<strong>the</strong> apical cytoplasm <strong>of</strong> neuroepi<strong>the</strong>l ial cells in Hyla and Xenopus (Baker<br />

and Schroeder, 1967) and in Rana, Ambìystoma, and Gallus (Schroeder, 1969)-'<br />

Neurul<strong>at</strong>îon is associ<strong>at</strong>ed with a short períod <strong>of</strong> contrêction in <strong>the</strong>se micr<strong>of</strong>l<br />

laments. Disruptìon <strong>of</strong> <strong>the</strong> micr<strong>of</strong>ilaments in neuroepi<strong>the</strong>liaì¡ cells <strong>of</strong><br />

<strong>the</strong> chick embryo, (by vinblastine or cytochâlasin B), inhibits neurul<strong>at</strong>ion,<br />

v,rt th loss <strong>of</strong> apical wedging but no reduction in columnar heíght <strong>of</strong> <strong>the</strong><br />

neural pl<strong>at</strong>e cells (Karfunkel, 1971 ; 1972)'<br />

Ambellan (1955; l95B; 1962) showed th<strong>at</strong> tre<strong>at</strong>ment <strong>of</strong> frog neurulae<br />

with A.T.P., A.D.P., and A.l'1.P. - 3 caused acceler<strong>at</strong>ed n"ut.ul"tion, in direct<br />

proportion to <strong>the</strong> number <strong>of</strong> phosph<strong>at</strong>e groups in <strong>the</strong> nucleotides' Micr<strong>of</strong>i<br />

lament contraction may be ca I c i um-dependen t (Gingell , 1970, ì,tessels 1971).<br />

It would be <strong>of</strong> gre<strong>at</strong> înterest to examine <strong>the</strong> uìtrastructural changes in<br />

<strong>the</strong> neural tis'sue <strong>of</strong> chick embryos after windowing.<br />

<strong>ln</strong> wîndowed embryos with hemimyel ia, <strong>the</strong> neural pl<strong>at</strong>e was absent<br />

caudal ly. As only five embryos were examined histologically ît was not<br />

clear whe<strong>the</strong>r this couìd be <strong>at</strong>tributed to a faîlure <strong>of</strong> neural induction <strong>at</strong><br />

<strong>the</strong> caudal level, or to necrosîs <strong>of</strong> presumptive neurectodermal cells'<br />

<strong>ln</strong> amphibîan embryos, differenti<strong>at</strong>ion <strong>of</strong> neural epi<strong>the</strong>l ium resul ts<br />

from <strong>the</strong> actlon <strong>of</strong> t¡ssues ín <strong>the</strong> archenteric ro<strong>of</strong> on overlyÎng ectoderm<br />

(Spemann, 1938). Experîmentally, however, neural ijìduction can be produced<br />

by: larval or adult neural tissue; certain o<strong>the</strong>r tissues such as kidney,


352<br />

liver, and muscle (but not gut or skin); and even by chemical agents.<br />

<strong>ln</strong> ãrnnlotes, <strong>the</strong> archenteron is ei<strong>the</strong>r absent or much reduced; <strong>ln</strong><br />

birds neurål ìnduction appears to be rel<strong>at</strong>ed to <strong>the</strong> activity <strong>of</strong> Hensenrs<br />

node and <strong>the</strong> primitîve streak. Neural pl<strong>at</strong>e first forms in <strong>the</strong> chick<br />

embryo in <strong>the</strong> future bra<strong>ln</strong> region duri.ng. rnid-gastrul<strong>at</strong>¡on, and different¡<strong>at</strong>ion<br />

continues as <strong>the</strong>.node moves posteriorly with streak regression<br />

(Hamilton, 1952). After form<strong>at</strong>ion <strong>of</strong> <strong>the</strong> neural tube, <strong>the</strong> anterior<br />

region expands to form <strong>the</strong> braîn, and <strong>the</strong> poster¡or part leng<strong>the</strong>ns to<br />

form <strong>the</strong> cord. Hunt (.|931) and t/addington (1932) demonsrrôted <strong>the</strong><br />

ablllty <strong>of</strong> Hensenrs node to induce axlal form<strong>at</strong>ion <strong>at</strong> <strong>the</strong> def¡nítive<br />

streak stage, but restrictíon <strong>of</strong> this abil ity <strong>at</strong> I<strong>at</strong>er stages, VJaddîngton<br />

(1fi2) showed th<strong>at</strong> a transplanted node can st¡lI produce axial<br />

<strong>ln</strong>ductlon, while Shoger (1960) found th<strong>at</strong> disaggreg<strong>at</strong>ed. node tissue retains<br />

Its <strong>ln</strong>ductíve abllity until <strong>the</strong> early somite stage. Crabowski (1957)<br />

suggested th<strong>at</strong> <strong>the</strong> node acts as a regîonal organizer during streak<br />

regress lon.<br />

Tissue induction can be achieved across a millipore fílter with<br />

pores down to 0.8 microns (Grobs¡ein, 1!!J), suggesting <strong>the</strong> êction <strong>of</strong> some<br />

diffusible m<strong>at</strong>erial. Niu and Twírty (1953) found th<strong>at</strong> inductor tissues<br />

in uitro released m<strong>at</strong>erials into <strong>the</strong> culture medíum, capable <strong>of</strong> promoting<br />

differenti<strong>at</strong>ion <strong>of</strong> neurones and melanophores in smal I fragment. áf u*-<br />

planted ectoderm.<br />

<strong>ln</strong>vestlg<strong>at</strong>ions <strong>of</strong> <strong>the</strong> n<strong>at</strong>ure <strong>of</strong> <strong>the</strong> prímary organizer have proved<br />

inconclusive. <strong>ln</strong> some experlments R.N.A.rs from different sources have<br />

produced specìfîc promotion <strong>of</strong> notochord, neural tlssue, kidney, and<br />

heart (Hillman and Niu, .l963; Sanyal and Niu, 1966). O<strong>the</strong>r workers report<br />

neural 'tnCuctlon wlth D.N.A. plus A.T.P., but not wîth R.N.A. (Butros,


353<br />

1962i 1965). Barth and Barth.(1974) susgest th<strong>at</strong> inducing ðgents may<br />

act by aliering <strong>the</strong> propertles <strong>of</strong> cell membranes in <strong>the</strong> reactî.ng tìssue,<br />

to promote red¡str¡bution <strong>of</strong> intracellular ions.<br />

Fai lure <strong>of</strong> înductiori might, occur byl restriction <strong>of</strong> contêct<br />

between <strong>the</strong> two interacting t¡ssues; a defect in <strong>the</strong> înductor; incompetence<br />

<strong>of</strong> <strong>the</strong> reacting tissue; or imperfect tíming <strong>of</strong> <strong>the</strong> contact<br />

between <strong>the</strong> two t¡ssue components (Saxá, 1975).<br />

Cell de<strong>at</strong>h occurs as a normal phenomenon in many embryoníc processes'<br />

part¡cuìarly those involvîng morphogenesis or regression (Glucksmann, 1951) '<br />

Regressive phases <strong>ln</strong> embryogenesis are programmed to occur in a specifíc<br />

sequence th<strong>at</strong> suggests genetic control. Mutant genes cên enhance or<br />

reduce <strong>the</strong> normal p<strong>at</strong>terns <strong>of</strong> celì de<strong>at</strong>h (Saunders, 1966) ' Experimental<br />

tre<strong>at</strong>ments such as x-rays' drugs, viruses, hormones, vitamins, and hypoxla<br />

can promote cell de<strong>at</strong>h (l4enkes et al. 1970); Janus green can Prevent <strong>the</strong><br />

normal cell de<strong>at</strong>h in <strong>the</strong> interdÎgital clefts <strong>of</strong> <strong>the</strong> chíck foot (Saunders,<br />

r966).<br />

Necrobiosis in <strong>the</strong> neural tube shows peaks preceding neural groove<br />

form<strong>at</strong>íon, foldîn9, fusion, and separ<strong>at</strong>íon îrom surface ectoderm<br />

(Glucksmann, l95l). Käl lén (1955) des.cribed ano<strong>the</strong>r peak <strong>of</strong> cell de<strong>at</strong>hs<br />

<strong>ln</strong> <strong>the</strong> rabbí t brain, associ<strong>at</strong>ed with a period <strong>of</strong> ce'l I differentî<strong>at</strong>íon <strong>at</strong><br />

14 days, Rokos et ê1. (1976) described cell de<strong>at</strong>hs in mesoderm,'heart,<br />

gut, and neural pl<strong>at</strong>e tissues <strong>of</strong> r<strong>at</strong> embryos after m<strong>at</strong>ernal injection <strong>of</strong><br />

trypan blue; <strong>the</strong>y suggested th<strong>at</strong> th¡s was an exagger<strong>at</strong>ed form <strong>of</strong> <strong>the</strong> nor-<br />

¡na I cell de<strong>at</strong>h seen in early neurogenesis.<br />

Cell de<strong>at</strong>h is accompanled <strong>at</strong> early embryonic stêges by a ttj!h-regu-.<br />

.làtli¿è àbititv, which is responsîble for rapid <strong>ln</strong>corpor<strong>at</strong>ion <strong>of</strong> grafts


354<br />

(Rose,nqu i s t,l !66) , and rest¡tution <strong>of</strong> excísed areas (Criley, '|969). The<br />

dram<strong>at</strong>lc regul<strong>at</strong>¡on shown by.<strong>the</strong> nervous system <strong>of</strong> amphibian embryos<br />

(Harrlson, 1947) ìs not so pronounced in <strong>the</strong> chìck. However, încísÌons<br />

<strong>ln</strong> <strong>the</strong> ro<strong>of</strong> pl<strong>at</strong>e <strong>of</strong> <strong>the</strong> chick neural tube close spontaneously when<br />

local lzed, and fuse to.ep¡dermis in 2-4 hours when more extenslve (Rokos<br />

and Knowles, l!/6). Lendon (t975) and Rokos ér al. (1976) found th<strong>at</strong> rhe<br />

extensive blebs produced <strong>ln</strong> early rêt embryos by n<strong>at</strong>ernal trypan<br />

blue <strong>ln</strong>jectlon l<strong>at</strong>er resolved. <strong>ln</strong> <strong>the</strong> present windowed chick embryos,<br />

superflcîal cells <strong>of</strong> <strong>the</strong> open neural pl<strong>at</strong>e <strong>ln</strong> early myeloschisis showed<br />

necrosls, whlch was not present <strong>at</strong> l<strong>at</strong>er ståges. Embryos with myelodysplasia<br />

showed extensive degener<strong>at</strong>ive changes ín mesoderm, but ít is<br />

not clear whe<strong>the</strong>r <strong>the</strong>se accompanied or caused <strong>the</strong> neural defects.<br />

Stockardrs pr<strong>ln</strong>ciples <strong>of</strong> ter<strong>at</strong>ogenesis proposed th<strong>at</strong>: malform<strong>at</strong>ions<br />

<strong>ln</strong> different ,o""ffilar<br />

agentsi a given defect<br />

in one specíes may result from a wide range <strong>of</strong> tre<strong>at</strong>ments; <strong>the</strong> in¡tial<br />

act¡on <strong>of</strong> a ter<strong>at</strong>ogenîc agent is to retard <strong>the</strong> r<strong>at</strong>e <strong>of</strong> development; and<br />

<strong>the</strong> type <strong>of</strong> defect is determined by <strong>the</strong> developmental stage ât wh¡ch<br />

<strong>the</strong> embryo was tre<strong>at</strong>ed (Stockard, 1!21). ore recent work has shown th<strong>at</strong><br />

<strong>the</strong>se pr<strong>ln</strong>cíples do not make sufficíent allowance for: species differences ;<br />

agent specifièity¡ dosage <strong>of</strong> <strong>the</strong> agent; <strong>the</strong> metabolic p<strong>at</strong>hways <strong>of</strong> <strong>the</strong> agent;<br />

and <strong>the</strong> nêture <strong>of</strong> <strong>the</strong> embryological process involved.<br />

lllth more detai led knowledge <strong>of</strong> embryological mechanisms it is no¡¿<br />

clear th<strong>at</strong> <strong>the</strong> importance <strong>of</strong> developmental êrrest was overemphasized by<br />

Stockard. <strong>ln</strong>deed <strong>the</strong>re are some malform<strong>at</strong>ion th<strong>at</strong> arise by excessive<br />

growth or excessive resorption (P<strong>at</strong>ten, 1957). The principle th<strong>at</strong> remêîns<br />

most valid ls <strong>the</strong> împortance <strong>of</strong> tlming (Hughes, 1976).


