02.03.2013 Views

PART 12 Aquifer pumping tests - Dr. M. Zreda - University of Arizona

PART 12 Aquifer pumping tests - Dr. M. Zreda - University of Arizona

PART 12 Aquifer pumping tests - Dr. M. Zreda - University of Arizona

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>PART</strong> <strong>12</strong> <strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong><br />

Groundwater exploration methods<br />

(1) local surficial geology (maps, air photographs, field mapping)<br />

(2) subsurface geology (stratigraphic relationships, test-drilling, geological logging and sampling)<br />

(3) surface geophysics<br />

(a) seismic refraction (geologic boundaries)<br />

(b) electrical resistivity (aquifer limits)<br />

(4) subsurface geophysics - borehole geophysics (resistivity, radiation logs)<br />

(5) wells and piezometers<br />

(a) water levels<br />

(b) samples (soil, water)<br />

(c) <strong>tests</strong> (<strong>pumping</strong>, recovery)<br />

<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong><br />

<strong>Aquifer</strong> <strong>tests</strong> are performed to obtain T and S, which are both needed to<br />

(1) determine well placement and potential yield<br />

(2) predict drawdown<br />

(3) understand regional flow<br />

(4) put in numerical models<br />

Possible methods <strong>of</strong> getting T and S via inverse problem:<br />

(1) flownet calculations<br />

(2) other calculations using Darcy’s law<br />

(3) using tracer <strong>tests</strong><br />

(4) using inverse solution in numerical models<br />

(5) aquifer <strong>pumping</strong> <strong>tests</strong><br />

Read F&C: Chapter 8, sections 1, 2, 3, 5, 6, 10<br />

Hydrogeology, 431/531 - <strong>University</strong> <strong>of</strong> <strong>Arizona</strong> - Fall 2007 <strong>Dr</strong>. Marek <strong>Zreda</strong>


<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong> 88<br />

Assumptions:<br />

Steady state <strong>pumping</strong> test<br />

(1) Homogeneous, isotropic, confined aquifer with steady flow, 3-D<br />

(2) Horizontal flow: 3-D changes to 2-D<br />

(3) Impervious top and bottom and constant aquifer thickness b<br />

(4) Prescribed head boundary around the well, i.e., “well on an island” setting. Water comes from<br />

a lateral boundary only (Theis assumption).<br />

(5) Radial 1-D flow towards the well<br />

(6) Well fully penetrates (compare to assumption 2); if not, then we will have vertical component<br />

(7) Well pumps at a constant rate Q; Q appears as a boundary condition<br />

PDE:<br />

∇ xy<br />

∇ h 2 = 0 in 3-D<br />

2<br />

h = 0 or<br />

x 2<br />

∂ h<br />

∂ y 2<br />

∂ h<br />

+ = 0<br />

∂<br />

1<br />

--<br />

∂ ⎛ ∂h<br />

r-----⎞ = 0 Laplace equation for radial flow<br />

r ∂r⎝<br />

∂r⎠<br />

=<br />

;;;;<br />

;;;; yyyy ;;;; yyyy<br />

yyyyh<br />

h = H<br />

lake lake<br />

1<br />

--<br />

∂ ⎛ ∂h<br />

r-----⎞ =<br />

0<br />

r ∂r⎝<br />

∂r⎠<br />

h 2<br />

r 2<br />

h 1<br />

r 1<br />

Q<br />

R<br />

b<br />

Hydrogeology, 431/531 - <strong>University</strong> <strong>of</strong> <strong>Arizona</strong> - Fall 2007 <strong>Dr</strong>. Marek <strong>Zreda</strong><br />

2<br />

2<br />

H<br />

q increases close to the well. Why?


