02.03.2013 Views

Product Class 13: 1,2,3-Triazoles

Product Class 13: 1,2,3-Triazoles

Product Class 13: 1,2,3-Triazoles

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>13</strong>.<strong>13</strong> <strong>Product</strong> <strong>Class</strong> <strong>13</strong>:<br />

1,2,3-<strong>Triazoles</strong><br />

A. C. TomØ<br />

General Introduction<br />

Previously published information regarding this product class can be found in Houben–<br />

Weyl, Vol. E 8d, pp 305–405 (1,2,3-triazoles) [1] and pp 406–478 (benzotriazoles). [2] Other important<br />

reviews on the chemistry of 1,2,3-triazoles and their benzo derivatives are also<br />

available. [3–9]<br />

1,2,3-<strong>Triazoles</strong> and benzotriazoles are important types of heterocyclic compounds.<br />

They find numerous applications in industry, namely as dyestuffs, fluorescent whiteners,<br />

photostabilizers of polymers, optical brightening agents, corrosion inhibitors and as photographic<br />

photoreceptors. [6,7] Also, due to their extensive biological activities, they find<br />

successful application in medicine and as agrochemicals. [6,7] Beyond this, these compounds<br />

are intensively studied by many research groups due to their theoretical interest<br />

and synthetic usefulness.<br />

The 1,2,3-triazoles can be divided in three main groups: monocyclic 1,2,3-triazoles,<br />

benzotriazoles, and 1,2,3-triazolium salts. As indicated in Scheme 1, for monocyclic<br />

1,2,3-triazoles three subclasses can be recognized, depending on the position of the substituents<br />

in the ring. While 1H- and 2H-1,2,3-triazoles are aromatic compounds their 4Hisomers<br />

are not. This fact is reflected in the abundance of examples of 1H- and 2H-1,2,3triazoles<br />

and the rarity of 4H-1,2,3-triazoles. [3] In the literature, the 1,2,3-triazole system is<br />

sometimes named as “v-triazole” in order to distinguish it from “s-triazole”, the 1,2,4-triazole<br />

system.<br />

Scheme 1 <strong>Class</strong>es of 1,2,3-<strong>Triazoles</strong><br />

R<br />

N<br />

N<br />

N<br />

1<br />

R1 4 3<br />

5<br />

2<br />

1<br />

R1 1H-1,2,3-triazoles<br />

4 3<br />

5 N<br />

6<br />

7<br />

N 2<br />

1 N<br />

R<br />

1H-benzotriazoles<br />

1<br />

R 1<br />

R 1<br />

N<br />

NR<br />

N<br />

1<br />

2<br />

+<br />

1<br />

R1 1,2,3-triazolium salts<br />

FOR PERSONAL USE ONLY<br />

N<br />

N<br />

NR1 R1 R1 4 3<br />

5<br />

1<br />

2<br />

2H-1,2,3-triazoles<br />

4 3<br />

5<br />

NR<br />

2<br />

N<br />

1<br />

2H-benzotriazoles<br />

1<br />

N<br />

6<br />

7<br />

N<br />

R<br />

N<br />

N<br />

1<br />

R<br />

4 3<br />

5<br />

1<br />

2<br />

1<br />

R1 4H-1,2,3-triazoles<br />

2<br />

NR<br />

N<br />

1<br />

1<br />

NR N<br />

1<br />

R<br />

N<br />

N<br />

1<br />

R1 R<br />

+ +<br />

N 2<br />

2<br />

1<br />

N<br />

1<br />

1<br />

N<br />

+<br />

R1 R1 R1 benzotriazolium salts<br />

415<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


N-Unsubstituted 1,2,3-triazoles can be regarded either as 1H- oras2H-derivatives since<br />

these two tautomeric forms are in equilibrium, both in solution and in the gas phase<br />

(Scheme 2). In this article, for simplification, this type of compound will be represented<br />

as 1H-triazoles, independently of the predominant tautomer.<br />

Scheme 2 Tautomerism in 1,2,3-<strong>Triazoles</strong><br />

N<br />

N 2<br />

1N<br />

H<br />

N<br />

2<br />

NH<br />

N<br />

1<br />

1H-1,2,3-triazole 2H-1,2,3-triazole<br />

N<br />

N 2<br />

N<br />

1<br />

H<br />

FOR PERSONAL USE ONLY<br />

416 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

N<br />

2<br />

NH<br />

N<br />

1<br />

1H-benzotriazole 2H-benzotriazole<br />

The two tautomeric forms of 1,2,3-triazole and benzotriazole are in equilibrium, both in<br />

solution and in the gas phase (Scheme 2). However there is an extraordinary difference in<br />

stability between 1,2,3-triazole and benzotriazole tautomers. In the gas phase, the 2H-tautomer<br />

of 1,2,3-triazole represents more than 99.9% of the equilibrium mixture, whereas<br />

in benzotriazole the 1H-tautomer is the predominant one (more than 99.99% at equilibrium).<br />

[10] In solution, the much higher dipole moment of 1H-tautomers favor these structures<br />

and, as a consequence, mixtures of 1H- and 2H-1,2,3-triazole are observed in solution<br />

whereas the higher stability of 1H-benzotriazole is reinforced. [10] In the solid state,<br />

1,2,3-triazole exists as a 1:1 mixture of 1H- and 2H-tautomers, while 4-phenyl-1,2,3-triazole<br />

and 4-nitro-1,2,3-triazole are, respectively, in the 2H- and 1H- tautomeric forms. [11]<br />

The experimental dipole moment in benzene for the tautomeric mixture of 1H- and 2H-<br />

1,2,3-triazole is 1.85 D at 258C and 2.08 D at 458C. The experimental dipole moments are<br />

as follows: 1H-1,2,3-triazole 4.38 D, 2H-1,2,3-triazole 0.22 D, 1H-benzotriazole 4.15 D, and<br />

2-methyl-2H-benzotriazole 0.49 D. [7]<br />

1H-1,2,3-Triazole is both a weak base (pK a 1.17) and a weak acid (pK a 9.4) of comparable<br />

strength to phenol. 1H-1,2,3-Triazole-4,5-dicarbonitrile (pK a 2.53), 4,5-dibromo-1H-<br />

1,2,3-triazole (pK a 5.37), and 4-nitro-1H-1,2,3-triazole (pK a 4.80) are much more acidic compounds.<br />

1-Methyl-1H-1,2,3-triazole (pK a 1.25) shows a basicity comparable to 1H-1,2,3-triazole,<br />

but 2-methyl-2H-1,2,3-triazole is a much weaker base. [12–14] The basicity of N-unsubstituted<br />

and N-methyl-1,2,3-triazoles in the gas phase, in solution, and in the solid state<br />

has been determined. [11] The fused benzene ring in benzotriazole (pK a 8.2) is base-weakening<br />

and acid-strengthening. Substitution of hydrogen atoms by chlorine in the benzene<br />

ring results in increased acidity: 5-chlorobenzotriazole, pK a 7.7; 4,5,6,7-tetrachlorobenzotriazole,<br />

pK a 5.5. [15,16]<br />

The application of semi-empirical and ab initio methods in theoretical calculations<br />

for 1,2,3-triazoles and benzotriazoles and the description of a number of instrumental<br />

techniques used in the characterization of these systems have been reviewed. [7]<br />

1,2,3-<strong>Triazoles</strong> with a strong electron-withdrawing group at N1 (e.g., cyano, nitro, or<br />

arylsulfonyl groups) undergo ready and reversible ring opening to Æ-diazoimine tautomers<br />

(Scheme 3). This ring–chain tautomerism, also observed in some benzotriazole derivatives,<br />

is markedly temperature dependent. [17–20]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 3 Ring–Chain Tautomerism in 1,2,3-<strong>Triazoles</strong> and Benzotriazoles<br />

R 1<br />

R 2<br />

N<br />

X<br />

N<br />

N<br />

X = CN, SO 2Ar 1<br />

N<br />

N<br />

N<br />

X<br />

X = CN, SO2Ar 1 , NO2<br />

R 2 N 2<br />

R 1 NX<br />

This type of tautomerism is also involved, for example, in the interconversion of 1-aryl-<br />

1,2,3-triazol-5-amines and 5-anilino-1,2,3-triazoles (R 1 = aryl) (Scheme 4). This isomerization<br />

is known as the Dimroth rearrangement. It is also observed in the interconversion<br />

of triazoles with other substituents at position 5 (or 4) and in the conversion of 1,2,3-triazoles<br />

into other ring systems. The equilibrium is established thermally, but its position<br />

is influenced by the basicity of the solvent. In pyridine, for example, the equilibrium position<br />

is shifted to the more acidic NH triazoles. It is also observed that electron-withdrawing<br />

groups and large, rigid groups tend to favor the exocyclic nitrogen while alkyl groups<br />

tend to favor the cyclic nitrogen. This subject has been reviewed. [21]<br />

N 2<br />

NX<br />

Scheme 4 Dimroth Rearrangement in 1,2,3-<strong>Triazoles</strong><br />

H 2N<br />

R 2<br />

N<br />

FOR PERSONAL USE ONLY<br />

General Introduction 417<br />

R 2 N 2<br />

R1 N<br />

N<br />

= Me<br />

R1 H2N NR1 R2 R<br />

N2 N<br />

2<br />

R 1 HN NH<br />

R 1 = aryl<br />

In terms of stability, monocyclic 1,2,3-triazoles and benzotriazoles are remarkably stable<br />

compounds. The triazole ring is not normally cleaved by hydrolysis or oxidation and reductive<br />

cleavage only occurs under forcing conditions. The presence of substituents that<br />

have a destabilizing effect on the ring system can facilitate the cleavage. When subjected<br />

to pyrolysis or photolysis, 1,2,3-triazoles and benzotriazoles extrude nitrogen and produce<br />

very reactive species which react further to form a range of stable compounds: nitriles,<br />

ketenimines, azirines, pyrazines, indoles, etc. The thermal or photochemical extrusion<br />

of nitrogen from 1-arylbenzotriazoles leads to the formation of carbazoles (Scheme<br />

5).<br />

R 1 HN<br />

N<br />

H<br />

N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 5 Photolysis of 5-Chloro-1-(4-chlorophenyl)-1H-benzotriazole<br />

Cl<br />

N<br />

N<br />

N<br />

Cl<br />

MeCN, hν<br />

− N2<br />

Cl<br />

N<br />

•<br />

Cl<br />

Cl Cl<br />

Both monocyclic 1,2,3-triazoles and benzotriazoles are readily alkylated on nitrogen by<br />

alkyl halides, dimethyl sulfate, diazoalkanes, methyl sulfonates, and other alkylating<br />

agents; generally mixtures of all possible N-alkyl isomers are obtained. With more reactive<br />

reagents, or under forcing reaction conditions, triazolium salts are obtained. N-Arylation<br />

is also possible if activated aryl halides are used. 1,2,3-<strong>Triazoles</strong> and benzotriazoles<br />

also react with acyl halides and anhydrides to furnish the corresponding N-acyl derivatives.<br />

These compounds also react with sulfonyl chlorides, isocyanates, chlorotrimethylsilane,<br />

etc. to give the corresponding N-substituted derivatives. Electrophilic substitution<br />

at CH positions is also possible: halogenation and nitration are examples of such transformations.<br />

Lithiation of triazoles followed by addition of electrophilic reagents is another<br />

versatile approach to functionalization of these compounds at CH positions. <strong>Triazoles</strong> can<br />

also be activated toward electrophiles by introduction of an N-oxide group.<br />

All these types of reactions, and many others that produce new 1,2,3-triazole derivatives,<br />

are described in this section. Also, the synthetic methods available for the construction<br />

of the 1,2,3-triazole ring are reviewed.<br />

<strong>13</strong>.<strong>13</strong>.1 <strong>Product</strong> Subclass 1:<br />

Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong><br />

<strong>13</strong>.<strong>13</strong>.1.1 Synthesis by Ring-Closure Reactions<br />

<strong>13</strong>.<strong>13</strong>.1.1.1 By Formation of One N-N and One N-C Bond<br />

<strong>13</strong>.<strong>13</strong>.1.1.1.1 Fragments C-C-N-N and N<br />

FOR PERSONAL USE ONLY<br />

418 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

<strong>13</strong>.<strong>13</strong>.1.1.1.1.1 Method 1:<br />

From 2-Diazo-1,3-dicarbonyl Compounds and Amine Derivatives<br />

The cyclocondensation reaction of 2-diazo-1,3-dicarbonyl compounds with amine derivatives<br />

is an old but versatile, simple, and completely regioselective method for the preparation<br />

of 1H-1,2,3-triazoles. This method was developed by Wolff at the beginning of the<br />

20th century; he reported the synthesis of triazoles 3 by the reaction of ethyl 2-diazo-3oxobutanoate<br />

(1) with phenylhydrazine, semicarbazide, hydroxylamine, aniline, or ammonia<br />

(Scheme 6). [22,23,246] The mechanism of the reaction involves the in situ formation<br />

of Æ-diazoimines of type 2 followed by ring closure. Several variations of this method appeared<br />

since then and a range of 2-diazo-1,3-dicarbonyl compounds can be used: Æ-diazoâ-oxo<br />

esters, Æ-diazo-â-formyl esters, Æ-diazo-â-oxoaldehydes, diazomalonaldehyde, and<br />

diazomalonates.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

N<br />

H


Scheme 6 Reaction of Ethyl 2-Diazo-3-oxobutanoate with Amine Derivatives [22–24,246]<br />

EtO<br />

O<br />

N 2<br />

ZNH2<br />

O<br />

1<br />

Z = H, Ph, NHPh, OH, NHCONH2 EtO<br />

O<br />

NZ<br />

2<br />

N 2<br />

EtO 2C<br />

The 1H-1,2,3-triazol-1-ol 3 (Z = OH) is obtained in 53% yield by reaction of 1 with an excess<br />

of hydroxylamine (EtOH/H 2O 1:1, 808C, 5 h). [24]<br />

The method described by Wolff can be extended to Æ-diazo-â-oxo esters with bulky<br />

substituents. For example, the 5-(1-adamantyl)-1H-1,2,3-triazoles 5 are prepared by the reaction<br />

of the diazo compound 4 with aniline and methylamine, respectively (Scheme<br />

7). [25] In this case titanium(IV) chloride is used as catalyst to promote the formation of<br />

the intermediate imine and thus facilitate the formation of the triazole.<br />

Scheme 7 Reaction of Ethyl 3-(1-Adamantyl)-2-diazo-3-oxopropanoate with Amines [25]<br />

EtO<br />

4<br />

O<br />

O<br />

N 2<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 419<br />

+ R 1 NH 2<br />

TlCl4, Cl<br />

Cl<br />

reflux, 15 h<br />

R1 = Ph 74%<br />

R1 = Me 51%<br />

EtO2C<br />

Ethyl 5-(1-Adamantyl)-1-phenyl-1H-1,2,3-triazole-4-carboxylate (5,R 1 = Ph);<br />

Typical Procedure: [25]<br />

A soln of 4 (28 mg, 0.1 mmol), PhNH 2 (<strong>13</strong> mg, 0.14 mmol), and TiCl 4 (19 mg, 0.1 mmol) in<br />

dry 1,2-dichloroethane (2 mL) was refluxed for 15 h, and the resulting mixture was basified<br />

with 1 M NaOH (1 mL). After adding Et 2O/H 2O (1:1, 10 mL) and shaking, the organic<br />

layer was separated, washed with H 2O and dried (Na 2SO 4). Evaporation of the solvent left<br />

a residue, which was chromatographed to give 5 (R 1 = Ph) as crystals; yield: 26 mg (74%);<br />

mp <strong>13</strong>4–<strong>13</strong>8 8C.<br />

<strong>13</strong>.<strong>13</strong>.1.1.1.1.1.1 Variation 1:<br />

From 2-Diazo-3-oxopropanoates and Amine Derivatives<br />

Ethyl 2-diazo-3-oxopropanoate (6) reacts with a range of amine derivatives to give the corresponding<br />

triazoles 7 (R 1 = H, alkyl, aryl, OH, NHPh, NHCONH 2) (Scheme 8). [26–28] The<br />

yields of the reactions are highly dependent on the amine derivative used. The reaction<br />

of compound 6 with 2-aminoethanol gives triazole 7 (R 1 =CH 2CH 2OH), which is used as<br />

precursor to several 1,2,3-triazole-containing antibiotics. [29,30]<br />

5<br />

N<br />

N<br />

N<br />

R1 N<br />

Z<br />

3<br />

N<br />

N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


420 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

bScheme 8 Reaction of Ethyl 2-Diazo-3-oxopropanoate with Amine Derivatives [26–28]<br />

EtO<br />

H<br />

O<br />

O<br />

6<br />

N2<br />

+ R 1 NH 2<br />

EtO 2C<br />

7<br />

N<br />

N<br />

N<br />

R1 R 1 R 1 NH 2 Conditions Yield (%) Ref<br />

H NH3AcOH, 100 8C, 3–4 h 50 [27]<br />

H NH2OH H2O, rt, 48 h 7 [27]<br />

NHCONH2 H2NNHCONH2 H2O, rt, 48 h 35 [27]<br />

Ph PhNH2 EtOH, AcOH, rt, 30 min 74 [26]<br />

Ph PhNH2 EtOH, AcOH, rt, 16 h 70 [28]<br />

N<br />

H<br />

N<br />

Bu t<br />

H2N<br />

N<br />

H<br />

N<br />

Bu t<br />

EtOH, AcOH, rt, 16 h 81 [28]<br />

Ethyl 1-Phenyl-1H-1,2,3-triazole-4-carboxylate (7,R 1 = Ph); Typical Procedure: [28]<br />

Ethyl 2-diazo-3-oxopropanoate (6; 0.426 g, 3 mmol) was dissolved in EtOH (3 mL). A soln of<br />

PhNH 2 (0.27 g, 2.9 mmol) in EtOH (1.8 mL) and AcOH (0.6 mL) was added and the mixture<br />

was stirred at rt for 16 h. On removal of the solvent a solid was obtained, and crystallization<br />

(EtOH) gave white needles of the triazole 7 (R 1 = Ph); yield: 0.45 g (70%); mp 86–87 8C.<br />

<strong>13</strong>.<strong>13</strong>.1.1.1.1.1.2 Variation 2:<br />

From 2-Diazo-3-oxoaldehydes and Amine Derivatives<br />

2-Diazo-3-oxoaldehydes 8 react with anilines, hydroxylamine, or semicarbazide yielding<br />

4-acyl-1-substituted 1H-1,2,3-triazoles 9 in moderate to good yields (Scheme 9). [26,27] They<br />

also react with ammonia to give N-unsubstituted 1,2,3-triazoles in 20–26% yield. In the<br />

condensations with hydroxylamine and semicarbazide the reaction goes further and the<br />

ketone functions are converted into oximes and semicarbazones, respectively. [27] A newer<br />

method for the preparation of a wide range of the required 2-diazo-3-oxoaldehydes has<br />

been published. [31] Diazomalonaldehyde (8, R 1 = H) reacts with aniline hydrochloride, in<br />

water and at room temperature to yield 1-phenyl-1H-1,2,3-triazole-4-carbaldehyde (9,<br />

R 1 =H;R 2 = Ph) in 96% yield. [32]<br />

Scheme 9 Reaction of 2-Diazo-3-oxoaldehydes with Amine Derivatives [26–28]<br />

R 1<br />

H<br />

O<br />

N2 + R<br />

N<br />

N<br />

O<br />

N<br />

2NH2 R<br />

8 9<br />

2<br />

O<br />

R1 R 1 = H, alkyl, aryl; R 2 = H, aryl, OH, NHCONH2<br />

FOR PERSONAL USE ONLY<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Condensation of 2-Diazo-3-oxoaldehydes with Aniline; General Procedure: [27]<br />

A soln of the 2-diazo-3-oxoaldehyde 8 (10 mmol) in EtOH (6 mL) and a mixture of PhNH 2<br />

(10.7 mmol) and AcOH (1.25 mL) were mixed. The mixture was stirred at rt for 30 min. In<br />

most cases during this time the triazoles precipitated and were obtained pure after recrystallization<br />

(EtOH). The yields were within the range of 26–87%.<br />

<strong>13</strong>.<strong>13</strong>.1.1.1.1.1.3 Variation 3:<br />

From Dimethyl Diazomalonate and Amines<br />

Dimethyl diazomalonate (10) undergoes reaction with primary alkylamines to generate<br />

the corresponding primary ammonium salts of methyl 1-alkyl-5-hydroxy-1H-1,2,3-triazole-4-carboxylates<br />

12 in 66–98% yield (Scheme 10). [33] The probable mechanism of this reaction<br />

involves the formation of the intermediate diazoamide 11, which then undergoes<br />

base-catalyzed cyclization to the 1,2,3-triazole salt 12. Acidification of an aqueous solution<br />

of 12 and extraction with dichloromethane gives the free triazolols. However, since<br />

triazol-5-ols undergo facile isomerization to the corresponding diazoamides, care must be<br />

taken during their formation and purification. The major limitation of this reaction is the<br />

fact that aromatic amines, e.g. aniline, fail to react. This is consistent with the reduced<br />

nucleophilicity of the nitrogen in aromatic amines. [33]<br />

Scheme 10 Reaction of Dimethyl Diazomalonate with Amines [33]<br />

MeO<br />

MeO<br />

O<br />

O<br />

N 2<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 421<br />

R 1 NH2<br />

MeO<br />

O<br />

O<br />

MeO 2C<br />

10 11<br />

12<br />

N 2<br />

NHR 1<br />

R 1 NH2<br />

R 1 Amine Time (d) Yield (%) mp (8C) Ref<br />

Bu BuNH2 3 82 111–1<strong>13</strong> [33]<br />

(CH2) 4Me Me(CH2) 4NH2 5 85 110–1<strong>13</strong> [33]<br />

(CH2) 5Me Me(CH2) 5NH2 3 70 120–122 [33]<br />

Cy CyNH2 3 66 154–157 [33]<br />

(CH2) 2OH HO(CH2) 2NH2 3 98 119–124 [33]<br />

Bn BnNH2 3 84 153–156 [33]<br />

2-thienyl 2-thienylamine 3 67 160–161 [33]<br />

3-thienyl 3-thienylamine 6 72 160–162 [33]<br />

1 + −<br />

R NH3 O<br />

1,2,3-Triazole Salts 12; General Procedure: [33]<br />

Dimethyl diazomalonate (10 mmol) was added to a large excess of the amine and the mixture<br />

was stirred at rt and monitored by IR spectroscopy until the diazo ester was completely<br />

consumed (3–6 d). At this point the resultant salt had crystallized from soln and<br />

was isolated by filtration and recrystallized. Alternatively, the reaction could be performed<br />

in toluene using 2–5 equiv of amine; yield: 66–98%.<br />

N<br />

N<br />

N<br />

R1 for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


<strong>13</strong>.<strong>13</strong>.1.1.1.1.2 Method 2:<br />

From Vinyldiazonium Salts and Amine Derivatives<br />

Vinyldiazonium salts <strong>13</strong> react with ammonia and amine derivatives (primary amines, hydrazines,<br />

hydroxylamine ethers) to give 1-substituted 1,2,3-triazoles 14 (Scheme 11). [34–36]<br />

A probable mechanism for this reaction is represented in Scheme 11. [36] The reaction of<br />

vinyldiazonium salts <strong>13</strong> with ø,ø¢-diaminoalkanes leads to ø,ø¢-bis(1H-1,2,3-triazol-1yl)alkanes.<br />

[37]<br />

Scheme 11 Reaction of Vinyldiazonium Salts with Amine Derivatives [36]<br />

N<br />

+<br />

N<br />

R 1<br />

<strong>13</strong><br />

R 5 = R 2 , R 3<br />

R 3<br />

R 2<br />

X −<br />

FOR PERSONAL USE ONLY<br />

422 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

R 4 NH 2<br />

− HX<br />

N<br />

R1 NHR4 R2 R3 + N<br />

−<br />

− R 2 H or R 3 H<br />

N<br />

N<br />

N<br />

R4 R1 R2 R3 N<br />

N<br />

N<br />

R4 R1 R<br />

14<br />

5<br />

R 1 R 2 R 3 X R 4 R 5 Yield (%) Ref<br />

H OEt OEt SbCl6 H OEt 65 [36]<br />

H OEt OEt SbCl6 3-morpholinopropyl OEt 54 [36]<br />

H OEt OEt SbCl6 Cy OEt 62 [36]<br />

H OMe 4-MeOC6H4 SbCl6 furfuryl 4-MeOC6H4 63 [36]<br />

4-O2NC6H4 OEt piperidino SbCl6 H piperidino 48 [36]<br />

4-O2NC6H4 OEt piperidino SbCl6 furfuryl piperidino 80 [36]<br />

4-O2NC6H4 OEt piperidino SbCl6 3-morpholinopropyl piperidino 65 [36]<br />

4-O2NC6H4 OEt piperidino BF4 4-MeOC6H4 OEt 51 [36]<br />

4-O2NC6H4 OEt piperidino BF4 NH2 OEt 24 [36]<br />

2-(Benzoyloxy)alk-1-enediazonium trifluoromethanesulfonates 17 [generated in situ from<br />

the reaction of Æ-diazo ketones 15 and benzoyl trifluoromethanesulfonate (16)] react<br />

with isopropylamine to give the corresponding 1-isopropyl-1H-1,2,3-triazoles 18 in high<br />

yields (Scheme 12). [38]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 12 Reaction of 2-(Benzoyloxy)alk-1-enediazonium Trifluoromethanesulfonates<br />

with Isopropylamine [38]<br />

N 2<br />

R 1<br />

O<br />

R 1<br />

+ BzOTf<br />

15 16<br />

A: 1. CH2Cl2, −70 to −50 oC, 2 h<br />

2. iPrNH2, −70 oC to rt, 2 h<br />

B: 1. CH2Cl2, −95 oC, 2 h<br />

2. iPrNH2, −95 oC, 0.5 h; −75 oC, 2 h<br />

N<br />

+<br />

N<br />

R 1<br />

17<br />

OBz<br />

R1 OTf −<br />

N<br />

N<br />

N<br />

Pri R1 R<br />

18<br />

1<br />

A: R1 = Me 77%<br />

B: R1 = Ph 80%<br />

1-Isopropyl-4,5-dimethyl-1H-1,2,3-triazole (18, R 1 = Me); Typical Procedure: [38]<br />

A soln of benzoyl trifluoromethanesulfonate (5.20 g, 20.4 mmol) in CH 2Cl 2 (50 mL) was<br />

cooled to –708C and a soln of 15 (R 1 = Me; 2.00 g, 20.4 mmol) in CH 2Cl 2 (50 mL) was added<br />

dropwise. After the addition, the suspension was stirred at –708C for 1 h and at –508C for<br />

3 h. iPrNH 2 (6.00 g, 102 mmol) was gradually added after cooling to –708C. A homogeneous<br />

soln was formed and after 2 h at rt it was extracted with H 2O (4 ”). The organic layer<br />

was dried (MgSO 4) and the solvent was removed at 15 Torr. Distillation (908C/0.05 Torr, Kugelrohr<br />

apparatus) gave triazole 18 (R 1 = Me); yield: 2.19 g (77%).<br />

<strong>13</strong>.<strong>13</strong>.1.1.1.1.3 Method 3:<br />

From Dichloro- or Trichloroacetaldehyde Sulfonylhydrazones and<br />

Primary Amines<br />

Tosyl and mesyl hydrazones of dichloroacetaldehyde and trichloroacetaldehyde react<br />

with ammonia and primary amines to produce 1H-1,2,3-triazoles 20 and 22, respectively,<br />

in good yields (Scheme <strong>13</strong>). [39,40] This is a much more convenient and secure reaction system,<br />

especially for large-scale production of triazoles, than some alternative methods<br />

where thermally unstable, or explosive, starting materials are used, namely diazo and azido<br />

derivatives. For example, 1H-1,2,3-triazole itself can be prepared in 75% yield from the<br />

reaction of dichloroacetaldehyde tosylhydrazone (19, X = Ts) with ammonia. [40] The same<br />

hydrazone can be converted into 1-benzyl-1H-1,2,3-triazole, 1-phenyl-1H-1,2,3-triazole, or<br />

1H-1,2,3-triazol-1-amine in similar yields. These triazoles can also be prepared from the<br />

mesylhydrazone 19 (X = Ms) in almost the same yields (60–85%). When trichloroacetaldehyde<br />

tosylhydrazone (21) is treated with aqueous ammonia only unidentified materials<br />

are obtained, but the reaction with methylamine or benzylamine gives the 1,5-disubstituted<br />

triazoles 22. [39]<br />

Scheme <strong>13</strong> Reaction of Dichloro- and Trichloroacetaldehyde<br />

Sulfonylhydrazones with Ammonia and Primary Amines [39,40]<br />

Cl<br />

Cl<br />

H N<br />

19<br />

H<br />

NHX<br />

X = Ts, Ms; R 1 = H, Ph, Bn, NH2<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 423<br />

R1NH2, MeOH<br />

0−40 oC, 4 h<br />

70−83%<br />

N<br />

N<br />

N<br />

R1 20<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


R 1 = Me: MeNH2, MeOH, 0 oC to rt, 19 h<br />

R1 = Bn: BnNH2, MeOH, 0 o Cl<br />

Cl<br />

C, 2.5 h<br />

Cl<br />

NHTs<br />

R<br />

H N<br />

1 = Me 25%<br />

R1 = Bn 30%<br />

21<br />

Æ,Æ-Dichloro ketone tosylhydrazones can also be used as precursors of 1H-1,2,3-triazoles.<br />

For example, 1,1-dichloroacetone tosylhydrazone (23) is converted into 1-benzyl- and 1-allyl-4-methyl-1H-1,2,3-triazoles<br />

24 in good yields (Scheme 14). [39] Also, an attempted synthesis<br />

of tosylhydrazone 26 from 2,2-dichloro-1-phenylethanone 25 gives the triazole directly<br />

27. [39]<br />

R 1 HN<br />

22<br />

N<br />

N<br />

N<br />

R1 Scheme 14 Reaction of Æ,Æ-Dichloro Ketone Tosylhydrazones with Primary Amines [39]<br />

Cl<br />

Cl<br />

Cl<br />

Cl<br />

H<br />

O<br />

Ph O<br />

25<br />

H<br />

TsNHNH2<br />

TsNHNH2<br />

Cl<br />

Cl<br />

Cl<br />

Cl<br />

H<br />

N<br />

23<br />

H<br />

Ph N<br />

26<br />

NHTs<br />

NHTs<br />

R 1 NH 2<br />

TsNHNH2<br />

24<br />

N<br />

N<br />

N<br />

R1 R1 = Bn 84%<br />

R1 = CH2CH CH2 83%<br />

Ph<br />

N<br />

N<br />

N<br />

NHTs<br />

27 20%<br />

1H-1,2,3-Triazole (20,R 1 = H); Typical Procedure: [40]<br />

To a soln of NH 3/H 2O (8.9 g, 523 mmol) in MeOH (40 mL) under ice-cooling was added slowly<br />

dichloroacetaldehyde tosylhydrazone (19, X = Ts; 4.4 g, 15.7 mmol) in MeOH (60 mL).<br />

The mixture was stirred at 228C for 9 h and then it was filtered to remove NH 4Cl. The filtrate<br />

was concentrated and chromatographed (silica gel, EtOAc/hexane 1:1) to give 1H-<br />

1,2,3-triazole as a colorless oil; yield: 0.81 g (75%); bp 208–2108C.<br />

<strong>13</strong>.<strong>13</strong>.1.1.1.2 Fragments C-C-N and N-N<br />

FOR PERSONAL USE ONLY<br />

424 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

<strong>13</strong>.<strong>13</strong>.1.1.1.2.1 Method 1:<br />

From Enaminones and Diazo Transfer Reagents<br />

Enaminones react with a range of diazo transfer reagents to give 1H-1,2,3-triazoles. 3-Diazo-1,3-dihydro-2H-indol-2-one<br />

derivatives and sulfonyl azides are particularly useful in<br />

these reactions.<br />

<strong>13</strong>.<strong>13</strong>.1.1.1.2.1.1 Variation 1:<br />

From Enaminones and 3-Diazo-1,3-dihydro-2H-indol-2-one Derivatives<br />

â-Amino-Æ,â-unsaturated ketones (enamino ketones) 28 (R 2 = Me) and â-amino-Æ,â-unsaturated<br />

esters (enamino esters) 28 (R 2 = OEt) react with 3-diazo-1,3-dihydro-2H-indol-2-one<br />

derivatives to give 1H-1,2,3-triazoles of type 30 in good to excellent yields (Scheme<br />

15). [41,42] Various 3-diazo-1,3-dihydro-2H-indol-2-ones can be used but the best results are<br />

obtained with the nitro derivatives 29 and 31. [41] When cyclic enaminones 33 or 34 are<br />

used, carbocyclic fused 1,2,3-triazoles of types 33 and 35 are obtained in good yields (49–<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


83%). [42] The 3-diazobenzo[b]thiophen-2-one also reacts with enaminones to give 1,2,3-triazoles.<br />

[41] In these reactions, compounds 29, 31, and 3-diazobenzo[b]thiophen-2-one act as<br />

diazo transfer reagents; a probable mechanism has been described. [41]<br />

Scheme 15 Reaction of Enaminones with 3-Diazo-1,3-dihydro-2H-indol-2-ones [41,42]<br />

R 1 HN<br />

28<br />

O<br />

H<br />

R 2<br />

+<br />

R 1 = Me, t-Bu; R 2 = Me, OEt<br />

R 1 HN<br />

28<br />

O<br />

H<br />

R 2<br />

+<br />

R 1 = Me, t-Bu; R 2 = Me, OEt<br />

R 1<br />

R 1<br />

N<br />

H<br />

( ) n<br />

O<br />

n = 1, 2, 3<br />

32<br />

34<br />

H<br />

NHMe<br />

CO2Et<br />

+<br />

+<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 425<br />

O 2N<br />

O 2N<br />

O 2N<br />

O 2N<br />

NO2 29<br />

31<br />

NO 2<br />

NO 2<br />

29<br />

N<br />

H<br />

N2<br />

N2<br />

N<br />

Me<br />

29<br />

N<br />

H<br />

N<br />

H<br />

N2<br />

N2<br />

O<br />

O<br />

O<br />

O<br />

55−81%<br />

55−82%<br />

R1 = H 49%<br />

R1 = Me 50%<br />

73−83%<br />

R 2<br />

R 2<br />

( )<br />

n<br />

O<br />

30<br />

O<br />

30<br />

N<br />

N<br />

N<br />

R1 N<br />

N<br />

N<br />

R1 R 1<br />

N<br />

N<br />

N<br />

35<br />

O<br />

N<br />

N<br />

N<br />

R1 Me<br />

CO2Et<br />

Reaction of Enaminones with 3-Diazo-1,3-dihydro-2H-indol-2-ones; General Procedure: [41]<br />

A mixture of the diazocarbonyl compound (1 mmol) and the enaminone (1 mmol) in dry<br />

toluene (30 mL) was refluxed until the disappearance of the N 2 absorption band at<br />

2100 cm –1 in the IR spectrum. The solvent was evaporated and the residue was submitted<br />

to column chromatography (Florisil, hexane/CH 2Cl 2/MeOH mixtures). The products were<br />

further purified by preparative TLC (silica gel, CHCl 3/MeOH 100:1).<br />

33<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


<strong>13</strong>.<strong>13</strong>.1.1.1.2.1.2 Variation 2:<br />

From Enaminones and Sulfonyl Azides<br />

Mesyl and tosyl azides can act as diazo transfer reagents to enaminones yielding triazoles<br />

36 in good yields (Scheme 16). [43] For this purpose, mesyl azide is a much better reagent<br />

than tosyl azide (yields of 20–97% and 2–50%, respectively). The reaction works better<br />

with N-alkyl-substituted enaminones (72–97%) than N-aryl-substituted enaminones (20–<br />

37%).<br />

Scheme 16 Reaction of Enaminones with Sulfonyl Azides [43]<br />

R 1 HN<br />

O<br />

H<br />

R 2<br />

R 1 = alkyl, aryl; R 2 = Me, OEt<br />

TsN3 or MsN3, NaH<br />

R 2<br />

O<br />

N<br />

N<br />

N<br />

R1 36<br />

Reaction of Enaminones with Sulfonyl Azides; General Procedure: [43]<br />

To a stirred mixture of NaH (6.67 mmol; free of oil) in anhyd MeCN (4 mL), under N 2 at rt,<br />

was added a soln of the enaminone (1.85 mmol) in anhyd MeCN (4 mL). The stirring was<br />

continued for 30 min, followed by dropwise addition of mesyl azide (5 mmol) in anhyd<br />

MeCN (1 mL). Stirring was maintained for 24 h and the reaction was quenched with<br />

NaOH soln (10%). The separated organic layer was dried (MgSO 4) and the solvent was removed<br />

under reduced pressure to give a residue that was extracted with CH 2Cl 2<br />

(3 ” 10 mL). The crude 1,2,3-triazoles were purified by column chromatography (silica<br />

gel, hexane/EtOAc 9:1).<br />

<strong>13</strong>.<strong>13</strong>.1.1.2 By Formation of One N-N and One C-C Bond<br />

<strong>13</strong>.<strong>13</strong>.1.1.2.1 Fragments C-N-N and C-N<br />

FOR PERSONAL USE ONLY<br />

426 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

<strong>13</strong>.<strong>13</strong>.1.1.2.1.1 Method 1:<br />

From Diazoalkanes and Nitriles<br />

Diazoalkanes react with activated nitriles such as cyanogen, cyanogen halides, methyl cyanoformate,<br />

aryl cyanates, sulfonyl cyanides, and others to give 1,2,3-triazoles (Scheme<br />

17). These reactions can formally be regarded as 1,3-dipolar cycloadditions. [3] If an excess<br />

of diazoalkane is used the triazoles may be N-alkylated; generally mixtures of the three<br />

possible N-alkyl-1,2,3-triazoles are obtained. For example, cyanogen bromide reacts with<br />

excess diazomethane to give a mixture of the 4-bromo-2-methyl-2H-1,2,3-triazole (21%), 5bromo-1-methyl-1H-1,2,3-triazole<br />

(6.4%), and 4-bromo-1-methyl-1H-1,2,3-triazole (5.5%). [44]<br />

Tosyl cyanide reacts with 1 equivalent of diazomethane to afford 4-tosyl-1H-1,2,3-triazole<br />

(37, R 1 = H; X = Ts) in 68% yield. With excess diazomethane it gives a mixture (95%) of the<br />

three isomeric N-monomethylated triazoles 38 (R 1 = H; X = Ts). [45] Similarly, 4-oxo-4H-1benzopyran-2-carbonitriles<br />

react with diazomethane to yield mixtures of three isomeric<br />

N-methyl-1,2,3-triazoles. [46]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 17 Reaction of Activated Nitriles with Excess Diazoalkanes [44,45]<br />

XCN<br />

R 1 CHN 2<br />

R 1<br />

X<br />

37<br />

N<br />

N<br />

N<br />

H<br />

R 1 CHN 2<br />

The importance of the nature of electron-withdrawing groups in nitriles with respect to<br />

their reactivity toward diazomethane is demonstrated by the relative yields of N-methyltriazoles<br />

39–41 given in Table 1. [47] For example, 1-methyl-1H-imidazole-4,5-dicarbonitrile<br />

reacts with diazomethane only at the 5-cyano group.<br />

Table 1 Examples of N-Methyltriazoles Obtained by Reaction of Diazomethane<br />

with Activated Nitriles [47]<br />

R 1 CN + CH 2N 2<br />

R 1<br />

N<br />

N<br />

NMe<br />

R1 Ratio Ref<br />

39 40 41<br />

CCl3 88.6 9.8 1.6 [47]<br />

CO2Et 23.6 74.8 1.6 [47]<br />

Bz 62.2 34.5 3.3 [47]<br />

NC<br />

O<br />

O<br />

N<br />

N<br />

Me<br />

+<br />

R 1<br />

R 1<br />

X<br />

N<br />

38<br />

N<br />

N<br />

R 1<br />

N<br />

N<br />

N<br />

+<br />

R<br />

N<br />

N<br />

N<br />

1<br />

Me Me<br />

39 40<br />

41<br />

91.5 3.1 5.4 [47]<br />

55.7 42.2 2.1 [47]<br />

Diazomethane also undergoes addition to the C”N bond of chloro(fluoroimino)acetonitrile<br />

(42) to yield triazole 43 (Scheme 18). Two equivalents of diazomethane are consumed<br />

in this reaction; the insertion of a methylene group is observed in the final product. [48]<br />

Scheme 18 Reaction of Diazomethane with<br />

Chloro(fluoroimino)acetonitrile [48]<br />

NF<br />

Cl CN<br />

42<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 427<br />

CH2N2 (2 equiv)<br />

Et2O, −78 oC 19.5%<br />

Cl<br />

43<br />

NF<br />

N<br />

H<br />

N<br />

N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Reaction of Activated Nitriles with Diazomethane; General Procedure: [47]<br />

CAUTION: Diazomethane is explosive by shock, friction, or heat, and is highly toxic by inhalation.<br />

A soln of CH 2N 2 (0.<strong>13</strong> mol) in Et 2O (600 mL) was added to the nitrile (0.02 mol). The reaction<br />

was monitored by TLC until the nitrile was completely consumed (several days). The<br />

solvent was evaporated and the residue was submitted to column chromatography (silica<br />

gel). The isomeric N-methyltriazoles were separated using appropriate eluents.<br />

<strong>13</strong>.<strong>13</strong>.1.1.2.1.1.1 Variation 1:<br />

From Diazoalkanes and Aryl Cyanates<br />

Aryl cyanates 44 react with diazoalkanes in a 2:1 proportion to yield the aryl 4-(aryloxy)-<br />

1H-1,2,3-triazole-1-carboximidates 45 (44–83%), which after hydrolysis give the corresponding<br />

N-unsubstituted triazoles 46 (Scheme 19). [49]<br />

Scheme 19 Reaction of Aryl Cyanates with Diazoalkanes [49]<br />

Ar 1 OCN<br />

44<br />

FOR PERSONAL USE ONLY<br />

428 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

Ar<br />

N<br />

N<br />

H<br />

N<br />

1O R1 R1CHN2 Ar1OCN Ar 1 = Ph, 4-Tol, 4-MeOC 6H 4, 4-ClC 6H 4; R 1 = H, CO 2Et<br />

<strong>13</strong>.<strong>13</strong>.1.1.2.1.1.2 Variation 2:<br />

From Diazoalkanes and Unactivated Nitriles<br />

Ar 1 O<br />

R 1<br />

N<br />

N<br />

N<br />

HN OAr 1<br />

45<br />

H 2O<br />

Ar 1 O<br />

R 1<br />

N<br />

N<br />

H<br />

46<br />

Unactivated nitriles generally do not react with diazomethane or other diazoalkanes,<br />

however, reaction can occur in the presence of a catalyst. Aluminum trichloride, triethylaluminum,<br />

and other aluminum complexes can be used as catalysts in the reaction of diazomethane<br />

with benzonitrile. [50] Aryldiazomethanes also react with benzonitriles in the<br />

presence of potassium tert-butoxide (molar ratio 1:1:1), in toluene, to give 4,5-diaryl-1H-<br />

1,2,3-triazoles, mostly in good to satisfactory yields (26–75%). [51] A plausible mechanism<br />

for this reaction is shown in Scheme 20. The reaction can be carried out at room temperature<br />

or in refluxing toluene.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

N


Scheme 20 Synthesis of 4,5-Diaryl-1H-1,2,3-triazoles by Reaction of Aryldiazomethanes<br />

with Benzonitriles in the Presence of Potassium tert-Butoxide [51]<br />

Ar 1 CN + Ar 2 CHN 2<br />

Ar 1<br />

Ar 1<br />

Ar 2<br />

N<br />

N<br />

N<br />

N<br />

−<br />

N<br />

N K +<br />

t-BuOK<br />

Ar 1 Ar 2 Conditions Yield (%) Ref<br />

Ph Ph rt, 24 h 69 [51]<br />

Ph Ph 110 8C, 2 h 75 [51]<br />

4-ClC6H4 4-ClC6H4 1108C, 2 h 70 [51]<br />

4-ClC6H4 Ph 110 8C, 2 h 44 [51]<br />

4-BrC6H4 Ph rt, 24 h 66 [51]<br />

4-Tol Ph 110 8C, 2 h 26 [51]<br />

<strong>13</strong>.<strong>13</strong>.1.1.2.1.1.3 Variation 3:<br />

From [Diazo(trimethylsilyl)methyl]lithium and Nitriles<br />

[Diazo(trimethylsilyl)methyl]lithium (48) [generated in situ from the reaction of diazo(trimethylsilyl)methane<br />

and butyllithium] reacts smoothly with nitriles to give 4-substituted<br />

5-(trimethylsilyl)-1,2,3-triazoles 49 in excellent yields (Scheme 21). [52,53] Various nitriles,<br />

including aromatic, heteroaromatic, and aliphatic nitriles, react efficiently with 48 to<br />

give 4-(trimethylsilyl)triazoles 49. Since treatment of diazo(trimethylsilyl)methane with<br />

butyllithium followed by protonation gives 4,5-bis(trimethylsilyl)-1H-1,2,3-triazole, [54]<br />

the generation of 48 needs to be carefully controlled.<br />

Scheme 21 Reaction of Nitriles with [Diazo(trimethylsilyl)methyl]lithium [52,53]<br />

R 1 CN<br />

+<br />

TMS<br />

48<br />

Li<br />

N 2<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 429<br />

H<br />

Ar 2<br />

Et 2O, 0 o C, 3 h N<br />

44−96%<br />

TMS<br />

R 1<br />

N<br />

H<br />

49<br />

R 1 = Pr, t-Bu, Bn, 3,7-dimethylocta-2,6-dienyl, Ph, 1-naphthyl, 2-pyridyl, 1-isoquinolyl, SEt, OPh, PO(OEt)2, TMS<br />

<strong>Triazoles</strong> 49; General Procedure: [52]<br />

15% BuLi in hexane (0.76 mL, 1.2 mmol) was added dropwise to a soln of TMSCHN 2<br />

(0.55 mL, 1.2 mmol) in Et 2O (10 mL) at 08C under argon and the mixture was stirred for<br />

20 min at 08C. To the resulting soln was added dropwise a soln of a nitrile (1 mmol) in<br />

Et 2O (3 mL) at 08C, then the mixture was stirred at 0 8C for 3 h. The mixture was treated<br />

with sat. aq NH 4Cl and extracted with Et 2O. The Et 2O extracts were washed with H 2O and<br />

dried (MgSO 4). Concentration of the solvent gave a residue, which was purified by preparative<br />

layer chromatography to give the triazole.<br />

N<br />

H 3O +<br />

Ar 1<br />

Ar 2<br />

47<br />

N<br />

H<br />

N<br />

N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


<strong>13</strong>.<strong>13</strong>.1.1.2.1.2 Method 2:<br />

From Diazoalkanes and Imines, Oximes, or Diarylazines<br />

The 1,3-dipolar cycloaddition of diazoalkanes to C=N bonds is a general method for the<br />

synthesis of 4,5-dihydro-1H-1,2,3-triazoles and 1H-1,2,3-triazoles (Scheme 22). [4] It is an especially<br />

useful method for the regioselective preparation of 1H-1,2,3-triazoles with bulky<br />

substituents in positions 1 and 5. Imines are the most versatile C=N system to be used in<br />

this method, but oximes and diarylazines can also be used.<br />

Scheme 22 Addition of Diazoalkanes to Imines [55,56]<br />

R 1<br />

R 2<br />

50<br />

NR 3<br />

+ R 4 CHN 2<br />

<strong>13</strong>.<strong>13</strong>.1.1.2.1.2.1 Variation 1:<br />

From Diazoalkanes and Imines<br />

R<br />

N<br />

N<br />

N<br />

4<br />

R3 R2 R1 4,5-Dihydro-1H-1,2,3-triazoles 51 are the expected products from the cycloaddition reaction<br />

of imines 50 with diazoalkanes but in some cases they spontaneously aromatize to<br />

the corresponding triazoles. When the 4,5-dihydro-1H-1,2,3-triazoles are the isolated<br />

products they can be converted into triazoles by a large number of alternative procedures<br />

(see Section <strong>13</strong>.<strong>13</strong>.1.3).<br />

The addition of diazoalkanes (especially diazomethane) to imines, to give 4,5-dihydro-1H-1,2,3-triazoles<br />

51, is very well studied. [4] In general it is favored by the presence of<br />

electron-withdrawing substituents in the imine, especially on an N-aryl moiety. [55,56]<br />

Though kinetic investigations of this reaction show that it follows essentially a concerted<br />

process and is not generally dependent on solvent polarity, a sizable increase in rate is<br />

noticed in the presence of protic solvents such as water or alcohols. [57] For example, while<br />

reaction of diazomethane with N-benzylideneaniline (52,Ar 1 =Ar 2 = Ph) does not occur in<br />

dry ether, it does occur in aqueous dioxane giving the 4,5-dihydro-1H-1,2,3-triazole 53<br />

(Ar 1 =Ar 2 = Ph) in 53% after eight days (Scheme 23). [55] This solvent system can be successfully<br />

used for the preparation of 5-hetaryl-substituted 4,5-dihydro-1H-1,2,3-triazoles of<br />

type 53 (Ar 1 = 2- or 3-pyridyl, 2-quinolyl). [58,59] Triethylaluminum and other aluminum<br />

complexes have been used as catalysts in the reaction of diazomethane with imines. [50]<br />

Scheme 23 Addition of Diazomethane to Diarylimines [58]<br />

Ar 1<br />

52<br />

N<br />

Ar 2<br />

+ CH2N 2<br />

FOR PERSONAL USE ONLY<br />

430 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

dioxane, H2O (cat.)<br />

rt, 2−8 d<br />

51<br />

Ar 1<br />

53<br />

N<br />

N<br />

N<br />

Ar2 Diazomethane undergoes addition to hexafluoroacetone imines 54 to give 4,5-dihydro-<br />

1H-1,2,3-triazoles 55 as the sole product or to give mixtures of 4,5-dihydro-1H-1,2,3-triazoles<br />

55 and 56 (the latter produced as a result of the addition of diazomethane to the<br />

C=C bond) (Scheme 24). [60]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 24 Addition of Diazomethane to Hexafluoroacetone Imines [60]<br />

F3C<br />

F 3C<br />

N<br />

54<br />

R 1<br />

R 2<br />

+ CH2N 2<br />

R1 R2 Yield (%) Ref<br />

55 56<br />

Me Me 91 – [60]<br />

Ph H 88 – [60]<br />

Me H 30 32 [60]<br />

iPr H 42 51 [60]<br />

Et 2O, rt<br />

N<br />

N<br />

N<br />

R1 R2 N<br />

N<br />

N<br />

R<br />

N<br />

N<br />

1<br />

R2 F3C F3C +<br />

F3C F3C 55 56<br />

Diazomethanes of the types 57, 58, and 59 react with formimidamides 60 to give directly<br />

the corresponding triazoles 61 in 11–62% yields (Scheme 25). [61]<br />

Scheme 25 Addition of Substituted Diazomethanes to Formimidamides [61]<br />

R 1 O 2C N 2<br />

R 1<br />

57<br />

O<br />

O<br />

58<br />

N 2<br />

(R 1 O) 2P N 2<br />

59<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 431<br />

R 1 = Me, Et, t-Bu<br />

R 1 = Me, t-Bu, Ph<br />

R 1 = Me, Et<br />

<strong>13</strong>.<strong>13</strong>.1.1.2.1.2.2 Variation 2:<br />

From Diazoalkanes and Oximes<br />

Me2N 60<br />

NBu t<br />

, MeCN, 81 o C, 24 h<br />

11−62%<br />

X<br />

N<br />

N<br />

N<br />

But Diazomethane undergoes addition to oximes to give 4,5-dihydro-1H-1,2,3-triazoles. The Omethyl<br />

oxime 62 reacts with diazomethane to yield the unstable 4,5-dihydro-1H-1,2,3-triazole<br />

63 (87%) that on treatment with piperidine gives the triazole 64 in 50% yield<br />

(Scheme 26). [62]<br />

61<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 26 Reaction of Diazomethane with Dimesylmethanone O-Methyloxime [62]<br />

Ms<br />

Ms<br />

N<br />

62<br />

OMe<br />

+ CH 2N 2<br />

dioxane, EtOAc<br />

0 oC, 30 min<br />

87%<br />

<strong>13</strong>.<strong>13</strong>.1.1.2.1.2.3 Variation 3:<br />

From Diazoalkanes and Diarylazines<br />

N<br />

Ms<br />

N<br />

Ms<br />

N<br />

OMe<br />

63<br />

piperidine, dioxane, EtOAc<br />

−10 to 50 oC, 3 h<br />

50%<br />

Ms<br />

N<br />

N<br />

N<br />

OMe<br />

64<br />

Aromatic aldehyde azines 65 react with aryldiazomethanes in the presence of potassium<br />

tert-butoxide to give N-unsubstituted 4,5-diaryl-1H-1,2,3-triazoles 66 (Scheme 27). [51] The<br />

scope of this method has yet to be demonstrated since only two symmetrical triazoles<br />

66 are prepared by this way. The mechanism of this reaction seems to involve one 1,3-dipolar<br />

cycloaddition followed by base elimination of an aromatic imide anion. However it<br />

should be noted that even in the absence of the aryldiazomethanes, the aromatic aldehyde<br />

azines (DMSO, rt) in the presence of potassium tert-butoxide (1 equiv), give the<br />

same 4,5-diaryl-1H-1,2,3-triazoles, although in much lower yields. [51]<br />

Scheme 27 Reaction of Aromatic Aldehyde Azines with Aryldiazomethanes in the Presence<br />

of Potassium tert-Butoxide [51]<br />

Ar 1 CH<br />

N<br />

N<br />

65<br />

CHAr 1<br />

N<br />

N<br />

N<br />

N Ar1 Ar1 Ar<br />

H<br />

1<br />

H<br />

FOR PERSONAL USE ONLY<br />

432 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

+ Ar 1 CHN 2<br />

Ar 1<br />

DMSO, rt, 24 h<br />

Ar 1<br />

H<br />

N<br />

NH<br />

N<br />

N Ar1 <strong>13</strong>.<strong>13</strong>.1.1.2.1.3 Method 3:<br />

From Diazoalkanes and Heterocumulenes<br />

t-BuOK<br />

Ar 1<br />

Ar 1<br />

N<br />

H<br />

N<br />

N<br />

66 Ar 1 = Ph 92%<br />

Ar 1 = 4-ClC 6H 4 38%<br />

The reaction of diazoalkanes (or their organometallic derivatives) with heterocumulenes<br />

is a versatile method for the synthesis of 1H-1,2,3-triazoles. The reactions with ketenimines,<br />

carbodiimides, isocyanates, and isothiocyanates are performed under very mild<br />

conditions and generally they give the desired triazoles in moderate to excellent yields.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


<strong>13</strong>.<strong>13</strong>.1.1.2.1.3.1 Variation 1:<br />

From Diazoalkanes and Ketenimines<br />

Diazomethane reacts with ketenimines 67 (rt, 4 d) to give triazoles of type 68 in moderate<br />

yields (Scheme 28). [63,64] Other diazoalkanes fail to react with ketenimines 67 to give the<br />

corresponding 1,2,3-triazoles. [64]<br />

Scheme 28 Reaction of Ketenimines with Diazomethane [63,64]<br />

Ph<br />

Ph<br />

67<br />

NAr 1<br />

+ CH 2N 2<br />

Ar 1 = Ph, 4-Tol, 4-ClC6H4, 4-BrC6H4<br />

Et2O rt, 4 d<br />

31−43%<br />

Ph<br />

Ph<br />

N<br />

N<br />

N<br />

Ar1 N<br />

N<br />

N<br />

Ar1 Ph<br />

Ph<br />

68<br />

Better yields of triazoles are obtained if [diazo(trimethylsilyl)methyl]lithium (48) is used<br />

(Scheme 29). For example, alkyl and aryl ketenimines 69, (R 1 =R 2 = X = alkyl, aryl) react<br />

smoothly with 48 [prepared from diazo(trimethylsilyl)methane and butyllithium] to give<br />

4-(trimethylsilyl)-1,2,3-triazoles 71 in good yields. [65] Since desilylation of 71 is readily<br />

achieved in almost quantitative yields (10% aq KOH/MeOH, reflux, 6 h), [65] reagent 48 can<br />

be used, with better results, as a diazomethane equivalent.<br />

The reaction of 48 with ketenimines bearing electron-withdrawing groups (69,<br />

X = EWG) also gives 1,2,3-triazoles but in some cases only pyrazoles are obtained: it can<br />

give either 1H-1,2,3-triazoles 71 or pyrazoles 72 as the sole product or mixtures of these<br />

compounds (Scheme 29). [66] The nature and the yields of the products change with the solvent<br />

used in the reaction. The betaines 70 are likely to be intermediates in these reactions:<br />

the triazoles are formed by the attack of the nitrogen anion on the diazonium nitrogen.<br />

[66]<br />

Scheme 29 Reaction of Ketenimines with [Diazo(trimethylsilyl)methyl]lithium [65,66]<br />

Li<br />

TMS<br />

Z = X, H<br />

N 2<br />

+<br />

R 1<br />

X<br />

48 69<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 433<br />

NR 2<br />

R<br />

X<br />

1 NR2 −<br />

+<br />

Li<br />

N2 TMS<br />

70<br />

Et 2O, 0 o C, 2 h<br />

X = alkyl, aryl, EWG<br />

X = EWG<br />

X<br />

R 2 HN<br />

R 1<br />

TMS<br />

R 1<br />

71<br />

N<br />

Z<br />

72<br />

N<br />

N<br />

N<br />

R2 N<br />

TMS<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


R 1 X R2Solvent Yield (%) Ref<br />

71 72<br />

Ph Ph 4-Tol Et2O 74 [65]<br />

Ph Ph Bu Et2O 67 [65]<br />

Me Me 4-Tol Et2O 82 [65]<br />

Et Bu Bu Et2O 82 [65]<br />

Me PO(OEt) 2 Et Et2O a 73 [66]<br />

a [66]<br />

Me PO(OEt) 2 Ph Et2O 68 2<br />

Me Ac Ph Et 2O 76 [66]<br />

Me Ac Ph THF 58 [66]<br />

b [66]<br />

Me Ac Ph hexane 46 14<br />

Me CN Et Et 2O 43 [66]<br />

a Z = PO(OEt)2.<br />

b Z=H.<br />

Reaction of Ketenimines with [Diazo(trimethylsilyl)methyl]lithium;<br />

General Procedure: [65]<br />

To 1.87 M TMSCHN 2 in hexane (0.64 mL, 1.2 mmol) in Et 2O (10 mL) was added, dropwise<br />

15% BuLi in hexane (0.76 mL, 1.2 mmol) at 08C under argon. The mixture was stirred at<br />

this temperature for 20 min. A soln of an alkyl or aryl ketenimine (1 mmol) in Et 2O<br />

(2 mL) was then added dropwise at 0 8C. The mixture was stirred at 0 8C for 2 h. After addition<br />

of cold H 2O, the mixture was extracted with benzene (CAUTION: carcinogen). The organic<br />

layer was washed with H 2O, dried (MgSO 4), and concentrated in vacuo. The residue<br />

was purified by column chromatography (silica gel) to give triazoles 71.<br />

<strong>13</strong>.<strong>13</strong>.1.1.2.1.3.2 Variation 2:<br />

From Diazoalkanes and Carbodiimides<br />

Carbodiimides 73 react with diazoalkanes to give 1H-1,2,3-triazoles 74 (Scheme 30). For<br />

example, reaction of diazomethane with di(1- or 2-naphthyl)carbodiimides [67] or with<br />

bis(4-X-phenyl)carbodiimides (X = H, NMe 2, OMe, Me, Cl, Br, Ac) gives triazoles 74 (R 1 =H)<br />

in low to moderate yields. [63,68,69]<br />

Scheme 30 Reaction of Carbodiimides with Diazoalkanes [63,67–69]<br />

Ar 1 N<br />

73<br />

NAr 1<br />

FOR PERSONAL USE ONLY<br />

434 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

+ R 1 CHN2<br />

N<br />

Ar<br />

N<br />

N<br />

1 R<br />

N<br />

1<br />

Ar1 Et2O, rt, 4 d N<br />

Ar<br />

N<br />

N<br />

1 R<br />

HN<br />

1<br />

Ar1 Organometallic diazomethanes also react with carbodiimides to form 1,2,3-triazoles, for<br />

example diazo(trimethylsilyl)methane and diazobis(trimethylstannyl)methane give, respectively,<br />

compounds 75 (19%) and 76 (96%) by reaction with 73 (Ar 1 = 4-Tol) (Scheme<br />

31). [68]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

74


Scheme 31 Reaction of Organometallic Diazoalkanes with Carbodiimides [68]<br />

Ar 1 N NAr 1<br />

73<br />

Ar 1 = 4-Tol<br />

Et2O 35 oC, 2 h<br />

TMSCHN2<br />

19%<br />

(Me3Sn)2CN2<br />

96%<br />

N<br />

N<br />

Ar<br />

N<br />

1 TMS<br />

HN<br />

Ar1 75<br />

Me3Sn<br />

N<br />

Ar<br />

N<br />

N<br />

N<br />

1<br />

Me3Sn Ar1 Reaction of Carbodiimides with Diazomethane; General Procedure: [63]<br />

CAUTION: Diazomethane is explosive by shock, friction, or heat, and is highly toxic by inhalation.<br />

A freshly prepared ethereal soln of CH 2N 2 (12 mmol) was added to the carbodiimide<br />

(10 mmol) dissolved in a sufficient quantity of Et 2O. The mixture was allowed to stand at<br />

rt for 4 d. The separated crystals were collected by filtration and washed with Et 2O. The<br />

triazoles 74 were then recrystallized (MeOH or aq acetone).<br />

<strong>13</strong>.<strong>13</strong>.1.1.2.1.3.3 Variation 3:<br />

From Diazoalkanes and Isocyanates<br />

Alkyl and aryl isocyanates react with [diazo(trimethylsilyl)methyl]lithium (48) to give 1substituted<br />

1H-1,2,3-triazol-5-ols 77 in good yields (Scheme 32). [70] Experimental data indicate<br />

that these reactions proceed by a stepwise process, not by a concerted 1,3-dipolar cycloaddition<br />

process. [70]<br />

Scheme 32 Reaction of Isocyanates with [Diazo(trimethylsilyl)methyl]lithium [70]<br />

Li<br />

TMS<br />

48<br />

N2<br />

+ R 1 NCO<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 435<br />

Et2O<br />

R1N +<br />

N2 O −<br />

Li<br />

TMS<br />

76<br />

H2O − TMSOH<br />

TMS<br />

R 1 Conditions Yield (%) mp (8C) Ref<br />

Bu Et 2O, –788C, 1,5 h; rt, 3.5 h 63 <strong>13</strong>2–<strong>13</strong>3 [70]<br />

t-Bu Et 2O, 0 8C, 1 h; reflux, 6h 53 126–<strong>13</strong>1 (dec) [70]<br />

Cy Et 2O, 0 8C, 1 h; rt, 1.7 h 71 148 [70]<br />

Ph Et 2O, 0 8C, 2 h 79 1<strong>13</strong>–115 (dec) [70]<br />

4-ClC 6H 4 Et 2O, 0 8C, 2 h 83 111 (dec) [70]<br />

1-naphthyl Et 2O, 0 8C, 1 h 83 125 (dec) [70]<br />

LiO<br />

N<br />

N<br />

N<br />

R1 HO<br />

77<br />

N<br />

N<br />

N<br />

R1 for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Benzoyl isocyanate reacts with ethyl diazoacetate, in refluxing xylene, to give ethyl 1-benzoyl-5-hydroxy-1H-1,2,3-triazole-4-carboxylate<br />

in 60% yield (Scheme 33). [71]<br />

Scheme 33 Reaction of Benzoyl Isocyanate with Ethyl Diazoacetate [71]<br />

BzNCO + EtO 2CCHN2<br />

xylene, reflux<br />

60%<br />

EtO2C<br />

N<br />

N<br />

HO<br />

N<br />

Bz<br />

1-(4-Chlorophenyl)-1H-1,2,3-triazole (77, R 1 = 4-ClC 6H 4); Typical Procedure for the Reaction<br />

of Isocyanates with [Diazo(trimethylsilyl)methyl]lithium: [70]<br />

To 2 M TMSCHN 2 in hexane (0.6 mL, 1.2 mmol) in Et 2O (10 mL) was added dropwise, 15%<br />

BuLi in hexane (0.76 mL, 1.2 mmol) at 08C under argon. The mixture was stirred at this<br />

temperature for 20 min. A soln of 4-chlorophenyl isocyanate (154 mg, 1 mmol) in Et 2O<br />

(3 mL) was then added dropwise at 0 8C. The mixture was stirred at 0 8C for 2 h and ice water<br />

was then added. The aqueous layer was separated and the organic phase was extracted<br />

with H 2O. The combined aqueous layer was acidified with 2 M HCl. The resulting white<br />

precipitates were collected by filtration, dried in vacuo, and purified by column chromatography<br />

(silica gel) to give 77 (R 1 = 4-ClC 6H 4); yield: 162 mg (83%).<br />

<strong>13</strong>.<strong>13</strong>.1.1.2.1.3.4 Variation 4:<br />

From Diazoalkanes and Isothiocyanates<br />

Treatment of isothiocyanates with [diazo(trimethylsilyl)methyl]lithium (48) in tetrahydrofuran,<br />

followed by quenching with alkyl halides, gives 1-substituted 5-(alkylsulfanyl)-<br />

4-(trimethylsilyl)-1H-1,2,3-triazoles 78 in excellent yields (Scheme 34). [72] A dramatic solvent<br />

effect is observed in this reaction: changing tetrahydrofuran for diethyl ether leads<br />

to the exclusive formation of 1,3,4-thiadiazol-2-amines in good yields. [73] This is in contrast<br />

to the results observed with isocyanates (Scheme 32). Removal of the trimethylsilyl<br />

group from 78 is readily carried out with 10% aqueous potassium hydroxide in boiling<br />

methanol to give triazoles 79 in almost quantitative yields. [72]<br />

Scheme 34 Reaction of Isothiocyanates with [Diazo(trimethylsilyl)methyl]lithium [72]<br />

Li<br />

TMS<br />

48<br />

N 2<br />

+ R 1 NCS<br />

FOR PERSONAL USE ONLY<br />

436 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

THF<br />

R 2 X<br />

R1 +<br />

N2 N<br />

TMS<br />

Li<br />

S −<br />

78<br />

N<br />

N<br />

N<br />

R1 OH −<br />

Li + − S<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

TMS<br />

R 2 S<br />

TMS<br />

N<br />

N<br />

N<br />

R1 R 2 S<br />

79<br />

N<br />

N<br />

N<br />

R1


FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 437<br />

bR 1 R2X Yield (%) Ref<br />

78 79<br />

Ph MeI 98 94 [72]<br />

Ph BnBr 99 97 [72]<br />

Me MeI 96 100 [72]<br />

Me BnBr 90 98 [72]<br />

Bu BnBr 97 95 [72]<br />

Cy BnBr 98 96 [72]<br />

Bn BnBr 91 99 [72]<br />

CH2=CHCH2 BnBr 91 83 [72]<br />

Reaction of Isothiocyanates with [Diazo(trimethylsilyl)methyl]lithium;<br />

General Procedure: [72]<br />

To a soln of 2 M TMSCHN 2 in hexane (0.6 mL, 1.2 mmol) in THF (10 mL) was added dropwise<br />

15% BuLi in hexane (0.76 mL, 1.2 mmol) at –788C under argon. The mixture was<br />

stirred at this temperature for 20 min. A soln of the isothiocyanate (1 mmol) in THF<br />

(3 mL) was then added dropwise at –788C. After 1 h at –78 8C, the alkyl halide (1.2 mmol)<br />

was added and the mixture was stirred at –788C for 1 h, then at 08C for 2 h. After addition<br />

of ice water, the mixture was extracted with benzene (CAUTION: carcinogen). The organic<br />

layer was washed with H 2O, dried (MgSO 4), and concentrated in vacuo. The residue was<br />

purified by column chromatography (silica gel) to give triazoles 78.<br />

<strong>13</strong>.<strong>13</strong>.1.1.2.1.4 Method 4:<br />

From N-Alkyl-N-nitrosoamines and Nitriles<br />

Lithium salts of N-alkyl-N-nitrosoamines react with aryl cyanides to form triazoles 80 in<br />

40–70% yield (Scheme 35). [74] The main limitation of this method is the fact that enolizable<br />

nitriles cannot be used.<br />

Scheme 35 Reaction of Lithium Salts of N-Alkyl-N-nitrosoamines with<br />

Aryl Cyanides [74]<br />

THF, −78<br />

+<br />

oC, 10 h<br />

Ar1CN N NO<br />

Li +<br />

R<br />

R1 40−72%<br />

2<br />

−<br />

Ar 1 = Ph, 4-Tol, 2-naphthyl; R 1 = Me, iPr, t-Bu; R 2 = H; R 1 ,R 2 = (CH 2) 3<br />

R 2<br />

Ar 1<br />

80<br />

N<br />

N<br />

N<br />

R1 1-Methyl-4-phenyl-1H-1,2,3-triazole (80,R 1 = Me; R 2 =H;Ar 1 = Ph); Typical Procedure: [74]<br />

CAUTION: N-Methyl-N-nitrosomethylamine (N,N-dimethylnitrosamine) is a probable human<br />

carcinogen and an eye and skin irritant. It is hepatotoxic and an exp. carcinogen and teratogen.<br />

All operations should be performed in a well-ventilated fume hood using appropriate safety precautions<br />

and procedures.<br />

Pure N-methyl-N-nitrosomethylamine (1.62 mL, 22 mmol) was added with stirring to a<br />

soln of LDA (23 mmol) in anhyd THF (70 mL) [from iPr 2NH (3.22 mL) and 1.6 M BuLi in hexane<br />

(14.2 mL)] at –788C and after 10 min the mixture was treated with PhCN (1.03 mL,<br />

10 mmol). The mixture was maintained at the temperature of dry ice for 10 h and the mixture<br />

was treated with a soln of glacial AcOH (1.32 mL, 23 mmol) in THF (5 mL). Working up<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


with CH 2Cl 2 afforded a crystalline crude product that was recrystallized (CCl 4); yield:<br />

1.15 g (72%); mp 1228C.<br />

<strong>13</strong>.<strong>13</strong>.1.1.3 By Formation of Two N-C Bonds<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1 Fragments N-N-N and C-C<br />

The most important and general approach to the synthesis of the 1,2,3-triazole ring system<br />

involves azides. A wide variety of azides (organic or inorganic) can be used: alkyl,<br />

aryl, hetaryl, acyl, alkoxycarbonyl and sulfonyl azides, azidotrimethylsilane, hydrazoic<br />

acid, sodium azide, etc. All are suitable reagents for triazole synthesis.<br />

Azides react with various types of compounds to yield 1,2,3-triazoles or their immediate<br />

precursors. The most used are: (i) compounds with C”C bonds (here referred to as<br />

alkynes, irrespectively of other functional groups), (ii) compounds with C=C bonds (here<br />

referred to as alkenes, and including allenes, enamines, enol ethers, etc.), and (iii) activated<br />

methylene compounds.<br />

In spite of the great usefulness of the azides in the triazole synthesis, if the reaction<br />

conditions (especially the temperature) are not well controlled, the products obtained<br />

may be not the expected triazoles. This is because of the thermal instability of the azides<br />

and of some of the intermediates (dihydrotriazoles) formed during the triazole synthesis.<br />

[75] It is very important to always consider that most organic azides undergo thermal<br />

or photochemical decomposition to nitrenes. The decomposition temperature is dependent<br />

on the azide type (Table 2) and some azides, especially cyanogen azide and the lower<br />

alkyl azides, are unpredictably explosive. When the decomposition is carried out in the<br />

presence of an alkene the corresponding aziridine is usually obtained. [75]<br />

Table 2 Decomposition Temperature of Azides [76]<br />

Azide Type Decomposition Temp (8C) Ref<br />

alkyl azides 180–200 [76]<br />

aryl azides 140–170 [76]<br />

sulfonyl azides 120–150 [76]<br />

alkoxycarbonyl azides 100–<strong>13</strong>0<br />

[76]<br />

acyl azides 25–80 [76]<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.1 Addition of Azides to Alkynes<br />

FOR PERSONAL USE ONLY<br />

438 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

The thermal 1,3-dipolar cycloaddition of azides to alkynes is often the method of choice<br />

for the synthesis of 1,2,3-triazoles since it gives directly the desired product. However,<br />

when unsymmetrical alkynes are used, mixtures of the two possible regioisomers are<br />

usually obtained. In general, addition to unsymmetrical alkynes tends to give mainly the<br />

isomers with the electron-withdrawing groups at the 4-position and the electron-releasing<br />

groups at 5-position. [3] The low regioselectivity of these reactions is the major disadvantage<br />

of this method as a preparative procedure. The accepted mechanism for these reactions<br />

is a concerted 1,3-dipolar cycloaddition. Kinetic data and the regio- and stereoselectivity<br />

of these reactions strongly support this mechanism. However, the reactions involving<br />

ionic azides (e.g., sodium azide) follow a nonconcerted ionic mechanism. These<br />

mechanisms have been discussed and documented in reviews. [76,77]<br />

N-Unsubstituted 1,2,3-triazoles are prepared by the direct addition of hydrazoic acid<br />

or an azide ion to alkynes but it is often more convenient to obtain these compounds by<br />

removal of a N-substituent from a 1H- or2H-triazole.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


<strong>13</strong>.<strong>13</strong>.1.1.3.1.1.1 Method 1:<br />

Addition of Hydrazoic Acid to Alkynes<br />

Hydrazoic acid reacts with alkynes to give the corresponding N-unsubstituted triazoles 81<br />

(Scheme 36). This method was originally performed by Dimroth and Fester who prepared<br />

the parent compound by heating an alcoholic solution of hydrazoic acid with an acetone<br />

solution of acetylene at 1008C for 70 hours. [78] With alk-1-ynes the reaction is generally<br />

carried out in benzene in a closed vessel at temperatures ranging from 90 to <strong>13</strong>58C for<br />

30–48 hours. [79] The triazoles are obtained in low to moderate yields. Reactions involving<br />

alkynes with electron-withdrawing or donating groups are faster and the yields are higher.<br />

Scheme 36 Addition of Hydrazoic Acid to Alkynes [44,79–83]<br />

R2 R1 + HN3 FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 439<br />

R 1 R 2 Yield (%) mp (8C) bp (8C)/Torr Ref<br />

H Me 14 35–36 108–109/25 [79]<br />

H Bu 56 – 103–105/1 [79]<br />

H (CH2) 5Me 63 27 120–122/2 [79]<br />

H (CH2) 9Me 29 59 148–149/0.6 [79]<br />

H Ph 48 148 – [79,80]<br />

H CHO 50 141–142 – [81]<br />

H CO2H71 222–224 – [44]<br />

Ph CHO 90 186–188 – [82]<br />

TMS CHO 83 171–183 – [83]<br />

TMS Ac 88 159–160 – [83]<br />

TMS CO-t-Bu 79 84–85 – [83]<br />

TMS Bz 85 102 – [83]<br />

4-Phenyl-1H-1,2,3-triazole (81,R 1 =H;R 2 = Ph): [79]<br />

CAUTION: Hydrazoic acid is highly toxic and explosive. Adequate protection and shielding are<br />

necessary during the preparation and handling of this reagent.<br />

A combustion tube containing phenylacetylene (14.7 g, 0.144 mol) and a soln of HN 3 in<br />

benzene (50 mL of 14.2% HN 3 in benzene, 0.165 mol) (CAUTION: carcinogen) was sealed<br />

and heated in a bath at 110–1158C for 40 h. After cooling to rt almost the entire contents<br />

crystallized. The solid was collected by filtration, washed with benzene, and recrystallized<br />

twice (benzene). Decolorizing charcoal was used during the first crystallization;<br />

yield: 10 g (48%); mp 148 8C.<br />

R 1<br />

R 2<br />

81<br />

N<br />

H<br />

N<br />

N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


<strong>13</strong>.<strong>13</strong>.1.1.3.1.1.2 Method 2:<br />

Addition of the Azide Ion to Alkynes<br />

The azide ion undergoes addition to alkynes to give triazoles 82 in low to moderate yields<br />

(Scheme 37). Better yields are obtained with alkynes bearing electron-withdrawing<br />

groups. Almost quantitative yields (>98%) of 5-substituted 1H-1,2,3-triazole-4-carbaldehydes<br />

are obtained from the reaction of alk-2-ynals with sodium azide in dimethyl sulfoxide,<br />

at room temperature. [84] Generally the reaction is carried out in dimethyl sulfoxide or<br />

dimethylformamide; sodium azide [84–87] is frequently used as the azide ion source but lithium<br />

azide [88] and aluminum azide [89] have also been used. The mechanism of the reaction<br />

probably involves the nucleophilic addition of the azide ion to the triple bond followed by<br />

1,5-dipolar cyclization of the resulting vinyl anion. Addition of sodium azide to 1-aryl-5phenylpent-4-yne-1,3-diones<br />

in refluxing dimethylformamide gives the corresponding 4-<br />

(3-aryl-1,3-dioxopropyl)-5-phenyl-1H-1,2,3-triazoles 82 (R 1 = Ph; R 2 = COCH 2Bz, COCH 2CO-<br />

4-Tol, 4-MeOC 6H 4COCH 2CO) in good yields. [86]<br />

Scheme 37 Addition of Sodium Azide to Alkynes [84–86]<br />

R2 R1 + NaN3 FOR PERSONAL USE ONLY<br />

440 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

DMSO<br />

R 2<br />

R 1<br />

−<br />

+<br />

N<br />

−<br />

N<br />

N<br />

R 1 R 2 Yield (%) mp (8C) Ref<br />

H H 11 – [85]<br />

H Ph 40 148 [85]<br />

Ph Ph 16 140 [85]<br />

H CO2Me 49 145 [85]<br />

CO2Me CO2Me 54 <strong>13</strong>2 [85]<br />

Ph CHO >98 – [84]<br />

Bu CHO >98 – [84]<br />

Ph COCH2Bz 72 87 [86]<br />

Ph COCH2CO-4-Tol 72 122 [86]<br />

Ph 4-MeOC6H4COCH2CO 60 79 [86]<br />

H 3O +<br />

R 1<br />

R 2<br />

R 1<br />

N<br />

N<br />

N<br />

−<br />

The reaction of propynenitrile with aluminum azide (THF, reflux, 24 h) gives a mixture of<br />

the triazoles 83 (32%) and 84 (47%) (Scheme 38). [89] The formation of the tetrazole ring results<br />

from the addition of an azide ion to the cyano group.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