The result <strong>of</strong> any ter<strong>at</strong>ogen¡c insult depends on <strong>the</strong> site <strong>of</strong> action<br />

by <strong>the</strong> agent, and <strong>the</strong> developmenta¡ stage <strong>of</strong> <strong>the</strong> embryo. Thís appl les<br />

to both <strong>the</strong> expression <strong>of</strong> genes, and <strong>the</strong> action <strong>of</strong> environmentâl agents<br />

(saxá, t976).<br />

<strong>ln</strong> general, <strong>the</strong> first period <strong>of</strong> embryonic development (up to <strong>the</strong><br />

form<strong>at</strong>ion <strong>of</strong> germ layers) shows little tendenöy to malfcrm<strong>at</strong>ions, with<br />

embryonic de<strong>at</strong>h <strong>at</strong> high dose levels. lJîth <strong>the</strong> onset <strong>of</strong> morphogenesîs,<br />

<strong>the</strong> embryo become¡ very suscept¡ble to ter<strong>at</strong>ogenlc influences, resultíng<br />

<strong>ln</strong> major malform<strong>at</strong>lons. 0n reaching <strong>the</strong> fetal stêge, only structures<br />

still undergoing differentl<strong>at</strong>lon (such as <strong>the</strong> bra<strong>ln</strong>, pal<strong>at</strong>e, and major<br />

vessels) are stlll susceptlble. to abnormal development (falter, l968).<br />

<strong>ln</strong> mammals, <strong>the</strong>re ls <strong>the</strong> additional problem <strong>of</strong> whe<strong>the</strong>r an êgent<br />

acts directly on <strong>the</strong> embryo or indírectty through <strong>the</strong> placenta, as<br />

exempl ifíed by <strong>the</strong> activity <strong>of</strong> trypan blue. For experimenta¡ ter<strong>at</strong>ology,<br />

<strong>the</strong> use <strong>of</strong> physical agents provîdes accur<strong>at</strong>e control <strong>of</strong> timing and dosage,<br />

though some effects may be secondary to tissue damage or alter<strong>at</strong>ion <strong>of</strong><br />

fiorphogenet i c processes.<br />

X-ray tre<strong>at</strong>ment has revealed <strong>the</strong> sequence <strong>of</strong> crÌtical periods ín<br />

development <strong>of</strong> <strong>the</strong> r<strong>at</strong>(.:lob,et €jL, 19352 Kàven, l!J8; Hicks,.t954), <strong>the</strong> mouse<br />

(Russel l, 1950; 1956; r,rilson, .|954; Hícks, 1954), and <strong>the</strong> chick (Reyss-Brion,<br />

1956; Hadj I tsky,l!62;¡1¡ rrmann and t/olff,1964). Hicks (1954, 1954) found<br />

th<strong>at</strong> irradí<strong>at</strong>ion <strong>of</strong> pregnant r<strong>at</strong>s: <strong>at</strong> 9 days produced an open brain; <strong>at</strong><br />

l0 days produced forebrain, hindbraín, cord, and facial defects; <strong>at</strong> ll<br />

days produced hydrocephalus, with braínstem and cord dèfects; êt l2 days<br />

caused reductÌons <strong>of</strong> <strong>the</strong> brain and eyes; and after thls reduced <strong>the</strong> size<br />

<strong>of</strong> fiber tracts. Hicks found th<strong>at</strong> embryos showed a high regul<strong>at</strong>ive ability<br />

before <strong>the</strong> onset <strong>of</strong> d i ffe ren t i a t i on, so th<strong>at</strong> extensive t¡ssuè damage might<br />

355


356<br />

resu¡t ¡n only minor defects a few days l<strong>at</strong>er. He concluded th<strong>at</strong> <strong>the</strong><br />

n<strong>at</strong>ure <strong>of</strong>. <strong>the</strong> defect was rel<strong>at</strong>ed to <strong>the</strong> time <strong>of</strong> tré<strong>at</strong>ment, wh¡le <strong>the</strong> extent<br />

<strong>of</strong> <strong>the</strong> defect was rer<strong>at</strong>ed to <strong>the</strong> dose. After irradl<strong>at</strong>ion <strong>of</strong> chíck embryos<br />

Hadjiîsky UgAù: <strong>at</strong> O hours produced brain and eye defects; êt 22 hcurs<br />

produced nicrocephaly, mîcrophthalml", op"n cord defects; "nd<br />

<strong>at</strong> 4g-96 hours<br />

obtaîned limb defects; and <strong>at</strong> r68 hours found'rocar ized dîgltar cefects.<br />

Kirrmann and t/olff(1964) after local îzed irradi<strong>at</strong>ion <strong>of</strong> chick embryos concluded<br />

th<strong>at</strong>: undîfferenti<strong>at</strong>ed cells are <strong>the</strong> rnos t sens¡tve to a ter<strong>at</strong>ogen¡c<br />

ðgent; t¡ssue damage during morphogenesis does not suppress dîfferenti<strong>at</strong>ign,<br />

whlch goes on to produce an abnormar organ; and <strong>the</strong> parts <strong>of</strong> <strong>the</strong> earry embryo<br />

have cons î derab le autonomy.<br />

The importance <strong>of</strong> timîng and dosage has been confirmed by experiments<br />

wlth o<strong>the</strong>r physícal âgents, such as: hypoxia in mice (Murkami and Kameyáma,<br />

'|963) and in chícks (Gar rera, r95r); urtrasound in avian embryos (Lutz et ar.,<br />

1955; Lutz and Lutz - Osterag, 1957); ultraviolet lîght in <strong>the</strong> chick embryo<br />

(Hinrlchs, 1j2J; Ðavis, 1942; 19\4); and hyper<strong>the</strong>rmîa in <strong>the</strong> chick (Deuchar,<br />

1952) and rhe hamster (Kilham and Fërm, l9i6).<br />

Despite <strong>the</strong> uncertainty <strong>of</strong> m<strong>at</strong>ernal metabolism and placental trênsport<br />

in mammals, <strong>the</strong> action <strong>of</strong> chemical agen ts also depends on <strong>the</strong> timing <strong>of</strong> m<strong>at</strong>ernal<br />

tre<strong>at</strong>ment.' <strong>ln</strong> r<strong>at</strong>s, tre<strong>at</strong>ment on days 7-10 <strong>of</strong> gestâtion has produced<br />

exencephaly, spina bîfida, hydrocephalus and o<strong>the</strong>r defects: with trypan blue<br />

(i,/arkany et al., .l958i Lendon, 1968i 197Ð: wirh sal ícyl<strong>at</strong>es (Warkany and<br />

Takacs, 1959): and with hypervitaminosis A (Giroud and l4artinet, 1957;<br />

Langman and t{elch, l!66). <strong>ln</strong> hamsters hypervitaminosis A, dimethyl sulfoxide,<br />

and sodium arsen<strong>at</strong>e have all produced exencephaly after m<strong>at</strong>ernal<br />

înjectlon on <strong>the</strong> 8th day <strong>of</strong> gest<strong>at</strong>ion (Marin-padi I la and Ferm, l!6!; Ferm,<br />

1!66; Har<strong>ln</strong>-Padilla, 1966: Ferm and Carpenter, l968).


357<br />

Uindowîlg <strong>at</strong> ear¡y stages <strong>of</strong> avian development can be regarded<br />

as ano<strong>the</strong>r physícal ter<strong>at</strong>ogenÌc procedure. The standard windowíng technic<br />

<strong>at</strong> 26-30 hours produced a high incldence <strong>of</strong> mortal ity and marform<strong>at</strong>íons.<br />

This effect was almost abol ished by obliter<strong>at</strong>ion <strong>of</strong> <strong>the</strong> introduced air<br />

space, if performed i mmed îa te I y.<br />

The ter<strong>at</strong>ogenlc actlon <strong>of</strong> windowing <strong>at</strong> êarly stages <strong>of</strong> development<br />

has been reported by Ancel (19\6-47 t '1956),Hinsch and Hami lton (1956),<br />

l4cCalllon ånd Clarke (1gSÐ, ,"nn et ê1. (i973). <strong>ln</strong> many publ îc<strong>at</strong>ions<br />

"nO<br />

no <strong>at</strong>tempt to obl iter<strong>at</strong>e <strong>the</strong> a¡r space is reported, so thât any nalform<strong>at</strong>ions<br />

recorded mlght be caused by windowing as well as by <strong>the</strong> agents<br />

emp I oyed .<br />

<strong>ln</strong> <strong>the</strong> presen, "rp.rlr"ntr,<br />

embryos <strong>at</strong> <strong>the</strong> t¡me <strong>of</strong> treêtment ranged<br />

from Stage 5 to Stage 10. The effect <strong>of</strong> wîndowing is not confined to<br />

a short period like o<strong>the</strong>r physical agents, though form<strong>at</strong>ion <strong>of</strong> <strong>the</strong> amnîon<br />

by Stage 1B protects <strong>the</strong> embryo after about 60 hours. Some defects (such<br />

as neural dysraphism, eye defects, and trunk cysts) can be <strong>at</strong>trÍbuted to<br />

an early effect; o<strong>the</strong>rs (such as rumplessness, ectop¡a viscerum, and limb<br />

defects) arise l<strong>at</strong>er. A¡though windowing exposes <strong>the</strong> dorsal surface <strong>of</strong><br />

<strong>the</strong> chick embryo, and neural defects origin<strong>at</strong>e dorsally, o<strong>the</strong>r defects<br />

(such as ecto¡iía viscerum) involve ventral structures.<br />

<strong>ln</strong> <strong>the</strong> neural tube, four degrees <strong>of</strong> involvement resulted from<br />

windowing. l4any embryos developed quite normally. Embryos with early<br />

myeloschisis showed necrosis ín <strong>the</strong> superflcial cells <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e,<br />

which l<strong>at</strong>er resolved. Hyelodysplasia, due to absence <strong>of</strong> neural pl<strong>at</strong>e<br />

m<strong>at</strong>erîal,was comb<strong>ln</strong>ed with mesodermal cysts and hemorrhages. The most<br />

severely affected embryos (not examined histological ly),showed early de<strong>at</strong>h<br />

associ<strong>at</strong>ed wlth open neural defects, severe trunk dlstorsion, reduced


358<br />

bra<strong>ln</strong> and cord volume, and <strong>of</strong>ten extensive cysts.<br />

W<strong>ln</strong>dow<strong>ln</strong>g <strong>at</strong> 26^30 hours, like o<strong>the</strong>r ter<strong>at</strong>ogenic <strong>ln</strong>sults, thus<br />

appears to have eî<strong>the</strong>r a moder<strong>at</strong>e or a severe effect on <strong>the</strong> chick embryo.<br />

This grad<strong>at</strong>ion <strong>of</strong> response enables myeloschisis and myerodysprasia to be<br />

dist<strong>ln</strong>guished as dlstinct pêthological processes, each <strong>of</strong> which requires<br />

fur<strong>the</strong>r I nvest ig<strong>at</strong> lon.