<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong> 89<br />

Boundary conditions:<br />

BC1: Prescribed head at the lake:<br />

h = H at r = R<br />

BC2: Prescribed flux at the well (= <strong>pumping</strong> rate Q):<br />

Q = K(2πrb)(∂h/∂r) at r = r w (well radius)<br />

or, after rearranging and putting T = Kb:<br />

---------<br />

Q<br />

r<br />

2πT<br />

h ∂<br />

= -----<br />

∂r<br />

Solution:<br />

Integrate once:<br />

Use BC2: C 1 = Q/(2πT)<br />

Rearrange by grouping r terms together<br />

Integrate<br />

Use BC1:<br />

r h ∂<br />

----- = C1 ∂r<br />

∂r<br />

∂h = C1---- r<br />

Q<br />

h = C1lnr + C2 = --------- lnr + C2 2πT<br />

C 2<br />

Q<br />

= H – --------- lnR<br />

2πT<br />

Final solution for h becomes<br />

h – H<br />

---------<br />

Q r<br />

=<br />

⎛ln- ⎞<br />

2πT ⎝ R⎠<br />

Thiem equation<br />

Hydrogeology, 431/531 - <strong>University</strong> <strong>of</strong> <strong>Arizona</strong> - Fall 2007 <strong>Dr</strong>. Marek <strong>Zreda</strong>


<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong> 90<br />

For two observation wells (h 1 and h 2 in the figure above):<br />

Graphically, the solution is<br />

s = drawdown = s(r)<br />

at r = R, s = 0 (no drawdown at the lake)<br />

Suppose r1 = rw r2 = R<br />

then<br />

h2 –<br />

h 1<br />

---------<br />

Q r2 = ⎛ln-- ⎞<br />

2πT ⎝ ⎠<br />

H<br />

h 2<br />

h<br />

s 2<br />

r 2<br />

r 1<br />

on normal paper<br />

h1 = hw h2 = H<br />

H – hw Q<br />

---------<br />

2πT<br />

R<br />

= ln---- = sw Knowing Q, T, R - can calculate drawdown<br />

r w<br />

r<br />

Having observation wells is advantageous because we then know drawdowns and can get T <strong>of</strong> the<br />

aquifer:<br />

T<br />

------------<br />

Q R<br />

= ln-----<br />

Thiem equation<br />

2πs w<br />

r w<br />

In practice, there is no constant R where the head is H. Instead, R depends on Q, and this formula<br />

does not work. Two observation wells are thus necessary to solve for T<br />

Hydrogeology, 431/531 - <strong>University</strong> <strong>of</strong> <strong>Arizona</strong> - Fall 2007 <strong>Dr</strong>. Marek <strong>Zreda</strong><br />

h<br />

on semilog paper<br />

straight line<br />

Q r2 T =<br />

------------------------ ln---<br />

Thiem equation for observation wels<br />

( – ) r1 2π h 2 h 1<br />

log r


<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong> 91<br />

Rewrite in terms <strong>of</strong> decimal logarithms (log)<br />

T<br />

2.3Q r2 = -----------------------log--- Thiem equation for observation wells<br />

2π( h2 – h1) r1 and if r 2 = 10r 1 , log10 = 1 and we have<br />

T<br />

=<br />

-------------<br />

2.3Q<br />

Equilibrium (= Thiem) steady state equation<br />

2π∆h<br />

This is usually used for more than two observation wells.<br />

If aquifer is infinite (no lakes) and confined, supply <strong>of</strong> water is from storage → transient flow.<br />

;;;;<br />

;;;; yyyy ;;;; yyyy<br />

Q<br />

= h0 at r = infinity for all t<br />

yyyyh<br />

Hydrogeology, 431/531 - <strong>University</strong> <strong>of</strong> <strong>Arizona</strong> - Fall 2007 <strong>Dr</strong>. Marek <strong>Zreda</strong>


<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong> 92<br />

Transient <strong>pumping</strong> test<br />

Consider an aquifer with following assumptions:<br />

PDE<br />

• homogeneous and isotropic medium<br />

• horizontal, radial, 1-D flow<br />

• confined horizontal aquifer with constant thickness<br />

• no leakage (i.e., impervious top and bottom)<br />

• water released from storage instantaneously<br />

• small well diameter (no storage in well)<br />

• constant <strong>pumping</strong> rate Q<br />

• infinite lateral extent <strong>of</strong> aquifer<br />

• Darcy’s law valid<br />

• saturated (single-phase) flow<br />

• homogeneous fluid<br />

• isothermal conditions<br />

∇ h 2<br />

in radial coordinates<br />

or, in terms <strong>of</strong> drawdown (s), using the relationship ∂h/∂r = - ∂s/∂r<br />

