02.03.2013 Views

Progress on Event Generation with PYTHIA 8

Progress on Event Generation with PYTHIA 8

Progress on Event Generation with PYTHIA 8

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Collider Cross Talk<br />

CERN, 4 August 2011<br />

<str<strong>on</strong>g>Progress</str<strong>on</strong>g> <strong>on</strong> <strong>Event</strong> Generati<strong>on</strong><br />

<strong>with</strong> <strong>PYTHIA</strong> 8<br />

Torbjörn Sjöstrand<br />

Department of Astr<strong>on</strong>omy and Theoretical Physics<br />

Lund University<br />

Introducti<strong>on</strong> and Overview<br />

Improved Showers and ME matching<br />

MultiPart<strong>on</strong> Interacti<strong>on</strong>s<br />

BSM Physics<br />

Tunes and Comparis<strong>on</strong>s <strong>with</strong> LHC Data<br />

Summary and Outlook


Introducti<strong>on</strong> and Overview<br />

General-purpose event generators: <strong>PYTHIA</strong>, HERWIG, SHERPA<br />

<strong>PYTHIA</strong> size: ∼80,000 lines (Fortran in <strong>PYTHIA</strong> 6, C++ in <strong>PYTHIA</strong> 8)<br />

PDF<br />

ME<br />

MPI<br />

ISR<br />

FSR<br />

BR<br />

CR<br />

Hadr.<br />

Decays<br />

Unknown?


<strong>PYTHIA</strong> 8 ambiti<strong>on</strong><br />

• Meet experimental request for C++ code.<br />

• Housecleaning ⇒ more homogeneous.<br />

• More user-friendly (e.g. settings names).<br />

• Better match to software frameworks<br />

(e.g. card files).<br />

• More space for growth.<br />

• Better interfaces to external standards.<br />

Reality<br />

• Work begun autumn 2004.<br />

• 3 years at CERN ⇒ good progress.<br />

• First release autumn 2007.<br />

• Since then: slower progress,<br />

requests lagging behind.<br />

• Usage slowly taking off.<br />

Team members<br />

Stefan Ask<br />

Richard Corke<br />

Stephen Mrenna<br />

Peter Skands<br />

C<strong>on</strong>tributors include<br />

O. Alvestad, B. Bellenot,<br />

R. Brun, L. Carl<strong>on</strong>i,<br />

N. Desai, N. Hod,<br />

H. Hoeth, P. Ilten,<br />

T. Kasemets, M. Kirsanov,<br />

B. Lloyd, M. M<strong>on</strong>tull,<br />

A. Morsch, A. Naumann,<br />

S. Navin, P. Newman,<br />

S. Prestel, M. Sutt<strong>on</strong><br />

MSTW, CTEQ, H1: PDFs<br />

DELPHI, LHCb: D/B BRs<br />

+ several bug reports & fixes


Key differences between <strong>PYTHIA</strong> 6.4 and 8.1<br />

Old features definitely removed include, am<strong>on</strong>g others:<br />

• independent fragmentati<strong>on</strong><br />

• mass-ordered showers<br />

Features omitted so far include, am<strong>on</strong>g others:<br />

• ep, γp and γγ beam c<strong>on</strong>figurati<strong>on</strong>s<br />

• some processes, notably Technicolor<br />

New features, not found in 6.4:<br />

⋆ fully interleaved p ⊥-ordered MPI + ISR + FSR evoluti<strong>on</strong><br />

⋆ richer mix of underlying-event processes (γ, J/ψ, DY, . . . )<br />

⋆ possibility for two selected hard interacti<strong>on</strong>s in same event<br />

⋆ allow rescattering and x-dependent prot<strong>on</strong> size in MPI framework<br />

⋆ full hadr<strong>on</strong>–hadr<strong>on</strong> collisi<strong>on</strong> machinery for diffractive systems<br />

⋆ several new processes, <strong>with</strong>in and bey<strong>on</strong>d SM<br />

⋆ possibility to use <strong>on</strong>e PDF set for hard process and another for rest<br />

⋆ τ lept<strong>on</strong> polarizati<strong>on</strong> in producti<strong>on</strong> and decay<br />

⋆ updated decay data and LO PDF sets


Interleaved evoluti<strong>on</strong><br />

• Transverse-momentum-ordered part<strong>on</strong> showers for ISR and FSR<br />

• MPI also ordered in p ⊥<br />

Allows interleaved evoluti<strong>on</strong> for ISR, FSR and MPI<br />

dP<br />

dp ⊥<br />

=<br />

dPMPI<br />

× exp<br />

dp<br />

<br />

⊥<br />

−<br />

+ dPISR +<br />

dp⊥ <br />

dPFSR dp<br />

<br />

⊥<br />

dPMPI<br />

dp ′ +<br />

⊥<br />

dPISR dp ′ ⊥<br />

p⊥max<br />

p ⊥<br />

Ordered in decreasing p ⊥ using “Sudakov” trick.<br />

Corresp<strong>on</strong>ds to increasing “resoluti<strong>on</strong>”:<br />

smaller p ⊥ fill in details of basic picture set at larger p ⊥.<br />

Hybrid approach to shower recoils:<br />

• FSR is dipole: nearest colour-c<strong>on</strong>nected neighbour<br />

• ISR is traditi<strong>on</strong>al: whole hard-scattering system affected<br />