R 2<br />

82<br />

N<br />

H<br />

N<br />

N


Scheme 38 Addition of Aluminum Azide to Propynenitrile [89]<br />

H CN + Al(N3) 3<br />

THF, reflux<br />

24 h<br />

NC<br />

N<br />

H<br />

83 32%<br />

N<br />

N<br />

+<br />

H<br />

N<br />

N<br />

N<br />

N<br />

84 47%<br />

Addition of sodium azide to (arylethynyl)triphenylphosphonium halides 85 gives 4-aryl-5triphenylphosphonio-1,2,3-triazolide<br />

ylides 86 in high yields (Scheme 39). [87] These ylides<br />

are readily hydrolyzed in aqueous basic solution to give quantitatively triazoles 87 and<br />

triphenylphosphine oxide.<br />

Scheme 39 Addition of Sodium Azide to (Arylethynyl)triphenylphosphonium Halides [87]<br />

Ar 1<br />

85<br />

PPh3 X − +<br />

NaN3, DMF<br />

60 oC, 3 h<br />

Ar1 = Ph 93%<br />

Ar1 = 4-ClC6H4 94%<br />

+<br />

Ph3P Ar 1<br />

86<br />

N<br />

−<br />

N<br />

N<br />

NaOH<br />

EtOH/H2O (1:2)<br />

reflux, 2 h<br />

− Ph3PO<br />

100%<br />

Propargyl sulfonates 88 react with lithium azide/copper(I) chloride complex (THF/DMF,<br />

–60 8C) to give, after acidification, the 5-(1-azidoalkyl)-1H-1,2,3-triazoles 89 in low yields<br />

(4–24%); 50–70% of the starting material is recovered (Scheme 40). [88]<br />

Scheme 40 Addition of Lithium Azide to Propargyl Sulfonates [88]<br />

MsO<br />

R 1 R 2<br />

88<br />

R 3<br />

LiN3, CuCl<br />

THF/DMF (1:1)<br />

−60 oC, 10 h<br />

4−24%<br />

R 1 = t-Bu, Ph, 3-O 2NC 6H 4; R 2 = H, Ph; R 3 = t-Bu, Ph<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 441<br />

4-(3-Aryl-1,3-dioxopropyl)-5-phenyl-1H-1,2,3-triazoles 82 (R 1 = Ph; R 2 = COCH 2Bz,<br />

4-TolCOCH 2CO, 4-MeOC 6H 4COCH 2CO); General Procedure: [86]<br />

N3<br />

R2 CAUTION: Sodium azide can explode on heating and is highly toxic.<br />

A soln of 1-aryl-5-phenylpent-4-yne-1,3-dione (4 mmol) in DMF (20 mL) was refluxed with<br />

NaN 3 (4.6 mmol) for 3 h. The mixture was then poured into cold H 2O (200 mL), acidified<br />

with dil H 2SO 4, and the precipitated triazole 82 was collected by filtration, washed with<br />

H 2O several times, dried, and recrystallized [benzene/petroleum ether (bp 60–80 8C)] as<br />

yellow needles.<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.1.3 Method 3:<br />

Addition of Alkyl, Aryl, or Hetaryl Azides to Alkynes<br />

The addition of alkyl, aryl, and hetaryl azides to alkynes is the most popular method for<br />

the synthesis of 1,2,3-triazoles. The number of publications related to this method is so<br />

impressive that, although no substantial differences are found in the experimental procedures,<br />

for easier systematization of the information available, several variations of the<br />

method will be presented according to the type of alkyne used. Once again, it should be<br />

emphasized that azides are dangerous compounds, especially alkyl azides which are<br />

R 3<br />

R 1<br />

89<br />

N<br />

H<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N<br />

Ar 1<br />

N<br />

H<br />

87<br />

N<br />

N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


treacherously explosive and should be treated with extreme caution. Wherever possible<br />

these compounds should only be handled as solutions.<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.1.3.1 Variation 1:<br />

Addition of Azides to Acetylene and to Symmetrically Substituted Alkynes<br />

Azides undergo addition to acetylene and to symmetrically substituted alkynes 90 to give<br />

only one 1-substituted 1H-1,2,3-triazole 91, which simplifies the purification step<br />

(Scheme 41); this is a general method for the preparation of triazoles 91 and in some cases<br />

the yields are excellent. Addition of phenyl azide, [78] arylmethyl azides [90–92] or other alkyl<br />

azides [90] to acetylene yields the corresponding 4,5-unsubstituted triazoles 91 (R 2 = H). This<br />

method has also been used for the preparation of dendrimers containing various 1,2,3-triazole<br />

rings. [93] The addition of dimethyl acetylenedicarboxylate to per(6-azido-6-deoxy-2,3di-O-methyl)cyclodextrins<br />

yields the corresponding per(4,5-dicarboxy-1,2,3-triazol-1-yl)<br />

derivatives. [94] 1,4-Diazidobuta-1,3-dienes react with cyclooctyne at room temperature to<br />

give the corresponding bis(triazolyl) derivatives in high yields (86–99%). [95] 1,2-, 1,3-, and<br />

1,4-Bis(azidomethyl)benzenes react with dimethyl, diethyl, and di-tert-butyl acetylenedicarboxylates<br />

to afford the corresponding benzobis(triazoles) in good yields. [96] Other interesting<br />

bis(triazolyl) derivatives have been prepared by reacting dimethyl acetylenedicarboxylate<br />

and bis-azides (produced from the reaction of sodium azide and bis-epoxides). [97]<br />

Scheme 41 Addition of Azides to Symmetrically Substituted Alkynes [92,98–115]<br />

R 1 N 3 +<br />

R 2<br />

90<br />

FOR PERSONAL USE ONLY<br />

442 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

R 2<br />

N<br />

N<br />

R<br />

N<br />

2<br />

R2 R1 R 1 R 2 Conditions Yield (%) Ref<br />

Me Ph benzene, 608C, 2 months 30 [98]<br />

CF2CHFCF3 Ph 1808C, 18 h 88 [99]<br />

(CF2) 2CO2Me CO2Me <strong>13</strong>08C, 6 h 94 [99]<br />

Ph CH2OH benzene, 808C, 12 h 73 [100]<br />

Ph CH(OEt) 2 EtOH, 100 8C, 28 h 82 [101]<br />

Ph CO2Me EtOH, reflux, 20 h 92 [102]<br />

(CH2) 5Me CH(OEt) 2 EtOH, 100 8C, 43 h 90 [101]<br />

4-MeOC6H4 CO2Me benzene, reflux, 24 h 97 [103]<br />

4-O2NC6H4 CO2Me benzene, reflux, 24 h 87 [103]<br />

4-O2NC6H4 CO2Me benzene, reflux, 24 h 80 [104]<br />

2-AcOC6H4 Bz toluene, reflux, 2–30 h 82 [92]<br />

Bn CO2H acetone, rt to reflux, 1 h 93 [105]<br />

1-naphthyl Bz benzene, reflux, 48 h 70 [106]<br />

1-naphthyl CO2Me benzene, reflux, 5 h 95 [106]<br />

1-naphthyl TMS CHCl3, reflux, 96 h 37 [106]<br />

1-adamantyl CO2Me toluene, reflux, 24 h 77 [107]<br />

1-adamantyl CH2OH toluene, reflux, 90 h 32 [107]<br />

1-adamantyl Ph toluene, reflux, 500 h 17 [107]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

91


R 1 R 2 Conditions Yield (%) Ref<br />

(E)-CPH=CHMe CO 2Me rt 70 [108]<br />

cyclohepta-2,4,6-trienyl CO 2Me CCl 4, reflux, 1 h 73 [109]<br />

cyclohepta-2,4,6-trienyl Bz benzene, 100 8C, 2 h 58 [109]<br />

CH 2PO(OEt) 2 CO 2Me toluene, reflux, 30–40 h 92 [110]<br />

CH 2PO(OEt) 2 Bz toluene, reflux, 30–40 h 85 [110]<br />

AcO<br />

AcO<br />

AcO<br />

Pr i<br />

− +<br />

O N<br />

EtO 2C<br />

O<br />

S<br />

O<br />

O<br />

O O<br />

O O<br />

N<br />

H<br />

O<br />

OAc<br />

CO2Et<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 443<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.1.3.2 Variation 2:<br />

Addition of Azides to Alk-1-ynes<br />

CH 2OH toluene/pyridine, reflux, 18 h 38 [111]<br />

CO 2Me benzene, reflux, 6 h 84 [112]<br />

CO 2Me toluene, 808C, 1.5 h 7 [1<strong>13</strong>]<br />

Ph 808C, 120 h 51 [114]<br />

CH 2OH 808C, 30 h 66 [114]<br />

CO 2Me benzene, rt, 12 h 95 [115]<br />

Azides undergo addition to alk-1-ynes to give mixtures of 1,4- and 1,5-disubstituted 1H-<br />

1,2,3-triazoles (Scheme 42). The ratio of the two products is mainly dependent on the<br />

structure of alkyne: when R 2 is an electron-withdrawing group it goes preferentially to<br />

position 4 (triazoles 93), however isomers 94 are predominant when R 2 is an electron-releasing<br />

group. The mechanism and kinetics of the cycloaddition of phenyl azide to various<br />

4-substituted phenylacetylenes has been reported. [116] Phenyl azide reacts regioselectively<br />

with trifluoromethyl-substituted alkynyl Æ-amino acids to give the 1,4-disubstituted<br />

triazole. [117] It has been shown that cucurbituril substantially accelerates (ca. 10 5 -fold)<br />

the reaction of azide-substituted ammonium ions with alkyne-derived ammonium ions.<br />

The reaction is regioselective, affording only the 1,4-disubstituted triazole derivatives. [118]<br />

This method has been used for the preparation of oligo-1,2,3-triazoles and [n]rotax-<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


anes. [119,120] A catalytic effect is also observed for zinc chloride doped natural phosphate<br />

for the cycloaddition of alkyl azides with alk-1-ynes. [121] With this catalyst a significant reduction<br />

in the reaction time is observed but the yields and the 1,4-/1,5-substitution ratio<br />

of the triazole are not improved. The enzyme acetylcholinesterase, which plays a key role<br />

in neurotransmitter hydrolysis in the central and peripheral nervous systems, has been<br />

used as a catalyst for the reaction of a tacrine-substituted alkyl azide with a phenanthridinium-substituted<br />

terminal alkyne. The 1,5-disubstituted triazole is the predominant isomer.<br />

[122] A high-yielding and simple copper(I)-catalyzed reaction sequence leading exclusively<br />

to 1,4-disubstituted 1,2,3-triazoles has been described. [123] It involves the reaction<br />

of organic azides with alk-1-ynes in the presence of the catalyst (0.25–2 mol%) prepared<br />

in situ by reduction of copper sulfate with ascorbic acid and/or sodium ascorbate. The reaction<br />

proceeds to completion in 6 to 36 hours at room temperature in a variety of solvents,<br />

including aqueous tert-butyl alcohol or ethanol and, very importantly, water with<br />

no organic cosolvent. The use of microwave-induced 1,3-dipolar cycloaddition of organic<br />

azides to alk-1-ynes under solvent-free conditions is also another important development.<br />

[124,125] It allows a substantial decrease in reaction times, reduced pollution, low<br />

cost, and simplicity in processing and handling. The addition of O-propargyl glycosides<br />

and propargyloxy-calixarenes to a calixarene diazide leads to the formation of interesting<br />

1,2,3-triazole derivatives having glycosyl and calixarene moieties. [126]<br />

Scheme 42 Addition of Azides to Alk-1-ynes [99,103,104,106–108,112,124,125,127–<strong>13</strong>2]<br />

R 1 N 3 +<br />

H R 2<br />

92<br />

R<br />

N<br />

N<br />

N<br />

2<br />

R1 +<br />

93<br />

R 2<br />

94<br />

N<br />

N<br />

N<br />

R1 R1 R2 Conditions Yield (%) Ref<br />

93 94<br />

Ph Ph toluene, reflux, 17 h 43 52 [127]<br />

Ph (CH2) 3OH 1008C, 15 h 63 31 [128]<br />

Ph CO2Me rt, 12 d; 608C, 34 h 88 12 [103]<br />

Bn Ph toluene, reflux, 17 h 39 55 [127]<br />

Bn CONHBn microwave irradiation,<br />

558C, 30 min<br />

65 22 [125]<br />

(CH 2) 3Ph piperidinocarbonyl<br />

FOR PERSONAL USE ONLY<br />

444 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

microwave irradiation,<br />

558C, 30 min<br />

65 22 [125]<br />

CH 2CO 2Et Ph toluene, reflux, 48 h 41 36 [129]<br />

1-adamantyl Ph toluene, reflux, 35 h 60 21 [107]<br />

1-adamantyl 1-adamantyl toluene, reflux, 30 h 67 0 [107]<br />

1-adamantyl CO 2Me toluene, reflux, 11 h 84 0 [107]<br />

CH 2PO(OEt) 2 Ph microwave irradiation,<br />

1208C, 30 min<br />

CH 2PO(OEt) 2 CH 2OH microwave irradiation,<br />

1008C, 30 min<br />

CH 2PO(OEt) 2 CO 2Et microwave irradiation,<br />

1008C, 5 min<br />

45 54 [124]<br />

30 69 [124]<br />

61 31 [124]<br />

CF 2CFHCF 3 Ph steel bomb, <strong>13</strong>0 8C, 6 h 32 62 [99]<br />

CF 2CFHCF 3 Bu steel bomb, 120 8C, 6 h 37 58 [99]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


R 1 R2 Conditions Yield (%) Ref<br />

93 94<br />

CF2CFHCF3 CO2Me steel bomb, 120 8C, 6 h 70 18 [99]<br />

CF2CFHCF3 TMS steel bomb, 90 8C, 6 h 50 – [99]<br />

CH2C(NO2) 2Me CO2H CHCl3, rt, 3 d a 89 [<strong>13</strong>0]<br />

CH=CH-t-Bu CO 2Me rt 54 <strong>13</strong> [108]<br />

4-O 2NC 6H 4 CO 2Et benzene, reflux, 48 h 60 25 [104]<br />

CH 2CH 2CO 2Et Bz benzene, reflux, 22 h 48 30 [<strong>13</strong>1]<br />

Cy Bz benzene, reflux, 48 h 26 10 [<strong>13</strong>1]<br />

4-Tol Bz benzene, reflux, 26 h 60 11 [<strong>13</strong>1]<br />

1-naphthyl Bz benzene, reflux, 24 h 44 14 [<strong>13</strong>1]<br />

1-naphthyl CO 2Et 1008C, 8 h 71 12 [106]<br />

Pr i<br />

Pr i<br />

Pr i<br />

O<br />

S<br />

O<br />

O<br />

O<br />

S<br />

O<br />

O<br />

O<br />

S<br />

O<br />

O<br />

N<br />

N<br />

N<br />

CO 2Me benzene, reflux, 18 h 66 23 [112]<br />

TMS<br />

a Combined yield of 93 and 94.<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 445<br />

benze<br />

ne, reflux, 7 d<br />

81 – [112]<br />

SO 2Ph benzene, reflux, 16 h 72 5 [112]<br />

Ph toluene, reflux, 2 h 40 60 [<strong>13</strong>2]<br />

The 1,3-dipolar cycloaddition of aryl azides to (trimethylsilyl)acetylene is regioselective<br />

and gives, after several days at 258C, almost quantitative yields of the 1-aryl-4-(trimethylsilyl)-1,2,3-triazoles<br />

96 (Scheme 43). [<strong>13</strong>3] A study has shown that the rate of these cycloadditions<br />

increases logarithmically with pressure. [<strong>13</strong>4] For example, the reaction of 4methoxyphenyl<br />

azide with 95 takes 55 days, at atmospheric pressure, to complete consumption<br />

of the azide. The same reaction is complete in 1.5 hours if it is conducted at<br />

room temperature but under pressure (0.3 GPa). At pressures of about 1 GPa these reactions<br />

are almost instantaneous and quantitative. [<strong>13</strong>4]<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 43 Addition of Aryl Azides to (Trimethylsilyl)acetylene [<strong>13</strong>3]<br />

Ar 1 N 3 +<br />

H<br />

95<br />

TMS<br />

sealed tube<br />

25 oC Ar 1 Time (d) Yield (%) Ref<br />

Ph 35 96 [<strong>13</strong>3]<br />

4-Tol 40 95 [<strong>13</strong>3]<br />

4-MeOC6H4 55 95 [<strong>13</strong>3]<br />

4-ClC6H4 25 95 [<strong>13</strong>3]<br />

4-O2NC6H4 20 95 [<strong>13</strong>3]<br />

4-NCC6H4 26 96 [<strong>13</strong>3]<br />

benzo[b]thien-2-yl 9 93 [<strong>13</strong>3]<br />

benzo[b]thien-3-yl 28 95 [<strong>13</strong>3]<br />

TMS<br />

N<br />

N<br />

N<br />

Ar1 <strong>13</strong>.<strong>13</strong>.1.1.3.1.1.3.3 Variation 3:<br />

Addition of Azides to Unsymmetrical Disubstituted Alkynes<br />

Azides add to unsymmetrical disubstituted alkynes to give mixtures of isomeric triazoles<br />

97 and 98 (Scheme 44). The relative proportions of the two products are strongly dependent<br />

on the nature of R 2 and R 3 .<br />

Scheme 44 Addition of Azides to Unsymmetrical Disubstituted Alkynes [103,124,<strong>13</strong>5–<strong>13</strong>7]<br />

R 1 N 3 +<br />

R 2<br />

FOR PERSONAL USE ONLY<br />

446 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

R 3<br />

R<br />

N<br />

N<br />

N<br />

2<br />

R1 R3 97<br />

96<br />

+<br />

N<br />

N<br />

R<br />

N<br />

2<br />

R3 R1 R1 R2 R3 Conditions Yield (%) Ref<br />

97 98<br />

Ph CH2OH CO2Me toluene, 558C, 14 d 8 49 [<strong>13</strong>5]<br />

4-MeOC6H4 CH2OH CO2Me benzene, rt, 60 d 31 59 [<strong>13</strong>6]<br />

Ph Ph Bz benzene, 808C, 19 h 0 86 [103]<br />

1-naphthyl Me CO2Me 100 8C, 8 h 9 72 [106]<br />

CH2CO2-t-Bu CF3 PO(OiPr) 2 Et2O, rt, 20 h 68 22 [<strong>13</strong>7]<br />

CH 2PO(OEt) 2 Me PO(OEt) 2 100 8C, 60 h 73 23 [124]<br />

CH 2PO(OEt) 2 Ph CO 2Et 160 8C, 10 min 58 42 [124]<br />

A recognition-mediated reaction between 4-(azidomethyl)benzo-15-crown-5 99 and the<br />

asymmetric alkyne 100 shows that the regioselectivity of the cycloaddition can be controlled.<br />

The mutual recognition between the ammonium cation and the crown ether<br />

leads to the formation of triazole 101 and its regioisomer in the ratio of 97:3 (Scheme<br />

45). [<strong>13</strong>8]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

98


Scheme 45 Recognition-Mediated Reaction between Azides and Unsymmetrical<br />

Disubstituted Alkynes [<strong>13</strong>8]<br />

O<br />

O<br />

O<br />

O<br />

O<br />

99<br />

+<br />

N3 +<br />

H3N CF3CO 2 −<br />

O<br />

+<br />

H3N CF 3CO 2 −<br />

Azido sugars have been extensively used to prepare carbohydrate-derived 1,2,3-triazoles.<br />

[<strong>13</strong>9] For example, the â-D-galactopyranosyl azide 102 reacts with alkyne 103 to yield<br />

mixtures of the nucleoside triazole analogues 104/105 (30%/49%) (Scheme 46). [<strong>13</strong>9] Analogously,<br />

the 5-azido-5-deoxy-Æ-D-xylofuranose 106 reacts with a range of alkynes to give<br />

mixtures of 5-(1H-1,2,3-triazol-1-yl)-Æ-D-xylofuranoses 107/108. [140,141] 2,3,5-Tri-O-benzoylâ-D-ribofuranosyl<br />

azide reacts with methyl 4-hydroxybut-2-ynoate to yield a mixture of<br />

the two expected isomeric triazoles in 75% yield. [142]<br />

Scheme 46 Addition of Azido Sugars to Alkynes [<strong>13</strong>9–141]<br />

AcO<br />

AcO<br />

OAc<br />

102<br />

O<br />

OAc<br />

N 3<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 447<br />

+ Ph CF3<br />

103<br />

toluene<br />

reflux, 14 h<br />

AcO<br />

AcO<br />

100<br />

Ph<br />

F3C<br />

O<br />

AcO<br />

104 30%<br />

N<br />

N<br />

N<br />

OAc<br />

Bu t<br />

O<br />

+<br />

O<br />

O<br />

Bu t<br />

101<br />

AcO<br />

AcO<br />

O<br />

O<br />

O<br />

F3C<br />

Ph<br />

O<br />

AcO<br />

105 49%<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

OAc<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


N 3<br />

OH<br />

O<br />

O<br />

O<br />

+ R 1 H<br />

toluene<br />

reflux<br />

N<br />

N<br />

N<br />

OH<br />

O<br />

b108<br />

106<br />

107<br />

R 1 = Ph, CH 2OH, CO 2Et<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.1.3.4 Variation 4:<br />

Using Polymer-Supported Methods<br />

R 1<br />

O<br />

O<br />

+<br />

R 1<br />

N<br />

N<br />

N<br />

OH<br />

O<br />

The use of polymer-supported methods to prepare carbohydrate-derived 1,2,3-triazoles is<br />

already established. Addition of azidodeoxy carbohydrate derivatives to the monomethyl<br />

ether derivative of polyethylene glycol 109 (a soluble polymer-supported alkyne) yields<br />

the polymer-supported triazoles 110/111 in a proportion of approximately 2:1 (Scheme<br />

47). Treatment of these polymers with sodium borohydride in hot ethanol gives the corresponding<br />

“free” triazoles 112/1<strong>13</strong> in greater than 75% yield. [143] In a variation of this procedure<br />

a succinate ester linkage (instead of an oxalyl ester) is also successfully used to prepare<br />

polymer-supported glycosyl triazoles. In this procedure, the “free” glycosyl triazoles<br />

can be obtained in high yields (>90%) and high purity by treatment of the polymer with an<br />

excess of ammonia in methanol solution, followed by precipitation of the polymer with<br />

ether and filtration. [141]<br />

Scheme 47 Addition of Azido Sugars to Soluble Polymer-Supported Alkynes [143]<br />

Me O<br />

sugar N3 =<br />

Me<br />

O<br />

n<br />

O<br />

O<br />

109<br />

O<br />

O<br />

O<br />

FOR PERSONAL USE ONLY<br />

448 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

O<br />

O<br />

n<br />

O<br />

110<br />

O<br />

O<br />

sugar N 3<br />

N3 N3<br />

,<br />

OH<br />

O<br />

, AcO<br />

AcO<br />

O<br />

O<br />

O<br />

O<br />

+<br />

N<br />

N<br />

N<br />

sugar<br />

+<br />

NaBH4, EtOH<br />

heat, 3 h<br />

Me<br />

N 3<br />

O<br />

O<br />

AcO<br />

OMe<br />

toluene<br />

reflux, 12 h<br />

HO<br />

O<br />

n<br />

O<br />

O<br />

111<br />

O<br />

N<br />

N<br />

+<br />

N<br />

sugar<br />

N<br />

HO<br />

N<br />

N<br />

sugar<br />

O<br />

O<br />

112 1<strong>13</strong><br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

N<br />

N<br />

N<br />

sugar


The complementary method, i.e. reaction of a polymer-supported azido sugar with alkynes,<br />

can also be used (Scheme 48). Azide 114 reacts with alkynes to give mixtures of<br />

the two regioisomers 115/116 in high yields (R 1 = Ph; R 2 = H, 50%; R 1 =CO 2Et; R 2 =H,<br />

>95%; R 1 =CH 2OH; R 2 = H, >95%). Treatment of these compounds with ammonia in methanol<br />

solution, followed by precipitation of the polymer with diethyl ether and filtration<br />

gives the corresponding “free” triazoles 117/118. [141]<br />

Scheme 48 Addition of Alkynes to Soluble Polymer-Supported Azido Sugars [141]<br />

Me<br />

Me<br />

O<br />

O<br />

n<br />

O<br />

n<br />

O<br />

O<br />

O<br />

114<br />

O<br />

O<br />

R 1<br />

N 3<br />

O<br />

O<br />

N<br />

O<br />

O<br />

O<br />

O<br />

R 2<br />

N<br />

N<br />

O<br />

O<br />

+<br />

+<br />

Me<br />

O<br />

R 1<br />

N<br />

N<br />

NH3, MeOH<br />

N<br />

OH<br />

rt, 10 h O<br />

n<br />

O<br />

O<br />

R 2<br />

O<br />

O<br />

toluene<br />

reflux, 2 d<br />

115 116<br />

R 1<br />

R 2<br />

O<br />

+<br />

R 2<br />

N<br />

O<br />

O<br />

R 2<br />

R 1<br />

N<br />

N<br />

O<br />

O<br />

R 1<br />

N<br />

N<br />

N<br />

OH<br />

O<br />

O<br />

O<br />

117 118<br />

A solid-phase synthesis of functionalized 1,2,3-triazoles from the reaction of resin-bound<br />

azides 119 and terminal alkynes has been reported (Scheme 49). [144] The reaction with<br />

methyl propynoate occurs in dimethylacetamide at 608C and, after cleavage in trifluoroacetic<br />

acid, provides the free acids 120 (R 2 =CO 2Me), as single isomers, in moderate yields<br />

(17–27%). The reaction with phenylacetylene requires higher temperatures (120 8C) and<br />

provides 1:1 mixtures (22–25%) of the possible regioisomers 120 (R 2 = Ph) and 121<br />

(R 2 = Ph) after trifluoroacetic acid cleavage.<br />

Scheme 49 Solid-Phase Synthesis of 1H-1,2,3-<strong>Triazoles</strong> Using Resin-Bound Azides and<br />

Terminal Alkynes [144]<br />

O<br />

O<br />

R 1<br />

N3<br />

1. R 2<br />

H<br />

119 120 1:1<br />

R 1 = H, Me, Et, (CH2)5Me; R 2 = CO2Me, Ph<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 449<br />

DMA, 60 or 120 oC, 3 d<br />

2. TFA, CH2Cl2, rt, 18 h<br />

17−27%<br />

R 2<br />

N<br />

N<br />

N<br />

+<br />

R 2<br />

R 1 CO 2H R 1 CO 2H<br />

N<br />

N<br />

121<br />

N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


A solid-phase, regioselective, copper(I)-catalyzed, 1,3-dipolar cycloaddition of terminal alkynes<br />

to azides has been used to prepare peptido-1,2,3-triazoles. [145] Copper(I) salts are<br />

used as catalysts in the reaction of resin-bound terminal alkynes to primary, secondary,<br />

and tertiary alkyl azides, aryl azides, and an azido sugar at 258C, affording selectively 1,4disubstituted<br />

1H-1,2,3-triazoles with quantitative conversions and purities ranging from<br />

75 to 99%. [145]<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.1.3.5 Variation 5:<br />

Intramolecular 1,3-Dipolar Cycloadditions<br />

The intramolecular 1,3-dipolar cycloaddition of an azido group onto a C”C bond gives<br />

polycyclic triazoles. Azides 122 and 124, for example, give triazoles 123 (52%) and 125<br />

(59%), respectively, when heated in refluxing toluene (Scheme 50). [146]<br />

Scheme 50 Synthesis of 1,2,3-<strong>Triazoles</strong> via Intramolecular<br />

1,3-Dipolar Cycloadditions [146]<br />

N 3<br />

122<br />

OH<br />

toluene, reflux, 36 h<br />

52%<br />

N<br />

N<br />

N<br />

123<br />

HO OTBDMS<br />

HO<br />

N 3<br />

124<br />

FOR PERSONAL USE ONLY<br />

450 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

toluene, reflux, 24 h<br />

59%<br />

OH<br />

N<br />

N<br />

N<br />

125<br />

OTBDMS<br />

Propargyl azides 127 undergo intramolecular cycloaddition reactions yielding N-unsubstituted<br />

1H-1,2,3-triazoles <strong>13</strong>0 (Scheme 51). The reaction must be carried out in nucleophilic<br />

solvents, such as methanol or ethanol, or in the presence of nucleophiles such as<br />

azide ion, amines, or thiols, if not, then only polymeric triazole products are obtained.<br />

The mechanism of this transformation involves the rearrangement of the propargyl azide<br />

to allenyl azide 128 that gives by rapid ring closure the triazafulvene 129. This short-lived<br />

intermediate is trapped by nucleophiles to give triazoles <strong>13</strong>0 in good yields. [147,148] Since<br />

propargyl azides can be prepared from propargyl halides or propargyl tosylates 126<br />

(X = halogen, OTs) and sodium azide, various substituted 1,2,3-triazoles can be synthesized<br />

in good yields in one-pot procedure from these precursors without the necessity to<br />

isolate the potentially hazardous propargyl azides. In the presence of sodium hydroxide<br />

the propargyl azides 127 undergo base-catalyzed (prototropic) rearrangement to allenyl<br />

azides <strong>13</strong>1. The immediate cyclization of this intermediate leads to the triazafulvene<br />

<strong>13</strong>2, which can be trapped by nucleophiles to give triazoles <strong>13</strong>3 in good yields (Scheme<br />

51). [148]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 51 Synthesis of 1H-1,2,3-<strong>Triazoles</strong> from Propargyl Azides or Their Precursors [148]<br />

R 2<br />

126<br />

R 1<br />

X<br />

20−70 o C<br />

NaOH<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 451<br />

N 3<br />

R 2<br />

R 2<br />

N3<br />

128<br />

<strong>13</strong>1<br />

R 1<br />

R 1<br />

N 3<br />

R 2<br />

R<br />

127<br />

1<br />

R 1 R 2 X Conditions Nu Yield (%)<br />

of <strong>13</strong>0<br />

R 1<br />

Me H OTs NaN 3, MeOH, H 2O, 20–408C OMe 82 [148]<br />

Ph H Br NaN 3, MeOH, H 2O, reflux OMe 87 [148]<br />

H H Br 1. NaN 3, dioxane, H 2O, rt, 1 h S-iPr 31 [148]<br />

H H OTs<br />

2. iPrSH, 708C, 3 h<br />

1. NaN3, dioxane, H2O, rt<br />

2. NH3,H2O, 50–60 8C<br />

NH2 77 [148]<br />

H MOM OSO2Ph 1. NaN3, MeOH, H2O, rt, 24 h<br />

2. MeOH, reflux, 6 h<br />

OMe 88 [148]<br />

H Ph OTs 1. NaN3, MeOH, H2O, 358C<br />

2. MeOH, reflux, 45 h<br />

OMe 73 [148]<br />

Depending on the reaction conditions, propargyl azides 127 can be selectively converted<br />

into triazoles <strong>13</strong>0 or <strong>13</strong>3. For example, azide <strong>13</strong>4 can produce triazole <strong>13</strong>5 or triazole <strong>13</strong>6<br />

depending only on the presence or absence of sodium hydroxide (Scheme 52). [148]<br />

R 2<br />

N 3<br />

R 1<br />

R 2<br />

129<br />

N<br />

<strong>13</strong>2<br />

N<br />

N<br />

N<br />

N<br />

N<br />

NuH<br />

NuH<br />

Nu<br />

Nu<br />

R 1<br />

R 1<br />

R 2<br />

<strong>13</strong>0<br />

R 2<br />

<strong>13</strong>3<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N<br />

N<br />

N<br />

Ref<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 52 Selective Synthesis of Isomeric 1H-1,2,3-<strong>Triazoles</strong> from Propargyl Azides [148]<br />

MeO<br />

<strong>13</strong>4<br />

N 3<br />

NH3<br />

62%<br />

NH3, NaOH<br />

75%<br />

The intramolecular 1,3-dipolar cycloaddition of an azide group with a C”C bond has been<br />

used extensively for the synthesis of nonclassical polycyclic â-lactams. [149–154]<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.1.3.6 Variation 6:<br />

Addition of Azides to Alkoxyalkynes<br />

Nitrophenyl azides <strong>13</strong>8 undergo cycloaddition reactions with 1-methoxyalk-1-ynes <strong>13</strong>7 at<br />

room temperature to give 1H-1,2,3-triazoles <strong>13</strong>9 in low yields (R 1 = Et; X = H, 22%) or the<br />

corresponding ring-opened isomeric Æ-diazocarboximidates 140 (R 1 = Me, 52%; R 1 = Et,<br />

75%) (Scheme 53). [155] The reaction of ethoxyacetylene with 4-methxoyphenyl azide and<br />

4-nitrophenyl azide also gives the corresponding 1-aryl-5-ethoxy-1H-1,2,3-triazoles. [103]<br />

MeO<br />

H 2N<br />

H 2N<br />

MeO<br />

<strong>13</strong>5<br />

<strong>13</strong>6<br />

Scheme 53 Addition of Aryl Azides to 1-Methoxyalk-1-ynes [155]<br />

R 1<br />

<strong>13</strong>7<br />

OMe<br />

R 1 = Me, Et; X = H, NO 2<br />

+<br />

FOR PERSONAL USE ONLY<br />

452 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

O2N<br />

N 3<br />

<strong>13</strong>8<br />

NO 2<br />

X<br />

CHCl3, rt<br />

3−10 d<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N<br />

N<br />

N<br />

MeO<br />

R 1<br />

N<br />

<strong>13</strong>9<br />

N<br />

N<br />

O 2N X<br />

X = NO 2<br />

NO 2<br />

R 1 N 2<br />

MeO<br />

N<br />

O2N X<br />

Similarly, 5-ethoxy-1H-1,2,3-triazoles 143 are obtained from the reaction of ethoxyacetylene<br />

(141) with phenyl azide, substituted phenyl azides [156] and hetaryl azides [114] 142<br />

(Scheme 54). The best yield is obtained with phenyl azide (87%). With 2-nitrophenyl azide,<br />

and 4-nitrophenyl azide the yields are very low (6–12%).<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

140<br />

NO2


Scheme 54 Addition of Azides to Ethoxyacetylene [114,156]<br />

H OEt + R1N3 141<br />

R 1 = aryl,<br />

O O<br />

142<br />

6−87%<br />

5-Ethoxy-1-(6-methyl-2-oxo-2H-pyran-4-yl)-1H-1,2,3-triazole (143,R 1 = 6-methyl-2-oxo-2Hpyran-4-yl);<br />

Typical Procedure: [114]<br />

A mixture of 4-azido-6-methyl-2H-pyran-2-one (0.77 g, 5.09 mmol), ethoxyacetylene<br />

(7.<strong>13</strong> mmol, from a 50% soln in hexanes) and anhyd THF (18 mL) was left in a closed reactor<br />

for 7 d. The resulting precipitate of the product was collected by filtration and the filtrate<br />

was left 7 d more at 308C to give a second crop. The combined precipitates were<br />

washed with hexane to afford the pure product; yield: 24% (57% with respect to consumed<br />

azide 142); mp 159–1618C.<br />

EtO<br />

143<br />

N<br />

N<br />

N<br />

R1 <strong>13</strong>.<strong>13</strong>.1.1.3.1.1.4 Method 4:<br />

Addition of Ethyl Azidoformate and Cyanogen Azide to Alkynes<br />

Ethyl azidoformate (144) undergoes addition to phenylacetylene to give 1,2,3-triazoles. If<br />

the reaction is carried out at 508C (3 weeks) a mixture of the 1,4- and 1,5-disubstituted triazoles<br />

is obtained in a ratio of about 53:47 and an overall yield of 36% (Scheme 55). [157] If<br />

the reaction is performed at <strong>13</strong>08C the two initially formed triazoles 145/146 isomerize to<br />

ethyl 4-phenyl-2H-1,2,3-triazole-2-carboxylate (147) and this is the isolated triazole product<br />

(16%). Under these reaction conditions, 2-ethoxy-4(or 5)-phenyloxazole 148 (16%) is<br />

also obtained. [157,158] The formation of this compound is due to the addition of (ethoxycarbonyl)nitrene<br />

(generated by thermal decomposition of the azide) to phenylacetylene. The<br />

reaction of ethyl azidoformate with dimethyl acetylenedicarboxylate and methyl propynoate<br />

also gives the corresponding triazoles (23 and 50% yield, respectively) and 2-ethoxyoxazoles<br />

(3%). [158]<br />

Scheme 55 Addition of Ethyl Azidoformate to Phenylacetylene [157,158]<br />

Ph H + N3CO2Et 144<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 453<br />

50 o C<br />

36%<br />

<strong>13</strong>0 o C<br />

Ph<br />

N<br />

145<br />

N<br />

N<br />

CO 2Et<br />

+<br />

53:47<br />

Ph<br />

N<br />

146<br />

N<br />

N<br />

CO 2Et<br />

Ph<br />

Ph<br />

N<br />

N<br />

N<br />

N<br />

CO2Et<br />

+<br />

O<br />

OEt<br />

147 16% 148 or isomer 16%<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Ethyl azidoformate reacts with N,N-diethylprop-1-yn-1-amine (149,R 1 = Me) in carbon tetrachloride<br />

at room temperature to yield only triazole 150 (R 1 = Me) (Scheme 56). [159] However,<br />

if an excess of the ynamine is used, the initially formed triazole isomerizes to ethyl<br />

5-(diethylamino)-4-methyl-2H-1,2,3-triazole-2-carboxylate. [159] Ethyl azidoformate also<br />

adds to ynamines 149 (R 1 = Ac, CO 2Me) to give the corresponding triazoles 150 in good<br />

yields. [160] Benzoyl azide also adds readily to ynamines. [159,161] Addition of ethyl azidoformate<br />

to ethoxyacetylene (no solvent, rt, 35 d) gives a mixture of three isomeric triazoles:<br />

ethyl 5-ethoxy-1H-1,2,3-triazole-1-carboxylate, ethyl 4-ethoxy-1H-1,2,3-triazole-1carboxylate,<br />

and ethyl 4-ethoxy-2H-1,2,3-triazole-2-carboxylate in a ratio of 54.5:42:3.5<br />

(by NMR). Addition of 1,4-diazabicyclo[2.2.2]octane converts 1-ethoxycarbonyl isomers<br />

into the 2-ethoxycarbonyl derivative. [159]<br />

Scheme 56 Addition of Ethyl Azidoformate to Ynamines [159,160]<br />

N 3CO 2Et +<br />

144<br />

Me 2N<br />

FOR PERSONAL USE ONLY<br />

454 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

149<br />

R 1<br />

CCl4, rt, 20 min, or<br />

THF, 65 oC, 3 h<br />

R1 = Me 100%<br />

R1 = Ac 82%<br />

R1 = CO2Me 70%<br />

Me2N<br />

R 1<br />

150<br />

N<br />

N<br />

N<br />

CO2Et<br />

Cyanogen azide (N 3CN) reacts with acetylene at 458C to give 77% of a 1:1 adduct that is<br />

colorless below its melting point (338C) but is yellow in the melt or in solution. The adduct<br />

is a tautomeric mixture of 1H-1,2,3-triazole-1-carbonitrile and N-cyano-Æ-diazoethylidenimine<br />

(see Scheme 3). [20] The cyanogen azide adducts of prop-1-yne, but-2-yne, and<br />

hex-1-yne are also tautomeric mixtures of the corresponding triazoles and N-cyano-Æ-diazoimines.<br />

[20] Cyanogen azide reacts with ethoxyacetylene [20] and N,N-diphenylacetylamine<br />

[162] to afford only the diazo derivatives, resulting from ring opening of the initially<br />

formed 1H-1,2,3-triazole-1-carbonitriles.<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.1.5 Method 5:<br />

Addition of Sulfonyl Azides to Alkynes<br />

Sulfonyl azides 151 undergo addition to electron-rich alkynes (ynamines and alkoxyalkynes<br />

152) to yield 1-sulfonyl-1H-1,2,3-triazoles 153 (Scheme 57). [103,155,163–167] However,<br />

these compounds are very labile and, in solution, exist in equilibrium with open-chain diazo<br />

tautomers. In many cases the diazo tautomer is the sole product. As an example, addition<br />

of arenesulfonyl azides 151 (R 1 = aryl) to ynamine 152 (R 2 = Me; Y = NEt 2) gives<br />

mainly 1,2,3-triazoles 153 while the reaction of this type of azides with ynamine 152<br />

(R 2 = Ph; Y = NMe 2) gives the Æ-diazoamidines 154 (Scheme 57). [166]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 57 Addition of Sulfonyl Azides to Electron-Rich Alkynes [166]<br />

R 1 SO 2N 3 +<br />

151<br />

R 2<br />

152<br />

Y<br />

Y<br />

R 2<br />

N<br />

153<br />

N<br />

N<br />

SO 2R 1<br />

R1 R2 Y Yield (%) mp (8C) Ref<br />

153 154<br />

Ph Me NEt2 62 – 84–85 [166]<br />

4-MeOC6H4 Me NEt2 58 – 54–56 [166]<br />

4-Tol Me NEt2 65 – 49–52 [166]<br />

4-AcHNC6H4 Me NEt2 78 – <strong>13</strong>1–<strong>13</strong>2 [166]<br />

4-O2NC6H4 Me NEt2 – 81 97–98 [166]<br />

2,4-Cl2C6H3 Me NEt2 – 62 87–88 [166]<br />

4-MeOC6H4 Ph NMe2 – 79 95–96 [166]<br />

4-O2NC6H4 Ph NMe2 – 70 106–107 [166]<br />

4-BrC6H4 Ph NMe2 – 65 102–103 [166]<br />

3-O2NC6H4 Ph NMe2 – 78 104–105 [166]<br />

2,5-Cl2C6H3 Ph NMe2 – 83 112–1<strong>13</strong> [166]<br />

R 2 N 2<br />

Y<br />

N<br />

SO2R1 Tosyl azide reacts with 3-aminoprop-2-ynimidamides 155 to yield 1H-1,2,3-triazole-4carboximidamide<br />

156 in good yields (Scheme 58). [168]<br />

Scheme 58 Addition of Tosyl Azide to 3-Aminoprop-2-ynimidamides [168]<br />

Ar 1 HN<br />

MeN Ph<br />

155<br />

Ar 1 = Ph, 4-Tol<br />

NAr 1<br />

+ TsN3<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 455<br />

CHCl 3<br />

rt, 20 d<br />

Ar 1 HN<br />

Ar 1 N<br />

MeN<br />

Ph<br />

N<br />

NTs<br />

N<br />

Ph<br />

MeN<br />

Ar 1 HN<br />

154<br />

NTs<br />

156 65−74%<br />

N<br />

N<br />

N<br />

Ar1 Reaction of Arenesulfonyl Azides 151 with Ynamines 152 (Y = Dialkylamino);<br />

General Procedure: [166]<br />

A soln of the sulfonyl azide (0.01 mol) in THF (10 mL) was added to a soln of the ynamine<br />

(0.01 mol) in THF (5 mL) at –788C (cooled in dry ice/acetone bath) over 1 h. The soln was<br />

then allowed to warm to rt, filtered through anhyd alumina, and the solvent was removed<br />

by evaporation under reduced pressure. The resulting solid (or oil) was crystallized (Et 2O/<br />

petroleum ether) to afford the appropriate triazole or Æ-diazoamidine.<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


<strong>13</strong>.<strong>13</strong>.1.1.3.1.1.6 Method 6:<br />

Addition of Azidotrimethylsilane and Azidotributylstannane to Alkynes<br />

Azidotrimethylsilane can be successfully used as a safe synthetic equivalent of the highly<br />

explosive hydrazoic acid. [169,170] It undergoes addition to alkynes to give the corresponding<br />

2-(trimethylsilyl)-2H-1,2,3-triazoles 158 [via the 1-(trimethylsilyl)-1H-isomers 157] in good<br />

yields (Scheme 59). For example, the reaction of azidotrimethylsilane with but-2-yne gives<br />

4,5-dimethyl-2-(trimethylsilyl)-2H-1,2,3-triazole (158, R 1 =R 2 = Me) in 78–87% yield. Similar<br />

results are obtained with other alkynes. [171] The trimethylsilyl group can be subsequently<br />

replaced by a proton under very mild conditions. [171–173] In some cases, the N-unsubstituted<br />

triazole 159 is the isolated product of the cycloaddition reaction. [174,175] A related<br />

silyl azide, (trimethylsilyl)methyl azide (TMSCH 2N 3), also reacts with alkynes to give<br />

quantitative yields of the corresponding 1-[(trimethylsilyl)methyl]-1H-1,2,3-triazoles. [176]<br />

Scheme 59 Addition of Azidotrimethylsilane to Alkynes<br />

TMSN 3 +<br />

R 1<br />

R 2<br />

120−150 oC 10−20 h<br />

R 1<br />

R 2<br />

R<br />

N<br />

N<br />

N<br />

2<br />

R1 TMS<br />

N<br />

N<br />

NTMS<br />

158 50−90%<br />

H2O or<br />

R<br />

EtOH N<br />

2<br />

Azidotributylstannane (160) is another synthetic equivalent of hydrazoic acid. It gives 2substituted<br />

triazoles 162 by reaction with mono- and disubstituted alkynes by a 1,3-dipolar<br />

cycloaddition to give initially the 1-substituted triazoles 161 (Scheme 60). [177–179]<br />

<strong>Triazoles</strong> 162 can be converted into the N-unsubstituted derivatives by treatment with hydrogen<br />

chloride. As an example, phenylacetylene reacts with 160 (neat, 1408C, 12 h) to<br />

give triazole 162 (R 1 =H;R 2 = Ph) in 61% yield. On treatment with hydrogen chloride this<br />

compound is converted into triazole 163 (R 1 =H;R 2 = Ph) in 75% yield.<br />

157<br />

Scheme 60 Addition of Azidotributylstannane to Alkynes [177–179]<br />

Bu3SnN3 +<br />

160<br />

R 1<br />

FOR PERSONAL USE ONLY<br />

456 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

R 2<br />

140−180 oC 12−70 h<br />

R 1<br />

R 2<br />

N<br />

N<br />

N<br />

162<br />

R 1<br />

R 2<br />

SnBu 3<br />

N<br />

161<br />

N<br />

N<br />

SnBu3<br />

100%<br />

HCl, Et 2O<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

R 1<br />

R 1<br />

159<br />

R 2<br />

163<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N<br />

N


<strong>13</strong>.<strong>13</strong>.1.1.3.1.1.7 Method 7:<br />

Addition of Azides to Metal Acetylides<br />

Alkyl, [180,427] aryl, [180,181,425,427] and sulfonyl [182–184] azides form triazole derivatives with lithium,<br />

magnesium, and sodium derivatives of terminal alkynes. The mildness of the conditions<br />

required for the additions (0 8C or below) suggests that the mechanism of the reaction<br />

may be different from that of normal azide addition to alkynes. A plausible mechanism<br />

(Scheme 61) involves nucleophilic attack of the acetylenic anion 164 on the terminal<br />

nitrogen of the azide, followed by 1,5-anionic cyclization to give the triazolyl anion<br />

165. [3] The total regioselectivity of the reaction supports this interpretation. The triazolyl<br />

anion so formed can be protonated (to give 166), carboxylated (to give 167) or can react<br />

with more azide to give a linear triazene 168 which, in turn, can be hydrolyzed to the triazolamine<br />

169. [182]<br />

Scheme 61 Addition of Azides to Metal Acetylides [182]<br />

R1 − +<br />

164<br />

R 1<br />

165<br />

N N NR2 + −<br />

N<br />

N<br />

N<br />

R2 −<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 457<br />

H 3O +<br />

CO 2<br />

R 2 N 3<br />

R 1<br />

R 1<br />

HO 2C<br />

R 1<br />

166<br />

N<br />

N<br />

N<br />

−N R2 N<br />

N<br />

N<br />

R2 167<br />

R1 R2N −<br />

N<br />

N<br />

N<br />

R2 N<br />

168<br />

N<br />

N<br />

N<br />

R2 H3O + N<br />

R<br />

N<br />

N<br />

1<br />

R2 H2N Sodium phenylacetylide reacts with tosyl azide (1 equiv) to yield, after acidification, triazole<br />

170. If an excess of tosyl azide is used, the 4-azidotriazole 171 is obtained (Scheme<br />

62). In both cases the yields are very low. [184] A copper(I)-catalyzed reaction of resin-bound<br />

terminal alkynes (probably involving the corresponding copper acetylides) with a range<br />

of organic azides has been reported. [145]<br />

169<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 62 Addition of Sodium Phenylacetylide to Tosyl Azide [184]<br />

Ph Na + −<br />

FOR PERSONAL USE ONLY<br />

458 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

1. TsN 3 (1 equiv)<br />

2. H 3O +<br />

9%<br />

1. TsN3 (excess)<br />

2. H3O +<br />

16%<br />

Ph<br />

170<br />

N<br />

N<br />

N<br />

Ts<br />

N3<br />

N<br />

N<br />

Ph<br />

N<br />

Ts<br />

4-Azido-5-phenyl-1-tosyl-1H-1,2,3-triazole (171); Typical Procedure: [184]<br />

A slurry of sodium phenylacetylide [prepared from PhC”CH (0.05 mol) and Na (0.05 mol)]<br />

in dry Et 2O (25 mL) was added slowly to a stirred soln of tosyl azide (19.7 g, 0.10 mol) in dry<br />

Et 2O (50 mL) at a rate which maintained the solvent at reflux. As the mixture was stirred<br />

for 24 h a brown solid separated (15.2 g, 58%), which corresponds to a sodium salt of an<br />

intermediate compound. Part of this compound (5.0 g) was treated with hot glacial AcOH<br />

(10 mL) and a light yellow solid was obtained upon cooling. Two recrystallizations (glacial<br />

AcOH) afforded pure triazole 171; yield: 0.52 g (16%); mp 170–1718C (dec).<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.2 Addition of Azides to C=C Bonds<br />

The thermal cycloaddition of azides to alkenes is an important route to 1H-1,2,3-triazoles.<br />

Azides undergo addition to a wide range of angle strained, unstrained, and unactivated<br />

double bonds; to electron-rich double bonds such as enamines, enamides, enol ethers,<br />

and ketene acetals; and to alkenes bearing one or two electron-withdrawing groups. [7] In<br />

these reactions, 4,5-dihydro-1H-1,2,3-triazoles (D 2 -1,2,3-triazolines) are the addition products<br />

but they can be aromatized to the corresponding triazoles by elimination of suitable<br />

groups or by oxidation. In some cases the dihydrotriazoles aromatize spontaneously. Unlike<br />

the case of alkynes, the reaction of azides with alkenes is highly regioselective. Because<br />

of this, it may be convenient to prepare a triazole via the dihydrotriazole since at<br />

the end the separation of regioisomers is not needed.<br />

The synthesis of 1,2,3-triazoles via 1,3-dipolar cycloaddition of azides to alkenes requires<br />

patience. It may take weeks to months to obtain reasonable yields of the desired<br />

compound, especially if the C=C bond is not activated by electron-withdrawing or electron-donating<br />

substituents. Increasing the reaction temperature is not always a solution<br />

since it is restricted by the thermal lability of most dihydrotriazoles (they readily extrude<br />

N 2).<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.2.1 Method 1:<br />

Addition of Sodium Azide to Activated Alkenes<br />

Sodium azide undergoes addition to alkenes with strongly electron-withdrawing substituents<br />

to give N-unsubstituted 1,2,3-triazoles in good yields (Scheme 63). The mechanism<br />

seems to involve the conjugate addition of the azide ion to the double bond, cyclization<br />

of the resulting anion, and aromatization. The synthesis of triazoles 173 by the reaction<br />

of sodium azide with Æ-nitroacrylic ester 172 (Y = CO 2Et) and Æ-nitro ketone 172 (Y = Bz)<br />

are examples of this method. [185] Other nitroalkenes are converted into 1,2,3-triazoles in<br />

the same way. [186] Similarly, triazole 175 is obtained, along with two minor dihydrotriazoles,<br />

from the reaction of diethyl (4-nitrobenzylidene)malonate (174) with sodium<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

171


azide. [187] Ethyl 3-(4-nitrophenyl)acrylate reacts with sodium azide, in aprotic solvents, to<br />

give triazole 175 in moderate yields. [188] The reaction of â-aryl-Æ-(phenylsulfinyl)acrylates<br />

176 with sodium azide gives triazoles 177 in good yields. [189] 5-Tosyl-1H-1,2,3-triazole<br />

(179) is prepared in 50% yield from the reaction of 1,2-ditoylacetylene (178) with sodium<br />

azide. [190,191] It has been shown that (E)-2-azidovinyl 4-methylphenyl sulfone is an intermediate<br />

in this transformation. Another example of synthesis of 1,2,3-triazoles from the<br />

addition of sodium azide to activated alkenes is found in the preparation of (4-oxo-4H-1benzopyran-2-yl)-1,2,3-triazoles<br />

181 from 2-(2-arylvinyl)-4H-1-benzopyran-4-ones 180. [192]<br />

Using 180 (X = H) as starting compounds, triazoles 181 are the only isolated products;<br />

the yields are in the range of 48–59%. When 2-(2-aryl-1-bromovinyl)-4H-1-benzopyran-4ones<br />

180 (X = Br) are used the triazoles 181 (38–40%) are obtained together with unexpected<br />

1-aryl-5-[(4-oxo-4H-1-benzopyran-2-yl)methyl]tetrazoles (10–12%).<br />

Scheme 63 Addition of Sodium Azide to Activated Alkenes<br />

H<br />

N<br />

172<br />

4-O 2NC 6H 4<br />

174<br />

Y<br />

NO 2<br />

H<br />

EtO 2C CO 2Et<br />

Ar 1 H<br />

EtO 2C SOPh<br />

176<br />

Ar 1 = Ph, 1-naphthyl, 2-furyl<br />

Ts<br />

178<br />

O<br />

O<br />

Ts<br />

180<br />

+ NaN3<br />

X<br />

+ NaN3<br />

+ NaN3<br />

Ar 1<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 459<br />

+ NaN3<br />

+ NaN3<br />

DMF, rt, 120 h<br />

Y = CO2Et 70%<br />

Y = Bz 54%<br />

DMSO, 25 oC, 2 h<br />

41%<br />

DMF, AcOH, rt, 24 h<br />

57−73%<br />

DMSO, rt, 24 h<br />

50% Ts<br />

DMF, reflux<br />

X = H 48−59%<br />

X = Br 38−40%<br />

N<br />

H<br />

179<br />

Y<br />

173<br />

4-O2NC 6H 4<br />

EtO 2C<br />

175<br />

H<br />

N<br />

N<br />

H<br />

N<br />

H<br />

Ar<br />

177<br />

N<br />

H<br />

N<br />

N<br />

1<br />

EtO2C N<br />

N<br />

O<br />

O<br />

Ar 1<br />

181<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

NH<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Sodium azide also adds to Æ-chloroenamines 182 (NR 2 R 3 = NMe 2, pyrrolidinyl, morpholino)<br />

to give 1,2,3-triazoles 184 (via the Æ-azidoenamines 183) in good yields (Scheme<br />

64). [193,194] However, with less basic Æ-chloroenamines (NR 2 R 3 = NMePh), azirines 185 are<br />

the sole reaction products.<br />

Scheme 64 Addition of Sodium Azide to Æ-Chloroenamines [193,194]<br />

R 1<br />

Cl<br />

182<br />

NR 2 R 3<br />

R 1<br />

R 1 = Me, t-Bu, Ph<br />

183<br />

N3<br />

+ NaN 3<br />

NR 2 R 3<br />

MeCN, CCl 4<br />

R 1<br />

R 3 R 2 N<br />

R 1<br />

N<br />

185<br />

N<br />

N<br />

N<br />

NR 2 R 3<br />

R 3 R 2 N<br />

R 1<br />

N<br />

H<br />

N<br />

N<br />

184 58−84%<br />

The addition of sodium azide to (1- and 2-acylvinyl)triphenylphosphonium salts 186 and<br />

189 gives, respectively, acyl or alkoxycarbonyl-1,2,3-triazoles 188 and 191 (via the ylides<br />

187 and 190) (Scheme 65). [195,196]<br />

Scheme 65 Addition of Sodium Azide to (1- and 2-Acylvinyl)triphenylphosphonium<br />

Salts [195,196]<br />

Cl −<br />

R 1<br />

Ph3P +<br />

186<br />

O<br />

R 2<br />

NaN3, MeOH<br />

H2O R 1 = iPr, t-Bu, Cy, cyclopropyl; R 2 = H, Et<br />

X<br />

Ph3P<br />

+<br />

−<br />

189<br />

R 1<br />

Ph3P +<br />

O<br />

−<br />

187<br />

R<br />

NaN3, H2O 1 h<br />

−<br />

1<br />

O O<br />

R 1 = Me, Et, Pr, iPr, Ph, OMe<br />

FOR PERSONAL USE ONLY<br />

460 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

Ethyl 5-(4-Nitrophenyl)-1H-1,2,3-triazole-4-carboxylate (175); Typical Procedure: [187]<br />

Ph3P +<br />

CAUTION: Sodium azide can explode on heating and is highly toxic.<br />

190<br />

N3<br />

R 2<br />

N3<br />

R 1<br />

− PPh 3<br />

− PPh 3<br />

R<br />

N<br />

N<br />

N<br />

H<br />

2<br />

R<br />

188 15−50%<br />

1<br />

O<br />

N<br />

R<br />

N<br />

N<br />

H<br />

191 30−95%<br />

1<br />

O<br />

Diethyl (4-nitrobenzylidene)malonate (174; 2.0 g, 6.82 mmol) was added in one portion to<br />

a soln of NaN 3 (443 mg, 6.82 mmol) in dry DMSO (10 mL) at 258C. The mixture immediately<br />

became deep orange-brown in color and heat was evolved. After stirring for 2 h, the<br />

mixture was poured onto an ice/water slurry (40 g). The resultant mixture was extracted<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


with Et 2O (two minor dihydrotriazoles could be obtained from this fraction), the aqueous<br />

layer was acidified with dil HCl to pH 1 and extracted with Et 2O. These ethereal extracts<br />

were dried (MgSO 4) and evaporated to give a yellow amorphous solid (800 mg) which was<br />

recrystallized (CH 2Cl 2) to give pale yellow crystals; yield: 730 mg (41%); mp 174–1768C.<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.2.2 Method 2:<br />

Addition of Azides to Activated Alkenes<br />

Azides undergo addition to alkenes with strongly electron-withdrawing substituents to<br />

give 4,5-dihydro-1H-1,2,3-triazoles. Frequently these 4,5-dihydro-1H-triazoles are unstable<br />

and, by elimination of a stable fragment, aromatize to 1,2,3-triazoles [197–199] or are converted<br />

into aziridines by elimination of nitrogen. [200] Generally the addition of azides to these<br />

alkenes is regioselective and only one triazole is obtained. However, in some cases mixtures<br />

of triazoles are formed. For example, 1-nitroalk-1-enes 192 react with phenyl or<br />

methyl azide to give mixtures of the triazoles 193, 194, and 195 (Scheme 66). [197] The relative<br />

proportions of these compounds are dependent of the experimental conditions.<br />

Nitrotriazoles 195 are obtained by air oxidation of the corresponding 4,5-dihydro-1H-triazoles.<br />

The formation of the two regioisomeric triazoles 193 and 194 is explained by the<br />

isomerization of the 1-nitroalk-1-enes to 2-nitroalk-1-enes. [197]<br />

Scheme 66 Reaction of Azides with 1-Nitroalk-1-enes [197]<br />

R 1 N 3 +<br />

R 2<br />

H<br />

192<br />

NO2<br />

H<br />

R 1 = Me, Ph; R 2 = Me, Ph, CO 2Me<br />

benzene<br />

30−70 oC 4−15 d<br />

R 2<br />

193<br />

N<br />

N<br />

N<br />

R1 N<br />

N<br />

N<br />

R1 R2 R2 O2N + +<br />

Phenyl azide adds to 1-bromoethenesulfonyl chloride (196), in refluxing chloroform, to<br />

yield 4-bromo-1-phenyl-1H-1,2,3-triazole (198) in 45% yield (Scheme 67). [198] The unstable<br />

4,5-dihydro-1H-triazole 197 aromatizes promptly by losing sulfur dioxide and hydrogen<br />

chloride.<br />

Scheme 67 Addition of Phenyl Azide to 1-Bromoethenesulfonyl Chloride [198]<br />

PhN 3 +<br />

H<br />

H<br />

Br<br />

196<br />

SO2Cl<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 461<br />

CHCl 3<br />

reflux, 1 h<br />

ClO2S<br />

N<br />

H<br />

N<br />

H N<br />

Ph<br />

Br<br />

197<br />

194<br />

− SO 2<br />

− HCl<br />

195<br />

N<br />

N<br />

N<br />

R1 Br<br />

N<br />

N<br />

N<br />

Ph<br />

198 45%<br />

Several perfluoroalkyl-substituted 1,2,3-triazoles linked to C6 of D-galactose and D-altrose<br />

are synthesized by this method. [199] For example, addition of the monosaccharide azide<br />

199 to the perfluoroalkyl-substituted phenyl vinyl sulfones 200 yields the reversed nucleosides<br />

201 in good yields (Scheme 68). Only a single 1,2,3-triazole derivative is formed<br />

in each of these reactions.<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 68 Addition of Monosaccharide Azides to Perfluoroalkyl-Substituted<br />

Phenyl Vinyl Sulfones [199]<br />

O<br />

O<br />

N3<br />

199<br />

O<br />

O O<br />

R 1 = CF3, (CF2)3CF3, (CF2)5CF3<br />

FOR PERSONAL USE ONLY<br />

462 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

+<br />

R 1<br />

SO 2Ph<br />

toluene, reflux<br />

17−21 h<br />

72−75%<br />

200 201<br />

O<br />

O<br />

N<br />

N<br />

N<br />

Other sugar-derived 1,2,3-triazoles are prepared by a one-pot substitution–cyclization–oxidation<br />

procedure starting from D-arabinose and L-fucose. The key step in this process is<br />

an intramolecular 1,3-dipolar cycloaddition of an azide to the C=C bond of an Æ,â-unsaturated<br />

carboxylic ester. The resulting 4,5-dihydro-1H-triazole is readily aromatized by air<br />

oxidation. [201] Analogous sugar-derived 4,5-dihydro-1H-1,2,3-triazoles (related to D-glucose<br />

and D-galactose) are stable but can be aromatized in good yields to the corresponding triazoles<br />

by oxidation with bromine. [202]<br />

Maleimides and quinones have also been used as dipolarophiles in reactions with<br />

aryl azides, [203–206] silyl azides, [207] (azidoalkyl)indoles, [208] glycosyl azides, [209] (1-azidoalkyl)phosphonates<br />

[210] and Æ-azidocarboxylic esters. [210]<br />

6-Deoxy-1,2:3,4-di-O-isopropylidene-6-[4-(trifluoromethyl)-1H-1,2,3-triazol-1-yl]-Æ-Dgalactopyranose,<br />

(201,R 1 =CF 3); Typical Procedure: [199]<br />

A soln of azide 199 (0.85 g, 3.0 mmol) and sulfone 200 (R 1 =CF 3; 0.57 g, 2.40 mmol) in toluene<br />

(15 mL) was refluxed under argon for 17 h (TLC control). Then the solvent was evaporated<br />

under reduced pressure and the residue was purified by column chromatography<br />

(toluene/EtOAc 20:1); yield: 0.64 g (72%); mp 128–<strong>13</strong>08C; [Æ] D –49.2 (CHCl 3).<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.2.3 Method 3:<br />

Addition of Azides to Strained Alkenes<br />

Azides react with alkenes to yield 4,5-dihydro-1H-1,2,3-triazoles. Whereas unactivated alkenes<br />

are sluggish in their reaction with aryl azides, in contrast strained bicyclic alkenes<br />

are particularly reactive. [76] For example, the reaction of 4-bromophenyl azide with hex-1ene<br />

(in excess) affords the corresponding 4,5-dihydro-1H-1,2,3-triazole in 89% yield after<br />

5.5 months at room temperature. At elevated temperatures (>808C), extensive decomposition<br />

of the 4,5-dihydro-1H-1,2,3-triazole is observed. [211] No detectable addition product<br />

is observed when the same azide and cyclohexene are left for three months at room temperature.<br />

Conjugated dienes are, however, much more reactive than the corresponding<br />

mono-unsaturated alkenes. For example, the adduct from the reaction of cyclohexa-1,3diene<br />

and 4-bromophenyl azide begins to crystallize after three days at room temperature<br />

and, after 18 days, a 77% yield of the corresponding 4,5-dihydro-1H-1,2,3-triazole is obtained.<br />

[211] On the other hand, phenyl azide and substituted phenyl azides react with norbornene,<br />

in refluxing petroleum ether (60–90 8C) for three to four hours, to give the corresponding<br />

1-aryl-4,5-dihydro-1H-1,2,3-triazoles in 51–93% yield. [212,2<strong>13</strong>] Norbornene and<br />

other strained alkenes also react with azidotrimethylsilane to give the corresponding 1-<br />

(trimethylsilyl)-4,5-dihydro-1H-1,2,3-triazole adducts in high yields. [214] The reaction of<br />

norbornene and dicyclopentadiene with several heterarylmethyl azides has been studied.<br />

[<strong>13</strong>2]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

O<br />

O O<br />

R 1


The reaction of azides with norbornadiene is particularly interesting since it allows<br />

the synthesis of 4,5-unsubstituted triazoles 204 (Scheme 69). The thermolysis of the intermediate<br />

4,5-dihydro-1H-1,2,3-triazole 203 gives the triazole and cyclopentadiene (via a<br />

retro-Diels–Alder reaction). For example, the reaction of norbornadiene with diethyl (azidomethyl)phosphonate<br />

[202, X = PO(OEt) 2] in tetrahydrofuran at room temperature gives<br />

the 4,5-dihydro-1H-1,2,3-triazole [203, X = PO(OEt) 2] in 92% yield. Thermolysis of this compound<br />

at 608C yields the corresponding triazole in 74% yield. [249] Similarly, Æ-alkoxy- and<br />

Æ-alkylsulfanyl-substituted azides, on reaction with norbornadiene in refluxing 1,4-dioxane,<br />

also give the corresponding triazoles in high yields. [215] Phenyl azide and substituted<br />

phenyl azides also react with norbornadiene to give the corresponding 4,5-dihydro-1H-<br />

1,2,3-triazoles which, by thermolysis, yield the corresponding 1-aryl-1H-1,2,3-triazoles.<br />

[2<strong>13</strong>,216,217] In the reaction of norbornadiene with azidotrimethylsilane the initially<br />

formed 4,5-dihydro-1H-1,2,3-triazole is converted, spontaneously, into 2-(trimethylsilyl)-<br />

2H-1,2,3-triazole. [214] Addition of a range of hetaroyl azides to the strained 5-methylenebicyclo[2.2.1]hept-2-ene,<br />

at room temperature, afforded carbonyl aziridines as the major<br />

product. These compounds are formed by loss of molecular nitrogen from the 4,5-dihydro-1H-1,2,3-triazole<br />

adducts. [218]<br />

Scheme 69 Reaction of Azides with Norbornadiene [215,249]<br />

+<br />

X = PO(OEt) 2, OR 1 , SR 1<br />

X N 3<br />

202<br />

THF, rt<br />

N<br />

203<br />

N<br />

N<br />

X 60 o C<br />

−<br />

N<br />

N<br />

N<br />

X<br />

204<br />

The oxa and aza analogues of norbornadiene 205 (X = O, NCO 2Et) also react with phenyl<br />

azide to give 1,2,3-triazoles (Scheme 70). While triazole 207 is obtained in quantitative<br />

yield from 205 (X = O), the reaction with 205 (X = NCO 2Et) gives two triazoles: 207 (64%)<br />

and 1-phenyl-1H-1,2,3-triazole (36%). [219,220]<br />

Scheme 70 Reaction of Phenyl Azide with 7-Oxa- and 7-Azabicyclo[2.2.1]hepta-<br />

2,5-dienes [219,220]<br />

X X<br />

CO2Me X = O, NCO 2Et<br />

CO 2Me<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 463<br />

PhN 3<br />

MeO 2C<br />

205 206<br />

CO2Me NPh<br />

N<br />

N<br />

−<br />

X<br />

MeO2C<br />

MeO2C<br />

207<br />

N<br />

N N<br />

Ph<br />

Methylenecyclopropane is another interesting strained system that reacts readily with<br />

phenyl azide to give stable 4,5-dihydro-1H-1,2,3-triazoles. [221] However, the equivalent reaction<br />

with alkyl 2-methylenecyclopropane-1-carboxylates 208 yields 1,2,3-triazoles 210<br />

(Scheme 71). [128] A probable mechanism for the rearrangement of the intermediate 4,5-dihydro-1H-1,2,3-triazoles<br />

209 is shown in Scheme 71.<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 71 Reaction of Phenyl Azide with Alkyl 2-Methylenecyclopropane-<br />

1-carboxylates [128]<br />

R1O2C R2 208<br />

R 3<br />

+ PhN3<br />

100 oC 12−24 h<br />

R 1 O<br />

R 2<br />

O H<br />

209<br />

R 3<br />

N<br />

N<br />

N<br />

Ph<br />

R 2<br />

R 1 O 2C<br />

R 3<br />

N N<br />

N<br />

Ph<br />

210 R1 = Me; R2 = H; R3 = CO2Me 91%<br />

R1 = Et; R2 = R3 = H 50%<br />

R1 = Et; R2 = Me; R3 = H<br />

Dimethyl 2-(1-Phenyl-1H-triazol-4-yl)butanedioate (210,R 1 = Me; R 2 =H;R 3 =CO 2Me);<br />

Typical Procedure: [128]<br />

A mixture of 208 (R 1 = Me; R 2 =H;R 3 =CO 2Me; 2 g) and phenyl azide (10 mL) was heated on<br />

a steam bath for 12 h. The mixture was cooled and hexane was added to dissolve the remaining<br />

phenyl azide. The supernatant layer was decanted and the resulting brown solid<br />

was recrystallized (acetone/cyclohexane) to give triazole 210 (R 1 = Me; R 2 =H;R 3 =CO 2Me);<br />

yield: 3.1 g (91%). A pure sample was obtained by recrystallization (EtOAc); mp 114–1158C.<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.2.4 Method 4:<br />

Addition of Azides to Allenes<br />

Aryl azides undergo addition to allenes to give 4-alkylidene-4,5-dihydro-1H-1,2,3-triazoles<br />

in reasonable yields. 4,5-Dihydro-1H-1,2,3-triazoles 212, for example, are obtained in 29–<br />

73% yield from the reaction of 2,4-dimethylpenta-2,3-diene (211) (tetramethylallene) with<br />

phenyl azide and nitrophenyl azides (Scheme 72). [222]<br />

Scheme 72 Addition of Aryl Azides to Tetramethylallene [222]<br />

211<br />

+ Ar 1 N 3<br />

FOR PERSONAL USE ONLY<br />

464 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

Ar1 = Ph 29%<br />

Ar1 = 4-O2NC6H4 73%<br />

Ar1 = 2,4,6-(O2N) 3C6H2 72%<br />

N N<br />

Ar1 When it is possible, the 4-alkylidene-4,5-dihydro-1H-1,2,3-triazoles aromatize spontaneously<br />

to 1,2,3-triazoles, as observed in the reaction of propa-1,2-diene with phenyl azide.<br />

In this case a mixture of 5-methyl-1-phenyl-1H-1,2,3-triazole (0.6%), 4-methyl-1-phenyl-1H-<br />

1,2,3-triazole (1%), and a diamine (18%) is obtained. [223] Similarly, addition of phenyl azide<br />

to methyl buta-2,3-dienoate (2<strong>13</strong>) gives a mixture of the triazoles 214 and 215 (9:1) in 67%<br />

yield (Scheme 73); [224] the addition occurs exclusively at the Æ,â-double bond.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

212<br />

N


Scheme 73 Addition of Phenyl Azide to Methyl Buta-2,3-dienoate [224]<br />

2<strong>13</strong><br />

CO2Me<br />

+ PhN 3<br />

74 o C, 24 h<br />

67%<br />

N N<br />

MeO2C<br />

N<br />

Ph<br />

214<br />

+<br />

9:1<br />

MeO 2C<br />

215<br />

N<br />

N N<br />

Ph<br />

Phenyl azide adds to cyclonona-1,2-diene (216) to give selectively the 4,5-dihydro-1H-<br />

1,2,3-triazole 217 (Scheme 74). This stable compound can be isomerized to the corresponding<br />

triazole 218 by treatment with a strong base. [223] When optically active (+)-(R)-cyclonona-1,2-diene<br />

is used the (+)-(S)-4,5-dihydro-1H-1,2,3-triazole 217 is obtained, suggesting<br />

a concerted cycloaddition mechanism.<br />

Scheme 74 Addition of Phenyl Azide to Cyclonona-1,2-diene [223]<br />

216<br />

+ PhN 3<br />

toluene<br />

reflux, 10 h<br />

21%<br />

217<br />

N<br />

N<br />

N<br />

Ph<br />

NaOEt, EtOH<br />

reflux, 3 d<br />

70%<br />

N<br />

N<br />

N<br />

Ph<br />

218<br />

2,4,6-Trinitrophenyl azide (220) (picryl azide) adds to (aryloxy)allenes 219 to give triazoles<br />

222 or 223, depending on the substituents R 1 and R 5 (Scheme 75). The reactions proceed<br />

via the unisolated 4,5-dihydro-1H-1,2,3-triazoles 221, which undergo an exceptionally facile<br />

Claisen rearrangement to triazoles 222. [225] These compounds, unless blocked by a substituent<br />

at R 1 , rapidly tautomerize to the isomeric compounds 223. When R 1 and R 5 are<br />

chloro or methyl the cyclohexadienone derivatives 222 are isolated in 66–85% yield.<br />

When R 1 or R 5 is hydrogen, triazoles 223 are isolated in 67–79% yield.<br />

Scheme 75 Addition of 2,4,6-Trinitrophenyl Azide to (Aryloxy)allenes [225]<br />

R 3<br />

R 4<br />

R 2<br />

R 5<br />

219<br />

R 1<br />

O<br />

Ar 1 = 2,4,6-(O 2N) 3C 6H 2<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 465<br />

+ Ar 1 N3<br />

220<br />

R 3<br />

R 4<br />

CHCl3, rt<br />

24 h to 3 weeks<br />

R2 R1 R 5<br />

O<br />

N<br />

N<br />

N<br />

Ar1 R 3<br />

R 4<br />

R 2<br />

R 5<br />

R 1<br />

O<br />

221<br />

N<br />

N N<br />

Ar1 222 R 1 = R 5 = Cl, Me 66−85% 223 R 1 or R 5 = H 67−79%<br />

R 3<br />

R 4<br />

R 2<br />

R 5<br />

OH<br />

N<br />

N<br />

N<br />

Ar1 for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


FOR PERSONAL USE ONLY<br />

466 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

bAn interesting one-pot procedure for the conversion of allenyl derivatives into 4,5-unsubstituted<br />

1,2,3-triazoles has been described. [226,227] The method involves a sequential and<br />

cascade palladium-catalyzed azide formation (from aryl/hetaryl/vinyl iodides, allene, and<br />

sodium azide) followed by a 1,3-dipolar cycloaddition to norbornadiene and finally a retro-Diels–Alder<br />

reaction.<br />

1-Phenyl-1,4,5,6,7,8,9,10-octahydrocyclonona[d][1,2,3]triazole (218); Typical Procedure: [223]<br />

A soln of cyclonona-1,2-diene (216; 1.22 g, 0.01 mol) and phenyl azide (1.19 g, 0.01 mol) in<br />

toluene (15 mL) was refluxed for 10 h. The viscous yellow oil, obtained upon solvent evaporation,<br />

crystallized when stored at rt for several days. Recrystallization [petroleum ether<br />

(bp 60–1108C)] gave 4,5-dihydro-1H-1,2,3-triazole 217; yield: 0.51 g (21%). A soln of the 4,5dihydro-1H-triazole<br />

(1.00 g, 4.14 mmol) in 0.75 M NaOEt in EtOH (40 mL) was refluxed for<br />

3 d. After solvent evaporation, the residue was extracted with Et 2O and the ether extract<br />

was washed with H 2O until the aqueous washes were neutral. The Et 2O layer was dried<br />

(MgSO 4) and evaporated to give 0.81 g of crude product. Crystallization (petroleum<br />

ether/benzene 3:1) afforded white crystalline triazole 218; yield: 0.70 g (70%); mp 77–<br />

788C.<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.2.5 Method 5:<br />

Addition of Azides to Æ-Acylphosphorus Ylides<br />

The addition of azides to Æ-acylphosphorus ylides is a versatile method for the synthesis<br />

of 1,2,3-triazoles. Combining different Æ-acyl- or Æ-alkoxycarbonyl phosphorus ylides 224<br />

with azides of various types gives a range of substituted triazoles 226 (Scheme 76). The<br />

reaction is regioselective, it requires mild conditions (room temperature or refluxing benzene)<br />

and generally the triazoles are obtained in good to very good yields.<br />

Æ-Acylphosphorus ylides are commonly represented in the three resonance forms<br />

224A, 224B, and 224C. However, it has been demonstrated that they exist essentially or<br />

exclusively in the cis-enolate configuration 224C. The reaction of these ylides with azides<br />

is accelerated by electron-releasing substituents on the ylide and electron-withdrawing<br />

substituents on the azide. The polarity of the solvent has only a small effect on the reaction<br />

rate. Low entropies of activation are obtained for these reactions. All these kinetic<br />

data indicate that the mechanism of these reactions involves a concerted 1,3-dipolar cycloaddition<br />

of the azide to the C=C bond in 224C. [228] The resulting 4,5-dihydro-1H-1,2,3triazoles<br />

225 are converted into triazoles 226 by spontaneous elimination of triphenylphosphine<br />

oxide. When acyl or alkoxycarbonyl azides are used, the initially formed 1-substituted<br />

triazoles 226 (R 1 = COX) isomerize to the corresponding 2-substituted triazoles<br />

227. [229,231] This synthetic method is, however, not general; with some phosphorus ylides,<br />

especially Æ-ethoxycarbonyl phosphorus ylides (224,R 2 = OEt), diazo compounds and other<br />

products are obtained rather than triazoles. [230–232] With these compounds, in the cases<br />

where 1,2,3-triazoles are formed the yields are moderate (when R 3 = Me) or very low<br />

(when R 3 = Ph).<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 76 Addition of Azides to Æ-Acylphosphorus Ylides [228–230,233,234]a<br />

