02.03.2013 Views

effects of l-carnitine administration on growth performance

effects of l-carnitine administration on growth performance

effects of l-carnitine administration on growth performance

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Arch. Anim. Nutr., October 2003, Vol. 57(5), pp. 381 – 388<br />

EFFECTS OF L-CARNITINE ADMINISTRATION ON<br />

GROWTH PERFORMANCE, CARCASS TRAITS,<br />

BLOOD SERUM PARAMETERS AND ABDOMINAL<br />

FATTY ACID COMPOSITION OF DUCKS<br />

C. ARSLAN a, *, M. C¸ I˙TI˙L b and M. SAATCI c<br />

a Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Nutriti<strong>on</strong>, b Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Internal Disease, c Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Science,<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Kafkas, Kars, Turkey<br />

(Received 27 February 2003, accepted 21 May 2003)<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> <str<strong>on</strong>g>administrati<strong>on</strong></str<strong>on</strong>g> via drinking water <strong>on</strong> <strong>growth</strong> <strong>performance</strong>, carcass traits, blood serum<br />

parameters and abdominal fatty acid compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ducks was examined. One hundred day-old Turkish<br />

native duck chicks were divided into two groups, each with five replicates and given the same diets with 0 and<br />

200 mg/l <str<strong>on</strong>g>carnitine</str<strong>on</strong>g> chlorhydrate via drinking water. The study lasted 8 weeks, with the first 4 weeks as a starter<br />

and the last 4 weeks as grower period. At the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the study five ducks were randomly selected from each<br />

subgroup for slaughter. Growth <strong>performance</strong> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> ducks were not affected significantly by L<str<strong>on</strong>g>carnitine</str<strong>on</strong>g><br />

<str<strong>on</strong>g>administrati<strong>on</strong></str<strong>on</strong>g>. Live weight, daily weight gain, cumulative feed c<strong>on</strong>sumpti<strong>on</strong> and average feed<br />

c<strong>on</strong>versi<strong>on</strong> efficiency were found to be 1490 and 1621 g, 26.0 and 28.1 g, 5386 and 5662 g, 3.75 and 3.54 kg/kg<br />

in the c<strong>on</strong>trol and in the <str<strong>on</strong>g>carnitine</str<strong>on</strong>g> groups respectively. L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> <str<strong>on</strong>g>administrati<strong>on</strong></str<strong>on</strong>g> did not effect carcass traits<br />

and serum cholesterol, total lipid, triglyceride and glucose levels. Total saturated fatty acid c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

abdominal fat significantly decreased, m<strong>on</strong>o- and polyunsaturated fatty acid c<strong>on</strong>tent were not affected by L<str<strong>on</strong>g>carnitine</str<strong>on</strong>g><br />

<str<strong>on</strong>g>administrati<strong>on</strong></str<strong>on</strong>g>. In c<strong>on</strong>clusi<strong>on</strong>, L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> <str<strong>on</strong>g>administrati<strong>on</strong></str<strong>on</strong>g> by drinking water did not affect <strong>growth</strong><br />

<strong>performance</strong>, carcass traits and blood parameters in ducks.<br />

Keywords: Carnitine; Growth; Carcass compositi<strong>on</strong>; Blood compositi<strong>on</strong>; Abdominal fat; Ducks<br />

1. INTRODUCTION<br />

L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> (b-hydroxy-g-N-trimethylamino butyrate) is a water-soluble quaternary<br />

amine, which occurs naturally in micro-organisms, plants and animals (Bremer,<br />

1983; Borum, 1987). This compound is synthesized in vivo from lysine and<br />

methi<strong>on</strong>ine in the kidney (feline) and liver in all whole mammals (Rebouche and<br />

Pauls<strong>on</strong>, 1986; Feller and Rudman, 1988). The metabolic importance <str<strong>on</strong>g>of</str<strong>on</strong>g> L<str<strong>on</strong>g>carnitine</str<strong>on</strong>g><br />

is indispensable for the transport <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-chain fatty acids from the<br />

cytosol into the mitoch<strong>on</strong>drial matrix for b-oxidati<strong>on</strong> (Bremer, 1983; Borum,<br />

1987).<br />

*Corresp<strong>on</strong>ding author: Dr C. Arslan, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Kafkas, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine, Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Nutriti<strong>on</strong>, 36300, Kars, Turkey. Tel: + 90 474 2426800/1142; Fax: + 90 474 2426853; E-mail:<br />

carslan42@hotmail.com<br />

ISSN 0003-942X print; ISSN 1477-2817 <strong>on</strong>line # 2003 Taylor & Francis Ltd<br />