(since ISR dipole gives wr<strong>on</strong>g answer e.g. for p ⊥Z)<br />

+ dPFSR dp ′ <br />

dp<br />

⊥<br />

′ <br />


Shower matching to MEs: realistic hard default<br />

Aim: provide better default shower behaviour at large p⊥, to bridge gap between “power” and “wimpy” showers.<br />

dP / dp⊥ [GeV -1<br />

]<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

(b)<br />

POWHEG<br />

Pythia Default (Power)<br />

Pythia Damp, k = 2<br />

Pythia Damp, k = 1<br />

Pythia Wimpy<br />

100 200 300 400 500 600 700 800 900 1000<br />

p⊥ [GeV]<br />

dP ISR<br />

dp 2 ⊥<br />

∝ 1<br />

p 2 ⊥<br />

k 2 M 2<br />

k 2 M 2 + p 2 ⊥<br />

tt producti<strong>on</strong><br />

M 2 = m 2 ⊥t<br />

= m 2 t + p2 ⊥t<br />

for coloured final state<br />

No dampening for uncoloured final state (W + W − , . . . , SUSY).<br />

R. Corke & TS, Eur. Phys. J. C69 (2010) 1


Shower matching to MEs: realistic QCD default<br />

Must avoid doublecounting for QCD jets:<br />

shower starting scale = p ⊥ of hard 2 → 2 process.<br />

Study how well the part<strong>on</strong> shower fills the phase space,<br />

as prelude to full matching to 2 → 3 real-emissi<strong>on</strong>:<br />

dσ / dp ⊥ [nb / GeV]<br />

10 2<br />

10 1<br />

10 0<br />

(a) p ⊥3<br />

PS<br />

ME<br />

10 -1<br />

0 10 20 30 40 50<br />

p⊥ [GeV]<br />

p min<br />

⊥3<br />

dσ / dp ⊥ [nb / GeV]<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

(b) p ⊥4<br />

PS<br />

ME<br />

10 -2<br />

0 10 20 30 40 50<br />

p⊥ [GeV]<br />

= 5.0 GeV, pmin<br />

⊥4 = 5.0 GeV, Rsep = 0.10<br />

dσ / dp ⊥ [nb / GeV]<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

(c) p ⊥5<br />

PS<br />

ME<br />

10 -4<br />

0 10 20 30 40 50<br />

p⊥ [GeV]<br />

Obtain good qualitative agreement, best in soft and collinear regi<strong>on</strong>s,<br />

but large regi<strong>on</strong> of phase space well described, and <strong>on</strong>ly corners bad.<br />

No indicati<strong>on</strong> for needing a change in starting scale!<br />

R. Corke & TS, JHEP 03 (2011) 032


Shower matching to MEs: CKKW–L<br />

Leif Lönnblad and Stefan Prestel work to include CKKW–L matching<br />

• for jets, W/Z + jets, WW/WZ/ZZ + jets<br />

• rec<strong>on</strong>structing ME “history” as viewed by <strong>PYTHIA</strong> 8 shower<br />

• c<strong>on</strong>sistently taking into account effects of MPI<br />

(1/σ) dσ/dk ⊥ 1<br />

Deviati<strong>on</strong> [%]<br />

10 -7<br />

10 -8<br />

10 -9<br />

150<br />

100<br />

50<br />

0<br />

wME1PS<br />

wME2PS<br />

wME3PS<br />

wME4PS<br />

<strong>PYTHIA</strong>8 (no mi)<br />

ME 0 3PS (no mi)<br />

ME 1 3PS (no mi)<br />

ME 2 3PS (no mi)<br />

ME 3 3PS (no mi)<br />

wME3PS (no mi)<br />

-50<br />

0 20 40 60 80 100<br />

k⊥ 1 (GeV)<br />

Deviati<strong>on</strong> [%]<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

wME1PS<br />

wME2PS<br />

wME3PS<br />

wME4PS<br />

Article to appear any day now; code “so<strong>on</strong>” in <strong>PYTHIA</strong> 8;<br />

NLO matching natural extensi<strong>on</strong><br />

(1/σ) dσ/dk ⊥ 2<br />

10 -7<br />

10 -8<br />

10 -9<br />

10 -10<br />

<strong>PYTHIA</strong>8 (no mi)<br />

ME 0 3PS (no mi)<br />

ME 1 3PS (no mi)<br />

ME 2 3PS (no mi)<br />

ME 3 3PS (no mi)<br />

wME3PS (no mi)<br />

0 10 20 30 40 50 60 70<br />

k⊥ 2 (GeV)


Shower matching to MEs: POWHEG<br />

Standard Les Houches interface (LHA, LHEF) specifies startup scale SCALUP<br />

for showers, so “trivial” to interface any external program, including POWHEG.<br />

Problem: for ISR<br />

p 2 ⊥ = p2 ⊥evol − p4 ⊥evol<br />

p 2 ⊥evol,max<br />

i.e. p ⊥ decreases for θ ∗ > 90 ◦ but p ⊥evol m<strong>on</strong>ot<strong>on</strong>ously increasing.<br />

Soluti<strong>on</strong>: run “power” shower but kill emissi<strong>on</strong>s above the hardest <strong>on</strong>e,<br />

by POWHEG’s definiti<strong>on</strong>.<br />

(1/N) dN / dx<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

(a)<br />

Factorisati<strong>on</strong> Scale<br />

Kinematical Limit + Veto<br />

0 0.2 0.4 0.6 0.8 1 1.2<br />

x = p ⊥ shower<br />

/ p ⊥ hard<br />

(1/N) dN / dx<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

(b)<br />

Factorisati<strong>on</strong> Scale<br />

Kinematical Limit + Veto<br />

0 0.2 0.4 0.6 0.8 1 1.2<br />

x = p ⊥ shower<br />

Available for ISR-dominated, coming for QCD jets <strong>with</strong> FSR issues.<br />