SUHHARY AND CONCLUS I ONS


360<br />

I sutlt'lARY ANp coNcLUsto]s<br />

1. The slmple pþysical procedure <strong>of</strong> wîndow<strong>ln</strong>g.e.ggs <strong>at</strong> early stages <strong>of</strong><br />

<strong>ln</strong>cub<strong>at</strong>lon (with removal <strong>of</strong> 2 ml . <strong>of</strong> albumen) proved to be highly ter<strong>at</strong>ogen<br />

I c.<br />

2. W<strong>ln</strong>dowing <strong>at</strong> 14 hours caused a very high earìy mortal ¡ty, w¡th severe<br />

malform<strong>at</strong>ions <strong>ln</strong> <strong>the</strong> survlv<strong>ln</strong>g embryos. fr."ar"na <strong>at</strong> 26 hours produced a<br />

lower nprtal lty, wlth a hÍgh incidence <strong>of</strong> defects (predominantly involving<br />

<strong>the</strong> nervous system). Exposure <strong>at</strong> 38 hours was much less ter<strong>at</strong>ogen¡c.<br />

3. Remova I <strong>of</strong> <strong>the</strong> <strong>ln</strong>troduced alr space, by reexpansion <strong>of</strong> <strong>the</strong> aír-cell<br />

or by <strong>the</strong>.addltlon <strong>of</strong> albumen or F 12 medlum, almost abol ished <strong>the</strong> ter<strong>at</strong>ogenlc<br />

effect <strong>of</strong> windowing, îf pêrformed immedi<strong>at</strong>ely.<br />

4. The <strong>ln</strong>cidence <strong>of</strong> malform<strong>at</strong>ions produced by windowing <strong>at</strong> 26-30 hours<br />

increased with extended periods <strong>of</strong> incub<strong>at</strong>ion. Open brain and cord defects,<br />

nlcrocephaly, eye defects and trunk and rump cysts were present by 3 days.<br />

Facial defects and rumplessness appeared by ! days, but ectopia viscerum<br />

and limb defects were not promingnt unt¡l after 5 days.<br />

5. Examin<strong>at</strong>ion <strong>of</strong> skeletal defects <strong>at</strong> 12 dêys showed th<strong>at</strong> vertebral<br />

lesions varîed ín severity according to <strong>the</strong> region. Spina bifida occulta<br />

occurred largely in <strong>the</strong> cervical and upper thoracic regions. Spina bifida<br />

manifesta was seen between <strong>the</strong> lower thorac¡c and sacral regions. Vertebral<br />

irregularities and deletíons were almost confined to <strong>the</strong> caudal region.<br />

6. open bra<strong>ln</strong> defects occurred <strong>at</strong> every Stage after <strong>the</strong> expected closure<br />

<strong>of</strong> <strong>the</strong> anterior neuropore, suggesting th<strong>at</strong> <strong>the</strong>y arose by non-closure.<br />

7. open cord defects were <strong>of</strong> two distinct types.<br />

8. Hyeloschlsis was preceded by a characteristic triå.ngular shape <strong>of</strong><br />

<strong>the</strong> rhombold sînus. Serial sectlons revealed regular open defects, wlth


361<br />

separ<strong>at</strong>lon between <strong>the</strong> neural pl<strong>at</strong>e and taîl-bud sources <strong>of</strong> neural<br />

t¡ssue, but coirtinuity <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e ¡nto <strong>the</strong> caudal region.<br />

These findings <strong>ln</strong>dic<strong>at</strong>e th<strong>at</strong> myeloschisis arises by non-closure <strong>of</strong> <strong>the</strong><br />

neural folds. îhe establ ishment <strong>of</strong> myeloschisis was fol lowed by local<br />

separ<strong>at</strong>lon <strong>of</strong> <strong>the</strong> notochord from <strong>the</strong> open area <strong>of</strong> neural tube, but not<br />

by overgrowth <strong>of</strong> neural t¡ssue.<br />

9. lilye I odysp I as I a appeared <strong>at</strong> about <strong>the</strong> time <strong>of</strong> expected closure <strong>of</strong><br />

<strong>the</strong> rhomboÌd sinus. Serial sections revealed irregular open defects,<br />

wîth complete absence <strong>of</strong> neural pl<strong>at</strong>e m<strong>at</strong>erial and form<strong>at</strong>ion <strong>of</strong> <strong>the</strong><br />

cord tlssue from tal l-bud m<strong>at</strong>erlal alone. The lesions were accompanied<br />

by extensive cyst¡c and hemorrhagic changes in local mesoderm, with<br />

reduction <strong>ln</strong> somite volume. The¡:e was no assoc.¡êtecL notochordal separêtíon,<br />

but <strong>the</strong> volume <strong>of</strong> neural tls.sue was gre<strong>at</strong>ly reduced.<br />

10. ll<strong>ln</strong>dowing can be compared to o<strong>the</strong>r physical terêtogenic agents,<br />

whose effects depend on timing and dosage. The hígh incide-nce <strong>of</strong> neural<br />

defects was <strong>the</strong> result <strong>of</strong> tre<strong>at</strong>ment <strong>at</strong> <strong>the</strong>. perîod <strong>of</strong> axis form<strong>at</strong>ion and<br />

neurul<strong>at</strong>íon. Depending on <strong>the</strong> degree <strong>of</strong> embryonîc involvement,wíndowing<br />

produced two different types <strong>of</strong> open cord defects - myeloschisis and<br />

mye I odys p I as ì a.<br />

11. Because <strong>of</strong> <strong>the</strong> símílar development <strong>of</strong> neural tube f rom neural pl<strong>at</strong>e<br />

and tall-bud m<strong>at</strong>erials, with an overlap zone showîng cavit<strong>at</strong>ion and fusion,<br />

<strong>the</strong> chlck embryo provídes a good model for experimental investig<strong>at</strong>lon <strong>of</strong><br />

neural dysraphîsm <strong>ln</strong> man.


APPEND I CES<br />

362


363<br />

APPENDIX A<br />

Prepar<strong>at</strong>lon <strong>of</strong> Early Chlck Embryos for Serial Sectîoning.<br />

1. Tlp contents <strong>of</strong> egg <strong>ln</strong>to a dlsh <strong>of</strong> warm Howardrs chick saline.<br />

2, Cut vitelline r¡ernbrane around <strong>the</strong> equ<strong>at</strong>or <strong>of</strong> <strong>the</strong> yolk and peel<br />

membrane and blastoderm <strong>of</strong>f <strong>the</strong> yolk.<br />

3. Transfer to ano<strong>the</strong>r dlsh <strong>of</strong> Howardts sal ìne, remove vitell íne<br />

membrane wlth f<strong>ln</strong>e forceps, and pipette <strong>of</strong>f most <strong>of</strong> <strong>the</strong> saline to fl<strong>at</strong>ten<br />

<strong>the</strong> embryo <strong>ln</strong> a th<strong>ln</strong> fllm <strong>of</strong> saline (wîth ventral surface facing upwards),<br />

4. Add fresh Howardrs sal<strong>ln</strong>e dropwlse to ventral surface <strong>of</strong> <strong>the</strong> embryo'<br />

to wâsh <strong>of</strong>f <strong>the</strong> yolk,<br />

5. Remove salîne and add Boúints fíx<strong>at</strong>ive dropwise to wash <strong>of</strong>f remain<strong>ln</strong>g<br />

yolk partlcles and fix <strong>the</strong> embryo. Hold <strong>the</strong> dish <strong>at</strong> an angle to prevent<br />

<strong>the</strong> embryo flo<strong>at</strong>ing <strong>ln</strong>to a deep pool <strong>of</strong> fix<strong>at</strong>íve and <strong>the</strong>n curl ing <strong>at</strong><br />

<strong>the</strong> edges.<br />

6. Remove yolk - laden fix<strong>at</strong>ive and add just enough fix<strong>at</strong>ive to cover<br />

<strong>the</strong> embryo but prevent curling (for 15 mins.).<br />

7. l{ith a section-ll fter transfer to a fresh dish <strong>of</strong> Bouin's fluid,<br />

cover with a disc <strong>of</strong> filter paper to prevent curlîng, and leave for<br />

several hou rs..<br />

8. Decolorize with several changes <strong>of</strong> 70? alcohol containing 2?<br />

amrhon¡a (for several hours each).<br />

9. Leave <strong>ln</strong> 702 alcohol overnight, and examine for vísîble defects.<br />

Draw embryo with camera lucida.<br />

lO. Sta¡n with s<strong>at</strong>ur<strong>at</strong>ed eos<strong>ln</strong>-bluish in 702 alcohol (to improve<br />

vlslbll Ìty after embeddi.ng),for several hours.<br />

1t. llash briefly with 709 alcohol and separ<strong>at</strong>e <strong>the</strong> embryo from area<br />

vasculosa wlth a cork - borer.


364<br />

1i. Dehydr<strong>at</strong>e with changes <strong>of</strong> 802, 90? and 95? alcohols for t0 nins.<br />

each.<br />

13. Take embryo and a smal I pencil-wrìtten label through amyl acet<strong>at</strong>e<br />

for 10 m<strong>ln</strong>s.<br />

14. Take embryo and label through three changes <strong>of</strong> hot wax, for: 10 mins.<br />

each.<br />

15. Embed enbryo in fresh wax in a plastîc capsule, with ventral surface<br />

facing upwards, trunk parallel to long axis <strong>of</strong> capsule, and label <strong>at</strong> taíl<br />

end <strong>of</strong> emb ryo<br />

16. Cool capsule rapîdly and leave overnight ín fridge.<br />

17. Remove plastîc capsu'le and trim wax around embryo with a razor blâde<br />

until a very smal I segment containing <strong>the</strong> embryo is left with a buttress <strong>of</strong><br />

wax beh î nd it.<br />

18. Cut in as long a ribbon as possible, trimming <strong>the</strong> buttress <strong>of</strong> wêx<br />

behind <strong>the</strong> embryo several times during <strong>the</strong> cutting process.


365<br />

APPENDIX B<br />

Stainl.ng <strong>of</strong> Carti laginous Skeleton ât 11-12 Days.<br />

l. Flx for 48 hours in a mixture <strong>of</strong>:<br />

608 absol ute ethyl alcohol<br />

303 ch I or<strong>of</strong>orm<br />

101 glaclal acetlc acid.<br />

2. Oversta<strong>ln</strong> wlth 0.052 alcían blue ín a solutîon <strong>of</strong> /02 alcohol ,<br />

containing 5? acetíc acld, for 12 hours.<br />

3. Destain wi th 702 alcohol , containing 5% acetic acid, for 48 hours<br />

(using several changes <strong>of</strong> solution).<br />

4. Dehydr<strong>at</strong>e in 90? and 100? alcohol for 12 hours.<br />

5. Pass. through xylol and clear fully in benzyl benzo<strong>at</strong>e.<br />

NB, Embryos are still hard enough <strong>at</strong> <strong>the</strong> end <strong>of</strong> th¡s þrocess to take<br />

back into absolute alcohol, and section with a hand-held razor blade.


366<br />

t0<br />

BIBLIOGRAPHY


367<br />

10, BIBLIOGRAPHY,<br />

Alter, l.,l. (1962)" Anencephalus, hydrocephalus and spina bifida, Archr<br />

Neurol . 7141 1.<br />

Ambellan, E. (1955). Effects <strong>of</strong> adenìne nucleotides on neural tube<br />

form<strong>at</strong>lon <strong>of</strong> <strong>the</strong> frog enbryo. Proc. N<strong>at</strong>. Acad. Sci. 41 :428.<br />

Ambel lan, E. (1958). Compar<strong>at</strong>lve effects <strong>of</strong> mono-, di-, and triphosphorYl<strong>at</strong>ed<br />

nucleoeides on amphibian morphogenesls. J. Emb. Exp.<br />

l.lorphol. 6:86.<br />

Ambellan, E. and l,tebster, G. (19721. Effects <strong>of</strong> nucleotides on<br />

neurul<strong>at</strong>îon <strong>ln</strong> amphibian embryos. Devel . Blol . 5¿t+52.<br />

Ancel, P. (1946-47). Recherché expÉrimentale sur le sp<strong>ln</strong>a blfida.<br />

Arch. An<strong>at</strong>. Hicro. Horph. Exp. 36:45.<br />

Ancel, P. (1955). l,lalform<strong>at</strong>îons d6termînáe par des injectlons de<br />

substances chimíques local îsáes å l" tât. d rembryons de poule.<br />

J. Emb. Exp. Morphol . 3:335.<br />

Ancel, P. (1956). Recherche sur les effets tár<strong>at</strong>ogènes de lr ouverture<br />

de I roeuf de poule âu cours des trente-qu"tr" pr"r'|"."s heures de.ll<br />

<strong>ln</strong>cub<strong>at</strong>ion. Arch. An<strong>at</strong>. t'lîcro. Horph. Exp. 45:203.<br />

Anderson, tr.J..R., Baîrd, D, and Thomson, A.l'1. (1958). Epidemiology <strong>of</strong><br />

Stillbirths and infant de<strong>at</strong>hs due to congenital malform<strong>at</strong>ion. Lancet<br />

l¡.|304.<br />

Baker, P.C. and Schroeder, T.E. (1967). Cy'toplasmlc fi laments and morphogenetic<br />

rnovement ín <strong>the</strong> amphibian neural tube. Devel. Biol . 151432.<br />

Bal lantyne, J.!'1, (1904), llanual <strong>of</strong> Anten<strong>at</strong>al P<strong>at</strong>hology and Hyg¡6¡s - The<br />

Emhryo. Green. Ed I nburgh.<br />

Bar¡y, 4., P<strong>at</strong>ten, B.M. and g.tewart, B.H. (1957), Posslble factors <strong>ln</strong> <strong>the</strong><br />

development <strong>of</strong> <strong>the</strong> Arnold-Chiail malform<strong>at</strong>ion. J. Neurosurg. t4:285.