DOI: 10.1080/00039420310001607734


382 C. ARSLAN et al.<br />

Ducks are genetically predisposed to the fatness. Excessive fat in ducks is<br />

unattractive to c<strong>on</strong>sumers who are c<strong>on</strong>cerned about the negative <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

saturated fat intake <strong>on</strong> health. Different studies c<strong>on</strong>ducted <strong>on</strong> weaned pigs<br />

found that L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> supplementati<strong>on</strong> in diet could reduce carcass fat and<br />

improve feed c<strong>on</strong>versi<strong>on</strong> efficiency (Weeden et al., 1991; Owen et al., 1996). In<br />

poultry, the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> additi<strong>on</strong> to the diet are less clear. There have<br />

been several results indicating that L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> supplementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler diets<br />

improved <strong>growth</strong> rate, feed c<strong>on</strong>versi<strong>on</strong> efficiency, breast and thigh meat yield<br />

and reduced abdominal fat in broilers (Rabie et al., 1997a,b; Rabie and<br />

Szilagyi, 1998). However, Barker and Sell (1994), Leibetseder (1995), and Buyse<br />

et al. (2001) failed to observe any positive <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> supplementati<strong>on</strong><br />

<strong>on</strong> diet or drinking water (Rodehutscord et al., 2002) <strong>on</strong> broiler<br />

<strong>performance</strong>.<br />

In several species, including rabbits (Bell et al., 1987) and rats (M<strong>on</strong>dola et al., 1992)<br />

dietary L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> supplementati<strong>on</strong> decreased serum cholesterol and triglyceride levels.<br />

In c<strong>on</strong>trast, it is noticed that L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> supplementati<strong>on</strong> in the diet did not affect<br />

serum cholesterol levels in broilers (Lien and Horng, 2001). Any literature related to the<br />

usage <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> and its effect <strong>on</strong> abdominal fatty acid compositi<strong>on</strong> in duck feeding<br />

could not be found.<br />

In the current study, the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> <str<strong>on</strong>g>administrati<strong>on</strong></str<strong>on</strong>g> via drinking water <strong>on</strong><br />

<strong>growth</strong> <strong>performance</strong>, carcass traits, blood parameters and abdominal fatty acid<br />

compositi<strong>on</strong> were investigated in Turkish native ducks.<br />

2. MATERIALS AND METHODS<br />

2.1. Animals and treatments<br />

One hundred, unsexed, day-old Turkish native duck chicks were divided into two<br />

groups, each with five replicates, c<strong>on</strong>taining 10 chicks. Both groups were fed the<br />

diets prepared to meet Nati<strong>on</strong>al Research Council (NRC, 1984) recommendati<strong>on</strong><br />

for ducks (Table I). Additi<strong>on</strong>ally, 0 (C<strong>on</strong>trol group) and 200 mg/l <str<strong>on</strong>g>carnitine</str<strong>on</strong>g><br />

chlorhydrate (Carnitine group) (Hepabial Carnitine, SOGEVAL Laboratoire,<br />

France) were administrated via drinking water. Due to the <str<strong>on</strong>g>carnitine</str<strong>on</strong>g> chlorhydrate<br />

being in a liquid form, it was <str<strong>on</strong>g>of</str<strong>on</strong>g>fered via drinking water. The study lasted 8<br />

weeks, with the first 4 weeks as a starter and the last 4 weeks as a <strong>growth</strong><br />

period. Ducklings were placed in electrically heated battery brooders for the first<br />

2 weeks and c<strong>on</strong>tinuous incandescent lights were sh<strong>on</strong>e. At 15 days <str<strong>on</strong>g>of</str<strong>on</strong>g> age, the<br />

ducklings were transferred to a feeding platform (1 m 6 2m685 cm) made from<br />

metal, which c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> a 1 cm mesh wire floor, over a c<strong>on</strong>crete floor. After the<br />

sec<strong>on</strong>d week the study was c<strong>on</strong>ducted at room temperature (208C). Diets and<br />

water were available at all times during the experimental period. Water<br />

c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnitine</str<strong>on</strong>g> groups were m<strong>on</strong>itored but net water c<strong>on</strong>sumpti<strong>on</strong><br />

could not be estimated due to excessive use <str<strong>on</strong>g>of</str<strong>on</strong>g> water by ducks either for drinking<br />

or play. It is well known that a growing chicken drinks approximately twice as<br />

much water as the feed it c<strong>on</strong>sumes (NRC, 1984). L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> intake by ducks<br />

might be estimated with fortnightly feed intake in this study. Additi<strong>on</strong>ally, studies<br />

have already shown that L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> supplementati<strong>on</strong> did not affect water intake<br />

(C¸ elik and O¨ ztu¨ rkcan, 2003).