R 2 O<br />

R 3 PPh 3<br />

224A<br />

R<br />

N<br />

N<br />

N<br />

3<br />

Ph3P −<br />

O<br />

R2 +<br />

R1 R 1 = alkyl, aryl, COR 4 , CO2Et, SO2Ar 1<br />

R 2 O<br />

R3 − +<br />

PPh3 R 2 O −<br />

R3 +<br />

PPh3 224B 224C<br />

− Ph 3PO<br />

R 2<br />

R 3<br />

N N<br />

R1 R 1 = COX<br />

+ R 1 N 3<br />

225 226 227<br />

N<br />

R 2<br />

R 3<br />

N<br />

N NR1<br />

R 1 R 2 Conditions Yield (%) Ref<br />

226 227<br />

O<br />

O<br />

O<br />

O<br />

(MeO) 3C 6H 2<br />

O<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 467<br />

O<br />

O<br />

Me<br />

Ph<br />

benzene, reflux,<br />

14–16 h<br />

benzene, reflux,<br />

14–16 h<br />

63 – [233]<br />

52 – [233]<br />

(MeO) 3C6H2 O<br />

acridin-9-yl CH2NMe2 benzene, reflux, 2 h 49 – [234]<br />

acridin9-yl N benzene, reflux, 2 h 73 – [234]<br />

Ph Ph benzene, reflux, 48 h 80 – [228]<br />

Ph 4-O 2NC 6H 4 benzene, reflux, 6 d 67 – [228]<br />

4-O 2NC 6H 4 Me benzene, reflux, 0.5 h 73 – [228]<br />

4-O 2NC 6H 4 4-O 2NC 6H 4 benzene, reflux, 48 h 98 – [228]<br />

4-MeOC 6H 4 Ph benzene, reflux, 72 h 54 – [228]<br />

4-MeOC 6H 4 4-O 2NC 6H 4 benzene, reflux, 10 d 70 – [228]<br />

Ts Me CH 2Cl 2, rt, 0.25 h 98 – [230]<br />

Ts Ph CH 2Cl 2, rt, 1 h 98 – [230]<br />

Ts 4-O 2NC 6H 4 CH 2Cl 2, rt, 10 h 87 – [230]<br />

Bz Me CH 2Cl 2, rt, 48 h – 50 [229]<br />

4-O 2NC 6H 4CO Me CH 2Cl 2, rt, 24 h – 65 [229]<br />

4-O 2NC 6H 4CO Ph CH 2Cl 2, rt, 24 h – 68 [229]<br />

4-MeOC 6H 4CO Me CH 2Cl 2, rt, 7 d – 24 [229]<br />

4-MeOC 6H 4CO Ph CH 2Cl 2, rt, 14 d – 75 [229]<br />

3-O 2NC 6H 4CO 4-O 2NC 6H 4 CH 2Cl 2, rt, 20 d – 43 [229]<br />

CO 2Et Ph CH 2Cl 2, rt, 48 h – 46 [229]<br />

CO 2Et 4-O 2NC 6H 4 CH 2Cl 2, rt, 14 d – 76 [229]<br />

a Note: R 3 = H for all examples in the table.<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


The reaction of a quinuclidin-3-yl Æ-acylphosphorus ylide with 3-nitrobenzoyl azide in refluxing<br />

acetonitrile, followed by column chromatography on basic alumina, affords the<br />

corresponding N-unsubstituted 1,2,3-triazole in 52%. [235] The reaction of vinyl azides with<br />

Æ-acylphosphorus ylides is a convenient method for the synthesis of 1-vinyl-1H-1,2,3-triazoles.<br />

[236] The reaction of Æ-acylphosphorus ylides with azides has been used to prepare a<br />

range of 1-[(diethoxyphosphoryl)methyl]-1H-1,2,3-triazoles 230 [237] and 1,2,3-triazole nucleosides<br />

231 [238] and 232 [239] (Scheme 77). Addition of acetyl azide to Æ-acyl-Æ-alkylphosphorus<br />

ylides or acetylation of those phosphorus ylides and subsequent treatment with<br />

sodium azide gives the same 1,2,3-triazoles. [240]<br />

Scheme 77 Addition of (Diethoxyphosphoryl)methyl Azides and Glycosyl Azides to<br />

Æ-Acylphosphorus Ylides [237–239]<br />

R 1<br />

(EtO)2P N 3<br />

O<br />

228<br />

+<br />

R 1 = H, Ph; R 2 = Me, Ph, CO2Et<br />

BzO<br />

BzO<br />

O<br />

N 3<br />

OBz<br />

R 2 O −<br />

+<br />

Br<br />

+<br />

PPh3<br />

toluene<br />

110 oC, 5−27 h<br />

61−83%<br />

R 2<br />

N N<br />

229 230<br />

O −<br />

+<br />

PPh3<br />

toluene<br />

110 oC, 45 min<br />

38%<br />

N<br />

R1 P(OEt) 2<br />

O<br />

BzO<br />

R2 O −<br />

AcO<br />

N3<br />

O<br />

OAc<br />

+<br />

+<br />

PPh3<br />

toluene<br />

80 o BzO<br />

C, 60 h<br />

59−82%<br />

BzO<br />

AcO<br />

N<br />

N<br />

O<br />

OAc<br />

R 2 = Me, Et, iPr, CO 2Et<br />

FOR PERSONAL USE ONLY<br />

468 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

N<br />

232<br />

BzO<br />

N<br />

N<br />

N<br />

O<br />

1-[1-(Diethoxyphosphoryl)alkyl]-1H-1,2,3,-triazoles 230; General Procedure: [237]<br />

A soln of diethyl (azidomethyl)phosphonate 228 (2 mmol) and Æ-acylphosphorus ylide<br />

229 (2–2.3 mmol) in dry toluene (15 mL) was refluxed for 5–27 h. The solvent was then<br />

evaporated in vacuo. The product was separated from the Ph 3PO by flash chromatography<br />

to give analytically pure triazole 230.<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.2.6 Method 6:<br />

Addition of Azides to Enamines or Enol Ethers<br />

Azides undergo addition to enamines 233 (R 1 = amino) [241] and to enol ethers 233 (R 1 = alkoxy)<br />

[242,243] under mild conditions, frequently at room temperature, to yield 4,5-dihydro-<br />

1H-1,2,3-triazoles 234 (Scheme 78). These reactions are completely regioselective; the<br />

amino or alkoxy group in the resulting 4,5-dihydro-1H-1,2,3-triazoles is in the 5-position.<br />

In some cases the 4,5-dihydro-1H-1,2,3-triazoles aromatize spontaneously to 1,2,3-triazoles<br />

235, in others the aromatization is effected by heating the compound alone (for<br />

enol ether adducts) or by treatment with acid or base (Scheme 78).<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

OBz<br />

231<br />

R 2<br />

Br


Scheme 78 Addition of Azides to Enamines or Enol Ethers [241–243]<br />

R 1 N 3 +<br />

Y = NR 4 2, OR 4<br />

R 3 H<br />

R 2<br />

233<br />

Y<br />

N<br />

N<br />

N<br />

R<br />

234<br />

1<br />

Y<br />

R2 H<br />

R3 H + or OH −<br />

− HY<br />

N<br />

N<br />

N<br />

R1 R3 R2 The thermal elimination of nitrogen from the 4,5-dihydro-1H-1,2,3-triazoles is a possible<br />

competing reaction. Some dihydrotriazoles derived from cyclic enol ethers and enamines<br />

fail to give triazoles for this reason. [242,244,245] In general, however, yields are very good. The<br />

reaction is most effective with azides bearing electron-withdrawing groups such as nitrophenyl,<br />

phenylsulfonyl, or ethoxycarbonyl. Sulfonyl azide adducts give N-unsubstituted<br />

triazoles, the substituent being lost on aromatization. [<strong>13</strong>]<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.2.6.1 Variation 1:<br />

Addition of Azides to Enamines<br />

There are substantial differences in the products obtained from the reactions of enamines<br />

with aryl azides or sulfonyl azides. Nitroenamine 236 (X = NO 2), for example, reacts with<br />

aryl azides to yield the expected triazoles 237 while with tosyl azide it gives the N-unsubstituted<br />

triazole 238 (X = NO 2) (Scheme 79). [<strong>13</strong>] With sulfonylenamines 236 (X = SO 2Ph, 4-<br />

O 2NC 6H 4SO 2) the corresponding triazoles 238 are also obtained. Similar results are observed<br />

in the reaction of methyl (E)-3-pyrrolidin-1-ylprop-2-enoate (239) with hetaroyl<br />

azides 240 (Scheme 79). In all cases methyl 1H-1,2,3-triazole-4-carboxylate is formed in approximately<br />

90% yield. [218] Dienamines also react with 4-nitrophenyl azide to give 1,2,3-triazoles<br />

but with tosyl azide only amidines are obtained (formed by decomposition of the<br />

intermediate 4,5-dihydro-1H-1,2,3-triazoles). [247]<br />

Scheme 79 Addition of Aryl, Sulfonyl, and Hetaroyl Azides to Enamines [<strong>13</strong>,218]<br />

O N<br />

X = NO2, SO2Ph, 4-O2NC6H4SO2; Ar 1 = Ph, 4-O2NC6H4<br />

MeO 2C<br />

236<br />

239<br />

N<br />

R 1 = 2-furyl, 2-thienyl, 2-selanylphenyl,<br />

X<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 469<br />

Ar 1 N3<br />

X = NO 2<br />

TsN3, EtOH<br />

reflux, 12−24 h<br />

O<br />

50−80%<br />

+ R 1 N 3<br />

240<br />

S<br />

S<br />

N<br />

N<br />

N<br />

Ar1 O2N<br />

X<br />

CHCl3<br />

rt, 20−25 d<br />

90%<br />

237<br />

N<br />

H<br />

238<br />

N<br />

N<br />

+<br />

MeO2C<br />

O NTs<br />

N<br />

H<br />

N<br />

N<br />

+<br />

235<br />

O<br />

R 1 N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


An interesting difference in chemical behavior is observed with the two isomeric cyanoenamines<br />

241 and 244 (Scheme 80). Both react with aryl azides to give 4,5-dihydro-1H-<br />

1,2,3-triazoles (242 and 245, respectively), which spontaneously aromatize to 1,2,3-triazoles<br />

243 and 246. [248] However, under identical experimental conditions, in one case<br />

the elimination of hydrogen cyanide is the favorable process while in the other only<br />

amine is eliminated. Both reactions are completely regioselective. The elimination of hydrogen<br />

cyanide or amine is independent of the structure of the amine; the process depends<br />

only on the relative positions of the amino and cyano groups. These reactions can<br />

be done without solvent, at 62–65 8C, and the yields, in both cases, are very good (75–95%).<br />

Scheme 80 Addition of Aryl Azides to Cyanoenamines [248]<br />

R 1 R 2 N<br />

NC<br />

R 1 R 2 N<br />

241<br />

H<br />

244<br />

H<br />

H<br />

H<br />

CN<br />

+ Ar 1 N 3<br />

+ Ar 1 N 3<br />

NC<br />

R 1 R 2 N<br />

242<br />

N<br />

N<br />

N<br />

Ar1 N<br />

N<br />

N<br />

Ar1 R1R2 H<br />

NC<br />

N<br />

H<br />

245<br />

− HCN<br />

− HNR 1 R 2<br />

R 1 R 2 N<br />

243<br />

246<br />

N<br />

N<br />

N<br />

Ar1 N<br />

N<br />

N<br />

Ar1 NC<br />

The synthetic versatility of this method is exemplified in Scheme 81: a range of 1,2,3-triazoles<br />

249 are obtained in good yields from the reaction of (azidomethyl)phosphonates<br />

247 with enamines 248. [124,249,250]<br />

Scheme 81 Reaction of (Azidomethyl)phosphonates with Enamines<br />

(EtO) 2P N3 O<br />

247<br />

R 1<br />

+<br />

FOR PERSONAL USE ONLY<br />

470 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

R 3 R 2 N<br />

R 4<br />

248<br />

H<br />

R 5<br />

56−77%<br />

N<br />

N N<br />

R5 toluene, reflux<br />

48 h R4 R1 P(OEt) 2<br />

O<br />

R 1 = H, Me, Ph; NR 2 R 3 = piperidino, morpholino; R 4 ,R 5 = (CH2)4; R 4 = H, Me; R 5 = CO2Me, CO2Et, POPh2, PO(OEt)2<br />

The synthesis of 4-(aminomethyl)-1H-1,2,3-triazoles (Scheme 82) is another interesting application<br />

of this method. Enamines 250 (resulting from the reaction of propenal with 2<br />

equivalents of secondary amines) react with aryl azides to give 4,5-dihydro-1H-1,2,3-triazoles<br />

251 [251,252] which, upon treatment with base, [251] are converted into triazoles 252.Ina<br />

similar process, reaction of propenal with benzenethiol, followed by the addition of a secondary<br />

amine and an aryl azide gives 4-[(phenylsulfanyl)methyl]-4,5-dihydro-1H-1,2,3-triazoles<br />

which, after treatment with base, give mixtures of three triazoles, resulting from<br />

the elimination of the amine or the phenylsulfanyl group. [253] Thiopyrano[3,4-d]-1,2,3-triazoles<br />

can also be prepared in moderate yields from the reaction of enamines, derived<br />

from tetrahydrothiopyran-4-one, and aryl azides. [254]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

249


Scheme 82 Synthesis of 4-(Aminomethyl)-1H-1,2,3-triazoles [251,252]<br />

O<br />

H<br />

R 1 2NH<br />

R 1 2N NR 1 2<br />

250<br />

R1 R<br />

2N<br />

H<br />

1 2N<br />

251<br />

NR 1 2 = NMe 2, morpholino, piperidino, pyrrolidin-1-yl; X = H, Cl, CN, NO 2<br />

H<br />

N<br />

X<br />

N<br />

N<br />

X N 3<br />

NaOH or<br />

NaOMe<br />

R 1 2N<br />

N<br />

X<br />

252<br />

The reactions of azides with enamines in which tautomerism is possible give mixtures of<br />

triazoles (Scheme 83). [255]<br />

Scheme 83 Addition of Azides to Enamines in Which Tautomerism Is Possible [255]<br />

R 2<br />

R 1 2N<br />

R 2<br />

R 1 2N<br />

H<br />

H<br />

H<br />

+ R 3 N 3<br />

+ R 3 N 3<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 471<br />

− R 1 2NH<br />

− R 1 2NH<br />

R 2<br />

N<br />

N<br />

N<br />

R3 R2 Imines with an Æ-methylene group can also react with azides via their enamine tautomers.<br />

[256] This method has been extended to the solid-phase synthesis of 1,2,3-triazoles.<br />

The resin-bound 3-oxobutanamide 253 reacts with primary aliphatic amines yielding 3aminobut-2-enamides<br />

which react with tosyl azide to give the polymer supported triazoles<br />

254 (Scheme 84). Upon treatment with trifluoroacetic acid, the “free” triazoles (as<br />

trifluoroacetates) 255 are obtained in purities of up to 82% ( 1 H NMR, HPLC). [257]<br />

N<br />

N<br />

N<br />

R3 N<br />

N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 84 Solid-Phase Synthesis of <strong>Triazoles</strong> via Enamines [257]<br />

O<br />

O N<br />

253<br />

N<br />

O O<br />

O<br />

TsN3, DMF<br />

iPr2NEt O N<br />

N<br />

R1 O<br />

NH2, DMF<br />

HC(OEt) 3 O N<br />

O<br />

NR 1<br />

N<br />

N<br />

TFA H2N<br />

+<br />

254 255<br />

N<br />

N<br />

O<br />

O NHR 1<br />

NR 1<br />

N<br />

N<br />

CF3CO 2 −<br />

Enamides 256, despite being less reactive than enamines, also react with aryl azides at<br />

room temperature (3 days to 10 months) to give 4,5-dihydro-1H-1,2,3-triazoles 257 as stable<br />

crystalline products (Scheme 85). In refluxing ethanol, however, the reaction yields<br />

the corresponding triazoles as the major product. The reaction of the 4,5-dihydro-1H-<br />

1,2,3-triazoles 257 with potassium hydroxide in refluxing methanol yields triazoles<br />

258. [258]<br />

Scheme 85 Reaction of Aryl Azides with Enamides [258]<br />

Y<br />

256<br />

+<br />

N3<br />

Y = 2-oxopyrrolidin-1-yl, NMeAc<br />

FOR PERSONAL USE ONLY<br />

472 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

X<br />

rt, 3 d to 10 months<br />

44−91%<br />

EtOH, reflux<br />

24−90 h<br />

17−66%<br />

Y<br />

N<br />

257<br />

N<br />

258<br />

N<br />

N<br />

N<br />

X<br />

N<br />

X<br />

KOH, MeOH<br />

70−84%<br />

reflux, 30 min<br />

1-[1-(Diethoxyphosphoryl)alkyl]-1H-1,2,3-triazoles 249; General Procedure: [249]<br />

To the (azidomethyl)phosphonate 247 (5 mmol) dissolved in toluene (20 mL) was added<br />

the enamine 248 (5 mmol). The resulting mixture was refluxed for 48 h, with stirring.<br />

The soln was concentrated and the residue was then purified by flash chromatography<br />

(silica gel, hexane/Et 2O 1:1).<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


<strong>13</strong>.<strong>13</strong>.1.1.3.1.2.6.2 Variation 2:<br />

Addition of Azides to Enol Ethers<br />

As indicated in Section <strong>13</strong>.<strong>13</strong>.1.1.3.1.2.6, azides react very readily with enol ethers to afford<br />

4,5-dihydro-1H-1,2,3-triazoles in good yields; [242,243] these reactions are completely<br />

regioselective. As an example, 2-ethoxypropene reacts with 4-nitrophenyl azide to give<br />

the 4,5-dihydro-1H-1,2,3-triazole 259 in 99% yield; when heated at 1508C it eliminates ethanol<br />

and the corresponding 1,2,3-triazole 260 is formed in quantitative yield (Scheme<br />

86). [242] Cyclic enol ethers, like 2,3-dihydrofuran or 3,4-dihydro-2H-pyran, also react with<br />

azides to give the corresponding 4,5-dihydro-1H-1,2,3-triazoles 261. However, when these<br />

compounds are heated, nitrogen is evolved and the imino ethers 262 are formed. [242,259]<br />

The reaction of enol ethers with heterocyclic azides gives similar results. [114]<br />

Scheme 86 Reaction of Aryl Azides with Enol Ethers [242]<br />

N 3<br />

NO 2<br />

Ar 1 N 3 +<br />

n = 1, 2<br />

+<br />

( ) n<br />

O<br />

OEt<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 473<br />

50 oC, 90 h<br />

99%<br />

20 oC 72−98%<br />

EtO<br />

261<br />

259<br />

N<br />

N<br />

N<br />

NO2<br />

150 oC 100%<br />

( )<br />

n<br />

N<br />

N<br />

100−<strong>13</strong>0 oC O N<br />

Ar1 N<br />

N<br />

N<br />

NO2 260<br />

( )<br />

n O<br />

Aryl azides containing no electron-withdrawing groups add to the enolate ion of acetaldehyde<br />

(formed by cycloreversion of tetrahydrofuran in the presence of butyllithium) to<br />

give 1-aryl-4,5-dihydro-1H-1,2,3-triazol-5-ols 263 in very good yields (Scheme 87). [260] These<br />

compounds are converted into the corresponding 1-aryl-1H-1,2,3-triazoles 264 in good to<br />

nearly quantitative yields by treatment with sodium methoxide in methanol or with<br />

potassium tert-butoxide in tert-butyl alcohol. [260] In a similar process, benzyl azide and<br />

phenyl azide react with the enolate ions of methyl ketones to give mixtures of triazole<br />

derivatives. [261,262] For example, benzyl azide reacts with acetone, in the presence of potassium<br />

tert-butoxide, to give a mixture (ca. 1:1) of 1-benzyl-5-methyl-1H-1,2,3-triazole (265)<br />

and 1-benzyl-4-isopropenyl-5-methyl-1H-1,2,3-triazole (266) (Scheme 87). When phenyl<br />

azide is used, triazole 267 is the main product. [262] Under similar reaction conditions,<br />

phenylacetone reacts with organic azides to give triazoles 268 in high yields. [263]<br />

262<br />

NAr 1<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 87 Reaction of Azides with Enolates [260]<br />

O −<br />

+<br />

N 3<br />

X<br />

THF<br />

rt, 1−24 h<br />

70−99%<br />

X = H, 2-SMe, 2-SEt, 4-Me, 2-OMe, 3-OMe, 4-OMe<br />

BnN 3 +<br />

PhN 3 +<br />

R 1 N 3 +<br />

R 1 = Me, Bn, Ph<br />

Ph<br />

O<br />

O<br />

O<br />

FOR PERSONAL USE ONLY<br />

474 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

t-BuOK, t-BuOH<br />

rt, 3.5 h<br />

77%<br />

t-BuOK, t-BuOH<br />

rt, 40 min<br />

74%<br />

HO<br />

t-BuOK, t-BuOH<br />

rt, 0.5−4 h<br />

79−92%<br />

263<br />

O<br />

N<br />

N<br />

N<br />

X<br />

N<br />

N<br />

N<br />

Bn<br />

265<br />

N<br />

267<br />

+<br />

NaOR1 , R1OH rt, 0.5−60 h<br />

NH<br />

N<br />

N<br />

N<br />

Ph<br />

N<br />

N<br />

N<br />

R1 268<br />

65−100%<br />

N<br />

N<br />

N<br />

Bn<br />

1-Benzyl-5-methyl-4-phenyl-1H-1,2,3-triazole (268,R 1 = Bn); Typical Procedure: [263]<br />

Benzyl azide (2.48 mL, 0.02 mol) and phenylacetone (2.67 mL, 0.02 mol) were added to t-<br />

BuOK stock soln (20 mL). The mixture turned red and heat evolution was observed after<br />

a few min. After 2 h, the mixture was poured into ice water (150 mL). The crystalline product<br />

was washed with H 2O and pentane; crude product yield: 4.22 g (85%). Recrystallization<br />

(EtOAc/pentane) gave the pure product; mp 93–94 8C.<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.2.7 Method 7:<br />

Addition of Azides to Vinyl Acetate<br />

Azides undergo addition to vinyl esters of lower (C 1–C 4) carboxylic acids to yield 1-substituted<br />

1,2,3-triazoles 269 in good yields (Scheme 88). Vinyl acetate is the most readily available<br />

and is the preferred vinyl ester substrate. Generally vinyl acetate is also used as solvent<br />

and the reaction takes place at 50–1508C. This method has been frequently used for<br />

the preparation of 1-aryl- and 1-benzyl-1H-1,2,3-triazoles with biological activities. [264–268]<br />

Heteraryl azides also add to vinyl acetate to give the corresponding triazoles. [114] Similar<br />

reaction with isopropenyl acetate yields the 5-methyl-1-substituted 1H-1,2,3-triazoles. [114]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

Ph<br />

266<br />

N<br />

264<br />

N<br />

N<br />

X


Scheme 88 Reaction of Azides with Vinyl Acetate [114,264–268]<br />

R 1 N 3 +<br />

AcO<br />

50−150 o C<br />

1-(4-Acetylphenyl)-1H-1,2,3-triazole (269,R 1 = 4-AcC 6H 4); Typical Procedure: [267]<br />

A soln of 4-azidoacetophenone (4.0 g, 24.8 mmol) and vinyl acetate (6 mL) in a closed tube<br />

was heated at 808C for 24 h. After evaporation of the solvent, the residue was dissolved in<br />

CHCl 3 and the soln was washed with 2 M NaOH and 2 M HCl. The CHCl 3 layer was evaporated<br />

in vacuo and the crude residue was recrystallized [benzene (CAUTION: carcinogen)];<br />

yield: 2.86 g (61%); mp 169–1718C.<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.2.8 Method 8:<br />

Addition of Azides to Ketene Acetals<br />

Ketene N,N-, S,S-, S,N-, O,O-, and O,N-acetals react with organic azides or sodium azide to<br />

yield 1,2,3-triazoles. These reactions are completely regioselective but the yields are<br />

strongly dependent on the structure of the ketene acetal.<br />

Aryl azides undergo 1,3-dipolar cycloaddition to 1,1-dimorpholinoethenes 270 to<br />

give 4,5-dihydro-1H-1,2,3-triazoles 271 (Scheme 89). When R 1 = Me the 4,5-dihydro-1H-<br />

1,2,3-triazoles 271 are stable and can be isolated. [253] These compounds are deaminated<br />

in almost quantitative yields (95–98%) to the corresponding triazoles 272 by treatment<br />

with acetic acid (608C, 30 min). [253] When R 1 is an electron-withdrawing group (COR 2 ,<br />

CO 2R 2 ,SO 2R 2 ,NO 2) the 4,5-dihydro-1H-1,2,3-triazoles 271 cannot be isolated or detected;<br />

the deamination process to 272 proceeds so rapidly that NMR monitoring of the reaction<br />

mixture does not allow detection of signals unequivocally associated with the structure<br />

271. [269]<br />

N<br />

N<br />

N<br />

R1 Scheme 89 Reaction of Aryl Azides with 1,1-Dimorpholinoethenes [253]<br />

R 1 H<br />

N N<br />

O O<br />

270<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 475<br />

Ar1N3, toluene<br />

rt or reflux, 4−50 h<br />

16−73%<br />

269<br />

O<br />

N<br />

N<br />

N<br />

Ar1 R<br />

N<br />

N<br />

1<br />

O<br />

271<br />

− O NH<br />

O<br />

N<br />

N<br />

N<br />

Ar1 R1 N<br />

Cyclic ethene-1,1-diamines 273 react readily with 4-nitrophenyl azide to yield exclusively<br />

1,2,3-triazoles 274 in excellent yields (Scheme 90). However, when phenyl azide or other<br />

substituted phenyl azides are used the reaction proceeds much more slowly and mixtures<br />

of triazoles 274 and 275 are obtained. [270] The formation of triazoles 274 can be explained<br />

by a mechanism where the ethene-1,1-diamines act as nucleophiles and attack the terminal<br />

nitrogen of the azide. Cyclization and elimination of one molecule of water yields the<br />

272<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


triazoles. The formation of triazoles 275 can be explained by a 1,3-dipolar cycloaddition<br />

of the azide to the ethene-1,1-diamine, followed by Dimroth rearrangement of the intermediate<br />

dihydrotriazole and finally aromatization by deamination. [270]<br />

Scheme 90 Reaction of Aryl Azides with Cyclic Ethene-1,1-diamines [270]<br />

( )<br />

n<br />

HN NH<br />

O<br />

273<br />

X<br />

n = 1, 2; Y = H, Cl, Me, OMe, NO 2<br />

+<br />

N3<br />

Y<br />

1,4-dioxane<br />

rt to 80 oC, 5 h to 5 d<br />

X<br />

( )<br />

n NH<br />

N<br />

274<br />

N<br />

Y<br />

N<br />

N<br />

+<br />

( )<br />

n N<br />

N<br />

H<br />

2-Nitroethene-1,1-diamines of types 276 or 280, with at least one free NH group, react<br />

with 4-chlorobenzenesulfonyl azide to give 4-nitro-1,2,3-triazoles 279 and 281, respectively,<br />

in low to moderate yields (Scheme 91). The mechanism of formation of these compounds<br />

is likely to involve Dimroth rearrangement of the 4,5-dihydro-1H-triazoles 277,<br />

resulting from 1,3-dipolar cycloaddition, to 278 followed by elimination of the arylsulfonamide<br />

as show in Scheme 91. [271]<br />

Scheme 91 Reaction of 4-Chlorobenzenesulfonyl Azide with<br />

2-Nitroethene-1,1-diamines [271]<br />

( )<br />

n<br />

HN NH<br />

H<br />

276<br />

n = 1, 2<br />

NO 2<br />

N<br />

280<br />

4-ClC 6H 4SO 2N 3<br />

MeCN, rt, 7 d<br />

H<br />

35−65%<br />

NO2<br />

NHMe<br />

FOR PERSONAL USE ONLY<br />

476 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

N<br />

( ) N<br />

n<br />

N<br />

SO2Ar1 NO2 H<br />

N<br />

NH<br />

277<br />

4-ClC6H4SO2N3<br />

dioxane, 80 o C, 15 h<br />

12%<br />

+<br />

( )<br />

n N<br />

N<br />

N<br />

N<br />

H<br />

Ar<br />

NH<br />

1O2S NO2 281<br />

278<br />

N<br />

Me<br />

N<br />

N<br />

N<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

O 2N<br />

X<br />

275<br />

( )<br />

n N<br />

N<br />

H<br />

279<br />

N<br />

N<br />

N<br />

N<br />

O<br />

NO2


Aroylketene dithioacetals 282 react with sodium azide via intermediates 283 to afford Nunsubstituted<br />

1,2,3-triazoles 284 in good yields (Scheme 92). [272] Under similar conditions,<br />

the reaction with 4,4-bis(methylsulfanyl)but-3-en-2-one does not yield the corresponding<br />

triazole.<br />

Scheme 92 Reaction of Aroylketene Dithioacetals with Sodium Azide [272]<br />

NaN3, DMSO<br />

110 o Ar<br />

C, 12−25 h<br />

65−75%<br />

O<br />

1<br />

MeS SMe<br />

H<br />

Na<br />

−<br />

N<br />

N<br />

N<br />

+<br />

− NaSMe<br />

MeS<br />

Ar1 Ar<br />

O<br />

O<br />

282 283 284<br />

1<br />

MeS<br />

MeS<br />

Ar 1 = Ph, 4-Tol, 4-MeOC6H4, 4-ClC6H4, 3,4-Cl2C6H3<br />

Tosyl azide reacts smoothly with acylketene S,N-acetals 285 in ethanolic sodium hydroxide<br />

solutions to give 1,2,3-triazoles 286 in good yields (Scheme 93). [273] Under similar conditions,<br />

the reaction of tosyl azide with cyclic ketene S,N-acetals 288 results in intractable<br />

tar, however, in dioxane, at higher temperature, the fused thiazolo[3,2-c][1,2,3]triazole derivatives<br />

289 are obtained in good yields. [273] Detosylation of compounds 286 with concentrated<br />

sulfuric acid leads to the corresponding 4-acyl-1,2,3-triazol-5-amines 287.<br />

Scheme 93 Reaction of Acylketene S,N-Acetals with Tosyl Azide [273]<br />

R 1<br />

O<br />

H<br />

MeS NHR 2<br />

285<br />

+ TsN 3<br />

NaOH, EtOH<br />

0 oC to rt, 10 h<br />

44−75%<br />

R 1 = Me, Ph, 4-ClC 6H 4, 4-Tol; R 2 = Me, Et, Pr, iPr, Bu, Cy, CH 2CH(OEt) 2, Bn, Ph<br />

R 1<br />

O<br />

H<br />

S NH<br />

288<br />

+ TsN 3<br />

R 1 = Ph, 4-ClC 6H 4, 4-MeOC 6H 4<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 477<br />

dioxane<br />

95−100 oC, 15 h<br />

60−69%<br />

O<br />

R<br />

N<br />

N<br />

TsHN<br />

N<br />

1<br />

R2 286<br />

N<br />

N<br />

N<br />

concd H2SO4 rt, 25 min<br />

75−95%<br />

Ketene O,O-acetals (1,1-bis-enol ethers) 290 react with aryl azides to give triazoles 291 in<br />

varying yields (Scheme 94). [6,156,274] With temperature control and in the presence of an excess<br />

of the ketene acetal, the intermediate 4,5-dihydro-1H-1,2,3-triazole is obtained. [275,276]<br />

The intermediate 4,5-dihydro-1H-1,2,3-triazole obtained from the reaction of ethyl azidoformate<br />

and ketene acetals decomposes readily at room temperature, the reaction path-<br />

S<br />

R 1<br />

289<br />

O<br />

R 1<br />

H 2N<br />

287<br />

O<br />

N<br />

H<br />

N<br />

N<br />

N<br />

N<br />

N<br />

R2 for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


way depending on the presence of the substituents on the 4-position. [276] With benzoyl<br />

azide the main products are oxazole derivatives. [275]<br />

Scheme 94 Reaction of Ketene O,O-Acetals with Azides [156,274]<br />

R 1 H<br />

EtO OEt<br />

290<br />

+ Ar 1 N 3<br />

FOR PERSONAL USE ONLY<br />

478 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

N<br />

N<br />

N<br />

Ar1 R1 EtO<br />

EtO<br />

− EtOH<br />

N<br />

N<br />

N<br />

Ar1 R1 EtO<br />

4-Acyl-5-(tosylamino)-1H-1,2,3-triazoles 286; General Procedure for Reaction of<br />

Acylketene S,N-Acetals with Tosyl Azide: [273]<br />

A soln of NaOH (4.80 g, 0.12 mol) in EtOH (10 mL) was added slowly (5 min) to an ice-cooled<br />

and stirred suspension of the ketene S,N-acetal 285 (0.01 mol) and tosyl azide (2.36 g,<br />

0.012 mol) in EtOH (10 mL), and the mixture was further stirred at rt for 10 h. It was then<br />

poured over crushed ice (150 g), acidified with 20% AcOH (30 mL), and extracted with<br />

CHCl 3 (3 ” 50 mL). The organic extract was washed with H 2O (3 ” 50 mL), dried (Na 2SO 4),<br />

and evaporated to give crude triazoles 286, which were further purified by recrystallization<br />

(EtOH).<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.3 Reaction of Azides with Active Methylene Compounds<br />

The base-catalyzed condensation of azides with active methylene compounds (the Dimroth<br />

reaction) is a versatile method for the preparation of 1H-1,2,3-triazoles. It was first<br />

described by Dimroth in 1902. [277,426] Depending on the functional groups present in the<br />

active methylene compound used, the substituent in the 5-position of the triazole can be<br />

an alkyl or aryl group, a hydroxy group, an alkoxycarbonyl group, or an amino group. Although<br />

the reactions are stepwise, [278] they are completely regioselective. The mechanism<br />

of the Dimroth reaction can be envisaged as a nucleophilic attack by the carbanion on the<br />

terminal nitrogen of the azide, followed by cyclization to a dihydrotriazole and aromatization.<br />

In accord with this mechanism, the reaction goes least readily with azides bearing<br />

electron-releasing groups. The reactions are generally carried out with alkoxides in alcohols<br />

at room temperature or under reflux. However, in some cases better results are obtained<br />

using potassium tert-butoxide in tetrahydrofuran, [279] sodium amide in diisopropyl<br />

ether, [280] or potassium carbonate in dimethyl sulfoxide. [281]<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.3.1 Method 1:<br />

Reaction of Azides with 1,3-Diketones, 3-Oxo Esters, or 3-Oxoamides<br />

Organic azides react with 1,3-diketones, 3-oxo esters, or 3-oxoamides to yield, generally in<br />

good yields, 1H-1,2,3-triazoles with a carbonyl group in position 4 (Scheme 95). The reaction<br />

with aryl or hetaryl azides gives better yields. With simple vinyl azides [282] and 2-azidovinyl<br />

ketones [283] the expected 1-vinyl-1,2,3-triazoles are obtained. However, when 1azidovinyl<br />

ketones are reacted with 3-oxo esters in the presence of triethylamine the initially<br />

formed 1-vinyl-1,2,3-triazoles undergo further reaction with another molecule of<br />

the oxo ester. [284] In hexamethylphosphoric triamide, 4-nitrophenyl azide reacts smoothly<br />

with acyclic 1,3-diketones and 3-oxo esters to afford the corresponding triazoles 293 in<br />

almost quantitative yields. [285] However, with five- and six-membered cyclic 1,3-diones it<br />

gives mainly the corresponding diazo derivatives. 1,3-Dicarbonyl compounds react with<br />

tosyl azide in hexamethylphosphoric triamide to give only the corresponding diazo compounds,<br />

usually in high yields. [285]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

291


Scheme 95 Reaction of Azides with 1,3-Diketones, 3-Oxo Esters, or 3-Oxoamides<br />

[<strong>13</strong>5,267,281,286–295]<br />

R 1 N3 +<br />

O O<br />

R 2 R 3<br />

R 2 = alkyl, aryl; R 3 = alkyl, aryl, OR 4 , NR 4 R 5<br />

base<br />

N<br />

N<br />

−<br />

N<br />

R1 O<br />

R2 O<br />

R3 R<br />

−<br />

O<br />

3<br />

R 2<br />

O<br />

N<br />

N<br />

N<br />

R1 R 3<br />

R 2<br />

O<br />

293<br />

N<br />

N<br />

N<br />

R1 R 1 R 2 R 3 Conditions Yield a (%) Ref<br />

4-O2NC6H4 Me Me NaOEt, EtOH, rt, 5 h 83 [267]<br />

3-HO-4-MeO2CC6H3 Ph Ph Et3N, MeOH, reflux, 15 h 60 [286]<br />

2-O2NC6H4 Me OEt NaOEt, EtOH, 08C, 2 h 56 [287]<br />

Ph Me OMe Et3N, MeOH, 70 8C, 10 d 68 [<strong>13</strong>5]<br />

3,5-Cl2C6H3CH2 Me OEt K2CO3, DMSO, 358C, 18 h 89 [281]<br />

2-O2N-4-ClC6H3 Me NHPh NaOEt, EtOH, rt, 18 h 80 [287]<br />

4-(HO2CCH2O)C6H4 Me NEt2 NaOEt, EtOH, reflux, 16 h 65 [288]<br />

4-pyridyl 4-O2NC6H4 OEt NaOEt, EtOH, rt, 24 h 86 [289]<br />

MeO<br />

Cl<br />

N N<br />

N N Ph<br />

N<br />

N<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 479<br />

Me Me NaOEt, EtOH, rt, 4 h 90 [290]<br />

Ph OEt NaOEt, EtOH, rt, 4 h 71 [291]<br />

4-O 2NC 6H 4 OEt NaOEt, EtOH, 0–38C, 6 h n.r. [292]<br />

Me NHPh NaOEt, EtOH, 08C to rt, 6 h n.r. [293]<br />

acridin-9-yl Me Me NaOMe, MeOH, rt, 24 h 62 [294]<br />

acridin-9-yl Me OMe KOH, MeOH, rt, 12 h 75 [294]<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


R 1 R 2 R 3 Conditions Yield a (%) Ref<br />

MeO2C<br />

MeO 2C<br />

HO<br />

HO<br />

S<br />

S<br />

a n.r. = not reported.<br />

Me Me MeOH, Et 3N, rt, 2 d 67 [295]<br />

Me OEt MeOH, Et 3N, rt, 2 d 62 [295]<br />

Aryl azides react with 2-substituted 1H-indane-1,3(2H)-diones to give fairly stable tricyclic<br />

4-acyl-4,5-dihydro-1H-triazol-5-ols in good yields. [296] With tosyl azide the isolated products<br />

are isoquinolinediones. [296] Ethyl 2-oxocyclododecanecarboxylate (294) reacts with<br />

phenyl azide, in the presence of 1 equivalent of sodium ethoxide, to give the 1H-1,2,3-triazol-5-ol<br />

295 in 48% yield (Scheme 96). [297]<br />

Scheme 96 Reaction of Ethyl 2-Oxocyclododecanecarboxylate with Phenyl Azides [297]<br />

O<br />

294<br />

CO 2Et<br />

+ PhN 3<br />

NaOEt, EtOH, THF<br />

rt, 3 d<br />

48%<br />

EtO2C ( ) 10<br />

HO<br />

N<br />

N<br />

N<br />

Ph<br />

3-Oxoamides react with sulfonyl azides in a different way than with alkyl or aryl azides. In<br />

this case, the sulfonyl azide acts as a diazo transfer agent and the nitrogen of the amide<br />

function is involved in the formation of the 1,2,3-triazole ring. As indicated in Scheme 97,<br />

in the presence of sodium ethoxide, tosyl azide reacts with 3-oxoamides 296 to give the<br />

sodium salts of 4-acyl-1H-1,2,3-triazol-5-ols in almost quantitative yields. However, attempts<br />

to convert salts 297 into the corresponding hydroxy derivatives leads to the formation<br />

of diazoamides 298. [298]<br />

Scheme 97 Reaction of Tosyl Azide with 3-Oxoamides [298]<br />

O O<br />

R 1 NHPh<br />

R 1 = Me, Ph<br />

296<br />

FOR PERSONAL USE ONLY<br />

480 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

+ TsN 3<br />

NaOEt<br />

EtOH<br />

97−100%<br />

R<br />

N<br />

N<br />

N<br />

1OC Na −<br />

O<br />

+<br />

Ph<br />

297<br />

295<br />

H +<br />

NaOEt<br />

O O<br />

R 1 NHPh<br />

Dimethyl 3-oxopentanedioate (299) reacts with aryl [299] and glycosyl azides [300] to yield selectively<br />

triazoles 300 (Scheme 98).<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

N2<br />

298


Scheme 98 Reaction of Dimethyl 3-Oxopentanedioate with Azides<br />

MeO<br />

O O<br />

299<br />

O<br />

OMe<br />

+ R 1 N 3<br />

base<br />

MeO 2C<br />

MeO 2C<br />

R 1 Conditions Yield (%) Ref<br />

Ph Et3N, MeOH, reflux, 4 d 62 [299]<br />

4-ClC6H4 Et3N, MeOH, reflux, 1 d 76 [299]<br />

4-O2NC6H4 Et3N, MeOH, reflux, 1 d 94 [299]<br />

4-AcC6H4 Et3N, MeOH, reflux, 1 d 82 [299]<br />

BzO<br />

O<br />

BzO OBz<br />

BzO<br />

OBz<br />

O<br />

BnO<br />

OBn<br />

OBz<br />

OBn<br />

O<br />

300<br />

K 2CO 3, DMSO, rt, 15 h 95 [300]<br />

K 2CO 3, DMSO, rt, 24 h 93 [300]<br />

K 2CO 3, DMSO, 45 8C, 24 h 80 [300]<br />

Diethyl 2-oxobutanedioate, ethyl 2,4-dioxo-4-phenylbutanoate, and ethyl 4-(2-furyl)-2,4dioxobutanoate,<br />

all as sodium salts 301, react with aryl azides to afford triazoles 302 in<br />

low yields (Scheme 99). [301]<br />

N<br />

N<br />

N<br />

R1 Scheme 99 Reaction of 2-Oxobutanedioate and 2,4-Dioxobutanoate Derivatives<br />

with Azides [301]<br />

Na +<br />

X<br />

−<br />

O O<br />

X = OEt, Ph, 2-furyl<br />

301<br />

O<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 481<br />

OEt<br />

+<br />

Ar 1 N 3<br />

THF, 50 o C, 7 h<br />

17−26%<br />

X<br />

EtO 2C<br />

302<br />

O<br />

N<br />

N<br />

N<br />

Ar1 <strong>13</strong>.<strong>13</strong>.1.1.3.1.3.2 Method 2:<br />

Reaction of Azides with Malonic Esters, Malonamides, or Acetamides<br />

The base-catalyzed reaction of organic azides with malonic acid derivatives is one of the<br />

best methods for the synthesis of 1H-1,2,3-triazol-5-ols 303 with an alkyloxy (or aryloxy)<br />

carbonyl or carbamoyl functions in the 4-position (Scheme 100). As observed with other<br />

active methylene compounds, these reactions are stepwise and completely regioselective.<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 100 Reaction of Azides with Diethyl Malonate [281,302–304]<br />

R1N3 + EtO2C CO2Et base<br />

EtO 2C<br />

H<br />

N<br />

O OEt<br />

N NR1<br />

−<br />

R 1 Conditions Yield (%) Ref<br />

Bn K2CO3, DMSO, 358C, 44 h 77 [281]<br />

Bn NaOMe, MeOH, reflux, 15 h 88 [302]<br />

3,5-Cl2C6H3CH2 K2CO3, DMSO, 408C, 72 h 96 [281]<br />

4-MeOC6H4CH2 K2CO3, DMSO, 358C, 72 h 92 [281]<br />

4-MeOC6H4CH2 NaOEt, EtOH, reflux, 18 h 67 [303]<br />

4-pyridyl NaOMe, MeOH, rt, 24 h 75 [304]<br />

EtO 2C<br />

Malonamides 304 (X = CONHR 1 ) give an unusual reaction with phenyl azide from which<br />

1H-1,2,3-triazol-5-ols 306 are isolated; aniline is also formed (Scheme 101). [305] A mechanism<br />

has been suggested involving cyclization of the triazene intermediate 305 with displacement<br />

of aniline. Similar behavior is observed in the reaction of N-methylphenylacetamide<br />

(304, X = Ph; R 1 = Me) with phenyl azide. [305] However, with phenylacetamide (304,<br />

X = Ph; R 1 = H) a mixture of two triazoles is obtained: the corresponding triazole 306<br />

(R 1 = H; X = Ph) and 1,4-diphenyl-1H-1,2,3-triazol-5-ol. With malonic esters and amides substituted<br />

at the central carbon, triazole formation is accompanied by decarboxylation and<br />

4-alkyl- or 4-aryl-1H-1,2,3-triazol-5-ols are obtained. [305,306]<br />

Scheme 101 Reaction of Phenyl Azide with Malonamides and Phenylacetamide [305]<br />

PhN3<br />

+<br />

X<br />

O<br />

304<br />

R 1 = H, Me; X = CONHR 1 , Ph<br />

NHR 1<br />

FOR PERSONAL USE ONLY<br />

482 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

NaOEt<br />

N<br />

O NHR 1<br />

305<br />

N NHPh<br />

− PhNH2<br />

N-Arylsulfonylmalonamide derivatives 307 and malonohydrazides 309 react with tosyl<br />

azide to give selectively 1-(arylsulfonyl)- and 1-(arylmethyleneamino)-1H-1,2,3-triazol-5ols<br />

308 and 310, respectively, in moderate to good yields (Scheme 102). [307] The mechanism<br />

of the reaction involves a diazo group transfer followed by subsequent cyclization<br />

of the intermediate diazomalonate derivative.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

X<br />

HO<br />

HO<br />

303<br />

X<br />

306<br />

N<br />

N<br />

N<br />

R1 N<br />

N<br />

N<br />

R1


Scheme 102 Reaction of Tosyl Azide with Malonohydrazides and N-Tosylmalonamides [307]<br />

O<br />

O<br />

R 1 R 2 N N H<br />

307<br />

SO 2Ar 1<br />

R 1 = H, Me; R 2 = Ts, 4-O2NC6H4; Ar 1 = 4-Tol, Ph<br />

O<br />

O<br />

BnHN N H<br />

309<br />

N<br />

Ar 1<br />

TsN3, NaOEt, EtOH<br />

62−68%<br />

TsN3, NaOEt, EtOH<br />

0−5 oC to rt, 2 h<br />

Ar1 = 4-MeOC6H4 52%<br />

Ar1 = 4-FC6H4 82%<br />

N<br />

N<br />

Na<br />

N<br />

+ − O<br />

SO2Ar<br />

308<br />

1<br />

O<br />

R1R2N BnHN<br />

Na + − O<br />

The reaction of phosphonyl and phosphinyl acetamides 311 with tosyl azide, in the presence<br />

of potassium tert-butoxide, yields 1H-1,2,3-triazolols 3<strong>13</strong>, presumably via diazo derivatives<br />

312 (Scheme 103). [308,309]<br />

Scheme 103 Reaction of Tosyl Azide with Phosphonyl and Phosphinyl Acetamides [308,309]<br />

O<br />

R 1 2P CONH 2<br />

311<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 483<br />

TsN 3, t-BuOK<br />

O<br />

R 1 2P CONH 2<br />

O<br />

310<br />

N<br />

N<br />

N<br />

N<br />

Ar 1<br />

R 1 2P<br />

N 2 O<br />

312<br />

HO<br />

N<br />

H<br />

N<br />

N<br />

R1 = OEt 56%<br />

R1 3<strong>13</strong><br />

= Ph 70%<br />

1-(Arylmethyleneamino)-1H-1,2,3-triazol-5-ol Sodium Salts 310; General Procedure: [307]<br />

The malonohydrazide 309 (2 mmol) was suspended in a soln of NaOEt (0.<strong>13</strong>6 g, 2 mmol) in<br />

EtOH (12 mL) and tosyl azide (0.40 g, 2 mmol) was added dropwise at 0–5 8C. The mixture<br />

was stirred for 2 h after which the precipitate 310 was collected by filtration and dried.<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.3.3 Method 3:<br />

Reaction of Azides with Acetonitrile Derivatives<br />

Organic azides react with acetonitrile derivatives 314 to give 1-substituted 1H-1,2,3-triazol-5-amines<br />

315 in good yields (Scheme 104). However, to avoid Dimroth rearrangement<br />

of the products, the reactions must be carried out at low temperatures (0–208C). [304]<br />

In the reactions of acetonitrile derivatives with 2-substituted aryl azides (e.g., 2-nitrophenyl<br />

azide, 2-azidobenzoic acid, or 2-azidobenzonitrile), the 1H-1,2,3-triazol-5-amine can react<br />

further by condensation of the amino group with the ortho substituent on the 1-phenyl<br />

group, resulting in the formation of fused 1,2,3-triazoles. [310–3<strong>13</strong>,317] Best yields are obtained<br />

with aryl, hetaryl, and benzyl azides but some good results have also been obtained with<br />

alkyl azides. [279,314]<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 104 Reaction of Azides with Acetonitrile Derivatives [279–282,291,294,304,315–324]<br />

R 1 N 3 +<br />

R 2 CN<br />

314<br />

base<br />

R 2 = aryl, CN, CO2R 3 , CONR 3 R 4 , PO(OEt)2<br />

R 2<br />

N<br />

H<br />

N<br />

N<br />

NR1 −<br />

R 2<br />

HN<br />

N<br />

N<br />

N<br />

R1 H<br />

R<br />

N<br />

N<br />

N<br />

2<br />

H2N R1 R 1 R 2 Conditions Yield (%) Ref<br />

(CH 2) 5Me Ph t-BuOK, THF, rt, 12 h 98 [279]<br />

Me t-Bu LDA, Et 2O, –78 to 08 C, 1 d 35 [315]<br />

Bn Bn NaNH 2, iPr 2O, reflux, 7 d 24 [280]<br />

CH 2SPh 2-FC 6H 4 K 2CO 3, DMSO, rt, 16 h 29 [316]<br />

Ph Ph NaOMe, MeOH, 08C to rt, 24 h 99 [317,318]<br />

4-pyridyl Ph NaOMe, MeOH, rt, 24 h 82 [304]<br />

4-O 2NC 6H 4 CO 2Me NaOMe, MeOH, rt, 24 h 89 [304]<br />

Bn Ph K 2CO 3, DMSO, rt to 408C, 24 h 84 [281]<br />

Bn Ph t-BuOK, THF, rt, 12 h 78 [279]<br />

Bn CN K 2CO 3, DMSO, rt to 408C, 18 h 48 [281]<br />

Bn CONH 2 K 2CO 3, DMSO, rt to 408C, 5 h 84 [281]<br />

Bn CONH 2 NaOEt, EtOH, reflux, 1 h 81 [319]<br />

Bn CO 2Et NaOEt, EtOH, reflux, 3 h 25 [319]<br />

Bn CO 2H NaOEt, EtOH, reflux, 4 h 20 [319]<br />

Ph CONH 2 NaOMe, MeOH, rt, 24 h 88 [320]<br />

Ph CONMe 2 Et 2O, NaOMe, MeOH, 0 8C, 24 h 74 [321]<br />

4-HO 2CC 6H 4 CONH 2 NaOMe, MeOH, rt, 7 d 61 [320]<br />

2-O 2NC 6H 4 CONH 2 NaOEt, EtOH, 08C to rt, 23 h 55 [322]<br />

3,3-dimethylbut-1-enyl CONH 2 NaOMe, MeOH, reflux, 30 min 62 [282]<br />

1-naphthyl CO 2Et NaOEt, EtOH, 08Ctort,6h 94 [323]<br />

4-pyridyl CO 2Et NaOEt, EtOH, 08C to rt, 16 h 86 [323]<br />

4-quinolyl CONH 2 NaOEt, EtOH, 08C to rt, 21 h 91 [323]<br />

4-quinolyl CO 2Et NaOEt, EtOH, 08C to rt, 21 h 79 [323]<br />

N N Ph<br />

FOR PERSONAL USE ONLY<br />

484 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

315<br />

CN NaOEt, EtOH, rt, 4 h 69 [291]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


R 1 R 2 Conditions Yield (%) Ref<br />

N N Ph<br />

Ph NaOEt, EtOH, rt, 4 h 81 [291]<br />

acridin-9-yl 2-pyridyl NaOMe, MeOH, rt, 24 h 70 [294]<br />

acridin-9-yl piperidinocarbonyl<br />

NaOMe, MeOH, rt, 24 h 26 [294]<br />

acridin-9-yl 4-ClC 6H 4NHCO NaOMe, MeOH, rt, 24 h 15 [294]<br />

Ph PO(OEt) 2 NaOEt, EtOH, rt, 3 h 76 [324]<br />

The reaction of cyanoacetamide with glycosyl azides, in aqueous dimethylformamide<br />

with potassium hydroxide and at room temperature gives 5-amino-1-glycosyl-1H-1,2,3-triazole-4-carboxamide<br />

shows that this type of cycloaddition has a two-step mechanism. [278]<br />

Also using cyanoacetamide and gycosyl azides, a study of the influence of the reaction<br />

conditions (the nature of the solvent and base) on the retention or inversion of the configuration<br />

of the anomeric carbon has been described. [325] A range of 1-(substituted benzyl)-5amino-1H-1,2,3-triazole-4-carboxamides<br />

has been prepared from the reaction of cyanoacetamide<br />

with benzyl azides. [326]<br />

Treatment of 2-oxocyclododecanecarbonitrile (316) with phenyl azide in the presence<br />

of a catalytic amount of sodium ethoxide for four days at room temperature leads<br />

to the formation of 1H-1,2,3-triazol-5-amine 317 and lactam 318 in 60 and 10% yield, respectively<br />

(Scheme 105). [297] A mechanism for the formation of these two compounds has<br />

been proposed.<br />

Scheme 105 Reaction of 2-Oxocyclododecanecarbonitrile with Phenyl Azide [297]<br />

O<br />

316<br />

CN<br />

+<br />

PhN3<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 485<br />

NaOEt<br />

EtOH, THF<br />

rt, 4 d<br />

EtO2C<br />

( )10<br />

N<br />

H2N N<br />

N<br />

Ph<br />

317 60%<br />

+<br />

HN<br />

318 10%<br />

N<br />

N<br />

N<br />

Ph<br />

O<br />

Sulfonyl azides do not generally give triazoles with activated methylene compounds.<br />

However, in aqueous alkaline solutions, sulfonyl azides, and also azidoformates and<br />

N,N-dimethylcarbamoyl azide, react with malononitrile to yield N-unsubstituted 1,2,3-triazoles<br />

319, 320, and 321, respectively, in good to excellent yields, as indicated in Scheme<br />

106. [327]<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 106 Reaction of Malononitrile with Sulfonyl and Carbonyl Azides [327]<br />

CN<br />

CN<br />

OH − , H2O 5 oC, 1 h<br />

−<br />

CN<br />

CN<br />

R 1 = Me, Ph, 4-Tol, 4-MeOC 6H 4, 4-O 2NC 6H 4; R 2 = Et, t-Bu<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.3.4 Method 4:<br />

Reaction of Aryl Azides with Alkoxides<br />

R1SO2N3 71−96%<br />

O<br />

R 2 O N3<br />

58−60%<br />

O<br />

Me 2N N 3<br />

NC<br />

S<br />

R<br />

N<br />

H<br />

1<br />

O<br />

O<br />

H 2N<br />

NC<br />

Me2N<br />

320<br />

N<br />

H<br />

319<br />

N<br />

N<br />

N<br />

H<br />

NC<br />

O<br />

Aryl azides react with sodium ethoxide or propoxide to afford 1-aryl-1H-1,2,3-triazoles<br />

322 in moderate yields (Scheme 107). [328] Two equivalents of azide are required, the second<br />

being reduced to aniline. The mechanism [3] of this reaction probably involves the formation<br />

of an aldehyde by hydride transfer from the alkoxide to one mole of aryl azide.<br />

The attack of the carbanion of the aldehyde so produced on a second mole of the azide<br />

leads to the triazole. The reaction of tosyl azide with sodium butoxide yields only butyl<br />

toluenesulfonate. [184]<br />

63%<br />

Scheme 107 Reaction of Aryl Azides with Alkoxides [328]<br />

2 X N3 + NaO<br />

R 1 = H, Me; X = H, Cl, Br, Me, NO 2<br />

FOR PERSONAL USE ONLY<br />

486 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

R 1<br />

reflux, 1−5 d<br />

− 4-XC 6H 4NH 2<br />

30−70%<br />

1-Aryl-4-methyl-1H-1,2,3-triazoles 322 (R 1 = H); Typical Procedure for Condensation of<br />

Aryl Azides with Sodium Propoxide: [328]<br />

The appropriate aryl azide (0.03 mol) was added to a cold soln of NaOPr (0.04 mol) and the<br />

mixture was refluxed on a water bath for 24 h. The brownish product was acidified with<br />

concd HCl, steam-distilled, made alkaline, and steam-distilled again. The residual soln<br />

was extracted with Et 2O; when the extract was evaporated, the 1-aryl-4-methyl-1H-1,2,3triazole<br />

322 (R 1 = Me) separated and was crystallized (petroleum ether or EtOH/H 2O).<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

R 1<br />

N<br />

X<br />

322<br />

N<br />

N<br />

H<br />

321<br />

N<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N


<strong>13</strong>.<strong>13</strong>.1.1.4 By Formation of One N-N Bond<br />

<strong>13</strong>.<strong>13</strong>.1.1.4.1 Fragment N-N-C-C-N<br />

<strong>13</strong>.<strong>13</strong>.1.1.4.1.1 Method 1:<br />

Cyclization of Æ-Diazoamides<br />

Æ-Diazoamides can be cyclized to 1H-1,2,3-triazoles by treatment with base [298,308,309,329] or<br />

by other methods. Some reactive Æ-diazoamides cyclize spontaneously to the corresponding<br />

triazoles; one example is indicated in Scheme 108. The intermediate Æ-diazoamides<br />

324, generated in situ from the reaction of ethyl N-(diazoacetyl)glycinate (323) with benzoyl<br />

bromides, cyclize spontaneously to triazoles 325. [330]<br />

Scheme 108 Cyclization of Ethyl N-(3-Aryl-2-diazo-3-oxopropanoyl)glycinates [330]<br />

R 1<br />

O<br />

Br<br />

R 1<br />

+<br />

H<br />

O<br />

N 2<br />

N 2<br />

O<br />

O<br />

324<br />

N<br />

H<br />

323<br />

N<br />

H<br />

CO 2Et<br />

CO 2Et<br />

CH 2Cl 2<br />

rt, 76−91 h<br />

R 1<br />

325<br />

O<br />

HO<br />

N<br />

N<br />

N<br />

R1 = H 50%<br />

R1 = Br 15%<br />

CO 2Et<br />

Reaction of Æ-diazoamide 326 with phosphorus pentachloride gives methyl 1-benzyl-5chloro-1H-1,2,3-triazole-4-carboxylate<br />

(328) through the intermediate imidoyl chloride<br />

327 (Scheme 109). [331] N-Unsubstituted 5-halo-1H-1,2,3-triazoles are also obtained in good<br />

to excellent yields by treatment of diazomalononitrile derivatives with hydrogen halides.<br />

[1]<br />

Scheme 109 Cyclization of a Diazomalonamide [331]<br />

MeO 2C N 2<br />

O NHBn<br />

326<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 487<br />

PCl 5<br />

80 o C, 3 h<br />

MeO2C N2 MeO2C N<br />

Cl NBn<br />

Cl<br />

N<br />

N<br />

Bn<br />

327 328<br />

<strong>13</strong>.<strong>13</strong>.1.1.4.1.2 Method 2:<br />

Thermolysis of Æ-Azidoacetophenone (Phenylsulfonyl)hydrazones<br />

Æ-Azidoacetophenone (phenylsulfonyl)hydrazones 330, prepared by the reaction of the<br />

corresponding Æ-bromoacetophenone (phenylsulfonyl)hydrazones with sodium azide,<br />

are converted into 4-aryl-1H-1,2,3-triazoles 332, in good yields on heating in refluxing<br />

benzene (Scheme 110). The reaction proceeds probably via the elimination of benzenesulfinic<br />

acid from the intermediate 2-(phenylsulfonyl)-2,5-dihydro-1H-1,2,3-triazoles<br />

331. [332] The Æ-bromoacetophenone (phenylsulfonyl)hydrazones 329 react with benzyl-<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


ideneaniline to yield 4-aryl-1-phenyl-1H-1,2,3-triazoles (19–25%) and substituted 2,3,4,5tetrahydro-1,2,4-triazines<br />

(20–45%). [333]<br />

Scheme 110 Thermolysis of Æ-Azidoacetophenone (Phenylsulfonyl)hydrazones [332,333]<br />

Br<br />

Ar 1 N<br />

H<br />

N<br />

329<br />

N<br />

Ar 1 N<br />

NaN3, DMF<br />

82−94%<br />

Ar1 SO2Ph N3 N<br />

H<br />

N<br />

SO2Ph H<br />

N<br />

SO2Ph<br />

Ar 1 = 4-XC6H4; X = H, Br, Cl, NO2, Me, Ph, N NPh<br />

330<br />

Ar<br />

N<br />

NH<br />

N<br />

1 SO2Ph <strong>13</strong>.<strong>13</strong>.1.1.4.1.3 Method 3:<br />

Cyclization of Æ-Hydroxyimino Hydrazones<br />

331<br />

benzene<br />

reflux, 2 h<br />

− N2<br />

− PhSO2H<br />

71−96%<br />

Cyclic Æ-hydroxyimino hydrazones 334 and 337 (prepared from Æ-hydroxyimino ketones<br />

333 and 336, respectively) on heating at 170–1908C for three hours in diethylene glycol<br />

containing potassium hydroxide yield the N-unsubstituted 1,2,3-triazoles 335 and 338<br />

(Scheme 111). The yield of triazole significantly decreases as the size of the ketone ring<br />

increases from five- to six- to seven-membered, that is as the rings become more flexible<br />

and the hydrazone and oxime groups less coplanar. [334,335] Under the same conditions, acyclic<br />

Æ-hydroxyimino hydrazones do not give triazoles; in this case, the normal Wolff–Kishner<br />

reduction products are obtained.<br />

Scheme 111 Cyclization of Æ-Hydroxyimino Hydrazones [334,335]<br />

n = 1−3<br />

( )n<br />

O<br />

333<br />

O<br />

336<br />

FOR PERSONAL USE ONLY<br />

488 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

OH ( )n OH<br />

H2NNH2 N<br />

N<br />

334<br />

N<br />

NH 2<br />

N<br />

H2NNH2 N<br />

OH OH<br />

KOH<br />

diethylene glycol<br />

170−190 oC, 3 h<br />

15−52%<br />

KOH<br />

diethylene glycol<br />

170−190 oC, 3 h<br />

Glyoxal O-benzyloxime hydrazone 340, generated in situ by addition of glyoxal O-benzyloxime<br />

339 to a 10-fold excess of hydrazine, gives 1-(benzyloxy)-1H-1,2,3-triazole 341 by<br />

oxidative cyclization (Scheme 112). Copper(II) sulfate is the best oxidant but manganese<br />

dioxide and nickel peroxide can also be used. [336]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

N<br />

337<br />

NH 2<br />

32%<br />

Ar 1<br />

332<br />

335<br />

338<br />

( ) n<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N N<br />

N<br />

N<br />

N<br />

NH


Scheme 112 Cyclization of Æ-Hydroxyimino Hydrazone Derivatives [336]<br />

O<br />

N<br />

OBn<br />

339<br />

H2NNH2, MeOH<br />

0 oC, 45 min<br />

NH 2<br />

N<br />

N<br />

OBn<br />

340<br />

CuSO4 5H2O, py<br />

100 oC, 30 min<br />

52−63%<br />

3,8-Dihydroindeno[1,2-d][1,2,3]triazole (335, n = 1); Typical Procedure: [335]<br />

1H-Indene-1,2(3H)-dione 1-hydrazone 2-oxime (334, n = 1; 930 mg, 5.3 mmol) and KOH<br />

(1.23 g, 22 mmol) in purified diethylene glycol (50 mL) was heated, with a stream of N 2<br />

bubbling through it, until the temperature reached 170–1908C (ca. 30 min). Heating was<br />

maintained at this temperature for 3 h and N 2 was bubbled through the soln for the entire<br />

time. The mixture was then cooled, diluted with 1 M aq KOH (400 mL), and extracted with<br />

CH 2Cl 2 (4 ” 200 mL). The alkaline soln was acidified with HCl and the pH was adjusted to 7<br />

with NaHCO 3. The soln was again extracted with CH 2Cl 2 (4 ” 200 mL). Each extract was<br />

back-washed with sat. aq NaCl (2 ” 100 mL). These organic extracts were combined, dried<br />

(Na 2SO 4), filtered, and evaporated in vacuo to yield a weakly acidic fraction (584 mg)<br />

which was sublimed (1008C/0.2 Torr) to yield triazole 335 (n = 1); yield: 432 mg (52%); mp<br />

1448C.<br />

<strong>13</strong>.<strong>13</strong>.1.1.4.1.4 Method 4:<br />

Cyclization of Æ-Hydroxyimino Aroyl- or Arylsulfonylhydrazones<br />

Oxidation of Æ-hydroxyimino aroylhydrazones 342 with lead(IV) acetate in acetic acid<br />

gives 1-(aroyloxy)-4,5-dimethyl-1H-1,2,3-triazoles 344 in moderate yields (Scheme 1<strong>13</strong>).<br />

This transformation probably involves an intramolecular [1,3]-aroyl migration in the intermediate<br />

343. [337]<br />

Scheme 1<strong>13</strong> Oxidation of Æ-Hydroxyimino Aroylhydrazones with Lead(IV) Acetate [337]<br />

N<br />

N<br />

OH<br />

N<br />

H<br />

342<br />

O<br />

Ar 1<br />

Ar 1 = 4-XC 6H 4; X = H, Me, OMe, Cl, NO 2<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 489<br />

Pb(OAc) 4, AcOH<br />

CH2Cl2 0 oC, 30 min<br />

35−48%<br />

N<br />

N<br />

N<br />

O −<br />

+<br />

343<br />

O<br />

Ar 1<br />

N<br />

N<br />

341<br />

N<br />

OBn<br />

N<br />

O<br />

N<br />

N<br />

Ar<br />

344<br />

1<br />

Æ-Hydroxyimino tosylhydrazones 345 are converted into 4-aryl-5-methyl-1H-1,2,3-triazol-<br />

1-ols 347 in good yields by thermal cyclization of salts 346 (Scheme 114). [24] The Æ-diazo<br />

oximes 348 are probable intermediates in this transformation. Attempts to prepare 4,5dimethyl-1H-1,2,3-triazol-1-ol<br />

by this method failed. [24]<br />

O<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 114 Cyclization of Æ-Hydroxyimino Tosylhydrazones [24]<br />

Ar 1<br />

N<br />

N<br />

345<br />

NHTs<br />

OH<br />

Ar 1 = Ph, 4-MeOC6H4<br />

FOR PERSONAL USE ONLY<br />

490 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

NaOEt, EtOH<br />

DME<br />

rt, 30 min<br />

Ar 1<br />

Ar 1<br />

N<br />

N<br />

346<br />

N<br />

N<br />

NHTs<br />

O − Na +<br />

N Ts<br />

−<br />

Na +<br />

OH<br />

diglyme<br />

reflux, 45−90 min<br />

348<br />

75−77%<br />

Ar 1<br />

Ar<br />

N<br />

N<br />

N<br />

OH<br />

347<br />

1<br />

N<br />

N −<br />

+<br />

1-(Aryloxy)-4,5-dimethyl-1H-1,2,3-triazole 344 by Oxidation of Æ-Hydroxyimino Aroylhydrazones;<br />

General Procedure: [337]<br />

A soln of 342 (1 mmol) in AcOH/CH 2Cl 2 (1:5, 30 mL) was added over 20 min to a stirred soln<br />

of Pb(OAc) 4 (4 mmol) in dry CH 2Cl 2 (30 mL). The soln was stirred at 08C for 30 min and then<br />

10% aq Na 2S 2O 3 was added. The organic layer was separated, washed with brine, dried, and<br />

evaporated. The resulting residue was either chromatographed or recrystallized from the<br />

appropriate solvent.<br />

<strong>13</strong>.<strong>13</strong>.1.1.4.1.5 Method 5:<br />

Cyclization of 1,2-Diketone Bis(hydrazone) Derivatives<br />

1,2-Diketone bis(hydrazones) and some of their derivatives such as bis(semicarbazones),<br />

bis(arylsulfonylhydrazones), and bis(acylhydrazones) are converted into 1H-1,2,3-triazol-<br />

1-amines. The cyclization of these compounds is carried out by oxidation or by treatment<br />

with acids or bases.<br />

<strong>13</strong>.<strong>13</strong>.1.1.4.1.5.1 Variation 1:<br />

Cyclization of 1,2-Diketone Bis(hydrazones)<br />

Oxidation of bis(hydrazones) 349 with manganese dioxide or mercury(II) oxide gives 1H-<br />

1,2,3-triazol-1-amines 350 (Scheme 115). Although two isomeric triazoles would be expected<br />

from unsymmetrical bis(hydrazones), compounds 349 give only the 4-aryl-1,2,3triazol-1-amines.<br />

[338] Other vicinal bis(hydrazones) have been converted into 1H-1,2,3-triazol-1-amines.<br />

[339–342] The major disadvantage of this method is that unless the conditions<br />

are carefully controlled, complete oxidation of the bis(hydrazones) occurs and the isolated<br />

products are alkynes. Pyrolysis of cyclooctane-1,2-dione bis(hydrazone) yields the corresponding<br />

N-unsubstituted 1H-1,2,3-triazole. [342]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

NOH


Scheme 115 Cyclization of 1,2-Diketone Bis(hydrazones) [338]<br />

Ar 1<br />

H<br />

349<br />

N<br />

N<br />

NH2<br />

NH 2<br />

MnO 2 or HgO<br />

Ar 1 = Ph, 4-ClC 6H 4, 4-BrC 6H 4, 4-MeOC 6H 4, 2-naphthyl<br />

H<br />

Ar 1<br />

350<br />

N<br />

N<br />

N<br />

NH2 <strong>13</strong>.<strong>13</strong>.1.1.4.1.5.2 Variation 2:<br />

Cyclization of 1,2-Diketone Bis(arylsulfonylhydrazones)<br />

Vicinal bis(arylsulfonylhydrazones) 351 can be cyclized using either acid or base to give 1-<br />

(arylsulfonylamino)-1H-1,2,3-triazoles. [343,344] When unsymmetrical 1,2-diketones are<br />

used, the two possible triazoles 352 and 353 are obtained (Scheme 116). [345,346] Benzil bis-<br />

(tosylhydrazone) cyclizes to 4,5-diphenyl-1-(tosylamino)-1H-1,2,3-triazole by oxidation<br />

with either mercury(II) or lead(IV) acetates in acetic acid. [347] This type of triazole is also<br />

obtained by thermal [348] or photochemical [349] decomposition of the dianions of the<br />

bis(tosylhydrazones) of 1,2-diketones. The 1-(arylsulfonylamino)-1H-1,2,3-triazoles are<br />

converted into 1H-1,2,3-triazol-1-amines by treatment with sulfuric acid.<br />

Scheme 116 Cyclization of 1,2-Diketone Bis(arylsulfonylhydrazones) [345,346]<br />

R 1<br />

R 2<br />

SO2Ar<br />

N N<br />

H<br />

H<br />

N N<br />

1<br />

SO2Ar1 351<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 491<br />

H + or OH −<br />

heat<br />

N<br />

R<br />

N<br />

N<br />

HN<br />

2<br />

R1 N<br />

R<br />

N<br />

N<br />

HN<br />

1<br />

R2 +<br />

SO2Ar1 SO2Ar1 4,5-Diphenyl-1-(tosylamino)-1H-1,2,3-triazole (352,R 1 =R 2 = Ph; Ar 1 = 4-Tol);<br />

Typical Procedure: [345]<br />

Benzil bis(tosylhydrazone) (74 g, 0.14 mol) was added rapidly to a stirred soln of KOH (9 g,<br />

0.16 mol) in ethylene glycol (400 mL) at 120 8C. After 10 min the soln was cooled to 408C<br />

and H 2O was added slowly, with rapid stirring, until a precipitate began to appear. The<br />

mixture was then acidified with 2 M HCl and more H 2O was added until the total volume<br />

was 1 L. The precipitate was then collected by filtration, dried, and washed well with<br />

petroleum ether to leave the triazole; yield: 43 g (81%); mp 232–2338C (EtOH).<br />

<strong>13</strong>.<strong>13</strong>.1.1.4.1.5.3 Variation 3:<br />

Cyclization of 1,2-Diketone Bis(semicarbazones)<br />

The 1,2-diketone bis(semicarbazones) 354 undergo cyclization on treatment with lead(IV)<br />

acetate to give 1-ureido-1H-1,2,3-triazoles 355 (Scheme 117). These compounds are hydrolyzed<br />

with concentrated hydrochloric acid to give the corresponding 1H-1,2,3-triazol-<br />

1-amines 356. [350]<br />

352<br />

353<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 117 Cyclization of 1,2-Diketone Bis(semicarbazones) [350]<br />

R 1<br />

R 2<br />

CONH2<br />

N N<br />

H<br />

H<br />

N N<br />

CONH2 354<br />

FOR PERSONAL USE ONLY<br />

492 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

Pb(OAc)4<br />

CH2Cl2<br />

rt, 3 h<br />

30−40%<br />

R 2<br />

R 1<br />

N<br />

N<br />

N<br />

HN<br />

CONH2 355<br />

HCl, reflux, 2 h<br />

50−65%<br />

R<br />

N<br />

N<br />

N<br />

NH2<br />

2<br />

R1 R1 R2 1-Ureido-1H-1,2,3-triazole 355 1H-1,2,3-Triazol-1-amine 356 Ref<br />

Yield (%) mp (8C) Yield (%) mp (8C) [350]<br />

Me Me 30 225–226 65 89–91 [350]<br />

Ph Ph 40 209–211 55 126–128 [350]<br />

Ph Me 34 207–208 55 142–144 [350]<br />

4-Tol Me 40 203–204 58 164–165 [350]<br />

4-BrC6H4 Me 38 204–205 50 169–171 [350]<br />

4-Tol H 32 224–226 52 123–124 [350]<br />

1-Ureido-1H-1,2,3-triazoles 355; General Procedure: [350]<br />

Pb(OAc) 4 (0.021 mol) was added to a suspension of bis(semicarbazone) 354 (0.02 mol) in<br />

CH 2Cl 2 (100 mL) and the mixture was stirred at rt for 3 h. The mixture was filtered and<br />

the precipitate was treated with MeOH. The methanolic soln upon evaporation gave the<br />

1-ureido-triazole which was recrystallized (MeOH or EtOH).<br />

<strong>13</strong>.<strong>13</strong>.1.1.4.1.5.4 Variation 4:<br />

Cyclization of 1,2-Diketone Bis(acylhydrazones)<br />

1,2-Diketone Bis(acylhydrazones) undergo oxidative cyclization to 1H-1,2,3-triazol-1amine<br />

derivatives 360–362 (via intermediate 358/359) (Scheme 118). Lead(IV) acetate is<br />

the oxidant most used for this transformation. With bis(aroylhydrazones) 357 (R 2 = aryl)<br />

the principal products are imides 360 and amides 361. [351–355] On the other hand, oxidation<br />

of bis(arylacetylhydrazones) 357 (R 2 = arylmethyl) yields mainly 1-(arylacetylamino)-<br />

1,2,3-triazoles 362 (R 2 = arylmethyl) in moderate yields. [356] Oxidation of bis(acetylhydrazones)<br />

357 (R 2 = Me) with lead(IV) acetate gives amides 361 (R 2 = Me) as the primary products<br />

but partial hydrolysis to monoacetylamino derivatives 362 may occur in some cases<br />

during the workup. [357] Lead(IV) acetate oxidation of mixed aroylhydrazones of biacetyl affords<br />

pairs of isomeric triazoles (of the imide 360 type) in different proportions. [358]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

356


Scheme 118 Cyclization of 1,2-Diketone Bis(acylhydrazones) [357]<br />

R 1<br />

R 1<br />

COR<br />

N N<br />

H<br />

H<br />

N N<br />

2<br />

COR2 357<br />

Pb(OAc)4<br />

CH 2Cl 2<br />

rt, 1−2 h<br />

R 1<br />

R 1<br />

R 1<br />

N<br />

360<br />

R 1<br />

N<br />

N<br />

N<br />

COR<br />

−<br />

N<br />

2<br />

COR2 +<br />

358<br />

N<br />

N<br />

N OCOR2 R 2<br />

R 1<br />

R 1<br />

N<br />

N<br />

N<br />

COR<br />

N<br />

2<br />

+<br />

O −<br />

359<br />

R 2<br />

N<br />

R<br />

N<br />

N<br />

HN<br />

1<br />

R1 N<br />

R<br />

N<br />

N<br />

N<br />

1<br />

R1 + +<br />

R2OC COR2 COR2 361 362<br />

Lead(IV) Acetate Oxidation of Bis(acylhydrazones) 357; General Procedure: [357]<br />

To a stirred suspension of the bis(acylhydrazone) (2 mmol) in CH 2Cl 2 (20 mL) was added<br />

Pb(OAc) 4 (2.4 mmol) dissolved in CH 2Cl 2 (20 mL). The slight excess of the oxidant was<br />

checked throughout the experiment by the use of KI/starch paper and maintained, if necessary,<br />

by the addition of extra amounts of Pb(OAc) 4. When all the starting material was<br />

consumed the mixture was filtered and the filtrate was extracted successively with aq<br />

Na 2S 2O 3 and Na 2CO 3. The dried soln was evaporated under reduced pressure and the residue<br />

was chromatographed (medium pressure, silica gel, petroleum ether/EtOAc, gradient<br />

elution). The isolated products were further purified by recrystallization.<br />

<strong>13</strong>.<strong>13</strong>.1.1.4.1.6 Method 6:<br />

Cyclization of (1,2-Diphenylethene-1,2-diyl)bis(trityldiazene)<br />

(1,2-Diphenylethene-1,2-diyl)bis(trityldiazene) (363) cyclizes readily to the 1H-1,2,3-triazol-1-amine<br />

derivative 365 when treated with acetic acid or left in suspension in ordinary<br />

unpurified chloroform for several days (Scheme 119). [359] The dipolar compound 364 is<br />

a probable intermediate in this transformation. Treatment of compound 365 with benzoyl<br />

chloride yields 1-benzoylamino)-4,5-diphenyl-1H-1,2,3-triazole. The synthetic usefulness<br />

of this method is still to be demonstrated. See also Section <strong>13</strong>.<strong>13</strong>.2.1.3.1.2 for the cyclization<br />

of 1,2-diketone bis(arylhydrazones) to 2H-triazoles.<br />

Scheme 119 Cyclization of (1,2-Diphenylethene-1,2-diyl)bis(trityldiazene) [359]<br />