Boundary conditions<br />

Initial condition<br />

S<br />

--<br />

T<br />

h ∂<br />

= ----- h=h(x, y, t)<br />

∂t<br />

1 ∂<br />

-- ⎛ ∂h<br />

r-----⎞ S<br />

--<br />

r ∂r⎝<br />

∂r⎠<br />

T<br />

h ∂<br />

= ----- h=h(r, t)<br />

∂t<br />

1 ∂<br />

-- ⎛ ∂s<br />

r---- ⎞ S<br />

--<br />

r ∂r⎝<br />

∂r⎠<br />

T<br />

h ∂<br />

= ----- h=h(r, t) (1)<br />

∂t<br />

BC1: s = 0 @ r = ∞<br />

BC1:<br />

Q<br />

--------- r<br />

2πT<br />

s ∂<br />

= – lim ⎛ ---- ⎞<br />

⎝ ∂r⎠<br />

r → 0<br />

IC: s =<br />

0 @ t = 0 for all r<br />

Hydrogeology, 431/531 - <strong>University</strong> <strong>of</strong> <strong>Arizona</strong> - Fall 2007 <strong>Dr</strong>. Marek <strong>Zreda</strong>


<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong> 93<br />

The solution <strong>of</strong> equation 1 is (Theis, 1935)<br />

where u defined as<br />

is called similarity variable, and W(u) is called Theis well function in hydrology (tabulated in<br />

hydrogeology books; for example on p. 318 <strong>of</strong> Freeze and Cherry) or exponential integral in<br />

mathematics (tabulated in mathematics books). The exponential integral is calculated as<br />

where γ = 0.57721566..... is the Euler's number<br />

s<br />

∞<br />

u<br />

e –<br />

Q<br />

= --------- ------ du<br />

=<br />

4πT u<br />

∫<br />

u<br />

u<br />

=<br />

Wu ( ) = – lnu – γ –<br />

r 2 -------<br />

S<br />

4Tt<br />

∞<br />

∑<br />

k = 1<br />

---------W<br />

Q<br />

( u)<br />

4πT<br />

Plot the solution on a log-log graph (this is the Theis type curve; left panel below). If Q, T and S<br />

are known, s(r, t) can be calculated and plotted on a log-log graph (these are the <strong>pumping</strong> test<br />

data; right panel below). Note that the shapes <strong>of</strong> the two graphs, W(u) vs. u and s vs. t, are the<br />

same. We can, therefore, use them together to determine S and T. The procedure used is called the<br />

curve matching method.<br />

log W(u) Theis type curve<br />

log 1/u<br />

Hydrogeology, 431/531 - <strong>University</strong> <strong>of</strong> <strong>Arizona</strong> - Fall 2007 <strong>Dr</strong>. Marek <strong>Zreda</strong><br />

u k<br />

------ ( – 1)<br />

kk!<br />

k<br />

log s Pumping test data<br />

log t


<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong> 94<br />

Curve matching method (Theis method)<br />

Can get T and S if Q is known and h is measured in time.<br />

Procedure:<br />

(1) Plot W(u) vs. 1/u on a log-log graph.<br />

(2) Plot test data (s vs. t) on the same size graph.<br />

(3) Overlay the graphs so that the curves are on top <strong>of</strong> each other.<br />

(4) Pick any point in the common area.<br />

(5) For this point, read <strong>of</strong>f the following values: 1/u and W(u) for the first graph, and t and s from<br />

the second graph.<br />

(6) Calculate the transmissivity using<br />

T<br />

=<br />

Q<br />

--------W( u)<br />

4πs<br />

(7) Calculate the storativity using<br />

4Tt<br />

S<br />

r 2<br />

=<br />

------- u<br />

Hydrogeology, 431/531 - <strong>University</strong> <strong>of</strong> <strong>Arizona</strong> - Fall 2007 <strong>Dr</strong>. Marek <strong>Zreda</strong>