EFFECTS OF L-CARNITINE ON GROWTH<br />

TABLE I Compositi<strong>on</strong> and proximate analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the starter and grower diets<br />

Ingredient Starter Grower<br />

Yellow maize [%] 59.55 64.80<br />

Barley [%] 2.95 10.40<br />

Wheat bran [%] – 6.00<br />

Soybean meal [%] 30.00 16.40<br />

Fish meal [%] 5.00 –<br />

Lime st<strong>on</strong>e [%] 1.25 1.20<br />

Dicalcium phosphate [%] 0.65 0.60<br />

Salt [%] 0.25 0.25<br />

Premix 1 [%] 0.35 0.35<br />

Calculated analyses<br />

Metabolizable energy (MJ/kg DM) 12.13 12.13<br />

Lysine [%] 1.33 0.72<br />

Methi<strong>on</strong>ine + cystine [%] 0.73 0.50<br />

L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> [mg/kg] 2<br />

12.80 6.80<br />

Analysed crude nutrients<br />

Dry matter [%] 92.95 93.08<br />

Crude protein [% DM] 23.63 16.34<br />

Diethyl ether extract [% DM] 3.80 3.49<br />

Crude fibre [% DM] 3.71 4.42<br />

Ash [% DM] 7.70 6.10<br />

1 Provided per kg c<strong>on</strong>centrate: Vitamin A, 21 000 IU; vitamin D3, 4200 IU; vitamin E, 52.5 mg; vitamin K3, 4.38 mg; vitamin<br />

B 1, 5.25 mg; vitamin B 2, 12.25 mg; vitamin B 6, 7 mg; vitamin B 12, 0.03 mg; folic acid, 1.75 mg; D-biotin, 0.08 mg; vitamin<br />

C, 87.5 mg; niacin, 70 mg; Ca-D-pantothenat, 14 mg; choline chloride, 219 mg.<br />

2 Baumgartner and Blum (1997).<br />

2.2. Data and sample collecti<strong>on</strong><br />

Individual live weight <str<strong>on</strong>g>of</str<strong>on</strong>g> ducks and feed c<strong>on</strong>sumpti<strong>on</strong> per subgroup were<br />

determined fortnightly. Feed c<strong>on</strong>versi<strong>on</strong> efficiency was also calculated. At the<br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> the study, five ducks from each subgroup were randomly selected for<br />

slaughtering. At the time <str<strong>on</strong>g>of</str<strong>on</strong>g> slaughter, blood samples were taken and separated<br />

serums labelled and stored in a deep freeze until analysis. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass<br />

traits were made according to J<strong>on</strong>es (1984). During the carcass evaluati<strong>on</strong><br />

abdominal fat samples were also taken, labelled and stored in a deep freeze until<br />

analysis.<br />

2.3. Chemical analysis<br />

Dry matter, crude protein, crude fibre, ether extract and ash c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> diets were<br />

determined according to AOAC (1984) procedures. Blood serum cholesterol, total lipid,<br />

triglyceride and glucose levels were determined by autoanalyser (Abbot Alcy<strong>on</strong> 300i,<br />

Illinois, USA) using laboratory kits produced by the same supplier. Abdominal fat<br />

samples obtained from each <str<strong>on</strong>g>of</str<strong>on</strong>g> the subgroups were mixed homogeneously. Thus, a total<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> five samples were prepared for analysis from each group. C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual<br />

fatty acids were determined in TUBITAK Marmara Research Centre, Koceli, Turkey,<br />

using gas chromatography (Thermoguest Trace GC) according to methods described by<br />

Paquot (1979).<br />

383


384 C. ARSLAN et al.<br />

2.4. Statistics<br />

The results were statistically analysed using t-test in SPSS (SPSS inc., 1993). Values<br />

were expressed as mean + standard error (Sx).<br />

3. RESULTS AND DISCUSSION<br />

In both the starter and <strong>growth</strong> periods, L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> <str<strong>on</strong>g>administrati<strong>on</strong></str<strong>on</strong>g> did not affect live<br />

weight, live weight gain, feed c<strong>on</strong>sumpti<strong>on</strong> and feed c<strong>on</strong>versi<strong>on</strong> efficiency in ducks<br />

(Table II). Although, there were no statistical differences between the groups, live<br />

weight was found to be 8.1% higher in the <str<strong>on</strong>g>carnitine</str<strong>on</strong>g> group than in the c<strong>on</strong>trol group.<br />