/ p ⊥ hard


Shower matching to MEs: VINCIA<br />

Plug-in replacement to default <strong>PYTHIA</strong> showers; for now FSR <strong>on</strong>ly.<br />

Developed by Walter Giele, David Kosower, Peter Skands, . . .<br />

See talk by Juan Lopez-Villarejo <strong>on</strong> Wednesday 10 August!<br />

Shower matching to MEs: the rest<br />

As in <strong>PYTHIA</strong> 6, it is possible to use external ME generators<br />

<strong>with</strong> their own matching, e.g.<br />

• ALPGEN (<strong>with</strong> MLM)<br />

• MADGRAPH (<strong>with</strong> MLM)


Multipart<strong>on</strong> interacti<strong>on</strong>s key aspect<br />

of <strong>PYTHIA</strong> since > 20 years.<br />

Central to obtain agreement <strong>with</strong> data:<br />

Tune A, Professor, Perugia, . . .<br />

A sec<strong>on</strong>d hard process<br />

Before 8.1 no chance to select character of sec<strong>on</strong>d interacti<strong>on</strong>.<br />

Now free choice of first process (including LHA/LHEF)<br />

and sec<strong>on</strong>d process combined from list:<br />

• TwoJets (<strong>with</strong> TwoBJets as subsample)<br />

• Phot<strong>on</strong>AndJet, TwoPhot<strong>on</strong>s<br />

• Charm<strong>on</strong>ium, Bottom<strong>on</strong>ium (colour octet framework)<br />

• SingleGmZ, SingleW, GmZAndJet, WAndJet<br />

• TopPair, SingleTop<br />

Can be expanded am<strong>on</strong>g existing processes as need arises.<br />

By default same phase space cuts as for “first” hard process<br />

=⇒ sec<strong>on</strong>d can be harder than first.<br />

However, possible to set ˆm and pˆ ⊥ range separately.


Multipart<strong>on</strong> interacti<strong>on</strong>s<br />

Regularise cross secti<strong>on</strong> <strong>with</strong> p ⊥0 as free parameter<br />

dˆσ<br />

dp 2 ⊥<br />

<strong>with</strong> energy dependence<br />

∝ α2 s(p 2 ⊥ )<br />

p 4 ⊥<br />

p ⊥0(E CM) = p ref<br />

⊥0 ×<br />

→ α2 s(p 2 ⊥0 + p2 ⊥ )<br />

(p 2 ⊥0 + p2 ⊥ )2<br />

<br />

ECM<br />

Eref ǫ CM<br />

Matter profile in impact-parameter space<br />

gives time-integrated overlap which determines level of activity:<br />

simple Gaussian or more peaked variants<br />

ISR and MPI compete for beam momentum → PDF rescaling<br />

+ flavour effects (valence, qq pair compani<strong>on</strong>s, . . . )<br />

+ correlated primordial k ⊥ and colour in beam remnant<br />

Many part<strong>on</strong>s produced close in space–time ⇒ colour rearrangement;<br />

reducti<strong>on</strong> of total string length ⇒ steeper 〈p ⊥〉(n ch)


Often<br />

assume<br />

that<br />

MPI =<br />

Rescattering<br />

. . . but<br />

should<br />

also<br />

include<br />

Same order in αs, ∼ same propagators, but<br />

• <strong>on</strong>e PDF weight less ⇒ smaller σ<br />

• <strong>on</strong>e jet less ⇒ QCD radiati<strong>on</strong> background 2 → 3 larger than 2 → 4<br />

⇒ will be tough to find direct evidence.<br />

Rescattering grows <strong>with</strong> number of “previous” scatterings:<br />

Tevatr<strong>on</strong> LHC<br />

Min Bias QCD Jets Min Bias QCD Jets<br />

Normal scattering 2.81 5.09 5.19 12.19<br />

Single rescatterings 0.41 1.32 1.03 4.10<br />

Double rescatterings 0.01 0.04 0.03 0.15<br />

R. Corke & TS, JHEP 01 (2010) 035


An x-dependent prot<strong>on</strong> size<br />

Normally assume that PDFs factorize in l<strong>on</strong>gitudinal and transverse space:<br />

f(x, r) = f(x) ρ(r)<br />

In c<strong>on</strong>tradicti<strong>on</strong> <strong>with</strong><br />

• intuitive picture of part<strong>on</strong>s spreading out by cascade to lower x<br />

• formally BFKL, Balitsky-JIMWLK, Colour Glass C<strong>on</strong>densate, . . .<br />

• Mueller’s dipole cascade (Lund program: DIPSY; study by Avsar)<br />

• Froissart-Martin σ tot ∝ ln 2 s by Gribov theory related to rp ∝ ln(1/x)<br />

• generalized part<strong>on</strong> distributi<strong>on</strong>s, . . .<br />

For now address <strong>on</strong>ly inelastic n<strong>on</strong>diffrative events,<br />

σtot = σel + σSD + σDD + σND, <strong>with</strong> ansatz:<br />

ρ(r, x) ∝ 1<br />

a 3 (x) exp<br />

<br />

− r2<br />

a 2 (x)<br />

<br />

<strong>with</strong> a(x) = a0<br />

<br />

1 + a1ln 1<br />

x<br />

a1 ≈ 0.15 tuned to rise of σ ND in D<strong>on</strong>nachie & Landshoff + Schuler & TS<br />

a0 tuned to value of σ ND, given PDF, p ⊥0, . . .<br />

R. Corke & TS, JHEP 05 (2011) 009


C<strong>on</strong>voluti<strong>on</strong> of two incoming prot<strong>on</strong>s gives impact parameter shape<br />