368<br />

Barson, A.J. (1920). Spina blfida: <strong>the</strong> signiflcance <strong>of</strong> <strong>the</strong> level and<br />

extent <strong>of</strong> <strong>the</strong> defect to <strong>the</strong> morphogenesis. Dev. Hed. Child Neuiol.<br />

12:.129.<br />

Barth. L.G. and Barth, L.J, (1974). lonlc regul<strong>at</strong>ion <strong>of</strong> embryonic<br />

<strong>ln</strong>duction and cel I differenti<strong>at</strong>ion in Rana pipèns. Devel . Blol . 39:'l.<br />

Beck, F. and Lroyd, J.B. (r963). The prepar<strong>at</strong>ion and ter<strong>at</strong>ogenic<br />

propertles <strong>of</strong> pure trypan blue and its common contaminants. J. Emb.<br />

Exp. I'lorphol . 112175.<br />

Beck, F. and Lloyd, J.B. (1966). The terêtogentc effect <strong>of</strong> azo dyes.<br />

Adv. Ter<strong>at</strong>ol. 1:13,l.<br />

Benírschke, K. (,|966). <strong>ln</strong>, The Sex Chrom<strong>at</strong><strong>ln</strong>. Ed. K. L. Ìloore. Saunders,<br />

Phlladelphia.<br />

Bentt Iff, s. and Gordon, L. H. (r965). spinar cord form<strong>at</strong>lon drstar to<br />

<strong>the</strong> posterior neuropore. Abst. Ter<strong>at</strong>ol . Soc. 5:4.<br />

Bergquíst, H. ('l959) . Experíments on <strong>the</strong> overgrowth phenomenon in <strong>the</strong><br />

brain <strong>of</strong> chick embryos. J.'Emb. Exp. Morphol . 72122.<br />

Blurrel, J., Evans, E.B. and Eggers, c. u. N. (lgSg). partial and complete<br />

agenesis or malform<strong>at</strong>ion <strong>of</strong> <strong>the</strong> sacrum wîth associ<strong>at</strong>ed anomar ies. J,<br />

Bore Joint Sur9. 4lA:497.<br />

Boere¡ta .t. (1929). Die Dynanik des Hedul larrhrschulusses. Roux Arch.<br />

Entfv.. - ir'lech. 0rg. 6:601.<br />

Bonnevie, K. (1934). Embryologicar anarysis <strong>of</strong> gene manifest<strong>at</strong>ron in<br />

Llttle and Baggrs abnormal mouse tribe. J. Exp. Zool . 67:443.<br />

Bragg, A.N. (1938). The organiz<strong>at</strong>ion <strong>of</strong> rhe early enbryo <strong>of</strong> Bufo<br />

cogn<strong>at</strong>us as revealed especial ly by <strong>the</strong> mltotic index. Z. Zell .<br />

tli cr. An<strong>at</strong>. 282154.


369<br />

Braun, l'{. (1882). entwicklungsvo.gägn" am Schi^¡anzende bei einigen<br />

Så.ugethÌeren mit Berücks¡chtìgung der Verhältn¡sse bein menschen. Arch.<br />

An<strong>at</strong>. Physiol i An<strong>at</strong>. Abt. 207"1<br />

Bremer; J. L. (1952). Dorsal ¡ntestinal fîstula; accessory neurenteric<br />

canal; dlastem<strong>at</strong>omyel ia. Arch. P<strong>at</strong>h. 54:132.<br />

Brocklehurst, G. (1969). l'he development <strong>of</strong> ih. hur"n cerebrosp<strong>ln</strong>al<br />

fluid p<strong>at</strong>hr^ray with particuiar reference to <strong>the</strong> ro<strong>of</strong> <strong>of</strong> <strong>the</strong> fourth ventr¡cle.<br />

J. An<strong>at</strong>. 105:467.<br />

Brouwer, B. (1916). Klinische. - an<strong>at</strong>omîsche Untersuchung 'tiber partielle.<br />

Anencephal ie. Z. Ges. Neur. Psychí<strong>at</strong>. 32t16\.<br />

Brown, M.G., Hamburger, V. and Schmltt, F.0. (1941). Density studies<br />

on amphlbían embryos wíth special reference to <strong>the</strong> mechanism <strong>of</strong> organizer<br />

actîon. J.. Exp. Zool. 88:353.<br />

Browne, D. (1934). Tal ipes equino-varus. Lancet. ll:969.<br />

Browne, D. (1967). A mechanist¡c înterpretion <strong>of</strong> certain m_alferm<strong>at</strong>lons.<br />

Adv. <strong>ln</strong> Ter<strong>at</strong>ol.2:11.<br />

Bryden, H. 14., Perry, C. and Keeler, R.F. (1973). Effects <strong>of</strong> alkaloids<br />

<strong>of</strong> Ver<strong>at</strong>rum cal ifornic.um on.chîck embryos. Teralol. 8:19.<br />

Burda, D. J. (1968). Studies on <strong>the</strong> experimental inductíon <strong>of</strong> over-<br />

. grov,rth in chick embryos. An<strong>at</strong>. Rec. 161:419.<br />

Burda-Wi lson, D. (1971). Distríbution <strong>of</strong> thymidine - H3 <strong>ln</strong> <strong>the</strong> overgrown<br />

brain <strong>of</strong> <strong>the</strong> chlck embryo. J. Comp. Neurol. 141t37.<br />

Burnside, B. (.l971). |,licrotubules and mlcr<strong>of</strong>llaments ¡n ne.wt neurul<strong>at</strong>ion<br />

Devel . Biol. 26:416.<br />

, Butros, J.(1962). Studîes on <strong>the</strong> ¡nductive action <strong>of</strong> <strong>the</strong> early chick<br />

axls on <strong>the</strong> fsol<strong>at</strong>ed post-nodal fragments. J. Exp. Zool. 149¡'l.


Butros' J. (1965). Action <strong>of</strong> hearr and liver R.N.A. on <strong>the</strong> differenti<strong>at</strong>ion<br />

<strong>of</strong> segmen.ts <strong>of</strong>. chick blastoderms. J. Enb. Exp. llorphol . 13:1.19.<br />

Caffey, J, .(19721, <strong>ln</strong>, Pedi<strong>at</strong>rlc X-Ray Diagnosis. 6th Edirlon. year Book<br />

Hedical Pub. Ch i cago.<br />

Caneron, A.H. (1956). The spînal cord leslon in spiria biflda cystica.<br />

Lancet ll:1/1 .<br />

Carter, C.0. (1969). Spina bifida and anencephaly: a problem in genetÌcenvlronmental<br />

interactíon. J. Biosoc. Sci. l:71<br />

Carter, T.C. (1956). Genetics <strong>of</strong> <strong>the</strong> Little and Bagg X-rayed mouse stock.<br />

J. Genet. 54:311.<br />

Carter, T- C. (1959). Embryology <strong>of</strong> <strong>the</strong> Little and Bagg X-rayed mouse<br />

stock. J. Genet. 56 :401 .<br />

C<strong>at</strong>lzone, 0. and Gray, P. (1941). Experiments wíth chemicêl interference<br />

<strong>of</strong> early morphogenesis <strong>of</strong> <strong>the</strong> chick. ll. Effects <strong>of</strong> lead on C.N.'S.<br />

J. Exp. Zool . 87:71 .<br />

C<strong>of</strong>fey, V.P., and Jessop, tr.J.E. (,|957). A study <strong>of</strong> 137 cases <strong>of</strong><br />

anencephaly. Br¡t. J. Prev,Soc. l4ed. lt:174.<br />

Cohlan, S.q. (1954) . Congenital anomalies ìn <strong>the</strong> r<strong>at</strong> produced by excess<br />

intake <strong>of</strong> vitam¡n A ín pregnancy. paedi<strong>at</strong>rics 132556.<br />

Corl iss, C.E.,' Fedinec, A.A. and Robertson, c.G. (,|966). .<br />

Ter<strong>at</strong>ogenlc<br />

effect <strong>of</strong> teta¡ìus toxin on c.N.S. <strong>of</strong> early chick embryos. An<strong>at</strong>. Rec. 15\..221 -<br />

Corliss, C.E. and Robertson, c.c. (1959). Cephalocaudal and alar-basal<br />

vari<strong>at</strong>ions in <strong>the</strong> neural ep¡<strong>the</strong>l ium <strong>of</strong> 36 hour chick ernbryos. An<strong>at</strong>. Rec.<br />

1 33:446.<br />

Corliss, C.E. and Robertson, G.G.(1963). The p<strong>at</strong>tern <strong>of</strong>. mitotic densi ty<br />

in <strong>the</strong> early chlck neural epi<strong>the</strong>l ium. J. Exp. Zool . 15j¿125.<br />

370


371<br />

Crlley, B,B.(1969). Analysîs <strong>of</strong> <strong>the</strong> embryonic sources and mechanisms<br />

<strong>of</strong> development <strong>of</strong> posterior levels <strong>of</strong> chick neuraì tube. J. Horphol .<br />

1 28: 465 .<br />

Dareste, C. (1877). Ráche-rches sur la productlon artificielle des<br />

monstruositás o¡Ll essais de t.r<strong>at</strong>ogáie experimentale. Re<strong>ln</strong>wald . Paris.<br />

Davis, J.0. (1942). Photochemical spectral analysis <strong>of</strong> neural tube<br />

form<strong>at</strong>lon. Ph.D. Thesîs. Univ..<strong>of</strong> I'lissouri.<br />

Davis, J.0. (1944). ptrotochemical spectral analysls <strong>of</strong> neural tube<br />

form<strong>at</strong>îon. Biol . Bul l. 87273.<br />

Dekaban, 4.S. (1963). Anencephaly în early human embryos. J. Neurop<strong>at</strong>h.<br />

Exp. Neurol . 22:533.<br />

Dekaban, A.S. and Bartelmez, G.T.r. (1964). Complete dysraphísm in a l4-<br />

somîte human embryo. Am. J. An<strong>at</strong>. 115227.<br />

Derrlck, c. E.(1937), An analysis <strong>of</strong> <strong>the</strong> early development <strong>of</strong> <strong>the</strong> .chick<br />

by means <strong>of</strong> <strong>the</strong> mitotic index. J. Horphol , 61 t257.<br />

Deuchar, E.M. (1952). The effect <strong>of</strong> a high temper<strong>at</strong>ure shock on earìy<br />

norphogenesis în <strong>the</strong> chick embryo. J. Àn<strong>at</strong>. 86:443.<br />

van Dongen, R. (1964). <strong>ln</strong>sulin and myeloschisis in <strong>the</strong> <strong>the</strong> chick embryo.<br />

Aust. J. Exp,.Biol , Med. Scî. 42:607,<br />

Dunn, L.C, and Landauer, l./. (1934). The genetics <strong>of</strong> <strong>the</strong> rumpless fowl<br />

wl th evidence <strong>of</strong> a case <strong>of</strong> changing dominance. J. Genet. 292217.'<br />

Edwards, J. H. (1958). Congenital malform<strong>at</strong>ions <strong>of</strong> <strong>the</strong> central nervous<br />

system. Br¡t. J. Prev. Soc. Hed. 12:115.<br />

Elwood, J.H. (1970). Anencephalus in <strong>the</strong> gritish lsles. Dev. Med. Child<br />

Neurol. 12¿582.<br />

Fallon, l'1., Gordon, A.R.G. and Lendrum, A.C. (1954). Hediastinal cysts<br />

<strong>of</strong> fore-gut origin associ<strong>at</strong>ed with vertebral abnormal lties. Brlt. J.<br />

Sur9. 41 :520.