This situati<strong>on</strong> might be related to the positive effect <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> <strong>on</strong> lipid and energy<br />

metabolism. Gropp et al. (1994) reported that dietary L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> supplementati<strong>on</strong><br />

could improve fatty acid and energy utilizati<strong>on</strong> and, therefore, live weight gain and feed<br />

c<strong>on</strong>versi<strong>on</strong> efficiency may be improved in poultry. Live weight <str<strong>on</strong>g>of</str<strong>on</strong>g> 8 week old ducks was<br />

similar, according to the results <str<strong>on</strong>g>of</str<strong>on</strong>g> I˙s¸ gu¨ zar et al. (2002) for Turkish native ducks. The<br />

natural L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the starter and <strong>growth</strong> diets used in the study was<br />

calculated 12.8 and 6.8 mg/kg, respectively (Table I). Probably, these amounts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

TABLE II Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnitine</str<strong>on</strong>g> <str<strong>on</strong>g>administrati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> live weight, live weight gain, feed c<strong>on</strong>sumpti<strong>on</strong> and feed<br />

c<strong>on</strong>versi<strong>on</strong> efficiency in ducks (Means + Sx) 1<br />

Age C<strong>on</strong>trol group Carnitine group<br />

Live weight [g]<br />

Hatching 46.4 + 0.4 46.6 + 0.4<br />

2 weeks 180.8 + 10.5 220.7 + 9.6<br />

4 weeks 506.5 + 26.5 628.0 + 17.9<br />

6 weeks 1182 + 19.5 1251 + 22.3<br />

8 weeks 1490 + 5.3 1621 + 11.7<br />

Live weight gain [g/d]<br />

2 weeks 10.4 + 0.3 12.4 + 0.7<br />

4 weeks 23.3 + 1.1 29.1 + 1.0<br />

6 weeks 48.2 + 0.5 44.5 + 0.6<br />

8 weeks 22.0 + 1.0 26.5 + 1.9<br />

0–8weeks 26.0+ 7.9 28.1 + 6.5<br />

Feed c<strong>on</strong>sumpti<strong>on</strong> [g/d]<br />

2 weeks 22.6 + 0.8 23.2 + 0.9<br />

4 weeks 58.7 + 2.4 67.0 + 2.2<br />

6 weeks 143.9 + 3.3 144.3 + 2.9<br />

8 weeks 159.6 + 5.8 169.9 + 11.7<br />

0 – 8 weeks (cumulative) 5386 + 136 5662 + 204<br />

Feed c<strong>on</strong>versi<strong>on</strong> ratio [kg/kg]<br />

2 weeks 2.19 + 0.1 1.88 + 0.1<br />

4 weeks 2.53 + 0.0 2.31 + 0.1<br />

6 weeks 2.98 + 0.1 3.24 + 0.0<br />

8 weeks 7.27 + 0.2 6.48 + 0.3<br />

0–8weeks 3.75+ 0.1 3.54 + 0.1<br />

1 Hatching: n = 50; week 2: n = 48 and n = 49 for c<strong>on</strong>trol and <str<strong>on</strong>g>carnitine</str<strong>on</strong>g> group, respectively; weeks 4 – 8: n = 48.<br />

Means are not significantly different (P 4 0.05).


L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> and L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> precursors (lysine and methi<strong>on</strong>in) in the diet may be<br />

adequate for the ducks’ requirements. In a study c<strong>on</strong>ducted <strong>on</strong> fish, piglets and quail,<br />

Schumacher et al. (1993) c<strong>on</strong>cluded that L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> seemed effective in improving body<br />

weight gain and feed c<strong>on</strong>versi<strong>on</strong>, mainly in groups with diets marginally in lysine and<br />

methi<strong>on</strong>ine plus cystine c<strong>on</strong>tent, respectively.<br />

Average live weight gain during the whole experimental period can be calculated as<br />

26.0 and 28.1 g in the c<strong>on</strong>trol and in the <str<strong>on</strong>g>carnitine</str<strong>on</strong>g> group, respectively (Table II).<br />

Ducklings have shown very rapid live weight gain and better feed c<strong>on</strong>versi<strong>on</strong> efficiency<br />

in the first 6 week period, but after this period poor feed c<strong>on</strong>versi<strong>on</strong> efficiency has been<br />

observed because <str<strong>on</strong>g>of</str<strong>on</strong>g> slow live weight gain. The findings may be accepted as a criteria for<br />

determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> slaughter time in Turkish native ducks. L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> <str<strong>on</strong>g>administrati<strong>on</strong></str<strong>on</strong>g> did<br />

not affect feed c<strong>on</strong>sumpti<strong>on</strong>, which was 5386 and 5662 g in the c<strong>on</strong>trol and in the<br />