Ph<br />

Ph<br />

N<br />

N<br />

363<br />

NTr<br />

NTr<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 493<br />

AcOH<br />

Ph<br />

Ph<br />

N<br />

N<br />

N<br />

+<br />

Tr<br />

−<br />

N<br />

Tr<br />

364<br />

90%<br />

Ph<br />

Ph<br />

365<br />

N<br />

N<br />

N<br />

NHTr<br />

4,5-Diphenyl-N-trityl-1H-1,2,3-triazol-1-amine (365): [359]<br />

A suspension of (1,2-diphenylethene-1,2-diyl)bis(trityldiazene) (363; 0.5 g, 0.69 mmol) in<br />

90% AcOH (10 mL) was evaporated to one half of the original volume on a hot plate. The<br />

solid dissolved with disappearance of the red color in a few minutes. Upon cooling, the<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


white crystalline triazolamine 365 was separated; yield: 0.30 g (90%). Recrystallization<br />

(petroleum ether/benzene) gave crystals; mp 265–2678C.<br />

<strong>13</strong>.<strong>13</strong>.1.1.5 By Formation of One N-C Bond<br />

<strong>13</strong>.<strong>13</strong>.1.1.5.1 Fragment N-N-N-C-C<br />

<strong>13</strong>.<strong>13</strong>.1.1.5.1.1 Method 1:<br />

Cyclization of Linear Triazenes and Tetrazenes<br />

Triazenes are a recognized intermediate in the synthesis of 1,2,3-triazoles starting from<br />

an azide and an activated methylene compound (see Section <strong>13</strong>.<strong>13</strong>.1.1.3.1.3, Scheme 95).<br />

Stable triazene compounds can also be cyclized to 1,2,3-triazoles. [360–364] For example, 1aryl-3-(cyanomethyl)triazenes<br />

366 cyclize in aprotic media with Lewis base catalysis to<br />

give 1-aryl-1H-1,2,3-triazol-5-amines 367 (Scheme 120). If the reaction is carried out in<br />

protic media the cyclization is followed by Dimroth rearrangement and the isolated products<br />

are the isomeric N-aryl-1H-1,2,3-triazol-5-amines 368. [363] Treatment of chloroform solutions<br />

of triazenes 366 with suspended basic alumina for several days yields the 1H-1,2,3triazol-5-amines<br />

367 essentially free from isomers 368. However, refluxing the triazenes<br />

(X = 4-NO 2 or 4-CN) in absolute ethanol for 1–2 hours gives triazoles 368 with no trace of<br />

the isomeric triazoles 367. In a similar process, 1-aryl-1H-1,2,3-triazol-5-ols are prepared<br />

by cyclization of 1-aryl-3-(ethoxycarbonylmethyl)triazenes. [364]<br />

Scheme 120 Cyclization of Linear Triazenes [363]<br />

X<br />

N<br />

N NH<br />

366<br />

X = NO2, CN, CO2Me, CONH2<br />

FOR PERSONAL USE ONLY<br />

494 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

CN<br />

alumina, CHCl3<br />

rt, 7 d<br />

36−92%<br />

H 2N<br />

N<br />

367<br />

N<br />

N<br />

X<br />

Dimroth<br />

rearrangement<br />

The 1,2,3-triazole system can also be formed by the isomerization of 1-(arylazo)aziridines<br />

369 (Scheme 121). This isomerization is catalyzed by iodide ions and the product is a 1aryl-4,5-dihydro-1H-1,2,3-triazole<br />

371. [365] The isomerizations probably occur by a nucleophilic<br />

attack of iodide ion on the aziridinyl carbon to yield the ion 370, which subsequently<br />

displaces an iodide ion by the negatively charged nitrogen. Although the 4,5-dihydro-1H-1,2,3-triazoles<br />

371 are obtained in high yields, this is a dangerous method since<br />

some 1-(arylazo)aziridines 369 explode violently on standing at room temperature for<br />

20–30 minutes. [365]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

HN<br />

X<br />

368<br />

N<br />

H<br />

N<br />

N


Scheme 121 Isomerization of 1-(Arylazo)aziridines [365]<br />

N<br />

N<br />

Ar1N 369<br />

NaI, acetone<br />

rt, 30 min<br />

or reflux, 1 h<br />

−<br />

N<br />

N<br />

Ar1N I<br />

370<br />

N<br />

N<br />

Ar1N −<br />

64−98%<br />

I<br />

N<br />

N<br />

N<br />

Ar1 Anodic oxidation of 1-aryl-3,3-dimethyltriazenes in acetonitrile gives 2-aryl-5-methyl-2H-<br />

1,2,3-triazole-4-carbonitriles in low yields. [366] Methyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate<br />

is obtained in 2% yield, together with several other products, by photolysis of a tetraz-2-ene;<br />

[367] this method has very limited synthetic interest.<br />

1-Aryl-1H-1,2,3-triazol-5-amines 367 by Cyclization of 1-Aryl-3-(cyanomethyl)triazenes;<br />

General Procedure: [363]<br />

The triazene 366 (250 mg) was dissolved in the minimum volume of CHCl 3 (25–50 mL) and<br />

basic alumina (2.5 g) was added. The suspension was stirred at rt for 7 d. The mixture was<br />

filtered to remove alumina and the filtrate evaporated to dryness in vacuo. The residue<br />

was the 1H-1,2,3-triazol-5-amine 367.<br />

<strong>13</strong>.<strong>13</strong>.1.1.5.1.2 Method 2:<br />

Cyclization of Vinyl Azides<br />

In the presence of a base, vinyl azides (e.g., 372) cyclize to 1H-1,2,3-triazoles, such as 374<br />

(Scheme 122). [85,190] A probable mechanism for such transformation involves the formation<br />

of the anion of the vinyl azide, which then cyclizes to the aromatic triazole anion<br />

(e.g., 373). Protonation affords the final product.<br />

Scheme 122 Cyclization of 2-Tosylvinyl Azides [85,190]<br />

Ts H NaTs, DMSO<br />

Ts<br />

>24 h<br />

H N 3<br />

372<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 495<br />

N N<br />

+<br />

−<br />

Methyl 3,3-diazido-2-cyanoacrylate (375) reacts with amines to give vinyl azides 376,<br />

which undergo 1,5-cyclization to form triazoles 378 (via 4H-1,2,3-triazoles 377) in good<br />

yields (Scheme 123). [368] Under controlled reaction conditions (catalytic amount of the<br />

amine and absence of moisture) vinyl azides 376 are converted into methyl 1,2,3-triazole-2-carboxylates<br />

379. [369]<br />

−<br />

N<br />

Ts<br />

H2O<br />

N<br />

−<br />

N<br />

N<br />

373<br />

Ts<br />

371<br />

N<br />

H<br />

374<br />

N<br />

N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 123 Reaction of Methyl 3,3-Diazido-2-cyanoacrylate with Amines [368,369]<br />

N 3<br />

N 3<br />

NC CO 2Me<br />

375<br />

R 1 R 2 NH, CH 2Cl 2<br />

0 o C to rt, 12 h<br />

− HN3<br />

R 1 R 2 N<br />

NC<br />

MeO 2C<br />

377<br />

N<br />

N<br />

N<br />

R 1 R 2 N N 3<br />

NC CO 2Me<br />

376<br />

61−84%<br />

R 1 R 2 N<br />

NC<br />

378<br />

N<br />

H<br />

N<br />

N<br />

R<br />

N<br />

N<br />

N<br />

379<br />

1R2N NC CO2Me NR1R2 = pyrrolidin-1-yl 90%<br />

NR1R2 = piperidino 68%<br />

NR 1 R 2 = NEt 2, pyrrolidin-1-yl, piperidino, morpholino, thiomorpholino, 4-methylpiperazin-1-yl, 4-benzylpiperazin-1-yl<br />

<strong>13</strong>.<strong>13</strong>.1.1.5.1.3 Method 3:<br />

Cyclization of 2-(Formyloxy)vinyl Azides<br />

(Z)-2-(Formyloxy)vinyl azides are converted into 1H-1,2,3-triazoles by using triethyl phosphite<br />

(Scheme 124). [370] Addition of triethyl phosphite to formate 380 immediately initiates<br />

an exothermic reaction producing a deep orange solution. Evaporation of the solvent<br />

and purification by silica gel chromatography gives triazole 382. It has been shown by<br />

NMR that N-formyltriazole 381 (which can be isolated) is the initial product of cyclization.<br />

4-Phenyl-1H-1,2,3-triazole is prepared by cyclization of formate 383 following the same<br />

methodology. [370]<br />

Scheme 124 Cyclization of (Z)-2-(Formyloxy)vinyl Azides [370]<br />

380<br />

H<br />

Ph O O<br />

H<br />

H N3 383<br />

O<br />

N 3<br />

O<br />

FOR PERSONAL USE ONLY<br />

496 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

P(OEt) 3<br />

CHCl3 rt, 24 h<br />

N<br />

silica gel<br />

1. P(OEt) 3, CHCl3, 10 min<br />

2. silica gel<br />

62%<br />

Ph<br />

381<br />

N<br />

H<br />

N<br />

N<br />

N<br />

N<br />

CHO<br />

382 46%<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

N<br />

N<br />

N<br />

H


<strong>13</strong>.<strong>13</strong>.1.2 Synthesis by Ring Transformation<br />

There are several heterocyclic compounds that, by chemical modification or just by isomerization,<br />

are converted into 1H-1,2,3-triazoles or 2H-1,2,3-triazoles (see also Section<br />

<strong>13</strong>.<strong>13</strong>.2.2). Despite some synthetically interesting exceptions, in most cases the starting<br />

heterocycles are not readily available and the routes are unlikely to be general. The<br />

following are examples of transformations of this type that lead to 1H-1,2,3-triazole derivatives:<br />

(a) diazotization of isoxazol-4-amines to give triazol-1-ols, [371,372] (b) diazotization of<br />

5-aminothiazol-2-ols to give triazol-4-ols, [373] (c) diazotization of 3-aminopyridinium salts<br />

to give 4-(3-oxoprop-1-enyl)-1,2,3-triazole derivatives, [374,375] (d) base-induced rearrangement<br />

of sydnoneimines to give triazol-4-ols, [376] (e) reaction of ethyl 2-amino-4,5-dihydrofuran-3-carboxylates<br />

with phenyl azide to give 1H-1,2,3-triazol-5-amines, [377] (f) thermolysis<br />

of 5-diazo-6-methoxyuracils results in the formation of 4-acyl-1,2,3-triazole derivatives,<br />

[378–380] (g) reaction of 1,2,4-triazin-3-ones with N-chlorinating agents, [381] (h) treatment<br />

of 1,2,4-triazin-3-one 2-oxides with acetic anhydride, [382] (i) reduction or oxidation<br />

of triazolotriazoles, [383,384] (j) diazotization of 7â-amino cephalosporin sulfones, [385] (k)<br />

thermolysis of mesoionic oxatriazolones in the presence of alkynes, [386] (l) reaction of<br />

1,3,3-trimethyl-2-methylene-2,3-dihydro-1H-indole with aryl azides, [387] (m) reaction of<br />

isothiazole dioxides with sodium azide, [388] (n) reaction of triazolo[1,5-a]pyridines with<br />

aniline, [389] (o) permanganate oxidation of substituted benzotriazoles, [390–392] (p) hydrolytic<br />

cleavage of 1,2,3-triazolo[4,5-d]pyrimidines, [393–395] and (q) reaction of 4-oxo-4H-pyridino[1,2-a]pyrimidine-3-diazonium<br />

salts with primary alcohols. [396]<br />

The chemical transformation of 1,2,3-thiadiazoles into 1H-1,2,3-triazoles is a synthetically<br />

useful method. For example, base-catalyzed isomerization of 1,2,3-thiadiazol-5amine<br />

derivatives affords 1H-1,2,3-triazole-5-thiols in high yields. [397–401] Also, thermolysis<br />

of 5-[alkyl- or 5-[allyl(alkoxycarbonyl)amino]-1,2,3-thiadiazoles 384 in a sealed glass tube<br />

in the absence of solvent gives 5-(alkylsulfanyl)-1H-1,2,3-triazoles 385 (Scheme 125). [402]<br />

Scheme 125 Thermolysis of 5-(Alkoxycarbonylamino)-1,2,3-thiadiazoles [402]<br />

− CO2 43−92%<br />

R<br />

N<br />

N<br />

N<br />

2S R1 220 o R<br />

N<br />

N<br />

N<br />

S<br />

C, 15 min<br />

2O2C R1 384 385<br />

R 1 = Me, Et, CH 2CH CH 2; R 2 = Me, Et<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 497<br />

Another example of this approach is the conversion of 5-chloro-1,2,3-thiadiazole-4-carbaldehyde<br />

386 into 1H-1,2,3-triazole-4-carbothioamides 390 (Scheme 126). [403] A wide variety<br />

of amine derivatives can be used in this method. A probable mechanism for this transformation<br />

involves intermediates 387–389 and is indicated in Scheme 126. Other examples<br />

of conversion of 5-chloro-1,2,3-thiadiazole derivatives into 1H-1,2,3-triazoles are reported.<br />

[404,405]<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 126 Reaction of 5-Chloro-1,2,3-thiadiazole-4-carbaldehyde with Amines [403]<br />

OHC<br />

N<br />

Cl<br />

S<br />

N<br />

386<br />

R 1 N<br />

Cl<br />

H<br />

387<br />

S<br />

N<br />

N<br />

FOR PERSONAL USE ONLY<br />

498 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

R1NH2, MeOH<br />

rt, 30 min to 8 h<br />

50−93%<br />

R 1 = Me, Et, Bn, Ph, 4-MeOC6H4, 4-ClC6H4, NH2, NHPh, morpholino, OH<br />

Cl<br />

S<br />

388<br />

The reaction of diazoalkanes with 3,5-dichloro-2H-1,4-oxazin-2-ones 391 and 3-chloro-2H-<br />

1,4-benzoxazin-2-ones 395 is another interesting method for the synthesis of 1H-1,2,3-triazole<br />

derivatives (Schemes 127 and 128). [406,407] The intermediate bicyclic or tricyclic triazolo-fused<br />

compounds 393 and 396 are converted into the monocyclic 1H-1,2,3-triazoles<br />

394 or 397 by reaction with nucleophiles (amines, methanol, water). The first step of this<br />

procedure involves the selective attack of the diazoalkane to the imidoyl chloride function<br />

(e.g., giving 392) followed by ring closure. Reactions with diazomethane give higher<br />

yields (68–91%) of the fused triazoles than reactions with diazoethane or diazopropane<br />

(41–52%). The reaction conditions required for the ring cleavage of the lactone function<br />

in compounds 393 are dependent on the nucleophile: with propylamine or diethylamine<br />

it takes one hour at room temperature, with aniline it requires three hours at reflux and<br />

with methanol or water it takes 12 hours at reflux. The triazoles 394 obtained from this<br />

two-step procedure have the interesting Æ-chloro ketone substituent at N1, which may be<br />

used for the elaboration of other heterocycles.<br />

N2<br />

NR 1<br />

Cl<br />

389<br />

R 1 NH 2<br />

S<br />

N<br />

N<br />

N<br />

R1 R 1 HN<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

390<br />

S<br />

N<br />

N<br />

N<br />

R1


Scheme 127 Reaction of Diazoalkanes with 3,5-Dichloro-2H-1,4-oxazin-2-ones [406,407]<br />

R 1<br />

Cl<br />

O O<br />

N<br />

391<br />

Cl<br />

+ R 2 CHN 2<br />

Et2O<br />

0 oC, 3 d<br />

O<br />

393<br />

R 1<br />

Cl<br />

N<br />

N<br />

N<br />

O O<br />

N<br />

+ N<br />

Compound R 1 R 2 Nu Yield a,b (%) Ref<br />

393 Me H – 91 [407]<br />

393 Ph H – 81 [407]<br />

393 2,6-Cl 2C 6H 3 H – 72 [407]<br />

393 2,6-Cl 2C 6H 3 Me – n.r. [407]<br />

393 Me Et – n.r. [407]<br />

394 Me H OMe 95 [407]<br />

394 Ph H OMe 80 [407]<br />

394 Me H NEt 2 87 [407]<br />

c [407]<br />

394 Me Et OMe 28<br />

c [407]<br />

394 2,6-Cl2C6H3 Me OMe 25<br />

394 2,6-Cl 2C 6H 3 H NHPh 84 [407]<br />

394 Me H OH 55 [407]<br />

R 1<br />

O<br />

Cl<br />

R 2<br />

392<br />

a n.r. = not reported.<br />

b Yield of 394 from 393 or 393 from 391 unless otherwise stated.<br />

c Yield of 394 from 391.<br />

Scheme 128 Reaction of Diazoalkanes with 3-Chloro-2H-1,4-benzoxazin-2-ones [406,407]<br />

R 1<br />

O O<br />

N<br />

Cl<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 499<br />

+ R 2 CHN2<br />

Et2O<br />

0 oC, 3 d<br />

−<br />

N<br />

NuH<br />

395 396<br />

O<br />

R 1<br />

O<br />

NuH<br />

R 2<br />

R 2<br />

N<br />

N<br />

N<br />

Nu<br />

Nu<br />

O<br />

O<br />

R 1<br />

R 2<br />

Cl<br />

R 2<br />

394<br />

397<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

O<br />

R 1<br />

OH<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Compound R 1 R 2 Nu Yield a (%) Ref<br />

396 H H – 75 [407]<br />

396 Me H – 71 [407]<br />

396 Cl H – 68 [407]<br />

396 H Me – 52 [407]<br />

396 Cl Et – 41 [407]<br />

397 Cl H OMe 75 [407]<br />

397 Cl Et OMe 60 [407]<br />

397 Cl Et NHPr 76 [407]<br />

397 Me H NHPh 59 [407]<br />

397 H H NEt 2 60 [407]<br />

397 H H OH 58 [407]<br />

a Yield of 397 from 396 or 396 from 395.<br />

Methyl 1H-1,2,3-Triazole-5-carboxylates 394 and 397 (Nu = OMe); General Procedure: [407]<br />

CAUTION: Diazomethane is explosive by shock, friction, or heat, and is highly toxic by inhalation.<br />

Compound 391 or 395 (10 mmol) was slowly added to a Et 2O soln of CH 2N 2 (40 mmol) at<br />

08C. In the cases of MeCHN 2 and EtCHN 2, iPr 2O was used as solvent and, to avoid violent<br />

reactions, the initial temperature was –788C. Afterwards the temperature was brought to<br />

48C and, after stirring for 3 d, the excess of diazo compound and the solvent was evaporated.<br />

Then the residue was recrystallized (CHCl 3/hexane) yielding 393 or 395. This compound<br />

(10 mmol) was dissolved in MeOH (50 mL), the soln was brought to reflux temperature,<br />

and the solvent was evaporated after 15 min (for 393) or 12 h (for 396). The residue<br />

was recrystallized (CHCl 3/hexane) yielding 394 or 397.<br />

<strong>13</strong>.<strong>13</strong>.1.3 Aromatization<br />

4,5-Dihydro-1H-1,2,3-triazoles (triazolines) are intermediates of 1,2,3-triazoles in many<br />

synthetic methods, especially those involving the addition of azides to C=C bonds. In<br />

most cases 4,5-dihydro-1H-1,2,3-triazoles aromatize spontaneously to the corresponding<br />

triazoles but when they are stable compounds they can be aromatized by oxidation, elimination,<br />

or isomerization reactions. This subject is discussed in a review. [4] Some illustrative<br />

examples are described below.<br />

<strong>13</strong>.<strong>13</strong>.1.3.1 Method 1:<br />

By Oxidation Reactions<br />

FOR PERSONAL USE ONLY<br />

500 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

The oxidative dehydrogenation of 4,5-dihydro-1H-1,2,3-triazoles 398 to triazoles 399 is<br />

carried out mainly with potassium permanganate or nickel peroxide (Scheme 129). Very<br />

good results are obtained when the reaction is carried out with potassium permanganate<br />

in a two-phase system (benzene/water) using tetrabutylammonium chloride as a phasetransfer<br />

catalyst. [59,408,409] If the reaction is run in a single phase in anhydrous benzene<br />

alone, the products are not triazoles but imines. [410] The oxidation of 4,5-dihydro-1H-<br />

1,2,3-triazoles bearing sterically crowded ortho-substituted phenyl groups in the 5-position<br />

with potassium permanganate gives low yields of the corresponding triazoles. In<br />

these cases much better results are obtained with nickel peroxide. [58,411]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 129 Oxidative Dehydrogenation of 4,5-Dihydro-1H-1,2,3-triazoles [58,408]<br />

R 1<br />

398<br />

N<br />

N<br />

N<br />

R2 A: KMnO4, TBACl, benzene, H2O, reflux, 2−8 h<br />

B: NiO2, benzene, reflux, 3−4 h<br />

R 1<br />

399<br />

N<br />

N<br />

N<br />

R2 R 1 R 2 Method Time (h) Yield (%) Ref<br />

4-pyridyl Ph A 2 65 [408]<br />

4-pyridyl 4-Tol A 2 73 [408]<br />

4-pyridyl 4-ClC6H4 A 3 72 [408]<br />

3-pyridyl 3-O2NC6H4 A 8 58 [408]<br />

2-quinolyl Ph A 7 40 [408]<br />

2-quinolyl 4-ClC6H4 A 5.5 57 [408]<br />

4-O2NC6H4 4-O2NC6H4 A 8 38 [408]<br />

2-ClC6H4 4-MeOC6H4 B 4 63 [58]<br />

2-ClC6H4 3,4-Cl2C6H3 B 3 63 [58]<br />

2,4-Cl2C6H3 Ph B 4 65 [58]<br />

2,4-Cl2C6H3 4-F3CC6H4 B 4 70 [58]<br />

2,6-Cl2C6H3 Ph B 4 50 [58]<br />

2,6-Cl2C6H3 3-ClC6H4 B 3 52 [58]<br />

2,6-Cl2C6H3 4-BrC6H4 B 3 74 [58]<br />

The oxidation of 1-aryl-4-methylene-5-morpholino-4,5-dihydro-1H-1,2,3-triazoles 400<br />

with 3-chloroperoxybenzoic acid affords 1-aryl-1H-1,2,3-triazole-4-carbaldehydes 401<br />

(Scheme <strong>13</strong>0). The corresponding carboxylic acids are also produced as byproducts. [412]<br />

4,5-Dihydro-1H-1,2,3-triazoles 400 also react with halomethyl radicals to yield 1,2,3-triazole<br />

derivatives. [4<strong>13</strong>] Oxidation of 4,5-dihydro-1H-triazole 402 with bromine gives triazole<br />

403 in 83% yield (Scheme <strong>13</strong>0). [202]<br />

Scheme <strong>13</strong>0 Oxidation of 4,5-Dihydro-1H-1,2,3-triazoles with<br />

3-Chloroperoxybenzoic Acid [412] or Bromine [202]<br />

O<br />

N<br />

400<br />

N<br />

R 1<br />

N<br />

N<br />

R 2<br />

R 1 = CO2Et, Me, NO2, Cl, H; R 2 = H, CF3<br />

TBDMSO<br />

TBDMSO<br />

MeO 2C<br />

N<br />

N N<br />

402<br />

OH<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 501<br />

OTBDMS<br />

MCPBA, CHCl 3<br />

rt, 30 min<br />

38−70%<br />

Br2, NaOAc<br />

MeCCl3 rt, 8 h<br />

83%<br />

OHC<br />

N<br />

R 1<br />

401<br />

N<br />

N<br />

R 2<br />

TBDMSO<br />

TBDMSO<br />

MeO 2C<br />

N<br />

N N<br />

403<br />

OH<br />

OTBDMS<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


1,5-Disubstituted 1H-1,2,3-<strong>Triazoles</strong> 399 by Nickel Peroxide Oxidation;<br />

General Procedure: [58]<br />

To a soln of the 4,5-dihydro-1H-1,2,3-triazole 398 (5 mmol) in benzene (100 mL) (CAU-<br />

TION: carcinogen) was added dried, finely powdered NiO 2 (0.06 mol) and the mixture was<br />

refluxed with vigorous magnetic stirring for 3–4 h. The mixture was then allowed to cool<br />

to rt and filtered under gravity. The residual NiO 2 was washed with hot CHCl 3, and the<br />

combined filtrates were subjected to rotary evaporation. The resulting oily residue was<br />

cooled and triturated with petroleum ether, or an Et 2O/petroleum ether mixture, when<br />

it solidified to a clean, crystalline mass, and the colored impurities remained in soln.<br />

Many of the triazoles at this point were quite pure, giving reasonably sharp melting<br />

points. Recrystallization (acetone/petroleum ether) gave analytically pure samples.<br />

<strong>13</strong>.<strong>13</strong>.1.3.2 Method 2:<br />

By Elimination Reactions<br />

Several methods for the synthesis of 1,2,3-triazoles involve spontaneous or induced elimination<br />

reactions. Typical examples are the reactions of azides with enamines, enol<br />

ethers, or enolates, and the thermal elimination of stable molecules from 4,5-dihydro-<br />

1H-1,2,3-triazoles via retro-Diels–Alder reactions (see, for example, Schemes 69 and<br />

70). [2<strong>13</strong>,214,217,220,414] The elimination of morpholine from compound 404 on heating in formic<br />

acid (Scheme <strong>13</strong>1) is another example. In this process the piperidine ring is cleaved<br />

reductively, with carbon dioxide evolution, and the triazole 405 is obtained. [415] In some<br />

cases the elimination reaction corresponds to an isomerization, as exemplified in the<br />

conversion of 4,5-dihydro-1H-triazole 406 into triazole 407 (Scheme <strong>13</strong>1). [387] The base-catalyzed<br />

dehydration of 4,5-dihydro-1H-1,2,3-triazol-5-ols (by treatment with hot methanolic<br />

potassium hydroxide) also gives high yields of the corresponding triazoles. [263] In a<br />

related method, 1-benzyl-4,5-difluoro-4,5-bis(trifluoromethyl)-4,5-dihydro-1H-1,2,3-triazole<br />

is converted into 1-benzyl-4,5-bis(trifluoromethyl)-1H-1,2,3-triazole in 69% yield by<br />

defluorination with tetrakis(dimethylamino)ethene. [416]<br />

Scheme <strong>13</strong>1 Aromatization of 4,5-Dihydro-1H-1,2,3-triazoles by<br />

Elimination Reactions [387,415]<br />

MeN<br />

N<br />

O<br />

404<br />

Me<br />

N<br />

O 2N<br />

406<br />

N<br />

N<br />

N<br />

Ph<br />

N<br />

N<br />

N<br />

FOR PERSONAL USE ONLY<br />

502 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

HCO 2H<br />

− CO2<br />

KOH, EtOH<br />

67%<br />

Me 2N<br />

405<br />

407<br />

N<br />

N<br />

N<br />

Ph<br />

NHMe<br />

N<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

N<br />

N<br />

NO 2<br />

+<br />

H<br />

N<br />

O


<strong>13</strong>.<strong>13</strong>.1.4 Synthesis by Substituent Modification<br />

<strong>13</strong>.<strong>13</strong>.1.4.1 Substitution of Existing Substituents<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.1 Of Hydrogen<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.1.1 Method 1:<br />

Lithiation<br />

1-Substituted 1,2,3-triazoles undergo lithiation with butyllithium or lithium diisopropylamide<br />

preferentially at the 5-position at –20 to –788C. The resulting lithiated species react<br />

with carbon, silicon, halogen, and sulfur electrophiles to yield a range of 1,5-disubstituted<br />

1,2,3-triazoles. This subject has been reviewed comprehensively. [417] At room temperature,<br />

the lithiated species rapidly undergo fragmentation to nitrogen and lithium ketenimines.<br />

[418,424]<br />

The lithiation of 1-[[2-(trimethylsilyl)ethoxy]methyl]-1H-1,2,3-triazole (408, R 1 = SEM)<br />

followed by addition of an electrophile, gives moderate yields of 1,5-disubstituted 1,2,3triazoles<br />

410 (R 1 = SEM) (Scheme <strong>13</strong>2). [419] The 2-(trimethylsilyl)ethoxymethyl (SEM) group<br />

is a particularly interesting N1 protecting group for lithiation: it is readily attached to the<br />

triazole, it helps the stabilization of the intermediate triazol-5-yllithium species by intramolecular<br />

coordination, and it is removed under very mild conditions (by heating with<br />

dilute hydrochloric acid or by treatment with tetrabutylammonium fluoride in refluxing<br />

tetrahydrofuran). In a similar way, 5-substituted 1-benzyloxy-1H-1,2,3-triazoles 410<br />

(R 1 = OBn) are obtained in excellent yields from lithiation of 1-(benzyloxy)-1H-1,2,3-triazole<br />

(408, R 1 = OBn), followed by reaction with an electrophile. [336] Removal of the benzyl<br />

group by catalytic hydrogenation affords the corresponding 1H-1,2,3-triazol-1-ols in 98–<br />

100% yield. Compound 408 (R 1 = OBn) is also converted into 5-acyl- and 5-aryl-1,2,3-triazoles<br />

through a lithiation–transmetalation strategy. [420] Lithiation of 1-methyl-1H-1,2,3-triazole<br />

with butyllithium or lithium 2,2,6,6-tetramethylpiperidide, followed by addition of<br />

an electrophile gives moderate yields of 5-alkyl- or 5-acyl-1-methyl-1,2,3-triazoles. [421] Lithiation<br />

of 1-methyl-5-(phenylsulfanyl)-1H-1,2,3-triazole with lithium 2,2,6,6-tetramethylpiperidide<br />

occurs at the 4-position and after quenching with aldehydes and carboxylic<br />

amides the corresponding 4-(1-hydroxyalkyl) and 4-acyl derivatives are obtained<br />

in good yields (71–86%). [421]<br />

Scheme <strong>13</strong>2 Lithiation of 1H-1,2,3-<strong>Triazoles</strong> and Quenching with Electrophiles [336,419]<br />

N<br />

N<br />

N<br />

R1 408<br />

BuLi, THF<br />

−78 oC, 5−30 min<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 503<br />

Li<br />

409<br />

N<br />

N<br />

N<br />

R1 R 1 R 2 Electrophile Yield (%) Ref<br />

SEM CH(OH)Ph PhCHO 45 [419]<br />

SEM Bz EtOBz 21 [419]<br />

SEM Me MeI 30 [419]<br />

SEM SPh PhSSPh 80 [419]<br />

SEM Cl Cl3CCCl3 50 [419]<br />

SEM TMS TMSCl 37 [419]<br />

OBn D D2O 90 [336]<br />

OBn Me MeI 93 [336]<br />

electrophile, THF<br />

−78 o C to rt, 1−4 h N<br />

R 2<br />

410<br />

N<br />

N<br />

R1 for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


R 1 R 2 Electrophile Yield (%) Ref<br />

OBn CHO DMF 87 [336]<br />

OBn CO2Me ClCO2Me 76 [336]<br />

OBn CONMe2 ClCONMe2 97 [336]<br />

OBn Cl Cl3CCCl3 88 [336]<br />

OBn Br Br2 86 [336]<br />

OBn I I2 96 [336]<br />

OBn SMe MeSSMe 67 [336]<br />

OBn TMS TMSCl 93 [336]<br />

OBn SnBu3 Bu3SnCl 91 [336]<br />

The lithiation of 1,2,3-triazoles is also carried out with 4,5-dibromotriazoles (both 1H- and<br />

2H-) via a bromine–lithium exchange reaction. [462] For example, 4,5-dibromo-1-(methoxymethyl)-1H-1,2,3-triazole<br />

(411) reacts with butyllithium, in diethyl ether or tetrahydrofuran<br />

at –80 to –70 8C, at position 5 and the resulting lithiated derivative 412 is quenched<br />

with aqueous ammonium chloride, carbon dioxide, methyl chloroformate, benzophenone,<br />

or dimethyl or diphenyl disulfide to give high yields of the corresponding 5-substituted<br />

1,2,3-triazoles 4<strong>13</strong> (Scheme <strong>13</strong>3).<br />

Scheme <strong>13</strong>3 Lithiation of 4,5-Dibromo-1-(methoxymethyl)-1H-1,2,3-triazole [462]<br />

Br<br />

Br<br />

N<br />

411<br />

N<br />

N<br />

OMe<br />

FOR PERSONAL USE ONLY<br />

504 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

BuLi, Et2O −80 oC, 20 min<br />

Li<br />

Br<br />

N<br />

412<br />

R 1 Electrophile Yield (%) Ref<br />

H NH4Cl 84 [462]<br />

CO2H CO272 [462]<br />

C(OH)Ph2 Ph2CO 93 [462]<br />

SMe MeSSMe 87 [462]<br />

SPh PhSSPh 71 [462]<br />

N<br />

N<br />

OMe<br />

electrophile<br />

−80 to −70 oC 20−60 min<br />

5-Substituted 1-Benzyloxy-1H-1,2,3-triazoles 410 (R 1 = OBn) by Lithiation Followed by<br />

Reaction with an Electrophile; General Procedure: [336]<br />

Under N 2 at –788C, a 0.1 M soln of 408 (R 1 = OBn) in dry THF was treated dropwise with<br />

1.6 M BuLi in hexane (1.2 equiv). After 5 min the electrophile was added (neat or dissolved<br />

in THF) and stirring was continued at –788C for 1 h and at rt 1 h. The mixture was then<br />

quenched with sat. NH 4Cl and the product was extracted with CH 2Cl 2. The organic phase<br />

was washed with H 2O, dried (MgSO 4), concentrated, and purified by flash chromatography<br />

(EtOAc/heptane 1:2).<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

R 1<br />

Br<br />

N<br />

4<strong>13</strong><br />

N<br />

N<br />

OMe


<strong>13</strong>.<strong>13</strong>.1.4.1.1.2 Method 2:<br />

N-Trimethylsilylation<br />

1H-1,2,3-Triazole (414, R 1 =H) [421,430] and 4-methyl-1H-1,2,3-triazole (414, R 1 = Me) [430] react<br />

with chlorotrimethylsilane to give selectively 2-trimethylsilyl derivatives 415 (Scheme<br />

<strong>13</strong>4). Refluxing a mixture of 1H-1,2,3-triazole and hexamethyldisilazane for six hours<br />

gives an 81% yield of 1-(trimethylsilyl)-1H-1,2,3-triazole (416) and 2-(trimethylsilyl)-2H-<br />

1,2,3-triazole (417) in a 1:5 ratio. [422] 1,2,3-Triazole N-oxides are C-silylated at ring and exocyclic<br />

Æ-positions in high yields in a one-pot procedure involving treatment with trimethylsilyl<br />

trifluoromethanesulfonate, iodotrimethylsilane, or tert-butyldimethylsilyl trifluoromethanesulfonate<br />

in the presence of 1,2,2,6,6-pentamethylpiperidine, diisopropylethylamine,<br />

or lithium tetramethylpiperidide. [423]<br />

Scheme <strong>13</strong>4 N-Trimethylsilylation of 1H-1,2,3-<strong>Triazoles</strong> [421,430]<br />

R 1<br />

N<br />

H<br />

414<br />

N<br />

N<br />

TMSCl, benzene, Et3N 0 oC, 30 min, then reflux, 2 h<br />

81−96%<br />

(TMS) 2NH, reflux, 6 h<br />

R 1 = H 81%<br />

R 1<br />

N<br />

N<br />

NTMS<br />

415 R 1 = H, Me<br />

N<br />

N<br />

N<br />

TMS<br />

416<br />

+<br />

1:5<br />

N<br />

N<br />

417<br />

NTMS<br />

2-(Trimethylsilyl)-2H-1,2,3-triazole (415, R 1 = H): [421]<br />

TMSCl (10.7 mL, 84 mmol) was added to a soln of 1H-1,2,3-triazole (4.7 mL, 80 mmol) and<br />

Et 3N (12.1 mL, 87 mmol) in benzene (80 mL) (CAUTION: carcinogen) under N 2 with ice cooling,<br />

and the mixture was stirred for 30 min and then refluxed at 808C for 2 h. After filtration,<br />

the filtrate was evaporated to afford a residue, which was distilled under atmospheric<br />

pressure to give a colorless oil; yield: 9.72 g (86%); bp 1488C; 1 H NMR (CDCl 3, ä): 7.73 (s,<br />

2H, hetaryl), 0.51 (s, 9H, TMS).<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.1.3 Method 3:<br />

Carboxylation<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 505<br />

Carboxylation of C-lithio [424,425] or Grignard [180,181] derivatives of triazoles gives the corresponding<br />

carboxylic acids (Scheme <strong>13</strong>5). The lithiated species 412 (Scheme <strong>13</strong>3) is<br />

quenched with carbon dioxide to give 4-bromo-1-(methoxymethyl)-1H-1,2,3-triazole-5-carboxylic<br />

acid in 72% yield. [462] The 2-methoxymethyl analogue of 412 yields methyl 4-bromo-2-(methoxymethyl)-2H-1,2,3-triazole-3-carboxylate<br />

in 71% when quenched with methyl<br />

chloroformate. [462] Similarly, lithiation of 1-benzyloxy-1H-1,2,3-triazole and quenching<br />

the resulting 5-lithiated species with methyl chloroformate or dimethylcarbamoyl chloride<br />

yields the corresponding 5-carboxylate (76%) or N,N-dimethyl carboxamide (97%)<br />

(see Scheme <strong>13</strong>2). [336]<br />

5-Amino-1H-1,2,3-triazole-4-carboxylic acid is obtained in low yield (14%) by heating<br />

1H-1,2,3-triazol-4-amine with aqueous potassium hydrogen carbonate for 16 hours at<br />

1008C. [428]<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme <strong>13</strong>5 Carboxylation of 1,4-Diphenyl-1H-1,2,3-triazole [424]<br />

Ph<br />

N<br />

N<br />

N<br />

Ph<br />

418<br />

1. BuLi<br />

2. CO2 62%<br />

HO2C<br />

Ph<br />

419<br />

N<br />

N<br />

N<br />

Ph<br />

1,4-Diphenyl-1H-1,2,3-triazole-5-carboxylic Acid (419); Typical Procedure: [424]<br />

To a stirred soln of 1,4-diphenyl-1H-1,2,3-triazole (418; 0.04 mol) in anhyd THF (80 mL) was<br />

added dropwise over 15 min, 1.6 M BuLi in hexane (26 mL) at –20 to –608C under N 2. When<br />

the addition was completed the mixture was stirred and cooled for an additional 0.5–1 h<br />

and then the mixture was poured onto solid CO 2. Acidification of an aqueous soln of the<br />

salt yielded the carboxylic acid 419; yield: 62%; mp 169–1708C (dec).<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.1.4 Method 4:<br />

Acylation<br />

N-Unsubstituted 1,2,3-triazoles can be N-acylated by acyl halides and anhydrides with dry<br />

benzene or pyridine as the solvent. Substitution takes place at the 1-position but the acyl<br />

group may migrate to the 2-position on heating or on treatment with base. [173,429,430] Thus,<br />

acetylation with acetyl chloride gives 1-acetyl derivatives that rearrange to the 2-isomers<br />

above 1208C; acetylation by heating the triazoles with acetic anhydride gives the 2-acetyl<br />

derivatives directly. An alternative route to 1-acetyl-1H-1,2,3-triazoles is the reaction of 2trimethylsilyl<br />

derivatives (e.g., 420) with acetyl chloride, giving products such as 421<br />

(R 1 = Me) (Scheme <strong>13</strong>6). [173,430] This method can be used to prepare a range of 1-acyl-1H-<br />

1,2,3-triazoles, intermediates in the synthesis of oxazoles. [431]<br />

Scheme <strong>13</strong>6 Acylation of 2-(Trimethylsilyl)-2H-1,2,3-triazole [173,430]<br />

N<br />

N<br />

NTMS<br />

420<br />

R 1 = Me, aryl<br />

+ R 1 COCl<br />

benzene, rt<br />

N<br />

N<br />

421<br />

N<br />

O R 1<br />

+ TMSCl<br />

Reaction of 4,5-diphenyl-1H-1,2,3-triazole with benzoyl chloride in pyridine gives the corresponding<br />

1-benzoyl derivative. [432] The 1H-1,2,3-triazol-4-ols 422 react with benzoyl<br />

chloride in pyridine to yield the dibenzoyl derivatives 423 in high yields (Scheme <strong>13</strong>7). [433]<br />

Scheme <strong>13</strong>7 Benzoylation of 1H-1,2,3-Triazol-4-ols [433]<br />

R 1<br />

HO<br />

422<br />

N<br />

H<br />

N<br />

N<br />

FOR PERSONAL USE ONLY<br />

506 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

BzCl, py, 5 o C, 1 d<br />

R1 = H 80%<br />

R1 = Ph 92%<br />

The reaction of 1,2,3-triazole with thiobenzoyl chloride (CCl 4,Et 3N, rt) yields a mixture of<br />

1- and 2-thiobenzoyl-1,2,3-triazoles (22:78). [434] Similar results are obtained if the sodium<br />

salt of 1,2,3-triazole is used. However, only 1-(thiobenzoyl)-1,2,3-triazole is formed in 40%<br />

yield in the reaction of thiobenzoyl chloride with 2-(trimethylsilyl)-2H-1,2,3-triazole (CCl 4,<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

BzO<br />

R 1<br />

N<br />

423<br />

N<br />

NBz


08C). [434] Reaction of 1,2,3-triazole with isocyanates affords the corresponding urea derivatives.<br />

[435]<br />

1,2,3-<strong>Triazoles</strong> are also C-acylated. In this case, the corresponding lithiated species<br />

are reacted with appropriate electrophiles (acyl halides, esters, amides) (see Section<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.1.1).<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.1.5 Method 5:<br />

Formylation<br />

As shown in Scheme <strong>13</strong>2, C-lithiated 1,2,3-triazole species are quenched with dimethylformamide<br />

to afford the corresponding formyl derivatives in excellent yields; [336] however<br />

other attempts to quench 1,2,3-triazolyllithium compounds with dimethylformamide<br />

have failed. [419,462] The Vilsmeier–Haack formylation of 1H-1,2,3-triazol-5-amines 424 gives<br />

the corresponding 1H-1,2,3-triazole-4-carbaldehydes 425 in good yields (Scheme <strong>13</strong>8).<br />

These compounds are hydrolyzed by dilute hydrochloric acid to the corresponding 5-amino<br />

derivatives 426. [436] The Vilsmeier–Haack formylation of 1-benzyl-1,2,3-triazol-5-ols affords<br />

the corresponding 5-chloro-1H-1,2,3-triazole-4-carbaldehydes in 60–94% yields. [302]<br />

1H-1,2,3-Triazole-4-carbaldehydes are also prepared from the corresponding carbonitriles<br />

by catalytic hydrogenation (10% Pd/C, aq 0.1 M HCl) [437] or by Raney nickel/formic acid reduction.<br />

[438]<br />

Scheme <strong>13</strong>8 Vilsmeier–Haack Formylation of 1H-1,2,3-Triazol-5-amines [436]<br />

H 2N<br />

424<br />

R 1 = Me, Bn<br />

N<br />

N<br />

N<br />

R1 DMF, POCl3 85 oC, 1 h<br />

75−85%<br />

Me 2N<br />

OHC<br />

N<br />

425<br />

N<br />

N<br />

N<br />

R1 1 M HCl<br />

reflux, 20 min<br />

65%<br />

5-Amino-1-methyl-1H-1,2,3-triazole-4-carbaldehyde (426,R 1 = Me); Typical Procedure: [436]<br />

POCl 3 (0.16 g, 1 mmol) was added to 1-methyl-1H-1,2,3-triazol-5-amine (424, R 1 = Me;<br />

0.05 g, 0.5 mmol) in DMF (1 mL) at 08C. The mixture was then heated at 858C for 1 h,<br />

cooled, and poured onto ice (15 g). The mixture was adjusted to pH 7 and extracted with<br />

CHCl 3 (3 ” 20 mL). The extract was dried (K 2CO 3) and the solvent was removed in vacuo.<br />

The residue was recrystallized (benzene/cyclohexane 1:4) (CAUTION: carcinogen) to give<br />

5-{[(dimethylamino)methylene]amino}-1-methyl-1H-1,2,3-triazole-4-carbaldehyde (425,<br />

R 1 = Me); yield: 75%; mp <strong>13</strong>68C. This compound was refluxed for 20 min with 1 M HCl (16<br />

equiv). The soln was neutralized and extracted with CHCl 3. Evaporation of the dried<br />

(K 2CO 3) extract gave 426 (R 1 = Me); yield: 65%.<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.1.6 Method 6:<br />

Arylation<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 507<br />

1,2,3-<strong>Triazoles</strong> can be N-arylated by reaction with activated aryl halides. Reaction of 1H-<br />

1,2,3-triazole with 1-fluoro-2-nitrobenzene [439] or 1-fluoro-4-nitrobenzene [440] gives mixtures<br />

of the corresponding 1- and 2-nitrophenyl-1,2,3-triazoles. However, with 1-fluoro-<br />

2,4-dinitrobenzene and 2-chloro-1,3,5-trinitrobenzene only the 1-substituted derivatives<br />

are obtained (Scheme <strong>13</strong>9). [440] Reaction of 1H-1,2,3-triazole with 2-chloro-1,3,5-trinitrobenzene<br />

(427, X = Cl), 2-fluoro-1,3,5-trinitrobenzene (427, X = F) or 1,2,3,5-tetranitrobenzene<br />

(427, X=NO 2) in dioxane, dimethylformamide, or dimethyl sulfoxide for two days<br />

at room temperature gives 1-(2,4,6-trinitrophenyl)-1H-1,2,3-triazole (428) exclusively, except<br />

in one case. [471] When the reaction is carried out with 2-fluoro-1,3,5-trinitrobenzene<br />

OHC<br />

H2N<br />

426<br />

N<br />

N<br />

N<br />

R1 for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


(427, X = F) in dimethyl sulfoxide, the 2-(2,4,6-trinitrophenyl)-2H-1,2,3-triazole is also<br />

formed; the final product composition depends on the way in which the reagents are<br />

mixed.<br />

Scheme <strong>13</strong>9 Arylation of 1H-1,2,3-Triazole with 2,4,6-Trinitrophenyl Derivatives [440]<br />

N<br />

H<br />

N<br />

N<br />

X = Cl, F, NO2<br />

O2N<br />

+ X NO 2<br />

O2N<br />

427<br />

dioxane<br />

DMF or DMSO<br />

rt, 2 d<br />

58−96%<br />

1-(4-Tolyl)-1H-1,2,3-triazole is obtained in 11% yield from the reaction of 1H-1,2,3-triazole<br />

and 4-tolylboronic acid in the presence of anhydrous copper(II) acetate and pyridine. [441] A<br />

mixture of 9-(1H-1,2,3-triazol-1-yl)acridine (429) (49%) and 9-(2H-1,2,3-triazol-2-yl)acridine<br />

(430) (26%) is obtained from the reaction of the anion of 1H-1,2,3-triazole, generated using<br />

sodium hydride in dry dimethylformamide, with 9-chloroacridine (Scheme 140). [442] Deprotonation<br />

of triazole 431 with potassium hexamethyldisilazanide followed by the addition<br />

of pentafluoropyridine gives the 2-(4-pyridyl)-substituted triazole 432 in 49% yield<br />

(Scheme 140). [174]<br />

O 2N<br />

N<br />

N<br />

N<br />

NO2<br />

428<br />

NO 2<br />

Scheme 140 Arylation of 1H-1,2,3-<strong>Triazoles</strong> with 9-Chloroacridine [442] and<br />

Pentafluoropyridine [174]<br />

N<br />

N<br />

H<br />

N<br />

N<br />

431<br />

NaH, DMF<br />

9-chloroacridine<br />

60 oC, 2 h<br />

N<br />

H<br />

N<br />

N<br />

FOR PERSONAL USE ONLY<br />

508 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

F F<br />

KHDMS<br />

pentafluoropyridine, THF<br />

0 oC to rt, 20 min<br />

49%<br />

N<br />

N<br />

N<br />

N<br />

+<br />

429 49% 430 26%<br />

N<br />

N<br />

N<br />

F<br />

F<br />

N<br />

N<br />

N<br />

1,2,3-<strong>Triazoles</strong> are also C-arylated. The palladium-catalyzed reaction of the 1,2,3-triazol-5ylzinc<br />

iodide species 433 with appropriate aryl and hetaryl iodides gives the 5-aryl-1- or 5hetaryl-1H-1,2,3-triazoles<br />

434 (Scheme 141). [420]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

432<br />

N<br />

N<br />

F<br />

N<br />

F


Scheme 141 Arylation of 1-Benzyloxy-1H-1,2,3-triazol-5-ylzinc Iodide [420]<br />

N<br />

N<br />

N<br />

OBn<br />

BuLi, THF<br />

−78 oC, 5 min<br />

Li<br />

N<br />

N<br />

N<br />

OBn<br />

ZnI2<br />

−78 o C, 30 min<br />

Ar1I, DMF<br />

Pd(PPh3) 4<br />

−78 oC to rt<br />

then 80 oC, 1 h<br />

IZn<br />

433<br />

Ar 1<br />

N<br />

N<br />

N<br />

OBn<br />

N<br />

N<br />

N<br />

OBn<br />

434 Ar1 = aryl 30−87%<br />

Ar1 = 2-pyridyl 80%<br />

Ar1 = 2-thienyl 63%<br />

Ar1 = N<br />

49%<br />

N<br />

OBn<br />

1-(2,4,6-Trinitrophenyl)-1H-1,2,3-triazole (428): [471]<br />

A soln of 1H-1,2,3-triazole (4.20 g, 60 mmol), 2-fluoro-1,3,5-trinitrobenzene (427, X=F;<br />

<strong>13</strong>.40 g, 60 mmol) and dry DMF (100 mL), protected from atmospheric moisture, was<br />

stirred at rt for 3 d. This soln was then poured with stirring into H 2O (2 L). The precipitated<br />

product was collected by filtration, washed with H 2O, and dried. The product was then<br />

dissolved in a minimal amount of acetone (~400 mL), and to this stirred soln was added<br />

H 2O (1.5 L), dropwise at first, until crystallization was induced, at which time the flow<br />

was increased to a slow, steady stream. The precipitated product was again collected by<br />

filtration, washed with H 2O, and dried to give white crystals; yield: 14.6 g (90%); mp<br />

2148C (dec).<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.1.7 Method 7:<br />

Alkylation<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 509<br />

1,2,3-<strong>Triazoles</strong> can be N- and C-alkylated. N-alkylation is readily achieved by one of the<br />

following methods: (i) reaction with alkyl halides, [443] dimethyl sulfate, [50,444–446,460] diazomethane,<br />

[44,46,47,50,447] methyl tosylate, [448,449] or methyl fluorosulfonate [450] (ii) by reaction<br />

with alcohols in acidic media, [451] (iii) by addition to aziridines, [90] (iv) by conjugate addition<br />

to activated alkenes [90,198,445,452] and alkynes, [87,443] and (v) by the Mannich reaction. [453]<br />

Alkylation with alkyl halides requires the use of a base; generally a sodium alkoxide, sodium<br />

hydride, or sodium hydroxide are employed.<br />

Alkylation of N-unsubstituted 1,2,3-triazoles under basic, neutral or weakly acidic<br />

conditions generally affords mixtures of the N-alkyl derivatives. The 1,2,3-triazole itself<br />

and the symmetrical 4,5-disubstituted triazoles give mixtures of 1- and 2-alkyl isomers<br />

while unsymmetrical 4,5-substituted triazoles frequently give all the three possible<br />

monoalkyl derivatives. Some selectivity for 1-alkylation is observed when silver or thallium<br />

salts of the triazoles are reacted with iodoalkanes. [454] Selective alkylation at N1 is obtained<br />

by reaction of a 2-(trimethylsilyl)-2H-1,2,3-triazole with primary alkyl halides in<br />

the presence of tetrabutylammonium fluoride. [421]<br />

It has been shown that 1H-1,2,3-triazole reacts with propan-2-ol in concentrated sulfuric<br />

acid to yield 1-isopropyl-1H-1,2,3-triazole (80%) as the sole reaction product. [451] The<br />

scope of this method is still to be demonstrated.<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Alkylation of 1-methyl- and 1-benzyl-1H-1,2,3-triazole gives only the 1,3-disubstituted<br />

triazolium salts. [455] The 2-alkyl-2H-1,2,3-triazole 1-oxides are quantitatively methylated at<br />

the N-oxygen by trimethyloxonium tetrafluoroborate to yield the corresponding 1-methoxytriazolium<br />

tetrafluoroborates. [456] 1-Alkyl-1H-1,2,3-triazol-5-ols on reaction with diazomethane<br />

or iodomethane are alkylated at the alcohol oxygen, N2, and N3. [306,331] 1H-1,2,3-<br />

Triazole-4-thiol is converted selectively into the 4-(methylsulfanyl) derivative by reaction<br />

with a small excess iodomethane, in the presence of an equimolar amount of ethanolic<br />

potassium hydroxide (1.8 M). [447] Addition of diazomethane to the 4-(methylsulfanyl)triazole<br />

gives a mixture of the three possible N-methylated 4-(methylsulfanyl)triazoles. [447]<br />

The alkylation of ethyl 4-(4-hydroxyphenoxy)-1H-1,2,3-triazole-5-carboxylate (435)<br />

under alkaline conditions exclusively yields the N2 and N3 alkylation products (Scheme<br />

142). Alkylation at N1 or at the hydroxy group is not observed. [457] While alkylation of 435<br />

with benzyl or 4-methoxybenzyl chlorides gives a 1:1 mixture of the two isomers, with 4bromophenacyl<br />

bromide preferential substitution at N2 is observed (14% and 65% respectively<br />

to 436 and 437). Alkylation with trityl chloride shows a marked steric preference<br />

for the less hindered N2 position, with isomer 437 (R 1 = Tr) being formed almost exclusively.<br />

Scheme 142 Alkylation of Ethyl 4-(4-Hydroxyphenoxy)-1H-1,2,3-triazole-5-carboxylate [457]<br />

HO<br />

EtO2C<br />

435<br />

O<br />

N<br />

H<br />

N<br />

N<br />

R 1 = CH2Ar 1 , CH2COAr 1 , Tr; X = Cl, Br<br />

1. K2CO3, DMF<br />

2. R1X, 20−40 oC HO<br />

EtO 2C<br />

436<br />

O<br />

HO<br />

N<br />

N<br />

N<br />

R1 EtO2C<br />

N-Unsubstituted triazoles also react with compounds of other types to yield N-substituted<br />

derivatives. For example, they react with nitrilimines (gererated in situ) to yield a mixture<br />

of 1- and 2-(benzohydrazonoyl)-1,2,3-triazoles, as illustrated in Scheme 143, [458] and react<br />

with 1-O-acetyl ribofuranose derivatives (by an acid-catalyzed fusion procedure) to afford<br />

mixtures of triazole nucleosides 438 and 439 (Scheme 144). [459]<br />

Scheme 143 Reaction of <strong>Triazoles</strong> with Nitrilimines [458]<br />

N<br />

H<br />

N<br />

N<br />

+<br />

FOR PERSONAL USE ONLY<br />

510 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

+ −<br />

PhC N NPh<br />

benzene<br />

reflux, 10 h<br />

N<br />

N<br />

N<br />

Ph N<br />

+<br />

NHPh<br />

+<br />

N<br />

437<br />

N<br />

N<br />

41% 33%<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

O<br />

Ph<br />

N<br />

N<br />

N<br />

NR 1<br />

NHPh


Scheme 144 Reaction of <strong>Triazoles</strong> with 1-O-Acetyl Ribofuranose Derivatives [459]<br />

R 1 O<br />

O<br />

OR 1<br />

OAc<br />

OR 1<br />

+<br />

X<br />

R 1 = Bz, Ac; X = H, CO2Me, CN, NO2<br />

N<br />

H<br />

N<br />

N<br />

heat<br />

R 1 O<br />

X<br />

O<br />

OR 1<br />

N<br />

OR 1<br />

N<br />

N<br />

+<br />

R 1 O<br />

X<br />

O<br />

OR 1<br />

438 439<br />

C-Alkylation of triazoles is achieved by lithiation followed by addition of an alkyl halide.<br />

For example, reaction of 1-phenyl-1H-1,2,3-triazole with butyllithium and addition of<br />

iodomethane gives 5-methyl-1-phenyl-1H-1,2,3-triazole (440,R 1 = H) in 94% yield (Scheme<br />

145). [424] It is interesting to note that under similar reaction conditions, 4-methyl-1-phenyl-<br />

1H-1,2,3-triazole yields 4,5-dimethyl-1-phenyl-1H-1,2,3-triazole (440, R 1 = Me), while its<br />

isomer 5-methyl-1-phenyl-1H-1,2,3-triazole gives only the 5-ethyl derivative 441. Lithiation<br />

of 1,4-diphenyl- and 1,5-diphenyl-1H-1,2,3-triazole, followed by iodomethane<br />

quench, gives the corresponding derivatives 440 (R 1 = Ph) and 442 in 78 and 99% yield, respectively,<br />

reflecting the higher steric hindrance in the 1,4-diphenyl isomer. For other examples<br />

of C-alkylation of triazoles see Section <strong>13</strong>.<strong>13</strong>.1.4.1.1.1.<br />

Scheme 145 C-Methylation of 1-Phenyl-1H-1,2,3-triazoles [424]<br />

R<br />

N<br />

N<br />

N<br />

1<br />

Ph<br />

R 1 = H, Me, Ph<br />

R 1<br />

R 1 = Me, Ph<br />

N<br />

N<br />

N<br />

Ph<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.1.8 Method 8:<br />

Halogenation<br />

BuLi, THF, MeΙ<br />

−60 to −20 oC 78−94%<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 511<br />

BuLi, THF, MeΙ<br />

−20 to −60 oC R<br />

N<br />

N<br />

N<br />

1<br />

Ph<br />

440<br />

R 1 = Me 42%<br />

R 1 = Ph 99%<br />

Et<br />

Ph<br />

441<br />

N<br />

N<br />

N<br />

Ph<br />

442<br />

N<br />

N<br />

N<br />

Ph<br />

The reaction of 1,2,3-triazole, 1-methyl-, 2-methyl-, 4-methyl-, and 4,5-dimethyl-1,2,3-triazole<br />

with chlorine, bromine, iodine, hypochlorite, hypobromite, and hypoiodite has<br />

been studied. [460] 1H-1,2,3-Triazole reacts with bromine to afford 4,5-dibromo-1H-1,2,3-triazole<br />

(443) in almost quantitative yield (Scheme 146). [461,462] The intermediate monobro-<br />

N<br />

N<br />

OR 1<br />

N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


motriazole cannot be trapped; apparently it is brominated faster than the starting material.<br />

The 4,5-dibromo-1H-1,2,3-triazole is also obtained in 90–95% yield by bromodecarboxylation<br />

of 1,2,3-triazole-4-carboxylic acid. [462]<br />

Scheme 146 Bromination of 1H-1,2,3-Triazole [461,462]<br />

N<br />

H<br />

N<br />

N<br />

+ Br 2<br />

H2O, 40−45 o C, 1 h N<br />

97%<br />

1-Methyl- and 4-methyl-1H-1,2,3-triazole react with bromine to give, respectively, the 4bromo-1-methyl-<br />

and 5-bromo-4-methyl-1H-1,2,3-triazole in good yields. The isomeric 2methyl-2H-1,2,3-triazole,<br />

less reactive toward halogenation, reacts with bromine only in<br />

the presence of a catalyst (iron filings) and yields 4,5-dibromo-2-methyl-2H-1,2,3-triazole;<br />

the monobrominated product is not obtained. [460] 4-Bromo- and 5-bromo-1H-1,2,3-triazoles<br />

are obtained indirectly by bromination of a triazole with a removable group at N1,<br />

as shown in Scheme 147. [463]<br />

Scheme 147 Bromination of 1H-1,2,3-<strong>Triazoles</strong> with a Removable Substituent at N1 [463]<br />

N<br />

N<br />

N<br />

OMe<br />

FOR PERSONAL USE ONLY<br />

512 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

MeX<br />

concd H2SO4<br />

120 o C, 1 h<br />

Br 2, Na 2CO 3<br />

20 o C<br />

Br<br />

Br<br />

N<br />

N<br />

H<br />

Br<br />

Br<br />

+<br />

NMe<br />

N<br />

N<br />

N<br />

N<br />

Br<br />

N<br />

443<br />

N<br />

X −<br />

N<br />

H<br />

Br<br />

N<br />

OMe<br />

Br<br />

OMe<br />

concd H 2SO 4<br />

120 o C, 1 h<br />

Br<br />

N<br />

N<br />

N<br />

Me<br />

2- and 3-Substituted 1,2,3-triazole 1-oxides 444 and 447 are halogenated selectively in position<br />

5 in excellent yields (Scheme 148). [456,464,465] Since compounds 445 and 448 are deoxygenated<br />

almost quantitatively (see Section <strong>13</strong>.<strong>13</strong>.1.4.1.4.4), this is a useful route for the<br />

synthesis of 1- and 2-substituted 4-halo-1,2,3-triazoles. The chlorination/deoxygenation of<br />

2-(4-tolyl)-2H-1,2,3-triazole 1-oxides to give 446 is carried out in one step by reaction with<br />

gaseous hydrogen chloride. [466]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 148 Halogenation of 1,2,3-Triazole 1-Oxides [456,464–466]<br />

R 2<br />

N<br />

N+<br />

O −<br />

NR1 NaOCl, Cl2, or Br2 rt<br />

72−100%<br />

444 445<br />

R 1 = Me, Bn, Ph; R 2 = H, Me; X = Cl, Br<br />

N +<br />

O −<br />

R<br />

N<br />

N<br />

1<br />

R 1 = Ph, OMe<br />

N+<br />

O −<br />

N<br />

447<br />

NR 1<br />

4-Tol<br />

NaOCl or Br2 rt<br />

78−100%<br />

R 1 = Me, Bn, Ph; X = Cl, Br<br />

HCl, dioxane<br />

68%<br />

X<br />

X<br />

Cl<br />

448<br />

R 2<br />

R 1<br />

NR 1<br />

N+<br />

O −<br />

N<br />

N<br />

N+<br />

O −<br />

NR1 1-Methoxy-2-phenyl-2H-1,2,3-triazol-1-ium tetrafluoroborates 449 react with potassium<br />

hydrogen fluoride to yield 4-fluoro-2-phenyl-2H-1,2,3-triazoles 450 (Scheme 149). [465]<br />

N N<br />

446<br />

N<br />

4-Tol<br />

Scheme 149 Fluorination of 1-Methoxy-2-phenyl-2H-<br />

1,2,3-triazol-1-ium Tetrafluoroborates [465]<br />

R 1<br />

N<br />

NPh<br />

N+<br />

OMe<br />

449<br />

R 1 = H, Me<br />

BF 4 −<br />

KHF2, MeCN, rt, 3 d<br />

61−64%<br />

F<br />

R 1<br />

N<br />

N NPh<br />

Mesoionic compound 451 reacts with bromine in acetic acid to give the 5-bromo derivative<br />

452 (Scheme 150). [362]<br />

450<br />

Scheme 150 Bromination of Mesoionic Triazole Compounds [362]<br />

−<br />

O 4 -Tol<br />

N<br />

N<br />

N+<br />

Me<br />

451<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 5<strong>13</strong><br />

Br2, AcOH, rt, 2 h<br />

68%<br />

−<br />

O 4 -Tol<br />

N<br />

N<br />

Br<br />

N+<br />

Me<br />

452<br />

C-Lithiated 1,2,3-triazole species are quenched with bromine or iodine to afford the corresponding<br />

halogenated derivatives in excellent yields. [336] Using hexachloroethane as the<br />

electrophile, the chlorinated derivatives are obtained. [336,419]<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Reaction of 1H-1,2,3-triazole with iodine monochloride yields 1-iodo-1H-1,2,3-triazole<br />

(453). Melting a mixture of this compound with 3,5-dimethyl-2H-1,2,4-triazole for<br />

5–10 minutes gives 4,5-diiodo-1H-1,2,3-triazole (454) (Scheme 151). [467] 1H-1,2,3-Triazole<br />

gives 1,4,5-tribromo-1H-1,2,3-triazole when treated with an excess of sodium hypobromite.<br />

[460]<br />

Scheme 151 Iodination of 1H-1,2,3-Triazole [467]<br />

N<br />

H<br />

N<br />

N<br />

ICl, NaOEt<br />

EtOH, rt<br />

60−80%<br />

N<br />

N<br />

N<br />

I<br />

453<br />

110 o N<br />

N<br />

N<br />

H<br />

C, 5−10 min<br />

75%<br />

I<br />

I<br />

N<br />

N<br />

N<br />

H<br />

454<br />

2-Phenyl-2H-1,2,3-triazol-4-ol reacts with bromine to give the corresponding 5-bromo derivative<br />

in high yield. [474] A method for the selective conversion of 2,4,5-triphenyl-2H-<br />

1,2,3-triazole into 2-(2-chlorophenyl)-4,5-diphenyl-2H-1,2,3-triazole has been reported. [468]<br />

4,5-Dibromo-1H-1,2,3-triazole (443); Typical Procedure: [462]<br />

Br 2 (15 mL, an excess) was added dropwise to a stirred soln of 1H-1,2,3-triazole (15.0 g,<br />

217 mmol) in H 2O (100 mL) warmed to 40–458C and the resulting soln was stirred for a<br />

further 1 h. The precipitate was collected by filtration and further Br 2 (10 mL) was added<br />

to the filtrate, then it was kept at rt overnight, after which a second crop of product had<br />

precipitated. The combined amounts of product were washed with H 2O (3 ” 50 mL), dried,<br />

and recrystallized (aq MeOH) to give the product; yield: 47.8 g (97%); mp 192–1948C.<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.1.9 Method 9:<br />

N-Amination<br />

4,5-Diphenyl-1H-1,2,3-triazole is aminated by reaction with hydroxylamine-O-sulfonic<br />

acid yielding the corresponding triazol-1-amines and triazol-2-amines in approximately<br />

equal amounts (Scheme 152). [3]<br />

Scheme 152 N-Amination of 4,5-Diphenyl-1H-1,2,3-triazole [3]<br />

Ph<br />

Ph<br />

N<br />

H<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.1.10 Method 10:<br />

N-Hydroxylation<br />

N<br />

N<br />

FOR PERSONAL USE ONLY<br />

514 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

Ph<br />

Ph<br />

H2NOSO3H Ph<br />

N<br />

N<br />

N<br />

NH2<br />

+<br />

Ph<br />

N<br />

N<br />

N<br />

NH2<br />

1H-1,2,3-Triazole is oxidized by peracids to 1H-1,2,3-triazol-1-ol (Scheme 153). Best yields<br />

are obtained with 3-chloroperoxybenzoic acid or hydrogen peroxide plus formic<br />

acid. [336,469] Yields of 65% are obtained by adding the oxidant (hydrogen peroxide/formic<br />

acid) portionwise over 30 days followed by continuous extraction of the triazolol with diethyl<br />

ether over three weeks. [336] The autoxidation of an N-unsubstituted 1,2,3-triazole to<br />

the corresponding triazol-2-ol has been reported. [342]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 153 N-Hydroxylation of 1H-1,2,3-Triazole [336,469]<br />

N<br />

H<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.1.11 Method 11:<br />

Nitration<br />

N<br />

N<br />

A: HCO2H, H2O2, 20 oC, 30 d<br />

B: MCPBA, EtOAc, rt, 7 d<br />

A: 65%<br />

Direct nitration of 1H-1,2,3-triazole to give 4-nitro-1H-1,2,3-triazole is not possible. [470]<br />

However, this compound is obtained in moderate yield from the reaction of 1-morpholino-2-nitroethene<br />

and tosyl azide. [471] Attempts to introduce a nitro group in the triazole<br />

ring of 1-phenyl- and 4-phenyl-1H-1,2,3-triazole are unsuccessful since nitration occurs<br />

only in the phenyl ring. For example, the reaction of 4-phenyl-1H-1,2,3-triazole with a<br />

mixture of nitric acid and sulfuric acid at 0 8C gives the 4-(4-nitrophenyl) derivative in<br />

50% yield; at 908C the 4-(2,4-dinitrophenyl) derivative is obtained in 35% yield. [471] Similarly,<br />

the 3-phenyl-1,2,3-triazole 1-oxide is nitrated with fuming nitric acid, at room temperature,<br />

at the para phenyl position. [464]<br />

The nitration of 2-phenyl-2H-1,2,3-triazole with a mixture of fuming nitric acid and<br />

concentrated sulfuric acid at 208C gives a mixture of 2-(4-nitrophenyl)-2H-1,2,3-triazole<br />

(454) and 4-nitro-2-(4-nitrophenyl)-2H-1,2,3-triazole (455) (Scheme 154). [472,473] However,<br />

if the nitration is carried out with nitric acid in acetic anhydride at 158C, only triazole<br />

454 is obtained. [473]<br />

N<br />

N<br />

N<br />

OH<br />

Scheme 154 Nitration of 2-Phenyl-2H-1,2,3-triazole [472,473]<br />

N<br />

N<br />

N<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 515<br />

A: HNO3, H2SO4 20 oC, 1 h<br />

B: HNO3, Ac2O 15 oC N<br />

A: 69%; (454/455) 20:3<br />

B: 81% (454 only)<br />

N<br />

N<br />

NO 2<br />

+<br />

O 2N<br />

454 455<br />

While 2-(2,4,6-trinitrophenyl)-2H-1,2,3-triazole is nitrated at C4 of the triazole ring, the<br />

isomeric 1-(2,4,6-trinitrophenyl)-1H-1,2,3-triazole is resistant to nitration, even under<br />

forcing conditions. [471] Nitration of 2-phenyl-2H-1,2,3-triazol-4-ol with nitric acid in glacial<br />

acetic acid affords 5-nitro-2-phenyl-2H-1,2,3-triazol-4-ol in 60% yield. [474] Under similar<br />

conditions, 2-phenyl-2H-1,2,3-triazol-4-ol 1-oxide also gives the corresponding 5-nitro derivative.<br />

[474] Nitration of 4-(2,4,6-trinitroanilino)-1H-1,2,3-triazole with a mixture of nitric<br />

acid and sulfuric acid, at 20–258C, affords the corresponding 5-nitro derivative in 30%<br />

yield. [475]<br />

Nitration of 2-methyl-2H-1,2,3-triazole with a mixture of fuming nitric acid and concentrated<br />

sulfuric acid, at room temperature, affords 2-methyl-4-nitro-2H-1,2,3-triazole<br />

(456) in 98% yield (Scheme 155). Under more vigorous conditions (10 h at 1008C) this compound<br />

is further nitrated to 2-methyl-4,5-dinitro-2H-1,2,3-triazole (457) (97%). [456] Nitration<br />

of 2-methyl-2H-1,2,3-triazole 1-oxide at room temperature gives a mixture of the 4and<br />

5-nitro derivatives. At 1008C both compounds are further nitrated to 2-methyl-4,5-dinitro-2H-1,2,3-triazole<br />

1-oxide. [456] Nitration of 2-phenyl-2H-1,2,3-triazole 1-oxide at room<br />

temperature gives initially (detectable after 1 min of reaction time) a mixture of 2-(4-nitrophenyl)-2H-1,2,3-triazole<br />

1-oxide, 5-nitro-2-phenyl-2H-1,2,3-triazole 1-oxide, and 5-nitro-2-<br />

N<br />

N<br />

N<br />

NO 2<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


(4-nitrophenyl)-2H-1,2,3-triazole 1-oxide. The final product, 2-(2,4-dinitrophenyl)-5-nitro-<br />

2H-1,2,3-triazole 1-oxide, is formed after approximately two hours. [465]<br />

Scheme 155 Nitration of 2-Methyl-2H-1,2,3-triazole [456]<br />

N<br />

N<br />

NMe<br />

O2N HNO 3, H 2SO 4<br />

HNO3, H2SO4 rt, 3 h<br />

N<br />

100<br />

N<br />

NMe<br />

oC, 10 h<br />

98% 97%<br />

2-Methyl-4-nitro-2H-1,2,3-triazole (456); Typical Procedure: [456]<br />

2-Methyl-2H-1,2,3-triazole (1 mmol), concd H 2SO 4 (1.02 mL), and fuming HNO 3 (d 1.55;<br />

0.51 mL) were stirred at rt for 3 h. H 2O (5 mL) was added. Extraction with CH 2Cl 2 (5 mL,<br />

2 ” 3 mL), drying (K 2CO 3), and removal of the solvent gave the crude product (98%). Recrystallization<br />

(ligroin) gave crystals; mp 99–1018C.<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.2 Of Metals<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.2.1 Method 1:<br />

Desilylation<br />

N-Trimethylsilyl substituents are readily removed under very mild conditions: treatment<br />

with aqueous methanol, ethanol, or aqueous acid. [172,173,476] Triazole derivatives containing<br />

both N- and C-trimethylsilyl substituents, such as 458, are selectively desilylated:<br />

methanol cleaves N-Si bonds (e.g., to give 459), while methanol/hydrochloric acid<br />

cleaves Si-C bonds as well, both with protonation (Scheme 156). [172]<br />

456<br />

Scheme 156 Selective Desilylation of 4-Phenyl-2,5-bis(trimethylsilyl)-2H-1,2,3-triazole [172]<br />

Ph<br />

TMS<br />

N<br />

N<br />

N<br />

TMS<br />

458<br />

MeOH<br />

TMS<br />

Ph<br />

459<br />

N<br />

H<br />

N<br />

N<br />

MeOH, HCl<br />

Removal of the trimethylsilyl group from 460 is readily carried out with 10% aqueous potassium<br />

hydroxide in boiling methanol to give triazoles 461 in almost quantitative yields<br />

(Scheme 157). [72] Heating 4-substituted 5-(trimethylsilyl)-1H-1,2,3-triazoles with potassium<br />

fluoride and concentrated hydrochloric acid (2 drops) in refluxing ethanol gives the 4-substituted<br />

1H-1,2,3-triazoles in high yields. [52]<br />

Scheme 157 Desilylation of 5-(Alkylsulfanyl)-5-(trimethylsilyl)-1,2,3-triazoles [72]<br />

TMS<br />

R 2 S<br />

460<br />

N<br />

N<br />

N<br />

R1 FOR PERSONAL USE ONLY<br />

516 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

KOH, H 2O, MeOH, reflux<br />

~100%<br />

R 1 = Me, Bu, Cy, CH 2CH CH 2, Bn, Ph; R 2 = Me, Bn<br />

461<br />

N<br />

N<br />

N<br />

R1 A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

R 2 S<br />

O 2N<br />

O2N<br />

Ph<br />

N<br />

457<br />

N<br />

N<br />

H<br />

NMe<br />

N<br />

N


<strong>13</strong>.<strong>13</strong>.1.4.1.3 Of Carbon Functionalities<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.3.1 Method 1:<br />

Decarboxylation<br />

Most 1,2,3-triazolecarboxylic acids lose carbon dioxide when heated above their melting<br />

point. This reaction has been known since the 19th century. [477–479] A reasonable number<br />

of examples of this transformation are found in the literature. [23,105,282,331,430,480] 1H-1,2,3-<br />

Triazole (464, R 1 = H) is obtained in 93% by heating 1H-1,2,3-triazole-4-carboxylic acid<br />

(462, R 1 = H) in an oil bath at 220 8C for a few minutes (Scheme 158). [44] 1,5-Disubstituted<br />

1,2,3-triazole-4-carboxylic acids decarboxylate slowly in boiling benzene [481] or toluene. [482]<br />

5-Amino-1-benzyl-1H-1,2,3-triazole-4-carboxylic acid is decarboxylated to the corresponding<br />

triazolamine, in 60–84% yield, by refluxing in N,N-dimethylaniline for 15 minutes.<br />

[319,428] 5-Amino-1-methyl-1H-1,2,3-triazole-4-carboxylic acid decarboxylates in refluxing<br />

butan-1-ol (3 h, 65% yield) [393] while 5-amino-1H-1,2,3-triazole-4-carboxylic acid and 5amino-1-cyclohexyl-1H-1,2,3-triazole-4-carboxylic<br />

acid are decarboxylated to the corresponding<br />

triazolamines, in 57 and 63% yield, respectively, by heating in 1 M hydrochloric<br />

acid for one hour. [428] 1H-1,2,3-Triazole-4,5-dicarboxylic acids 463 generally lose two moles<br />

of carbon dioxide on heating above their melting point (Scheme 158). [105,478] For example,<br />

1-benzyl-1H-1,2,3-triazole is obtained in essentially quantitative yield by thermal decarboxylation<br />

of 1-benzyl-1H-1,2,3-triazole-4,5-dicarboxylic acid. [105] However 1-phenyl-1H-<br />

1,2,3-triazole-4,5-dicarboxylic acid preferentially decarboxylates at the 5-position, giving<br />

the corresponding 4-carboxylic acid. [479] 1-(1-Naphthyl)-1H-1,2,3-triazole-4,5-dicarboxylic<br />

acid decarboxylates in refluxing toluene (24 h) to give 1-(1-naphthyl)-1H-1,2,3-triazole in<br />

90% yield. [106]<br />

Scheme 158 Decarboxylation of 1H-Triazolecarboxylic Acids [44,105,478]<br />

HO2C<br />

462<br />

N<br />

N<br />

N<br />

R1 N<br />

N<br />

HO2C<br />

N<br />

R<br />

463<br />

1<br />

HO2C R 1 = H, alkyl, aryl<br />

210−240 o C<br />

− CO2<br />

200 oC − 2CO2 1H-1,2,3-Triazole (464, R 1 = H); Typical Procedure: [44]<br />

1H-1,2,3-Triazole-4-carboxylic acid (462, R 1 = H; 40 g, 0.35 mol) was heated in an oil bath.<br />

At a bath temperature of 2208C a vigorous evolution of CO 2 took place. The reaction was<br />

over in a few min and the 1,2,3-triazole was distilled; yield: 22.8 g (93%); bp 205–2068C/<br />

760 Torr.<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.3.2 Method 2:<br />

Deformylation<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 517<br />

1,4-Diphenyl-1H-1,2,3-triazole-5-carbaldehyde (465) is deformylated in almost quantitative<br />

yield by treatment with sodium methoxide in refluxing methanol (Scheme 159). Under<br />

the same conditions, the isomer 1,5-diphenyl-1H-1,2,3-triazole-4-carbaldehyde is re-<br />

N<br />

N<br />

N<br />

R1 464<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


covered quantitatively. [438] Alternatively, quantitative deformylation of 465 is accomplished,<br />

on treatment with a large excess of hydrazine (100-fold) in refluxing ethanol to<br />

give 1,4-diphenyl-1H-1,2,3-triazole (466) via hydrazone 467 (Scheme 159). [438]<br />

Scheme 159 Deformylation of 1,4-Diphenyl-1H-1,2,3-triazole-4-carbaldehyde [438]<br />