372<br />

Feeney., J. F. and W<strong>at</strong>terson, R.L..(,1946).. The development <strong>of</strong> <strong>the</strong> vascular<br />

p<strong>at</strong>tern within <strong>the</strong> r',,a|I s <strong>of</strong> <strong>the</strong> central nervous system <strong>of</strong> <strong>the</strong> chick embryo.<br />

J. l''lorphol . 78¿231 ,<br />

Ferm, V.H. (1958). fer<strong>at</strong>ogenic effects <strong>of</strong> trypan blue on hamster embryos.<br />

J. Emb. Exp. Horphol . 6:284.<br />

' Ferm, V.H. (1966). Congen¡tal malform<strong>at</strong>ions ihducecl by CÌmethyl sulfoxide<br />

<strong>ln</strong> <strong>the</strong> golden hamster. J. Emb. Exp. l''lorphol . l6¡49.<br />

F.erm, v.H. ând Carpenter, s.J. (1968). l',lalform<strong>at</strong>f ons induced by sodîum<br />

aisen<strong>at</strong>e. J. Reprod, Fertil. 17:199.<br />

Foltz, E.1., and Shurtleff, D.B. (lglZ). Hydrocephalus tre<strong>at</strong>ment ¡n <strong>the</strong><br />

early weeks <strong>of</strong> life. <strong>ln</strong>, 4.4,0.S. Symposium on ilye I omen I ngoce I e. Bal tîmore<br />

Fowler, l. (1953). Responses <strong>of</strong> <strong>the</strong> chick neural tube in mechanical ly<br />

produced spina bîfida. J. Exp. .7ool . 12J:1lj<br />

Frazer, J.Ê. (1921-22). Report <strong>of</strong> an anencephalic embryo. J.An<strong>at</strong>. 56:12,<br />

Fuj ita, s, (1960). t'litqtíc p<strong>at</strong>rerns and histogenesís <strong>of</strong> <strong>the</strong> central<br />

nervous system. N<strong>at</strong>ure 185: 702.<br />

Gal lera, J. (1951). <strong>ln</strong>fluence de I'<strong>at</strong>mospiràre artifîciellement.<br />

modîfîle sur le developpment embryonnaire du poulet. Acta Anât. I1:549.<br />

. Gardner, l,r,J, (1959). Anâtomic feêtures comÍnon to Arnold-chîarî and<br />

Dandy-tlaIker rialform<strong>at</strong>ions suggest common origin. Clev. Clin. Quart.<br />

26:206.<br />

Gardner, !t,J. (1961). Rupture <strong>of</strong> <strong>the</strong> neural tube. The cause <strong>of</strong> myelomeningocele.<br />

Arch. Neurol . lt: l.<br />

Gardner, W.J. (1964). Diastem<strong>at</strong>gmyel ia and <strong>the</strong> Kl ippel-Fei I syndrome. /<br />

Cleveland Cl in. Quart. 31:19.<br />

Gardner, W,J. (1972). <strong>ln</strong>, The Dysraphlc St<strong>at</strong>es. Exerpta l'le


373<br />

dqs anomal ies de lrorganiz<strong>at</strong>ion chez lrhomme et res animaux. Bal r l)re.<br />

Pari s.<br />

Gesenius, H. (1952). The increases <strong>of</strong> births <strong>of</strong> monsters in Berlin and<br />

its suburbs <strong>ln</strong> <strong>the</strong> post-war years. <strong>ln</strong>t. J. Sexology. 6:24.<br />

Gillette, R. (.l944). Cell nunber and cell size in <strong>the</strong> ectoderm dur¡ng<br />

neurul<strong>at</strong>lon (Amblystoma macul<strong>at</strong>um). ..1. Exp. iool. 96:201.<br />

Gl I lman, J., Gilbert, C., di I lman, T. and.Spence , l. (1948).<br />

Prel im<strong>ln</strong>ary report on hydrocephalus, spina bifida and o<strong>the</strong>r congenital<br />

anomalies <strong>ln</strong> <strong>the</strong> r<strong>at</strong> produced by trypan blue. S. Afr. J. Med. Sci.<br />

13:47.<br />

Gillman, J., Gilbert, 1., Spence, l. and Gillman, T. (tgSl). Fur<strong>the</strong>r<br />

report on congenital defects in r<strong>at</strong>s produced by trypan blue. S..Afr.<br />

J. lled. Sci. 16:125.<br />

Gingell, D. (1970). Contractile responses <strong>at</strong> <strong>the</strong> surface <strong>of</strong> an amphibian<br />

egg. J. Emb.. Exp. Morphol. 232583.<br />

Gi roud, A.et l'larrinet, M, (1957). orphogenàse de lranencephal ie. Arch.<br />

An<strong>at</strong>. I'l i cr. 46:247.<br />

Glaser, 0.C. (1914). 0n <strong>the</strong> mechanism <strong>of</strong> morphologîcal dîfferenti<strong>at</strong>ion<br />

În <strong>the</strong> nervous system. l. The transform<strong>at</strong>ion <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e into<br />

. a neural tube.' An<strong>at</strong>. Rec. 8:525.<br />

Glaser, O.C. (1916). The <strong>the</strong>ory <strong>of</strong> autonomous folding in embryogenesis.<br />

Science 44:505.<br />

Glucksmann, A. (1951). Cell de<strong>at</strong>hs in normal vertebr<strong>at</strong>e ontogeny. Biol.<br />

Rev.26:59.<br />

Grabowski, c.T. (1957). The inductlon <strong>of</strong> secondary embryos in <strong>the</strong> early<br />

chick blastodern by grafts <strong>of</strong> Hensents node. Am. J. An<strong>at</strong>. l0l:101.


374<br />

Grobstein, C. (1953) . orphogenetic interaction between embryonIc mouse<br />

tissues separ6teC by,,a nembrane 'f i I ter:. N<strong>at</strong>ure 172:869.<br />

Grüneberg, H. (1963). <strong>ln</strong>, The P<strong>at</strong>hology <strong>of</strong> Development. Blackweì l. Oxford.<br />

Hadjtiàky, P.(1962). Quoted by Ki rrmann, J. -M. and Wolff, E.(1964). <strong>ln</strong>,<br />

Ter<strong>at</strong>ogenic effects <strong>of</strong> ionizing radl<strong>at</strong>ions on <strong>the</strong> embryonlc development<br />

<strong>of</strong> <strong>the</strong> hlgher verrebr<strong>at</strong>es. <strong>ln</strong>t. Rev. exp. eainol . 3t365.<br />

Ham, R.G.(1965). ctonal growth <strong>of</strong> manmalian celìs in a chemical ly defined<br />

syn<strong>the</strong>tlc medlum. Proc. N<strong>at</strong>. Acad. Sci . 53¿288.<br />

Hamburger, V. (1948). The mitotic p<strong>at</strong>terns ín <strong>the</strong> spinal cord <strong>of</strong> <strong>the</strong> chîck<br />

embryo and <strong>the</strong>ir rel<strong>at</strong>îon to histogenetic processes. J. Comp. Neurol . 88'.221 .<br />

Hamburger, V. and Habel, K. (1947). Ter<strong>at</strong>ogenÌc and lethal effects <strong>of</strong><br />

<strong>ln</strong>fluenza A and mumps vîruses on early chick embryos. Proc. Soc.Exp.<br />

Blol. Med. 66:608.<br />

Hamburger, V. and Hamilton, H.L. (1951). A series <strong>of</strong> normal stages in<br />

development <strong>of</strong> <strong>the</strong> chick embryo. J. l'lorphol. 88:.49.<br />

Hamburgh, l'1. (1952). Malform<strong>at</strong>îons in mouse.embryos induced by trypan blue.<br />

N<strong>at</strong>ure. 169l'27.<br />

Hamburgh, l{. (1954). Embryology <strong>of</strong> trypan blue induced abnormalities in míce.<br />

An<strong>at</strong>. Rec. t l9:409.<br />

Hami lton, H.L. (1952). <strong>ln</strong>, Lîllie's Development <strong>of</strong> <strong>the</strong> Chick. Holt, R¡nehart<br />

and llinston. lrd Edition. New York.<br />

Harpel, H.S. and Gautieri, R.F. (1968). Morphine-induced fetal malform<strong>at</strong>ions.<br />

l. Exencephaly and axial skeletal fusions. J. Phårmacol . Sci. 57.| :1590.<br />

Harrison, R.c. (.|947).Wound heal ing and reconstitutíon <strong>of</strong> <strong>the</strong> central nervous<br />

system <strong>of</strong> <strong>the</strong> amphîbian embryo after removal <strong>of</strong> parts <strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e.<br />

J. Exp. Tool . 106:27.


375<br />

He<strong>at</strong>h, H.D., Shear, H.H., lm€gawa, D.T., Jones, I'1. H. and Adams, J. H.<br />

(1956). Ter<strong>at</strong>ogenic effects <strong>of</strong> herpes simplex, vaccinìa, influenza - A<br />

(ttVS), and dìstemper virus infectìons on early chick embryos. Proc. Soc.<br />

Exp. Biol . Med. 92t675 (1956).<br />

Hewltt, D.(1963). Geographical vari<strong>at</strong>îons in <strong>the</strong> mortal îty âttributed to<br />

spina blfida and o<strong>the</strong>r congenital malform<strong>at</strong>îons. Br¡t. J. Prev. soc.<br />

I'led. 17:13.<br />

Hicks, S.P. (t954). echanism åf radi<strong>at</strong>ion anencephaly, anophthalmia and<br />

pitultary anomal ies. Repair ìn <strong>the</strong> mammalian embryo. Arch. P<strong>at</strong>h. 57 *63..<br />

Hlcks, S.P. (1954) . The effects <strong>of</strong> ionizing radi<strong>at</strong>ion, certa<strong>ln</strong> hormones,<br />

and radiomimetic drugs or <strong>the</strong> developing central nervous system. J.<br />

Cel ì. Comp. Physîol . 43. Supp. I :I51.<br />

Hll lman, N.W.4 Nìu, l.t.C. (1963). Chick cephalogenesis. l. The effect <strong>of</strong><br />

R.N.A. on early cephal ïc development. Proc. N<strong>at</strong>. Acad. Sci. 50:486.<br />

Hinrlchs, M.A. (1927). Hodïfìc<strong>at</strong>îon <strong>of</strong> development on <strong>the</strong> basis <strong>of</strong><br />

differential susceptibility to radi<strong>at</strong>ion. lV. Chîck embryos and ultraviolet<br />

radi<strong>at</strong>ion. J. Exp. Tool . \7:309.<br />

Hinsh, G.W. and Hamilton, H, L. (1956). The developmental f<strong>at</strong>e <strong>of</strong> <strong>the</strong><br />

first somlte <strong>of</strong> <strong>the</strong> ch¡ck. An<strong>at</strong>. Rec. 125t225.<br />

Hîs, W. (1874). Unsere Kãrperform und das physiologische Problem ihrer<br />

En ts tehung. Vogel. Leipzî9.<br />

Holtfreter, J. (1943). Properties and functions <strong>of</strong> <strong>the</strong> surface coar in<br />

amphibian eggs. J. Exp. Zool . 932251 .<br />

Holtfreter, J. (1955). <strong>ln</strong>, Analysis <strong>of</strong> Development. Eds. lJi llîer, D.H.,<br />

llelss, P.A and Hamburger, V. Saunders. New York.<br />

Hsu' C.1.. and van Dyke, J. H. (1948). An analysis <strong>of</strong> growth r<strong>at</strong>es in<br />

neural epl<strong>the</strong>l ium <strong>of</strong> normal and spina blfidous (nryeloschîsis) mouse embryos.


376<br />

An<strong>at</strong>. Rec. t 00 :745.<br />

Hughes, A.F.l,¡. . (1976). Developmental biology and <strong>the</strong> srudy <strong>of</strong> malformaiì,ons,<br />

Biol. Rev. 51 t143.<br />

Hughes, A.F.W. and Freefran, R.B. (1974). Compar<strong>at</strong>ive remarks o¡. <strong>the</strong><br />

development <strong>of</strong> <strong>the</strong> tail cord among higher vertebr<strong>at</strong>es. J. Emb.. Exp.<br />

llorphol , 322355.<br />

Hunt, T.E. (1931). An experimental study <strong>of</strong> <strong>the</strong> independent dlfferenti<strong>at</strong>ion<br />

<strong>of</strong> <strong>the</strong> lso¡<strong>at</strong>ed Hensenrs node and its rel<strong>at</strong>îon to <strong>the</strong> f;orm<strong>at</strong>ion <strong>of</strong> axial<br />

and non-axial parts in <strong>the</strong> chick embryo. J. Exp. Zool . 59¿395.<br />

Hunter, R.H. (1934-35). Extroversion <strong>of</strong> <strong>the</strong> cerebral hemîspheres in a<br />

human embryo. J. An<strong>at</strong>. 69¡82.<br />

<strong>ln</strong>gálls, N,t/. (t932). Studies în <strong>the</strong> p<strong>at</strong>hology <strong>of</strong> developnent. Am, J.<br />

P<strong>at</strong>h. 8:525.<br />

<strong>ln</strong>galls, T.H., Avis, F.R., Curley, F.J. and Temin, H.l',l. (1953). Genetic<br />

determinants <strong>of</strong> hypoxia-induced congenital abnormal i ties. J. Hered.<br />

44: 185.<br />

Jacobson, A.G. and Gordon, R. (1976). Changes in shape <strong>of</strong> <strong>the</strong> developing<br />

vertebr<strong>at</strong>e nervous system analysed experîmental ly, m<strong>at</strong>hem<strong>at</strong>ícally and by<br />

computer simul<strong>at</strong>ion. J. Exp. Zool. 197:191.<br />

Jacobson, C:0.' (1962). Cell migr<strong>at</strong>ion in <strong>the</strong> neural pl<strong>at</strong>e and <strong>the</strong> process<br />

<strong>of</strong> neurul<strong>at</strong>lon in <strong>the</strong> axolotl larva. Zool. Bidr. Uppsala 35:433..<br />

James, C.C.M. and Lassman, L.P, (1967). Resul ts <strong>of</strong> tre<strong>at</strong>ment <strong>of</strong> progressive<br />

lesions <strong>ln</strong> spina blfida occulta five to ten years after laminectomy. Lancet<br />

I I 31277 .<br />

James, C.C.M. and Lassman, L. P. (1972). Spinal Dysraphism. Butterworth.<br />

London.