<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> groups, respectively, during the whole experimental period (Table II). Similar<br />

results were reported in previous research c<strong>on</strong>ducted <strong>on</strong> broilers (Mast et al., 2000; Lien<br />

and Horng, 2001; Buyse et al., 2001; C¸ elik and O¨ ztu¨ rkcan, 2003). The ducks supplied<br />

with L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> via drinking water, c<strong>on</strong>sumed approximately the same amount <str<strong>on</strong>g>of</str<strong>on</strong>g> feed<br />

as the c<strong>on</strong>trol ducks, but they gained more weight than the c<strong>on</strong>trol group during the<br />

experimental period. Therefore, feed c<strong>on</strong>versi<strong>on</strong> efficiency was improved (not<br />

significant) in the <str<strong>on</strong>g>carnitine</str<strong>on</strong>g> group (Table II). Similar results were reported by other<br />

research (Barker and Sell, 1994; Mast et al., 2000; Lien and Horng, 2001; Buyse et al.,<br />

2001; Rodehutscord et al., 2002).<br />

As shown in Table III, L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> had no significant effect <strong>on</strong> the examined carcass<br />

parameters. Carcass ratio was found to be 63.6 and 65.9% in the c<strong>on</strong>trol and in the<br />

<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> group, respectively. These values are slightly lower than those reported by<br />

I˙s¸ gu¨ zar et al. (2002) <strong>on</strong> Turkish native ducks. Ducks are characterized by the genetic<br />

predispositi<strong>on</strong> to fat. The c<strong>on</strong>sumers usually prefer food with a low fat c<strong>on</strong>tent.<br />

Abdominal fat weight could be used as a criteria for predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total body fat c<strong>on</strong>tent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> poultry (S<strong>on</strong>aiya, 1985). From this point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> <str<strong>on</strong>g>administrati<strong>on</strong></str<strong>on</strong>g> tended<br />

to result in a leaner carcass with decreasing abdominal fat percentage, which was again<br />

not significant. This finding is in agreement with those <str<strong>on</strong>g>of</str<strong>on</strong>g> Rabie et al. (1997b), Rabie<br />

and Szilagyi (1998) and Buyse et al. (2001) <strong>on</strong> broiler chickens. Unchanged liver and<br />

TABLE III Carcass traits <str<strong>on</strong>g>of</str<strong>on</strong>g> ducks (Means + Sx, n = 25)<br />

Parameters C<strong>on</strong>trol group Carnitine group<br />

Live weight [ g ] 1653 + 10.4 1750 + 3.4<br />

Carcass weight [ g ] 1053 + 7.2 1153 + 3.4<br />

Carcass ratio [%] 63.6 + 0.7 65.9 + 0.9<br />

Carcass parts [% <str<strong>on</strong>g>of</str<strong>on</strong>g> the carcass weight]<br />

Breast 16.6 + 0.4 19.0 + 0.9<br />

Legs 26.9 + 0.4 25.8 + 0.6<br />

Wings 14.9 + 0.4 15.2 + 0.5<br />

Neck 12.7 + 0.4 10.1 + 0.5<br />

Back 26.7 + 0.4 28.1 + 0.7<br />

Heart 1.0 + 0.0 0.8 + 0.0<br />

Liver 3.68 + 0.3 3.52 + 0.2<br />

Mesenteric fat 0.68 + 0.0 0.32 + 0.0<br />

Abdominal fat 1.46 + 0.3 1.02 + 0.1<br />

Means are not significantly different (P 4 0.05).<br />

EFFECTS OF L-CARNITINE ON GROWTH<br />

385


386 C. ARSLAN et al.<br />

heart percentages showed that L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> <str<strong>on</strong>g>administrati<strong>on</strong></str<strong>on</strong>g> did not influence edible<br />

giblets weight in duck.<br />

As indicated in Table IV, L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> supplementati<strong>on</strong> did not affect serum<br />

cholesterol, total lipid, triglyceride and glucose levels. However, cholesterol, total lipid,<br />

triglyceride and glucose levels were 13.71, 6.33, 19.49 and 11.40% lower in the <str<strong>on</strong>g>carnitine</str<strong>on</strong>g><br />

group than in the c<strong>on</strong>trol group. N<strong>on</strong> significant decreases in lipid fracti<strong>on</strong>s<br />

(cholesterol, total lipid, triglyceride) were probably the result <str<strong>on</strong>g>of</str<strong>on</strong>g> b-oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g<br />

chain fatty acids with the support <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g>. Similarly, several studies<br />

c<strong>on</strong>ducted <strong>on</strong> different animal species indicated that L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> supplementati<strong>on</strong><br />

decreased serum cholesterol, total lipid and triglyceride levels (Bell et al., 1987;<br />