Ph<br />

N<br />

N<br />

OHC<br />

N<br />

Ph<br />

465<br />

NaOMe, MeOH, reflux, 12 h<br />

93%<br />

467<br />

Ph<br />

N<br />

N<br />

N<br />

Ph<br />

H2NNH2, EtOH<br />

Ph<br />

reflux, 4 h N H2NNH2 H2NN<br />

N 100%<br />

N<br />

Ph<br />

1,4-Diphenyl-1H-1,2,3-triazole (466); Typical Procedure: [438]<br />

A soln of freshly cut Na (0.23 g, 10 mmol) and 1,4-diphenyl-1H-1,2,3-triazole-5-carbaldehyde<br />

(465; 1.00 g, 4 mmol) in anhyd MeOH (50 mL) was refluxed for 12 h in a vessel provided<br />

with a dry ice condenser, after which time 25–30 mL of liquid was distilled. On cooling<br />

the soln remaining in the reaction vessel the product was obtained; yield: 0.83 g (93%).<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.3.3 Method 3:<br />

Deacylation<br />

1- and 2-Acyltriazoles are readily hydrolyzed in water or dilute acid; the rate constants for<br />

hydrolysis and aminolysis of several N-acetyl-1,2,3-triazoles have been measured. [429] 2-<br />

Benzoyl-4-(benzoyloxy)-2H-1,2,3-triazoles 468 are hydrolyzed selectively to the corresponding<br />

4-benzoyloxy derivatives 469 (Scheme 160). [433]<br />

Scheme 160 Selective Hydrolysis of 2-Benzoyl-<br />

4-(benzoyloxy)-2H-1,2,3-triazoles [433]<br />

BzO<br />

R 1<br />

N<br />

468<br />

N<br />

NBz<br />

FOR PERSONAL USE ONLY<br />

518 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

H2O, acetone<br />

reflux, 4−11 h<br />

R1 = H 89%<br />

R1 = Ph 89%<br />

O-Aryl-1H-1,2,3-triazole-1-carboximidates 470 are hydrolyzed to the corresponding N-unsubstituted<br />

derivatives 471 by reaction with concentrated hydrochloric acid at room temperature<br />

(Scheme 161); [49] they are also hydrolyzed in aqueous sodium hydroxide (1008C,<br />

15 min).<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

BzO<br />

R 1<br />

469<br />

N<br />

H<br />

N<br />

N<br />

466


Scheme 161 Hydrolysis of O-Aryl-1H-1,2,3-triazole-<br />

1-carboximidates [49]<br />

Ar 1 O<br />

R 1<br />

N<br />

470<br />

N<br />

N<br />

HN OAr 1<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.3.4 Method 4:<br />

Dearylation<br />

HCl, 20 o C, 5 h<br />

43−91%<br />

R 1 = H, CO2Et; Ar 1 = Ph, 4-Tol, 4-MeOC6H4, 4-ClC6H4<br />

N-Aryl substituents that are activated by nitro groups are removed by nucleophilic displacement<br />

by hydrazine [483] or by potassium hydroxide. [484] Oxidative removal of a 4-aminophenyl<br />

substituent at N1 by potassium permanganate has also been reported. [485] Oxidation<br />

of 2,4-bis(2,4-diaminophenyl)-2H-1,2,3-triazole (472) gives 1H-1,2,3-triazole-4-carboxylic<br />

acid (Scheme 162). [486]<br />

Ar 1 O<br />

R 1<br />

Scheme 162 Oxidative Dearylation of 2,4-Bis(2,4-diaminophenyl)-2H-1,2,3-triazole [486]<br />

H 2N<br />

N<br />

NH 2<br />

N<br />

472<br />

N<br />

H 2N<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.3.5 Method 5:<br />

Dealkylation<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 519<br />

NH 2<br />

471<br />

N<br />

H<br />

KMnO4, NaOH<br />

100 oC N-Benzyl-1,2,3-triazoles are frequently used as precursors of N-unsubstituted triazoles.<br />

The benzyl group is removed by reduction with sodium in liquid ammonia, [105,319,432,487]<br />

catalytic hydrogenation, [90,105,457,488] or chromic acid oxidation. [280] The 4-methoxybenzyl<br />

group is readily removed by solvolysis in trifluoroacetic acid [303] at 658C or with 47% hydrobromic<br />

acid [336] at 1208C (Scheme 163). The related 3-bromo-4-methoxybenzyl group<br />

is removed by treatment with concentrated sulfuric acid at 1208C. [463] <strong>Triazoles</strong> having a<br />

2-acetoxybenzyl group in N1 are dealkylated, in low yield, simply by refluxing in piperidine<br />

or in diethanolamine. [92] 2-Benzyl-2H-1,2,3-triazole and 1-benzyl-1H-1,2,3-triazole 3oxides<br />

are N-debenzylated by treatment with iodotrimethylsilane, concentrated hydrobromic<br />

acid, or concentrated sulfuric acid. [489]<br />

80%<br />

N<br />

N<br />

HO2C<br />

N<br />

H<br />

N<br />

N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 163 Removal of a 4-Methoxybenzyl Group from<br />

1-(4-Methoxybenzyl)-1H-1,2,3-triazoles [303,336]<br />

R 1<br />

R 2<br />

N<br />

N<br />

N<br />

473<br />

OMe<br />

TFA, 60−65 oC, 1−7 h<br />

or 47% HBr, 120 oC, 3 h<br />

52−100%<br />

R 1 = H, CO 2Et; R 2 = H, OH, Cl, CN, Ph, OPh, 4-MeOC 6H 4<br />

<strong>Triazoles</strong> having a 2-(trimethylsilyl)ethoxymethyl group at N1 (e.g., 474) are dealkylated<br />

in good yields under mild conditions, namely by action of dilute aqueous hydrochloric<br />

acid or by treatment with tetrabutylammonium fluoride in tetrahydrofuran (Scheme<br />

164). [419] The cleavage of 1-cycloheptatrienyltriazoles 475 is carried out by passing hydrogen<br />

chloride through a solution of the triazole in diethyl ether (Scheme 165). [109] The<br />

cleavage is probably facilitated by the stability of the tropylium ion.<br />

Scheme 164 N-Dealkylation of 1-{[(2-Trimethylsilyl)ethoxy]methyl}-1H-1,2,3-triazoles [419]<br />

R 1<br />

N<br />

N<br />

N<br />

O<br />

R 1 = H, Bz, SPh<br />

474<br />

TMS<br />

2 M HCl, EtOH, reflux, 2 h<br />

or 1 M TBAF/THF, reflux, 4 h<br />

71−89%<br />

Scheme 165 Cleavage of 1-Cycloheptatrienyl-1H-1,2,3-triazoles [109]<br />

R 1<br />

R 1<br />

475<br />

N<br />

N<br />

N<br />

FOR PERSONAL USE ONLY<br />

520 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

HCl, EtOH<br />

rt, 30 min to 1 h<br />

R<br />

N<br />

NH<br />

N<br />

1<br />

R1 +<br />

R 1<br />

R 2<br />

R 1<br />

R 1<br />

N<br />

H<br />

R 1<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

R1 = CO2Me 34%<br />

R1 = Bz 100%<br />

1-Benzyloxy-1H-1,2,3-triazoles (e.g., 476) are debenzylated in almost quantitative yields to<br />

the corresponding 1,2,3-triazol-1-ols by catalytic hydrogenation (Scheme 166). [490]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

+<br />

Cl


Scheme 166 Catalytic Hydrogenation of 1-Benzyloxy-1,2,3-triazoles [490]<br />

R 1<br />

N<br />

N<br />

R 1 = MOM, Ac<br />

N<br />

OBn<br />

476<br />

H2, Pd/C, 0 o C, 30 min<br />

93−99%<br />

1H-1,2,3-<strong>Triazoles</strong> by Removal of the 4-Methoxybenzyl Group from <strong>Triazoles</strong> 473;<br />

General Procedure: [303]<br />

A soln of the N-protected triazole (ca. 1 g) in TFA (15–30 mL) was stirred at 60–65 8C for 1–<br />

7 h; the course of the reaction was monitored by RP–HPLC. The TFA was removed in vacuo<br />

and H 2O was added to the residue. The product was isolated from the water-insoluble material<br />

by column chromatography (CHCl 3). In the case of compounds 473 (R 1 =CO 2Et;<br />

R 2 = OH, CN) the product was obtained by evaporation of the filtered aqueous phase.<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.4 Of Heteroatoms<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.4.1 Method 1:<br />

Substitution of Halogens by Nucleophiles<br />

Heating 5-bromo-1-methyl-1H-1,2,3-triazole with ethanolic ammonia for 10 hours at<br />

1008C in a sealed tube affords the corresponding 5-amino derivative in low yield (22% of<br />

the hydrochloride). The 4-bromo-1-methyl-1H- and 4-bromo-2-methyl-2H-1,2,3-triazoles<br />

do not react with ammonia under the same conditions. [44] 5-Bromo-1-methyl-1H-1,2,3-triazole<br />

also reacts with aniline to yield the corresponding 5-anilino derivative in 54%. [44] The<br />

displacement of the chloro group in triazoles 477 (R 1 = Bn) [457,491,756] and 477 (R 1 =4-<br />

MeOC 6H 4CH 2) [303,491,756] by nucleophiles, such as cyanide, aryloxide, and arenethiolate,<br />

gives good yields of the corresponding derivatives 478 (Scheme 167). Similarly, 1,4-diphenyl-1H-1,2,3-triazole-5-carbonitrile<br />

is prepared in 75% yield from the reaction of the<br />

corresponding 5-chloro derivative with sodium cyanide in dimethyl sulfoxide (1408C,<br />

4 h). [438]<br />

Scheme 167 Displacement of a Chlorine by Nucleophiles [303,457,491,756]<br />

EtO 2C<br />

Cl<br />

477<br />

N<br />

N<br />

N<br />

R1 FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 521<br />

Nu − , DMF, 70−80 o C, 18−24 h<br />

66−82%<br />

R 1<br />

N<br />

N<br />

OH<br />

R 1 = Bn, 4-MeOC 6H 4CH 2; Nu = CN, OPh, 4-MeOC 6H 4S, 2-thienylsulfanyl<br />

Nu<br />

N<br />

EtO2C<br />

Heating 1-aryl-5-chloro-1H-1,2,3-triazoles 479 with hydrazine gives directly 5-(substituted<br />

amino) 1H-1,2,3-triazol-1,5-diamines 481 (Scheme 168). The 5-hydrazinotriazoles 480 are<br />

presumably formed first but rearrange spontaneously under the reaction conditions. [492]<br />

Heating 5-chloro-1-phenyl-1H-1,2,3-triazole with an aqueous solution of sodium hydrosulfide<br />

at 1008C in a sealed tube produces a bis(1-phenyl-1H-1,2,3-triazol-5-yl) sulfide. [404] Curiously,<br />

when the same reaction is carried out at room temperature the product is N-phenyl-1,2,3-thiadiazol-5-amine.<br />

[404]<br />

478<br />

N<br />

N<br />

N<br />

R1 for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 168 Reaction of 1-Aryl-5-chloro-1H-1,2,3-triazoles with Hydrazine [492]<br />

R<br />

N<br />

N<br />

Cl<br />

N<br />

1<br />

Ar1 479<br />

H2NNH2<br />

60−<strong>13</strong>0 o C, 2−24 h<br />

R 1 = H, Ph; Ar 1 = Ph, 4-ClC6H4, 4-BrC6H4, 4-pyridyl<br />

R<br />

N<br />

N<br />

H2NHN N<br />

1<br />

Ar1 480<br />

47−80%<br />

Ar 1 HN<br />

Attempted displacement of bromine from 4,5-dibromo-1H-1,2,3-triazole by dimethylamine<br />

under vigorous conditions (sealed tube, 260 8C, 140 h) yields only the dimethylamine<br />

salt of the dibromotriazole. [445] The halo group in 4-chloro- and 4-bromo-3-substituted<br />

1H-1,2,3-triazole 1-oxides is readily displaced by methoxide ions at 208C while the 5chloro<br />

analogues require heating at 1408C. [464] The displacement of bromine from bromoand<br />

dibromo-1,3-disubstituted 1,2,3-triazolium salts by methoxide, hydroxide, and sulfide<br />

has been studied extensively. [449,493–495] The 5-bromo-1,2-disubstituted 1,2,3-triazolium<br />

fluorosulfonates react with hydroxide or methoxide ions to form 1,2-disubstituted<br />

1,2,3-triazol-5-ones. [450] Intramolecular displacement of chlorine in 4-acyl-5-chloro-1H-<br />

1,2,3-triazoles gives access to interesting polycyclic triazole derivatives. [496,497]<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.4.2 Method 2:<br />

Substitution of Hydroxy Groups by Halogens<br />

Reaction of the 1H-1,2,3-triazol-5-ol 482 with phosphorus pentachloride in toluene at<br />

408C gives the 5-chloro derivative 483 in 65% yield (Scheme 169). [303]<br />

Scheme 169 Reaction of a 1H-1,2,3-Triazol-5-ol with Phosphorus Pentachloride [303]<br />

EtO2C<br />

HO<br />

N<br />

N<br />

N<br />

482<br />

FOR PERSONAL USE ONLY<br />

522 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

OMe<br />

PCl5, toluene<br />

40 oC, 90 min<br />

65%<br />

EtO2C<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.4.3 Method 3:<br />

Substitution of Diazonium Groups by Nucleophiles<br />

Displacement of nitrogen from diazonium salts derived from 1,2,3-triazol-4-amines and<br />

1,2,3-triazol-5-amines is achieved in the same manner as for other aromatic diazonium<br />

salts. For example, a range of 4-substituted 5-azido-1-phenyl-1H-1,2,3-triazoles 486 is prepared<br />

in high yield by diazotization of the corresponding 5-amino derivatives 484 followed<br />

by addition of excess sodium azide to the diazonium ions 485 (Scheme 170). [498,499]<br />

In a similar process, 5-amino-1H-1,2,3-triazole-4-carboxamide is converted into the 5-iodo<br />

derivative in 33%. [500] Diazotization of 1-methyl-1H-1,2,3-triazol-4-amine with sodium nitrite/hydrobromic<br />

acid gives directly the 4-bromo derivative in 41% yield. [44]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

Cl<br />

N<br />

N<br />

N<br />

483<br />

OMe<br />

R 1<br />

481<br />

N<br />

N<br />

N<br />

NH 2


Scheme 170 Substitution of Diazonium Groups by Nucleophiles [498,499]<br />

R<br />

N<br />

N<br />

H2N N<br />

1<br />

Ph<br />

484<br />

NaNO2, H2O, HCl<br />

−5 to 0 oC R 1 = Ph, XC6H4, CHO, CONH2, CN, PO(OEt)2, SO2Ph<br />

R<br />

N<br />

+ N<br />

N2<br />

N<br />

1<br />

Ph<br />

485<br />

NaN3, H2O<br />

−30 or 0 oC R<br />

N<br />

N<br />

N3 N<br />

1<br />

Ph<br />

486<br />

5-Azido-1-phenyl-1H-1,2,3-triazole-4-carbaldehyde (486,R 1 = CHO); Typical Procedure: [499]<br />

CAUTION: Sodium azide can explode on heating and is highly toxic.<br />

An aqueous soln of NaNO 2 (0.76 g, 11 mmol) was added slowly to a well stirred soln of 5amino-1-phenyl-1H-1,2,3-triazole-4-carbaldehyde<br />

(484, R 1 = CHO; 1.88 g, 10 mmol) in<br />

concd HCl (120 mL) at –5to08C. Then, a 10-fold excess of NaN 3 in H 2O was added dropwise<br />

at about –308C. After dilution with H 2O, the mixture was extracted with Et 2O and the<br />

combined extracts were dried (MgSO 4). The solvent was evaporated and the residue was<br />

chromatographed (silica gel, CH 2Cl 2). Crystallization (CHCl 3/Et 2O) gave pure compound;<br />

yield: 62%; mp 978C (dec).<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.4.4 Method 4:<br />

Deoxygenation<br />

Triazole N-oxides, such as 487, 489, and 491, are deoxygenated to triazoles (e.g., 488, 490,<br />

and 492) in almost quantitative yield by refluxing in phosphorus trichloride (Scheme<br />

171) [456,464,465] or by reduction with zinc in acidic media (Scheme 172). [466,501] 2-Aryl-2H-<br />

1,2,3-triazole 1-oxides are converted directly into 2-aryl-4-chloro-2H-1,2,3-triazoles by reaction<br />

with gaseous hydrogen chloride [466] or by heating with concentrated hydrochloric<br />

acid in a sealed tube. [465]<br />

Scheme 171 Deoxygenation of Triazole N-Oxides<br />

with Phosphorus Trichloride [456,464,465]<br />

X<br />

X = Cl, Br<br />

X<br />

N<br />

NR<br />

N<br />

1<br />

O −<br />

+<br />

487<br />

X = Cl, Br<br />

NR 1<br />

N<br />

N<br />

O −<br />

+<br />

489<br />

PCl3 reflux, 1 h<br />

83−99%<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 523<br />

PCl3 reflux, 1 h<br />

90−97%<br />

X<br />

X<br />

N<br />

488<br />

N<br />

N<br />

490<br />

NR 1<br />

NR 1<br />

N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 172 Reductive Deoxygenation of 2H-1,2,3-Triazole 1-Oxides [466,501]<br />

N<br />

NAr<br />

N<br />

1<br />

Zn, AcOH<br />

0 oC to rt, 12 h<br />

O<br />

80−95%<br />

−<br />

HO HO<br />

+<br />

491<br />

Ar 1 = Ph, 3-ClC6H4, 4-ClC6H4, 4-EtO2CC6H4<br />

<strong>13</strong>.<strong>13</strong>.1.4.1.4.5 Method 5:<br />

Dehalogenation<br />

1-Substituted 5-bromo-1H-1,2,3-triazole 3-oxides 493 are debrominated in virtually quantitative<br />

yield when heated at 100 8C for 1 hour with sodium sulfite (Scheme 173). [464]<br />

Scheme 173 Debromination of 5-Bromo-<br />

1H-1,2,3-triazole 3-Oxides [464]<br />

Br<br />

493<br />

NR 1<br />

N+<br />

O −<br />

N<br />

R 1 = Me, Ph, Bn<br />

Na2SO3, H2O reflux, 1 h<br />

97−100%<br />

1-Methyl-1H-1,2,3-triazole 3-Oxide (494,R 1 = Me); Typical Procedure: [464]<br />

5-Bromo-1-methyl-1H-1,2,3-triazole 3-oxide (493, R 1 = Me; 0.56 g, 3.1 mmol), Na 2SO 3<br />

(1.19 g, 9.4 mmol), and H 2O (5.6 mL) were refluxed for 1 h. The H 2O was removed and the<br />

residue was extracted with boiling MeCN (3 ” 10 mL). Removal of the MeCN afforded 494<br />

(R 1 = Me); yield: ~100%; mp 123–1248C.<br />

<strong>13</strong>.<strong>13</strong>.1.4.2 Addition Reactions<br />

<strong>13</strong>.<strong>13</strong>.1.4.2.1 Method 1:<br />

Conversion into N-Oxides<br />

FOR PERSONAL USE ONLY<br />

524 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

1-Substituted 1,2,3-triazole 3-oxides 496 are prepared by oxidation of 1-substituted triazoles<br />

495 with 3-chloroperoxybenzoic acid (Scheme 174). The yields are good but decrease<br />

when electron-withdrawing substituents are present, particularly if situated adjacent<br />

to the nitrogen to be oxidized. Phenyl groups at this position also lead to decreased<br />

yields. The low yield in these cases is not a serious drawback since unchanged starting<br />

material is readily recovered. [464,489] Oxidation of 1-(arylmethyl)-1H-1,2,3-triazoles with<br />

peracetic acid does not give the expected N-oxides but 1-arylmethyloxy derivatives. [91] Attempts<br />

to obtain 2-phenyl-2H-1,2,3-triazole 1-oxide by oxidation of 2-phenyl-2H-1,2,3-triazole<br />

with a range of oxygen donators are unsuccessful. [465]<br />

N+<br />

O −<br />

N<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

494<br />

N<br />

N<br />

492<br />

NR 1<br />

NAr 1


Scheme 174 Preparation of 1-Substituted 1H-1,2,3-Triazole 3-Oxides [464,489]<br />

R 3<br />

R 2<br />

N N<br />

495<br />

NR 1<br />

MCPBA, EtOAc<br />

rt, 5 d<br />

6−85%<br />

N+<br />

O −<br />

N<br />

496<br />

NR 1<br />

R 1 = Me, Ph, Bn, 4-MeOC6H4CH2; R 2 = H, Me, Cl; R 3 = H, Me, Ph, Cl, Br, OMe<br />

1-Substituted 1H-1,2,3-Triazole 3-Oxides 496; General Procedure: [464]<br />

The 1-substituted triazole 495 (1.0 g) was dissolved with heating in EtOAc (1 mL). After<br />

cooling to 208C, MCPBA (1.2 molar equiv) was added. The mixture was stirred for 120 h,<br />

diluted with CH 2Cl 2 (10 mL) and washed with aq 1 M NaOH (8 mL). The aqueous soln was<br />

extracted with CH 2Cl 2 (2 ” 8 mL). The combined organic phase was dried, the CH 2Cl 2 was<br />

removed, EtOAc (10 mL) was added, and the suspension was filtered through silica gel<br />

(2 g). Washing with further EtOAc (2 ” 10 mL) and removal of the solvent gave unchanged<br />

starting material. Subsequent extraction of the silica gel (EtOAc/MeOH 1:1; 5 ” 10 mL) and<br />

removal of the solvents gave the crude product.<br />

<strong>13</strong>.<strong>13</strong>.1.4.3 Rearrangement of Substituents<br />

Appropriately substituted 1,2,3-triazoles may undergo thermal, photochemical, acid-catalyzed,<br />

or base-catalyzed isomerizations. As shown in many of the previous methods, frequently<br />

these isomerizations occur spontaneously during the synthesis of the triazole<br />

ring. Isomerizations are also observed during reactions involving substitution or modification<br />

of substituents on a 1,2,3-triazole (see, for example, Scheme 168). The most important<br />

isomerization reaction in 1,2,3-triazoles is the Dimroth rearrangement, illustrated in<br />

Scheme 175 for 1H-1,2,3-triazol-5-amines. This type of isomerization is also observed in<br />

other heterocyclic systems. The interconversion of compounds 497 and 498 is mainly<br />

controlled by the nature of R 1 , but it is also influenced by the basicity of the solvent<br />

used. Isomers 498 are favored when R 1 is an aryl group, a large rigid group, or an electron-withdrawing<br />

group. Isomers 497 are favored when R 1 is an alkyl group. [21]<br />

Scheme 175 Dimroth Rearrangement in 1H-1,2,3-Triazol-5-amines<br />

N<br />

N<br />

H2N N<br />

R1 R2 FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 525<br />

R 2 N 2<br />

H 2N NR 1<br />

R 3<br />

R 2<br />

R 2 N 2<br />

R 1 HN NH<br />

R 1 HN<br />

497 498<br />

This type of isomerization is also observed in 1-substituted 4-(iminomethyl)-1H-1,2,3-triazoles<br />

(Scheme 176). For example, imines 500 and 501 (R 1 = H) are interconvertible when<br />

heated in dimethyl sulfoxide at 808C. The equilibrium position depends on the electronic<br />

properties of the R 2 substituent, favoring 501 when R 2 is alkyl, benzyl, and 4-methoxyphenyl,<br />

and 500 when R 2 is 4-chlorophenyl and 4-nitrophenyl. [502] An interesting application<br />

of this isomerization is the synthesis of 1-alkyl-1H-1,2,3-triazole-4-carbaldehydes 502<br />

from 1-phenyl-1H-1,2,3-triazole-4-carbaldehyde (499, R 1 = H). [502] This type of isomerization<br />

is also applied to the conversion of 1-phenyl-1H-1,2,3-triazole-4-carbaldehydes 499<br />

(R 1 = Me, Ph) into 4-oxo-substituted 1-alkyl-1H-1,2,3-triazoles 502 (R 1 = Me, Ph). [503]<br />

R 2<br />

N<br />

H<br />

N<br />

N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 176 Isomerization of 1-Substituted 4-(Iminomethyl)-1H-1,2,3-triazoles [502,503]<br />

R 2 N<br />

R 1<br />

O<br />

R 1<br />

H<br />

N<br />

N<br />

N<br />

Ph<br />

80−<strong>13</strong>0 o C R 2 N<br />

H<br />

500 501<br />

H<br />

499<br />

R 2 NH 2<br />

N<br />

N<br />

N<br />

Ph<br />

N 2<br />

R 1 NPh<br />

R 1 = H, Me, Ph; R 2 = Me, Et, iPr, t-Bu, Bn, 4-MeOC 6H 4, 4-ClC 6H 4, 4-O 2NC 6H 4<br />

PhN<br />

O<br />

R 1<br />

R 1<br />

N<br />

N<br />

N<br />

R2 H2O<br />

HCO2H or silica gel<br />

N<br />

N<br />

N<br />

R<br />

502<br />

2<br />

Despite the failure of hydrazone and oxime derivatives 500 (R 1 =H;R 2 =NH 2, NHPh, OH)<br />

to isomerize to 501, [502] phenylhydrazone 504 (prepared from aldehyde 503) are converted<br />

into derivative 505 (Scheme 177). Similarly, phenylhydrazone 507 (R 1 = NHPh) and oxime<br />

507 (R 1 = OH) are converted into amides 508. [504] Triazole 506 [and 1-benzyl, 1-(4-chlorobenzyl),<br />

and 1-(4-methoxybenzyl) analogues] are converted into carboxamides of type<br />

508 (R 1 = Me, Et) by reaction with methylamine or ethylamine followed by rearrangement<br />

of the resulting imines on heating above their melting points. [302]<br />

Scheme 177 Isomerization of 1-Phenyl-1H-1,2,3-triazoles Bearing a Hydrazone or<br />

Oxime Function at the 4-Position [504]<br />

O<br />

H 2N<br />

O<br />

Cl<br />

H<br />

N<br />

N<br />

N<br />

Ph<br />

PhNHNH2 EtOH<br />

86%<br />

PhHN<br />

N<br />

H 2N<br />

N<br />

N<br />

N<br />

Ph<br />

503 504<br />

505<br />

H<br />

N<br />

N<br />

N<br />

Ph<br />

FOR PERSONAL USE ONLY<br />

526 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

R 1 NH 2<br />

R1 = NHPh 53%<br />

R1 = OH 56%<br />

R 1 N<br />

Cl<br />

H<br />

H<br />

N<br />

N<br />

N<br />

Ph<br />

CHCl3 reflux, 2 d<br />

52%<br />

DMSO<br />

70 oC, 2−3 d<br />

R1 = NHPh 69%<br />

R1 = OH 59%<br />

506 507<br />

508<br />

PhN<br />

O<br />

NH 2<br />

N<br />

N<br />

N<br />

NHPh<br />

Another interesting type of isomerization in 1,2,3-triazoles corresponds to the migration<br />

of alkyl groups between nitrogens. This is not a very common transformation, but some<br />

examples have been reported. [505,506,757] Triazole 509, for example, isomerizes to 510 when<br />

treated with boron trifluoride (Scheme 178). [506,757]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

NHPh<br />

N<br />

N<br />

N<br />

R1


Scheme 178 Isomerization of 1-Alkyl-1H-1,2,3-triazoles to<br />

2-Alkyl-2H-1,2,3-triazoles [506,757]<br />

MeO2C<br />

MeO 2C<br />

509<br />

N<br />

N<br />

BOM<br />

N<br />

BF3 OEt2, Et2O 20 oC, 36 h<br />

82%<br />

MeO2C<br />

MeO 2C<br />

Migration of alkyl groups is also observed in 1,3-disubstituted 1,2,3-triazolium-4-thiolates<br />

511. Heating these compounds in an organic solvent at 1808C results in transfer of alkyl<br />

groups with the formation of (alkylsulfanyl)-1,2,3-triazoles (Scheme 179). [495,507] When R 1<br />

and R 2 are different alkyl groups, four compounds 512–515 are obtained. The formation<br />

of compounds 514 and 515 clearly indicates that this is an intermolecular reaction. If 511<br />

has only one alkyl group, only one product is formed. For example, 1-methyl-3-phenyl-<br />

1,2,3-triazolium-4-thiolate (511,R 1 = Me; R 2 = Ph) is quantitatively converted into 5-(methylsulfanyl)-1-phenyl-1H-1,2,3-triazole<br />

(5<strong>13</strong>, R 1 = Me; R 2 = Ph). [495]<br />

N<br />

510<br />

N<br />

N<br />

BOM<br />

Scheme 179 Migration of Alkyl Groups in 1,3-Disubstituted 1,2,3-Triazolium-<br />

4-thiolates [495,507]<br />

− S<br />

NR2 N<br />

N<br />

R1 +<br />

511<br />

180 o C<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.1 Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-<strong>Triazoles</strong> 527<br />

R 2 S<br />

N<br />

N<br />

N<br />

R1 512<br />

1-Ethyl-1H-1,2,3-triazole-4-carbaldehyde (502,R 1 =H;R 2 = Et); Typical Procedure: [502]<br />

To a soln of 499 (R 1 = H; 1 g, 5.8 mmol) in MeOH (20 mL), was added 70% aq EtNH 2 (0.57 mL,<br />

1.5 equiv), and the whole was stirred overnight at rt. The soln was concentrated and the<br />

resulting precipitate 500 (R 1 =H;R 2 = Et) was collected by filtration and dried; yield: 0.6 g<br />

(52%); mp 358C. This compound (0.6 g, 3 mmol) was heated overnight in DMSO (2 mL) at<br />

808C. The soln was poured into ice water and the precipitate 501 (R 1 =H;R 2 = Et) was collected;<br />

yield: 0.5 g (83%); mp 838C. Compound 501 (0.5 g, 2.5 mmol) was dissolved in a<br />

mixture of H 2O/MeOH (1:1; 20 mL) containing 10% of HCO 2H and the soln was heated overnight<br />

at 808C. After addition of H 2O (20 mL), the soln was extracted with CHCl 3, and the<br />

extracts were washed with H 2O and dried (MgSO 4). The solvent was removed and the resulting<br />

oil (0.3 g) was chromatographed (silica gel, CH 2Cl 2/Et 2O 9:1) to give 502 (R 1 =H;<br />

R 2 = Et); yield: 0.15 g (48%).<br />

+<br />

R 1 S<br />

N<br />

5<strong>13</strong><br />

NR 2<br />

N<br />

+<br />

R 1 S<br />

N<br />

N<br />

N<br />

R1 514<br />

+<br />

R 2 S<br />

N<br />

515<br />

NR 2<br />

N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


<strong>13</strong>.<strong>13</strong>.2 <strong>Product</strong> Subclass 2:<br />

Monocyclic 2-Substituted 1,2,3-<strong>Triazoles</strong><br />

<strong>13</strong>.<strong>13</strong>.2.1 Synthesis by Ring-Closure Reactions<br />

<strong>13</strong>.<strong>13</strong>.2.1.1 By Formation of One N-N and One N-C Bond<br />

<strong>13</strong>.<strong>13</strong>.2.1.1.1 Fragments C-C-N-N and N<br />

<strong>13</strong>.<strong>13</strong>.2.1.1.1.1 Method 1:<br />

From N-Aminophthalimide and Conjugated Azoalkenes<br />

2-(Phenylazo)propene (517, R 1 = Me; R 2 = H) and 1-(phenylazo)cyclopentene [517,<br />

R 1 ,R 2 = (CH 2) 3] react with N-aminophthalimide (516), in the presence of lead(IV) acetate,<br />

to give 2-phenyl-2H-1,2,3-triazoles 520 in moderate yields (Scheme 180). [508] A probable<br />

mechanism for this reaction involves the initial formation of the azimine intermediate<br />

518, 1,5-electrocyclization to the 2,5-dihydro-1H-triazole 519, and, finally, 1,2-elimination<br />

of phthalimide.<br />

Scheme 180 2H-1,2,3-<strong>Triazoles</strong> from N-Aminophthalimide and Conjugated Azoalkenes [508]<br />

O<br />

N<br />

NH2 +<br />

Ph<br />

N<br />

N<br />

O<br />

R1 516 517<br />

O Ph<br />

+<br />

N N<br />

N<br />

O<br />

N<br />

−<br />

R1 518<br />

<strong>13</strong>.<strong>13</strong>.2.1.2 By Formation of Two N-C Bonds<br />

<strong>13</strong>.<strong>13</strong>.2.1.2.1 Fragments N-N-N and C-C<br />

FOR PERSONAL USE ONLY<br />

528 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

H<br />

R 2<br />

H<br />

R 2<br />

Pb(OAc) 4<br />

K 2CO 3, CH 2Cl 2<br />

−10 o C, 40 min<br />

R 2<br />

520<br />

R 1<br />

N<br />

N<br />

R<br />

N<br />

N<br />

NPh<br />

1<br />

O<br />

R N 2<br />

NPh<br />

+<br />

R1 = Me; R2 = H 41%<br />

R1 ,R2 = (CH2) 3 70%<br />

<strong>13</strong>.<strong>13</strong>.2.1.2.1.1 Method 1:<br />

Addition of Azidotrimethylsilane and Azidotributylstannane to Alkynes<br />

Azidotrimethylsilane and azidotributylstannane undergo addition to alkynes to give 2-<br />

(trimethylsilyl)- or 2-(tributylstannyl)-2H-1,2,3-triazoles, resulting from the isomerization<br />

of the initially formed 1-substituted derivatives These reactions are discussed in Section<br />

<strong>13</strong>.<strong>13</strong>.1.1.3.1.1.6 (Schemes 59 and 60). A palladium-catalyzed three-component coupling<br />

reaction of azidotrimethylsilane, alkynes, and allyl methyl carbonate has been described.<br />

[509] It affords selectively 2-allyl-2H-1,2,3-triazoles 521 in low to moderate yields<br />

(Scheme 181). A ð-allylpalladium azide complex, which undergoes the 1,3-dipolar cycloaddition<br />

with the alkyne, has been proposed as a key intermediate in this reaction.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

519<br />

O<br />

O<br />

O<br />

NH


Scheme 181 2-Allyl-2H-1,2,3-triazoles from Azidotrimethylsilane, Alkynes, and<br />

Allyl Methyl Carbonate [509]<br />

TMSN 3 +<br />

R 1<br />

R 2<br />

+<br />

OCO 2Me<br />

R1 = H, Et, t-Bu, cyclohex-1-enyl; R2 = Ac<br />

R1 = H, (CH2)5Me, CO2Me; R2 = CO2Me<br />

R1 = (CH2)4Me; R2 = CHO<br />

R1 = Ph; R2 = CN, CHO, Ac, CO2Me, PO(OEt)2, SO2Ph, NEt2<br />

2.5 mol% Pd2(dba) 3, CHCl3 10 mol% dppp, EtOAc<br />

100 oC, 2−24 h<br />

15−66%<br />

<strong>13</strong>.<strong>13</strong>.2.1.2.1.2 Method 2:<br />

Addition of Acyl or Alkoxycarbonyl Azides to Æ-Acylphosphorus Ylides<br />

Acyl and alkoxycarbonyl azides undergo addition to Æ-acylphosphorus ylides 522 to yield<br />

2-substituted 2H-1,2,3-triazoles, which result from the spontaneous isomerization of the<br />

initially formed 1-substituted triazoles (Scheme 182). For the discussion of this type of reaction<br />

and examples see Section <strong>13</strong>.<strong>13</strong>.1.1.3.1.2.5 (Scheme 76).<br />

Scheme 182 2H-1,2,3-<strong>Triazoles</strong> from Acyl or Alkoxycarbonyl Azides and<br />

Æ-Acylphosphorus Ylides [229,231]<br />

R 1 N 3 +<br />

R 1 = acyl, CO2Et<br />

R3 +<br />

PPh3 R 2 O −<br />

522<br />

− Ph 3PO<br />

<strong>13</strong>.<strong>13</strong>.2.1.3 By Formation of One N-N Bond<br />

<strong>13</strong>.<strong>13</strong>.2.1.3.1 Fragment N-N-C-C-N<br />

R<br />

N<br />

N<br />

N<br />

3<br />

R2 R1 <strong>13</strong>.<strong>13</strong>.2.1.3.1.1 Method 1:<br />

Cyclization of Æ-Hydroxyimino Hydrazones<br />

The intramolecular elimination of water from Æ-hydroxyimino hydrazones is a general<br />

method for the synthesis of 2H-1,2,3-triazoles (Scheme 183). Generally acetic anhydride<br />

[510–514] is the reagent of choice, but other reagents are also used, namely phosphorus<br />

pentachloride, [515] urea, [516] or bromine. [5<strong>13</strong>] As an example, 2H-1,2,3-triazole 524<br />

(R 1 =R 2 = Ph; R 3 = 4-O 2NC 6H 4) is obtained in 57% yield by refluxing the corresponding hydroxyimino<br />

hydrazone 523 with acetic anhydride for 40 minutes. [289]<br />

Scheme 183 Cyclization of Æ-Hydroxyimino Hydrazones [289]<br />

R 2 N<br />

R 1 NOH<br />

523<br />

NHR 3<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.2 Monocyclic 2-Substituted 1,2,3-<strong>Triazoles</strong> 529<br />

Ac2O, heat or PCl5, heat<br />

or urea, heat or Br2, heat<br />

This method has been applied to the synthesis of a range of 2,2¢-diaryl-5,5¢-dimethyl-4,4¢bi-2H-1,2,3-triazoles<br />

526 from Æ-hydroxyimino hydrazones 525 (Scheme 184). [517]<br />

R 1<br />

R 2<br />

N<br />

524<br />

N<br />

NR 3<br />

R 2<br />

R 1<br />

R 2<br />

N<br />

N<br />

N<br />

521<br />

R 3<br />

N<br />

N<br />

NR 1<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 184 Synthesis of 4,4¢-Bi-2H-1,2,3-triazoles [517]<br />

N<br />

PhN<br />

N<br />

N<br />

NOH<br />

525<br />

N<br />

H<br />

X = H, 2-Cl, 3-Cl, 4-Cl, 4-NO2, 2-Br, 3-Br, 4-Br<br />

X<br />

PCl 5, CHCl 3<br />

rt, 1 h<br />

55−68%<br />

N<br />

PhN<br />

N<br />

Another interesting example of the application of this method is the synthesis of 2-aryl-<br />

2H-1,2,3-triazoles starting from dehydro-ascorbic acid 527 (Scheme 185). On boiling with<br />

acetic anhydride, the dehydro-ascorbic acid 3-(hydroxyimino)-2-arylhydrazones 528 are<br />

converted into the acetylated triazole derivatives 529, whereas the unacetylated triazole<br />

derivatives 530 are obtained upon reaction with bromine in water. [512] Treatment of triazole<br />

529 (Ar 1 = Ph) with ammonia gives the 2H-1,2,3-triazole-4-carboxamide 531 in quantitative<br />

yield. [512] Compound 529 (Ar 1 = 3-BrC 6H 4) is obtained in 85% yield by treating the<br />

corresponding 3-(hydroxyimino)-2-arylhydrazone 528 with acetic anhydride in pyridine<br />

overnight at room temperature. [514]<br />

N<br />

N<br />

N<br />

Scheme 185 Cyclization of Dehydro-ascorbic Acid 3-(Hydroxyimino)-<br />

2-arylhydrazones [512,514]<br />

HO<br />

HO<br />

O<br />

527<br />

O<br />

O<br />

O<br />

Ac2O reflux, 1 h<br />

Br2, H2O rt, 3 h<br />

2 steps<br />

AcO<br />

AcO<br />

Ar 1 = Ph, 4-ClC 6H 4, 3-BrC 6H 4, 4-Tol, 4-MeOC 6H 4<br />

FOR PERSONAL USE ONLY<br />

530 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

HO<br />

HO<br />

HO<br />

O<br />

HO<br />

HON<br />

O<br />

528<br />

O<br />

Ar 1 HN<br />

N<br />

O<br />

526<br />

N N<br />

N<br />

Ar1 Ar<br />

N N<br />

N<br />

Ph<br />

529 531<br />

1 = Ph<br />

100%<br />

N N<br />

N<br />

Ar1 530<br />

O<br />

O<br />

NH3, MeOH<br />

rt, overnight<br />

HO<br />

HO<br />

X<br />

OH<br />

CONH 2<br />

If the Æ-hydroxyimino hydrazone is N-unsubstituted, dehydration with acetic anhydride<br />

gives a 2-acetyl-2H-1,2,3-triazole, which is readily hydrolyzed to the corresponding N-unsubstituted<br />

triazole (Scheme 186) (see also Section <strong>13</strong>.<strong>13</strong>.1.1.4.1.3). [510]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 186 Cyclization of N-Unsubstituted Æ-Hydroxyimino Hydrazones [510]<br />

R 1 N<br />

R 2 NOH<br />

R<br />

N<br />

1<br />

R<br />

NH2 Ac2O N<br />

1<br />

H2O<br />

R 2<br />

Dehydration of amide derivatives 532 in refluxing thionyl chloride gives 2-phenyl-2H-<br />

1,2,3-triazole-4-carboxamides 533 in good yields (Scheme 187). [518]<br />

N<br />

Scheme 187 Cyclization of Æ-Hydroxyimino Hydrazones with Thionyl Chloride [518]<br />

Ar 1 HN<br />

Ar 2 N<br />

O<br />

532<br />

NOH<br />

NHPh<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.2 Monocyclic 2-Substituted 1,2,3-<strong>Triazoles</strong> 531<br />

SOCl2<br />

reflux, 3 h<br />

60−80%<br />

NAc<br />

Ar 1 HN<br />

Ar 2<br />

O<br />

533<br />

N<br />

N<br />

NPh<br />

Ar 1 = Ph, 4-Tol, 2-MeOC6H4, 2-ClC6H4, 4-ClC6H4, 2,4-Me2C6H3; Ar 2 = Ph, 4-ClC6H4, 4-O2NC6H4<br />

In acetic acid, the nitro(arylhydrazono)acetaldehyde oximes 534 are converted into the 2aryl-2H-1,2,3-triazol-4-ol<br />

1-oxides 536, probably via the intermediate 535 (Scheme<br />

188). [466,501]<br />

Scheme 188 Cyclization of Nitro(arylhydrazono)acetaldehyde Oximes [466,501]<br />

O2N N<br />

N<br />

NOH<br />

NAr<br />

N<br />

1<br />

NHAr1 AcOH<br />

rt, 12 h<br />

50−62%<br />

O<br />

534 536<br />

−<br />

O N<br />

NAr1 HO<br />

N +<br />

O<br />

535<br />

Ar 1 = Ph, 4-Tol, 4-MeOC 6H 4, 2-ClC 6H 4, 3-ClC 6H 4, 4-ClC 6H 4, 4-EtO 2CC 6H 4<br />

Oxidation of (arylhydrazono)acetaldehyde oximes 537 with copper(II) sulfate [465,466,519] in<br />

aqueous pyridine, with mercury(II) oxide, [520] or with N-iodosuccinimide [521] leads to the<br />

formation of 2-aryl-2H-1,2,3-triazole 1-oxides 538 (Scheme 189).<br />

Scheme 189 Oxidation of (Arylhydrazono)acetaldehyde Oximes with Copper(II) Sulfate [519]<br />

R<br />

NOH<br />

1 N<br />

N<br />

NAr<br />

N<br />

1<br />

NHAr1 CuSO4, py, H2O reflux, 30 min or rt, overnight<br />

O<br />

537 538<br />

−<br />

R<br />

+<br />

1<br />

R1 = H; Ar1 = Ph 80%<br />

R1 = Me; Ar1 = Ph 90%<br />

R1 = Me; Ar1 = 2,6-Cl2-4-F3CC6H2 90%<br />

Cyclization of the oxomalonaldehyde derivatives 540 and 541 [produced from bis(oxyimino)<br />

hydrazone 539] with cesium carbonate in tetrahydrofuran affords 2-aryl-2H-1,2,3-triazoles<br />

542 and 543 in moderate to excellent yields (Scheme 190). [519,522,523] These triazoles<br />

are hydrolyzed to the 4-formyl derivative or converted into a range of other interesting 4substituted<br />

2-aryltriazoles.<br />

R 2<br />

N<br />

H<br />

N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 190 Oxidation of Æ-Acetyloxyimino Arylhydrazones with<br />

Cesium Carbonate [519,522,523]<br />

H<br />

NOH<br />

H<br />

539<br />

N NHAr 1<br />

NOH<br />

Ac2O, rt<br />

30 min<br />

H<br />

Ac2O, heat<br />

5−10 min H<br />

NOAc<br />

N<br />

1 NHAr<br />

H<br />

540<br />

NOH<br />

NOAc<br />

N<br />

NHAr1 H<br />

NOAc<br />

541<br />

Cs2CO3 THF<br />

rt, 1 h<br />

26−82%<br />

Cs 2CO 3<br />

THF, rt<br />

72−95%<br />

HON<br />

AcON<br />

Ar 1 = Ph, 2-FC6H4, 2-ClC6H4, 4-ClC6H4, 2-BrC6H4, 2,6-Cl2C6H3, 3,4-Cl2C6H3, 2,4,6-Cl3C6H2, 2,6-Cl2-4-F3CC6H2<br />

Oxidation of both hydroxyimino arylhydrazones 544 and 545 with lead(IV) acetate yields<br />

2-aryl-2H-1,2,3-triazole 1-oxides 546 in moderate to excellent yields (Scheme 191). [524]<br />

Scheme 191 Oxidation of Æ-Hydroxyimino Arylhydrazones with Lead(IV) Acetate [524]<br />

R 2<br />

N<br />

R 1<br />

NHAr 1<br />

544<br />

NOH<br />

O<br />

FOR PERSONAL USE ONLY<br />

532 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

Ar1NHNH2, MeOH, H2O AcOH (cat.), 0 oC, 20−30 min<br />

Pb(OAc)4<br />

CH2Cl2, rt<br />

45−72%<br />

R 1 = R 2 = Me, Ph; Ar 1 = Ph, 4-Tol, 4-ClC6H4, 4-O2NC6H4<br />

<strong>13</strong>.<strong>13</strong>.2.1.3.1.2 Method 2:<br />

Cyclization of 1,2-Diketone Bis(arylhydrazones)<br />

R 2<br />

N<br />

R 1<br />

23−98%<br />

NHAr 1<br />

546<br />

NOH<br />

N<br />

545<br />

NHAr 1<br />

Pb(OAc) 4<br />

CH 2Cl 2, rt<br />

N<br />

NAr<br />

N<br />

1<br />

O −<br />

R<br />

+<br />

2<br />

R1 O<br />

The oxidation of 1,2-diketone bis(arylhydrazones) to 2-aryl-2H-1,2,3-triazoles (Scheme<br />

192) is a very general reaction and it has been used extensively for the preparation of sugar<br />

“osotriazoles” from osazones. This subject has been reviewed. [525] The nitrogen eliminated<br />

is that attached to the 1-position for sugar osazones; a possible mechanism for the<br />

reaction is shown in Scheme 192. [3] Many oxidizing agents have been used, especially copper<br />

sulfate and other copper(II) salts, [526–529] and nitrous acid. [530,531] As an example, oxidation<br />

of the phenyl-D-glucosazone [547, R 1 =H;R 2 = (CHOH) 3CH 2OH] with copper(II) sulfate<br />

gives the corresponding triazole 550 in 59% yield. [526–528] In a similar way, glyoxal is converted<br />

into 2-phenyl-2H-1,2,3-triazole in 59% overall yield via osazone 547 (R 1 =R 2 = H). [472]<br />

Oxidation of the tetra-O-acetylphenylosazones from D-glucose, D-galactose, and L-sorbose<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

542<br />

543<br />

N<br />

N<br />

N<br />

N<br />

NAr 1<br />

NAr 1


with nitrous acid gives the corresponding 2-phenyl-2H-1,2,3-triazole tetraacetates in approximately<br />

80% yield. [530]<br />

Scheme 192 Oxidation of 1,2-Diketone Bis(phenylhydrazones) [525]<br />

R<br />

N<br />

2 N<br />

NHPh oxidant<br />

R<br />

N<br />

NPh<br />

N+<br />

NPh<br />

547 549<br />

2<br />

R2 N<br />

NPh<br />

N NPh<br />

R<br />

548<br />

1<br />

NHPh<br />

R1 R1 −<br />

R 1 = R 2 = H, alkyl, aryl<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.2 Monocyclic 2-Substituted 1,2,3-<strong>Triazoles</strong> 533<br />

R 1<br />

R 2<br />

N<br />

NPh<br />

N<br />

550<br />

This type of reaction can be extended to 1,2-diketone bis(phenylhydrazones) 547<br />

(R 1 =R 2 = alkyl or aryl). Oxidation of these compounds with potassium dichromate in acetic<br />

acid, [532] nickel peroxide, [533] manganese(IV) oxide, [534] or with other oxidants yields a<br />

variety of products; the products formed depend upon the reaction conditions. In some<br />

cases, 2-substituted 2H-1,2,3-triazoles are obtained in low to moderate yields. As indicated<br />

in Scheme 192, a probable mechanism for the formation of triazoles involves the oxidation<br />

of the bis(phenylhydrazones) to bis(phenylazo)ethene derivatives 548, which can exist<br />

in the mesoionic form 549. [535,536] Loss of phenylnitrene from this species yields triazoles<br />

550. The bis(phenylazo)ethene derivatives 548 are isolated in high yields, [533] and<br />

can be converted into 2-phenyl-2H-1,2,3-triazoles by acid treatment [537] or by irradiation<br />

with UV light. [538] Mesoionic species 549 have been trapped by dipolarophiles in 1,3-dipolar<br />

cycloadditions to yield new interesting 1,2,3-triazole derivatives. [535,539,540] N-Benzoyl<br />

analogues of mesoionic species 549 are isolated in good yields as stable crystalline compounds.<br />

[541] 1,2-Bis(arylazo)cycloalkenes (548,R 1 ,R 2 = ring with six or more carbons) when<br />

heated or treated with acid undergo intramolecular rearrangements, via 1,2,3-triazolium<br />

imide 1,3-dipoles of type 549, to yield 2-aryl-2H-1,2,3-triazoles bearing a 2-aminoaryl<br />

group in the cycloalkene ring. [542]<br />

1,2-Diketone bis(hydrazones) also cyclize to 1,2,3-triazoles solely by thermolysis:<br />

heating biacetyl bis(hydrazone) at 1708C gives 4,5-dimethyl-1H-1,2,3-triazole (25%) and<br />

heating biacetyl bis(phenylhydrazone) at 300 8C yields 2-phenyl-4,5-dimethyl-2H-1,2,3-triazole<br />

in 51% yield. [543]<br />

Oxidation of phenylhydrazones of aromatic aldehydes 551 with manganese(IV) oxide<br />

in refluxing benzene also affords triazoles 553 and other isolated products (Scheme<br />

193). [534] The dimerization of the phenylhydrazones to 552 appears to be the key step in<br />

this transformation. <strong>Triazoles</strong> 553 are obtained in low to moderate yields. The oxidation<br />

of arylhydrazones derived from 2-acetylpyridine and 2-benzoylpyridine with lead(IV) acetate<br />

leads to the formation of fused 1,2,3-triazolium systems. [544]<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 193 Oxidation of Phenylhydrazones of Aromatic Aldehydes [534]<br />

Ar 1<br />

N NHPh<br />

H<br />

551<br />

Ar 1<br />

Ar 1<br />

N<br />

N<br />

552<br />

MnO2, benzene<br />

reflux, 4−6 h<br />

7−44%<br />

NPh<br />

NPh<br />

<strong>13</strong>.<strong>13</strong>.2.1.3.1.3 Method 3:<br />

Cyclization of Æ-Imino Hydrazones<br />

Ar 1<br />

Ar 1<br />

Ar 1<br />

N NPh<br />

H<br />

N<br />

N<br />

NHPh<br />

NHPh<br />

Ar 1<br />

Ar 1<br />

Ar 1<br />

N NPh<br />

H<br />

N<br />

N<br />

NPh<br />

553 Ar1 = Ph 44%<br />

Ar1 = 4-Tol 15%<br />

Ar1 = 4-MeOC6H4 7%<br />

The oxidative cyclization of 1,2-diketone imine hydrazones 554 with ammoniacal copper<br />

sulfate yields 2H-1,2,3-triazoles 555. [545] N-Substituted imines 556 give 1,2-disubstituted<br />

triazolium salts 557 when N-bromosuccinimide is used as the oxidant (Scheme 194). [546]<br />

Scheme 194 Oxidative Cyclization of Æ-Imino Hydrazones [545,546]<br />

R 2<br />

R 1<br />

N<br />

554<br />

NH<br />

NHR 3<br />

CuSO 4, NH 3<br />

R 1 = R 3 = alkyl, aryl; R 2 = Ac, aroyl, CO 2Et, CN<br />

R 2<br />

R 1<br />

N<br />

NPh<br />

556<br />

NHAr 1<br />

R 1 = alkyl, aryl; R 2 = alkyl, CN<br />

NBS<br />

R 1<br />

R 2<br />

N<br />

555<br />

N<br />

NR 3<br />

N<br />

NAr<br />

N<br />

1<br />

R2 R1 Ph +<br />

A related reaction is the oxidative cyclization of (carbamimidoyl)(phenylazo)acetamide<br />

558 (X = O) and (phenylazo)malonimidamide 558 (X = NH) to triazoles 559 (Scheme<br />

195). [547]<br />

Scheme 195 Oxidative Cyclization of (Carbamimidoyl)(phenylazo)acetamide and<br />

(Phenylazo)malonimidamide [547]<br />

H2N<br />

X<br />

N<br />

HN NH 2<br />

558<br />

NPh<br />

FOR PERSONAL USE ONLY<br />

534 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

557<br />

Br −<br />

CuSO4, NH4OH, rt, 24 h, then 100 oC, 3 h<br />

or CuSO4, py, 100 oC, 18 h<br />

X = O 64%<br />

X = NH 24%<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

H2N<br />

H 2N<br />

X<br />

559<br />

N<br />

N<br />

NPh


<strong>13</strong>.<strong>13</strong>.2.1.3.1.4 Method 4:<br />

Cyclization of 1,2-Bis(N-alkoxy-N-nitrosoamines)<br />

1,2-Bis(N-alkoxy-N-nitrosoamines) 560 are smoothly converted into 1-alkoxy-4,5-dihydro-<br />

1H-1,2,3-triazole 2-oxides 561, in high yields, under reflux in methanol. Reaction of these<br />

compounds with sodium methoxide affords 4H-1,2,3-triazole 2-oxides 562 or 2H-1,2,3-triazol-2-ols<br />

563 (Scheme 196). [548,549]<br />

Scheme 196 Cyclization of 1,2-Bis(N-alkoxy-N-nitrosoamines) [548,549]<br />

R 1<br />

R 2<br />

R 3<br />

R 4<br />

OR 5<br />

N<br />

560<br />

NO<br />

N NO<br />

OR 5<br />

MeOH, reflux<br />

0.5−5.5 h<br />

78−98%<br />

<strong>13</strong>.<strong>13</strong>.2.2 Synthesis by Ring Transformation<br />

R 3<br />

R 2<br />

R 4<br />

R 1<br />

N<br />

N<br />

N<br />

O −<br />

+<br />

561<br />

OR 5<br />

NaOMe<br />

MeOH<br />

rt, 48 h<br />

R1 = H<br />

<strong>13</strong>−35%<br />

NaOMe<br />

MeOH<br />

rt, 3 h<br />

R1 = R4 = H<br />

65−86%<br />

R 3<br />

R 4<br />

R 2<br />

N<br />

N<br />

N<br />

O −<br />

+<br />

562<br />

R<br />

N<br />

N<br />

NOH<br />

563<br />

2<br />

R3 Thermal or basic treatment of arylhydrazones 565 of 3-acylisoxazoles 564 affords 4-acyl-<br />

2-aryl-2H-1,2,3-triazoles 566 (Scheme 197). For example, hydrazone 565 (R 1 =R 2 = Me;<br />

Ar 1 = 2-ClC 6H 4) is converted into the corresponding triazole 566 by warming it to fusion<br />

in a test tube plunged in a silicone oil bath at ca. 2408C. [517] Hydrazone 565 (R 1 =R 2 = Ph;<br />

Ar 1 = 4-O 2NC 6H 4) is converted quantitatively into the corresponding triazole 566 when it<br />

is melted in the presence of copper powder or by treatment with ammonia. [550] Copper(II)<br />

acetate can also be used as catalyst for this transformation. [551] The kinetics of the transformation<br />

of hydrazones 565 into triazoles 566 catalyzed by amines [552] or in the presence<br />

of borate buffers, [553] has been studied.<br />

Scheme 197 Synthesis of 2-Aryl-2H-1,2,3-triazoles from Arylhydrazones of<br />

3-Acylisoxazoles [517,550]<br />

R 1<br />

564<br />

O<br />

N<br />

O<br />

R 2<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.2 Monocyclic 2-Substituted 1,2,3-<strong>Triazoles</strong> 535<br />

Ar 1 NHNH2<br />

R 1<br />

R 2<br />

N<br />

O<br />

N<br />

NHAr 1<br />

4-(Arylazo)isoxazol-5-ones 568 (produced from 4-arylisoxazol-5-ones 567) are converted<br />

into 2-aryl-2H-1,2,3-triazoles 569 when refluxed in propan-2-ol, in the presence of a tertiary<br />

amine, or in 1-(dimethylamino)propan-2-ol (Scheme 198). [554]<br />

565<br />

R 1<br />

O<br />

R 2<br />

566<br />

N<br />

N<br />

NAr 1<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 198 Synthesis of 2-Aryl-2H-1,2,3-triazoles from 4-(Arylazo)isoxazol-5(4H)-ones [554]<br />

R 1 R 2<br />

N<br />

O<br />

567<br />

O<br />

Ar1N2 Cl − +<br />

R 1<br />

R 2<br />

N<br />

O<br />

568<br />

N<br />

NAr<br />

O<br />

1<br />

R 1 = Me, Ph, XC 6H 4; R 2 = Me, Bn; Ar 1 = XC 6H 4, naphthyl, heteroaryl<br />

Et3N, iPrOH<br />

reflux, 3 h<br />

Arylhydrazones of 3-acyl-1,2,4-oxadiazoles yield 4-(acylamino)-2-aryl-2H-1,2,3-triazoles<br />

571 by thermal or basic rearrangement (Scheme 199). For example, hydrazone 570<br />

(R 1 = 3-O 2NC 6H 4;Ar 1 = 4-O 2NC 6H 4) is converted into the corresponding triazole in 60% yield<br />

when it is melted in the presence of copper powder. [550] The same triazole is obtained in<br />

90% yield by treatment of hydrazone 570 (R 1 = 3-O 2NC 6H 4;Ar 1 = 4-O 2NC 6H 4) with ammonia.<br />

[550] Phenylhydrazone 570 (R 1 =Ar 1 = Ph) gives the corresponding triazole 571 in almost<br />

quantitative yield when treated with either equimolar or catalytic amounts of copper(II)<br />

acetate monohydrate in methanol at room temperature for two hours. [551] A kinetic study<br />

of the rearrangement of arylhydrazones 570 (R 1 = Ph; Ar 1 =XC 6H 4) into triazoles 571 has<br />

been reported. [555] The effect of â-cyclodextrin on the mononuclear rearrangement of 570<br />

(R 1 =Ar 1 = Ph) into 571 (R 1 =Ar 1 = Ph), in aqueous borate buffer at pH = 9.6, at temperatures<br />

ranging from 293.15 to 3<strong>13</strong>.15 K, has also been reported. [556] The 2,4-dinitrophenylhydrazone<br />

of 3-benzoyl-1,2,4-oxadiazol-5-amine 570 [R 1 =NH 2;Ar 1 = 2,4-(O 2N) 2C 6H 3] is converted<br />

rapidly into the 4-ureido-2H-1,2,3-triazole 571 [R 1 =NH 2;Ar 1 = 2,4-(O 2N) 2C 6H 3], in dimethyl<br />

sulfoxide at room temperature or by heating above its melting point. [557]<br />

Scheme 199 Synthesis of 4-(Acylamino)-2-aryl-1,2,3-triazoles from<br />

Arylhydrazones of 3-Acyl-1,2,4-oxadiazoles [550,551]<br />

R 1<br />

Ph<br />

N<br />

N<br />

O<br />

570<br />

N<br />

NHAr1 R 1 = NH 2, Ph, 3-O 2NC 6H 4; Ar 1 = Ph, 4-O 2NC 6H 4, 2,4-(O 2N) 2C 6H 3<br />

When refluxed in ethanol, in the presence of sodium ethoxide, the 1,2,5-oxadiazole phenylhydrazone<br />

572 rearranges to triazoles 573 and 574 (Scheme 200). The two isomeric oximes<br />

573 (E, 80%) and 574 (Z, 10%) can be separated by column chromatography. [551]<br />

R 1<br />

O<br />

N<br />

H<br />

Ph<br />

571<br />

N<br />

N<br />

NAr 1<br />

Scheme 200 Synthesis of 2H-1,2,3-<strong>Triazoles</strong> from the Phenylhydrazone of<br />

3-Benzoyl-4-methyl-1,2,5-oxadiazole [551]<br />

Ph<br />

N N<br />

O<br />

572<br />

N<br />

NHPh<br />

FOR PERSONAL USE ONLY<br />

536 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

NaOEt, EtOH<br />

reflux, 6 h<br />

HO<br />

N<br />

Ph<br />

N<br />

573 80%<br />

N<br />

NPh<br />

+<br />

Ph<br />

R 1<br />

N<br />

N<br />

OH<br />

N<br />

574 10%<br />

4-(Alkylamino)-3-nitro-1,2,5-oxadiazole 2-oxides 575 react with primary aliphatic amines<br />

to afford 2-alkyl-4-(alkylamino)-5-nitro-2H-1,2,3-triazole 1-oxides 577, via intermediates<br />

576, in low to moderate yields (Scheme 201). Compounds 577 are also prepared in a<br />

one-pot procedure from 3,4-dinitro-1,2,5-oxadiazole 2-oxide. [558–560]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

R 2<br />

NPh<br />

N<br />

569<br />

N<br />

NAr 1


Scheme 201 Synthesis of 2-Alkyl-5-nitro-2H-1,2,3-triazole 1-Oxides from 4-(Alkylamino)-<br />

3-nitro-1,2,5-oxadiazole 2-Oxides [558–560]<br />

R<br />

N<br />

O2N<br />

O<br />

N<br />

1HN R2NH2 CH2Cl2, rt<br />

O −<br />

+<br />

575<br />

R 1 HN NOH<br />

O2N N NHR2<br />

O −+<br />

576<br />

− H 2O<br />

R 1 HN<br />

O 2N<br />

N<br />

NR<br />

N<br />

2<br />

O −+<br />

577 30−40%<br />

Oxidation of 4-(arylhydrazono)-4H-pyrazole-3,5-diamines 578 with lead(IV) acetate (2<br />

equiv) provides 2-aryl-2H-1,2,3-triazole-4-carbonitriles 579 in moderate yields (Scheme<br />

202). Plausible mechanisms for this transformation have been proposed. [561]<br />

Scheme 202 Synthesis of 2-Aryl-2H-1,2,3-<strong>Triazoles</strong> from<br />

4-(Arylhydrazono)-4H-pyrazole-3,5-diamines [561]<br />

N<br />

N<br />

NH 2<br />

NHAr<br />

N<br />

1<br />

NH2 Pb(OAc) 4, DMF, MeCN<br />

0−5 oC, 1.5−2 h<br />

41−58%<br />

578<br />

NC<br />

Ar 1 = Ph, 4-Tol, 4-BrC 6H 4, 4-O 2NC 6H 4, 4-MeOC 6H 4, 3-O 2NC 6H 4, 3-MeOC 6H 4<br />

2-Methyl-4-nitro-1-phenyl-1H-imidazole (580) reacts with hydroxylamine, in the presence<br />

of potassium hydroxide, to yield 4-(acetylamino)-2-phenyl-2H-1,2,3-triazole 1-oxide (581)<br />

(Scheme 203). A mechanism for this transformation was suggested. [562]<br />

N<br />

579<br />

Scheme 203 Synthesis of 2H-1,2,3-Triazole 1-Oxides from<br />

2-Methyl-4-nitro-1-phenyl-1H-imidazole [562]<br />

O2N<br />

N<br />

N<br />

Ph<br />

580<br />

+ NH 2OH<br />

KOH, MeOH<br />

−5 oC, 3 h<br />

57%<br />

N<br />

NAr 1<br />

AcHN<br />

N<br />

NPh<br />

N<br />

O<br />

581<br />

−<br />

+<br />

Photolysis of 2-methyl-5-phenyl-2H-tetrazole (582) produces, among other minor products,<br />

2-methyl-4,5-diphenyl-2H-1,2,3-triazole (583) in low yield (Scheme 204). [563]<br />

Scheme 204 Synthesis of 2H-1,2,3-<strong>Triazoles</strong> from 2-Methyl-5-phenyl-2H-tetrazole [563]<br />

Ph<br />

N<br />

N<br />

582<br />

N<br />

NMe<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.2 Monocyclic 2-Substituted 1,2,3-<strong>Triazoles</strong> 537<br />

benzene, hν, 3 h<br />

Ph<br />

Ph<br />

N<br />

N<br />

583 27%<br />

NMe<br />

+ other products<br />

4,6-Disubstituted 2-methyl-2,5-dihydro-1,2,3-triazines 584 are oxidized by 3-chloroperoxybenzoic<br />

acid (2 equiv) to give 4-substituted 2-methyl-2H-1,2,3-triazoles 585 in good<br />

yields if at least one of the substituents is a phenyl group (Scheme 205). [564,565]<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 205 Synthesis of 2H-1,2,3-<strong>Triazoles</strong> from<br />

2-Methyl-2,5-dihydro-1,2,3-triazines [564,565]<br />

R 1<br />

R 2<br />

N<br />

NMe<br />

N<br />

584<br />

MCPBA (2 equiv)<br />

CH2Cl2, 0 oC, 12 h<br />

R1 = R2 = Me trace<br />

R1 = R2 = Ph 69%<br />

R1 = Ph; R2 = Me 68%<br />

R 1<br />

N<br />

N<br />

585<br />

NMe<br />

+ R 2 CO 2H<br />

The 1,2,3,4-tetrazine 587, generated from the reaction of an (alkylazo)alkene 586 and dimethyl<br />

azodicarboxylate, is unstable and on workup yields 2,5-dihydro-1H-1,2,3-triazole<br />

588 (Scheme 206). This isomerization is probably acid catalyzed since by addition of trifluoroacetic<br />

acid 587 is converted in near quantitative yield into triazole 589. [566] The<br />

same triazole is also obtained cleanly when 588 alone is treated with trifluoroacetic acid<br />

under the same conditions.<br />

Scheme 206 Synthesis of 2H-1,2,3-<strong>Triazoles</strong> from 1,2,3,4-Tetrazines [566]<br />

O<br />

N<br />

NMe N<br />

N CO<br />

+<br />

2Me<br />

CO2Me NHPh<br />

586<br />

FOR PERSONAL USE ONLY<br />

538 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

PhHN<br />

O<br />

N<br />

benzene<br />

rt, 12 h<br />

NMe<br />

N N<br />

CO2Me<br />

CO2Me 587<br />

75%<br />

TFA<br />

PhHN<br />

MeO2C PhHN<br />

O<br />

O<br />

N<br />

NMe<br />

NH<br />

N<br />

CO2Me 588<br />

589<br />

TFA, CH 2Cl2<br />

rt, 6 h<br />

[1,2,3]Triazolo[1,5-b]pyridazinium salts 590, when treated with morpholine, undergo<br />

opening of the pyridazine ring to yield mixtures of the triazoles 591 and 592 (Scheme<br />

207). [567] The ratio of these products varies significantly depending on whether R 1 is an<br />

alkyl or an aryl group. Reaction of triazolopyridazinium salts 590 with alkoxides or thiolates<br />

affords the 4-vinyl-2H-1,2,3-triazoles 593 and 594, respectively, as the sole products.<br />

[567]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

80%<br />

N<br />

N<br />

NMe


Scheme 207 Synthesis of 2H-1,2,3-<strong>Triazoles</strong> from Triazolopyridazinium Salts [567]<br />

R 1<br />

N<br />

N<br />

N + N<br />

Ar1 BF4 −<br />

590<br />

R 1 = Me, 4-ClC6H4; Ar 1 = 4-BrC6H4<br />

N<br />

N<br />

N + N<br />

1 Ar BF4 −<br />

590<br />

R 1<br />

N<br />

N<br />

N + N<br />

Ar1 BF4 −<br />

590<br />

R 1<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.2 Monocyclic 2-Substituted 1,2,3-<strong>Triazoles</strong> 539<br />

O<br />

morpholine<br />

MeCN, rt<br />

84%<br />

R1 = Me (591/592) 3:2<br />

R1 = 4-ClC6H4 (591/592) 1:10<br />

N<br />

NaOMe, MeOH, rt<br />

R1 = Me 72%<br />

R1 = 4-ClC6H4 82%<br />

R1 CN<br />

591<br />

BnSH, KOH, EtOH, 5−10 o C<br />

R1 = Me 95%<br />

R1 = 4-ClC6H4 90%<br />

Irradiation of 2-aryl-2H-benzotriazoles 595 with UV light, in an aerated solvent, results in<br />

the oxidation of the benzo ring and formation of 2-aryl-2H-1,2,3-triazole-4,5-dicarboxylic<br />

acids 597 (Scheme 208). [568] The 2-aryl-2H-benzotriazole-4,7-diones 596 are plausible intermediates<br />

since photooxidation of compound 596 (R 1 =R 2 = H), obtained by oxidation of<br />

595 (R 1 =R 2 = H) with potassium dichromate, also leads to 597 (R 1 =R 2 = H). Oxidation of<br />

2-phenyl-2H-benzotriazole (595, R 1 =R 2 = H) with potassium permanganate also gives the<br />

dicarboxylic acid 597 (R 1 =R 2 = H) (in 50% yield) but oxidation of 595 (R 1 = OMe; R 2 = Me)<br />

under similar conditions, results in the formation of a tricarboxylic acid 597 (R 1 = OMe;<br />

R 2 =CO 2H) in 48% yield. [568]<br />

N<br />

N<br />

MeO<br />

NAr 1<br />

BnS<br />

+<br />

593<br />

O<br />

R 1<br />

N<br />

N<br />

R 1<br />

594<br />

N<br />

NAr 1<br />

N<br />

N<br />

592<br />

NAr 1<br />

R 1<br />

N<br />

N<br />

NAr 1<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 208 Photooxidation of 2-Aryl-2H-benzotriazoles [568]<br />

N<br />

N<br />

N<br />

595<br />

R 1<br />

R 1 = H, OMe; R 2 = H, Me<br />

O2, EtOH<br />

hν, rt, 12.5 d<br />

<strong>13</strong>.<strong>13</strong>.2.3 Synthesis by Substituent Modification<br />

R 2<br />

O<br />

O<br />

oxidation<br />

N<br />

N<br />

N<br />

596<br />

R 1<br />

HO2C<br />

HO2C<br />

R 2<br />

N<br />

N<br />

N<br />

R 1<br />

597 R 1 = R 2 = H 93%<br />

Since substituent modification reactions in 1H- and 2H-1,2,3-triazoles are, in many cases,<br />

very similar, the synthesis of new 2H-1,2,3-triazoles by substituent modification of monocyclic<br />

2-substituted 2H-1,2,3-triazoles is covered in Section <strong>13</strong>.<strong>13</strong>.1.4.<br />

<strong>13</strong>.<strong>13</strong>.3 <strong>Product</strong> Subclass 3:<br />

N-Unsubstituted and 1-Substituted Benzotriazoles<br />

<strong>13</strong>.<strong>13</strong>.3.1 Synthesis by Ring-Closure Reactions<br />

<strong>13</strong>.<strong>13</strong>.3.1.1 By Formation of Two N-N Bonds<br />

<strong>13</strong>.<strong>13</strong>.3.1.1.1 Fragments N-C-C-N and N<br />

FOR PERSONAL USE ONLY<br />

540 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

<strong>13</strong>.<strong>13</strong>.3.1.1.1.1 Method 1:<br />

From Benzene-1,2-diamines and Nitrous Acid<br />

The diazotization of benzene-1,2-diamine derivatives is the most common synthetic route<br />

to benzotriazoles. This is a very general method, which can also be applied to the cyclization<br />

of other 1,2-diaminocarbocycles [569] and 1,2-diaminoheterocycles. [570–574] In almost all<br />

the cases the diazotization is carried out with nitrous acid (generated in situ from sodium<br />

nitrite and a mineral acid) but other reagents can also be used. Esters of nitrous acid with<br />

primary or secondary alcohols, preferentially methyl nitrite [575] or diphenylnitrosamine,<br />

[576] also react with benzene-1,2-diamine derivatives to afford benzotriazoles in<br />

high yields. Molecules consisting of a benzene-1,2-diamine group linked to a fluorophore<br />

moiety are used as probes for nitric oxide (NO) detection; fluorescent benzotriazoles are<br />

formed in this reaction. [577–579]<br />

The structure of the products obtained from the action of nitrous acid on an aromatic<br />

1,2-diamine, or on one of its alkyl, aryl, or acyl derivatives, was the subject of a very interesting<br />

scientific dispute, which occurred between the 1870s and 1910. The symmetrical<br />

structure 598 (Scheme 209), proposed by Griess, [580,581] was shown to be incorrect and<br />

structure 599, suggested by KekulØ, was confirmed as the correct one. [582,583]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

R 2


Scheme 209 Proposed Structures for the <strong>Product</strong> of<br />

the Reaction of Nitrous Acid on Benzene-1,2-diamine<br />

598<br />

N NR 1<br />

N<br />

599<br />

N<br />

N<br />

N<br />

R1 A range of diversely substituted benzotriazole derivatives 601 is prepared by diazotization<br />

of the corresponding benzene-1,2-diamine derivatives 600, a few examples are<br />

shown in Scheme 210.<br />

Scheme 210 Diazotization of Benzene-1,2-diamine Derivatives [322,579,584–594]<br />

R 2<br />

600<br />

NH 2<br />

NHR 1<br />

R 1 = H, alkyl, aryl, acyl, sulfonyl<br />

NaNO2, H3O +<br />

R 2<br />

601<br />

N<br />

N<br />

N<br />

R1 R 1 R 2 Conditions Yield (%) Ref<br />

H H NaNO2, AcOH, H2O, 5–808C, 1 h 75–81 [584]<br />

H 5,6-Cl2 NaNO2, HCl, H2O, 0 8C 50 [585]<br />

H 5,6-(NO2) 2 NaNO2, HCl, H2O, 5–25 8C, 1 h 83 [586]<br />

Me 6-Cl NaNO2, HCl, H2O, 108C 29 [585]<br />

2,4,6-(O2N) 3C6H2 4,6-(NO2) 2 NaNO2,H2SO4,H2O, 5–258C, 1 h 63 [586]<br />

Ac 5,6-Me2 NaNO2, AcOH, H2O, 10–508C 63 [587]<br />

Ac 5-NHAc-6-OMe NaNO2, HCl, H2O, 5 8C, 2 h 97 [588]<br />

CSCHMeNHBoc 6-NO2 NaNO2, AcOH, H2O, 08C, 30 min 79 [589]<br />

S<br />

H NaNO 2, AcOH, H 2O >90 [590]<br />

CO2Et 7-Cl-4-OEt-5-CO2Me NaNO2,H2SO4,H2O, 58C, 15 min 68 [591]<br />

SO2Ph 5-Me NaNO2, HCl, H2O, rt 100 [592]<br />

N<br />

HN<br />

N<br />

O<br />

NH 2<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.3 N-Unsubstituted and 1-Substituted Benzotriazoles 541<br />

H NaNO 2, HCl, H 2O, 0 8C to rt, 2 h 96 [322]<br />

benzotriazol-2-yl H NaNO 2, HCl, H 2O, 0 8C 63 [593]<br />

6-methyl-3-pyridyl H NaNO 2, HCl, H 2O, 0 8C, 1 h 84 [594]<br />

acridin-9-yl 5,6-Me 2 NaNO 2, HCl, H 2O, 0 8C, 1 h 85 [579]<br />

Benzo[1,2-d:4,5-d¢]bistriazoles are synthesized, in one step, by diazotization of benzene-<br />

1,2,4,5-tetraamine derivatives (Scheme 211). 1,7-Bis(2,4,6-trinitrophenyl)benzobistriazole<br />

603 is obtained in 60% yield from the bis(acetylamino) derivative 602, [595] while the 1,7-diacetyl<br />

analogue 605 is prepared in 93% from 1,5-bis(acetylamino)-2,4-dinitrobenzene<br />

(604). [596,597]<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 211 Diazotization of Benzene-1,2,4,5-tetraamine Derivatives [595–597]<br />

AcHN NHAc<br />

Ar 1 HN<br />

602<br />

Ar 1 = 2,4,6-(O2N)3C6H2<br />

O2N NO 2<br />

AcHN<br />

604<br />

H2SO4, H2O<br />

100 oC, 20 min<br />

NHAr 1 Ar 1 HN<br />

H2, Pd/C, EtOH<br />

rt, 3100 Torr, 3 h<br />

NHAc AcHN<br />

H2N NH 2<br />

NHAr 1<br />

H2N NH 2<br />

NHAc<br />

N<br />

N<br />

N<br />

NaNO2<br />

5−10 o C<br />

603 60%<br />

N<br />

N<br />

N<br />

Ar 1 Ar 1<br />

N<br />

N<br />

N<br />

NaNO2, HCl<br />

0 oC, 30 min<br />

605 93%<br />

N<br />

N<br />

N<br />

Ac Ac<br />

An alternative method for the conversion of benzene-1,2-diamine derivatives into benzotriazoles<br />

consists of their reaction with benzonitrile oxide, followed by diazotization of<br />

the resulting N-substituted benzamide oximes 607 to 1-benzohydroximoyl-1H-benzotriazoles<br />

608 (Scheme 212). These compounds are hydrolyzed in refluxing concentrated hydrochloric<br />

acid to afford benzotriazoles 609 in quantitative yields. [598,758] There is no obvious<br />

advantage of this method over direct diazotization of diamines 606, except the fact<br />

that compounds 607 can also be converted into benzimidazoles by treatment with hydrochloric<br />

acid.<br />

Scheme 212 Synthesis of Benzotriazoles via N-Substituted Benzamide Oximes [598,758]<br />