377<br />

Jel inek, R. (1960). Development <strong>of</strong> experimentál exencephalia in <strong>the</strong><br />

chlck. CËslkl. fiorf. 8;368.<br />

Job, T.T., Leibold, G. J. and Fitzmaurice, H.A. (1935). BÌólogical effects<br />

<strong>of</strong> Roentgen rays. The determ<strong>ln</strong><strong>at</strong>ion <strong>of</strong> critical periods in mammalian<br />

development wîth X-rays. Am. J. An<strong>at</strong>. 56:97.<br />

Kätlá, B. (1955). Cell degenerarion durÌn9 Áormal onrogenesîs <strong>of</strong> <strong>the</strong><br />

rabb ¡ t brain. J. An<strong>at</strong>. 89:153.<br />

räl lán, B. (1965). Prol ifer<strong>at</strong>ion în rhe embryonic brain yrîth specíal<br />

reference to <strong>the</strong> overgrowth phenomenon and íts poss¡ble rel<strong>at</strong>ionship to<br />

neop¡,asía. Prog. Brain Res. l4:263.<br />

Käl lén, B. (1968). Early embryogenesis <strong>of</strong> <strong>the</strong> central nervous system<br />

with special reference to closure defects. Dev. l,ted. Chlld Neurol. Supp.<br />

16 : 44.<br />

Kalter, H. (1968), <strong>ln</strong>, Terêtology <strong>of</strong> <strong>the</strong> Central Nervous $ystem. Univ.<br />

<strong>of</strong> Ch í cago Press. Chicago.<br />

['aplan,S. (1965). Physìological and morphologícal analysis <strong>of</strong> <strong>the</strong> effects<br />

<strong>of</strong> trypan blue on <strong>the</strong> chick embryo. An<strong>at</strong>. Rec. l5l:368,<br />

Kaplan, S, and Grabowski, C.T, (1967). Analysis <strong>of</strong> trypan blue-índuced<br />

rumplessness în chick embryos. J. Exp. Zool . 165:325,<br />

Kaplan, S., arid Johnson, E.M. (1970). Ter<strong>at</strong>ogenic effects <strong>of</strong> direct<br />

înjection <strong>of</strong> aqueous and proteín-bound trypên blue ínto <strong>the</strong> bloodstream<br />

<strong>of</strong> 3-day chick embryos. Ter<strong>at</strong>ol . 3J69.<br />

Karfunkel , P. (1971). The role <strong>of</strong> microtubules and micr<strong>of</strong>¡lêments in<br />

neurul<strong>at</strong>ion in Xenopus. Devel . Biol. 25330.<br />

Karfunkel , P, (19721. The activity <strong>of</strong> mïcrotubules and micr<strong>of</strong>ilaments<br />

in neurul<strong>at</strong>ion in <strong>the</strong> chick. J. Exp. Zool. 18'l:289.


378<br />

Karfunkel, P. .(1974). The mechanlsm <strong>of</strong> neural tube form<strong>at</strong>ion¡ <strong>ln</strong>t.<br />

Rev. Cyt. J8:245.<br />

Kaven, A. (193S). Räentgenmodifik<strong>at</strong>ionen bei fiäusen. zeit. tlenschl . Ver.<br />

Konsr¡ r. Lehre. 22:2)8.<br />

l¿.eibel, F. and Elze, C. . (1908) . <strong>ln</strong>, Normentafel zur Entwicklungsgeschichte<br />

des l4enschen. Fi scher, Jerra.<br />

Kennedy, Vr.P. (.l967). Epldemiologic aspects <strong>of</strong> <strong>the</strong> problem <strong>of</strong> congenital<br />

malform<strong>at</strong>ions. Birth Defects 0riginal Articles Series, Vol. lll:No.2.<br />

Khan, A.A. (1965). Congenîtal malform<strong>at</strong>ions in Afrlcan neon<strong>at</strong>es in<br />

Nairobi. J. Trop. Med. Hyg. 68'272.<br />

Kllham, L. and Ferm, V.H. (1976). Exencephaly in fetal hamsters fol ìowíng<br />

exposure to hyper<strong>the</strong>rnia. Ter<strong>at</strong>ol . 142323.<br />

Klrroênn:', J.H. and t'lolff . E. (1964). Ter<strong>at</strong>ogenic effects <strong>of</strong>: îoniz<strong>ln</strong>g<br />

radi<strong>at</strong>ions on <strong>the</strong> embryonic development <strong>of</strong> <strong>the</strong> higher vertebr<strong>at</strong>es. <strong>ln</strong>t.<br />

Rev. Exp. P<strong>at</strong>hol, 3:365.<br />

Landauer, l{. (1945). Recessive rumplessness <strong>of</strong> fowl6 wlth kyphoscollosls<br />

and supernumerary ribs. Genetics 30:403.<br />

Landauer, W. and Baumann, L. (1943). Rumplessness <strong>of</strong> chlcken embryos<br />

produced by mechanical shaking <strong>of</strong> eggs prior to incub<strong>at</strong>ion. J. Exp. Zool .<br />

. 93:51<br />

Landaue.r, ll. and Bl iss, C,J'. (19!6). <strong>ln</strong>sul in-induced rumplessnets <strong>of</strong><br />

chickens. lll. The rel<strong>at</strong>ionship <strong>of</strong> dosage and <strong>of</strong> developmental stage<br />

<strong>at</strong> <strong>the</strong> t¡me <strong>of</strong> injection to response. J. Exp. Zool. 102:1.<br />

Landauer, ì^1. and Dunn, L.C. ('1925). Two types <strong>of</strong> rumplessnèss in domestic<br />

fowls. J. Hered. 16:151 .<br />

Langman, J. and l.lelch, G. W. (1966). Effect <strong>of</strong> vitamin A on devetopment <strong>of</strong><br />

<strong>the</strong> central nervous,systern. J. Comp. Neurol. .l28:1.


379<br />

Laurence, K.14. (1964). Thé n<strong>at</strong>ural history <strong>of</strong> spina bifida cystica.<br />

Detaî led analysis <strong>of</strong> 40/ cases. Arch. Dis. Child. 39:4'l.<br />

Laurence, K.N. (1969). The recurrence risk In spina bifida cystica and<br />

anencephaly. Dev. l,led. Child Neurol . Supp. 20:2J.<br />

Laurence, K.14..(1976). Spîna bifida research in Wales. J. Roy. Coll.<br />

Phys. Lond. 10:333.<br />

La Viel le, C.J. and Campbell, D.A. (1958). Neur<strong>of</strong>ibrcm<strong>at</strong>osis and intr<strong>at</strong>horacic<br />

meningocele. Radiology. /0:62.<br />

Lebedeff, A. (f881). Uber díe Entstehu,ng der Anencephalie und Spina bifida<br />

bel Vöge<strong>ln</strong> und I'tenschen. Vi rchclvs Arch. P<strong>at</strong>h. An<strong>at</strong>. 86:263.<br />

Leck, l. (1969). Ethnic differences in <strong>the</strong> incidence <strong>of</strong> malform<strong>at</strong>¡ons<br />

fol lowing migr<strong>at</strong>ion. Brlt. J. Prev. Soc. Med. 2l:166.<br />

Leck, l. and Record, R.c. (1966). Seasonal incidence <strong>of</strong> anencephalus.<br />

Brit. J. Prev. Soc. Med. 20:.67.<br />

Lehmann, F.E. (1937). i,lesodermisierung des prå'sumptiven chorda-m<strong>at</strong>erials<br />

durch einwi rkung von lithiumchlorid auf die gastrula von Trìton alpestr¡s.<br />

Arch. Entwmech. 0rg. 136:112.<br />

Lemi re, R.J, (1969). Vari<strong>at</strong>îons in development <strong>of</strong> <strong>the</strong> caudal neural tube in<br />

human embryos. Ter<strong>at</strong>ol . 21361 .<br />

Lemire, R.J., .Shepard, T.H. and Elsworth, C.A, (1965). Caudal myeloschisis<br />

in a 5 mm. (horizon XIV) human embryo. An<strong>at</strong>. Rec. t!2:!.<br />

L,endon, R.G. (1968). Studies on <strong>the</strong> embryogenesis <strong>of</strong> spina bifida in <strong>the</strong><br />

r<strong>at</strong>. Dev. l''led. Chî ld Neurol. Supp. 16:54.<br />

Lendon, R.c. (1972). An autoradiographîc study <strong>of</strong> induced myelomeningocele.<br />

Dev. I'led. Chl ld Neurol. Supp. 27¡80.<br />

Lendon, R.G. (1975). The embryogenesÌs <strong>of</strong> trypan-blue induced spina bifida<br />

aperta and short taíl <strong>ln</strong> <strong>the</strong> r<strong>at</strong>. Dev. I'led. Chlld Neurol. Supp. 25:3.


380<br />

Llghtowler, C.D.R. .(1971). Men ingomye I oce I e : The price <strong>of</strong> tre<strong>at</strong>ment.<br />

Brlt. Hed. J..l l:385.<br />

Lorber, J. and Levick, R.K.(1967). Spina bifida cystica: incÌdence <strong>of</strong><br />

spina bifida occulta in parents and în controls. Arch. Dìs. Chlld.42:<br />

171.<br />

Lutz, H., Bonhomme, C.H. and Lutz-Osterag, Y.' (1955). Actîon local lsáe<br />

des ultra-sons sur le blastoderme non incube de I toeuf dloîseau. Compte<br />

Rend. Soc. De Biol . 1,+9t1475.<br />

Lutz, H. and Lepy, t4. (1958). Action du gaz carbonique sur le blastoderme<br />

non incubá droiseau. Bull. Soc. Zool . 83t76.<br />

Lutz, H. ênd Lutz-osterag, G. (1957r. Action des ultra-sons sur le developpement<br />

du blastoderme non incube droiseau. Arch. An<strong>at</strong>. l,licro. Morph. Exp.<br />

46ß07.<br />

Mackenzíe, N.G., and Ernery, J.L, (1971).Oeformitíes <strong>of</strong> <strong>the</strong> cervîcal cord<br />

1n chi ldren with neurospinal dysraphism. Dev. l'1ed, Child Neurol. Supp.<br />

25258.<br />

l,tacHahon, 8,, Pugh, T.F. and <strong>ln</strong>galls, T.H. tt953).nnencephalus, spina bifida,<br />

and hydrocephalus incìdence rel<strong>at</strong>ed to sexr. race, and season <strong>of</strong> birth, and<br />

incidence ín siblings. Brit, J. Prev. Soc, Hed. 7:21t.<br />

Mac|lahon, B, ånd. Yen, S. (1971). Unrecognised epîdemic <strong>of</strong> anencephaly and<br />

spina bifida. Lancet I :31.<br />

McCal I lon, D.J. (1971 ) . Embryotoxic effect <strong>of</strong> t i ssue-speçi f ic. aRtiserum<br />

în <strong>the</strong> chick embryo. Canad. J. zool. 49¡143.<br />

I'tcCallion, D.J. and Clarke, R.B. (1959). A study <strong>of</strong> rhe terarogenîc effecrs<br />

<strong>of</strong> opening a window in <strong>the</strong> shel I <strong>of</strong> <strong>the</strong> henrs egg <strong>at</strong> 24 hours <strong>of</strong> íncub<strong>at</strong>ion.<br />

Canad. J. Zool . 37l.387.