Õ(b; x1, x2) = 1<br />

π<br />

1<br />

a 2 (x1) + a 2 (x2) exp<br />

<br />

b<br />

−<br />

2<br />

a2 (x1) + a2 (x2)<br />

Define n(b) as average number of interacti<strong>on</strong>s for passage at b<br />

n(b) = <br />

i,j<br />

<br />

dx1dx2dp 2 ⊥ f i(x1, p 2 ⊥ ) f j(x2, p 2 ⊥<br />

such that σ hard =<br />

<br />

n(b)d 2 b<br />

σND = Pintd 2 b =<br />

<br />

which gives a 〈b2 〉 for σhard and σND: √〈b 2 〉 [fm]<br />

0.85<br />

0.8<br />

0.75<br />

0.7<br />

0.65<br />

0.6<br />

0.55<br />

10 2<br />

a1 = 0.00<br />

a1 = 0.15<br />

a1 = 1.00<br />

10 3<br />

(a)<br />

E CM [GeV]<br />

10 4<br />

<br />

10 5<br />

√〈b 2 〉 eik [fm]<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

10 2<br />

a1 = 0.00<br />

a1 = 0.15<br />

a1 = 1.00<br />

) dˆσij<br />

dp 2 ⊥<br />

<br />

<br />

<br />

<br />

<br />

reg<br />

<br />

1 − e −n(b)<br />

d 2 b<br />

10 3<br />

(b)<br />

E CM [GeV]<br />

10 4<br />

<br />

Õ(b; x1, x2)<br />

10 5


C<strong>on</strong>sequence: collisi<strong>on</strong>s at large x will have to happen at small b,<br />

and hence further large-to-medium-x MPIs are enhanced,<br />

while low-x part<strong>on</strong>s are so spread out that it plays less role.<br />

norm<br />

(1 / N) dN / dbMPI (1 / N) dN / dN MPI<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

(a)<br />

0 0.5 1 1.5 2 2.5<br />

norm<br />

bMPI (b) Z 0<br />

SG<br />

DY<br />

Z 0<br />

Z’<br />

0 5 10 15 20 25<br />

N MPI<br />

SG<br />

Log<br />

(1 / N) dN / dN MPI<br />

(1 / N) dN / dN MPI<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

(a) DY<br />

0 5 10 15 20 25<br />

N MPI<br />

(c) Z’<br />

SG<br />

Log<br />

0 5 10 15 20 25<br />

N MPI<br />

SG<br />

Log


Diffracti<strong>on</strong><br />

Ingelman-Schlein: Pomer<strong>on</strong> as hadr<strong>on</strong> <strong>with</strong> part<strong>on</strong>ic c<strong>on</strong>tent<br />

Diffractive event = (Pomer<strong>on</strong> flux) × (IPp collisi<strong>on</strong>)<br />

p<br />

p<br />

IP<br />

p<br />

Used e.g. in<br />

POMPYT<br />

POMWIG<br />

PHOJET<br />

1) σ SD and σ DD taken from existing parametrizati<strong>on</strong> or set by user.<br />

2) Shape of Pomer<strong>on</strong> distributi<strong>on</strong> inside a prot<strong>on</strong>, f IP/p (x IP, t)<br />

gives diffractive mass spectrum and scattering p ⊥ of prot<strong>on</strong>.<br />

3) At low masses retain old framework, <strong>with</strong> l<strong>on</strong>gitudinal string(s).<br />

Above 10 GeV begin smooth transiti<strong>on</strong> to IPp handled <strong>with</strong> full pp<br />

machinery: multiple interacti<strong>on</strong>s, part<strong>on</strong> showers, beam remnants, . . . .<br />

4) Choice between 5 Pomer<strong>on</strong> PDFs.<br />

Free parameter σ IPp needed to fix 〈n interacti<strong>on</strong>s〉 = σ jet/σ IPp.<br />

5) Framework needs testing and tuning, e.g. of σ IPp.


Beate Heinemann, MB/UE Working Group (also Sparsh Navin)


BSM Physics 1: R-parity violati<strong>on</strong><br />

Encountered in R-parity violating SUSY decays ˜χ 0 1 → uds,<br />

or when 2 valence quarks kicked out of prot<strong>on</strong> beam<br />

d (g)<br />

juncti<strong>on</strong><br />

lab frame d (g)<br />

rest frame<br />

s (b)<br />

d<br />

s<br />

q4<br />

q5<br />

J<br />

q4<br />

q5<br />

q3<br />

flavour space<br />

x<br />

u (r)<br />

q3 q2 q2 qq1 qq1 u<br />

z<br />

120 ◦<br />

s (b)<br />

J<br />

120 ◦<br />

120 ◦<br />

More complicated<br />

(but ≈solved) <strong>with</strong><br />

glu<strong>on</strong> emissi<strong>on</strong> and<br />

massive quarks<br />

P. Skands & TS, Nucl. Phys. B659 (2003) 243<br />

u (r)


BSM Physics 2: R-hadr<strong>on</strong>s<br />

What if coloured (SUSY) particle like ˜g or˜t1 is l<strong>on</strong>g-lived?<br />

⋆ Formati<strong>on</strong> of R-hadr<strong>on</strong>s<br />

˜gqq ˜t1q “mes<strong>on</strong>s”<br />

˜gqqq ˜t1qq “bary<strong>on</strong>s”<br />

˜gg “glueballs”<br />

⋆ C<strong>on</strong>versi<strong>on</strong> between R-hadr<strong>on</strong>s<br />

by “low-energy” interacti<strong>on</strong>s <strong>with</strong> matter:<br />