M<strong>on</strong>dola et al., 1992). Lien and Horng (2001) noticed that the activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnitine</str<strong>on</strong>g><br />

palmitoyl transferase, which is the fatty acid b-oxidati<strong>on</strong> enzyme, was significantly<br />

increased by supplementary L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> in broilers. Whole serum parameters were in<br />

TABLE IV Blood serum parameters in ducks (Means + Sx, n = 25)<br />

Parameters C<strong>on</strong>trol group Carnitine group<br />

Cholesterol [mg/dl] 124.0 + 2.3 107.0 + 1.4<br />

Total lipid [mg/dl] 454.8 + 16.9 426.0 + 18.9<br />

Triglyceride [mg/dl] 175.5 + 3.7 141.3 + 1.0<br />

Glucose [mg/dl] 186.0 + 1.8 164.8 + 2.0<br />

TABLE V Fatty acid compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> abdominal fat in ducks [%] (Means + Sx)<br />

Fatty acids C<strong>on</strong>trol group Carnitine group<br />

C12:0 0.04 + 0.00 0.04 + 0.00<br />

C14:0 0.57 + 0.01 0.53 + 0.04<br />

C15:0 0.05 + 0.00 0.05 + 0.00<br />

C16:0 23.77 + 0.88 a<br />

22.65 + 0.19 b<br />

C17:0 0.10 + 0.01 0.08 + 0.00<br />

C18:0 4.48 + 0.32 4.03 + 0.17<br />

C20:0 0.07 + 0.00 0.06 + 0.00<br />

C21:0 0.11 + 0.00 0.10 + 0.01<br />

C24:0 0.04 + 0.01 0.03 + 0.00<br />

S SFA 1<br />

29.22 + 1.19 a<br />

27.57 + 0.20 b<br />

C14:1 0.11 + 0.01 0.11 + 0.01<br />

C16:1 5.16 + 0.26 5.33 + 0.27<br />

C18:1 49.62 + 1.27 51.43 + 0.72<br />

C20:1 0.34 + 0.01 0.45 + 0.05<br />

C24:1 0.06 + 0.01 0.03 + 0.00<br />

S MUFA 2<br />

55.28 + 1.48 57.34 + 0.55<br />

C18:2 11.24 + 0.37 11.95 + 0.48<br />

C18:3 0.52 + 0.01 0.58 + 0.02<br />

C20:2 0.11 + 0.01 0.10 + 0.01<br />

C20:3 0.07 + 0.00 0.07 + 0.00<br />

C22:2 0.14 + 0.01 0.10 + 0.01<br />

S PUFA 3<br />

12.09 + 0.38 12.80 + 0.51<br />

1 SFA: Saturated fatty acids.<br />

2 MUFA: M<strong>on</strong>ounsaturated fatty acids.<br />

3 PUFA: Polyunsaturated fatty acids.<br />

Means with different superscript letters are significant (P 5 0.05).


agreement with data reported by Baranyiova and Holub (1969) and Janan et al. (2000)<br />

for ducks and geese.<br />

Total saturated and unsaturated fatty acid levels <str<strong>on</strong>g>of</str<strong>on</strong>g> abdominal fat were found to be<br />

27.6 – 29.2 and 67.4 – 70.1% in the experimental groups (Table V). It is noticed that<br />

abdominal fat <str<strong>on</strong>g>of</str<strong>on</strong>g> ducks is rich for saturated fatty acids. The major SFA were palmitic<br />

and stearic acid, the major MUFA were oleic and palmiteloic acid and the major PUFA<br />

was linoleic acid. Although, L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> <str<strong>on</strong>g>administrati<strong>on</strong></str<strong>on</strong>g> did not affect total MUFA and<br />

PUFA c<strong>on</strong>tent (P 4 0.05), but it significantly decreased the total SFA c<strong>on</strong>tent<br />

(P 5 0.05). The total SFA, MUFA and PUFA in this study were in agreement with<br />

Kirchgessner et al. (1997) and Blotnicka et al. (1999) for geese.<br />

In c<strong>on</strong>clusi<strong>on</strong>, L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> <str<strong>on</strong>g>administrati<strong>on</strong></str<strong>on</strong>g> via drinking water did not affect <strong>growth</strong><br />

<strong>performance</strong>, carcass traits and serum cholesterol, total lipid, triglyceride and glucose<br />

levels. Total saturated fatty acid c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> abdominal fat significantly decreased, while<br />

m<strong>on</strong>o- and polyunsaturated fatty acids were not influenced by L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> <str<strong>on</strong>g>administrati<strong>on</strong></str<strong>on</strong>g>.<br />