381<br />

McKeown, T. and Record, R.G.(1951) Seasonal íncidence <strong>of</strong> congenital malform<strong>at</strong>ions<br />

<strong>of</strong> <strong>the</strong> central nervous systern. Lancet. l:192.<br />

Mann, R.4., I'loore, K.L. and Persaud, T.V.N. (,l973) Llmit<strong>at</strong>ions in <strong>the</strong><br />

use <strong>of</strong> <strong>the</strong> early chîck embryo as a ter<strong>at</strong>ological model. Ter<strong>at</strong>ol .lz A22.<br />

Harin-Padi I ìa, H. (1966). Mesoderm<strong>at</strong> al ter<strong>at</strong>¡ons induced by hypervi taminosls<br />

A. J. Emb.. Exp. I'lorphol. 15:261.<br />

l4arin-Padllla, l,l. (1966). Mesodermal alterarlons induced by dimethyl suifoxlde.<br />

Proc. Soc. Exp. Blol. lçled. 122t717.<br />

lilar<strong>ln</strong>-Padil la, l,l. and Ferm, V. (1965). Somite necrosis and developmental<br />

malform<strong>at</strong>ions induced by vitamin A in <strong>the</strong> golden hamster. J. Ëmb._ Exp.<br />

Morphol . 13: 1.<br />

Hartin, A.H. and Langman, J. (.|965). The development <strong>of</strong> <strong>the</strong> spinal cord<br />

exam<strong>ln</strong>ed by autoradiography. J.Emb. Exp. Morphol . 1\225.<br />

}l<strong>at</strong><strong>the</strong>ws, G.B.P., Persaud, T.V.N. and Hann, R.A. (197Ð. The chick embryo<br />

as an experímental model in ter<strong>at</strong>ological studies. <strong>ln</strong>, Labor<strong>at</strong>ory Ãninrals<br />

in Bíomedical Research and reaching. ,canadian Associ<strong>at</strong>íon For Labor<strong>at</strong>ory<br />

Anímal Science. hti nn ipeg.<br />

Ilenkes, 8., Litvac, B. and llies, A. (1964). 'Spontãneous and induced<br />

cell degener<strong>at</strong>îon in rel<strong>at</strong>ion to terêtogenesis. Rev. Roum. drEmbryol .<br />

Cyt. Serie drEìrbryol . 1z\7.<br />

Henkes, 8., Sandor, S. and llies, A. (1970). Ceìl de<strong>at</strong>h in ter<strong>at</strong>ogenesis.<br />

Adv. <strong>ln</strong> Ter<strong>at</strong>ol. 4 : 169.<br />

Messler, P.E. (1969). Effect <strong>of</strong> g-mercaptoethanor on <strong>the</strong> fine structure<br />

<strong>of</strong> <strong>the</strong> neural pl<strong>at</strong>e cells in <strong>the</strong> chîck embryo. J. Emb. Exp. l,lorphol.<br />

21t309.<br />

llorgagni, J.B, (1769). <strong>ln</strong>, The Se<strong>at</strong>s and Causes <strong>of</strong> Diseases <strong>ln</strong>vestíg<strong>at</strong>ed by<br />

An<strong>at</strong>omy. I'lil lar and Cadet l. London.


382<br />

Hoseley, H.R. (.l947). <strong>ln</strong>sul in-înduced rumplessness <strong>of</strong> chickens. lV. Early<br />

embryology. J. Eip. Zool . 1t5;279.<br />

l,lulherkar, L. (1960). Effects <strong>of</strong> trypan blue on chick emb¡yos.cultured<br />

in uitxo. J. E¡¡b. Exp, Horphol . Bi 1..<br />

llurakami, U. and Kameyar6¿, Y. (1963). Vertebral nalforrn<strong>at</strong>ions in <strong>the</strong> mouse<br />

fetus caused by m<strong>at</strong>ernal hypoxia rJr.rring early stages <strong>of</strong> pregnancy. J.<br />

Emb.. Exp. l,1orphot. l1:107.<br />

Naggan, 1., and Macl4ahon, D. (1967). Ethnic differences in <strong>the</strong> prevalance<br />

<strong>of</strong> anencephaly and spina bifida in Boston, l''lassachusetts. New Engl. J,<br />

!ie.d.277t1119.<br />

Niu, M.C.* Tw¡tty, v.c. (1953). The differentiêtion <strong>of</strong> gastrula ectoderm<br />

<strong>ln</strong> medium conditloned by axial mesoderm.. Proc. N<strong>at</strong>. Acad. Sci. 39:985.<br />

0jeda, J. 1., Barbosa, E. and Gomez-Bosque, P. (1970). Selective skeletal<br />

sta<strong>ln</strong><strong>ln</strong>g <strong>ln</strong> whole chicken embryos: a rapid alcian blue technique. Stain<br />

Techno f . t+5t137.<br />

Padget, D.H, (1968). Spina bifîda and embryonic neuroschísis. Johns<br />

Hopkl ns Med. J. 123 t233.<br />

Padget, D.H, (1970). Neuroschîsis and hurnan embryonic maldevelopment<br />

J. Neurop<strong>at</strong>h. Exp. Neurol . 2i:1J2.<br />

. P<strong>at</strong>ten, 8.14. (1952). Overgrowth <strong>of</strong> neural tube in young human embryos.<br />

An<strong>at</strong>. Rec. 1 13.381 .<br />

P<strong>at</strong>ten, B.M. (1953). Embryological stages in <strong>the</strong> establ ishing <strong>of</strong> myeloschisis<br />

wi th spina bifida. Am. J. An<strong>at</strong>. 932365.<br />

P<strong>at</strong>ten, 8.14. (1957). Varying developmental nechanisms in Terâtology.<br />

Ped i <strong>at</strong>ri cs. 19t734.<br />

Penrose, L.s. (1946). Famllial d<strong>at</strong>a on 144. cases <strong>of</strong> anencephaly, spína<br />

bifida and congenltal hydrocephalus. Ann. Eugen. 13:73.


Penrose, L. S.(1957). Genetics <strong>of</strong> anencephaly. J. I'len t. Def. Res. l:4.<br />

Persaud, .T.v.N.('l977). <strong>ln</strong>, Problems <strong>of</strong> Birth Defects. university Pêrk<br />

Press. Baltimore.<br />

Pleydell, M.J. (1960). Anencephaly and o<strong>the</strong>r congenÎtal abnormal itles.<br />

Epidmiological study in Northants. Brit. Hed. J. 1:309.<br />

Pol ltzer, G. (1954). Uber Spaltbi ldungen des'Gel irns und Ruckenmarks<br />

menschlÎcker Embryonen und ihre Unterscheidung von Verletzurgen. l'lien.<br />

Ztschr. Nervenh. 10: 18.<br />

Ránzl , S. und Tamini, E. (1939). Die Wirkung von Na SCN auf die Entwicklqng<br />

von Froschemb ryonen . N<strong>at</strong>urur¡ss. 27:566.<br />

von Recklinghausen, F. (1886).. Untersuchungen uber dle Spina Bifida.<br />

Arch. P<strong>at</strong>h. An<strong>at</strong>. 105:243.<br />

Record, R,G. (1961). Anencephalus ín Scotland. Brit. J. Prev. Soc. l4ed.<br />

15293.<br />

Record, R.G. and HcKeown, T. (1949) Congenital malform<strong>at</strong>ions <strong>of</strong> <strong>the</strong><br />

central nervous system. l. A survey <strong>of</strong> 930 cases. Srit. J. Soc. Med'<br />

4:183.<br />

Record, R.G. and ÌlcKeown, T. (1951). Congenital malform<strong>at</strong>ions'<strong>of</strong> <strong>the</strong><br />

central nervous system, D<strong>at</strong>â on s¡xty-n¡ne pairs <strong>of</strong> twíns. Ann. Eugenics.<br />

t5:285.<br />

Reyss-Brion, !r. (1956). La sensibilite d¡fferentiel le de certaínes ebauches<br />

de lrembryon de Poulet aux Rayons X, a dífferents stades du developpement.<br />

Arch. An<strong>at</strong>. l'tlcr. 45:342.<br />

Robertson, G.G., de Bandi, H.0., Williamson, A.P. and Bl<strong>at</strong>tner' R.J. (1967).<br />

Brain ahnormal îties 1n early ch¡ck embryos infected wlth influenza-A virus.<br />

An<strong>at</strong>. Rec. 158:1.<br />

383


384<br />

Robertson, G.G., I.,illiamson, A.P. and Bl<strong>at</strong>tner, R.J' (1960). 0rlgin <strong>of</strong><br />

myeloschisis în chìck embryos infected wi th <strong>ln</strong>fluenza-A virus. Yale J.<br />

Biol . tled. 32?449.<br />

Rogers, S.C. and Horrîs, 14. .(1971). <strong>ln</strong>fant mortal lty from spína bîfida'<br />

congenital hydrocephalus, monstrosity, and congenital leslons <strong>of</strong> <strong>the</strong><br />

ca¡díovascular system <strong>ln</strong> England and lJales. Ânn. Hum. Genet. 34:295.<br />

Rokos, J. (197Ð. P<strong>at</strong>hogenesis <strong>of</strong> diastem<strong>at</strong>omyel ia and spina bifida- J.<br />

P<strong>at</strong>h. 117:.l55'<br />

Rokos, J., €ekanova, E. and Kithierova, E. (1976)<br />

'<br />

P<strong>at</strong>hogenesis <strong>of</strong> trypan- 't<br />

blue-<strong>ln</strong>duced spina bif irla. J. P<strong>at</strong>h. 118:2!.<br />

.Rokos,<br />

J., Kithierova, E. and Palounkova, E. (1970), The morphogenesis<br />

<strong>of</strong> developmental malform<strong>at</strong>ions <strong>of</strong> <strong>the</strong> central nervous system. lV. The<br />

earl lest norphologic changes wîthin embryonîc tissue after appl ic<strong>at</strong>ion<br />

<strong>of</strong> trypan blue. Fol ia, l''lorph. t8:168.<br />

Rokos, J. and Knowles, J. (1976). Experimental contribution to <strong>the</strong><br />

pâthogenesis <strong>of</strong> spina bifida, J, P<strong>at</strong>h. 118:21.<br />

Rosenquist, c.c. (1966). Radioautographîc study <strong>of</strong> labeled grafts ín <strong>the</strong><br />

chick blastoderm. Development from primitive streak stages to Stage 12.<br />

Contr. Emb, Carn. <strong>ln</strong>st. vJash. 38:71 .<br />

. Roman<strong>of</strong>f, A.L: (1960), The Avian Embryo. McHillan. New York.<br />

Roux, l.l. (1885). Beítrage zur Entwicklungsmechanik des Embryo. Ztschr.<br />

Fur. B iol . 21:41l.<br />

Rugh, R. and Grupp, E. (1959). X-irradi<strong>at</strong>îon exencephaly. Am.J. Roent.<br />

81 :1026.<br />

Russel l, D.S., and Donald,C. (1935). The mechanism <strong>of</strong> internal hydrocephalus<br />

in spina bifida. Bra<strong>ln</strong>. 58:203.


385<br />

Russell, H.E. and A¡ tken' G.T. .(1963). Congenital absence <strong>of</strong> <strong>the</strong> sacrurn<br />

and lumbar vertebrae wlth pros<strong>the</strong>t¡c manêgement. J. Bone Joint Surg.<br />

454: 50 1 .<br />

Russel l, L.B. (1950). x-ray induced developmental abnormal ltles in <strong>the</strong><br />

fi¡ouse and <strong>the</strong>ir use in <strong>the</strong> analysis <strong>of</strong> embryological p<strong>at</strong>terns. l. Êxternal<br />

and gross vîsceral changes. J. Exp. Zoot. 114:545.<br />

Russel l, L.B. (1956). X-ray induced developmental abnormal íties in <strong>the</strong><br />

mouse and <strong>the</strong>ir use in <strong>the</strong> analysis <strong>of</strong> embryological p<strong>at</strong>terns. ll. Abnormalltles<br />

<strong>of</strong> <strong>the</strong> vertebral column and thorax. J.Exp' Zool . 131.329.<br />

Sammons, B.P. and Thomas, D,F. (1959). Extensive lumbar meningocele<br />

associ<strong>at</strong>ed wlth neur<strong>of</strong>ibrom<strong>at</strong>osis. Am. J. Roent. 8t:1021.<br />

Sanyal, S. and Niu, l,'1,c. (1966). Effects <strong>of</strong> R.N.A. on <strong>the</strong> developmental<br />

potentlal íty <strong>of</strong> <strong>the</strong> poster¡or primitive streak <strong>of</strong> <strong>the</strong> chick blastoderm.<br />

Proc. N<strong>at</strong>. Acad. Sci. 55.7\3'<br />

Sauer, F.C,(tS¡l). Mitosis <strong>ln</strong> <strong>the</strong> neural tube. J. Comp. Neurol . 6z:377.<br />

Sauer, l.,l,E, and ì,lalker, B. (1959). Radioautograph¡c study <strong>of</strong> ínterkinetic<br />

nuclear mígr<strong>at</strong>ion in <strong>the</strong> neural tube, Proc' Soc. Exp. Biol . Med. 101:557.<br />

Saunders, J.l,r. (1966). De<strong>at</strong>h in embryonic systems. Science f54:604'<br />

Saunders, R.1.. de C.H. (1943). Combined anterior and posterîor spina bifida<br />