˜gud + p → ˜guud + π + irreversible<br />

⋆ Displaced vertices if finite lifetime, or else<br />

⋆ punch-through: σ ≈ σ had but<br />

∆E < ∼ 1 GeV ≪ E kin,R<br />

A.C. Kraan, Eur. Phys. J. C37 (2004) 91;<br />

M. Fairbairn et al., Phys. Rep. 438 (2007) 1<br />

CMS, arXiv:1101.1645<br />

Partly event generati<strong>on</strong>, partly detector simulati<strong>on</strong>.<br />

Public add-<strong>on</strong> in <strong>PYTHIA</strong> 6, now integrated part of <strong>PYTHIA</strong> 8.<br />

Can also be applied to n<strong>on</strong>-SUSY l<strong>on</strong>g-lived “hadr<strong>on</strong>s”.


BSM Physics 3: Hidden Valley (Secluded Sector)<br />

What if new gauge groups at low energy scales, hidden by<br />

potential barrier or weak couplings? (M. Strassler & K. Zurek, . . . )<br />

Complete framework implemented in <strong>PYTHIA</strong>:<br />

⋆ New gauge group either Abelian U(1) or n<strong>on</strong>-Abelian SU(N)<br />

⋆ 3 alternative producti<strong>on</strong> mechanisms<br />

1) massive Z ′ : qq → Z ′ → qvqv<br />

2) kinetic mixing: qq → γ → γv → qvqv<br />

3) massive Fv charged under both SM and hidden group<br />

⋆ Interleaved shower in<br />

QCD, QED and HV sectors:<br />

add qv → qvγv (and Fv)<br />

or qv → qvgv, gv → gvgv,<br />

which gives recoil effects<br />

also in visible sector<br />

L. Carl<strong>on</strong>i & TS, JHEP 09 (2010) 105;<br />

L. Carl<strong>on</strong>i, J. Rathsman & TS, JHEP 04 (2011) 091


⋆ Hidden Valley particles may remain invisible, or . . .<br />

⋆ Broken U(1): γv acquire mass, radiated γvs decay back<br />

γv → γ → ff <strong>with</strong> BRs as phot<strong>on</strong> (⇒ lept<strong>on</strong> pairs!)<br />

⋆ SU(N): hadr<strong>on</strong>izati<strong>on</strong> in hidden sector, <strong>with</strong> full string fragmentati<strong>on</strong>,<br />

permitting up to 8 different qv flavours and 64 qvqv mes<strong>on</strong>s,<br />

but for now assumed degenerate in mass, so <strong>on</strong>ly distinguish<br />

– off-diag<strong>on</strong>al, flavour-charged, stable & invisible<br />

– diag<strong>on</strong>al, can decay back qvqv → ff<br />

Even when tuned to same average activity, hope to separate U(1) and SU(N):<br />

#(N v )<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0 2 4 6 8 10<br />

N v<br />

Ab<br />

n<strong>on</strong>-Ab.<br />

#(cos θ)<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Ab.<br />

n<strong>on</strong>-Ab.<br />

0 0.5 1 1.5 2 2.5 3<br />

cos θ


Tuning prospects<br />

Tuning to e + e − closely related to p ⊥-ordered <strong>PYTHIA</strong> 6.4;<br />

Rivet+Professor (H. Hoeth) ⇒ FSR & hadr<strong>on</strong>izati<strong>on</strong> OK (?)<br />

First tuning to MB data by P. Skands:<br />

⇒ MPI & colour rec<strong>on</strong>necti<strong>on</strong> OK (?)


But Rivet+Professor (H. Hoeth) shows it fails miserably for UE<br />

(Rick Field’s transverse flow as functi<strong>on</strong> of jet p ⊥):<br />

No universal tune MB + UE!<br />

Where did we go wr<strong>on</strong>g?


Final-state part<strong>on</strong> may have colour partner in the initial state.<br />

How to subdivide FSR and ISR in this kind of dipole?<br />

Large mass → large rapidity range for emissi<strong>on</strong>:<br />

In dipole rest frame<br />

(think rapidity space)<br />

m >> p⊥<br />

ISR<br />

m ∼ p⊥<br />

FSR<br />

m/2<br />

Soluti<strong>on</strong>: suppress final-state radiati<strong>on</strong> in double-counted regi<strong>on</strong><br />

p ⊥


Is a simultaneous MB/UE Tevatr<strong>on</strong> tune now possible?<br />

Tunes 2C and 2M d<strong>on</strong>e “by hand” (= using Rivet, but not Professor),<br />

using the CTEQ6L1 and MRST LO** PDF sets, respectively,<br />

to MB data (n ch, 〈p ⊥〉(n ch), . . . .<br />

Compare against Pro-Q20 and Perugia 0 (<strong>PYTHIA</strong> 6)<br />

〈N ch〉/dη dφ<br />

MC/data<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

Transverse regi<strong>on</strong> charged particle density<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

CDF data<br />

<strong>PYTHIA</strong> 6.422 Pro-Q20<br />

<strong>PYTHIA</strong> 6.422 Perugia 0<br />

<strong>PYTHIA</strong> 8.142 Tune 2C<br />

<strong>PYTHIA</strong> 8.142 Tune 2M<br />

0 50 100 150 200 250 300 350 400<br />

pT(leading jet) / GeV<br />

<br />

<br />

<br />

〈∑ ptrack T 〉/dη dφ / GeV<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

1.4<br />

Transverse regi<strong>on</strong> charged ∑ p ⊥ density<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