<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong> 95<br />

Jacob logarithmic approximation<br />

For large t, u = r 2 S/4Tt becomes small. For u


<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong> 96<br />

Plot on semi-log graph.<br />

Late-time data (large t) should form a<br />

straight line. Note, however, that early-time<br />

data (small t) are <strong>of</strong>f the straight line because<br />

these small t values do not make u sufficiently<br />

small and the Jacob method cannot<br />

be applied for these data.<br />

Change to decimal log<br />

For one log cycle, we have log(t 2 /t 1 ) = log 10 = 1, and the solution for T is<br />

Because we know the intercept (at s = 0), we can also calculate the storativity S:<br />

at s = 0 we have t = t 0 and we have<br />

which is true only if<br />

true only if<br />

so<br />

s<br />

0<br />

∆s<br />

T<br />

2.3Q t2 = ----------log--- 4πT t1 =<br />

------------<br />

2.3Q<br />

4π∆s<br />

2.3Q<br />

-----------<br />

2.25Tt<br />

4πT r 2 = log--------------- S<br />

2.25Tt 0<br />

2.3Q<br />

-----------<br />

4πT r 2 = log----------------- S<br />

2.25Tt 0<br />

r 2 log----------------- = 0<br />

S<br />

2.25Tt 0<br />

r 2 ----------------- = 1<br />

S<br />

S =<br />

2.25Tt0 r 2<br />

-----------------<br />

Hydrogeology, 431/531 - <strong>University</strong> <strong>of</strong> <strong>Arizona</strong> - Fall 2007 <strong>Dr</strong>. Marek <strong>Zreda</strong><br />

s<br />

t 0<br />

s<br />

log t<br />

Q<br />

---------<br />

2.25Tt<br />

4πT r 2 = ln--------------- S


<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong> 97<br />

When is u sufficiently small to use the Jacob logarithmic approximation?<br />

Look at u = r 2 S/4Tt and note that<br />

(1) u ∝ r 2 ⇒ small r or long t needed<br />

(2) u ∝ S ⇒ confined aquifer better; if unconfined then need long t<br />

(3) u ∝ 1/t ⇒ long time always good<br />

(4) u ∝ 1/T ⇒ large T good; if small T then need long t<br />

In summary, long t is always good.<br />

Distance-drawdown data<br />

At two or more observation wells at the same time:<br />

Let observation wells be: s(r 1 ) = s 1 and s(r 2 ) = s 2 , and r 2 > r 1 (i.e., also s 2 < s 1 ).<br />

Let<br />

s<br />

Q 2.25Tt<br />

---------<br />

4πT r 2 = ln --------------- Jacob approximation<br />

S<br />

∆h = s1– s2 =<br />

∆h<br />

Q<br />

---------<br />

4πT<br />

2.25Tt 2.25Tt<br />

ln---------------<br />

– ln--------------- 2 2<br />

r1S r2S Q<br />

--------- ⎛<br />

r2 --- ⎞<br />

4πT ⎝r⎠ 1<br />

2<br />

= ln<br />

Q r2 ∆h =<br />

--------- ln ---- Thiem equation !<br />

2πT r1 (Note that although this is not steady-state flow, Thiem equation works, by accident).<br />

Hydrogeology, 431/531 - <strong>University</strong> <strong>of</strong> <strong>Arizona</strong> - Fall 2007 <strong>Dr</strong>. Marek <strong>Zreda</strong>


<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong> 98<br />

Can be used for linear systems only.<br />

Linear are:<br />

• confined aquifer<br />

Non-linear are:<br />

Principle <strong>of</strong> superposition<br />

• phreatic aquifer (because T = T(h))<br />

• vadose zone (because <strong>of</strong> multiphase flow)<br />

<strong>Dr</strong>awdowns calculated for multiple wells located in different places or drawdowns calculated for<br />

the same well that has variable <strong>pumping</strong> rate at different times can be linearly added.<br />