R 2 NH 2<br />

R 1<br />

606<br />

NH 2<br />

NaNO2, H2O, HCl<br />

0 oC to rt, 1 h<br />

100%<br />

R 1 = H, Me, CO2Me; R 1 ,R 2 = (CH<br />

+<br />

FOR PERSONAL USE ONLY<br />

542 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

Ph N O − +<br />

R 2<br />

R 1<br />

CH)2; R 2 = H, Me, Cl<br />

benzene<br />

reflux, 1 h<br />

Ph<br />

608<br />

70−82%<br />

N<br />

N<br />

N<br />

NOH<br />

R 2 NH 2<br />

R 1<br />

concd HCl<br />

reflux, 2 h<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

100%<br />

Ph<br />

607<br />

NH<br />

NOH<br />

R 2<br />

R 1<br />

609<br />

N<br />

N<br />

N<br />

H


5,6-Dinitro-1H-benzotriazole [601,R 1 =H;R 2 = 5,6-(NO 2) 2]; Typical Procedure: [586]<br />

A slurry of 4,5-dinitrobenzene-1,2-diamine (7.0 g, 35 mmol) in concd HCl (300 mL) was<br />

treated dropwise with a 10% aq NaNO 2 (90 mL) at 5–10 8C. After the resulting mixture<br />

had stirred at 258C for 1 h it was chilled to 08C and the product was collected by filtration,<br />

washed with H 2O, and air-dried to provide analytically pure crystals of the monohydrate<br />

of 5,6-dinitrobenzotriazole; yield: 6.6 g (83%); mp 1448C. Anhyd product was obtained<br />

when the monohydrate was dried in an oven at 808C overnight.<br />

<strong>13</strong>.<strong>13</strong>.3.1.2 By Formation of One N-N and One N-C Bond<br />

<strong>13</strong>.<strong>13</strong>.3.1.2.1 Fragments C-C-N and N-N<br />

<strong>13</strong>.<strong>13</strong>.3.1.2.1.1 Method 1:<br />

From Arylamines and 2-Azido-3-ethyl-1,3-benzothiazolium<br />

Tetrafluoroborate<br />

The benzothiazolium tetrafluoroborate 610 reacts with 2-naphthylamine to afford naphtho[1,2-d]triazole<br />

612 in 70% yield (Scheme 2<strong>13</strong>). [599] Since salt 610 is a good diazo-transfer<br />

reagent, [600] diazoamino derivative 611 is a probable intermediate in this reaction. Compound<br />

610 also reacts with amino-heterocycles to yield heterocycle-fused 1,2,3-triazoles<br />

in good yields. [599]<br />

Scheme 2<strong>13</strong> Synthesis of 1H-Naphtho[1,2-d][1,2,3]triazole from 2-Naphthylamine [599]<br />

610<br />

BF<br />

−<br />

Et 4<br />

N+<br />

N3 S<br />

+<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.3 N-Unsubstituted and 1-Substituted Benzotriazoles 543<br />

NH 2<br />

0.4 M HCl, EtOH<br />

rt, 1 h<br />

+<br />

N2 611<br />

NH2<br />

612 70%<br />

1H-Naphtho[1,2-d][1,2,3]triazole (612); Typical Procedure: [599]<br />

To a soln of 2-naphthylamine (0.615 g, 5 mmol) in 0.4 M HCl in EtOH (40 mL) at rt was<br />

added 2-azido-3-ethyl-1,3-benzothiazolium tetrafluoroborate (610; 1.5 g, 5.1 mmol) in<br />

one portion and the mixture was stirred for 1 h. The solvent was evaporated and aq 2 M<br />

NH 3 (20 mL) was added to the residue. The mixture was stirred, filtered, and extracted<br />

with CHCl 3 (2 ” 5 mL). The organic phase was discharged. The aqueous phase was neutralized<br />

and the resulting solid was filtered, washed with H 2O, and dried; yield: 0.60 g (70%);<br />

mp 175–180 8C.<br />

N<br />

N<br />

N<br />

H<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


<strong>13</strong>.<strong>13</strong>.3.1.2.2 Fragments C-C-N-N and N<br />

<strong>13</strong>.<strong>13</strong>.3.1.2.2.1 Method 1:<br />

From Æ-Diazo Ketones and Amines<br />

Benzoyl trifluoromethanesulfonate (614) smoothly transforms 10-diazophenanthren-<br />

9(10H)-one (6<strong>13</strong>) into diazonium salt 615, which reacts with isopropylamine to give the<br />

phenanthrotriazole 616 in 86% overall yield (Scheme 214). [38]<br />

Scheme 214 Synthesis of Phenanthro[9,10-d][1,2,3]triazole from<br />

a Æ-Diazo Phenanthrenone [38]<br />

6<strong>13</strong><br />

O<br />

N 2<br />

+<br />

O<br />

Ph OTf<br />

614<br />

<strong>13</strong>.<strong>13</strong>.3.1.3 By Formation of Two N-C Bonds<br />

<strong>13</strong>.<strong>13</strong>.3.1.3.1 Fragments N-N-N and C-C<br />

FOR PERSONAL USE ONLY<br />

544 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

<strong>13</strong>.<strong>13</strong>.3.1.3.1.1 Method 1:<br />

From Azides and Dehydrobenzene<br />

CH 2Cl 2<br />

−70 to −40 o C, 3 h<br />

615<br />

iPrNH 2, CH 2Cl 2<br />

−70 o C, 5 h<br />

OBz<br />

+<br />

N 2 OTf −<br />

616 86%<br />

Pr<br />

N<br />

N<br />

N<br />

i<br />

Dehydrobenzene (benzyne) reacts with alkyl, aryl, glycosyl, acyl, or sulfonyl azides to<br />

yield 1-substituted benzotriazoles 617 (Scheme 215). The benzyne is generated in situ by<br />

slow addition of 2-aminobenzoic acid to a solution of the azide and an alkyl nitrite (generally<br />

butyl, pentyl, or isopentyl nitrite). [601]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 215 Synthesis of Benzotriazoles from Azides and Dehydrobenzene [601–604]<br />

CO 2H<br />

NH 2<br />

BuONO<br />

R 1 = alkyl, aryl, glycosyl, acyl, sulfonyl<br />

R 1 N3<br />

R 1 Conditions Yield (%) Ref<br />

(CH2) 5Me CH2Cl2, acetone, reflux, 2 h 70 [601]<br />

Ph CH2Cl2, acetone, reflux, 2 h 52 [601]<br />

4-OHCC6H4 CH2Cl2, acetone, reflux, 2 h 50 [601]<br />

4-AcC6H4 CH2Cl2, acetone, reflux, 2 h 50 [601]<br />

4-O2NC6H4 CH2Cl2, reflux, 1.5 h 62 [602]<br />

1-napthyla CH2Cl2, acetone, reflux, 3 h 75 [603]<br />

acridin-9-yl CH2Cl2, acetone, reflux, 2 h 47 [601]<br />

AcO<br />

AcO<br />

H<br />

OAc<br />

H<br />

O<br />

H<br />

H AcO<br />

H<br />

CH 2Cl 2, acetone, reflux, 2.5 h 73 [604]<br />

Bz CH 2Cl 2, reflux, 1.5 h 63 [602]<br />

4-MeOC 6H 4CO CH 2Cl 2, reflux, 1.5 h 60 [602]<br />

SO 2Ph CH 2Cl 2, reflux, 1.5 h 52 [602]<br />

4-ClC 6H 4SO 2 CH 2Cl 2, reflux, 1.5 h 78 [602]<br />

a Isopentyl nitrite was used.<br />

N<br />

N<br />

N<br />

R1 617 50−78%<br />

The synthesis of 1-(2-methyl-1-naphthyl)-1H-naphtho[2,3-d][1,2,3]triazole (620) from the<br />

reaction of a naphthyl azide with 2,3-dehydronaphthalene (619), produced from 3-amino-2-naphthoic<br />

acid (618), is an interesting extension of this method (Scheme 216). [603]<br />

Scheme 216 Synthesis of Naphthotriazoles from Azides and 2,3-Dehydronaphthalene [603]<br />

R 1 =<br />

CO 2H<br />

NH 2<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.3 N-Unsubstituted and 1-Substituted Benzotriazoles 545<br />

Me(CH2) 4ONO<br />

DME, reflux, 1.5 h R1N3 618 619<br />

620 21%<br />

N<br />

N<br />

N<br />

R1 for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


1-(1-Naphthyl)-1H-benzotriazole (617,R 1 = 1-naphthyl); Typical Procedure: [603]<br />

A stirred soln of 1-naphthylazide (8.45 g, 50 mmol) and isopentyl nitrite (<strong>13</strong>.5 mL,<br />

100 mmol) in CH 2Cl 2 (400 mL) was refluxed and treated with a soln of 2-aminobenzoic<br />

acid (<strong>13</strong>.7 g, 100 mmol) in acetone (100 mL) over 2 h. Heating was continued for a further<br />

1 h, after which the mixture was cooled and evaporated under reduced pressure to leave a<br />

brown oil. Chromatography (silica gel) afforded the benzotriazole as a white crystalline<br />

solid; yield: 9.15 g (75%); mp 114–1158C.<br />

<strong>13</strong>.<strong>13</strong>.3.1.3.1.2 Method 2:<br />

From Azides and Quinones<br />

As described in Section <strong>13</strong>.<strong>13</strong>.1.1.3.1.2.3, organic azides undergo addition to alkenes with<br />

electron-withdrawing groups to yield dihydrotriazoles or triazoles. When benzoquinones<br />

or naphthoquinones are used, benzotriazole derivatives are obtained. From the reaction<br />

of benzo-1,4-quinone and phenyl azide, mono- or bis-addition products 621, and 622 and<br />

623, respectively, are formed, depending on the number of equivalents of azide used<br />

(Scheme 217). [203,605,759] Phenyl azide adds to 2-methylbenzo-1,4-quinone to give only one<br />

monoadduct. [204]<br />

Scheme 217 Reaction of Benzo-1,4-quinone with Phenyl Azide [203,605,759]<br />

O<br />

O<br />

O<br />

O<br />

PhN 3 (1 equiv)<br />

PhN 3 (2 equiv)<br />

O<br />

O<br />

N<br />

N<br />

N<br />

Ph<br />

621<br />

N<br />

N<br />

N<br />

Ph<br />

O<br />

O<br />

622<br />

N<br />

N<br />

N<br />

Ph<br />

+<br />

Ph<br />

N<br />

N<br />

N<br />

O<br />

O<br />

623<br />

N<br />

N<br />

N<br />

Ph<br />

Naphtho-1,4-quinone reacts with methyl azide (sealed tube, 1058C, 20 h) to afford triazole<br />

624 (R 1 = Me) in 48% yield. [205,605,759] Similar reactions of naphtho-1,2-quinone and 6-bromonaphtho-1,2-quinone<br />

with methyl azide or phenyl azide do not give any triazole derivatives.<br />

[205] Naphtho-1,4-quinone reacts with (azidoalkyl)phosphonates and with ethyl azidoacetate<br />

to afford triazole derivatives 624 in good yields (Scheme 218). [210]<br />

Scheme 218 Reaction of Naphtho-1,4-quinone with Alkyl Azides [210]<br />

O<br />

O<br />

FOR PERSONAL USE ONLY<br />

546 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

R1N3, THF<br />

reflux, 20 h<br />

R1 = CH2PO(OEt)2 75%<br />

R1 = CHMePO(OEt)2 70%<br />

R1 = CHPhPO(OEt) 2 76%<br />

R1 = CH2CO2Et 80%<br />

O<br />

O<br />

624<br />

N<br />

N<br />

N<br />

R1 1-Substituted 1H-Naphtho[2,3-d][1,2,3]triazole-4,9-diones 624; General Procedure: [210]<br />

A soln of naphtho-1,4-quinone (0.47 g, 3 mmol) in THF was added dropwise, with stirring,<br />

to a soln of diethyl (1-azidoalkyl)phosphonate or ethyl azidoacetate (3 mmol) in THF<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


(15 mL) and the mixture was refluxed for 20 h. The solvent was evaporated and the residue<br />

was purified by flash chromatography (silica gel, Et 2O/hexane) to give the triazole.<br />

<strong>13</strong>.<strong>13</strong>.3.1.4 By Formation of One N-N Bond<br />

<strong>13</strong>.<strong>13</strong>.3.1.4.1 Fragment N-N-C-C-N<br />

<strong>13</strong>.<strong>13</strong>.3.1.4.1.1 Method 1:<br />

Cyclization of 2-Nitrophenylhydrazines<br />

When treated with a base, 2-nitrophenylhydrazines cyclize to benzotriazol-1-ols (Scheme<br />

219). [606–610] Benzotriazol-1-ol exists in tautomeric equilibrium with 1H-benzotriazole 3-oxide.<br />

The position of the equilibrium depends on the solvent; e.g. in water the N-oxide form<br />

predominates. [611–6<strong>13</strong>] In some circumstances, the use of 2,4-dinitrophenylhydrazine to<br />

prepare 2,4-dinitrophenylhydrazones may lead to the formation of 6-nitrobenzotriazol-<br />

1-ol. [614] The cyclization of 2-nitrophenylhydrazines can also be carried out with polyphosphoric<br />

acid (e.g., conversion of 625 into 626, Scheme 220). [615] Benzotriazol-1-ols are powerful<br />

explosives [617] and decompose violently at 200–2108C to carbonaceous material. [619]<br />

A large variety of benzotriazol-1-ol derivatives are used extensively as coupling reagents.<br />

[616,621]<br />

Scheme 219 Cyclization of 2-Nitrophenylhydrazines in Alkaline Media<br />

R 1<br />

NHNH2<br />

NO2<br />

NaOH<br />

− H2O R 1<br />

N<br />

N<br />

N<br />

OH<br />

Scheme 220 Cyclization of 2-Nitrophenylhydrazines with Polyphosphoric Acid [615]<br />

NO2 Me<br />

NHNH 2<br />

NO 2<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.3 N-Unsubstituted and 1-Substituted Benzotriazoles 547<br />

PPA, 10 min<br />

− H2O<br />

41%<br />

NO2<br />

625 626<br />

N<br />

N<br />

N +<br />

O −<br />

Me<br />

R 1<br />

H<br />

N<br />

N<br />

N+<br />

O −<br />

1-Methyl-7-nitro-1H-benzotriazole 3-Oxide (626); Typical Procedure: [615]<br />

A mixture of 1-(2,6-dinitrophenyl)-1-methylhydrazine (0.4 g, 1.9 mmol) and PPA (15 g) was<br />

gently warmed and stirred for 10 min. The resulting brown soln was cooled and poured<br />

into H 2O (100 mL). The soln was extracted with CHCl 3 (3 ” 30 mL) and the yellow organic<br />

extract was chromatographed (basic alumina, 100–200 mesh, 100 g). The unchanged hydrazine<br />

was eluted with CHCl 3. A second fraction was collected, concentrated under reduced<br />

pressure, and recrystallized (EtOH) to give 626 as yellow plates; yield: 0.15 g (41%);<br />

mp 242–243 8C.<br />

<strong>13</strong>.<strong>13</strong>.3.1.4.1.1.1 Variation 1:<br />

Reaction of 1-Chloro-2-nitrobenzenes or<br />

1,2-Dinitrobenzenes with Hydrazine<br />

1,2-Dinitrobenzenes 627 (X = NO 2) [609,617] and 1-chloro-2-nitrobenzenes 627 (X = Cl) [618–621]<br />

react with hydrazine to yield benzotriazol-1-ols 629 via the 2-nitrophenylhydrazines 628<br />

(Scheme 221). The yields of the reactions are highly dependent on the substituents on the<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


starting material. In some cases the substitution of the nitro group is the most favorable<br />

process, the corresponding arylhydrazines are then the main products. [619] The synthesis<br />

of benzotriazol-1-ols from 1-methoxy-2-nitrobenzenes (627, X = OMe) has also been described.<br />

[609,617]<br />

Scheme 221 Benzotriazol-1-ols from 1,2-Dinitrobenzenes or 1-Chloro-2-nitrobenzenes<br />

and Aqueous Hydrazine [617,619–621]<br />

R<br />

X<br />

NO2 1 R1 R1 aq H2NNH2<br />

EtOH<br />

reflux, 3−5 h<br />

NHNH2 NO2 − H2O 627 628 629<br />

X R 1 Yield (%) Ref<br />

NO2 4,6-Cl2 60 [617]<br />

NO2 4,6-Br2 a – [617]<br />

Cl H 90 [619]<br />

Cl 4,5-Cl 2 85 [619]<br />

Cl 4,5,6-Cl 3 67 [619]<br />

Cl 4,5,6,7-Cl 4 40 [619]<br />

Cl 6-CF 3 90 [620]<br />

Cl 6-OMe 6 [620]<br />

Cl 6-CONH 2 39 [620]<br />

Cl 6-SO 2NHMe 79 [620]<br />

Cl 6-SO 2NHBn 96 [621]<br />

a Yield not reported.<br />

N<br />

N<br />

N<br />

OH<br />

Polymer-supported benzotriazol-1-ol derivatives 633 [621] and 637 [622] are prepared, respectively,<br />

from the reaction of polymer-supported 1-chloro-2-nitrobenzenes 632 and 636 and<br />

hydrazine (Scheme 222). Precursor 632 is obtained from the reaction of the aminomethylated<br />

polystyrene 630 and the benzenesulfonyl chloride 631 while 636 is prepared by<br />

Friedel–Crafts alkylation of polystyrene 634, using 4-chloro-3-nitrobenzyl alcohol (635).<br />

The polymeric reagent 633 is highly efficient for the synthesis of amides. [621,623]<br />

Scheme 222 Polymer-Supported Benzotriazol-1-ol Derivatives [621,622]<br />

630<br />

NH2 + ClO 2S<br />

FOR PERSONAL USE ONLY<br />

548 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

631<br />

NO2<br />

Cl<br />

Et 3N, CH 2Cl 2<br />

rt, 5 h<br />

100%<br />

1. aq H2NNH2, EtOH, reflux, 5 h<br />

2. HCl, dioxane<br />

70−80%<br />

NH<br />

O<br />

S<br />

O<br />

632<br />

H<br />

N<br />

S<br />

O O<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

633<br />

NO2<br />

Cl<br />

N<br />

N<br />

N<br />

OH


AlCl3, PhNO2 70 oC, 3 d<br />

H +<br />

Cl<br />

HO<br />

634<br />

635<br />

NO 2<br />

1. H2NNH OH<br />

2, , reflux, 20 h<br />

MeO<br />

2. concd HCl, dioxane, reflux, 20 h<br />

636<br />

NO 2<br />

Cl<br />

637<br />

N<br />

N<br />

N<br />

OH<br />

Benzotriazol-1-ols 629; General Procedure: [619]<br />

The appropriate 1-chloro-2-nitrobenzene (5 g) was dissolved in hot EtOH (15–20 mL) and<br />

85% aq hydrazine (5 g) was added. The mixture was refluxed for 3 h and cooled. The precipitate<br />

was collected by filtration, dissolved in hot H 2O, and the benzotriazol-1-ol derivative<br />

was precipitated with aq HCl. The crude product was decolorized with charcoal and<br />

recrystallized (EtOH/MeOH 1:1).<br />

<strong>13</strong>.<strong>13</strong>.3.1.4.1.2 Method 2:<br />

Cyclization of (2-Aminophenyl)hydrazine Derivatives<br />

Oxidative cyclization of 1-(acetylamino)-2-hydrazino-3-nitrobenzene with chlorine affords<br />

4-nitro-1H-benzotriazole in 80% yield (Scheme 223). [624]<br />

Scheme 223 Cyclization of 1-(Acetylamino)-2-hydrazino-3-nitrobenzene [624]<br />

NO 2<br />

NHNH 2<br />

NHAc<br />

Cl2, EtOH<br />

80%<br />

NO2<br />

N<br />

N<br />

N<br />

H<br />

<strong>13</strong>.<strong>13</strong>.3.1.4.1.3 Method 3:<br />

Cyclization of (2-Aminophenyl)triazene Derivatives<br />

Polymer-bound 1-(2-aminophenyl)triazenes 638 are cleaved smoothly with trifluoroacetic<br />

acid in dichloromethane at room temperature within minutes to give 1-substituted benzotriazoles<br />

639 in excellent yields (Scheme 224). [625]<br />

Scheme 224 Benzotriazoles from Polymer-Bound 1-(2-Aminophenyl)triazenes [625]<br />

O 2N<br />

R 1 = CH 2CH<br />

638<br />

N<br />

NHR 1<br />

N NBn<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.3 N-Unsubstituted and 1-Substituted Benzotriazoles 549<br />

TFA, CH2Cl2, rt<br />

up to 95%<br />

CH 2, cyclopropyl, cyclopentyl, 4-MeOC 6H 4CH 2<br />

O 2N<br />

639<br />

N<br />

N<br />

N<br />

R1 for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


<strong>13</strong>.<strong>13</strong>.3.2 Synthesis by RIng Transformation<br />

<strong>13</strong>.<strong>13</strong>.3.2.1 Method 1:<br />

From 4,5-Dimethylene-4,5-dihydro-1H-triazoles<br />

4,5-Dimethyl-4,5-dihydro-1H-triazoles 641, generated from 640 by 1,4-elimination of bromine,<br />

are trapped in low to moderate yields by dienophiles in Diels–Alder reactions<br />

(Scheme 225). [626] Benzotriazole 642 is obtained when 641 is generated in the presence<br />

of dimethyl acetylenedicarboxylate; adduct 643 is formed when N-methylmaleimide is<br />

used as the dienophile. This adduct is converted into the benzotriazole derivative 644 by<br />

treatment with N-bromosuccinimide.<br />

Scheme 225 Benzotriazoles from 4,5-Dimethyl-4,5-dihydro-1H-triazoles [626]<br />

Br<br />

640<br />

Br<br />

N<br />

N<br />

N<br />

Ph<br />

DMAD<br />

− 2H<br />

27%<br />

NMM<br />

38%<br />

NaI, DMF<br />

115 oC MeO 2C<br />

MeO 2C<br />

MeN<br />

O<br />

O<br />

642<br />

N<br />

N<br />

N<br />

Ph<br />

641<br />

643<br />

N<br />

N<br />

N<br />

Ph<br />

N<br />

N<br />

N<br />

Ph<br />

NBS, CCl4<br />

heat<br />

50%<br />

<strong>13</strong>.<strong>13</strong>.3.2.2 Method 2:<br />

Transformation of 1,3-Dihydro-2H-benzimidazol-2-ones<br />

MeN<br />

O<br />

O<br />

644<br />

N<br />

N<br />

N<br />

Ph<br />

The reaction of 1,3-dihydro-2H-benzimidazol-2-one (645) with sodium nitrite and water,<br />

in a autoclave at high temperature, gives the sodium salt of benzotriazole, which, by acidification<br />

gives 1H-benzotriazole in high yield (Scheme 226). [627] This reaction can be extended<br />

to 1,3-dihydro-2H-benzimidazol-2-ones with substituents on positions 4–7.<br />

Scheme 226 Benzotriazoles from 1,3-Dihydro-2H-benzimidazol-2-ones [627]<br />

H<br />

N<br />

N<br />

H<br />

645<br />

O<br />

FOR PERSONAL USE ONLY<br />

550 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

NaNO2, H2O 190−300 oC pressure<br />

15−75 min<br />

N<br />

N<br />

H3O N<br />

N<br />

N − +<br />

Na N<br />

H<br />

+<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

61−93%


<strong>13</strong>.<strong>13</strong>.3.2.3 Method 3:<br />

Transformation of 1,2,4-Benzotriazin-3(2H)-ones<br />

1,2,4-Benzotriazin-3(2H)-one (646) and phenanthrotriazin-3-one 647 are converted into<br />

1H-benzotriazole and phenanthrotriazole 648, respectively, on treatment with ethereal<br />

chloramine at room temperature (Scheme 227). [381] Treatment of benzotriazin-3-one 646<br />

with lead(IV) acetate in refluxing benzene affords 1-acetyl-1H-benzotriazole in good<br />

yield. [381]<br />

Scheme 227 Benzotriazoles from 1,2,4-Benzotriazin-3(2H)-ones [381]<br />

N O<br />

N<br />

646<br />

NH<br />

647<br />

N O<br />

N NH<br />

NH2Cl, CH2Cl2, DMF<br />

rt, 14 h<br />

65%<br />

Pb(OAc)4, benzene<br />

reflux, 2 h<br />

92%<br />

86%<br />

NH2Cl, Et2O, DMF<br />

rt, 48 h<br />

648<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

Ac<br />

N<br />

N<br />

N<br />

H<br />

<strong>13</strong>.<strong>13</strong>.3.2.4 Method 4:<br />

Transformation of 1,2,3,4-Benzotetrazine 1,3-Dioxides<br />

The reduction of 1,2,3,4-benzotetrazine 1,3-dioxides 649 with sodium hydrosulfite or<br />

tin(II) chloride affords benzotriazoles 651 in almost quantitative yields (Scheme 228). [628]<br />

It has been suggested that this transformation proceeds via the intermediate N-nitrosobenzotriazoles<br />

650.<br />

Scheme 228 Benzotriazoles from 1,2,3,4-Benzotetrazine 1,3-Dioxides [628]<br />

R 2<br />

R 1<br />

649<br />

N O<br />

N<br />

−<br />

+<br />

N N<br />

O −<br />

+<br />

R 1 = H, Br; R 2 = H, Br, NO2<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.3 N-Unsubstituted and 1-Substituted Benzotriazoles 551<br />

Na2S2O4 (4 equiv) or<br />

SnCl2 2H2O (4 equiv)<br />

EtOAc, H2O rt, 3 min<br />

R 2<br />

R 1<br />

650<br />

H 2O<br />

− HNO 2<br />

N<br />

N<br />

N<br />

N O<br />

R 2<br />

R 1<br />

651 95−98%<br />

N<br />

N<br />

N<br />

H<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


<strong>13</strong>.<strong>13</strong>.3.3 Synthesis by Substituent Modification<br />

<strong>13</strong>.<strong>13</strong>.3.3.1 Substitution of Existing Substituents<br />

<strong>13</strong>.<strong>13</strong>.3.3.1.1 Of Hydrogen<br />

<strong>13</strong>.<strong>13</strong>.3.3.1.1.1 Method 1:<br />

N-Trimethylsilylation<br />

Benzotriazole reacts with hexamethyldisilazane to give 1-(trimethylsilyl)-1H-benzotriazole<br />

(652) in 95% yield (Scheme 229). [169,434,629,630]<br />

Scheme 229 N-Trimethylsilylation of 1H-Benzotriazole [169]<br />

N<br />

N<br />

N<br />

H<br />

<strong>13</strong>.<strong>13</strong>.3.3.1.1.2 Method 2:<br />

Carboxylation<br />

+ (TMS)2NH<br />

heat<br />

95%<br />

Heating an intimate mixture of 1H-benzotriazol-5-ol with a large excess of anhydrous potassium<br />

carbonate in a nickel-lined steel autoclave, with carbon dioxide under pressure,<br />

affords 5-hydroxy-1H-1,2,3-benzotriazole-4-carboxylic acid (653) in 49% yield (Scheme<br />

230). [631,632]<br />

652<br />

N<br />

N<br />

N<br />

Scheme 230 Carboxylation of 1H-Benzotriazol-5-ol [631,632]<br />

K2CO3, CO2<br />

180−190<br />

49%<br />

o HO N<br />

HO<br />

C, 16 h<br />

N<br />

N<br />

H<br />

Benzotriazole reacts with chloroformates 654, in alkaline solutions, to afford selectively<br />

the corresponding alkyl 1H-benzotriazole-1-carboxylates 655 (Scheme 231). [633–635]<br />

CO2H<br />

653<br />

TMS<br />

N<br />

N<br />

N<br />

H<br />

Scheme 231 N-Alkoxycarbonylation of 1H-Benzotriazole [633–635]<br />

N<br />

N<br />

N<br />

H<br />

R 1 = Me, Et, Ph, Bn<br />

+ ClCO 2R 1<br />

FOR PERSONAL USE ONLY<br />

552 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

654<br />

aq NaOH<br />

58−100%<br />

655<br />

N<br />

N<br />

N<br />

CO 2R 1<br />

Ethyl 1H-1,2,3-Benzotriazole-1-carboxylate (655,R 1 = Et); Typical Procedure: [634]<br />

Ethyl chloroformate (6.0 g, 0.056 mol) was slowly added to a stirred and cooled aqueous<br />

soln of 1H-benzotriazole (6.0 g, 0.05 mol) and NaOH (2.0 g, 0.05 mol). After completion of<br />

the addition, the mixture was stirred for an additional 15 min, and the precipitated white<br />

solid was then collected by filtration, washed with H 2O, dried, and recrystallized (Et 2O);<br />

yield: 9.1 g (95%); mp 70–71 8C.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


<strong>13</strong>.<strong>13</strong>.3.3.1.1.3 Method 3:<br />

Acylation<br />

Benzotriazoles react with acyl chlorides and anhydrides to afford the 1-acyl derivatives<br />

656 (Scheme 232). [587]<br />

Scheme 232 Acylation of 1H-Benzotriazole [587]<br />

N<br />

N<br />

N<br />

H<br />

R 1 COCl or (R 1 CO)2O<br />

1-Acyl-1H-benzotriazoles 656 (R 1 = aryl, 2-arylvinyl) are prepared in moderate to good<br />

yields from the reaction of 1H-benzotriazole and acyl chlorides in pyridine or in aqueous<br />

sodium hydroxide. [634] Other benzotriazole derivatives 656 (R 1 = alkyl, aryl) are obtained<br />

in high yields (87–99%) from the reaction of 1H-benzotriazole and acyl chlorides in anhydrous<br />

dichloromethane and triethylamine at 0 8C. [636,637] 1-Acyl-1H-benzotriazoles 656<br />

(R 1 = Me, Et, Bu, Ph) are prepared in good yields by fusion of 1H-benzotriazole and acyl<br />

chlorides at 80–1008C. [630] When the acyl chlorides are not available, 1-acyl-1H-benzotriazoles<br />

are also conveniently prepared from 1-mesyl-1H-benzotriazole and the respective<br />

carboxylic acids in yields of 80–95%. [630] 1-Acyl-1H-benzotriazoles are also prepared in excellent<br />

yields (94–95%) from the reaction of 1-(trimethylsilyl)-1H-benzotriazole and acyl<br />

chlorides. [629]<br />

5,6-Dimethyl-1H-benzotriazole reacts with acetic anhydride (reflux for 30 min) to<br />

give the 1-acetyl derivative in 93% yield. [587] The same compound also reacts with benzoyl<br />

chloride and 4-nitrobenzoyl chloride, in the presence of aqueous sodium hydroxide, to<br />

yield the 1-acyl derivatives in 82 and 50% yield, respectively. [587]<br />

1H-Benzotriazole reacts with trifluoroacetic anhydride in tetrahydrofuran, at room<br />

temperature, to give 1-(trifluoroacetyl)-1H-benzotriazole (656, R 1 =CF 3) in almost quantitative<br />

yield. [638] This compound is a convenient trifluoroacetylating reagent for amines<br />

and alcohols. 1H-Benzotriazol-5-amine reacts with trifluoroacetic anhydride in dimethylformamide,<br />

at room temperature, to give selectively 5-[(trifluoroacetyl)amino]benzotriazole<br />

in 85% yield. [639]<br />

Thiobenzoyl chloride reacts with benzotriazole or 1-(trimethylsilyl)-1H-benzotriazole<br />

to yield 1-(thiobenzoyl)-1H-benzotriazole in 64 and 44% yield, respectively. [434]<br />

1H-Benzotriazole reacts with aryl isocyanates to yield 1-(arylaminocarbonyl)-1H-benzotriazoles.<br />

[640]<br />

<strong>13</strong>.<strong>13</strong>.3.3.1.1.4 Method 4:<br />

N-Formylation<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.3 N-Unsubstituted and 1-Substituted Benzotriazoles 553<br />

1H-1,2,3-Benzotriazole-1-carbaldehyde (657) is conveniently prepared from 1H-benzotriazole<br />

and formic acid in the presence of dicyclohexylcarbodiimide (Scheme 233). [641] This<br />

compound is a stable N- and O-formylating agent for a variety of amines and alcohols. The<br />

diethyl acetal of compound 657 is prepared directly in 90% yield from the reaction of 1Hbenzotriazole<br />

and triethyl orthoformate. [642]<br />

656<br />

N<br />

N<br />

N<br />

COR 1<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 233 N-Formylation of 1H-Benzotriazole [641]<br />

N<br />

N<br />

N<br />

H<br />

+ HCO 2H<br />

DCC, CH2Cl2, rt, 15 h<br />

71%<br />

1H-1,2,3-Benzotriazole-1-carbaldehyde (657); Typical Procedure: [641]<br />

To a mixture of 1H-benzotriazole (14.85 g, 0.125 mol) and HCO 2H (6.9 g, 0.15 mol) in anhyd<br />

CH 2Cl 2 (250 mL) was added DCC (36.05 g, 0.175 mol). The mixture was stirred at rt for 15 h,<br />

the precipitate filtered and the solvent removed in vacuo. Recrystallization of the residue<br />

gave pure 657 as white needles; yield: <strong>13</strong> g (71%); mp 94–96 8C.<br />

<strong>13</strong>.<strong>13</strong>.3.3.1.1.5 Method 5:<br />

Arylation<br />

1H-Benzotriazole reacts with activated aryl halides and hetaryl halides to yield the 1-arylor<br />

1-hetaryl-1H-benzotriazole derivatives as the main (or sole) products. With 1-chloro-2nitrobenzene<br />

(658, R 1 =R 2 = H) it gives a mixture of 659 (R 1 =R 2 = H; 39%) and 660<br />

(R 1 =R 2 = H; 16%), which can be separated by column chromatography (Scheme 234). [643]<br />

The reaction with 1-chloro-2,4-dinitrobenzene (658,R 1 =NO 2;R 2 = H) in refluxing toluene,<br />

in the absence of any added base, affords exclusively the 1H-isomer 659 (R 1 =NO 2;R 2 =H)<br />

in 96% yield [644] but if it is carried out in refluxing ethanol, in the presence of anhydrous<br />

sodium acetate, it gives a mixture of 659 (R 1 =NO 2;R 2 = H) and 660 (R 1 =NO 2;R 2 = H) in the<br />

ratio of approximately 23:10. [645] With 2-chloro-1,3,5-trinitrobenzene (658, R 1 =R 2 =NO 2)<br />

or 2-fluoro-1,3,5-trinitrobenzene the 1H-isomer 659 (R 1 =R 2 =NO 2) is the sole product. [586]<br />

2-Fluoro-1,3,5-trinitrobenzene reacts with mono- and dinitrobenzotriazoles [586] to afford<br />

the corresponding 1-(2,4,6-trinitrophenyl) derivatives; with benzo[1,2-d:4,5-d¢]bistriazole<br />

it gives a mixture of 1,5- and 1,7-bis(2,4,6-trinitrophenyl)benzo[1,2-d:4,5-d¢]bistriazoles.<br />

[595]<br />

Scheme 234 N-Arylation of 1H-Benzotriazole [643,644]<br />

N<br />

N<br />

N<br />

H<br />

R 1 = R 2 = H, NO2<br />

+ Cl<br />

FOR PERSONAL USE ONLY<br />

554 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

O 2N<br />

R 2<br />

658<br />

R 1<br />

657<br />

O 2N<br />

+<br />

N<br />

N<br />

N<br />

CHO<br />

N<br />

N<br />

N<br />

659<br />

R 1<br />

R 2<br />

N<br />

N<br />

N<br />

O 2N<br />

R2 660<br />

1H-Benzotriazole reacts with 2-bromopyridine and 2-bromopyrimidine, in the absence of<br />

added base, to give the corresponding 1-substituted benzotriazole derivatives in high<br />

yields. [642,644] The reaction of 1H-benzotriazole with 2-chloro-3-nitropyridine and 4-chlo-<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

R 1


o-3-nitropyridine in dimethyl sulfoxide at 808C, in the presence of sodium carbonate,<br />

also affords the corresponding 1-substituted benzotriazole derivatives. [646] Under microwave<br />

irradiation, benzo- and naphthotriazoles 661 react with 4-chloropyridine and 4chloroquinoline<br />

derivatives 662 to give the 1-substituted derivatives 663 in good yields<br />

(Scheme 235). [647]<br />

Scheme 235 N-Arylation of Benzotriazoles under Microwave Irradiation [647]<br />

R 3<br />

R 3<br />

661<br />

N<br />

N<br />

N<br />

H<br />

+<br />

R 2<br />

R 2<br />

Cl<br />

N<br />

662<br />

R 1<br />

R 1 = R 3 = H, Me; R 2 = H; R 2 ,R 2 = R 3 ,R 3 = (CH CH) 2<br />

microwave irradiation<br />

no solvent, 7−10 min<br />

A palladium(0)-catalyzed N-arylation of benzotriazole with aryl iodides with both electron-donating<br />

and electron-withdrawing groups and hetaryl halides has been reported.<br />

[648] The reaction is carried out in dimethylformamide at 1508C, under phase-transfer<br />

conditions, in the presence of potassium carbonate and copper salts. The 1-aryl-1H-benzotriazole<br />

derivatives are obtained in excellent yields (75–98%). 1H-Benzotriazole is also Narylated<br />

in water by diaryliodonium salts (Ar 1 2IBF 4) yielding the 1-aryl derivatives in almost<br />

quantitative yields. [649] This is also a palladium- and copper-catalyzed reaction.<br />

The benzotriazole anion reacts with triacetoxy(4-tolyl)lead [4-TolPb(OAc) 3] in the<br />

presence of copper(II) acetate to afford a mixture of 1-(4-tolyl)- and 2-(4-tolyl)benzotriazoles<br />

in 23 and 6% yield, respectively. [650]<br />

The polymer-supported benzotriazole 664 reacts with 4-tolylboronic acid in the presence<br />

of copper(II) acetate and pyridine, under microwave irradiation, to yield the corresponding<br />

N-tolyl derivatives. Cleavage of these products with trifluoroacetic acid gives<br />

the two regioisomeric benzotriazoles 665 and 666 (1:1) in 55% yield (Scheme 236). [651]<br />

Scheme 236 N-Arylation of a Polymer-Supported Benzotriazole [651]<br />

H<br />

N<br />

O<br />

664<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.3 N-Unsubstituted and 1-Substituted Benzotriazoles 555<br />

N<br />

N<br />

N<br />

H<br />

+ 4-TolB(OH)2<br />

H 2N<br />

1. Cu(OAc) 2, py<br />

2. TFA<br />

55%<br />

1-(2,4-Dinitrophenyl)-1H-benzotriazole (659,R 1 =NO 2;R 2 = H); Typical Procedure: [644]<br />

A mixture of 1-chloro-2,4-dinitrobenzene (658, R 1 =NO 2;R 2 = H; 6.08 g, 30 mmol), 1H-benzotriazole<br />

(21.44 g, 180 mmol), and toluene (30 mL) was refluxed for 9 d. The mixture was<br />

treated with 20% KOH (200 mL), extracted with CHCl 3 (5 ” 500 mL), dried (MgSO 4), and<br />

evaporated to afford a yellow solid; yield: 8.20 g (96%); mp 182–1848C.<br />

O<br />

665<br />

N<br />

N<br />

N<br />

4-Tol<br />

+<br />

1:1<br />

R 3<br />

R 3<br />

H2N<br />

O<br />

R 2<br />

R 2<br />

663<br />

666<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

R 1<br />

4-Tol<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


<strong>13</strong>.<strong>13</strong>.3.3.1.1.6 Method 6:<br />

Alkynylation<br />

Potassium benzotriazol-1-ide, prepared from 1H-benzotriazole and potassium tert-butoxide,<br />

reacts with alkynyl(phenyl)iodonium tosylates 667 to give 1-(2-arylethynyl)-1H-benzotriazoles<br />

668 in good yields (Scheme 237). [652,653] The reaction with oct-1-ynyl(phenyl)iodonium<br />

tosylate [667,R 1 = (CH 2) 5Me] affords a mixture of two 1-(alk-1-enyl)-1H-benzotriazole<br />

derivatives. An alternative one-pot synthesis of 1-(substituted ethynyl)-1H-benzotriazoles<br />

668 (R 1 = alkyl or aryl) has been published. [654,655]<br />

Scheme 237 N-Alkynylation of Potassium Benzotriazol-1-ide with Alkynyl(phenyl)iodonium<br />

Tosylates [652,653]<br />

N<br />

K N +<br />

N −<br />

+ OTs − I +<br />

R<br />

Ph<br />

1<br />

R 1 = Ph, 4-ClC6H4, 4-Tol, 4-MeOC6H4<br />

<strong>13</strong>.<strong>13</strong>.3.3.1.1.7 Method 7:<br />

Alkenylation<br />

667<br />

THF, t-BuOH, CH2Cl2 rt, 24 h<br />

45−62%<br />

A simple and convenient method for the stereoselective synthesis of 1-(alk-1-enyl)-1H-benzotriazole<br />

derivatives, directly from benzotriazole, has been reported. [656] It involves the<br />

reaction of alkenyl(phenyl)iodonium salts with 1H-benzotriazole in the presence of a<br />

base (Scheme 238). In the reaction with alkenyl(phenyl)iodonium salts 669 (R 1 = Ph) and<br />

671, retention of configuration is observed in the products 670 and 672, but with 669<br />

(R 1 = Bu) complete inversion of configuration occurs. This method is particularly efficient<br />

for the preparation of 1-(alk-1-enyl)-1H-benzotriazoles with amino-, acyl-, and alkoxycarbonyl<br />

substituents, which are difficult to prepare by other methods. Other nonselective<br />

or less convenient methods for the synthesis of 1-(alk-1-enyl)-1H-benzotriazoles are also<br />

known. [656]<br />

668<br />

N<br />

N<br />

N<br />

Scheme 238 N-Alkenylation of 1H-Benzotriazole with Alkenyl(phenyl)iodonium Salts [656]<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

H<br />

+<br />

+<br />

H<br />

+<br />

Ph I<br />

R<br />

+<br />

I<br />

2OC Ph<br />

H<br />

669<br />

R 1<br />

671<br />

R 1 = Me, Bn, 4-ClC6H4; R 2 = Me, Ph, OEt<br />

FOR PERSONAL USE ONLY<br />

556 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

BF4 −<br />

NHR 1<br />

OTs −<br />

t-BuOK, t-BuOH, DMF, rt<br />

R1 = Ph 64% (E-isomer)<br />

R1 = Bu 59% (Z-isomer)<br />

K2CO3, DMF, H2O<br />

rt, 6 h<br />

67−94%<br />

N<br />

N<br />

N<br />

670<br />

R 2 OC<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

N<br />

N<br />

N<br />

672<br />

R 1<br />

R 1<br />

NHR 1


<strong>13</strong>.<strong>13</strong>.3.3.1.1.8 Method 8:<br />

Alkylation<br />

1H-Benzotriazole reacts with dimethyl sulfate, [657,658] diazomethane, [657] and iodomethane<br />

[658] to give mixtures of 1- and 2-methylbenzotriazole. The 1-methyl isomer is always<br />

the main product, except in the reaction with diazomethane where the 1-methyl/2-methyl<br />

ratio is 5:17. [657] Methylation of 4-nitrobenzotriazole and 5-methylbenzotriazole with diazomethane<br />

leads to the formation of the 2-methyl derivatives. [585] Methylation of 5,6- and<br />

4,7-dichlorobenzotriazole with dimethyl sulfate gives the 1-methyl isomer as the main<br />

product. [585]<br />

The alkylation of 1H-benzotriazole is frequently carried out with alkyl halides in the<br />

presence of a base; the 1-alkyl isomer 673 is generally the main product and, in some<br />

cases, 1,3-dialkyl-1H-benzotriazolium salts 675 are also formed (Scheme 239). Sodium hydride<br />

[659] and sodium alkoxides [660,661] are frequently used as the base but higher yields may<br />

be obtained using sodium hydroxide in dimethylformamide. [662] Alkylations with alkyl halides<br />

using phase-transfer catalysis with 18-crown-6, [663] polyethylene glycols or their dialkyl<br />

ethers, [664] or quaternary ammonium salts [665–667] also give excellent yields. Many other<br />

reaction conditions have also been used, namely aqueous sodium hydroxide, [668] triethylamine<br />

in toluene, [669] potassium carbonate in tetrahydrofuran, [670] potassium fluoride and<br />

alumina in acetonitrile, [661] or just by refluxing the benzotriazole and the alkyl halide in<br />

benzene or toluene in the absence of any added base. [644,671] 1H-Benzotriazole can also be<br />

alkylated with alkyl halides in the absence of solvent, either in basic media under solventfree<br />

phase-transfer catalysis conditions or in the absence of base by conventional or microwave<br />

heating. [672]<br />

Scheme 239 Alkylation of 1H-Benzotriazole with Alkyl Halides [659–662]<br />

X = halo<br />

N<br />

N<br />

N<br />

H<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.3 N-Unsubstituted and 1-Substituted Benzotriazoles 557<br />

R 1 X, base<br />

673<br />

N<br />

N<br />

N<br />

R1 NR<br />

N<br />

1<br />

N<br />

+ +<br />

The alkylation of 1H-benzotriazole with ethyl bromoacetate, in the presence of sodium<br />

hydride, gives different ratios of the 1-alkyl/2-alkylbenzotriazole depending on the solvent<br />

used: 85:15 in acetonitrile and 95:5 in toluene. [659] Mixtures of the two isomers are<br />

also obtained by alkylation of the sodium salt of 1H-benzotriazole with other Æ-halogenated<br />

esters or ketones. [644,671] However, in refluxing benzene or toluene, and in the absence<br />

of any added base, 1H-benzotriazole reacts with these Æ-halogenated carbonyl compounds<br />

to yield only the 1-alkyl isomer in good yield. [644,671]<br />

Addition of bromocyclopentane and bromocycloheptane to the anion of benzotriazole<br />

(generated with sodium ethoxide in ethanol) yields the expected mixtures of 1- and<br />

2-cycloalkylbenzotriazoles. However, under the same conditions, bromocyclohexane<br />

gives only cyclohexene and benzotriazole, cyclohexyl tosylate affords only the 2-cyclohexyl-2H-benzotriazole<br />

674 (R 1 = Cy), while with tricyclohexyl phosphate the 1-cyclohexyl-1H-benzotriazole<br />

is formed with the complete absence of the N2 isomer. [673]<br />

A high-yielding route to produce selectively 1-ethyl-1H-benzotriazole involves the<br />

carbonylation of 1H-benzotriazole with ethyl chloroformate (see Section <strong>13</strong>.<strong>13</strong>.3.3.1.1.2)<br />

followed by alkylation or the resulting compound with triethyloxonium tetrafluoroborate<br />

and then methanolysis (Scheme 240). [634] This gives pure 1-ethyl-1H-benzotriazole<br />

in 89% overall yield from 1H-benzotriazole. Another method for the selective synthesis of<br />

674<br />

675<br />

N<br />

N<br />

N<br />

R1 R1 +<br />

X −<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


1-alkyl-1H-benzotriazoles involves the reaction of 1-(trimethylsilyl)-1H-benzotriazole with<br />

alkyl halides. [629]<br />

Scheme 240 A Selective Route to 1-Ethyl-1H-benzotriazole [634]<br />

N<br />

N<br />

N<br />

H<br />

EtOCOCl<br />

aq NaOH<br />

95%<br />

N<br />

N<br />

N<br />

CO2Et<br />

Et3O + BF4 −<br />

CH2Cl2<br />

MeOH<br />

Et<br />

N+<br />

N BF<br />

−<br />

4<br />

N<br />

CO2Et<br />

94%<br />

N<br />

N<br />

N<br />

Et<br />

The reaction of 1H-benzotriazole with dibromoalkanes may give the two monosubstituted<br />

derivatives or the three possible disubstituted isomers, depending on the molar ratio<br />

of the dibromoalkane to 1H-benzotriazole. [661,668] 1H-Benzotriazole reacts with 1 equivalent<br />

of bis(bromomethyl)benzene (1,2-, 1,3-, or 1,4-), 4,4¢-bis(bromomethyl)biphenyl and<br />

4¢,4¢¢-bis(bromomethyl)-1,3-terphenyl, [674] and 2,6-bis(bromomethyl)pyridine [675] to yield,<br />

in each case, only the bis(benzotriazol-1-yl) isomer. Addition of another equivalent of<br />

the bis(bromomethyl) derivative affords, in each case, only one dicationic benzotriazolophane<br />

(see schemes in Section <strong>13</strong>.<strong>13</strong>.5.2.2). 1H-Benzotriazole also reacts with dichloromethane<br />

and chloroform, in the presence of a phase-transfer catalyst, to yield mixtures of<br />

all possible isomers of di- and tri(benzotriazol-1-yl and -2-yl)methane. [676,677]<br />

1H-Benzotriazole reacts with diarylmethanols, in the presence of a catalytic amount<br />

of 4-toluenesulfonic acid and azeotropic removal of water, to give mixtures of the corresponding<br />

1- and 2-diarylmethylbenzotriazole derivatives (Scheme 241). [669,678]<br />

Scheme 241 Alkylation of 1H-Benzotriazole with Diarylmethanols [669,678]<br />

N<br />

N<br />

N<br />

H<br />

+ HO<br />

FOR PERSONAL USE ONLY<br />

558 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

Ar 1<br />

Ar 2<br />

TsOH, benzene<br />

reflux<br />

− H2O 66−90%<br />

Ar 1 = Ar 2 = Ph, 4-Me 2NC 6H 4, 4-MeOC 6H 4, 4-ClC 6H 4, 4-Tol<br />

1H-Benzotriazole reacts with 2-(chloromethyl)oxirane (epichlorohydrin) in benzene to<br />

yield the two compounds resulting from oxirane ring opening. [679] Using 2 equivalents of<br />

benzotriazole (and triethylamine) or sodium benzotriazolide the reaction gives a complex<br />

mixture of products resulting from the oxirane ring opening and simultaneous substitution<br />

of chlorine by a benzotriazolyl group (Scheme 242). [680]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

Ar 1<br />

N<br />

N<br />

N<br />

Ar 2<br />

+<br />

N<br />

N<br />

N<br />

Ar 2<br />

Ar 1


Scheme 242 Alkylation of 1H-Benzotriazole with 2-(Chloromethyl)oxirane [680]<br />

Bt 1 =<br />

N<br />

N<br />

N<br />

H<br />

+<br />

Cl<br />

N<br />

N ; Bt<br />

N<br />

2 =<br />

O<br />

+<br />

N<br />

N<br />

N<br />

Et3N, toluene<br />

reflux, 7 h<br />

Cl<br />

OH<br />

Bt 2<br />

OH<br />

Bt1 Bt + +<br />

1<br />

OH<br />

Bt1 Bt2 +<br />

Bt 2<br />

O<br />

OH<br />

Bt2 Bt2 1H-Benzotriazole gives conjugate addition reactions with Æ,â-unsaturated carbonyl compounds<br />

to yield only 1-alkyl derivatives (reactions carried out without solvent and in the<br />

presence of a few drops of pyridine or benzyltrimethylammonium hydroxide solution).<br />

[452] Under similar conditions, and in striking contrast, 4,5,6,7-tetrahalogenated benzotriazoles<br />

afford only the 2-alkyl derivatives. [16,585] This difference is due mainly to the<br />

steric effect of the 4,7-substituents, which direct this type of addition to the 2-position.<br />

This was confirmed by using 4,7-dichloro-1H-benzotriazole and 5,6-dichloro-1H-benzotriazole,<br />

which give only 2- and 1-substituted derivatives, respectively. [585] Heating a mixture<br />

of 1H-benzotriazole and N,2-dimethylpropenamide at 1508C for six days gives only the N1<br />

Michael addition product in 45% yield. [681] 1H-Benzotriazole reacts with acrylamide in basic<br />

medium (pyridine–sodium methoxide) to afford only the N1 Michael addition product<br />

in 96% yield. [682] However, it was shown by NMR analysis that the crude product of this<br />

reaction is a 35:65 mixture of the N1 and N2 addition products, but after 24 hours only<br />

the signals of the N1 isomer are observed. [682] This means that the Michael addition yields<br />

a kinetic mixture which slowly equilibrates to the most stable isomer (the thermodynamic<br />

product). In an aqueous micellar medium, mixtures of N1 and N2 addition products are<br />

obtained from the reaction of benzotriazole with 1,3-diphenylprop-2-en-1-one (chalcone)<br />

(Scheme 243), acrylonitrile, and diethyl maleate. [667]<br />

Scheme 243 Reaction of 1H-Benzotriazole with 1,3-Diphenylprop-2-en-1-one [667]<br />

N<br />

N<br />

N<br />

H<br />

+ Ph<br />

CTAB = cetyltrimethylammonium bromide<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.3 N-Unsubstituted and 1-Substituted Benzotriazoles 559<br />

O<br />

Ph<br />

NaOH, H2O, CTAB<br />

rt, 1 d<br />

1H-Benzotriazole reacts with aliphatic aldehydes to yield isolable crystalline 1-hydroxyalkyl<br />

benzotriazole derivatives (Scheme 244). [683] In solution these condensation products<br />

dissociate into their components and equilibrate between the 1- and 2-positions of the<br />

benzotriazole ring. [8] The reaction with aromatic aldehydes or ketones does not afford<br />

the corresponding condensation products.<br />

79%<br />

+<br />

Ph<br />

N<br />

N<br />

N<br />

O<br />

N<br />

N<br />

N<br />

Ph<br />

Ph<br />

O<br />

Ph<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 244 Hydroxymethylation of 1H-Benzotriazole [683]<br />

N<br />

N<br />

N<br />

H<br />

+<br />

R 1<br />

O<br />

H<br />

R 1<br />

N<br />

N<br />

N<br />

OH<br />

H<br />

1H-Benzotriazole reacts with an aldehyde or ketone and an amine to yield the condensation<br />

products 676 generally in very high yields (Scheme 245). [684] The aminomethylation<br />

of 1H-benzotriazole by the Mannich reaction [453,685] is an example of this very general reaction:<br />

both aliphatic and aromatic aldehydes can be used, ketones (particularly cyclic<br />

ones), ammonia, and primary and secondary amines (aliphatic, aromatic, and heteroaromatic)<br />

all give the expected products. [8]<br />

Scheme 245 Aminomethylation of 1H-Benzotriazole [684]<br />

N<br />

N<br />

N<br />

H<br />

+<br />

R 1<br />

O<br />

R 2<br />

+<br />

R 3<br />

HN<br />

R 4<br />

N<br />

N<br />

N<br />

NR3R4 R2 R1 676<br />

1-Chloro- and 1-bromo-1H-benzotriazoles 677 (X = Cl, Br) undergo electrophilic addition<br />

to alkenes to afford 1- and 2-(2-haloalkyl)benzotriazoles, with trans configuration, in<br />

good yields. [686,687] 1-Bromo-1H-benzotriazole is much more reactive than the chloro derivative.<br />

For example, the addition of 677 (X = Br) to cyclohexene (giving products 678 and<br />

679) is essentially instantaneous in dichloromethane at room temperature compared<br />

with a reaction time of approximately 4 hours for 677 (X = Cl), despite the low solubility<br />

of 677 (X = Br) (Scheme 246). N,4,5,6,7-Pentachlorobenzotriazole, although extremely insoluble<br />

in organic solvents, also undergoes rapid addition to alkenes. [687] 1-Chloro-1H-benzotriazole<br />

also gives addition products with enamines and enol ethers. [642]<br />

Scheme 246 Addition of 1-Halo-1H-benzotriazoles to Alkenes [686,687]<br />

677<br />

X = Cl, Br<br />

N<br />

N<br />

N<br />

X<br />

+<br />

FOR PERSONAL USE ONLY<br />

560 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

CH 2Cl 2, rt<br />

The reaction of 1H-benzotriazol-1-ol derivatives with alkyl halides in the presence of a<br />

base affords mainly the 1-alkoxy derivatives 680, but the N-alkyl derivatives 681 can also<br />

be formed (Scheme 247). For example, methylation of 1H-benzotriazol-1-ol with iodomethane,<br />

in methanol/sodium methoxide, affords a mixture of the O- and N-methyl derivatives.<br />

[609,615,688] However, using the same conditions, 4-nitro-1H-benzotriazol-1-ol and 6-nitro-1H-benzotriazol-1-ol<br />

give only the 1-methoxy compounds. [615,689] Reaction of 1H-benzotriazol-1-ol<br />

with 1-acetoxy-4-iodobutane in acetonitrile, with potassium carbonate as<br />

base, gives only the O-alkyl derivative in 95% yield. [670] A range of 1-alkoxy-4,5-dichloro-<br />

1H-benzotriazole derivatives is prepared by reaction of the sodium salt of 4,5-dichloro-<br />

1H-benzotriazol-1-ol with the appropriate alkyl halides. [690] Several 1-alkoxy-4-nitro-<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

678<br />

N<br />

N<br />

N<br />

X<br />

+<br />

N<br />

N<br />

N<br />

679<br />

X


1H-benzotriazole derivatives are prepared by alkylation of the 1-hydroxy derivative with<br />

alkyl halides under phase-transfer conditions. [691]<br />

Scheme 247 Alkylation of 1H-Benzotriazol-1-ols with Alkyl Halides [688–691]<br />

R 1<br />

N<br />

N<br />

N<br />

OH<br />

R 2 X, base<br />

R 1<br />

680<br />

N<br />

N<br />

N<br />

OR2 Alkylation of 1H-Benzotriazole with Alkyl Halides; General Procedure: [662]<br />

To a flask provided with a CaCl 2 guard tube and magnetic stirrer was introduced finely<br />

ground NaOH (40 mmol), DMF (8–10 mL), 1H-benzotriazole (10 mmol), and the alkyl halide<br />

(10 mmol). After stirring for 15–60 min, the mixture was poured into H 2O (50–70 mL)<br />

to give a solid or oily product. Solids were collected by filtration, washed with H 2O<br />

(25 mL), and dried, while the oily products were extracted with CHCl 3 (3 ” 10 mL), washed<br />

with H 2O (5 ” 10 mL), dried (MgSO 4), and the solvent evaporated under reduced pressure.<br />

1-Alkyl- and 2-alkylbenzotriazole isomers were separated by column chromatography<br />

(hexane/CHCl 3 2:1).<br />

<strong>13</strong>.<strong>13</strong>.3.3.1.1.9 Method 9:<br />

Halogenation<br />

Benzotriazole is rapidly converted into crystalline 1-chloro-1H-1,2,3-benzotriazole (682,<br />

X = Cl) by treatment with sodium hypochlorite in aqueous acetic acid (Scheme 248). [692]<br />

Similar reaction with sodium hypoiodite in aqueous sodium hydroxide gives 1-iodo-<br />

1H-benzotriazole in 43% yield. [687] Alternatively 1-iodo-1H-benzotriazole is obtained in<br />

94% yield by treatment of 1-chloro-1H-benzotriazole in dichloromethane with 1 equivalent<br />

of iodine. [687] Similarly, 1-bromo-1H-benzotriazole is prepared in 80% yield by the addition<br />

of 1-chloro-1H-benzotriazole to a solution of bromine in dichloromethane. [687] Addition<br />

of sodium hypochlorite to a solution of 4,5,6,7-tetrachloro-1H-benzotriazole in glacial<br />

acetic acid, at room temperature, rapidly affords N,4,5,6,7-pentachloro-1H-benzotriazole<br />

(because of the extreme insolubility of this compound, the position of the fifth chlorine<br />

at N1 or N2 was not assigned unambiguously). [687]<br />

Scheme 248 Synthesis of 1-Chloro- and 1-Iodo-1H-benzotriazole [687,692]<br />

N<br />

N<br />

N<br />

H<br />

+ NaOX<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.3 N-Unsubstituted and 1-Substituted Benzotriazoles 561<br />

AcOH, H 2O, rt<br />

X = Cl 100%<br />

X = I 43%<br />

1H-Benzotriazole is chlorinated to 4,5,6,7-tetrachloro-1H-benzotriazole (683, X = Cl) in<br />

87% yield by refluxing with aqua regia (a mixture of concentrated hydrochloric acid and<br />

concentrated nitric acid) for three hours (Scheme 249). [16] Under similar conditions, 2methyl-2H-benzotriazole<br />

gives 4,5,6,7-tetrachloro-2-methyl-2H-benzotriazole in 50%<br />

yield [16] but chlorination of 1-methyl-1H-benzotriazole with aqua regia requires three<br />

days to give 4,5,6,7-tetrachloro-1-methyl-1H-benzotriazole in 57% yield. [585] Refluxing 4-nitro-1H-benzotriazole<br />

with aqua regia for three days affords 4,5,6,7-tetrachloro-1H-benzotriazole<br />

(62%), and 2,5-dimethyl-2H-benzotriazole gives 4,5,6,7-tetrachloro-2-methyl-<br />

2H-benzotriazole (yield not reported); in these systems the substituents on the benzenic<br />

ring are replaced by chlorine. [585]<br />

682<br />

+<br />

N<br />

N<br />

N<br />

X<br />

R 1<br />

681<br />

R 2<br />

N<br />

N<br />

N<br />

O −<br />

+<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 249 Synthesis of 4,5,6,7-Tetrachloro- and<br />

4,5,6,7-Tetrabromo-1H-benzotriazole [16,585]<br />

N<br />

N<br />

N<br />

H<br />

A: HCl, HNO3, reflux, 3 h<br />

B: Br2, HNO3, reflux, 30 h<br />

A: X = Cl 87%<br />

B: X = Br 54%<br />

Reaction of 1H-benzotriazole with bromine in concentrated nitric acid under reflux affords<br />

4,5,6,7-tetrabromo-1H-benzotriazole in 54% yield (Scheme 249). [585] 1-Methyl- and 2methyl-1H-benzotriazoles<br />

are brominated in the same way affording, respectively,<br />

4,5,6,7-tetrabromo-1-methyl-1H-benzotriazole (48% yield) and 4,5,6,7-tetrabromo-2-methyl-2H-benzotriazole<br />

(67% yield). [585]<br />

1-Chloro-1H-benzotriazole (682, X = Cl); Typical Procedure: [692]<br />

CAUTION: 1-Chloro-1H-benzotriazole reacts violently with DMSO.<br />

2 M NaOCl (50 mL, 0.1 mol) was added dropwise at rt to a stirred soln of 1H-benzotriazole<br />

(10 g, 0.08 mol) in aq AcOH (1:1). After dilution with H 2O the resulting solid was collected<br />

and recrystallized once (CH 2Cl 2/petroleum ether) to give pure (682, X = Cl) as colorless<br />

needles; yield: <strong>13</strong> g (~100%); mp 104–1088C.<br />

4,5,6,7-Tetrachloro-1H-benzotriazole (683, X = Cl); Typical Procedure: [16]<br />

A soln of 1H-benzotriazole (4.76 g, 0.040 mol) in a mixture of concd HCl (525 mL) and<br />

concd HNO 3 (175 mL) was refluxed for 3 h, cooled, and diluted to precipitate the product;<br />

yield: 9.0 g, (87%). Recrystallization (MeNO 2) gave a white crystalline solid; mp 256–2608C.<br />

<strong>13</strong>.<strong>13</strong>.3.3.1.1.10 Method 10:<br />

Sulfonylation<br />

FOR PERSONAL USE ONLY<br />

562 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

1H-Benzotriazole reacts with trifluoromethanesulfonic anhydride, in dry dichloromethane<br />

and dry pyridine at –788C, to afford 1-(trifluoromethylsulfanyl)-1H-benzotriazole in<br />

87% yield. [642]<br />

5,6-Dimethyl-1H-benzotriazole reacts with benzenesulfonyl chloride, in the presence<br />

of 10% aqueous sodium hydroxide solution, to yield the 1-phenylsulfonyl derivative in<br />

72% yield; [587] naphthotriazoles also give only the 1-phenylsulfonyl derivatives. [582]<br />

1H-Benzotriazol-4-amine reacts with an equimolar amount of 4-toluenesulfonyl chloride<br />

in pyridine at room temperature to give 4-(tosylamino)-1H-benzotriazole (684,Ar 1 =4-<br />

Tol) (Scheme 250). [699] Under similar experimental conditions, 5-methyl-1H-benzotriazol-4amine<br />

gives the 1-tosyl-1H-benzotriazole derivative 685 as the only isolated product. With<br />

an excess of arenesulfonyl chloride both starting benzotriazol-4-amines afford the bis-sulfonylated<br />

derivatives 686. [699] The reaction of benzotriazol-5-amines with arenesulfonyl<br />

chlorides has also been reported. [639] 1-Mesyl- and 1-(phenylsulfonyl)-1H-benzotriazole are<br />

prepared in good yields from the reaction of the corresponding sulfonyl chlorides and 1-<br />

(trimethylsilyl)-1H-benzotriazole [630] or 1-(tributylstannyl)-1H-benzotriazole. [693]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

X<br />

X<br />

X<br />

X<br />

683<br />

N<br />

N<br />

N<br />

H


Scheme 250 Sulfonylation of Benzotriazol-4-amines [699]<br />

R 1<br />

R 1<br />

NH 2<br />

N<br />

N<br />

N<br />

H<br />

Ar1SO2Cl (4 equiv)<br />

py, rt<br />

NHSO2Ar 1<br />

686<br />

N<br />

N<br />

N<br />

R 1 = H, Me; Ar 1 = Ph, 4-Tol<br />

<strong>13</strong>.<strong>13</strong>.3.3.1.1.11 Method 11:<br />

N-Amination<br />

SO 2Ar 1<br />

TsCl (1 equiv)<br />

py, rt<br />

R 1 = H<br />

R 1 = Me<br />

NHTs<br />

684<br />

NH 2<br />

685<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

Ts<br />

1H-Benzotriazol-1-amines are valuable precursors to didehydrobenzenes under notably<br />

mild conditions, using either lead(IV) acetate [694] or N-bromosuccinimide. [695] Treatment<br />

of 1H-benzotriazole with hydroxylamine-O-sulfonic acid in hot (70–75 8C) aqueous potassium<br />

hydroxide solution gives a mixture of 1H-benzotriazol-1-amine (687) and 2H-benzotriazol-2-amine<br />

in an approximately 3:1 ratio (Scheme 251). [694] The formation of the 2amino<br />

isomer is avoided by changing the reaction conditions (temperature and solvent).<br />

The 1-amino isomer is obtained selectively in 62% yield when the reaction is carried out in<br />

dioxane containing 5% water and the reaction mixture is maintained below 508C. Better<br />

yields (69%) of the 1-isomer, uncontaminated by the 2-isomer, are obtained in dimethylformamide<br />

containing 5% water. [696] In ethanol the conversion is nearly quantitative, but a<br />

2:1 mixture of the two isomers is formed, the 2-amino derivative being the main product.<br />

[696]<br />

Scheme 251 N-Amination of 1H-Benzotriazole [694,696]<br />

N<br />

N<br />

N<br />

H<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.3 N-Unsubstituted and 1-Substituted Benzotriazoles 563<br />

H2NOSO3H, aq KOH, DMF<br />


tion of a 1,2,3-triazolo[4,5-d][1,2,3]triazole with O-(mesitylsulfonyl)hydroxylamine affords<br />

the 1-amino and 2-amino derivatives in 22 and 46% yield, respectively. [698] N-Amination of<br />

4-cyanoazuleno[1,2-d]-1,2,3-triazole with 1-(aminooxy)-2,4-dinitrobenzene gives a 3:2 mixture<br />

of two isomeric N-amino derivatives in 54% yield. [569]<br />

Scheme 252 N-Amination of Benzo[1,2-d:4,5-d¢]bistriazole [596]<br />

H<br />

N<br />

N<br />

N<br />

688<br />

+<br />

N<br />

N<br />

N<br />

H<br />

H 2N<br />

N<br />

N<br />

N<br />

1. 10% KOH, 60 oC 2. H2NOSO3H<br />

66−68 oC, 2 h<br />

N<br />

N<br />

N<br />

NH 2<br />

+<br />

1H-Benzotriazol-1-amine (687): [696]<br />

Hydroxylamine-O-sulfonic acid (94.9 g, 0.84 mol) was added portionwise to a stirred soln<br />

of 1H-benzotriazole (50.0 g, 0.42 mol) and KOH (117.6 g, 2.1 mol) in DMF (250 mL) and H 2O<br />

(12 mL) such that the temperature of the mixture remained below 508C (ca. 1.0 g •min –1 ).<br />

After the addition was complete, the mixture was cooled to rt and stirring continued for a<br />

further 1 h. The resulting precipitate was removed by vacuum filtration and washed thoroughly<br />

with Et 2O. The filtrate was evaporated to dryness using a rotary evaporator attached<br />

to a rotary pump. The temperature of the water bath was kept below 508C; above<br />

this, rearrangement to the corresponding 2-amino isomer became significant. The residue<br />

was dissolved in a minimum of 2 M HCl and the resulting soln kept at –28C overnight<br />

during which time 1H-benzotriazol-1-amine hydrochloride crystallized and was removed<br />

by filtration. The solid was dried under vacuum and showed mp <strong>13</strong>1–<strong>13</strong>48C and was >95%<br />

pure according to 1 H NMR data. The free amine was obtained by direct basification of the<br />

solid salt using aq 2 M NaOH followed by extraction with Et 2O (3 ” 100 mL). The combined<br />

extracts were dried and evaporated to leave 687 as a colorless solid; yield: 38.8 g (69%); mp<br />

848C.<br />

<strong>13</strong>.<strong>13</strong>.3.3.1.1.12 Method 12:<br />

Nitration<br />

FOR PERSONAL USE ONLY<br />

564 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

Nitration of 1H-benzotriazole with a mixture of concentrated nitric and sulfuric acids, at<br />

room temperature, gives 4-nitro-1H-benzotriazole in 50% yield while 5-methyl-1H-benzotriazole<br />

gives the 4-nitro derivative 689 (R 1 = Me) in 90% yield under similar experimental<br />

conditions (Scheme 253). [699] Nitration of 5-chloro-1H-benzotriazole (at 608C) affords derivative<br />

689 (R 1 = Cl) in 83% yield. [700] Nitration of 1H-benzotriazole-5-carboxylic acid at<br />

908C gives derivative 690 (R 1 =CO 2H) while 5-nitro-1H-benzotriazole at 1158C affords a<br />

mixture of 690 (R 1 =NO 2, 30%) and 691 (67%). [700]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

H<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

H 2N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

NH 2<br />

NH 2<br />

+<br />

+<br />

N<br />

N<br />

N<br />

H<br />

H 2N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

NH2<br />

N<br />

N<br />

N<br />

NH 2


Scheme 253 Nitration of 1H-Benzotriazoles [699,700]<br />

R 1<br />

N<br />

N<br />

N<br />

H<br />

A: HNO3, H2SO4, rt, overnight<br />

B: HNO3, H2SO4, 0−60 oC, 2 h<br />

A: R1 = H 50%<br />

A: R1 = Me 90%<br />

B: R1 = Cl 83%<br />

A: HNO3, H2SO4, 0−90 oC, 2.5 h<br />

B: HNO3, H2SO4, 0−115 oC, 12.5 h<br />

A: R1 = CO2H 48% (690 only)<br />

B: R1 = NO2 97%; (690/691) 30:67<br />

Nitration of 1-methyl-1H-benzotriazole affords 1-methyl-7-nitro-1H-benzotriazole [701]<br />

while 2-methyl-2H-benzotriazole gives 2-methyl-5-nitro-2H-benzotriazole. [585] Nitration of<br />

1-(1,2,3-triazolyl)-1H-benzotriazole derivatives with potassium nitrate in concentrated<br />

sulfuric acid at 60 8C affords the corresponding 5-nitro derivatives in high yields (ca.<br />

80%). If the 5-position is occupied, nitration occurs at the 4-position. [322] 1-Phenyl- and 2phenylbenzotriazoles<br />

give the corresponding 4-nitrophenyl derivatives by nitration with<br />

potassium nitrate in concentrated sulfuric acid at 608C. [702,703] Nitration of 1-(2,4,6-trinitrophenyl)-1H-benzotriazole<br />

with a mixture of concentrated nitric and sulfuric acids, at<br />

reflux for 2 hours, gives the 5,7-dinitro derivative in 73% yield. [586] Nitration of 2-(2-hydroxy-5-methylphenyl)-2H-benzotriazole<br />

with a mixture of concentrated nitric and acetic<br />

acids, at 708C for 10 minutes, gives the 2-(2-hydroxy-5-methyl-3-nitrophenyl) derivative in<br />

84% yield. [704] Nitration of 1,5-bis(2,4,6-trinitrophenyl)benzo[1,2-d:4,5-d¢]bistriazole with a<br />

mixture of nitric acid and sulfuric acid gives the 4-nitro derivative in 21% yield. [595]<br />

5-Methyl-4-nitro-1H-benzotriazole (689,R 1 = Me); Typical Procedure: [699]<br />

To 5-methyl-1H-benzotriazole (5 g, 37.5 mmol) in concd H 2SO 4 (20 mL) was added a mixture<br />

of HNO 3 (70%, 5 mL) and concd H 2SO 4 (5 mL) at below 208C, and the resulting mixture<br />

was allowed to stand overnight. The soln was poured onto ice, and the resulting precipitate<br />

was collected by filtration, washed with H 2O, and recrystallized (EtOH) to give microcrystals;<br />

yield: 6.0 g (90%); mp 254–2558C.<br />

<strong>13</strong>.<strong>13</strong>.3.3.1.1.<strong>13</strong> Method <strong>13</strong>:<br />

Azo Coupling<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.3 N-Unsubstituted and 1-Substituted Benzotriazoles 565<br />

N-Unsubstituted, 1- and 2-substituted activated benzotriazoles (with a hydroxy or amino<br />

group) all react with arenediazonium salts to yield (arylazo)benzotriazoles. [631,701,705] A<br />

range of benzo[1,2-d:3,4-d¢]bistriazoles 695 are prepared by oxidation of the 4-(arylazo)benzotriazol-5-amines<br />

694 (see Section <strong>13</strong>.<strong>13</strong>.4.1.2.1.1) obtained from the reaction of 2aryl-2H-benzotriazol-5-amines<br />

692 with diazonium salt 693 (Scheme 254). [706]<br />

R 1<br />

R 1<br />

NO 2<br />

689<br />

NO 2<br />

690<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

H<br />

+<br />

O 2N<br />

O 2N<br />

691<br />

N<br />

N<br />

N<br />

H<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 254 Azo Coupling to 2-Aryl-2H-benzotriazol-5-amines [706]<br />

R 1<br />

H 2N<br />

692<br />

N<br />

NAr 1<br />

N<br />

Ar2N2 Cl −<br />

+<br />

693<br />

R 1 = H, Me, Et, OMe, Cl, Br, CO2H, SO3H; Ar 1 = Ph, aryl, naphthyl<br />

Ar 2 =<br />

SO 3H<br />

HO3S<br />

NO2<br />

R 1<br />

H 2N<br />

Ar 2 N<br />

N<br />

694<br />

N<br />

NAr 1<br />

N<br />

CuSO 4, NH 4OH<br />

R 1<br />

N<br />

Ar2N N<br />

695<br />

N<br />

NAr1 N<br />

Both 1H-benzotriazol-5-ol and 5-hydroxy-1H-benzotriazole-4-carboxylic acid afford the<br />

same azo dye 696 when reacted with diazonium salts (Scheme 255). [631] The complementary<br />

synthetic route to (arylazo)benzotriazoles, i.e. diazotization of benzotriazol-5-amine<br />

followed by reaction with an activated aromatic compound can also be used successfully.<br />

[707]<br />

Scheme 255 Azo Coupling with Activated Benzotriazoles [631]<br />

HO<br />

HO<br />

CO 2H<br />

Ar 1 = 4-ClC 6H 4<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

H<br />

FOR PERSONAL USE ONLY<br />

566 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

Ar1N2 Cl −<br />

+<br />

693<br />

85%<br />

Ar1N2 Cl −<br />

+<br />

693<br />

− CO2<br />

93%<br />

HO<br />

N NAr1<br />

4-(4-Chlorophenylazo)-1H-benzotriazol-5-ol (696); Typical Procedure: [631]<br />

4-Chloroaniline (6.38 g, 0.05 mol) was dissolved in 2.5 M HCl (100 mL) and diazotized by<br />

the addition of 5 M NaNO 2 (10 mL) at 108C. This soln was filtered and diluted to 200 mL<br />

to make a 0.25 M soln. Part of this soln (8 mL, 2 mmol) was added with stirring to a soln<br />

of 1H-benzotriazol-5-ol (0.286 g, 2.12 mmol) dissolved in a mixture of H 2O (40 mL), 1 M<br />

NaOH (4 mL) and 1 M Na 2CO 3 (2 mL). A deep orange soln was formed immediately. After<br />

15 min stirring, the soln was acidified by the addition of 5 M HCl (1 mL). The reddish-orange<br />

precipitate formed was collected by filtration, washed, and dried at 1008C; yield:<br />

0.47 g (85%); mp 247–2498C.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

696<br />

N<br />

N<br />

N<br />

H


<strong>13</strong>.<strong>13</strong>.3.3.2 Of Carbon Functionalities<br />

<strong>13</strong>.<strong>13</strong>.3.3.2.1 Method 1:<br />

Decarboxylation<br />

When refluxed in water, 5-hydroxy-1H-benzotriazole-4-carboxylic acid decarboxylates to<br />

afford 1H-benzotriazol-5-ol in 76% yield (Scheme 256). [631] Its isomer, 5-hydroxy-1H-benzotriazole-6-carboxylic<br />

acid does not decarboxylate under the same conditions. [631]<br />

Scheme 256 Decarboxylation of Benzotriazoles [631]<br />

HO<br />

CO2H<br />

N<br />

N<br />

N<br />

H<br />

<strong>13</strong>.<strong>13</strong>.3.3.2.2 Method 2:<br />

Deacylation<br />

H2O reflux, 20 h<br />

76%<br />

HO N<br />

H2O reflux HO<br />

N<br />

N<br />

N<br />

N<br />

H<br />

HO2C N<br />

H<br />

1-Acetyl-5-methyl-1H-benzotriazole and 1-acetyl-6-methyl-1H-benzotriazole are deacetylated<br />

in boiling acetic acid/water (1:1) for eight to nine hours. [583] 1-Acetyl-6-(acetylamino)-<br />

5-methyl-1H-1,2,3-benzotriazole is selectively hydrolyzed to 6-(acetylamino)-5-methyl-1H-<br />

1,2,3-benzotriazole which then is hydrolyzed to 5-methyl-1H-benzotriazol-6-amine. [708]<br />

1-Substituted benzotriazol-5-amines are obtained in 85% yield by deacylation of the corresponding<br />

5-[(trifluoroacetyl)amino]-1H-benzotriazoles in methanol/potassium carbonate.<br />

[639] 1-Acetyl-5,6-dimethyl-1H-benzotriazole (697) is slowly deacetylated when dissolved<br />

in ethanol/water (3:1) at room temperature (Scheme 257). [587] Compound 698 is<br />

hydrolyzed in 6 M hydrochloric acid to the propanoic acid derivative 699. [709]<br />