CDF data<br />

<strong>PYTHIA</strong> 6.422 Pro-Q20<br />

<strong>PYTHIA</strong> 6.422 Perugia 0<br />

<strong>PYTHIA</strong> 8.142 Tune 2C<br />

<strong>PYTHIA</strong> 8.142 Tune 2M<br />

0 50 100 150 200 250 300 350 400<br />

pT(leading jet) / GeV<br />

Now generally comparably good descripti<strong>on</strong> to old tunes at the Tevatr<strong>on</strong>.<br />

MC/data<br />

1.2<br />

1<br />

0.8<br />

0.6


Tune 2C applied to LHC data does not do so good:<br />

1/N ev dN ev / dN ch<br />

<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

ATLAS 7.00 TeV (x 100)<br />

Pythia 7.00 TeV (x 100)<br />

ATLAS 900 GeV<br />

Pythia 900 GeV<br />

0 10 20 30 40 50<br />

Nch 60 70 80 90 100<br />

ATLAS 7.00 TeV<br />

Pythia 7.00 TeV<br />

ATLAS 900 GeV<br />

Pythia 900 GeV<br />

0 2 4 6 8 10 12 14 16 18 20<br />

p T lead [GeV]<br />

Transverse<br />

regi<strong>on</strong><br />

1/N ev dN ev / dN ch<br />

[GeV]<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

ALICE 7.00 TeV (x 100)<br />

Pythia 7.00 TeV (x 100)<br />

ALICE 2.36 TeV (x 10)<br />

Pythia 2.36 TeV (x 10)<br />

ALICE 900 GeV<br />

Pythia 900 GeV<br />

0 10 20 30 40<br />

Nch 50 60 70 80<br />

ATLAS 7.00 TeV<br />

Pythia 7.00 TeV<br />

ATLAS 900 GeV (-0.5)<br />

Pythia 900 GeV (-0.5)<br />

0 10 20 30 40 50<br />

Nch 60 70 80 90 100


Tensi<strong>on</strong> between Tevatr<strong>on</strong> and LHC data?<br />

Rick Field: if p⊥0(ECM) ∝ Eǫ CM tuned to LHC data,<br />

then gives too much UE activity at Tevatr<strong>on</strong><br />

(⇒ need higher p⊥0 to compensate)<br />

<strong>PYTHIA</strong> Tune Z1<br />

P T0 (GeV/c)<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

RDF Very Preliminary<br />

CMS 900 GeV<br />

MPI Cut-Off P T0(W cm)<br />

CDF 1.96 TeV<br />

Tune Z1<br />

CMS 7 TeV<br />

0 2000 4000 6000 8000 10000 12000<br />

Center-of-Mass Energy W cm (GeV)<br />

Pick some key LHC data sets, use Tune 2C as starting point:<br />

• slightly dampen diffractive cross secti<strong>on</strong> (ATLAS)<br />

• <strong>on</strong>ly vary MPI and colour rec<strong>on</strong>necti<strong>on</strong> parameters


New tunes<br />

. . . while waiting for more LHC data c<strong>on</strong>veniently implemented in Rivet.<br />

Parameter 2C 2M 4C 4Cx<br />

SigmaProcess:alphaSvalue 0.135 0.1265 0.135 0.135<br />

SpaceShower:rapidityOrder <strong>on</strong> <strong>on</strong> <strong>on</strong> <strong>on</strong><br />