It means that we can calculate drawdown for each well separately and then add them to get total<br />

drawdown.<br />

Superposition in space: 2 wells <strong>pumping</strong> at the same time t<br />

Superposition in time: 1 well; start at rate Q1 at time t1; switch to rate Q2 at time t2<br />

Q2<br />

Q1<br />

Q<br />

s<br />

s1<br />

t1 t2<br />

total s<br />

Hydrogeology, 431/531 - <strong>University</strong> <strong>of</strong> <strong>Arizona</strong> - Fall 2007 <strong>Dr</strong>. Marek <strong>Zreda</strong><br />

s2<br />

t


<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong> 99<br />

Case 1: Constant head boundary (river)<br />

To do the calculations <strong>of</strong><br />

drawdown, we replace the<br />

real well-river system with<br />

the equivalent system that<br />

consists <strong>of</strong> the same real well<br />

(left side in the figure below)<br />

and an injecting image well<br />

(right side, on the other side<br />

<strong>of</strong> the boundary, at the same<br />

distance from the boundary<br />

as the real well). The injecting<br />

image well simulates the<br />

boundary (its effect on head<br />

and drawdown is exactly the<br />

same as the effect <strong>of</strong> the<br />

river). The figure below<br />

shows the distribution <strong>of</strong><br />

drawdown in this system.<br />

Boundary effects<br />

Note that drawdown is zero<br />

along the river (this is expected because the river<br />

is a constant head boundary). We demonstrate<br />

this mathematically by calculating total drawdown<br />

as follows:<br />

Total:<br />

s r<br />

s i<br />

---------<br />

Q 2.25Tt<br />

= ln---------------<br />

4πT 2<br />

S<br />

r r<br />

---------<br />

– Q 2.25Tt<br />

= ln--------------- 4πT 2<br />

S<br />

ri rr r i<br />

Y Data<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-2<br />

0 5 10 15 20 25 30 35 40<br />

X Data<br />

Hydrogeology, 431/531 - <strong>University</strong> <strong>of</strong> <strong>Arizona</strong> - Fall 2007 <strong>Dr</strong>. Marek <strong>Zreda</strong><br />

-2<br />

-4<br />

-2<br />

-2<br />

Qr<br />

real well<br />

(discharge)<br />

Q<br />

s = --------ln--- =<br />

0 because at the boundary rr = ri 2πT<br />

rr<br />

0<br />

0<br />

0<br />

0<br />

M<br />

ri<br />

2<br />

4<br />

2<br />

2<br />

2<br />

Qi = -Qr<br />

image well<br />

(recharge)


<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong> 100<br />

Case 2: No-flow (barrier) boundary (need zero gradient at boundary)<br />

We replace the barrier with an image <strong>pumping</strong><br />

well (<strong>pumping</strong> at the same rate as the real <strong>pumping</strong><br />

well).<br />

Because we have two <strong>pumping</strong> wells, they produce<br />

big drawdown. Will never reach steady<br />

state.<br />

<strong>Dr</strong>awdown is calculated by superposition:<br />

s r<br />

s i<br />

Q<br />

= --------- ln--------------- 2.25Tt<br />

4πT 2<br />

S<br />

Q. How to demonstrate that this is a no-flow boundary?<br />

r r<br />

Q<br />

= --------- ln<br />

2.25Tt<br />

---------------<br />

4πT 2<br />

S<br />

r i<br />

Q<br />

s ---------<br />

2.25Tt<br />

=<br />

ln---------------<br />

2πT rrr iS A. Derive an expression for gradient and show that the gradient in the direction normal to the<br />

boundary is zero at the boundary.<br />

Hydrogeology, 431/531 - <strong>University</strong> <strong>of</strong> <strong>Arizona</strong> - Fall 2007 <strong>Dr</strong>. Marek <strong>Zreda</strong><br />

Qr<br />

real well<br />

(discharge)<br />

rr<br />

M<br />

ri<br />

Qi = Qr<br />

image well<br />

(discharge)