<strong>ln</strong> a líving neon<strong>at</strong>al human female. An<strong>at</strong>. Rec. 87:255.<br />

saxán,. L. (1975). Embryonic iniuction. Cl in. Obst. Gyn. t8:1À9.<br />

Saxán, L, (1976). l4echanisms <strong>of</strong> ter<strong>at</strong>ogenesis. J. Emb. Exp. Morphol .<br />

36:1.<br />

Schroeder, T.E.(1969). The role <strong>of</strong> rcontracti le ringr fi laments in dividing<br />

Arbacia eggs. Blol . Bull. ß7t413.<br />

\


386<br />

Schroeder, T.E. (1970)<br />

"<br />

Neurul<strong>at</strong>ion in Xenopus laevís. An analysis and<br />

npdel based upon light and electron mlcroscopy. J.Emb. Exp. l'lorphol.<br />

23t427.<br />

Sôhirmachêr, - S. (1927). Uber die sogenannte Vervielfachung des Hedul larrohnes<br />

(bzw. des Canal îs central is) leí. Embryonen. Z. Hlcr. An<strong>at</strong>.<br />

Forech. 1O:.75.<br />

Searle, A.c.(1959). The încídence <strong>of</strong> anencephaly in a polytypic<br />

popul<strong>at</strong>ion. Ann. Hum. cenet, 23:279.<br />

Seevers, C.H. (1932). Potencies <strong>of</strong> <strong>the</strong> end bud and o<strong>the</strong>r caudal levels<br />

<strong>of</strong> <strong>the</strong> early chick embryo with specíal reference to <strong>the</strong> origin <strong>of</strong> <strong>the</strong><br />

metanephros. An<strong>at</strong>. Rec. 542217,<br />

Shannon, l'l.l/. and Nadler, H.L. (1968). X-l inked hydrocephalus. J.Med,<br />

cenet.5:326.<br />

Sharrard, lr.J.t^r. (1971), <strong>ln</strong>, Paedi<strong>at</strong>ric 0rthopaedics and Fractures.<br />

B I ackwel l. Oxford.<br />

Sharrard, ll.J., Zachary, R.B. and Lorber, J. (1967). Survival and<br />

paralysís in open myelomeningocele with special reference to <strong>the</strong> time<br />

<strong>of</strong> repair <strong>of</strong> <strong>the</strong> spinal lesion. Dev. lrled. Child Neurot. Supp. 13:35.<br />

Shepard, T.H..(1976). <strong>ln</strong>, C<strong>at</strong>alog <strong>of</strong> Ter<strong>at</strong>ogenic Agents. John Hopk<strong>ln</strong>s<br />

' Unlv. Press. Balti¡nore. 2nd Edition.<br />

Shoger,. R.L. (1960). The regul<strong>at</strong>ive capacity <strong>of</strong> <strong>the</strong> node region. J. Exp.<br />

zool . 143221 .<br />

Sidman, R.1., Green, M.C. and Appel, S,H. (1965). <strong>ln</strong>, C<strong>at</strong>alog <strong>of</strong> <strong>the</strong> Neurological<br />

ltutants <strong>of</strong> <strong>the</strong> House. Hårvard Unív. Press. Cambrlà9e, t4ass.<br />

S<strong>ln</strong>clair, J.G.(1950). A specific transplacental effect <strong>of</strong> urethane in<br />

mice. Texas Rep. Biol . Hed. 8:623.


387<br />

Spemann, H. (1938). Embryonic Development and <strong>ln</strong>duction. yale Univ.<br />

Press. New Haven.<br />

Stein, K.F. and Rud<strong>ln</strong>, l.A. .(I953). Development <strong>of</strong> mice homozygous for<br />

<strong>the</strong> gene for looptail. J. Hered. 44259.<br />

Sternberg, H. (1929). Uber Spaltbí ldingen des Medullarrohres bel jungen<br />

menschlîchen Embryonen eín Beitrag ru, Entrt"hrrg der Anencephalie und:.<br />

der Rachlschisis. Virchowrs Arch. Z7Zz3Z5.<br />

Stevenson, A.C., Johnston, H.A,, Stewart, I,l.l.p., and Goldín9, D.R. ('l966),<br />

congenital malform<strong>at</strong>ions. A Report <strong>of</strong> a study <strong>of</strong> series <strong>of</strong> consecutive<br />

blrths în 24 centres. Bull. tl.H.0. l4: Suppl,, p.2j.<br />

Stockard' c.R. (1920-21). Developmentar r<strong>at</strong>e and structurar expressíon;<br />

ên exper¡mental study <strong>of</strong> twins, rtdouble monstersr and síngle deformities,<br />

and <strong>the</strong> Ínteraction among embryonic organs during <strong>the</strong>ir origin and<br />

development. Am. J. An<strong>at</strong>.28:1.l5,<br />

Streeter, G.L. (1942). Developmental horizons in human embr,yos. Contr.<br />

Emb. Carn. <strong>ln</strong>st. Wash. )OzZ11.<br />

Tizard, J. (1968) . chirdren wi th myeromeningocere; socîar and educ<strong>at</strong>ionar<br />

problems. Dev. l4ed. Child Neurol, Supp. t5:,l.<br />

Toivonen, S. (1961). An experimentally produced change in <strong>the</strong> sequence<br />

<strong>of</strong> neu¡.al izing and mesodermalîzing inductive actions. Experentia l/:g/.<br />

Tolvone¡, S., Saxen, L. and Vainio, T. (1961). Quantît<strong>at</strong>ive evídénce<br />

for <strong>the</strong> two-gradient hypo<strong>the</strong>sis in <strong>the</strong> prímary inductíon. Experlentîa 1/:86.<br />

Torpin, R. (1968). Fetal l4alform<strong>at</strong>ions. Thomas. Springfìeld,<br />

Tulp, N. (1652) Observ<strong>at</strong>iones Hedicae. Amsterdam.<br />

Vogel, F.S. and I'lcClenahan, J,L. (19SZr. Anomalies <strong>of</strong> major cerebral<br />

arterles aesoci<strong>at</strong>ed with congenital malform<strong>at</strong>lons <strong>of</strong> <strong>the</strong> brá<strong>ln</strong>. Am J. p<strong>at</strong>h.<br />

282701 .


vJêdd¡ngton, C.H. (1932).. Exper¡ments on <strong>the</strong> development <strong>of</strong> chlck and duck<br />

embryos cultiv<strong>at</strong>ed in oil:ro. Phll. Trans. noy. So". B. 2212179.<br />

l{addington, C.H..and carter' T.c. (1953). A note on abnormal ities induced<br />

<strong>ln</strong> nouse embryos by'trypan blue' J. Emb. Exp. Horphol . I:167.<br />

Waddington, C.H.4 Perry, H.H. (1956). Ter<strong>at</strong>ogenic effects <strong>of</strong> trypan blue<br />

on amphlblan embryos. J. Emb. exp. Horihol. ll:110.<br />

Waddington, C.H. and Perry, H. 14. (1966). A note on <strong>the</strong> mechanism <strong>of</strong> cell<br />

deform<strong>at</strong>ion in <strong>the</strong> neural folds <strong>of</strong> <strong>the</strong> amphibìan. Exp. Cell Res' 41:691.<br />

lJa rkany, J. (1971). Congenital l4alform<strong>at</strong>ions. Year Book Medical Publ ishers'<br />

Ch i cago .<br />

tlarkany, J. and Schraffenberger, E. (1947). Congenital malform<strong>at</strong>íons<br />

induced in r<strong>at</strong>s by Roentgen rays. Skeletal changes in <strong>the</strong> <strong>of</strong>fspríng<br />

fol lowing a single irradÎ<strong>at</strong>ìon <strong>of</strong> <strong>the</strong> mo<strong>the</strong>r. Am. J' Roent. Rad. Ther.<br />

57 2455.<br />

l,la rkany, J. and Takacs, E. (1959). Experimental production <strong>of</strong> congenital<br />

malform<strong>at</strong>ions in r<strong>at</strong>s by sal icyl<strong>at</strong>e poísoning. Amer. J. p<strong>at</strong>tr. 35:315.<br />

l,la rkany, J., l/i lson, J,G., and Geiger, J.F. (1958). yeloschisis and<br />

rnye I omen i ngoce I e produced experimentally ¡n <strong>the</strong> r<strong>at</strong>. J. Comp. Neurol.<br />

109:35.<br />

lr<strong>at</strong>terson, R.L., Veneziano, P. and Barth, A. (1956). Absence <strong>of</strong> a true<br />

germinal zone in neural tubes <strong>of</strong> young chick embryos as demonstr<strong>at</strong>ed by<br />

<strong>the</strong> colchicine technlque. An<strong>at</strong>, Rec. 2\t379.<br />

lleed, L.H. (1917). The development <strong>of</strong> <strong>the</strong> cerebro spinal spaces in <strong>the</strong><br />

pig and <strong>ln</strong> man. Contr. Emb. Carn. <strong>ln</strong>st. l'lash. 5:1<br />

Weed, L.H. (1922). The absorption <strong>of</strong> cerebrospinal fluid ¡nto <strong>the</strong> venous<br />

system. Am. J. An<strong>at</strong>. 3l:19t.<br />

388


389<br />

lJeed, ¡.H. (1937 -38'). M.ning., and cerebrospînal ftuid. J. An<strong>at</strong>. 722181 .<br />

Wessels, N.K. (1971). How living cells change shape. Scî. Amer. 225tlY276.<br />

lletzel, R. (1929. Untersuchungen am Huhnchnen. Die Entwlcklung des Keims<br />

wahrend der ersten binden Bruttage. Arch. Entwmech. 119:188.<br />

tlillîams, K.E., Roberts, G., Kídston, H.E., Beck, F. and Lloyd, J.B.(1976).<br />

<strong>ln</strong>hlbítlon <strong>of</strong> pinocytos¡s in r<strong>at</strong> yolk sic by irypan blue. Ter<strong>at</strong>ol . 141343.<br />

!,li I I iamson, A.P., B¡<strong>at</strong>tner, n.¡, and Robertson, G.G.(1953). Factors înfluencing<br />

production <strong>of</strong> developmental defects in <strong>the</strong> chick embryo fol lowing<br />

<strong>ln</strong>jection wlth Newcastle disease vírus. J. lmmunol . 71.207. t'lil I iamson,<br />

4.P., Blâttner, R.J. and Simonsen, L. (1956). Mechanlsm <strong>of</strong> <strong>the</strong> ter<strong>at</strong>ogenic<br />

actîon <strong>of</strong> Newcastle disease virus in <strong>the</strong> chick embryo. J. lmmunol . 76:275.<br />

lllllier, B.H., l,leiss, P.A. and Hamburger, V. (1955), Eds. Analysis <strong>of</strong><br />

Development. Saunders, New York,<br />

lJi lson, D.B.(1974), Prol îfer<strong>at</strong>ion în <strong>the</strong> neural tube <strong>of</strong> <strong>the</strong> splotch (sp)<br />

mutânt mouse. J. Comp. Neurol, 15422\9.<br />

Wilson, D.B. and carter, E.M. (1974). The neural cell cycle in <strong>the</strong> looptail<br />

(Lp) mutênt mouse. J. Emb. Exp. Morphol . 322397.<br />

tti lson, J.c.(1954). Differentî<strong>at</strong>ion and <strong>the</strong> reaction <strong>of</strong> r<strong>at</strong> embryos to<br />

radl<strong>at</strong>lon. J. Cell. Comp. Physiol. 41, Suppl. l:11.<br />

Wilson, J.G.,'Shepard, T,H., Gennaro, J.F. (1963). Studies on <strong>the</strong> sìte<br />

fh<br />

<strong>of</strong> ter<strong>at</strong>ogenic act¡on <strong>of</strong> C'- - labeled trypan blue. An<strong>at</strong>. Rec. 145:300.<br />

Yen, S. and Macl'lahon, B. (1968). Genetics <strong>of</strong> anencephaly and spina bifida.<br />

Lancet ll:623.<br />

van der Zwan, A. (1951). Anencephaly and rachischisis. Case description,<br />

p<strong>at</strong>hology and aetlology. Fol ia. Psychi<strong>at</strong>. Neurol. Neurochir. Neerland.<br />

54:147.


390<br />

Zwllli.ng, E..(1942). Restitution <strong>of</strong> rhe tail in <strong>the</strong> early chick embryo.<br />

J. Exp. Zool . 9l:453.<br />

Zwllll.ng, E. (1942). The development <strong>of</strong> dominant rumplessness in chick<br />

embryos. lìenet i cs 27¡6\l .<br />

Zwll li.ng, E. (1945). The embryogeny <strong>of</strong> a recessive rumpless condition<br />

<strong>of</strong> chickens. J. Exp. Zool. 99t79,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!