References<br />

EFFECTS OF L-CARNITINE ON GROWTH<br />

AOAC (1984) Official Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> Analysis. Williams, S. (Ed.), 14th Ed., Arlingt<strong>on</strong>, Virginia 22009 USA 73.<br />

Baranyiova, E. and Holub, A. (1969) Age changes <str<strong>on</strong>g>of</str<strong>on</strong>g> blood and plasma glucose level in ducklings. Acta Vet.<br />

(Brno), 38, 497–500.<br />

Barker, D.L. and Sell, J.L. (1994) Dietary <str<strong>on</strong>g>carnitine</str<strong>on</strong>g> did not influence <strong>performance</strong> and carcass compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

broiler chickens and young turkeys fed low- or high-fat diets. Poult. Sci., 73, 281 – 287.<br />

Baumgartner, M. and Blum, R. (1997) Typical L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> c<strong>on</strong>tents in feedstuffs. In: L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> Folder, L<strong>on</strong>za<br />

Ltd., Basel.<br />

Bell, F.P., Raym<strong>on</strong>, T.L. and Painode, C.L. (1987) The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> diet and <str<strong>on</strong>g>carnitine</str<strong>on</strong>g> supplementati<strong>on</strong> <strong>on</strong> plasma<br />

<str<strong>on</strong>g>carnitine</str<strong>on</strong>g>, cholesterol, and triglicerides in WHHL (Watanabe-heritable hyperlipidemic) Netherland Dwarf and<br />

New Zealand Rabbits (Oryctolagus cuniculus). Comp. Biochem. Physiol., 87B, 587 – 591.<br />

Blotnicka, T.S., Rosisnki, A., Przysiezna, E., Woloszyn, J. and Wenda, G.E. (1999) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary formulati<strong>on</strong><br />

supplemented with herbal mixture <strong>on</strong> the goose abdominal fat quality. Arch. Geflu¨gelkde., 63, 122–128.<br />

Bremer, J. (1983) Carnitine: metabolism and functi<strong>on</strong>s. Physiol. Rev., 63, 1420 – 1480.<br />

Borum, P.R. (1987) Role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnitine</str<strong>on</strong>g> in lipid metabolism. In: Horisberger, M. and Bracco, U. (Eds.) Lipids in<br />

Modern Nutriti<strong>on</strong>. Nestle Nutriti<strong>on</strong>, Vevey/Raven Press, New York. pp. 51 – 58.<br />

Buyse, J., Janssens, G.P. and Decuypere, E. (2001) The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> supplementati<strong>on</strong> <strong>on</strong> the<br />

<strong>performance</strong>, organ weights and circulating horm<strong>on</strong>e and metabolite c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens reared<br />

under a normal or low temperature schedule. Br. Poult. Sci., 42, 230 – 241.<br />

C¸ elik, L. and Öztu¨ rkcan, O. (2003) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary supplemental L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> and ascorbic acid <strong>on</strong> <strong>performance</strong>,<br />

carcass compositi<strong>on</strong> and plasma L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chicks reared under different temperature.<br />

Arch. Anim. Nutr., 57, 27–38.<br />

Feller, A.G. and Rudman, D. (1988) Role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>carnitine</str<strong>on</strong>g> in human nutriti<strong>on</strong>. J. Nutr., 118, 541 – 547.<br />

Gropp, J.M., Schumacher, A. and Schweigert, F.J. (1994) Recent research in vitamin nutriti<strong>on</strong> with special<br />

emphasis to vitamin A, b-carotene and L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g>. In: Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Meeting <str<strong>on</strong>g>of</str<strong>on</strong>g> the Arkansas Nutriti<strong>on</strong><br />

C<strong>on</strong>ference, Fayetteville, Arkansas Poultry Federati<strong>on</strong>, pp. 124 – 134.<br />

I˙s¸ güzar, E., Koçak, C¸ . and Pingel, H. (2002) Growth, carcass traits and meat quality <str<strong>on</strong>g>of</str<strong>on</strong>g> different local ducks and<br />

Turkish pekins (short communicati<strong>on</strong>). Arch. Anim. Breed., 45, 413 – 416.<br />

Janan, J., Bodi, L., Agota, G., Bardos, L., Rudas, P., Kozak, J. and Karsai, M. (2000) Relati<strong>on</strong>ships between<br />

force-feeding and some physiological parameters in geese bred for fatty liver. Acta Vet. Hung., 48, 89 – 97.<br />

J<strong>on</strong>es, R. (1984) A standard method for the dissecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry for carcass analysis. The West <str<strong>on</strong>g>of</str<strong>on</strong>g> Scotland<br />