<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong> 101<br />

Effects <strong>of</strong> boundaries on Theis and Jacob plots<br />

log drawdown<br />

drawdown<br />

ideal Jacob response<br />

Impermeable boundary<br />

log time<br />

log time<br />

impermeable boundary<br />

(slope is doubled)<br />

Ideal type curve<br />

Recharge boundary<br />

recharge boundary<br />

Hydrogeology, 431/531 - <strong>University</strong> <strong>of</strong> <strong>Arizona</strong> - Fall 2007 <strong>Dr</strong>. Marek <strong>Zreda</strong>


<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong> 102<br />

Phreatic aquifer<br />

Initially, the aquifer<br />

behaves like a confined<br />

aquifer (Ss<br />

only). Then, the signal<br />

propagates and<br />

pore drainage occurs<br />

(Sy).<br />

Leakage<br />

No leakage before <strong>pumping</strong> (two<br />

aquifers in equilibrium). Neglect<br />

storage in aquitard.<br />

Actual drawdown is horizontal for<br />

large t because there is steady state<br />

solution for leaky systems (there is<br />

additional source <strong>of</strong> water, much<br />

like in the case <strong>of</strong> a constant head<br />

boundary). It is achieved sooner in<br />

observation wells closer to the<br />

<strong>pumping</strong> well.<br />

Other variations in drawdown shapes<br />

s<br />

early<br />

time<br />

s<br />

Ss only<br />

no leakage<br />

Sy only<br />

Hydrogeology, 431/531 - <strong>University</strong> <strong>of</strong> <strong>Arizona</strong> - Fall 2007 <strong>Dr</strong>. Marek <strong>Zreda</strong><br />

late<br />

time<br />

actual<br />

drawdown<br />

actual<br />

drawdown<br />

log t<br />

log t


<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong> 103<br />

Partial penetration<br />

We have 3-D flow due to partial<br />

penetration.<br />

If s = const, partially penetrating<br />

wells give less Q than fully penetrating<br />

wells because more energy<br />

is required to get water up (less<br />

area?).<br />

If Q = const, partially penetrating<br />

well causes more drawdown than<br />

does fully penetrating one.<br />

<strong>Dr</strong>awdown curve far away from s<br />

the <strong>pumping</strong> well looks like fully<br />

penetrating and the slope <strong>of</strong> drawdown curve approaches slope <strong>of</strong> fully penetrating well drawdown.<br />

Penetration is important in calculating S. Do not use the late curve (straight line); use the early<br />

one.<br />

Large diameter well<br />

Has storage, usually built in low-K<br />

aquifers. Specific yield <strong>of</strong> the<br />

well: S y = 1. S is overestimated<br />

(t 1 ). Use t 0 to get S.<br />

s<br />

t 0<br />

wrong<br />

estimation<br />

<strong>of</strong> S<br />

actual<br />

drawdown<br />

fully<br />

penetrating<br />

Hydrogeology, 431/531 - <strong>University</strong> <strong>of</strong> <strong>Arizona</strong> - Fall 2007 <strong>Dr</strong>. Marek <strong>Zreda</strong><br />

t 1<br />

small<br />

diameter<br />

well<br />

t 0<br />

use this to get S<br />

large<br />

diameter<br />

well<br />

log t<br />

log t


<strong>Aquifer</strong> <strong>pumping</strong> <strong>tests</strong> 104<br />

Skin and well screen effect<br />

Mud sealing the well forms “skin”<br />

reducing K around the well bore.<br />

If well screened in gravel, K is<br />

increased around the well.<br />

S is underestimated!<br />

For given Q, more drawdown for<br />

skin well, but slope the same for<br />

both. Reason: greater gradient is<br />

necessary for water to flow to the<br />

well.<br />

s<br />

skin<br />

effect<br />

no skin<br />

(ideal well)<br />

Hydrogeology, 431/531 - <strong>University</strong> <strong>of</strong> <strong>Arizona</strong> - Fall 2007 <strong>Dr</strong>. Marek <strong>Zreda</strong><br />

log t

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!