SpaceShower:alphaSvalue 0.137 0.130 0.137 0.137<br />

SpaceShower:pT0Ref 2.0 2.0 2.0 2.0<br />

MultipleInteracti<strong>on</strong>s:alphaSvalue 0.135 0.127 0.135 0.135<br />

MultipleInteracti<strong>on</strong>s:pT0Ref 2.320 2.455 2.085 2.15<br />

MultipleInteracti<strong>on</strong>s:ecmPow 0.21 0.26 0.19 0.19<br />

MultipleInteracti<strong>on</strong>s:bProfile 3 3 3 4<br />

MultipleInteracti<strong>on</strong>s:expPow 1.60 1.15 2.00 N/A<br />

MultipleInteracti<strong>on</strong>s:a1 N/A N/A N/A 0.15<br />

BeamRemnants:rec<strong>on</strong>nectRange 3.0 3.0 1.5 1.5<br />

SigmaDiffractive:dampen off off <strong>on</strong> <strong>on</strong><br />

SigmaDiffractive:maxXB N/A N/A 65 65<br />

SigmaDiffractive:maxAX N/A N/A 65 65<br />

SigmaDiffractive:maxXX N/A N/A 65 65<br />

R. Corke & TS, JHEP 03 (2011) 032, JHEP 05 (2011) 009


Tune 4C now describes LHC data reas<strong>on</strong>ably well:<br />

1/N ev dN ev / dN ch<br />

<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

ATLAS 7.00 TeV (x 100)<br />

Pythia 7.00 TeV (x 100)<br />

ATLAS 900 GeV<br />

Pythia 900 GeV<br />

0 10 20 30 40 50<br />

Nch 60 70 80 90 100<br />

ATLAS 7.00 TeV<br />

Pythia 7.00 TeV<br />

ATLAS 900 GeV<br />

Pythia 900 GeV<br />

0 2 4 6 8 10 12 14 16 18 20<br />

p T lead [GeV]<br />

Transverse<br />

regi<strong>on</strong><br />

1/N ev dN ev / dN ch<br />

[GeV]<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

ALICE 7.00 TeV (x 100)<br />

Pythia 7.00 TeV (x 100)<br />

ALICE 2.36 TeV (x 10)<br />

Pythia 2.36 TeV (x 10)<br />

ALICE 900 GeV<br />

Pythia 900 GeV<br />

0 10 20 30 40<br />

Nch 50 60 70 80<br />

ATLAS 7.00 TeV<br />

Pythia 7.00 TeV<br />

ATLAS 900 GeV (-0.5)<br />

Pythia 900 GeV (-0.5)<br />

0 10 20 30 40 50<br />

Nch 60 70 80 90 100


. . . but at the expense of Tevatr<strong>on</strong> agreement:<br />

dσ/dn ch<br />

MC/data<br />

1<br />

10 −1<br />

10 −2<br />

10 −3<br />

10 −4<br />

10 −5<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

Charged multiplicity at √ s = 1800 GeV, |η| < 1, pT > 0.4 GeV<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

CDF data<br />

<strong>PYTHIA</strong> 8.142 Tune 4C<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0 5 10 15 20 25 30 35 40<br />

Future:<br />

• better understanding of data?<br />

• official/validated inclusi<strong>on</strong> in Rivet?<br />

• combined tune Tevatr<strong>on</strong> + LHC?<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

N ch<br />

〈N ch〉/dη dφ<br />

MC/data<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

Transverse regi<strong>on</strong> charged particle density<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

CDF data<br />

<strong>PYTHIA</strong> 8.142 Tune 4C<br />

0 50 100 150 200 250 300 350 400<br />

pT(leading jet) / GeV


Further challenges from hadr<strong>on</strong> collider data<br />

Bose-Einstein r(N ch) ∝ N 1/3<br />

ch<br />

cannot be accommodated<br />

in <strong>PYTHIA</strong> effective descripti<strong>on</strong><br />

that worked at LEP<br />

R (fm) R (fm) R (fm)<br />

G<br />

out<br />

G<br />

side<br />

G<br />

l<strong>on</strong>g<br />

5<br />

1<br />

0<br />

5<br />

1<br />

0<br />

5<br />

1<br />

0<br />

PHENIX AuAu @ 200 AGeV<br />

STAR AuAu @ 200 AGeV<br />

STAR CuCu @ 200 AGeV<br />

2 4 6 8<br />

ALICE pp @ 7 TeV<br />

ALICE pp @ 0.9 TeV<br />

STAR pp @ 200 GeV<br />

2 4 6 8<br />

STAR AuAu @ 62 AGeV<br />

STAR CuCu @ 62 AGeV<br />

CERES PbAu @ 17.2 AGeV<br />

2 4 6 8<br />

2 4 6 8<br />

1/3<br />

〈 dN /dη<br />

〉<br />

Multiple overlapping fragmenting strings ⇒ dense hadr<strong>on</strong> gas!<br />

ch<br />

a)<br />

b)<br />

c)


Need more p ⊥ for K, p, Λ, . . . , relative to π ± :<br />

[GeV]<br />

〉<br />

T<br />

p<br />

〈<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

200 GeV pp Minimum Bias<br />

Average Transverse Momentum vs Particle Mass (star-1)<br />

STAR<br />

Herwig++<br />

Perugia 2010<br />

Pythia 8<br />

STAR_2006_S6860818<br />

Herwig++ 2.4.2, Pythia 6.424, Pythia 8.145<br />

0.5 1 1.5<br />

mass [GeV]<br />

Ratio to STAR<br />

0.5 1 1.5<br />

mcplots.cern.ch<br />

MC / Data<br />

0<br />

S<br />

K<br />

MC / Data<br />

Λ<br />

MC / Data<br />

−<br />

Ξ<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0 1 2 3 4 5 6<br />

0 1 2 3 4 5 6<br />

7 TeV <strong>PYTHIA</strong>6 D6T<br />

7 TeV <strong>PYTHIA</strong>6 P0<br />

7 TeV <strong>PYTHIA</strong>8<br />

CMS<br />

0.9 TeV <strong>PYTHIA</strong>6 D6T<br />

0.9 TeV <strong>PYTHIA</strong>6 P0<br />

0.9 TeV <strong>PYTHIA</strong>8<br />

0.2<br />

0 1 2 3 4 5 6<br />

[GeV/c]<br />

p<br />

T


(K + + K - ) / (π + + π - )<br />

Latest π/K/p p ⊥ spectra from LHC<br />

• ALICE 900 GeV - inelastic events, |y| < 0.5, arXiv:1101.4110v3<br />

• ALICE 7 TeV - read from public talks (assume same acceptance as 900 GeV)<br />

• Compare against <strong>PYTHIA</strong> 8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

ALICE 900 GeV<br />

ALICE 7 TeV<br />

<strong>PYTHIA</strong> 900 GeV<br />

<strong>PYTHIA</strong> 7 TeV<br />

0 0.5 1 1.5 2 2.5<br />

p⊥ [GeV]<br />

Pilot study (R. Corke):<br />

model for rescattering as afterburner.<br />

No need to change particle compositi<strong>on</strong> (significantly),<br />

<strong>on</strong>ly (partial) collective flow?<br />

(p + + p - ) / (π + + π - )<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

ALICE 900 GeV<br />

ALICE 7 TeV<br />

<strong>PYTHIA</strong> 900 GeV<br />

<strong>PYTHIA</strong> 7 TeV<br />

0 0.5 1 1.5 2 2.5<br />

p⊥ [GeV]