Scheme 257 Deacetylation of 1-Acetyl-1H-benzotriazoles [587,709]<br />

EtO 2C<br />

697<br />

AcO<br />

N<br />

N<br />

N<br />

Ac<br />

698<br />

EtOH, H 2O, rt<br />

N<br />

N<br />

N<br />

Ac<br />

HCl, H 2O, rt, 17 h<br />

1,7-Diacetylbenzobistriazole 700, dissolved in ethanol/water (1:1), is deacetylated in almost<br />

quantitative yield by acid treatment (Scheme 258). [596]<br />

90%<br />

N<br />

N<br />

N<br />

H<br />

HO 2C<br />

HO<br />

699<br />

N<br />

N<br />

N<br />

H<br />

Scheme 258 Deacetylation of 1,7-Diacetyl-1,7-dihydrobenzo[1,2-d:4,5-d¢]bistriazole [596]<br />

N<br />

N<br />

N<br />

Ac<br />

700<br />

N<br />

N<br />

N<br />

Ac<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.3 N-Unsubstituted and 1-Substituted Benzotriazoles 567<br />

H2SO4, H2O, EtOH<br />

reflux, 1 h<br />

96%<br />

N<br />

N<br />

N<br />

H<br />

688<br />

H<br />

N<br />

N<br />

N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


1,5-Dihydrobenzo[1,2-d:4,5-d¢]bistriazole (688); Typical Procedure: [596]<br />

A mixture of 1,7-diacetyl-1,7-dihydrobenzo[1,2-d:4,5-d¢]bistriazole (700; 0.73 g, 3 mmol),<br />

50% aq EtOH (100 mL), and concd H 2SO 4 (1 mL) was refluxed for 1 h, then the reflux condenser<br />

was removed and most of the EtOH was allowed to evaporate. The resultant mixture<br />

was chilled and filtered to remove the product, which was washed with H 2O and<br />

dried at 1008C to give pure 688; yield: 0.46 g (96%); explosion temperature 3708C when<br />

heated at 208C • min –1 .<br />

<strong>13</strong>.<strong>13</strong>.3.3.3 Of Heteroatoms<br />

<strong>13</strong>.<strong>13</strong>.3.3.3.1 Method 1:<br />

Deoxygenation<br />

2H-Benzotriazole 1-oxides of type 701 are readily deoxygenated to 2H-benzotriazoles 702<br />

or 703 by reduction with zinc dust in alkaline ethanolic solutions, [710] zinc powder and<br />

sulfuric acid, [711] hydrazine hydrate in a high-boiling ether, [712] or by using baker s yeast<br />

in sodium hydroxide solution [7<strong>13</strong>] (Scheme 259). If the reduction with zinc is carried out<br />

with heating, the 5-chloro-2H-benzotriazole 1-oxides 701 (R 1 = Cl) are simultaneously deoxygenated<br />

and dechlorinated (see Section <strong>13</strong>.<strong>13</strong>.3.3.3.2). [710]<br />

Scheme 259 Deoxygenation of 2-Aryl-2H-benzotriazole 1-Oxides [710,7<strong>13</strong>]<br />

R 1<br />

N<br />

N<br />

N<br />

O − HO R2 +<br />

701<br />

R 3<br />

R 1 = H, Cl; R 2 = H, t-Bu, CH 2t-Bu; R 3 = Me, t-Bu, CH 2t-Bu<br />

Zn, NaOH, EtOH<br />

rt, 1 h<br />

68−88%<br />

baker's yeast<br />

NaOH<br />

85 oC, 24−30 h<br />

86−90%<br />

R 1<br />

R 1<br />

N<br />

N<br />

N<br />

702<br />

N<br />

N<br />

N<br />

703<br />

R 3<br />

HO Bu t<br />

R 3<br />

HO R 2<br />

2-Alkyl-2H-benzotriazole 704 is deoxygenated to 705 by reduction with tin(II) chloride<br />

(Scheme 260). [714]<br />

Scheme 260 Deoxygenation of 2-Alkyl-2H-benzotriazole 1-Oxides [714]<br />

N<br />

N<br />

N<br />

O −<br />

+<br />

704<br />

OHC<br />

FOR PERSONAL USE ONLY<br />

568 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

SnCl2, HCl<br />

72%<br />

Refluxing 1-nonyl-1H-benzotriazole 3-oxide (706) in neat acetic anhydride gives the deoxygenated<br />

1-nonyl-1H-benzotriazole (707; yield not reported) (Scheme 261). [715]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

N<br />

N<br />

N<br />

705<br />

OHC


Scheme 261 Deoxygenation of 1-Alkyl-1H-benzotriazole 3-Oxides [715]<br />

706<br />

O −<br />

N+<br />

N<br />

N<br />

( ) 8<br />

Ac 2O, reflux, 48 h<br />

Polymer-supported 1H-benzotriazol-1-ol 708 is readily converted into the corresponding<br />

NH derivative 709 by reductive cleavage of the 1-hydroxy moiety with either phosphorus<br />

trichloride or samarium(II) iodide (Scheme 262). [622]<br />

707<br />

N<br />

N<br />

N<br />

Scheme 262 Reductive Cleavage of the 1-Hydroxy Moiety in a Polymer-Supported<br />

1H-Benzotriazol-1-ol [622]<br />

708<br />

N<br />

N<br />

N<br />

<strong>13</strong>.<strong>13</strong>.3.3.3.2 Method 2:<br />

Dehalogenation<br />

OH<br />

PCl3, CHCl3, reflux, 20 h<br />

or SmI2, THF, reflux, overnight<br />

A simultaneous deoxygenation and dehalogenation, to give products 711, is observed<br />

during the reduction of 5-chloro-2H-benzotriazole 1-oxides 710 with zinc dust in alkaline<br />

ethanolic solution and heating on a steam bath for five hours (Scheme 263). [710]<br />

Scheme 263 Dehalogenation of 5-Chloro-2H-benzotriazole 1-Oxides [710]<br />

Cl<br />

O HO But −<br />

N+<br />

N<br />

N<br />

710<br />

<strong>13</strong>.<strong>13</strong>.3.3.4 Addition Reactions<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.3 N-Unsubstituted and 1-Substituted Benzotriazoles 569<br />

R 1<br />

Zn, NaOH, EtOH, H2O 100 oC, 5 h<br />

R1 = Me 73%<br />

R1 = t-Bu 80%<br />

<strong>13</strong>.<strong>13</strong>.3.3.4.1 Method 1:<br />

Conversion into N-Oxides or Epoxides<br />

( ) 8<br />

709<br />

N<br />

N<br />

N<br />

711<br />

N<br />

N<br />

N<br />

H<br />

HO Bu t<br />

1-Alkyl-1H-benzotriazoles react with dimethyldioxirane to give the corresponding 1-alkyl-<br />

1H-benzotriazole 3-oxides 712. In contrast, under similar conditions, 2-alkyl-2H-benzotriazoles<br />

7<strong>13</strong> are converted into the corresponding trans-4,5,6,7-diepoxy-4,5,6,7-tetrahydro-<br />

2H-benzotriazoles 714 (Scheme 264). [715]<br />

R 1<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 264 Oxidation of Benzotriazoles with Dimethyldioxirane [715]<br />

N<br />

N<br />

N<br />

O (2−3 equiv)<br />

O<br />

CH2Cl2, rt, 24−36 h<br />

35−92%<br />

N<br />

N<br />

N<br />

O −<br />

R<br />

+<br />

1 R1 R 1 = Me, Et, Pr, (CH 2) 5Me, (CH 2) 8Me, Bn, CH 2CH 2Ph, CHPhMe, CH 2CO 2Et, CH 2OPh, CH 2C CH, CH 2CN<br />

N<br />

N<br />

N<br />

7<strong>13</strong><br />

Ar 1<br />

O (4 equiv)<br />

O<br />

CH2Cl2, rt, 3 d<br />

Ar1 = Ph 50%<br />

Ar1 = 4-O2NC6H4 77%<br />

2-Methyl-2H-benzotriazole is converted into its 1-oxide derivative, in very low yield, by oxidation<br />

with 3-chloroperoxybenzoic acid (Scheme 265). [615] Most of the starting benzotriazole<br />

is recovered unchanged.<br />

712<br />

O<br />

O<br />

N<br />

N<br />

N<br />

Scheme 265 Oxidation of Benzotriazoles with 3-Chloroperoxybenzoic Acid [615]<br />

N<br />

NMe<br />

N<br />

MCPBA (4 equiv)<br />

CH2Cl2, 0 oC to rt, 12 d<br />

0.8%<br />

<strong>13</strong>.<strong>13</strong>.4 <strong>Product</strong> Subclass 4:<br />

2-Substituted Benzotriazoles<br />

<strong>13</strong>.<strong>13</strong>.4.1 Synthesis by Ring-Closure Reactions<br />

<strong>13</strong>.<strong>13</strong>.4.1.1 By Formation of Two N-N Bonds<br />

<strong>13</strong>.<strong>13</strong>.4.1.1.1 Fragments N-C-C-N and N<br />

<strong>13</strong>.<strong>13</strong>.4.1.1.1.1 Method 1:<br />

From Benzene-1,2-diamine and Nitrobenzenes<br />

O<br />

N<br />

NMe<br />

N<br />

−<br />

+<br />

Benzene-1,2-diamine reacts with nitrobenzenes to yield 2-aryl-2H-benzotriazoles and 2aminoazobenzenes<br />

(Scheme 266). [716] The latter compounds can be converted into 2-aryl-<br />

2H-benzotriazoles (see Scheme 267).<br />

Scheme 266 2-Aryl-2H-benzotriazoles from Benzene-1,2-diamine and Nitrobenzenes [716]<br />

NH 2<br />

NH 2<br />

Ar 1 = Ph, 3-Tol<br />

+ Ar 1 NO2<br />

FOR PERSONAL USE ONLY<br />

570 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

NAr<br />

N<br />

1<br />

N<br />

+<br />

714<br />

Ar 1<br />

N NAr 1<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

NH2


<strong>13</strong>.<strong>13</strong>.4.1.2 By Formation of One N-N Bond<br />

<strong>13</strong>.<strong>13</strong>.4.1.2.1 Fragment N-N-C-C-N<br />

<strong>13</strong>.<strong>13</strong>.4.1.2.1.1 Method 1:<br />

Cyclization of 2-Aminoazobenzenes<br />

2-Aminoazobenzenes are converted into 2-aryl-2H-benzotriazoles by oxidation with copper<br />

sulfate in ammonia or pyridine solution (Scheme 267). Using ammoniacal copper sulfate,<br />

2,4-diaminoazobenzene (715, R 1 = 4-NH 2;R 2 = H) is converted quantitatively into 2phenyl-2H-benzotriazole-5-amine,<br />

[717] and 2,2¢-diaminoazobenzene (715, R 1 =H; R 2 =2-<br />

NH 2) is oxidized to 2-(2-aminophenyl)-2H-benzotriazole (716; R 1 =H,R 2 = 2-NH 2) with copper<br />

sulfate in pyridine in 65% yield. [643]<br />

Scheme 267 Oxidative Cyclization of 2-Aminoazobenzenes [643,717]<br />

R 1<br />

N N<br />

NH 2<br />

715<br />

R 2<br />

CuSO4, H2O NH3 or py<br />

rt to reflux, 2 h<br />

Similarly, 1-(2-nitrophenylazo)-2-naphthylamine 717 is converted into the naphthotriazole<br />

718 by oxidative cyclization with copper sulfate in pyridine (Scheme 268). [643] The<br />

same naphthotriazole is obtained in 70% yield by refluxing the azo compound in thionyl<br />

chloride. [643]<br />

R 1<br />

N<br />

N<br />

N<br />

Scheme 268 Oxidative Cyclization of 1-(2-Nitrophenylazo)-2-naphthylamine [643]<br />

O 2N<br />

N N<br />

NH 2<br />

717<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.4 2-Substituted Benzotriazoles 571<br />

A: CuSO4, py, reflux, 4 h<br />

B: SOCl2, benzene, reflux, 18 h<br />

A: 83%<br />

B: 70%<br />

2-(Arylazo)anilines 719 and 1-(arylazo)-2-naphthylamines 721 are converted into the corresponding<br />

2H-benzotriazoles 720 and 2H-naphthotriazoles 722, respectively, by refluxing<br />

in dimethylformamide, with a current of bubbling air, in the presence of copper(II)<br />

acetate (Scheme 269). [718] This procedure [718,719] and the one using copper sulfate as oxidant,<br />

[547,720,721] can also be applied to the synthesis of heterocycle-fused 1,2,3-triazoles.<br />

716<br />

R 2<br />

N<br />

N<br />

N<br />

718<br />

O 2N<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 269 Air Oxidation of 2-(2-Thienylazo)aniline and 1-(2-Thienylazo)-<br />

2-naphthylamine Derivatives [718]<br />

R 1<br />

N N<br />

NH2<br />

719<br />

S<br />

R 1 = Me, OMe; R 2 = CN, CO 2Et<br />

R 1 = CN, CO2Et<br />

N N<br />

NH2<br />

R 2<br />

R 1<br />

721<br />

FOR PERSONAL USE ONLY<br />

572 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

S<br />

Cu(OAc)2, air<br />

DMF, reflux, 4 h<br />

61−69%<br />

Cu(OAc)2, air<br />

DMF, reflux, 4 h<br />

71−74%<br />

A range of benzo[1,2-d:3,4-d¢]bistriazoles is prepared by oxidation of 4-(arylazo)benzotriazol-5-amines<br />

(see Scheme 254 in Section <strong>13</strong>.<strong>13</strong>.3.3.1.1.<strong>13</strong>). [706]<br />

2-(2-Aminophenyl)-2H-benzotriazole (716,R 1 =H;R 2 = 2-NH 2); Typical Procedure: [643]<br />

2,2¢-Diaminoazobenzene (4.4 g, 0.02 mol) was dissolved in pyridine (50 mL) and treated<br />

with anhyd CuSO 4 (12.8 g, 0.08 mol) added in portions with stirring. After 30 min at rt,<br />

the mixture was refluxed for 2 h, cooled, and poured into cold H 2O (200–250 mL) with stirring.<br />

The dark solid which separated was collected by filtration and washed with H 2O.<br />

Three recrystallizations (2 ” EtOH and 1 ” hexane), with concomitant treatment with<br />

activated carbon, yielded well-defined, yellow crystals; yield: 65%; mp 97–98 8C.<br />

<strong>13</strong>.<strong>13</strong>.4.1.2.1.2 Method 2:<br />

Cyclization of 2-Azidoazobenzenes<br />

The synthesis of 2H-benzotriazoles by thermal extrusion of nitrogen from 2-azidoazobenzenes<br />

has been known since the 19th century. [722,723] This is a very convenient method<br />

since a range of 2-azidoazobenzenes can be prepared from simple precursors (Scheme<br />

270). [724,725] The kinetics of the thermal decomposition of 2-azidoazobenzenes 723 to 2aryl-2H-benzotriazoles<br />

724 has been investigated. [726] The reaction of 723 with boron trichloride<br />

or trifluoride in benzene at room temperature also gives benzotriazoles 724 in<br />

high yields (90–94%). [727]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

R 1<br />

N<br />

N<br />

N<br />

720<br />

N<br />

N<br />

N<br />

722<br />

R 1<br />

R 2<br />

S<br />

S


Scheme 270 Synthesis of 2-Azidoazobenzenes and Their Conversion into<br />

2-Aryl-2H-benzotriazoles [724,725]<br />

NH 2<br />

N 3<br />

NaNO2, H +<br />

+<br />

N2 N3<br />

X = NR 1 R 2 , OH<br />

+ Ar 1 NO<br />

+ Ar 1 X<br />

− H 2O<br />

723<br />

N NAr 1<br />

N 3<br />

heat<br />

− N2<br />

724<br />

NAr<br />

N<br />

1<br />

N<br />

The benzotriazolo[2,1-a]benzotriazole 727 is prepared in good yield by the thermal or<br />

photochemical decomposition of 2,2¢-diazidoazobenzene (725). This transformation requires<br />

the elimination of 2 equivalents of nitrogen and this can be performed at 1758C<br />

(Scheme 271). However, since the nitrogen is liberated in two distinct stages, 1 equivalent<br />

at approximately 608C and the second equivalent at approximately 1708C, it is possible to<br />

convert 725 into 2-(2-azidophenyl)-2H-benzotriazole (726) in good yield. [643,728] Benzotriazole<br />

726 is also formed when a benzene solution of 725 is exposed to sunlight for three<br />

days. Similarly, 726 is converted into 727 when exposed to sunlight for ten days. [643]<br />

Scheme 271 Thermolysis of 2,2¢-Diazidoazobenzene [643,728]<br />

N 3<br />

N N<br />

725<br />

N 3<br />

− 2N 2<br />

93%<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.4 2-Substituted Benzotriazoles 573<br />

Decalin<br />

175 oC, 2−3 h<br />

acetone or benzene<br />

reflux, 2 h<br />

− N 2<br />

70%<br />

N<br />

N<br />

N<br />

+ N<br />

−<br />

727<br />

− N 2<br />

95%<br />

N<br />

N<br />

N<br />

726<br />

N 3<br />

Decalin<br />

175−185 oC, 2−3 h<br />

2,4-Bis(arylazo)-1-azido- and 1-(arylazo)-2-azidonaphthalene derivatives 728 and 730 are<br />

converted into 2H-naphtho[1,2-d][1,2,3]triazoles 729 by thermal decomposition (Scheme<br />

272). [729]<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 272 Thermolysis of (Arylazo)azidonaphthalenes [729]<br />

R 1<br />

R 1<br />

728<br />

730<br />

N NAr 1<br />

N 3<br />

N3<br />

N<br />

NAr 1<br />

heat<br />

− N 2<br />

R 1 = N2Ar 1 78−81%<br />

heat<br />

− N2<br />

R 1 = H 60−85%<br />

R 1<br />

729<br />

NAr<br />

N<br />

1<br />

N<br />

1-(2-Azidophenyl)-3-methyl-3-phenyltriazene (731) is converted into 2-[methyl(phenyl)amino]-2H-benzotriazole<br />

(732) when refluxed in m-xylene (Scheme 273). [725]<br />

Scheme 273 Thermolysis of a (2-Azidophenyl)triazene Derivative [725]<br />

N3<br />

m-xylene, reflux, 1 h<br />

N<br />

N<br />

N<br />

N N Ph<br />

N<br />

Me<br />

− N2 63%<br />

731 732<br />

Ph<br />

N<br />

Me<br />

2-Azidoazobenzenes 734 are intermediates in the conversion of 2-nitro-, 2-chloro-, and 2bromoazobenzenes<br />

733 into 2-aryl-2H-benzotriazoles 735 (Scheme 274). This transformation<br />

is accelerated by the addition of a suitable metal catalyst (e.g., CuBr). [730]<br />

Scheme 274 Synthesis of 2-Aryl-2H-benzotriazoles from 2-Nitro-, or 2-Haloazobenzenes<br />

and Sodium Azide [730]<br />

R 1<br />

733<br />

X = NO 2, Cl, Br<br />

X<br />

N NAr1<br />

FOR PERSONAL USE ONLY<br />

574 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

NaN3, DMSO<br />

or DMF<br />

125 oC, 4−10 h<br />

R 1<br />

734<br />

N 3<br />

N NAr1<br />

− N 2<br />

R 1<br />

735<br />

NAr<br />

N<br />

1<br />

N<br />

2-(2-Azidophenyl)-2H-benzotriazole (726); Typical Procedure: [643]<br />

A soln of 725 (5 g, 18.9 mmol) in acetone or benzene (CAUTION: carcinogen) was refluxed<br />

for 2 h. N 2 was evolved, and the orange color was discharged. The solvent was removed by<br />

distillation, and the crystalline residue was recrystallized (petroleum ether or aq acetone)<br />

to afford light yellow needles; yield: 70%; mp 78–79 8C.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


<strong>13</strong>.<strong>13</strong>.4.1.2.1.3 Method 3:<br />

Cyclization of 2-Nitroazobenzenes<br />

2-Nitroazobenzenes 736 give reductive cyclization reactions to afford 2-aryl-2H-benzotriazole<br />

1-oxides 737 or 2-aryl-2H-benzotriazoles 738, depending on the reducing agent and<br />

the reaction conditions (Scheme 275). For example, reduction of azo compounds 736 with<br />

glucose [710] or with hydroxylamine [731] in ethanolic sodium hydroxide solution, at reflux,<br />

affords 2H-benzotriazole 1-oxides 737 in good yields. 2-Nitroazobenzenes react with thiourea<br />

S,S-dioxide in ethanolic sodium hydroxide to give, depending on the reaction conditions,<br />

either the corresponding 2-aryl-2H-benzotriazoles 738 or their 1-oxides 737. [732] Several<br />

other reducing agents can be used for the conversion of 2-nitroazobenzenes into 2aryl-2H-benzotriazoles<br />

or their 1-oxides, namely sodium sulfide, sodium hydrosulfide, [733]<br />

ammonium sulfide, [734] sodium dithionite, [735] hydrazine hydrate, [711,712] zinc dust with sodium<br />

hydroxide, [710] molybdenum-promoted Raney nickel, [736] hydrogen in the presence<br />

of a catalyst, [737,738] and carbon monoxide in an alkaline medium in the presence of a copper–amine<br />

complex catalyst. [739]<br />

Scheme 275 Reductive Cyclization of 2-Nitroazobenzenes [710]<br />

R 1<br />

736<br />

NO2<br />

N NAr1<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.4 2-Substituted Benzotriazoles 575<br />

reduction<br />

R 1<br />

737<br />

NAr<br />

N<br />

1<br />

N<br />

O −<br />

+<br />

reduction<br />

R 1<br />

738<br />

NAr<br />

N<br />

1<br />

N<br />

2-Nitroazobenzenes 739 cyclize selectively to give 2-aryl-2H-benzotriazole 1-oxides 740<br />

by reduction with baker s yeast (Saccharomyces cerevisiae) in sodium hydroxide solution<br />

(Scheme 276). Using twice the amount of baker s yeast, a larger amount of sodium hydroxide,<br />

and a longer reaction time, gives 2-aryl-2H-benzotriazoles 741 as the sole product<br />

in good yields. [7<strong>13</strong>]<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 276 Reductive Cyclization of 2-Nitroazobenzenes Using Baker s Yeast [7<strong>13</strong>]<br />

R 1<br />

NO 2<br />

N N<br />

HO<br />

739<br />

R 2<br />

R 3<br />

R 1 = H, Cl; R 2 = H, t-Bu, CMe 2Et; R 3 = Me, t-Bu, CMe 2Et<br />

baker's yeast<br />

NaOH, H2O<br />

85 oC, 3.5−4 h<br />

84−87%<br />

baker's yeast<br />

NaOH, H2O<br />

85 oC, 36−40 h<br />

80−87%<br />

<strong>13</strong>.<strong>13</strong>.4.1.2.1.4 Method 4:<br />

Cyclization of 1-Substituted 2-(2-Nitroaryl)hydrazines<br />

R 1<br />

R 1<br />

O −<br />

N+<br />

N<br />

N<br />

740<br />

N<br />

N<br />

N<br />

741<br />

OH<br />

HO<br />

R 3<br />

R 2<br />

baker's yeast<br />

NaOH, H2O<br />

85 o 86−90%<br />

C, 24−30 h<br />

Under reductive conditions, 1-aryl-2-(2-nitroaryl)hydrazines 743 cyclize to 2-aryl-2H-benzotriazoles<br />

744 (Scheme 277). [740] Frequently benzotriazoles 744 are prepared directly<br />

from the reaction of 1-halo-2-nitrobenzene derivative 742 (X = Cl, Br), or a 1,2-dinitrobenzene<br />

derivative 743 (X = NO 2), and an excess of an arylhydrazine. [609,645] Under acidic conditions,<br />

hydrazines 743 are dehydrated to 2-aryl-2H-benzotriazole 1-oxides 745 (Scheme<br />

277). [741] Most 1-aryl-2-(2,4,6-trinitrophenyl)hydrazines 743 [R 1 = 4,6-(NO 2) 2;Ar 1 = Ph, 4-Tol,<br />

C 6F 5] are readily cyclized by refluxing in anhydrous ethanolic hydrogen chloride. [742] However,<br />

cyclization of 1,2-bis(2,4,6-trinitrophenyl)hydrazine to 4,6-dinitro-2-(2,4,6-trinitrophenyl)-2H-benzotriazole<br />

1-oxide requires more vigorous conditions. Cyclization proceeds<br />

smoothly and nearly quantitatively by gentle heating a suspension of that hydrazine<br />

derivative in concentrated sulfuric acid for 30–60 minutes. [742]<br />

Scheme 277 Cyclization of 1-Aryl-2-(2-nitroaryl)hydrazines [609,445,741]<br />

R 1<br />

742<br />

X = Cl, Br, NO2<br />

X<br />

NO2<br />

R 1<br />

FOR PERSONAL USE ONLY<br />

576 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

Ar 1 NHNH 2<br />

743<br />

H<br />

N<br />

NO 2<br />

NHAr 1<br />

KI, AcOH, heat<br />

or Ar1NHNH2, heat<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

H +<br />

− H2O<br />

R 1<br />

R 1<br />

744<br />

745<br />

R 3<br />

R 2<br />

NAr<br />

N<br />

1<br />

N<br />

NAr<br />

N<br />

1<br />

N<br />

O −<br />

+


2-Methyl-6-nitro-2H-benzotriazole 1-oxide (747) is prepared by acid-catalyzed dehydration<br />

of 1-methyl-2-(2,4-dinitrophenyl)hydrazine (746) or by addition of iodomethane to a solution<br />

of 2,4-dinitrophenylhydrazine (Scheme 278). [743]<br />

Scheme 278 Acid-Catalyzed Dehydration of 1-Methyl-2-(2,4-dinitrophenyl)hydrazine [743]<br />

O2N<br />

O 2N<br />

746<br />

H<br />

N<br />

NO 2<br />

H<br />

N<br />

NO 2<br />

NHMe<br />

NH2<br />

HCl, MeOH<br />

rt, 7 h<br />

86%<br />

MeΙ, DMSO<br />

rt, 42 h<br />

60%<br />

O 2N<br />

747<br />

N<br />

NMe<br />

N<br />

O −<br />

+<br />

The 2-nitrophenylhydrazine derivative 748 gives the 2-alkyl-2H-benzotriazole 1-oxide 749<br />

when treated with pyridine (Scheme 279). [714]<br />

Scheme 279 Base-Catalyzed Conversion of a 2-Nitrophenylhydrazine<br />

Derivative into a 2-Alkyl-2H-benzotriazole 1-Oxide [714]<br />

H<br />

N<br />

NO 2<br />

748<br />

N +<br />

Br −<br />

<strong>13</strong>.<strong>13</strong>.4.1.2.1.5 Method 5:<br />

Cyclization of Vicinal Diazides<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.4 2-Substituted Benzotriazoles 577<br />

py<br />

N<br />

N<br />

N<br />

O −<br />

+<br />

2,3-Diazidonaphtho-1,4-quinone (750) reacts with triphenylphosphine to form almost<br />

quantitatively the phosphorane 751 (Scheme 280). This compound undergoes an aza-Wittig<br />

reaction with aldehydes (e.g., to give 753) and is readily hydrolyzed to the triazol-2amine<br />

752, which is a stable and high-melting compound. [744]<br />

749<br />

OHC<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 280 Synthesis of Naphthotriazol-2-amine Derivatives from Vicinal Diazides [744]<br />

O<br />

O<br />

750<br />

N3<br />

N 3<br />

O<br />

O<br />

751<br />

Ph3P, MeOH<br />

rt, 3 h<br />

N<br />

N<br />

N<br />

− N 2<br />

96%<br />

PPh3 N<br />

<strong>13</strong>.<strong>13</strong>.4.2 Synthesis by Ring Transformation<br />

1 M HCl<br />

reflux, 4 h<br />

PhCHO, CH2Cl2<br />

rt, overnight<br />

<strong>13</strong>.<strong>13</strong>.4.2.1 Method 1:<br />

Isomerization of 4-(Arylazo)-2,1,3-benzoxadiazoles<br />

Addition of a diazonium salt to 5-(dimethylamino)-2,1,3-benzoxadiazole 1-oxide (754)<br />

gives the 4-arylazo derivative 755, which isomerizes to the 2-aryl-2H-benzotriazole 756<br />

(Scheme 281). [745]<br />

43%<br />

36%<br />

O<br />

O<br />

O<br />

O<br />

752<br />

753<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

Scheme 281 2-Aryl-2H-benzotriazoles from 4-(Arylazo)-2,1,3-benzoxadiazoles [745]<br />

Me 2N<br />

754<br />

Ar 1 = 2,4-(O2N)2C6H3<br />

N<br />

O<br />

N<br />

O −<br />

+<br />

FOR PERSONAL USE ONLY<br />

578 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

Ar1 +<br />

N2 Me2N<br />

N NAr1<br />

755<br />

N<br />

O<br />

N<br />

O −<br />

+<br />

<strong>13</strong>.<strong>13</strong>.4.2.2 Method 2:<br />

Transformation of 1,3,3-Trialkyl-2-(2,4-dinitrophenyl)diaziridines<br />

NMe 2<br />

NO 2<br />

NH 2<br />

N<br />

756<br />

Ph<br />

NAr<br />

N<br />

1<br />

N<br />

1-(2,4-Dinitrophenyl)diaziridines bearing an NH group 757 (R 1 = H), upon heating in toluene<br />

for ca. 3 hours, rearrange to the corresponding 2,4-dinitrophenylhydrazones. However,<br />

heating 1,3,3-trialkyl-2-(2,4-dinitrophenyl)diaziridines or 1,3-dialkyl-2-(2,4-dinitrophenyl)diaziridines<br />

757 (R 3 = H) does not give hydrazones but affords instead 2-alkyl-6-nitro-2H-benzotriazole<br />

1-oxides 759 (via intermediates 758) in almost quantitative yields<br />

(Scheme 282). [743]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 282 Transformation of 1,3,3-Dialkyl-2-(2,4-dinitrophenyl)diaziridines [743]<br />

O 2N<br />

757<br />

N<br />

R<br />

N<br />

2<br />

R3 R1 NO 2<br />

toluene, reflux<br />

3−14 h<br />

− R 2 COR 3<br />

R 1 = Me, iPr, Cy; R 2 ,R 3 = (CH2)5; R 2 = Me, Et; R 3 = H, Me<br />

<strong>13</strong>.<strong>13</strong>.4.2.3 Method 3:<br />

Transformation of 1-(2-Nitrophenyl)-1H-tetrazoles<br />

O 2N<br />

758<br />

N NR 1<br />

N<br />

O<br />

O2N<br />

759 97−100%<br />

NR<br />

N<br />

1<br />

N<br />

O −<br />

+<br />

5-Aryl-1-(2-nitrophenyl)-1H-tetrazoles [746,747] and 1-aryl-5-(2-nitrophenyl)-1H-tetrazoles [748]<br />

decompose when heated to give nitrogen, carbon dioxide, and 2-aryl-2H-benzotriazoles;<br />

the former react much faster than the latter. For example, decomposition of 1-(2-nitrophenyl)-5-phenyl-1H-tetrazole<br />

(760) in refluxing nitrobenzene is complete after one hour<br />

while decomposition of 5-(2-nitrophenyl)-1-phenyl-1H-tetrazole (763) requires 19 hours<br />

(Scheme 283). [748] It has been shown that the thermal decomposition of these tetrazoles<br />

to 2-aryl-2H-benzotriazoles (e.g., 762) proceeds via 2-nitrophenyl(phenyl)carbodiimides<br />

(e.g., 761; Ph may be replaced by a substituted-phenyl ring). A sequence of electrocyclic<br />

ring closing and opening reactions is proposed as the mechanism of the conversion of<br />

carbodiimides 761 to 2-aryl-2H-benzotriazoles. [746,747] There are several other precursors<br />

(both cyclic and acyclic) of diarylcarbodiimides with an ortho nitro group and, consequently,<br />

they can be used in the synthesis of 2-aryl-2H-benzotriazoles. [746,747]<br />

Scheme 283 Transformation of 1(5)-(2-Nitrophenyl-5(1)-phenyltetrazoles into<br />

2-Phenyl-2H-benzotriazole [748]<br />

N<br />

N<br />

760<br />

763<br />

N<br />

N<br />

Ph<br />

NO2 N N<br />

N<br />

N<br />

Ph<br />

NO2<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.4 2-Substituted Benzotriazoles 579<br />

PhNO2, reflux<br />

1 h<br />

− N2 70%<br />

PhNO2, reflux<br />

19 h<br />

− N2<br />

60%<br />

N<br />

NO2<br />

761<br />

NPh<br />

− CO 2<br />

762<br />

N<br />

NPh<br />

N<br />

The carbodiimides 765 are suggested as probable intermediates in the reaction of the<br />

phosphoramidate 764 with aryl isocyanates to yield the 2-aryl-2,4-dihydroimidazo[4,5d][1,2,3]triazoles<br />

766 (Scheme 284). [749]<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 284 Synthesis of 2-Aryl-2,4-dihydroimidazo[4,5-d][1,2,3]triazoles via<br />

Carbodiimides [749]<br />

EtN<br />

N<br />

N<br />

764<br />

P(OEt)3<br />

NO2<br />

Ar1NCO MeCN, 60 oC <strong>13</strong>.<strong>13</strong>.4.3 Synthesis by Substituent Modification<br />

EtN<br />

N<br />

N<br />

765<br />

NO 2<br />

NAr 1<br />

Et<br />

N<br />

N<br />

766 57−79%<br />

NAr<br />

N<br />

1<br />

N<br />

Since substituent modification reactions in 1H- and 2H-benzotriazoles are, in many cases,<br />

very similar, the synthesis of new 2H-benzotriazoles by substituent modification is covered<br />

in Section <strong>13</strong>.<strong>13</strong>.3.3.<br />

<strong>13</strong>.<strong>13</strong>.5 <strong>Product</strong> Subclass 5:<br />

1,2,3-Triazolium Salts<br />

<strong>13</strong>.<strong>13</strong>.5.1 Synthesis by Ring-Closure Reactions<br />

<strong>13</strong>.<strong>13</strong>.5.1.1 By Formation of One N-N and One N-C Bond<br />

<strong>13</strong>.<strong>13</strong>.5.1.1.1 Fragments C-N-N and C-N<br />

<strong>13</strong>.<strong>13</strong>.5.1.1.1.1 Method 1:<br />

From Diarylnitrilimines and Alkyl Isocyanides<br />

Diarylnitrilimines 768 (generated in situ from 767 and triethylamine) react with alkyl isocyanides<br />

to form the triazolium salts 769 (Scheme 285). [444,750] Depending on the reaction<br />

conditions, other heterocyclic compounds are obtained, namely 1,2,4-triazolium salts,<br />

pyrazole derivatives, and quinoxaline derivatives. Experiments with tert-butyl isocyanide<br />

and phenyl isocyanide failed to give the respective triazolium salts 769.<br />

Scheme 285 Reaction of Diarylnitrilimines with Alkyl Isocyanides [444,750]<br />

Ar 1<br />

Cl<br />

NHAr<br />

N<br />

2<br />

767<br />

Et3N MeCN, rt<br />

R 1 = Me, iPr, Cy; Ar 1 = Ph, 4-Tol; Ar 2 = Ph, 4-Tol<br />

FOR PERSONAL USE ONLY<br />

580 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

Ar N<br />

1 NAr2 + −<br />

768<br />

1. R1NC, MeCN, rt, 24 h<br />

2. HClO4, H2O N<br />

NAr<br />

N<br />

2<br />

Ar1 R1 +<br />

769 57−73%<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

ClO 4 −


Synthesis of 2H-Triazol-1-ium Salts 769; General Procedure: [444]<br />

CAUTION: Perchlorate salts are potential explosives.<br />

Et 3N (2 mmol) was added at rt to a soln of the N-arylbenzohydrazonoyl chloride 767<br />

(2 mmol) and the alkyl isocyanide (2 mmol) in dry MeCN (50 mL); the mixture was allowed<br />

to stand for 24 h. Removal of the solvent gave a crystalline residue which was washed<br />

with Et 2O and dissolved in the minimum amount of H 2O (some insoluble material was filtered<br />

off). Then 10% aq HClO 4 was added to cause precipitation of crude 769 as a greenishwhite<br />

solid. Chromatography (acidic alumina, acetone), followed by addition of Et 2Oto<br />

the concentrated eluate, afforded colorless plates.<br />

<strong>13</strong>.<strong>13</strong>.5.1.2 By Formation of One N-C Bond<br />

<strong>13</strong>.<strong>13</strong>.5.1.2.1 Fragment N-N-N-C-C<br />

<strong>13</strong>.<strong>13</strong>.5.1.2.1.1 Method 1:<br />

Cyclization of Æ-Imino Hydrazones<br />

The oxidation of substituted Æ-imino hydrazones 770 with N-bromosuccinimide affords<br />

1,2-disubstituted 2H-triazol-1-ium salts 771 (Scheme 286). [751]<br />

Scheme 286 Oxidative Ring Closure of Substituted Æ-Imino Hydrazones [751]<br />

R 2 N NH<br />

R 1 NPh<br />

770<br />

R 3<br />

NBS<br />

R 1 = alkyl, aryl; R 2 = alkyl, CN; R 3 = H, halo, alkyl<br />

R<br />

N<br />

N<br />

N<br />

2<br />

R<br />

+<br />

Ph<br />

771<br />

1<br />

<strong>13</strong>.<strong>13</strong>.5.1.2.1.2 Method 2:<br />

Cyclization of (3-Aryl-1-methyltriaz-2-enyl)acetic Acid Derivatives<br />

Cyclization of ethyl (1-methyl-3-phenyltriaz-2-enyl)acetate 772 (Ar 1 = Ph; X = OEt) with<br />

thionyl chloride/pyridine gives the mesoionic compound 773 (Ar 1 = Ph) together with a<br />

small amount of the sulfide 774 (Scheme 287). [362] Under similar reaction conditions, cyclization<br />

of amide 772 (Ar 1 = Ph; X = NH 2) gives only sulfide 774. Similar results are obtained<br />

when Ar 1 = 4-tolyl. Treatment of acetonitrile derivatives 775 with dry hydrogen<br />

chloride affords 4-amino-3-aryl-1-methyl-3H-1,2,3-triazol-1-ium chlorides 776. Cyclization<br />

of 775 with acetyl chloride gives the acetamido derivatives 777. The yields from all these<br />

transformations are low.<br />

Scheme 287 Cyclization of (3-Aryl-1-methyltriaz-2-enyl)acetic Acid Derivatives [362]<br />

O<br />

X<br />

Ar1N N<br />

NMe<br />

772<br />

Ar 1 = Ph, 4-Tol; X = OEt, NH2<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.5 1,2,3-Triazolium Salts 581<br />

SOCl2, py<br />

− O<br />

NAr 1<br />

N<br />

N+<br />

Me<br />

773<br />

+<br />

R 3<br />

NAr1 −<br />

O<br />

N<br />

S<br />

N+<br />

Me<br />

2<br />

774<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


NAr1 H2N N<br />

N+<br />

Me<br />

776<br />

Ar 1 = Ph, 4-Tol<br />

Cl −<br />

HCl<br />

Ar 1 N<br />

N<br />

NC NMe<br />

775<br />

AcCl<br />

AcHN<br />

NAr 1<br />

N<br />

N+<br />

Me<br />

This type of chemistry has been applied to the synthesis of the mesoionic 1,3-diaryl-1,2,3triazoles<br />

778 (Scheme 288). [752]<br />

Scheme 288 Cyclization of (3-Aryl-1-methyltriaz-2-enyl)acetic Acid Derivatives [752]<br />

O<br />

OH<br />

H<br />

N<br />

R 1<br />

R 1 = CO 2Me, NHAc, NHCOEt<br />

FOR PERSONAL USE ONLY<br />

582 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

Ar1 +<br />

N2 Ar<br />

HO N<br />

1N <strong>13</strong>.<strong>13</strong>.5.2 Synthesis by Introduction of Substituents<br />

<strong>13</strong>.<strong>13</strong>.5.2.1 Method 1:<br />

Alkylation of N-Alkyl-1,2,3-triazoles<br />

O<br />

N<br />

R 1<br />

777<br />

Ac 2O, py, rt<br />

R 1<br />

− O<br />

Cl −<br />

NAr 1<br />

N<br />

N+<br />

778 20−55%<br />

Alkylation of 1-alkyl-1H-1,2,3-triazoles 779 gives 1,3-disubstituted 3H-1,2,3-triazol-1-ium<br />

salts 780 [455] while alkylation of 2-substituted 2H-1,2,3-triazoles 781 affords 1,2-disubstituted<br />

2H-1,2,3-triazol-1-ium salts 782 (Scheme 289). [450] 2-Substituted 2H-triazoles are<br />

much more difficult to alkylate than the isomeric 1-substituted 1H-triazoles; this difference<br />

in reactivity agrees with the fact that 1-substituted triazoles are much more basic<br />

than the isomeric 2-substituted compounds. [450] While 1-substituted 1,2,3-triazoles react<br />

readily with methyl 4-toluenesulfonate, [448,449] producing 1,3-disubstituted 1,2,3-triazolium<br />

4-toluenesulfonates in high yields, 2-substituted 1,2,3-triazoles, when treated with<br />

methyl 4-toluenesulfonate, iodomethane, or dimethyl sulfate do not react, or they give<br />

the triazolium salts in low yield only. [450] 2,4-Diphenyl-2H-1,2,3-triazole is, however, converted<br />

into the triazolium salt, in 80% yield, by methylation with dimethyl sulfate. [444] Methyl<br />

fluorosulfonate is a successful methylating reagent for 2-substituted 1,2,3-triazoles<br />

(Scheme 289). [450] The reaction is carried out in the absence of a solvent and the required<br />

temperature is dependent on the substituents R 1 and R 2 in triazole 781. For example, 2methyl-2H-1,2,3-triazole<br />

reacts with methyl fluorosulfonate at 0 8C, 2-phenyl-2H-1,2,3-triazole<br />

reacts at room temperature, and the reaction with 4,5-dibromo-2-methyl-2H-1,2,3triazole<br />

only occurs at 608C. [450]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 289 Alkylation of 1- and 2-Substituted 1,2,3-<strong>Triazoles</strong> [450,455]<br />

N<br />

N<br />

N<br />

R1 779<br />

+ R 2 I<br />

N<br />

N<br />

NR2 R1 R1 F S O O<br />

+<br />

OMe<br />

781<br />

acetone, Et2O<br />

rt, 5−8 d<br />

R1 = Me; R2 = Bn 83%<br />

R1 = Bn; R2 = Me 74%<br />

NR 2<br />

N<br />

+ N<br />

R<br />

780<br />

1<br />

0 oC, rt, or 60 oC R1 = H; R2 = Me 79%<br />

R1 = H; R2 = Ph 99%<br />

R1 = Br; R2 = Me 99%<br />

I −<br />

N<br />

NR<br />

N<br />

2<br />

R<br />

+<br />

1<br />

R1 Me<br />

782<br />

FSO3 −<br />

1-Phenyl-1H-1,2,3-triazole adds fairly rapidly to vinylsulfonyl chloride, in the absence of a<br />

base, to yield quantitatively the sulfonate 783 (Scheme 290). [198]<br />

Scheme 290 Addition of 1-Phenyl-1H-1,2,3-triazole to Vinylsulfonyl Chloride [198]<br />

N<br />

N<br />

N<br />

Ph<br />

SO2Cl<br />

benzene<br />

reflux, 6 h<br />

N<br />

N<br />

N+<br />

Ph<br />

SO2Cl<br />

−<br />

H2O<br />

N<br />

N<br />

N+<br />

Ph<br />

783 99%<br />

1-Ethyl-1H-1,2,3-triazole reacts with tetracyanoethene oxide, at 0 8C, to yield 3-ethyl-3H-<br />

1,2,3-triazol-1-ium-1-dicyanomethanide (784) in 73% yield (Scheme 291). [753]<br />

Scheme 291 Reaction of 1-Ethyl-1H-1,2,3-triazole with Tetracyanoethene Oxide [753]<br />

N<br />

N<br />

N<br />

Et<br />

+<br />

NC<br />

CN<br />

NC CN<br />

O<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.5 1,2,3-Triazolium Salts 583<br />

EtOAc<br />

0 oC, 2−5 min<br />

73%<br />

<strong>13</strong>.<strong>13</strong>.5.2.2 Method 2:<br />

Alkylation of N-Alkylbenzotriazoles<br />

NC<br />

−<br />

CN<br />

N+<br />

N<br />

N<br />

Et<br />

784<br />

As discussed in Section <strong>13</strong>.<strong>13</strong>.3.3.1.1.8, during the alkylation of benzotriazole with alkyl<br />

halides, in some cases, [672] the 1,3-dialkylbenzotriazolium salts are also formed (Scheme<br />

239). 1-Substituted 3-methyl-3H-benzotriazol-1-ium iodides 785 are prepared in low to<br />

good yields by the reaction of 1-substituted 1H-benzotriazoles with iodomethane (Scheme<br />

292). [754]<br />

+ O<br />

CN<br />

CN<br />

SO3 −<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 292 Methylation of 1-Substituted 1H-Benzotriazoles [754]<br />

N<br />

N<br />

N<br />

R1 MeI, toluene, sealed tube<br />

80 oC, 16−72 h<br />

R1 = CH2SPh 65%<br />

R1 = CH2SOPh 82%<br />

R1 = CH2SO2Ph 35%<br />

N<br />

N<br />

N<br />

R1 Me<br />

+<br />

Alkylation of 1-[(dialkylamino)methyl]-1H-benzotriazoles 786 leads to the formation of<br />

(1H-benzotriazol-1-ylmethyl)ammonium salts 787 (Scheme 293). [755] This reaction is limited<br />

to iodomethane, iodoethane, and 1-(chloromethyl)-1H-benzotriazole. Methyl 4-toluenesulfonate<br />

can also be used but reacts only with 1-(pyrrolidin-1-ylmethyl)-1H-benzotriazole<br />

[786, R 1 ,R 2 = (CH 2) 4]. In some cases, the 1,3-dialkylbenzotriazolium salts 790 are obtained.<br />

Indeed, when 1-(pyrrolidin-1-ylmethyl)-1H-benzotriazole [786, R 1 ,R 2 = (CH 2) 4] is<br />

heated with benzyl bromide in a sealed tube at 60–808C, 1,3-dibenzyl-3H-benzotriazol-1ium<br />

bromide (790,R 3 = Bn; X = Br) is obtained in 65% yield. [755] The explanation for the formation<br />

of salts 790 depends on the fact that compounds 786, in solution, are in equilibrium<br />

with the ion pair 788, which reacts with the alkylating agent to form successively 1alkyl-1H-benzotriazole<br />

789 and then 790.<br />

Scheme 293 Alkylation of 1-[(Dialkylamino)methyl]-1H-benzotriazoles [755]<br />

N<br />

N<br />

N<br />

786<br />

NR 1 R 2<br />

R 1 ,R 2 = (CH2)4<br />

N<br />

N<br />

N<br />

−<br />

788<br />

H 2C<br />

FOR PERSONAL USE ONLY<br />

584 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

N<br />

R1 R2 +<br />

R3X 40−60%<br />

R 3 X<br />

785<br />

N<br />

N<br />

N R2 787<br />

+ N<br />

R1 R3 X −<br />

I −<br />

N<br />

N<br />

N<br />

R3 R3X N<br />

N<br />

N<br />

R3 R3 X −<br />

+<br />

789 790 R3 = Bn; X = Br 65%<br />

Ethyl 1H-benzotriazole-1-carboxylate reacts with triethyloxonium tetrafluoroborate to<br />

yield the corresponding 3-(ethoxycarbonyl)-1-ethyl-3H-benzotriazol-1-ium salt (see<br />

Scheme 240). [634]<br />

Alkylation of benzotriazole with bis(bromomethyl)benzenes (1,2-, 1,3- or 1,4-) in two<br />

steps affords the benzotriazolophanes 791 (Scheme 294). [674] The symmetrical benzotriazolophanes<br />

792, 793, and 794 are prepared in a similar manner. [674,675]<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 294 Synthesis of Symmetrical Benzotriazolophanes [674]<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N+<br />

N<br />

N<br />

N+<br />

FOR PERSONAL USE ONLY<br />

<strong>13</strong>.<strong>13</strong>.5 1,2,3-Triazolium Salts 585<br />

Br<br />

Br<br />

NaOH, MeCN, rt, 2 d<br />

1,2-xylenyl 65%<br />

1,3-xylenyl 60%<br />

1,4-xylenyl 71%<br />

792<br />

794<br />

Br<br />

Br<br />

MeCN, reflux, 5 d<br />

1,2-xylenyl 42%<br />

1,3-xylenyl 40%<br />

1,4-xylenyl 55%<br />

N<br />

N<br />

N+<br />

N<br />

N<br />

+N<br />

2Br −<br />

2Br −<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N+<br />

N<br />

N<br />

N+<br />

N<br />

N<br />

791<br />

N<br />

N<br />

N<br />

793<br />

N<br />

N<br />

+ N<br />

The unsymmetrical benzotriazolophanes 796 and 797 are obtained by alkylation of the<br />

precyclophane 795 with the corresponding bis(bromomethyl)benzene derivatives<br />

(Scheme 295). [675]<br />

N<br />

N<br />

+N<br />

2Br −<br />

2Br −<br />

for references see p 587<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


Scheme 295 Synthesis of Unsymmetrical Benzotriazolophanes [675]<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

795<br />

N<br />

795<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

Br<br />

OMe<br />

Br<br />

MeCN, reflux, 5 d<br />

59%<br />

NO 2<br />

Br OH Br<br />

MeCN, reflux, 5 d<br />

52%<br />

N<br />

N<br />

N+<br />

N<br />

N<br />

N+<br />

OMe<br />

N<br />

796<br />

NO 2<br />

N<br />

N<br />

+N<br />

OH N<br />

N<br />

+N<br />

N<br />

1-Ethyl-1H-benzotriazole reacts with tetracyanoethene oxide, at room temperature, to<br />

yield 3-ethyl-3H-benzotriazol-1-ium-1-dicyanomethanide 798 (Scheme 296). [753]<br />

Scheme 296 Reaction of 1-Ethyl-1H-benzotriazole with Tetracyanoethene Oxide [753]<br />

N<br />

N +<br />

N<br />

Et<br />

FOR PERSONAL USE ONLY<br />

586 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

NC<br />

CN<br />

NC CN<br />

O<br />

Et2O rt, 24 h<br />

−<br />

+<br />

Et<br />

N<br />

NC<br />

CN<br />

N<br />

N<br />

798 21%<br />

797<br />

+ O<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG<br />

CN<br />

CN<br />

2Br −<br />

2Br −


References<br />

FOR PERSONAL USE ONLY<br />

References 587<br />

[1] Dehne, H.,InHouben–Weyl, (1994); Vol. E 8d, p 305.<br />

[2] Dehne, H.,InHouben–Weyl, (1994); Vol. E 8d, p 406.<br />

[3] Gilchrist, T. L.; Gymer, G. E., In Adv. Heterocycl. Chem., (1974) 16, 33.<br />

[4] Bourgois, J.; Bourgois, M.; Texier, F., Bull. Soc. Chim. Fr., (1978), 485.<br />

[5] Grimmett, M. R.,InComprehensive Organic Chemistry, Barton, D. H. R.; Ollis, W. D., Eds.;<br />

Pergamon: Oxford, (1979); Vol. 4, p 357.<br />

[6] Wamhoff, H., InComprehensive Heterocyclic Chemistry, Katritzky, A. R.; Rees, C. W., Eds.;<br />

Pergamon: Oxford, (1984); Vol. 5, Part 4A, p 669.<br />

[7] Fan, W.-Q.; Katritzky, A. R., In Comprehensive Heterocyclic Chemistry II, Katritzky, A. R.; Rees, C. W.;<br />

Scriven, E. F. V., Eds.; Elsevier: Oxford, (1996); Vol. 4, p 1.<br />

[8] Katritzky, A. R.; Lan, X.; Yang, J. Z.; Denisko, O. V., Chem. Rev., (1998) 98, 409.<br />

[9] Katritzky, A. R., J. Heterocycl. Chem., (1999) 36, 1501.<br />

[10] Tomµs, F.; Abboud, J.-L. M.; Laynez, J.; Notario, R.; Santos, L.; Nilsson, S. O.; Catalµn, J.;<br />

Claramunt, R. M.; Elguero, J., J. Am. Chem. Soc., (1989) 111, 7348.<br />

[11] Abboud, J.-L. M.; Foces-Foces, C.; Notario, R.; Trifonov, R. E.; Volovodenko, A. P.; Ostrovskii, V. A.;<br />

Alkorta, I.; Elguero, J., Eur. J. Org. Chem., (2001), 30<strong>13</strong>.<br />

[12] Albert, A.;InPhysical Methods in Heterocyclic Chemistry, Katritzky, A. R., Ed.; Academic: New York,<br />

(1963); p 98.<br />

[<strong>13</strong>] Maiorana, S.; Pocar, D.; Croce, P. D., Tetrahedron Lett., (1966), 6043.<br />

[14] Hansen, L. D.; West, B. D.; Baca, E. J.; Blank, C. L., J. Am. Chem. Soc., (1968) 90, 6588.<br />

[15] Fagel, J. E.; Ewing, G. W., J. Am. Chem. Soc., (1951) 73, 4360.<br />

[16] Wiley, R. H.; Hussung, K. H.; Moffat, J., J. Am. Chem. Soc., (1955) 77, 5105.<br />

[17] Hermes, M. E.; March, F. D., J. Am. Chem. Soc., (1967) 89, 4760.<br />

[18] Grünanger, P.; Finzi, P. V.; Scotti, C., Chem. Ber., (1965) 98, 623.<br />

[19] Habraken, C. L.; Erkelens, C.; Mellema, J. R.; Cohen-Fernandes, C., J. Org. Chem., (1984) 49, 2197.<br />

[20] Hermes, M. E.; Marsh, F. D., J. Am. Chem. Soc., (1967) 89, 4760.<br />

[21] L abbØ, G., Bull. Soc. Chim. Belg., (1990) 99, 281.<br />

[22] Wolff, L., Justus Liebigs Ann. Chem., (1902) 325, 156.<br />

[23] Wolff, L., Justus Liebigs Ann. Chem., (1912) 394, 23.<br />

[24] Jiang, L.; Davison, A.; Tennant, G.; Ramage, R., Tetrahedron, (1998) 54, 14233.<br />

[25] Ohno, W.; Itoh, M.; Ohashi, T.; Eguchi, S., Synthesis, (1993), 793.<br />

[26] Stojanovic, F. M.; Arnold, Z., Coll. Czech. Chem. Commun., (1967) 32, 2155.<br />

[27] Sezer, O.; Dabak, K.; Akar, A.; Anaç, O., Helv. Chim. Acta, (1996) 79, 449.<br />

[28] Clarke, D.; Mares, R. W.; McNab, A., J. Chem. Soc., Perkin Trans. 1, (1997), 1799.<br />

[29] Broom, N. J. P.; Brooks, G.; Coulton, S., EP 321 186, (1989); Chem. Abstr. (1989) 111, 232459.<br />

[30] Broom, N. J. P.; Brooks, G.; Clark, B. P., EP 321 187, (1989); Chem. Abstr. (1990) 112, 7260.<br />

[31] Sezer, O.; Dabak, K.; Anaç, O.; Akar, A., Helv. Chim. Acta, (1997) 80, 960.<br />

[32] Arnold, Z.; Sauliovµ, J., Coll. Czech. Chem. Commun., (1973) 38, 2641.<br />

[33] Murray-Rust, P.; McManus, J.; Lennon, S. P.; Porter, A. E. A.; Rechka, J. A., J. Chem. Soc., Perkin<br />

Trans. 1, (1984), 7<strong>13</strong>.<br />

[34] Saalfrank, R. W.; Ackermann, E., Liebigs Ann. Chem., (1981), 7.<br />

[35] Saalfrank, R. W.; Ackermann, E., Chem. Ber., (1981) 114, 3456.<br />

[36] Saalfrank, R. W.; Weiss, B., Chem. Ber., (1985) 118, 2626.<br />

[37] Saalfrank, R. W.; Weiss, B., Chem. Ber., (1984) 117, 1246.<br />

[38] Lorenz, W.; Maas, G., J. Org. Chem., (1987) 52, 375.<br />

[39] Sakai, K.; Hida, N.; Kondo, K., Bull. Chem. Soc. Jpn., (1986) 59, 179.<br />

[40] Harada, K.; Oda, M.; Matsushita, A.; Shirai, M., Heterocycles, (1998) 48, 695.<br />

[41] Augusti, R.; Kascheres, C., J. Org. Chem., (1993) 58, 7079.<br />

[42] Augusti, R.; Kascheres, C., Tetrahedron, (1994) 50, 6723.<br />

[43] Romeiro, G. A.; Pereira, L. O. R.; Souza, M. C. B. V.; Ferreira, V. F.; Cunha, A. C., Tetrahedron Lett.,<br />

(1997) 38, 5103.<br />

[44] Pedersen, C., Acta Chem. Scand., (1959) <strong>13</strong>, 888.<br />

[45] Leusen, A. M.; Jagt, J. C., Tetrahedron Lett., (1970), 971.<br />

[46] Mouysset, G.; Grassy, G.; Payard, M.; Commenges, G.; Carpy, A.; Couquelet, J., J. Heterocycl. Chem.,<br />

(1988) 25, 1167.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


FOR PERSONAL USE ONLY<br />

588 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

b[47] Danoun, S.; Basiard-Mouysset, G.; Stigliani, J.-L.; Commenges, G.; Carpy, A.; Payard, M., Bull. Soc.<br />

Chim. Fr., (1995) <strong>13</strong>2, 943.<br />

[48] Dyatkin, B. L.; Makarov, K. N.; Knunyants, I. L., Tetrahedron, (1971) 27, 51.<br />

[49] Martin, D.; Weise, A., Chem. Ber., (1966) 99, 317.<br />

[50] Hoberg, H., Justus Liebigs Ann. Chem., (1967) 707, 147.<br />

[51] Grundon, M. F.; Khan, E. A., J. Chem. Soc., Perkin Trans. 1, (1988), 2917.<br />

[52] Aoyama, T.; Sudo, K.; Shioiri, T., Chem. Pharm. Bull., (1982) 30, 3849; Chem. Abstr., (1983) 98,<br />

215535.<br />

[53] Anderson, R., Synthesis, (1985), 717.<br />

[54] Boche, G.; Lohrenz, J. C. W.; Schubert, F., Tetrahedron, (1994) 50, 5889.<br />

[55] Kadaba, P. K., Tetrahedron, (1969) 22, 2453.<br />

[56] Kadaba, P. K., Tetrahedron, (1969) 25, 3053.<br />

[57] Kadaba, P. K., Synthesis, (1973), 71.<br />

[58] Kadaba, P. K.; Edelstein, S. B., J. Org. Chem., (1990) 55, 5891.<br />

[59] Kadaba, P. K., J. Med. Chem., (1988) 31, 196.<br />

[60] Burger, K.; Fehn, J., Justus Liebigs Ann. Chem., (1972) 757, 9.<br />

[61] Regitz, M.; Schoder, W., Synthesis, (1985), 178.<br />

[62] Backer, H. J., Recl. Trav. Chim. Pays-Bas, (1950) 69, 1223.<br />

[63] Martvon, A.; Stankovsky, S.; Svetlik, J., Coll. Czech. Chem. Commun., (1975) 40, 1199.<br />

[64] Barker, M. W.; Gardner, J. H., J. Heterocycl. Chem., (1969) 6, 251.<br />

[65] Aoyama, T.; Katsuta, S.; Shioiri, T., Heterocycles, (1989) 28, <strong>13</strong>3.<br />

[66] Aoyama, T.; Nakano, T.; Marumo, K.; Uno, Y.; Shioiri, T., Synthesis, (1991), 1163.<br />

[67] Rotter, R.; Schaudy, E., Monatsh. Chem., (1931) 58, 245.<br />

[68] Lappert, M. F.; Poland, S., J. Chem. Soc. C, (1971), 3910.<br />

[69] Hauptmann, S.; Hirschberg, K., J. Prakt. Chem., (1967) 308, 82.<br />

[70] Aoyama, T.; Kabeya, M.; Fukushima, A.; Shioiri, T., Heterocycles, (1985) 23, 2363.<br />

[71] Neidlein, R., Chem. Ber., (1964) 97, 3476.<br />

[72] Aoyama, T.; Kabeya, M.; Shioiri, T., Heterocycles, (1985) 23, 2371.<br />

[73] Aoyama, T.; Kabeya, M.; Fukushima, A.; Shioiri, T., Heterocycles, (1985) 23, 2367.<br />

[74] Seebach, D.; Enders, D., Angew. Chem., (1972) 84, 1187; Angew. Chem. Int. Ed. Engl., (1972) 11,<br />

1102.<br />

[75] Savoia, D.; Orena, M., In Houben–Weyl, (1995); Vol. E 21e, p 5409.<br />

[76] L AbbØ, G., Chem. Rev., (1969) 69, 345.<br />

[77] Lwowski, W.,In1,3-Dipolar Cycloaddition Chemistry, Padwa, A., Ed.; Wiley: New York, (1984);<br />

Vol. 1, p 559.<br />

[78] Dimroth, O.; Fester, G., Chem. Ber., (1910) 43, 2219.<br />

[79] Hartzel, L. W.; Benson, F. R., J. Am. Chem. Soc., (1954) 76, 667.<br />

[80] Livi, O.; Biagi, G.; Ferretti, M.; Lucacchini, A.; Barili, P. L., Eur. J. Med. Chem., (1983) 18, 471.<br />

[81] Sheehan, J. C.; Robinson, C. A., J. Am. Chem. Soc., (1949) 71, 1436.<br />

[82] Sheehan, J. C.; Robinson, C. A., J. Am. Chem. Soc., (1951) 73, 1207.<br />

[83] Birkofer, L.; Richtzenhain, K., Chem. Ber., (1979) 112, 2829.<br />

[84] Journet, M.; Cai, D.; Kowal, J. J.; Larsen, R. D., Tetrahedron Lett., (2001) 42, 9117.<br />

[85] Woerner, F. P.; Reimlinger, H., Chem. Ber., (1970) 103, 1908.<br />

[86] Marei, M. G.; El-Ghanam, M.; Salem, M. M., Bull. Chem. Soc. Jpn., (1994) 67, 144.<br />

[87] Tanaka, Y.; Miller, S. I., J. Org. Chem., (1973) 38, 2708.<br />

[88] L abbØ, G.; Mahy, M.; Bollyn, M., Bull. Soc. Chim. Belg., (1983) 92, 881.<br />

[89] Arnold, C.; Thatcher, D. N., J. Org. Chem., (1969) 34, 1141.<br />

[90] Gold, H., Justus Liebigs Ann. Chem., (1965), 688, 205.<br />

[91] Hubert, A. J., Bull. Soc. Chim. Belg., (1970) 79, 195.<br />

[92] Fournier, J. O.; Miller, J. B., J. Heterocycl. Chem., (1965) 2, 488.<br />

[93] Wuytswinkel, G. V.; Verheyde, B.; Compernolle, F.; Toppet, S.; Dehaen, W., J. Chem. Soc., Perkin<br />

Trans. 1, (2000), <strong>13</strong>37.<br />

[94] Kraus, T.; Budesinsky, M.; Zavada, J., Coll. Czech. Chem. Commun., (1998) 63, 534.<br />

[95] Banert, K.; Köhler, F., Angew. Chem., (2001) 1<strong>13</strong>, 173; Angew. Chem. Int. Ed., (2001) 40, 174.<br />

[96] Abu-Orabi, S.; Atfah, A.; Jibril, I.; Marii, F.; Ali, A. A.-S., Gazz. Chim. Ital., (1991) 121, 397.<br />

[97] Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Angew. Chem., (2001) 1<strong>13</strong>, 2056; Angew. Chem. Int. Ed.,<br />

(2001) 40, 2004.<br />

[98] Piet, J. C.; Hetet, G. L.; Cailleux, P.; Benhaoua, H.; CarriØ, R., Bull. Soc. Chim. Belg., (1996) 105, 33.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


FOR PERSONAL USE ONLY<br />

References 589<br />

b[99] Lermontov, S. A.; Shkavrov, S. V.; Pushin, A. N., J. Fluorine Chem., (2000) 105, 141.<br />

[100] Winter, W.; Muller, E., Chem. Ber., (1974) 107, 715.<br />

[101] Henkel, K.; Weygand, F., Chem. Ber., (1943) 76, 812.<br />

[102] Abu-Orabi, S.; Atfah, M. A.; Jibril, I.; Mari i, F.; Ali, A. A.-S., J. Heterocycl. Chem., (1989) 26, 1461.<br />

[103] Huisgen, R.; Knorr, R.; Mobius, L.; Szeimies, G., Chem. Ber., (1965) 98, 4014.<br />

[104] Biagi, G.; Livi, O.; Lucacchini, A., Eur. J. Med. Chem., (1985) 20, 267.<br />

[105] Wiley, R. H.; Hussung, K. F.; Moffat, J., J. Org. Chem., (1956) 21, 190.<br />

[106] Mitchell, G.; Rees, C. W., J. Chem. Soc., Perkin Trans. 1, (1987), 4<strong>13</strong>.<br />

[107] Sasaki, T.; Eguchi, S.; Yamaguchi, M.; Esaki, T., J. Org. Chem., (1981) 46, 1800.<br />

[108] L abbØ, G. L.; Galle, J. E.; Hassner, A., Tetrahedron Lett., (1970), 303.<br />

[109] Looker, J. J., J. Org. Chem., (1965) 30, 638.<br />

[110] Palacios, F.; Ochoa de Retana, A. M.; Pegalday, J., Heterocycles, (1994) 38, 95.<br />

[111] Al-Masoudi, N. A.; Al-Soud, Y. A., Tetrahedron Lett., (2002) 43, 4021.<br />

[112] Hlasta, D. J.; Ackerman, J. H., J. Org. Chem., (1994) 59, 6184.<br />

[1<strong>13</strong>] Sasaki, T.; Kanematsu, K.; Murata, M., Tetrahedron, (1971) 27, 5121.<br />

[114] Malet, R.; Serra, N.; Abramovitch, R. A.; Moreno-Manas, M.; Pleixats, R., J. Heterocycl. Chem., (1993)<br />

30, 317.<br />

[115] Treibs, A.; Jacob, K., Justus Liebigs Ann. Chem., (1970) 737, 176.<br />

[116] Stephan, E., Bull. Soc. Chim. Fr., (1978), II-364.<br />

[117] Sewald, N.; Burger, K., Justus Liebigs Ann. Chem., (1992), 947.<br />

[118] Mock, W. L.; Irra, T. A.; Wepsiec, J. P.; Adhya, M., J. Org. Chem., (1989) 54, 5302.<br />

[119] Krasia, T. C.; Steinke, J. H. G., Chem. Commun. (Cambridge), (2002), 22.<br />

[120] Tuncel, D.; Steinke, J. H. G., Chem. Commun. (Cambridge), (2002), 496.<br />

[121] Lazrek, H. B.; Rochdi, A.; Kabbaj, Y.; Taourirte, M.; Sebtil, S., Synth. Commun., (1999) 29, 1057.<br />

[122] Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radic, Z.; Carlier, P. R.; Taylor, P.; Finn, M. G.;<br />

Sharpless, K. B., Angew. Chem., (2002) 114, 1095; Angew. Chem. Int. Ed., (2002) 41, 1053.<br />

[123] Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., Angew. Chem., (2002) 114, 2708;<br />

Angew. Chem. Int. Ed., (2002) 41, 2596.<br />

[124] Louerat, F.; Bougrin, K.; Loupy, A.; Retana, A. M. O.; Pagalday, J.; Palacios, F., Heterocycles, (1998)<br />

48, 161.<br />

[125] Katritzky, A. R.; Singh, S. K., J. Org. Chem., (2002) 67, 9077.<br />

[126] Calvo-Flores, F. G.; Isac-García, J.; Hernµndez-Mateo, F.; PØrez-Balderas, F.; Calvo-Asín, J. A.;<br />

SanchØz-Vaquero, E.; Santoyo-Gonzµlez, F., Org. Lett., (2000) 2, 2499.<br />

[127] Kirmse, W.; Horner, L., Justus Liebigs Ann. Chem., (1958) 614,1.<br />

[128] Crandall, J. K.; Conover, W. W.; Komin, J. B., J. Org. Chem., (1975) 40, 2042.<br />

[129] Biagi, G.; Giorgi, I.; Livi, O.; Scartoni, V.; Martinotti, E.; Calderone, V., Boll. Chim. Farm., (1998)<br />

<strong>13</strong>7, 350.<br />

[<strong>13</strong>0] Adolph, H. G., J. Org. Chem., (1971) 36, 806.<br />

[<strong>13</strong>1] Biagi, G.; Giorgi, I.; Livi, O.; Lucacchini, A.; Martin, C.; Scartoni, V., J. Pharm. Sci., (1993) 82, 893.<br />

[<strong>13</strong>2] Katritzky, A. R.; Fali, C. N.; Shcherbakova, I. V.; Verin, S. V., J. Heterocycl. Chem., (1996) 33, 335.<br />

[<strong>13</strong>3] Zanirato, P., J. Chem. Soc., Perkin Trans. 1, (1991), 2789.<br />

[<strong>13</strong>4] Melai, V.; Brillante, A.; Zanirato, P., J. Chem. Soc., Perkin Trans. 2, (1998), 2447.<br />

[<strong>13</strong>5] L abbØ, G.; Dehaen, W., Tetrahedron, (1988) 44, 461.<br />

[<strong>13</strong>6] Farina, F.; Fernandez, P.; Fraile, M. T.; Martin, M. V., Heterocycles, (1989) 29, 967.<br />

[<strong>13</strong>7] Shen, Y.; Zheng, J.; Xin, Y.; Lin, Y.; Qi, M., J. Chem. Soc., Perkin Trans. 1, (1995), 997.<br />

[<strong>13</strong>8] Howell, S. J.; Spencer, N.; Philp, D., Tetrahedron, (2001) 57, 4945.<br />

[<strong>13</strong>9] Hager, C.; Miethchen, R.; Reinke, H., J. Prakt. Chem., (2000) 342, 414 and references cited therein.<br />

[140] Norris, P.; Horton, D.; Levine, B. R., Heterocycles, (1996) 43, 2643.<br />

[141] Freeze, S.; Norris, P., Heterocycles, (1999) 51, 1807.<br />

[142] Earl, R. A.; Townsend, L. B., Can. J. Chem., (1980) 58, 2550.<br />

[143] Moore, M.; Norris, P., Tetrahedron Lett., (1998) 39, 7027.<br />

[144] Blass, B. E.; Coburn, K. R.; Faulkner, A. L.; Hunn, C. L.; Natchus, M. G.; Parker, M. S.; Portlock, D. E.;<br />

Tullis, J. S.; Wood, R., Tetrahedron Lett., (2002) 43, 4059.<br />

[145] Tornøe, C. W.; Christensen, C.; Meldal, M., J. Org. Chem., (2002) 67, 3057.<br />

[146] Pearson, W. H.; Bergmeier, S. C.; Chytra, J. A., Synthesis, (1990), 156.<br />

[147] Banert, K., Chem. Ber., (1989) 122, 911.<br />

[148] Banert, K., Chem. Ber., (1989) 122, 1963.<br />

[149] Gómez-Gallego, M.; Mancheæo, M. J.; Sierra, M. A., Tetrahedron, (2000) 56, 5743.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


FOR PERSONAL USE ONLY<br />

590 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

b[150] Pearson, M. J., J. Chem. Soc., Perkin Trans. 1, (1977), 189.<br />

[151] Davies, D.; Pearson, M. J., J. Chem. Soc., Perkin Trans. 1, (1981), 2539.<br />

[152] Pearson, M. J., J. Chem. Soc., Perkin Trans. 1, (1981), 2544.<br />

[153] Branch, C. L.; Finch, S. C.; Pearson, M. J., Tetrahedron Lett., (1982) 23, 4381.<br />

[154] Branch, C. L.; Finch, S. C.; Pearson, M. J., J. Chem. Soc., Perkin Trans. 1, (1985), 1491.<br />

[155] Himbert, G.; Regitz, M., Chem. Ber., (1972) 105, 2975.<br />

[156] Grunanger, P.; Finzi, D. V.; Fabbri, E., Gazz. Chim. Ital., (1960) 90, 4<strong>13</strong>.<br />

[157] Ykman, P.; L abbØ, G.; Smets, G., Tetrahedron Lett., (1970), 5225.<br />

[158] Huisgen, R.; Blaschke, H., Chem. Ber., (1965) 98, 2985.<br />

[159] Ykman, P.; L abbØ, G.; Smets, G., Chem. Ind. (London), (1972), 886.<br />

[160] Gais, H.-J.; Hafner, K.; Neuenschwander, M., Helv. Chim. Acta, (1969) 52, 2641.<br />

[161] Fuks, R.; Buijle, R.; Viehe, H. G., Angew. Chem., (1966) 78, 594; Angew. Chem. Int. Ed. Engl., (1966) 5,<br />

585.<br />

[162] Arnold, B.; Regitz, M., Angew. Chem., (1979) 91, 337; Angew. Chem. Int. Ed. Engl., (1979) 18, 320.<br />

[163] Himbert, G.; Regitz, M., Chem. Ber., (1972) 105, 2963.<br />

[164] Regitz, M.; Himbert, G., Tetrahedron Lett., (1970), 2823.<br />

[165] Grunanger, P.; Finzi, P. V., Tetrahedron Lett., (1963), 1839.<br />

[166] Harmon, R. E.; Stanley, F.; Gupta, S. K.; Johnson, J., J. Org. Chem., (1970) 35, 3444.<br />

[167] Grünanger, P.; Finzi, P. V.; Scotti, C., Chem. Ber., (1965) 98, 623.<br />

[168] Himbert, G.; Schwickerath, W., Liebigs Ann. Chem., (1984), 85.<br />

[169] Birkofer, L.; Ritter, A., Angew. Chem., (1965) 77, 414; Angew. Chem. Int. Ed. Engl., (1965) 4, 417.<br />

[170] Nishiyama, K., InEncyclopedia of Reagents for Organic Synthesis, Paquette, L. A., Ed.; Wiley:<br />

Chichester, UK, (1995); Vol. 1, p 222.<br />

[171] Birkofer, L.; Ritter, A.; Richter, P., Chem. Ber., (1963) 96, 2750.<br />

[172] Birkofer, L.; Ritter, A.; Uhlenbrauck, H., Chem. Ber., (1963) 96, 3280.<br />

[173] Birkofer, L.; Wegner, P., Chem. Ber., (1966) 99, 2512.<br />

[174] Moltzen, E. K.; Pedersen, H.; Bøgesø, K. P.; Meier, E.; Frederiksen, K.; Sµnchez, C.; Lembøl, H. L.,<br />

J. Med. Chem., (1994) 37, 4085.<br />

[175] Revesz, L.; Padova, F. E. D.; Buhl, T.; Feifel, R.; Gram, H.; Hiestand, P.; Manning, U.; Wolf, R.;<br />

Zimmerlin, A., Bioorg. Med. Chem. Lett., (2002) 12, 2109.<br />

[176] Tsuge, O.; Kanemasa, S.; Matsuda, K., Chem. Lett., (1983), 1<strong>13</strong>1.<br />

[177] Palkowitz, A. D.; Thrasher, K. J.; Hauser, K. L., In Encyclopedia of Reagents for Organic Synthesis,<br />

Paquette, L. A., Ed.; Wiley: Chichester, UK, (1995); Vol. 7, p 5035.<br />

[178] Kozima, S.; Itano, T.; Mihara, N.; Sisido, K.; Isida, T., J. Organomet. Chem., (1972) 44, 117.<br />

[179] Hitomi, T.; Kozima, S., J. Organomet. Chem., (1977) 127, 273.<br />

[180] Akimova, G. S.; Christokletov, V. N.; Petrov, A. A., Zh. Org. Khim., (1967) 3, 968; Chem. Abstr.,<br />

(1967) 67, 100071.<br />

[181] Akimova, G. S.; Chistokletov, V. N.; Petrov, A. A., J. Org. Chem. USSR (Engl. Transl.), (1965) 1, 2118.<br />

[182] Robson, E.; Tedder, J. M.; Webster, B., J. Chem. Soc., (1963), 1863.<br />

[183] Finzi, P. V.; Chim. Ind. (Milan), (1965) 47, <strong>13</strong>38.<br />

[184] Boyer, J. H.; Mack, C. H.; Goebel, N.; Morgan, L. R., J. Org. Chem., (1958) 23, 1051.<br />

[185] Velezheva, V. S.; Erofeev, Y. V.; Suvorov, N. N., J. Org. Chem. USSR (Engl. Transl.), (1980) 16, 1839.<br />

[186] Bajpai, L. K.; Bhaduri, A. P., Synth. Commun., (1996) 26, 1849.<br />

[187] Prager, R. H.; Razzino, P., Aust. J. Chem., (1994) 47, <strong>13</strong>75.<br />

[188] Tanaka, Y.; Miller, S. I., J. Org. Chem., (1972) 37, 3370.<br />

[189] Dong, Z.; Hellmund, K. A.; Pyne, S. G., Aust. J. Chem., (1993) 46, 1431.<br />

[190] Meek, J. S.; Fowler, J. S., J. Am. Chem. Soc., (1967) 89, 1967.<br />

[191] Meek, J. S.; Fowler, J. S., J. Org. Chem., (1968) 33, 985.<br />

[192] Silva, A. M. S.; Vieira, J. S.; Cavaleiro, J. A. S.; Patonay, T.; LØvai, A.; Elguero, J., Heterocycles, (1999)<br />

51, 481.<br />

[193] Henriet, M.; Houtekie, M.; Techy, B.; Touillaux, R.; Ghosez, L., Tetrahedron Lett., (1980) 21, 223.<br />

[194] Bernard, C.; Ghosez, L., J. Chem. Soc., Chem. Commun., (1980), 940.<br />

[195] Zbiral, E.; Rasberger, M.; Hengstberger, H., Justus Liebigs. Ann. Chem., (1969) 725, 22.<br />

[196] Rasberger, M.; Zbiral, E., Monatsh. Chem., (1969) 100, 64.<br />

[197] Cailleux, P.; Piet, J. C.; Benhaoua, H.; CarriØ, R., Bull. Soc. Chim. Belg., (1996) 105, 45.<br />

[198] Rondestvedt, C. S.; Chang, P. K., J. Am. Chem. Soc., (1955) 77, 6532.<br />

[199] Hager, C.; Miethchen, R.; Reinke, H., J. Fluorine Chem., (2000) 104, <strong>13</strong>5.<br />