Agricultural College. Auchincruive Ayr. Technical Note, No:222.<br />

Kirchgessner, M., Jamroz, D., Eder, K. and Pakulska, E. (1997) Carcass quality and fatty acid compositi<strong>on</strong> in<br />

growing geese fed various rati<strong>on</strong>s. Arch. Geflu¨gelkde., 61, 191 – 197.<br />

Leibetseder, J. (1995) Studies <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> in poultry. Arch. Anim. Nutr., 48, 97 – 108.<br />

Lien, T.F. and Horng, Y.M. (2001) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> supplementary dietary L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> <strong>on</strong> the <strong>growth</strong> <strong>performance</strong>,<br />

serum comp<strong>on</strong>ents, carcass traits and enzyme activities in relati<strong>on</strong> to fatty acid beta-oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler<br />

chickens. Br. Poult. Sci., 42, 92 – 95.<br />

Mast, J., Buyse, J. and Goddeeris, B.M. (2000) Dietary L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> supplementati<strong>on</strong> increases antigen-specific<br />

immunoglobulin G producti<strong>on</strong> in broiler chickens. Br. J. Nutr., 83, 161–166.<br />

387


388 C. ARSLAN et al.<br />

M<strong>on</strong>dola, P., Santillo, M., De Mercato, R. and Santangelo, F. (1992) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> <strong>on</strong> cholesterol<br />

metabolism in rat (Rattus bubalus) hepatocyte cells. Int. J. Biochem., 24, 1047–1050.<br />

NRC (1984) Nutrient Requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> Poultry, Washingt<strong>on</strong>, D.C.<br />

Owen, K.Q., Nelssen, J.L., Goodband, R.D., Weeden, T.L. and Blum, S.A. (1996) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> and<br />

soybean oil <strong>on</strong> <strong>growth</strong> <strong>performance</strong> and body compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> early weaned pigs. J. Anim. Sci., 74, 1612 – 1619.<br />

Paquot, C. (1979) Standard Methods for the Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Oils, Fats and Derivatives. 6th edn. Centre Nati<strong>on</strong>ale de la<br />

Recherche Scientifique, Thiais, France.<br />

Rabie, M.H., Szilagyi, M. and Gippert, T. (1997a) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> supplementati<strong>on</strong> and protein<br />

level <strong>on</strong> <strong>performance</strong> and degree <str<strong>on</strong>g>of</str<strong>on</strong>g> meatiness and fatness <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers. Acta Biol. Hung., 48, 221 – 229.<br />

Rabie, M.H., Szilagyi, M., Gippert, T., Votisky, E. and Gerendai, D. (1997b) Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> <strong>on</strong><br />

<strong>performance</strong> and carcass quality <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens. Acta Biol. Hung., 48, 241 – 252.<br />

Rabie, M.H. and Szilagyi, M. (1998) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> supplementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diets differing in energy levels <strong>on</strong><br />

<strong>performance</strong>, abdominal fat c<strong>on</strong>tent, and yield and compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> edible meat <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers. Br. J. Nutr., 80,<br />

391 – 400.<br />

Rebouche, C. J. and Pauls<strong>on</strong>, D. J. (1986) Carnitine metabolism and functi<strong>on</strong> in humans. Ann. Rev. Nutr., 6, 41 –<br />

66.<br />

Rodehutscord, M., Timmler, R. and Dieckmann A. (2002) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> supplementati<strong>on</strong> <strong>on</strong> utilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

energy and protein in broiler chicken fed different dietary fat levels. Arch. Anim. Nutr., 56, 431 – 441.<br />

Schumacher, A., Eissner, C. and Gropp, J.M. (1993) Carnitine in fish, piglets and quail. In: Flachowsky, G. and<br />

Schubert, R. (Eds.) Vitamine und weitere Zusatzst<str<strong>on</strong>g>of</str<strong>on</strong>g>fe bei Mensch und Tier (Vitamins and other supplements for<br />

humans and animals). Friedrich-Schiller-Universita¨ t, Jena, Germany, pp. 407 – 412.<br />

S<strong>on</strong>aiya, E.B. (1985) Abdominal fat weight and thickness as predictors <str<strong>on</strong>g>of</str<strong>on</strong>g> total body fat in broilers. Br. Poult. Sci,<br />

26, 453 – 458.<br />

SPSS inc. (1993) SPSS for Windows 6.0.1.<br />

Weeden, T.L, Nelssen, J.L., Hansen, J.A., Fıtzner, G.R. and Goodband, R.D. (1991) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> L-<str<strong>on</strong>g>carnitine</str<strong>on</strong>g> <strong>on</strong><br />

starter pig <strong>performance</strong> and carcass compositi<strong>on</strong>. J. Anim. Sci., 69, 105 (Abstract).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!