Final-state hadr<strong>on</strong> scattering<br />

Final-state hadr<strong>on</strong> scattering<br />

• Low-energy scatterings in CM frame and boost back<br />

• Higher masses take bigger kick, c.f. collective flow in heavy i<strong>on</strong><br />

• Ideally assign producti<strong>on</strong> vertices to outgoing hadr<strong>on</strong>s and follow path<br />

Simple model based <strong>on</strong> distance in y − φ space<br />

• High-p⊥ hadr<strong>on</strong>s in jets formed at later times and less likely to scatter<br />

• Scattering probability<br />

Pij = k σel<br />

ij (s)<br />

σ el<br />

max<br />

⎛<br />

max ⎝0, 1 − ∆R2 ij<br />

⎞<br />

R2 ⎠<br />

max<br />

• Order scatterings based <strong>on</strong> “relative transverse velocity”<br />

v ⊥ij =<br />

<br />

<br />

p⊥i <br />

m⊥i<br />

− p ⊥j<br />

m ⊥j<br />

• Dominated by pi<strong>on</strong>s, so focus <strong>on</strong> ππ, πK and πp (σ el<br />

max ∼ 200 mb)<br />

• Most scatterings close to threshold


σ el [mb]<br />

dσ el / d cos(θ)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

120<br />

100<br />

Elastic scattering cross secti<strong>on</strong>s<br />

Isospin partial-wave parameterisati<strong>on</strong>s (no Columb correcti<strong>on</strong>s)<br />

π + π -<br />

π + π 0<br />

π + π +<br />

0<br />

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2<br />

ECM [GeV]<br />

80<br />

60<br />

40<br />

20<br />

1.0 * 0.40 GeV<br />

0.5 * 0.77 GeV<br />

1.0 * 1.10 GeV<br />

0<br />

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1<br />

cos(θ)<br />

σ el [mb]<br />

dσ el / d cos(θ)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

π + K -<br />

π 0 K +<br />

π + K +<br />

0.6 0.8 1 1.2 1.4 1.6 1.8 2<br />

ECM [GeV]<br />

1.0 * 0.80 GeV<br />

0.5 * 0.89 GeV<br />

1.0 * 1.10 GeV<br />

0<br />

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1<br />

cos(θ)<br />

σ el [mb]<br />

dσ el / d cos(θ)<br />

250<br />

200<br />

150<br />

100<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

50<br />

0<br />

π + p<br />

π 0 p<br />

π - p<br />

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6<br />

ECM [GeV]<br />

1.0 * 1.10 GeV<br />

0.3 * 1.23 GeV<br />

1.0 * 1.40 GeV<br />

0<br />

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1<br />

cos(θ)


Preliminary results<br />

Results from simple model (7 TeV)<br />

• Perform scattering after first round of hadr<strong>on</strong> decays (η → π)<br />

• HS1 - j = 0.1, Rmax = 1.0, flat cross secti<strong>on</strong> + isotropic scatterings<br />

• HS2 - j = 1.0, Rmax = 1.0, parameterised cross secti<strong>on</strong>s<br />

(K + + K - ) / (π + + π - )<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

ALICE<br />

<strong>PYTHIA</strong> default<br />

<strong>PYTHIA</strong> HS1<br />

<strong>PYTHIA</strong> HS2<br />

0 0.5 1 1.5 2 2.5<br />

(p + + p - ) / (π + + π - )<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

ALICE<br />

<strong>PYTHIA</strong> default<br />

<strong>PYTHIA</strong> HS1<br />

<strong>PYTHIA</strong> HS2<br />

0 0.5 1 1.5 2 2.5<br />

Cross secti<strong>on</strong>s are small, limiting effect<br />

• Less multiplicity at 900 GeV → less effect<br />

• Increase in Rmax tends to give pairs <strong>with</strong> higher invariant mass,<br />

but cross secti<strong>on</strong>s still low in this regi<strong>on</strong><br />

Preliminary results not so promising. . .


. . . but, whatever the correct explanati<strong>on</strong>,<br />

the road leads to more complexity, not less:<br />

Another example: matching to NLO, NNLO<br />

The need for experiment ↔ generators ↔ theory remains.<br />

PDF<br />

ME<br />

MPI<br />

ISR<br />

FSR<br />

BR<br />

CR<br />

Hadr.<br />

Decays<br />

Rescattering<br />

BE<br />

Unknown?


Summary and Outlook<br />

• <strong>PYTHIA</strong> 6 is winding down:<br />

⋆ is supported but not developed;<br />

⋆ still main opti<strong>on</strong> for current run (sigh),<br />

⋆ but not after l<strong>on</strong>g shutdown 2013!<br />

• <strong>PYTHIA</strong> 8 is the natural successor,<br />

⋆ is (sadly!) not yet quite up to speed in all respects,<br />

⋆ but for much already better than <strong>PYTHIA</strong>6 ,<br />

⋆ is starting to have competitive tunes,<br />

⋆ and will c<strong>on</strong>tinue to move ahead.<br />

⋆ Currently versi<strong>on</strong> 8.150 <strong>with</strong> the features menti<strong>on</strong>ed here.<br />

• Advise to experimentalists:<br />

⋆ step up <strong>PYTHIA</strong> 8 usage to gain experience;<br />

⋆ if you want new features then be prepared to use <strong>PYTHIA</strong> 8;<br />

⋆ provide feedback, both what works and what does not;<br />

⋆ do your own tunes to data and tell outcome.<br />

News list: http://www.hepforge.org/lists/listinfo/pythia8-announce<br />

The work is never d<strong>on</strong>e!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!