[200] Green, B.; Liu, D.-W., Tetrahedron Lett., (1975), 2807.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


FOR PERSONAL USE ONLY<br />

References 591<br />

b[201] Flessner, T.; Wong, C.-H., Tetrahedron Lett., (2000) 41, 7805.<br />

[202] Krülle, T. M.; Fuente, C.; Pickering, L.; Aplin, R. T.; Tsitsanou, K. E.; Zographos, S. E.;<br />

Oikonomakos, N. G.; Nash, R. J.; Griffiths, R. C.; Fleet, G. W. J., Tetrahedron: Asymmetry, (1997) 8,<br />

3807.<br />

[203] Wolff, L., Justus Liebigs Ann. Chem., (1912) 394, 68.<br />

[204] Chattaway, F. D.; Parkes, G. D., J. Chem. Soc., (1925) 127, <strong>13</strong>07.<br />

[205] Fieser, L. F.; Hartwell, J. L., J. Am. Chem. Soc., (1935) 57, 1479.<br />

[206] Huisgen, R.; Szeimies, G.; Möbius, L., Chem. Ber., (1967) 100, 2494.<br />

[207] Washburne, S. S.; Peterson, W. R.; Berman, D. A., J. Org. Chem., (1972) 37, 1738.<br />

[208] Tamura, Y.; Chun, M. W.; Ohno, K.; Kwon, S.; Ikeda, M., Chem. Pharm. Bull., (1978) 26, 2874.<br />

[209] Alonso, G.; Fuertes, M.; García-López, M. T.; Heras, F. G.; Infante, J. M.; Stud, M., Eur. J. Med. Chem.,<br />

(1978) <strong>13</strong>, 155.<br />

[210] Palacios, F.; Retana, A. M. O.; Pagalday, J., Org. Prep. Proced. Int., (1995) 27, 625.<br />

[211] Scheiner, P., Tetrahedron, (1968) 24, 349.<br />

[212] Scheiner, P.; Schomaker, J. H.; Deming, S.; Libbey, W. J.; Nowack, G. P., J. Am. Chem. Soc., (1965)<br />

87, 306.<br />

[2<strong>13</strong>] Huisgen, R.; Mobius, L.; Muller, G.; Stangl, H.; Szeimies, G.; Vernon, J. M., Chem. Ber., (1965) 98,<br />

3992.<br />

[214] Peterson, W. R.; Arkles, B.; Washburne, S. S., J. Organomet. Chem., (1976) 121, 285.<br />

[215] Yokoyama, M.; Nakao, E.; Sujino, K.; Watanabe, S.; Togo, H., Heterocycles, (1990) 31, 1669.<br />

[216] McLean, S.; Findlay, D. M., Tetrahedron Lett., (1969), 2219.<br />

[217] Findlay, D. M.; Roy, M. S.; McLean, S., Can. J. Chem., (1972) 50, 3186.<br />

[218] Zanirato, P., J. Chem. Soc., Perkin Trans. 1, (2002), 1420.<br />

[219] Reinhoudt, D. N.; Kouwenhoven, C. G., Tetrahedron Lett., (1974), 2163.<br />

[220] Reinhoudt, D. N.; Kouwenhoven, C. G., Recl. Trav. Chim. Pays-Bas, (1976) 95, 67.<br />

[221] Crandall, J. K.; Conover, W. W., J. Org. Chem., (1974) 39, 63.<br />

[222] Bleiholder, R. F.; Shechter, H., J. Am. Chem. Soc., (1968) 90, 2<strong>13</strong>1.<br />

[223] Wedegaertner, D. K.; Kattak, R. K.; Harrison, I.; Cristie, S. K., J. Org. Chem., (1991) 56, 4463.<br />

[224] Battioni, P.; Vo-Quang, L.; Vo-Quang, Y., Bull. Soc. Chim. Fr., (1978), II-415.<br />

[225] Borresen, S.; Crandall, J. K., J. Org. Chem., (1976) 41, 678.<br />

[226] Gardiner, M.; Grigg, R.; Sridharan, V.; Vicker, N., Tetrahedron Lett., (1998) 39, 435.<br />

[227] Gardiner, M.; Grigg, R.; Kordes, M.; Sridharan, V.; Vicker, N., Tetrahedron, (2001) 57, 7729.<br />

[228] Ykman, P.; L abbØ, G.; Smets, G., Tetrahedron, (1971) 27, 845.<br />

[229] Ykman, P.; L abbØ, G.; Smets, G., Tetrahedron, (1971) 27, 5623.<br />

[230] Harvey, G. R., J. Org. Chem., (1966) 31, 1587.<br />

[231] Ykman, P.; L abbØ, G.; Smets, G., Tetrahedron, (1973) 29, 195.<br />

[232] L abbØ, G.; Ykman, P.; Smets, G., Tetrahedron, (1969) 25, 5421.<br />

[233] Tao, L.; Wang, Y.-G.; Ma, C.; Zheng, B.; Chen, Y.-Z., Synth. Commun., (1999) 29, 2053.<br />

[234] Ellis, M. J.; Stevens, M. F. G., J. Chem. Soc., Perkin Trans. 1, (2001), 3174.<br />

[235] Wadsworth, H. J.; Jenkins, S. M.; Orlek, B. S.; Cassidy, F.; Clark, M. S. G.; Brown, F.; Riley, G. J.;<br />

Graves, D.; Hawkins, J.; Naylor, C. B., J. Med. Chem., (1992) 35, 1280.<br />

[236] Ykman, P.; Mathys, G.; L abbØ, G.; Smets, G., J. Org. Chem., (1972) 37, 32<strong>13</strong>.<br />

[237] Sikora, D.; Gajda, T., Synth. Commun., (1998) 28, 1215.<br />

[238] Schorkhuber, W.; Zbiral, E., Chem. Ber., (1981) 114, 3165.<br />

[239] Hammerschmidt, F.; Polsterer, J.-P.; Zbiral, E., Synthesis, (1995), 415.<br />

[240] Zbiral, E.; Stroh, J., Monatsh. Chem., (1969) 100, 1438.<br />

[241] Munk, M. E.; Kim, Y. K., J. Am. Chem. Soc., (1964) 86, 22<strong>13</strong>.<br />

[242] Huisgen, R.; Mobius, L.; Szeimies, G., Chem. Ber., (1965) 98, 1<strong>13</strong>8.<br />

[243] Huisgen, R.; Szeimies, G., Chem. Ber., (1965) 98, 1153.<br />

[244] Scheiner, P., J. Org. Chem., (1967) 32, 2022.<br />

[245] Croce, P. D.; Stradi, R., Tetrahedron, (1977) 33, 865.<br />

[246] Wolff, L., Justus Liebigs Ann. Chem., (1912) 394, 49.<br />

[247] Bianchetti, G.; Croce, P. D.; Pocar, D., Tetrahedron Lett., (1965), 2039.<br />

[248] Derdour, A.; Benabdallah, T.; Merah, B.; Texier, F., Bull. Soc. Chim. Fr., (1990) 127, 69.<br />

[249] Palacios, F.; Retana, A. M. O.; Pagalday, J., Heterocycles, (1995) 40, 543.<br />

[250] Palacios, F.; Retana, A. M. O.; Pagalday, J.; Sµnchez, J. M., Org. Prep. Proced. Int., (1995) 27, 603.<br />

[251] Croce, P. D.; Pocar, D.; Stradi, R.; Trimarco, P., J. Chem. Soc., Perkin Trans. 1, (1980), 141.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


FOR PERSONAL USE ONLY<br />

592 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

b[252] Almirante, N.; Ballabio, M.; Bianchetti, G.; Cambiaghi, A.; Pocar, D., J. Chem. Res., Synop., (1986),<br />

<strong>13</strong>2.<br />

[253] Bolis, G.; Pocar, D.; Stradi, R.; Trimarco, P., J. Chem. Soc., Perkin Trans. 1, (1977), 2365.<br />

[254] Pocar, D.; Rossi, L. M.; Stradi, R.; Trimarco, P., J. Chem. Soc., Perkin Trans. 1, (1977), 2337.<br />

[255] Bianchetti, G.; Pocar, D.; Croce, P. D.; Vigevani, A., Chem. Ber., (1965) 98, 2714.<br />

[256] Bianchetti, G.; Croce, P. D.; Pocar, D., Tetrahedron Lett., (1965), 2043.<br />

[257] Zaragoza, F.; Petersen, S. V., Tetrahedron, (1996) 52, 10823.<br />

[258] Kadaba, P., J. Org. Chem., (1992) 57, 3075.<br />

[259] Scheiner, P., J. Org. Chem., (1967) 32, 2022.<br />

[260] Nunno, L. D.; Scilimati, A., Tetrahedron, (1986) 42, 39<strong>13</strong>.<br />

[261] Olsen, C. E.; Pedersen, C., Tetrahedron Lett., (1968), 3805.<br />

[262] Olsen, C. E., Acta Chem. Scand., (1973) 27, 1987.<br />

[263] Olsen, C. E., Acta Chem. Scand., (1973) 27, 2983.<br />

[264] Scheiner, P., US 3 579 531, (1971); Chem. Abstr. (1971) 75, 36045.<br />

[265] Reisser, F., US 4 499 280, (1985); Chem. Abstr. (1983) 99, 70735.<br />

[266] Biagi, G.; Livi, O.; Scartoni, V.; Verugi, E., Farmaco, Ed. Sci., (1988) 43, 597.<br />

[267] Biagi, G.; Livi, O.; Ramacciotti, G. L.; Scartoni, V.; Bazzichi, L.; Mazzoni, M. R.; Lucacchini, A.,<br />

Farmaco, (1990) 45, 49.<br />

[268] Biagi, G.; Dell Omodarme, G.; Giorgi, I.; Livi, O.; Scartoni, V., Farmaco, (1992) 47, 91.<br />

[269] Grassivaro, N.; Rossi, E.; Stradi, R., Synthesis, (1986), 1010.<br />

[270] Huang, Z.-T.; Wang, M.-X., J. Org. Chem., (1992) 57, 184.<br />

[271] Viswanathan, N. I.; Balakrishnan, V., J. Chem. Soc., Perkin Trans. 1, (1979), 2361.<br />

[272] Chakrasali, R. T.; Ila, H.; Junjappa, H., Synthesis, (1988), 453.<br />

[273] Chakrasali, R. T.; Ila, H.; Junjappa, H., Synthesis, (1988), 851.<br />

[274] Scarpati, R.; Sica, D.; Lionetti, A., Gazz. Chim. Ital., (1963) 93, 90.<br />

[275] Scarpati, R.; Graziano, M. L.; Nicolaus, R. A., Gazz. Chim. Ital., (1968) 98, 681.<br />

[276] Graziano, M. L.; Scarpati, R., J. Heterocycl. Chem., (1976) <strong>13</strong>, 205.<br />

[277] Dimroth, O., Ber. Dtsch. Chem. Ges., (1902) 35, 1029.<br />

[278] Tolman, R. L.; Smith, C. W.; Robins, R. K., J. Am. Chem. Soc., (1972) 94, 2530.<br />

[279] Lieber, E.; Rao, C. N. R.; Rajkumar, T. V., J. Org. Chem., (1959) 24, <strong>13</strong>4.<br />

[280] Yates, P.; Farnum, D. G., J. Am. Chem. Soc., (1963) 85, 2967.<br />

[281] Cottrell, I. F.; Hands, D.; Houghton, P. G.; Humphrey, G. R.; Wright, S. H. B., J. Heterocycl. Chem.,<br />

(1991) 28, 301.<br />

[282] L abbØ, G.; Hassner, A., J. Heterocycl. Chem., (1970) 7, 361.<br />

[283] Maiorana, S., Ann. Chim. (Rome), (1966) 56, 1531.<br />

[284] L abbØ, G.; Mathys, G.; Toppet, S., J. Org. Chem., (1975) 40, 1549.<br />

[285] Benati, L.; Montevecchi, P. C.; Spagnolo, P., Gazz. Chim. Ital., (1992) 122, 249.<br />

[286] Settimo, A.; Livi, O.; Biagi, G.; Lucacchini, A.; Caselli, S., Farmaco, Ed. Sci., (1983) 38, 725.<br />

[287] Biagi, G.; Giorgi, I.; Livi, O.; Manera, C.; Scartoni, V., J. Heterocycl. Chem., (1997) 34, 845.<br />

[288] Settimo, A.; Livi, O.; Biagi, G.; Primofiori, G.; Masoni, G., Farmaco, Ed. Sci., (1982) 37, 728.<br />

[289] Biagi, G.; Livi, O.; Lucacchini, A.; Martini, C.; Scartoni, V., J. Pharm. Sci., (1992) 81, 543.<br />

[290] Livi, O.; Ferrarini, P. L.; Tonetti, I., Farmaco, Ed. Sci., (1976) 31, 797.<br />

[291] Carboni, S.; Settimo, A.; Ferrarini, P. L.; Livi, O., Farmaco, Ed. Sci., (1978) 33, 315.<br />

[292] Savini, L.; Massarelli, P.; Corti, P.; Chiasserini, L.; Pellerano, C.; Bruni, G., Farmaco, (1994) 49, 363.<br />

[293] Savini, L.; Massarelli, P.; Chiasserini, L.; Pellerano, C.; Bruni, G., Farmaco, (1994) 49, 633.<br />

[294] Julino, M.; Stevens, M. F. G., J. Chem. Soc., Perkin Trans. 1, (1998), 1677.<br />

[295] Corral, C.; El-Ashmawy, M. B.; Lissavetzky, J.; Manzanares, I., J. Heterocycl. Chem., (1987) 24, <strong>13</strong>01.<br />

[296] Benati, L.; Montevecchi, P. C.; Spagnolo, P.; Foresti, E., J. Chem. Soc., Perkin Trans. 1, (1992), 2845.<br />

[297] Ognyanov, V. I.; Hesse, M., Helv. Chim. Acta, (1991) 74, 899.<br />

[298] Regitz, M.; Geelhaar, H. J., Chem. Ber., (1969) 102, 1743.<br />

[299] L abbØ, G.; Dehaen, W., Bull. Soc. Chim. Belg., (1987) 96, 823.<br />

[300] Stimac, A.; Leban, I.; Kobe, J., Synlett, (1999), 1069.<br />

[301] Biagi, G.; Giorgi, I.; Livi, O.; Scartoni, V.; Betti, L.; Giannaccini, G.; Trincavelli, M. L., Eur. J. Med.<br />

Chem., (2002) 37, 565.<br />

[302] Olesen, P. H.; Nielsen, F. E.; Pedersen, E. B.; Becher, J., J. Heterocycl. Chem., (1984) 21, 1603.<br />

[303] Buckle, D. R.; Rockell, C. J. M., J. Chem. Soc., Perkin Trans. 1, (1982), 627.<br />

[304] L abbØ, G.; Beenaerts, L., Tetrahedron, (1989) 45, 749.<br />

[305] Begtrup, M.; Pedersen, C.; Acta Chem. Scand., (1964) 18, <strong>13</strong>33.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


FOR PERSONAL USE ONLY<br />

References 593<br />

b[306] Begtrup, M.; Pedersen, C.; Acta Chem. Scand., (1969) 23, 1091.<br />

[307] Rosin, Y. A.; Savel eva, E. A.; Morzherin, Y. Y.; Dehaen, W.; Toppet, S.; Meervelt, L. V.;<br />

Bakulev, V. A., J. Chem. Soc., Perkin Trans. 1, (2002), 211.<br />

[308] Regitz, M.; Anschütz, W.; Liedhegener, A., Chem. Ber., (1968) 101, 3734.<br />

[309] Regitz, M.; Anschütz, W., Chem. Ber., (1969) 102, 2216.<br />

[310] Tennant, G., J. Chem. Soc. C, (1966), 2290.<br />

[311] Tennant, G., J. Chem. Soc. C, (1967), 1279.<br />

[312] Bertelli, L.; Biagi, G.; Giorgi, I.; Livi, O.; Manera, C.; Scartoni, V.; Lucacchini, A.; Giannaccini, G.;<br />

Barili, P. L., Eur. J. Med. Chem., (2000) 35, 333.<br />

[3<strong>13</strong>] Sutherland, D. R.; Tennant, G., J. Chem. Soc., Perkin Trans. 1, (1974), 534.<br />

[314] Yokoyama, M.; Watanabe, S.; Seki, T., Synthesis, (1988), 879.<br />

[315] Quast, H.; Bieber, L.; Meichsner, G.; Regnat, D., Chem. Ber., (1988) 121, 1285.<br />

[316] Gibson, K. R.; Thomas, S. R.; Rowley, M., Synlett, (2001), 712.<br />

[317] Lieber, E.; Chao, T. S.; Rao, C. N. R., J. Org. Chem., (1957) 22, 645.<br />

[318] Lieber, E.; Chao, T. S.; Rao, C. N. R., Org. Synth., Coll. Vol. IV, (1963), 380.<br />

[319] Hoover, J. R. E.; Day, A. L., J. Am. Chem. Soc., (1956) 78, 5832.<br />

[320] Dornow, A.; Helberg, J., Chem. Ber., (1960) 93, 2001.<br />

[321] Sutherland, D. R.; Tennant, G., J. Chem. Soc. C, (1971), 706.<br />

[322] Biagi, G.; Giorgi, I.; Livi, O.; Scartoni, V.; Velo, S.; Barili, P. L., J. Heterocycl. Chem., (1996) 33, 1847.<br />

[323] Livi, O.; Ferrarini, P. L.; Tonetti, I.; Smaldone, F.; Zefola, G., Farmaco, Ed. Sci., (1979) 34, 217.<br />

[324] Heep, U., Justus Liebigs Ann. Chem., (1973), 578.<br />

[325] Chretien, F.; Gross, B., Tetrahedron, (1982) 38, 103.<br />

[326] Bochis, R. J.; Chabala, J. C.; Harris, E.; Peterson, L. H.; Barash, L.; Beattie, T.; Brown, J. E.;<br />

Graham, D. W.; Waksmunski, F. S.; Tischler, M.; Joshua, H.; Smith, J.; Colwell, L. F.; Wyvratt, M. J.;<br />

Fisher, M. H., J. Med. Chem., (1991) 34, 2843.<br />

[327] Mertz, R.; Assche, D. V.; Fleury, L.-P.; Regitz, M., Bull. Soc. Chim. Fr., (1973), 3442.<br />

[328] Khadem, H. E.; Mansour, H. A. R.; Meshreki, M. H., J. Chem. Soc. C, (1968), <strong>13</strong>29.<br />

[329] Scarpati, R.; Graziano, M. L., Tetrahedron Lett., (1971), 2085.<br />

[330] Looker, J. H.; Carpenter, J. W., Can. J. Chem., (1967) 45, 1727.<br />

[331] Begtrup, M.; Pedersen, C.; Acta Chem. Scand., (1967) 21, 633.<br />

[332] Ito, S.; Kakehi, A.; Yamazaki, A., Chem. Lett., (1990), 453.<br />

[333] Ito, S.; Kakehi, A.; Okada, K.; Goto, S.; Kawaguchi, H., Heterocycles, (1997) 45, 889.<br />

[334] Rapoport, H.; Chen, H. H., J. Org. Chem., (1960) 25, 3<strong>13</strong>.<br />

[335] Rapoport, H.; Nilsson, W., J. Am. Chem. Soc., (1961) 83, 4262.<br />

[336] Uhlmann, P.; Felding, J.; Vedsø, P.; Begtrup, M., J. Org. Chem., (1997) 62, 9177.<br />

[337] Theocharis, A. B.; Maroulis, A. J.; Hadjiantoniou-Maroulis, C. P.; Alexandrou, N. E., J. Chem. Soc.,<br />

Perkin Trans. 1, (1989), 619.<br />

[338] Hauptmann, S.; Wilde, H.; Moser, K., Tetrahedron Lett., (1967), 3295.<br />

[339] Hauptmann, S.; Wilde, H.; Moser, K., J. Prakt. Chem., (1971) 3<strong>13</strong>, 882.<br />

[340] Wittig, G.; Krebs, A., Chem. Ber., (1961) 94, 3260.<br />

[341] Sieler, J.; Wilde, H.; Hauptmann, S., Z. Chem., (1971) 11, 179.<br />

[342] Muller, E.; Meier, H., Justus Liebigs Ann. Chem., (1968) 716, 11.<br />

[343] Wittig, G.; Dorsch, H.-L., Justus Liebigs Ann. Chem., (1968) 711, 46.<br />

[344] Wittig, G.; Meske-Schüller, J., Justus Liebigs Ann. Chem., (1968) 711, 65.<br />

[345] Gilchrist, T. L.; Gymer, G. E.; Rees, C. W., J. Chem. Soc., Perkin Trans. 1, (1973), 555.<br />

[346] Benedetti, F.; Bozzini, S.; Forchiassin, M.; Nardin, G.; Pitacco, G.; Russo, C.; Valentin, E.,<br />

J. Heterocycl. Chem., (1989) 26, 301.<br />

[347] Butler, R. N.; Hanahoe, A. B.; King, W. B., J. Chem. Soc., Perkin Trans. 1, (1978), 881.<br />

[348] Bamford, W. R.; Stevens, T. S., J. Chem. Soc., (1952), 4735.<br />

[349] Freeman, P. K.; Johnson, R. C., J. Org. Chem., (1969) 34, 1745.<br />

[350] Alexandrou, N. E.; Adamopoulos, S., Synthesis, (1976), 482.<br />

[351] Curtin, D. Y.; Alexandrou, N. E., Tetrahedron, (1963) 19, 1697.<br />

[352] Alexandrou, N. E., Tetrahedron, (1966) 22, <strong>13</strong>09.<br />

[353] Bauer, H.; Boulton, A.J.; Fedeli, W.; Katritzky, A. R.; Majid-Hamid, A.; Mazza, F.; Vaciago, A.,<br />

J. Chem. Soc., Perkin Trans. 2, (1972), 662.<br />

[354] Shaban, M. A.; Nassr, M. A.; Moustafa, M. A., J. Heterocycl. Chem., (1975) 12, 1295.<br />

[355] Maroulis, A. J.; Akrivos, P. D.; Hadjiantoniou-Maroulis, C. P., J. Heterocycl. Chem., (1993) 30, 9<strong>13</strong>.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


FOR PERSONAL USE ONLY<br />

594 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

b[356] Stefanidou-Stefanatou, J.; Varella, E.; Micromastoras, E. D.; Alexandrou, N. E., J. Heterocycl. Chem.,<br />

(1979) 16, <strong>13</strong>73.<br />

[357] Hadjiantoniou-Maroulis, C. P.; Vantsiouri, A.; Maroulis, A. J., J. Heterocycl. Chem., (1996) 33, 911.<br />

[358] Hadjiantoniou-Maroulis, C. P., Heterocycles, (1999) 51, 599.<br />

[359] Curtin, D. Y.; Crawford, R. J.; Wedegaertner, D. K., J. Org. Chem., (1962) 27, 4300.<br />

[360] Mohr, R.; Hertel, H., Chem. Ber., (1963) 96, 114.<br />

[361] Smith, P. A. S.; Breen, G. J. W.; Hajek, M. K.; Awang, D. V. C., J. Org. Chem., (1970) 35, 2215.<br />

[362] Potts, K. T.; Husain, S., J. Org. Chem., (1970) 35, 3451.<br />

[363] Baines, K. M.; Rourke, T. W.; Vaughan, K., J. Org. Chem., (1981) 46, 856.<br />

[364] Baines, K. M.; Vaughan, K.; Hooper, D. L.; Leveck, L. F., Can. J. Chem., (1983) 61, 1549.<br />

[365] Heine, H. W.; Tomalia, D. A., J. Am. Chem. Soc., (1962) 84, 993.<br />

[366] Wei, X.; Speiser, B., Electrochim. Acta, (1995) 40, 2477.<br />

[367] Lübbe, F.; Grosz, K.-P.; Hillebrand, W.; Sucrow, W., Tetrahedron Lett., (1981) 22, 227.<br />

[368] Saalfrank, R. W.; Ackermann, E.; Fischer, M.; Wirth, U., Chem. Ber., (1987) 120, 2003.<br />

[369] Saalfrank, R. W.; Wirth, U.; Lurz, C.-J., J. Org. Chem., (1989) 54, 4356.<br />

[370] D Andrea, S. V.; Ghosh, A.; Wang, W.; Freeman, J. P.; Szmuszkovicz, J., J. Org. Chem., (1991) 56,<br />

2680.<br />

[371] L abbØ, G.; Godts, F.; Toppet, S., Tetrahedron Lett., (1983) 24, 3149.<br />

[372] Boulton, A. J.; Katritzky, A. R., J. Chem. Soc., (1962), 2083.<br />

[373] Cook, A. H.; Heilbron, S. I.; Hunter, G. D., J. Chem. Soc., (1949), 1443.<br />

[374] König, W.; Coenen, M.; Lorenz, W.; Bahr, F.; Bassl, A., J. Prakt. Chem., (1965) 30, 96.<br />

[375] König, W.; Coenen, M.; Bahr, F.; May, B.; Bassl, A., J. Prakt. Chem., (1966) 33, 54.<br />

[376] Daeniker, H. U.; Druey, J., Helv. Chim. Acta, (1962) 45, 2441.<br />

[377] Wamhoff, H.; Sohµr, P., Chem. Ber., (1971) 104, 3510.<br />

[378] Thurber, T. C.; Pugmire, R. J.; Townsend, L. B., J. Heterocycl. Chem., (1974) 11, 645.<br />

[379] Thurber, T. C.; Townsend, L. B., J. Heterocycl. Chem., (1977) 14, 647.<br />

[380] Romani, S.; Klotzer, W., J. Heterocycl. Chem., (1978) 15, <strong>13</strong>49.<br />

[381] Rees, C. W.; Sale, A. A., J. Chem. Soc., Perkin Trans. 1, (1973), 545.<br />

[382] Sasaki, T.; Minamoto, K., J. Org. Chem., (1966) 31, 3914.<br />

[383] Pfleger, R.; Hahn, H.-G., Chem. Ber., (1957) 90, 2411.<br />

[384] Pfleger, R.; Garthe, E.; Rauer, K., Chem. Ber., (1963) 96, 1827.<br />

[385] Gunda, T. E.; Tamµs, L.; Sµlyi, S., Tetrahedron Lett., (1998) 39, 3061.<br />

[386] Huisgen, R.; Gotthardt, H.; Grashey, R., Chem. Ber., (1968) 101, 536.<br />

[387] Regitz, M.; Himbert, G., Justus Liebigs Ann. Chem., (1970) 734, 70.<br />

[388] Clerici, F.; Gelmi, M. L.; Soave, R.; Presti, L. L., Tetrahedron, (2002) 58, 5173.<br />

[389] Eistert, B.; Endres, E., Justus Liebigs Ann. Chem., (1970) 734, 56.<br />

[390] Fries, K., Justus Liebigs Ann. Chem., (1927) 454, 121.<br />

[391] Reimlinger, H., Chem. Ber., (1964) 97, 3493.<br />

[392] Huisgen, R.; Weberndo, V., Chem. Ber., (1967) 100, 71.<br />

[393] Albert, A., J. Chem. Soc. C, (1969), 2379.<br />

[394] Albert, A., Chem. Commun., (1969), 500.<br />

[395] Albert, A., Angew. Chem., (1969) 81, 115; Angew. Chem. Int. Ed. Engl., (1969) 8, <strong>13</strong>2.<br />

[396] Rečnik, S.; Svete, J.; Stanovnik, B., Heterocycles, (2000) 53, 1793.<br />

[397] Goerdeler, J.; Gnad, G., Chem. Ber., (1966) 99, 1618.<br />

[398] Regitz, M.; Scherer, H., Chem. Ber., (1969) 102, 417.<br />

[399] Regitz, M.; Liedhegener, A., Justus Liebigs Ann. Chem., (1967) 710, 118.<br />

[400] Kruger, H.-R., US 4 340 742, (1982); Chem. Abstr. (1981) 94, 156937.<br />

[401] Volkova, N. V.; Tarasov, E. V.; Meervelt, L. V.; Toppet, S.; Dehaen, W.; Bakulev, V. A., J. Chem. Soc.,<br />

Perkin Trans. 1, (2002), 1574.<br />

[402] Masuda, K.; Arai, Y.; Itoh, M., Synthesis, (1979), 470.<br />

[403] L abbØ, G.; Vanderstede, E.; Dehaen, W.; Delbeke, P.; Toppet, S., J. Chem. Soc., Perkin Trans. 1,<br />

(1991), 607.<br />

[404] Kindt-Larsen, T.; Pedersen, C., Acta Chem. Scand., (1962) 16, 1800.<br />

[405] L abbØ, G.; Vanderstede, E., J. Heterocycl. Chem., (1989) 26, 1811.<br />

[406] Medaer, B.; Aken, K. V.; Hoornaert, G., Tetrahedron Lett., (1994) 35, 9767.<br />

[407] Medaer, B. P.; Aken, K. J. V.; Hoornaert, G. J., Tetrahedron, (1996) 52, 88<strong>13</strong>.<br />

[408] Kadaba, P. K., Synthesis, (1978), 694.<br />

[409] Kadaba, P. K., J. Prakt. Chem., (1982) 324, 857.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


FOR PERSONAL USE ONLY<br />

References 595<br />

b[410] Kadaba, P. K.; Parmley, G.; Crooks, P. A.; Agha, B., J. Heterocycl. Chem., (1993) 30, 1191.<br />

[411] Kadaba, P. K.; Edelstein, S. B., Synthesis, (1990), 191.<br />

[412] Almirante, N.; Clerici, F.; Erba, E., J. Chem. Res., Synop., (1987), 300.<br />

[4<strong>13</strong>] Almirante, N.; Cicardi, S.; Napoletano, C.; Serravalle, M., Tetrahedron, (1987) 43, 625.<br />

[414] Wittig, G.; Reichel, B., Chem. Ber., (1963) 96, 2851.<br />

[415] Pocar, D.; Bianchetti, G.; Croce, P. D., Chem. Ber., (1964) 97, 1225.<br />

[416] Carpenter, W.; Haymaker, A.; Moore, D. W., J. Org. Chem., (1966) 31, 789.<br />

[417] Grimmett, M. R.; Iddon, B., Heterocycles, (1995) 41, 1525.<br />

[418] Ghose, S.; Gilchrist, T. L., J. Chem. Soc., Perkin Trans. 1, (1991), 775.<br />

[419] Holzer, W.; Ruso, K., J. Heterocycl. Chem., (1992) 29, 1203.<br />

[420] Felding, J.; Uhlmann, P.; Kristensen, J.; Vedsø, P.; Begtrup, M., Synthesis, (1998), 1181.<br />

[421] Ohta, S.; Kawasaki, I.; Uemura, T.; Yamashita, M.; Yoshioka, T.; Yamaguchi, S., Chem. Pharm. Bull.,<br />

(1997) 45, 1140.<br />

[422] Larina, L. I.; Sorokin, M. S.; Albanov, A. I.; Elokhina, V. N.; Protsuk, N. I.; Lopyrev, V. A., Magn.<br />

Reson. Chem., (1998) 36, 110.<br />

[423] Begtrup, M.; Vedsø, P., J. Chem. Soc., Perkin Trans. 1, (1993), 625.<br />

[424] Raap, R., Can. J. Chem., (1971) 49, 1792.<br />

[425] Akimova, G. S.; Cristokletov, V. N.; Petrov, A. A., Zh. Org. Khim., (1968) 4, 389; Chem. Abstr., (1968)<br />

68, 105100.<br />

[426] Dimroth, O., Ber. Dtsch. Chem. Ges., (1902) 35, 4041.<br />

[427] Akimova, G. S.; Christokletov, V. N.; Petrov, A. A., Zh. Org. Khim., (1967) 3, 2241; Chem. Abstr.,<br />

(1968) 68, 87243.<br />

[428] Cusack, N. J.; Shaw, G.; Litchfield, G. J., J. Chem. Soc. C, (1971), 1501.<br />

[429] Hüttel, R.; Kratzer, J., Chem. Ber., (1959) 92, 2014.<br />

[430] Birkofer, L.; Wegner, P., Chem. Ber., (1967) 100, 3485.<br />

[431] Williams, E. L., Tetrahedron Lett., (1992) 33, 1033.<br />

[432] Huisgen, R.; Seidel, M., Chem. Ber., (1961) 94, 2509.<br />

[433] Begtrup, M., Acta Chem. Scand., (1969) 23, 2025.<br />

[434] Walter, W.; Radke, M., Justus Liebigs Ann. Chem., (1973), 636.<br />

[435] Staab, H. A.; Wolfgang, B., Justus Liebigs Ann. Chem., (1961) 648, 72.<br />

[436] Albert, A.; Lin, C. J., J. Chem. Soc., Perkin Trans. 1, (1978), 427.<br />

[437] Albert, A.; Taguchi, H., J. Chem. Soc., Perkin Trans. 1, (1973), 1629.<br />

[438] Smith, P. A. S.; Wirth, J. G., J. Org. Chem., (1968) 33, 1145.<br />

[439] Carboni, R. A.; Kauer, J. C.; Hatchard, W. R.; Harder, R. J., J. Am. Chem. Soc., (1967) 89, 2626.<br />

[440] Elguero, J.; Gonzalez, E.; Jacquier, R., Bull. Soc. Chim. Fr., (1967), 1998.<br />

[441] Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M.; Chan, D. M. T.; Combs, A.,<br />

Tetrahedron Lett., (1998) 39, 2941.<br />

[442] Hagan, D. J.; GimØnez-Arnau, E.; Schwalbe, C. H.; Stevens, M. F. G., J. Chem. Soc., Perkin Trans. 1,<br />

(1997), 2739.<br />

[443] Tanaka, Y.; Miller, S. I., Tetrahedron, (1973) 29, 3285.<br />

[444] Moderhack, D.; Lorke, M., Heterocycles, (1987) 26, 1751.<br />

[445] Oliver, J. E.; Stokes, J. B., J. Heterocycl. Chem., (1970) 7, 961.<br />

[446] Biagi, G.; Ciambrone, F.; Giorgi, I.; Livi, O.; Scartoni, V., J. Heterocycl. Chem., (2002) 39, 889.<br />

[447] Daris, J.-P.; Muchowski, J. M., J. Heterocycl. Chem., (1975) 12, 761.<br />

[448] Begtrup, M.; Kristensen, P. A., Acta Chem. Scand., (1969) 23, 2733.<br />

[449] Begtrup, M., Acta Chem. Scand., (1971) 25, 249.<br />

[450] Begtrup, M.; Poulsen, K. V., Acta Chem. Scand., (1971) 25, 2087.<br />

[451] Koren, A. O., J. Heterocycl. Chem., (2002) 39, 1111.<br />

[452] Wiley, R. H.; Smith, N. R.; Johnson, D. M.; Moffat, J., J. Am. Chem. Soc., (1954) 76, 4933.<br />

[453] Licari, J. J.; Hartzel, L. W.; Dougherty, G.; Benson, F. R., J. Am. Chem. Soc., (1955) 77, 5386.<br />

[454] Gilchrist, T. L.; Gymer, G. E.; Rees, C. W., J. Chem. Soc., Perkin Trans. 1, (1975), 1.<br />

[455] Wiley, R. H.; Moffat, J., J. Am. Chem. Soc., (1955) 77, 1703.<br />

[456] Begtrup, M.; Nytoft, H. P., Acta Chem. Scand., Ser. B, (1986) 40, 262.<br />

[457] Buckle, D. R.; Rockell, C. J. M.; Oliver, R. S., J. Heterocycl. Chem., (1982) 19, 1147.<br />

[458] Bojilova, A.; Rodios, N. A.; Alexandrou, N. E.; Terzis, A.; Mentzafos, D., J. Heterocycl. Chem., (1990)<br />

27, 231.<br />

[459] Lehmkuhl, F. A.; Witkowski, J. T.; Robins, R. K., J. Heterocycl. Chem., (1972) 9, 1195.<br />

[460] Hüttel, R.; Welzel, G., Justus Liebigs Ann. Chem., (1955) 593, 207.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


FOR PERSONAL USE ONLY<br />

596 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

b[461] Hüttel, R.; Gebhardt, A., Justus Liebigs Ann. Chem., (1947) 558, 34.<br />

[462] Iddon, B.; Nicholas, M., J. Chem. Soc., Perkin Trans. 1, (1996), <strong>13</strong>41.<br />

[463] Begtrup, M., Bull. Soc. Chim. Belg., (1988) 97, 573.<br />

[464] Begtrup, M.; Jonsson, G., Acta Chem. Scand., Ser. B, (1987) 41, 724.<br />

[465] Begtrup, M.; Holm, J., J. Chem. Soc., Perkin Trans. 1, (1981), 503.<br />

[466] Siegrist, A. M.; Kormµny, G.; Kabas, G.; Schläpfer, H., Helv. Chim. Acta, (1977) 60, 2334.<br />

[467] Miethchen, R.; Albrecht, H.; Rachow, E., Z. Chem., (1970) 10, 220.<br />

[468] Allison, J. A. C.; Khadem, H. S.; Wilson, C. A., J. Heterocycl. Chem., (1975) 12, 1275.<br />

[469] Begtrup, M.; Vedsø, P., J. Chem. Soc., Perkin Trans. 1, (1995), 243.<br />

[470] Vereshchagin, L. Y.; Nikitin, V. M.; Meshcheryakov, V. I.; Gareev, G. A.; Kirillova, L. P.;<br />

Shul gina, V. M., Zh. Org. Khim., (1989) 25, 1744.<br />

[471] Neuman, P. N., J. Heterocycl. Chem., (1971) 8, 51.<br />

[472] Riebsomer, J. L., J. Org. Chem., (1948) <strong>13</strong>, 815.<br />

[473] Lynch, B. M.; Chan, T.-L., Can. J. Chem., (1963) 41, 274.<br />

[474] Kirillova, L. P.; Shul gina, V. M.; Gareev, G. A.; Sitchikhina, L. G.; Vereshchagin, L. Y., Zh. Org.<br />

Khim., (1988) 24, 657; J. Org. Chem. USSR (Engl. Transl.), (1988) 24, 589.<br />

[475] Neuman, P. N., J. Heterocycl. Chem., (1970) 7, 1159.<br />

[476] Birkofer, L.; Ritter, A.; Richter, P., Chem. Ber., (1963) 96, 2750.<br />

[477] Baltzer, O.; Pechmann, H., Justus Liebigs Ann. Chem., (1841) 262, 302.<br />

[478] Bladin, J. A., Ber. Dtsch. Chem. Ges., (1893) 26, 545.<br />

[479] Dimroth, O., Ber. Dtsch. Chem. Ges., (1902) 35, 1029.<br />

[480] Gompper, R., Chem. Ber., (1957) 90, 382.<br />

[481] Ford, M. C.; Mackay, D., J. Chem. Soc., (1958), 1290.<br />

[482] Biagi, G.; Giorgi, I.; Livi, O.; Scartoni, V.; Barili, P. L., J. Heterocycl. Chem., (1995) 32, 1709.<br />

[483] Bianchetti, G.; Croce, P. D.; Pocar, D., Gazz. Chim. Ital., (1964) 94, 340.<br />

[484] Ferruti, P.; Pocar, D.; Bianchetti, G., Gazz. Chim. Ital., (1967) 97, 109.<br />

[485] Farrington, A.; Hough, L., Chem. Commun., (1965), 219.<br />

[486] Ghigi, E.; Pozzo-balbi, T., Gazz. Chim. Ital., (1941) 71, 228; Chem. Abstr., (1942) 36, 2862.<br />

[487] Sutherland, D. R.; Tennant, G., J. Chem. Soc. C, (1971), 2156.<br />

[488] Albert, A., J. Chem. Soc., Perkin Trans. 1, (1972), 461.<br />

[489] Begtrup, M.; Vedsø, P., Acta Chem. Scand., (1996) 50, 549.<br />

[490] Spetzler, J. C.; Meldal, M.; Felding, J.; Vedsø, P.; Begtrup, M., J. Chem. Soc., Perkin Trans. 1, (1998),<br />

1727.<br />

[491] Iddon, B.; Nicholas, M., J. Chem. Res., Synop., (1996), 512.<br />

[492] L abbØ, G.; Bruynseels, M.; Beenaerts, L.; Vandendriessche, A.; Delbeke, P.; Toppet, S., Bull. Soc.<br />

Chim. Belg., (1989) 98, 343.<br />

[493] Begtrup, M., Acta Chem. Scand., (1971) 25, 795.<br />

[494] Begtrup, M., Acta Chem. Scand., (1971) 25, 803.<br />

[495] Begtrup, M., Acta Chem. Scand., (1972) 26, 1243.<br />

[496] Buckle, D. R., J. Heterocycl. Chem., (1985) 22, 77.<br />

[497] Chan, T. -M.; Friary, R.; Jones, H.; Schwerdt, J. H.; Seidl, V.; Watnick, A. S.; Williams, S. M.,<br />

J. Heterocycl. Chem., (1990) 27, 1<strong>13</strong>5.<br />

[498] Smith, P. A. S.; Krbechek, L. O.; Resemann, W., J. Am. Chem. Soc., (1964) 86, 2025.<br />

[499] L abbØ, G.; Vandendriessche, A.; Toppet, S., Tetrahedron, (1988) 44, 3617.<br />

[500] Shealy, Y. F.; O Dell, C. A., J. Med. Chem., (1966) 9, 733.<br />

[501] Lind, H.; Kristinsson, H., Synthesis, (1974), 198.<br />

[502] L abbØ, G.; Bruynseels, M.; Delbeke, P.; Toppet, S., J. Heterocycl. Chem., (1990) 27, 2021.<br />

[503] L abbØ, G.; Essche, G. V., Bull. Soc. Chim. Belg., (1991) 100, 298.<br />

[504] L abbØ, G.; Essche, G. V.; Delbeke, P.; Toppet, S., Bull. Soc. Chim. Belg., (1990) 99, 833.<br />

[505] Buckle, D. R.; Rockell, C. J. M., J. Chem. Res., Synop., (1982), 292.<br />

[506] Jones, J. H.; Wyatt, P. B., J. Chem. Res., Synop., (1987), 396.<br />

[507] Begtrup, M., Tetrahedron Lett., (1971), 1577.<br />

[508] Kuznetsov, M. A.; Kuznetsova, L. M.; Schantl, J. G.; Wurst, K., Eur. J. Org. Chem., (2001), <strong>13</strong>09.<br />

[509] Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto, Y., Tetrahedron Lett., (2002) 43, 9707.<br />

[510] Ruccia, M., Ann. Chim. (Rome), (1960) 50, <strong>13</strong>63; Chem. Abstr., (1961) 55, 8394.<br />

[511] Browne, E. J., Aust. J. Chem., (1969) 22, 2251.<br />

[512] El Sekily, M. A.; Mancy, S.; El Kholy, I.; El Ashry, E. S. H.; El Khadem, H. S.; Swartz, D. L., Carbohydr.<br />

Res., (1977) 59, 141.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


FOR PERSONAL USE ONLY<br />

References 597<br />

b[5<strong>13</strong>] El Sekily, M. A.; Mancy, S., Carbohydr. Res., (1983) 124, 97.<br />

[514] El Sekily, M. A.; Elba, M. E.; Fouad, F. S., J. Chem. Res., Synop., (1999), 296.<br />

[515] Catsoulakus, P., Chem. Chron. A, (1968) 33, <strong>13</strong>; Chem. Abstr., (1968) 69, 77582.<br />

[516] Farbenfabriken Bayer A.-G., FR 1 577 760; Chem. Abstr., (1970) 72, 100716.<br />

[517] Invidiata, F. P.; Aiello, S.; Furno, G.; Aiello, E.; Simoni, D.; Rondanin, R., J. Heterocycl. Chem., (2000)<br />

37, 355.<br />

[518] Patel, D. M.; Desai, V. C.; Patel, M. M.; Patel, M. R., J. Indian Chem. Soc., (1987) 64, 342.<br />

[519] Boddy, I. K.; Briggs, G. G.; Harrison, R. P.; Jones, T. H.; O Mahony, M. J.; Marlow, I. D.;<br />

Roberts, B. G.; Willis, R. J.; Bardsley, R.; Reid, J., Pestic. Sci., (1996) 48, 189.<br />

[520] Gainsford, G. J.; Woolhouse, A. D., Aust. J. Chem., (1980) 33, 2447.<br />

[521] Talapatra, S. K.; Chaudhuri, P.; Talapatra, B., Heterocycles, (1980) 14, 1279.<br />

[522] Swartz, D. L.; El Khadem, H. S., J. Heterocycl. Chem., (1979) 16, 909.<br />

[523] Swartz, D. L.; Karash, A. R.; Berry, L. A.; Jaeger, D. L., J. Heterocycl. Chem., (1983) 20, 1561.<br />

[524] Hadjiantoniou-Maroulis, C. P.; Ikonomou, V.; Parisopoulou, E., J. Heterocycl. Chem., (1996) 33,<br />

655.<br />

[525] El Khadem, H., Adv. Carbohydr. Chem. Biochem., (1970) 25, 351.<br />

[526] Hann, R. M.; Hudson, C. S., J. Am. Chem. Soc., (1944) 66, 735.<br />

[527] Riebsomer, J. L.; Sumrell, G., J. Org. Chem., (1948) <strong>13</strong>, 807.<br />

[528] Himanshu; Tyagi, R.; Olsen, C. E.; Errington, W.; Parmar, V. S.; Prasad, A. K., Bioorg. Med. Chem.,<br />

(2002) 10, 963.<br />

[529] El Khadem, H.; El-Shafei, Z. M., J. Chem. Soc., (1958), 3117.<br />

[530] Wolfrom, M. L.; El Khadem, H.; Alfes, H., J. Org. Chem., (1964) 29, 2072.<br />

[531] El Khadem, H.; El-Sadik, M. M.; Meshreki, M. H., J. Chem. Soc. C, (1968), 2097.<br />

[532] El Khadem, H.; El-Shafei, Z. M.; Hashem, M. M., J. Chem. Soc. C, (1968), 949.<br />

[533] Balachandran, K. S.; Hiryakkanavar, I.; George, M. V., Tetrahedron, (1975) 31, 1171.<br />

[534] Bhatnagar, I.; George, M. V., J. Org. Chem., (1967) 32, 2252.<br />

[535] Angadiyavar, C. S.; Sukumaran, K. B.; George, M. V., Tetrahedron Lett., (1971), 633.<br />

[536] Butler, R. N.; Gillan, A. M.; Collier, S.; James, J. P., J. Chem. Res., Synop., (1987), 332.<br />

[537] Woodward, R. B.; Wintner, C., Tetrahedron Lett., (1969), 2697.<br />

[538] Wintner, C., Tetrahedron Lett., (1970), 2275.<br />

[539] Sukumaran, K. B.; Angadiyavar, C. S.; George, M. V., Tetrahedron, (1972) 28, 3987.<br />

[540] Butler, R. N.; Evans, A. M.; Gillan, A. M.; James, J. P.; McNeela, E. M.; Cunningham, D.; McArdle, P.,<br />

J. Chem. Soc., Perkin Trans. 1, (1990), 2537.<br />

[541] Hadjiantoniou-Maroulis, C. P.; Maroulis, A. J.; Terzis, A.; Mentzafos, D., J. Org. Chem., (1992), 57,<br />

2252.<br />

[542] Butler, R. N.; Gillan, A. M.; James, J. P.; Evans, A. M., J. Chem. Soc., Perkin Trans. 1, (1989), 159.<br />

[543] Boyer, J. H.; Morgan, L. R., J. Am. Chem. Soc., (1958) 80, 3012.<br />

[544] Butler, R. N.; Johnston, S. M., J. Chem. Soc., Perkin Trans. 1, (1984), 2109.<br />

[545] Hirsch, B.; Ciupe, J., Chimia, (1963) 17, 159.<br />

[546] Hirsch, B.; Forster, E., Naturwissenschaften, (1963) 50, 374.<br />

[547] Richter, E.; Taylor, E. C., J. Am. Chem. Soc., (1956) 78, 5848.<br />

[548] Khlestkin, V. K.; Mazhukin, D. G.; Tikhonov, A. Y.; Bagryanskaya, I. Y.; Gatilov, Y. V.;<br />

Utepbergenov, D. I.; Khramtsov, V. V.; Volodarsky, L. B., Tetrahedron Lett., (1996) 37, 5997.<br />

[549] Khlestkin, V. K.; Mazhukin, D. G.; Tikhonov, A. Y.; Rybalova, T. V.; Bagryanskaya, I. Y.;<br />

Gatilov, Y. V., Synthesis, (2000), 681.<br />

[550] Sasaki, T.; Yoshioka, T.; Suzuki, Y., Bull. Chem. Soc. Jpn., (1971) 44, 185.<br />

[551] Buscemi, S.; Frenna, V.; Vivona, N.; Spinelli, D., J. Chem. Soc., Perkin Trans. 1, (1993), 2491.<br />

[552] Frenna, V.; Buscemi, S.; Arnone, C., J. Chem. Soc., Perkin Trans. 2, (1988), 1683.<br />

[553] Frenna, V.; Vivona, N.; Macaluso, G.; Spinelli, D.; Consiglio, G., J. Chem. Soc., Perkin Trans. 2,<br />

(1987), 537.<br />

[554] Knupfer, H.; Schellhammer, C.-W., US 4 284 787, (1981); Chem. Abstr. (1980) 92, 94406.<br />

[555] Frenna, V.; Macaluso, G.; Consiglio, G.; Cosimelli, B.; Spinelli, D., Tetrahedron, (1999) 55, 12885.<br />

[556] Guernelli, S.; Laganà, M. F.; Spinelli, D.; Meo, P. L.; Noto, R.; Riela, S., J. Org. Chem., (2002) 67,<br />

2948.<br />

[557] Cosimelli, B.; Guernelli, S.; Spinelli, D.; Buscemi, S.; Frenna, V.; Macaluso, G., J. Org. Chem., (2001)<br />

66, 6124.<br />

[558] Godovikova, T. I.; Golova, S. P.; Vozchikova, S. A.; Ignat eva, E. L.; Povorin, M. V.; Kuz min, V. S.;<br />

Khmel nitskii, L. I., Mendeleev Commun., (1995), 194.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


FOR PERSONAL USE ONLY<br />

598 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

b[559] Godovikova, T. I.; Golova, S. P.; Vozchikova, S. A.; Ignat eva, E. L.; Povorin, M. V.;<br />

Khmel nitskii, L. I., Chem. Heterocycl. Compd. (Engl. Transl.), (1996) 32, 580.<br />

[560] Godovikova, T. I.; Golova, S. P.; Vozchikova, S. A.; Ignat eva, E. L.; Povorin, M. V.; Pivina, T. S.;<br />

Khmel nitskii, L. I., Chem. Heterocycl. Compd. (Engl. Transl.), (1999) 35, 180.<br />

[561] Kandeel, Z.; Fuchigami, T.; Nonaka, T., J. Chem. Soc., Perkin Trans. 1, (1986), <strong>13</strong>79.<br />

[562] Suwinski, J.; Swierczek, K.; Glowiak, T., Tetrahedron Lett., (1992) 33, 7941.<br />

[563] Fraser, R. R.; Gurudata; Haque, K. E., J. Org. Chem., (1969) 34, 4118.<br />

[564] Itoh, T.; Ohsawa, A.; Kaihoh, T.; Igeta, H., Heterocycles, (1986) 24, 33.<br />

[565] Itoh, T.; Okada, M.; Nagata, K.; Yamaguchi, K.; Ohsawa, A., Chem. Pharm. Bull., (1990) 38, 2108.<br />

[566] Ferguson, G.; Lough, A. J.; Mackay, D.; Weeratunga, G., J. Chem. Soc., Perkin Trans. 1, (1991), 3361.<br />

[567] Riedl, Z.; Hajós, G.; Messmer, A.; Kollenz, G., J. Heterocycl. Chem., (1993) 30, 819.<br />

[568] Amiet, R. G.; Evans, N. A.; Wynne, P. M., Aust. J. Chem., (1989) 42, 441.<br />

[569] Nakazawa, T.; Kodama, M.; Kinoshita, S.; Murata, I., Tetrahedron Lett., (1985) 26, 335.<br />

[570] Roblin, R. O.; Lampen, J. O.; English, J. P.; Cole, Q. P.; Vaughan, J. R., J. Am. Chem. Soc., (1945) 67,<br />

290.<br />

[571] Kelley, J. L.; Koble, C. S.; Davis, R. G.; McLean, E. D.; Soroko, F. E.; Cooper, B. R., J. Med. Chem.,<br />

(1995) 38, 4<strong>13</strong>1.<br />

[572] Hernandez, S.; Ford, H.; Marquez, V. E., Bioorg. Med. Chem., (2002) 10, 2723.<br />

[573] Ferlin, M. G.; Castagliuolo, I.; Chiarelotto, G., J. Heterocycl. Chem., (2002) 39, 631.<br />

[574] Figueira, M. J.; Caamaæo, O.; Fernµndez, F.; Blanco, J. M., Tetrahedron, (2002) 58, 7233.<br />

[575] Hagedorn, F.; Evertz, W., US 4 424 360, (1984); Chem. Abstr. (1983) 98, 16702.<br />

[576] Sieper, H., Chem. Ber., (1967) 100, 1646.<br />

[577] Kojima, H.; Nakatsubo, N.; Kikuchi, K.; Kawahara, S.; Kirino, Y.; Nagoshi, H.; Hirata, Y.;<br />

Nagano, T., Anal. Chem., (1998) 70, 2446.<br />

[578] Kojima, H.; Hirotani, M.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T., Tetrahedron Lett., (2000)<br />

41, 69.<br />

[579] Plater, M. J.; Greig, I.; Helfrich, M. H.; Ralston, S. H., J. Chem. Soc., Perkin Trans. 1, (2001), 2553.<br />

[580] Griess, P., Ber. Dtsch. Chem. Ges., (1872) 5, 192.<br />

[581] Griess, P., Ber. Dtsch. Chem. Ges., (1882) 15, 1878.<br />

[582] Morgan, G. T.; Godden, W., J. Chem. Soc., (1910), 1702.<br />

[583] Morgan, G. T.; Micklethwait, F. M. G., J. Chem. Soc., (19<strong>13</strong>), <strong>13</strong>91.<br />

[584] Damschroder, R. E.; Peterson, W. R., Org. Synth., Coll. Vol. III, (1955), 106.<br />

[585] Wiley, R. H.; Hussung, K. F., J. Am. Chem. Soc., (1957) 79, 4395.<br />

[586] Coburn, M. D., J. Heterocycl. Chem., (1973) 10, 743.<br />

[587] Benson, F. R.; Hartzel, L. W.; Savell, W. L., J. Am. Chem. Soc., (1952) 74, 4917.<br />

[588] Gillespie, H. B.; Engelman, M.; Graff, S., J. Am. Chem. Soc., (1956) 78, 1651.<br />

[589] Shalaby, M. A.; Grote, C. W.; Rapoport, H., J. Org. Chem., (1996) 61, 9045.<br />

[590] Muir, J. C.; Pattenden, G.; Ye, T., Tetrahedron Lett., (1998) 39, 2861.<br />

[591] Kato, S.; Morie, T., J. Heterocycl. Chem., (1996) 33, 1171.<br />

[592] Morgan, G. T.; Scharff, G. E., J. Chem. Soc., (1914) 105, 117.<br />

[593] Harder, R. J.; Carboni, R. A.; Castle, J. E., J. Am. Chem. Soc., (1967) 89, 2643.<br />

[594] Peterson, L. H.; Tolman, R. L., J. Heterocycl. Chem., (1977) 14, 527.<br />

[595] Berlin, J. K.; Coburn, M. D., J. Heterocycl. Chem., (1975) 12, 235.<br />

[596] Coburn, M. D.; Berlin, J. K., Synthesis, (1974), 869.<br />

[597] Hart, H.; Ok, D., J. Org. Chem., (1986) 51, 979.<br />

[598] Risitano, F.; Grassi, G.; Foti, F.; Caruso, F., J. Chem. Res., Synop., (1983), 52.<br />

[599] Balli, H.; Felder, L., Helv. Chim. Acta, (1978) 61, 108.<br />

[600] Balli, H.; Löw, R.; Müller, V.; Rempfler, H.; Sezen-Gezgin, A., Helv. Chim. Acta, (1978) 61, 97.<br />

[601] Reynolds, G. A., J. Org. Chem., (1964) 29, 3733.<br />

[602] Ried, W.; Schön, M., Chem. Ber., (1965) 98, 3142.<br />

[603] Mitchell, G.; Rees, C. W., J. Chem. Soc., Perkin Trans. 1, (1987), 403.<br />

[604] Barcia-Muæoz, G.; Iglesias, J.; Lora-Tamayo, M.; Madroæero, R., J. Heterocycl. Chem., (1968) 5, 699.<br />

[605] Wolff, L., Justus Liebigs Ann. Chem., (19<strong>13</strong>) 399, 274.<br />

[606] Zincke, T.; Schwarz, P., Justus Liebigs Ann. Chem., (1900) 311, 329.<br />

[607] Curtius, T.; Mayer, M., J. Prakt. Chem., (1907) 76, 369.<br />

[608] Borsche, W., Ber. Dtsch. Chem. Ges., (1921) 54, 669.<br />

[609] Mattaar, J. F., Recl. Trav. Chim. Pays-Bas, (1922) 41, 24.<br />

[610] Brady, O. L.; Day, J. N. E., J. Chem. Soc., (1923), 2258.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


FOR PERSONAL USE ONLY<br />

References 599<br />

b[611] Aubagnac, J.-L.; Jacquier, R.; Ramos, M.-J., Bull. Soc. Chim. Fr., (1974), 3049.<br />

[612] Fruchier, A.; Elguero, J.; Hegarty, A. F.; McCarthy, D. G., Org. Magn. Reson., (1980) <strong>13</strong>, 339.<br />

[6<strong>13</strong>] Pfister-Guillouzo, G.; Gracian, F.; Paez, J. A.; Gomes, C. G.; Elguero, J., Spectrochim. Acta Part A,<br />

(1995) 51, 1801.<br />

[614] Towers, G. H. N.; Mortimer, D. C., Nature (London), (1954) 174, 1189.<br />

[615] Boyle, F. T.; Jones, R. A. Y., J. Chem. Soc., Perkin Trans. 2, (1973), 160.<br />

[616] Li, P.; Xu, J.-C., Tetrahedron, (2000) 56, 8119.<br />

[617] Vis, B., Recl. Trav. Chim. Pays-Bas, (1939) 58, 847.<br />

[618] Müller, E.; Woffmann, W., J. Prakt. Chem., (1925) 111, 293.<br />

[619] Leonard, N. J.; Golankiewicz, K., J. Org. Chem., (1969) 34, 359.<br />

[620] König, W.; Geiger, R., Chem. Ber., (1970) 103, 788.<br />

[621] Pop, I. E.; DØprez, B. P.; Tartar, A. L., J. Org. Chem., (1997) 62, 2594.<br />

[622] Schiemann, K.; Showalter, H. D. H., J. Org. Chem., (1999) 64, 4972.<br />

[623] Gooding, O. W.; Vo, L.; Bhattacharyya, S.; Labadie, J. W., J. Comb. Chem., (2002) 4, 576.<br />

[624] Boulton, A. J.; Ghosh, P. B.; Katritzky, A. R., J. Chem. Soc. C, (1966), 1004.<br />

[625] Lormann, M. E. P.; Walker, C. H.; Es-Sayed, M.; Bräse, S., Chem. Commun. (Cambridge), (2002),<br />

1296.<br />

[626] Mertzanos, G. E.; Stephanidou-Stephanatou, J.; Tsoleridis, C. A.; Alexandrou, N. E., Tetrahedron<br />

Lett., (1992) 33, 4499.<br />

[627] Sullivan, F. W., US 4 367 337, (1983); Chem. Abstr., (1983) 98, 107307.<br />

[628] Ratnikov, M. O.; Lipilin, D. L.; Churakov, A. M.; Strelenko, Y. A.; Tartakovsky, V. A., Org. Lett.,<br />

(2002) 4, 3227.<br />

[629] Gasparini, J. P.; Gassend, R.; Maire, J. C.; Elguero, J., J. Organomet. Chem., (1980) 188, 141.<br />

[630] Katritzky, A. R.; Shobana, N.; Pernak, J.; Afridi, A. S.; Fan, W.-Q., Tetrahedron, (1992) 48, 7817.<br />

[631] Scalera, M.; Adams, F. H., J. Am. Chem. Soc., (1953) 75, 715.<br />

[632] Scalera, M.; Adams, F. H., US 2 700 669, (1955); Chem. Abstr., (1955) 49, 6614.<br />

[633] Krollpfeiffer, F.; Pötz, H.; Rosenberg, A., Ber. Dtsch. Chem. Ges., (1938) 71, 596.<br />

[634] Olofson, R. A.; Kendall, R. V., J. Org. Chem., (1970) 35, 2246.<br />

[635] Kreutzberger, A.; Goot, H., J. Heterocycl. Chem., (1975) 12, 665.<br />

[636] Katritzky, A. R.; Pastor, A.; Voronkov, M. V., J. Heterocycl. Chem., (1999) 36, 777.<br />

[637] Katritzky, A. R.; Pastor, A., J. Org. Chem., (2000) 65, 3679.<br />

[638] Katritzky, A. R.; Yang, B.; Semenzin, D., J. Org. Chem., (1997) 62, 726.<br />

[639] McKeown, D.; McHugh, C. J.; McCabe, A.; Smith, W. E.; Graham, D., Heterocycles, (2002) 57, 1227.<br />

[640] Henry, R. A.; Dehn, W. M., J. Am. Chem. Soc., (1949) 71, 2297.<br />

[641] Katritzky, A. R.; Chang, H.-X.; Yang, B., Synthesis, (1995), 503.<br />

[642] Katritzky, A. R.; Ignatchenko, A. V.; Lang, H., Heterocycles, (1995) 41, <strong>13</strong>1.<br />

[643] Carboni, R. A.; Kauer, J. C.; Castle, J. E.; Simmons, H. E., J. Am. Chem. Soc., (1967) 89, 2618.<br />

[644] Katritzky, A. R.; Wu, J., Synthesis, (1994), 597.<br />

[645] Kamel, M.; Ali, M. I.; Kamel, M. M., Tetrahedron, (1967) 23, 2863.<br />

[646] Maquestiau, A.; Biemans, R.; Flammang-Barbieux, M.; Vilain, E., Bull. Soc. Chim. Belg., (1986) 95,<br />

1107.<br />

[647] Molina, A.; Vaquero, J. J.; García-Navio, J. L.; Alvarez-Builla, J., Tetrahedron Lett., (1993) 34, 2673.<br />

[648] Beletskaya, I. P.; Davydov, D. V.; Moreno-Maæas, M., Tetrahedron Lett., (1998) 39, 5617.<br />

[649] Beletskaya, I. P.; Davydov, D. V.; Moreno-Maæas, M., Tetrahedron Lett., (1998) 39, 5621.<br />

[650] López-Alvarado, P.; Avendaæo, C.; MenØndez, J. C., J. Org. Chem., (1995) 60, 5678.<br />

[651] Combs, A. P.; Saubern, S.; Rafalski, M.; Lam, P. Y. S., Tetrahedron Lett., (1999) 40, 1623.<br />

[652] Kitamura, T.; Tashi, N.; Tsuda, K.; Fujiwara, Y., Tetrahedron Lett., (1998) 39, 3787.<br />

[653] Kitamura, T.; Tashi, N.; Tsuda, K.; Chen, H. Y.; Fujiwara, Y., Heterocycles, (2000) 52, 303.<br />

[654] Katritzky, A. R.; Zhang, S. M.; Fan, Y. F., Org. Lett., (2000) 2, 3789.<br />

[655] Katritzky, A. R.; Abdel-Fattah, A. A. A.; Wang, M., J. Org. Chem., (2002) 67, 7526.<br />

[656] Zhang, P.-F.; Chen, Z.-C., J. Chem. Res., Synop., (2002), 388.<br />

[657] Cappel, N. O.; Fernelius, W. C., J. Org. Chem., (1940) 5, 40.<br />

[658] Krollpfeiffer, F.; Rosenberg, A.; Mühlhausen, C., Justus Liebigs Ann. Chem., (1935) 515, 1<strong>13</strong>.<br />

[659] Gupton, J. T.; Hicks, F. A.; Smith, S. Q.; Main, A. D.; Petrich, S. A.; Wilkinson, D. R.; Sikorski, J. A.;<br />

Katritzky, A. R., Tetrahedron, (1993) 49, 10205.<br />

[660] Märky, M.; Schmid, H.; Hansen, H.-J., Helv. Chim. Acta, (1979) 62, 2129.<br />

[661] Mokrosz, J. L.; Paluchowska, M. H.; Chojnacka-Wójcik, E.; Filip, M.; Charakchieva-Minol, S.;<br />

Deren-Wesolek, A.; Mokrosz, M. J., J. Med. Chem., (1994) 37, 2754.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


FOR PERSONAL USE ONLY<br />

600 Science of Synthesis <strong>13</strong>.<strong>13</strong> 1,2,3-<strong>Triazoles</strong><br />

b[662] Katritzky, A. R.; Kuzmierkiewicz, W.; Greenhill, J. V., Recl. Trav. Chim. Pays-Bas, (1991) 110, 369.<br />

[663] Mathias, L. J.; Burkett, D., Tetrahedron Lett., (1979), 4709.<br />

[664] Sukata, K., Bull. Chem. Soc. Jpn., (1983) 56, 280.<br />

[665] Böhm, R.; Pharmazie, (1978) 33, 83.<br />

[666] Claramunt, R. M.; Elguero, J.; Garceran, R., Heterocycles, (1985) 23, 2895.<br />

[667] Mashraqui, S. H.; Kumar, S.; Mudaliar, C. D., Bull. Chem. Soc. Jpn., (2001) 74, 2<strong>13</strong>3.<br />

[668] Katritzky, A. R.; Mortikov, V. Y.; Lam, J. N.; Sutharchanadevi, M.; Francisco, M. A., Heteroat. Chem.,<br />

(1993) 4, 97.<br />

[669] Katritzky, A. R.; Yang, B., J. Heterocycl. Chem., (1996) 33, 607.<br />

[670] Cho, S.-D.; Chung, J.-W.; Kim, S.-K.; Kweon, D.-H.; Park, K.-H.; Yoon, Y.-J., J. Heterocycl. Chem.,<br />

(1996) 33, 315.<br />

[671] Katritzky, A. R.; Shcherbakova, I. V., J. Heterocycl. Chem., (1996) 33, 2031.<br />

[672] Abenhaïm, D.; Díez-Barra, E.; de la Hoz, A.; Loupy, A.; Sµnchez-Migallón, A., Heterocycles, (1994)<br />

38, 793.<br />

[673] ServØ, M. P.; Seybold, P. G.; Covault, H. P., J. Heterocycl. Chem., (1978) 15, 127.<br />

[674] Rajakumar, P.; Murali, V., Tetrahedron, (2000) 56, 7995.<br />

[675] Rajakumar, P.; Dhanasekaran, M., Tetrahedron, (2002) 58, <strong>13</strong>55.<br />

[676] Avila, L.; Elguero, J.; Julia, S.; del Mazo, J. M., Heterocycles, (1983) 20, 1787.<br />

[677] Elguero, J.; Julia, S.; del Mazo, J. M.; Avila, L., Org. Prep. Proced. Int., (1984) 16, 299.<br />

[678] Katritzky, A. R.; Perumal, S.; Fan, W.-Q., J. Chem. Soc., Perkin Trans. 2, (1990), 2059.<br />

[679] Savely, F.; Cordella, G.; Sparatore, F., Studi Sassar, Sez. 2, (1982) 60, 345; Chem. Abstr., (1984) 101,<br />

90839.<br />

[680] Katritzky, A. R.; Musgrave, R. P.; Breytenbach, J. C., J. Heterocycl. Chem., (1996) 33, 1637.<br />

[681] Katritzky, A. R.; Szajda, M.; Lam, J. N., J. Heterocycl. Chem., (1993) 30, 1261.<br />

[682] De la Cruz, A.; Elguero, J.; Goya, P.; Martinez, A., J. Heterocycl. Chem., (1988) 25, 225.<br />

[683] Katritzky, A. R.; Rachwal, S.; Rachwal, B., J. Chem. Soc., Perkin Trans. 1, (1987), 791.<br />

[684] Katritzky, A. R.; Rachwal, S.; Rachwal, B., J. Chem. Soc., Perkin Trans. 1, (1987), 799.<br />

[685] Burckhalter, J. H.; Stephens, V. C.; Hall, L. A. R., J. Am. Chem. Soc., (1952) 74, 3868.<br />

[686] Rees, C. W.; Storr, R. C., J. Chem. Soc. C, (1969), 1478.<br />

[687] Sasse, M. J.; Storr, R. C., J. Chem. Soc., Perkin Trans. 1, (1978), 909.<br />

[688] Brady, O. L.; Reynolds, C. V., J. Chem. Soc., (1928), 193.<br />

[689] Jung, P.; Seybold, P. G.; ServØ, M. P., J. Heterocycl. Chem., (1982) 19, 1029.<br />

[690] Feld, W. A.; Seybol, P. G.; ServØ, M. P., J. Heterocycl. Chem., (1980) 17, 1115.<br />

[691] Maxwell, G.; Seybol, P. G.; ServØ, M. P., J. Heterocycl. Chem., (1985) 22, 511.<br />

[692] Rees, C. W.; Storr, R. C., J. Chem. Soc. C, (1969), 1474.<br />

[693] Soundararajan, R.; Balasubramanian, T. R., Chem. Ind. (London), (1985), 92.<br />

[694] Campbell, C. D.; Rees, C. W., J. Chem. Soc. C, (1969), 742.<br />

[695] Campbell, C. D.; Rees, C. W., J. Chem. Soc. C, (1969), 752.<br />

[696] Knight, D. W.; Little, P. B., J. Chem. Soc., Perkin Trans. 1, (2000), 2343.<br />

[697] Rees, C. W.; Storr, R. C., J. Chem. Soc. C, (1969), 756.<br />

[698] Kaihoh, T.; Itoh, T.; Yamaguchi, K.; Ohsawa, A., J. Chem. Soc., Perkin Trans. 1, (1991), 2045.<br />

[699] Katritzky, A. R.; Ji, F.-B.; Fan, W.-Q.; Gallos, J. K.; Greenhill, J. V.; King, R. W.; Steel, P. J., J. Org.<br />

Chem., (1992) 57, 190.<br />

[700] McHugh, C. J.; Tackley, D. R.; Graham, D., Heterocycles, (2002) 57, 1461.<br />

[701] Fries, K.; Güterbock, H.; Kühn, H., Justus Liebigs Ann. Chem., (1934) 511, 2<strong>13</strong>.<br />

[702] Fries, K.; Franke, W.; Bruns, W., Justus Liebigs Ann. Chem., (1934) 511, 241.<br />

[703] Boyer, J. H., Heterocycl. Compd., (1961) 7, 414.<br />

[704] Amiet, R. G., Aust. J. Chem., (1989) 42, 447.<br />

[705] Fruk, L.; Grondin, A.; Smith, W. H.; Graham, D., Chem. Commun. (Cambridge), (2002), 2100.<br />

[706] Keller, E.; Zweidler, R., US 2 462 405, (1949); Chem. Abstr., (1950) 44, 341.<br />

[707] Graham, D.; Kennedy, A. R.; Teat, S. J., J. Heterocycl. Chem., (2000) 37, 1555.<br />

[708] Kym, O.; Ringer, M., Ber. Dtsch. Chem. Ges., (1915) 48, 1671.<br />

[709] Katritzky, A. R.; Ji, F.-B.; Fan, W.-Q.; Beretta, P.; Bertoldi, M., J. Heterocycl. Chem., (1992) 29, 1519.<br />

[710] Rosevear, J.; Wilshire, J. F. K., Aust. J. Chem., (1982) 35, 2089.<br />

[711] Kim, J.-K.; Choi, C.-H., WO 02 055 508 (2002); Chem. Abstr. (2002) <strong>13</strong>7, 93759.<br />

[712] Rody, J.; Rochat, A. C., DE 2 454 889 (1975); Chem. Abstr., (1975) 83, <strong>13</strong>1607q.<br />

[7<strong>13</strong>] Baik, W.; Park, T. H.; Kim, B. H.; Jun, Y. M., J. Org. Chem., (1995) 60, 5683.<br />

[714] Grashey, R., Angew. Chem., (1962) 74, 155; Angew. Chem. Int. Ed. Engl., (1962) 1, 158.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


FOR PERSONAL USE ONLY<br />

References 601<br />

b[715] Katritzky, A. R.; Maimait, R.; Denisenko, S. N.; Steel, P. J.; Akhmedov, N. G., J. Org. Chem., (2001)<br />

66, 5585.<br />

[716] Crippa, G. B.; Bellani, G.; Marubini, A., Gazz. Chim. Ital., (1930) 60, 644.<br />

[717] Schmidt, M. P.; Hagenböcker, A., Ber. Dtsch. Chem. Ges., (1921) 54, 2191, 2201.<br />

[718] Sabnis, R. W.; Rangnekar, D. W., J. Heterocycl. Chem., (1990) 27, 417.<br />

[719] Rangnekar, D. W.; Dhamnaskar, S. V., J. Heterocycl. Chem., (1988) 25, 1663.<br />

[720] Timmis, G. M.; Felton, D. G. I.; Collier, H. O. J.; Huskinson, P. L., J. Pharm. Pharmacol., (1957) 9, 46.<br />

[721] Jones, G.; Sliskovic, D. R., Adv. Heterocycl. Chem., (1983) 34, 102.<br />

[722] Zincke, T.; Lawson, A. T., Ber. Dtsch. Chem. Ges., (1887) 20, 1176.<br />

[723] Zincke, T.; Jaenke, J., Ber. Dtsch. Chem. Ges., (1888) 21, 540.<br />

[724] Hall, J. H.; Stephanie, J. G.; Nordstrom, D. K., J. Org. Chem., (1968) 33, 2051.<br />

[725] Hall, J. H., J. Org. Chem., (1968) 33, 2954.<br />

[726] Hall, J. B.; Dolan, F. W., J. Org. Chem., (1978) 43, 4608.<br />

[727] Spagnolo, P.; Zanirato, P., J. Chem. Soc., Perkin Trans. 1, (1988), 2615.<br />

[728] Carboni, R. A.; Castle, J. E., J. Am. Chem. Soc., (1962) 84, 2453.<br />

[729] Hartmann, H.; Schulze, M.; Günther, R., J. Prakt. Chem., (1990), 332, 331.<br />

[730] Fischer, W.; Fritzsche, K.; Wolf, W.; Bore, L., WO 02 24 668 (2002); Chem. Abstr. (2002) <strong>13</strong>6,<br />

279458.<br />

[731] Wilshire, J. F. K., Aust. J. Chem., (1988) 41, 617.<br />

[732] Rosevear, J.; Wilshire, J. F. K., Aust. J. Chem., (1984) 37, 2489.<br />

[733] Bamberger, E.; Hubner, R., Ber. Dtsch. Chem. Ges., (1903) 36, 3822.<br />

[734] Chakrabarty, S. N.; Dutt, S., J. Indian Chem. Soc., (1928) 5, 555.<br />

[735] Belusa, J.; Janousek, Z.; Knoflickova, H., Chem. Zvesti, (1974) 28, 673.<br />

[736] White, H. L.; Krolewski, C. V., DE 2 620 896, (1976); Chem. Abstr., (1978) 86, 106598s.<br />

[737] Ziegler, C. E.; Peterly, H. J., CH 615 165, (1980); Chem. Abstr., (1980) 93, 8181a.<br />

[738] Kintopf, S.; Kress, U., DE 2 620 970, (1976); Chem. Abstr., (1978) 86, 89835x.<br />

[739] Adler, A. S., DE 2 835 846, (1979); Chem. Abstr., (1979) 90, 186958e.<br />

[740] Willgerodt, C.; Klein, H., J. Prakt. Chem., (1899) 69, 97.<br />

[741] Goldstein, H.; Stamm, R., Helv. Chim. Acta, (1952) 35, 1470.<br />

[742] Renfrow, R. A.; Strauss, M. J.; Cohen, S.; Buncel, E., Aust. J. Chem., (1983) 36, 1843.<br />

[743] Heine, H. W.; Williard, P. G.; Hoye, T. R., J. Org. Chem., (1972) 37, 2998.<br />

[744] Sun, D.; Watson, W. H., J. Org. Chem., (1997) 62, 4082.<br />

[745] Boulton, A. J.; Ghosh, P. B.; Katritzky, A. R., Angew. Chem., (1964) 76, 816; Angew. Chem. Int. Ed.<br />

Engl., (1964) 3, 693.<br />

[746] Houghton, P. G.; Pipe, D. F.; Rees, C. W., J. Chem. Soc., Chem. Commun., (1979), 771.<br />

[747] Houghton, P. G.; Pipe, D. F.; Rees, C. W., J. Chem. Soc., Perkin Trans. 1, (1985), 1471.<br />

[748] Evans, N. A., Aust. J. Chem., (1981) 34, 691.<br />

[749] Taher, A.; Eichenseher, S.; Weaver, G. W., Tetrahedron Lett., (2000) 41, 9889.<br />

[750] Moderhack, D.; Lorke, M.; Ernst, L.; Schomburg, D., Chem. Ber., (1994) 127, 1633.<br />

[751] Hirsch, B.; Föster, E., Naturwissenschaften, (1963) 50, 374.<br />

[752] Abbott, P. A.; Bonnert, R. V.; Caffrey, M. V.; Cage, P. A.; Cooke, A. J.; Donald, D. K.; Furber, M.;<br />

Hill, S.; Withnall, J., Tetrahedron, (2002) 58, 3185.<br />

[753] Diez-Barra, E.; Pardo, M. C.; Elguero, J., J. Org. Chem., (1982) 47, 4409.<br />

[754] Katritzky, A. R.; Rachwal, S.; Caster, K. C.; Mahni, F.; Law, K. W.; Rubio, O., J. Chem. Soc., Perkin<br />

Trans. 1, (1987), 781.<br />

[755] Katritzky, A. R.; Hughes, C. V.; Rachwal, S., J. Heterocycl. Chem., (1989) 26, 1579.<br />

[756] Iddon, B.; Nicholas, M., J. Chem. Res., Miniprint, (1996), 2923.<br />

[757] Jones, J. H.; Wyatt, P. B., J. Chem. Res., Miniprint, (1987), 3173.<br />

[758] Risitano, F.; Grassi, G.; Foti, F.; Caruso, F., J. Chem. Res., Miniprint, (1983), 352.<br />

[759] Wolff, L., Justus Liebigs Ann. Chem., (19<strong>13</strong>) 399, 287.<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG


FOR PERSONAL USE ONLY<br />

b<br />

A. C. TomØ, Section <strong>13</strong>.<strong>13</strong>, Science of Synthesis, 2004 Georg Thieme Verlag KG

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!