02.03.2013 Views

MPI in Pythia 8

MPI in Pythia 8

MPI in Pythia 8

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>MPI</strong> <strong>in</strong> PYTHIA 8<br />

Richard Corke<br />

Department of Astronomy and Theoretical Physics<br />

Lund University<br />

September 2010<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 1 / 25


Overview<br />

1 <strong>MPI</strong> <strong>in</strong> PYTHIA 8<br />

2 Enhanced screen<strong>in</strong>g<br />

3 Rescatter<strong>in</strong>g<br />

4 Tun<strong>in</strong>g prospects<br />

5 Summary<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 2 / 25


<strong>MPI</strong> <strong>in</strong> PYTHIA 8<br />

Interleaved evolution<br />

◮ Note: what follows covers the current <strong>MPI</strong> framework of PYTHIA 8<br />

◮ Transverse-momentum-ordered parton showers<br />

◮ <strong>MPI</strong> also ordered <strong>in</strong> p⊥<br />

◮ Mix of possible underly<strong>in</strong>g event processes, <strong>in</strong>clud<strong>in</strong>g jets, γ, J/ψ, DY, ...<br />

◮ Radiation from all <strong>in</strong>teractions<br />

◮ Interleaved evolution for ISR, FSR and <strong>MPI</strong><br />

dP<br />

dp⊥<br />

dP<strong>MPI</strong><br />

=<br />

dp⊥<br />

+ <br />

dPISR<br />

dp⊥<br />

p⊥max<br />

× exp −<br />

p⊥<br />

dP<strong>MPI</strong><br />

dp ′ ⊥<br />

+ <br />

dPFSR<br />

dp⊥<br />

+ dPISR<br />

dp ′ ⊥<br />

+ dPFSR<br />

dp ′ <br />

dp<br />

⊥<br />

′ <br />

⊥<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 3 / 25


MI <strong>MPI</strong> <strong>in</strong> <strong>in</strong>PYTHIA PYTHIA8 8<br />

p⊥Order<strong>in</strong>g<br />

<strong>MPI</strong> overview<br />

Other half of solution:<br />

perturbative QCD not valid at small p⊥ s<strong>in</strong>ce q, g not asymptotic states<br />

(conf<strong>in</strong>ement!).<br />

◮ Model for non-diffractive events, σnd ∼ (2/3)σtot<br />

◮ Ordered <strong>in</strong> decreas<strong>in</strong>g p⊥us<strong>in</strong>g “Sudakov” trick<br />

◮ Ordered <strong>in</strong> decreas<strong>in</strong>g p⊥ us<strong>in</strong>g “Sudakov” trick<br />

dP<strong>MPI</strong><br />

=<br />

dp⊥<br />

1<br />

p⊥i−1<br />

dσ<br />

1 dσ<br />

exp −<br />

σnd dp⊥<br />

p⊥<br />

σnd dp ′ dp<br />

⊥<br />

′ <br />

dP<br />

= ⊥<br />

dp⊥i<br />

1<br />

p⊥i−1<br />

dσ<br />

1 dσ<br />

exp −<br />

σnd dp⊥<br />

p⊥<br />

σnd dp ′ dp<br />

⊥<br />

′ Naively breakdown at<br />

<br />

p⊥m<strong>in</strong> ⊥<br />

¯h 0.2 GeV · fm<br />

≈<br />

rp 0.7 fm<br />

≈ 0.3 GeV ΛQCD ◮ QCD 2 → 2 cross-section cross sectionis divergent divergent, <strong>in</strong> p⊥ but→not0 valid limit, at small p⊥<br />

as but q, q/g g not asymptotic states<br />

. . . but better replace rp by (unknown) colour screen<strong>in</strong>g length d <strong>in</strong> hadron<br />

r r<br />

d<br />

resolved<br />

λ ∼ 1/p ⊥<br />

r r<br />

d<br />

screened<br />

◮ Regularise cross-section, <strong>in</strong>troduc<strong>in</strong>g p⊥0 as a free parameter<br />

◮ Regularise cross section, p⊥0 is now a free parameter<br />

dˆσ<br />

dp2 ∝<br />

⊥<br />

α2 S (p2 ⊥ )<br />

p4 →<br />

⊥<br />

α2 S (p2 ⊥0 + p2 ⊥ )<br />

(p2 ⊥0 + p2 ⊥ )2<br />

dˆσ<br />

dp2 ∝<br />

⊥<br />

α2 s(p2 ⊥ )<br />

p4 →<br />

⊥<br />

α2 s(p2 ⊥0 + p2 ⊥ )<br />

(p2 ⊥0 + p2 ⊥ )2<br />

Richard Corke (Lund University) Multiple Interactions <strong>in</strong> PYTHIA 8 October 2008 5 / 24<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 4 / 25


<strong>MPI</strong> <strong>in</strong> PYTHIA 8<br />

p⊥0 and energy scal<strong>in</strong>g<br />

◮ p⊥0 depends on energy<br />

◮ Ansatz: scales <strong>in</strong> a similar manner to the total cross section<br />

(effective power related to the Pomeron <strong>in</strong>tercept)<br />

p⊥0(ECM) = p ref<br />

⊥0 ×<br />

<br />

ECM<br />

E ref<br />

pow<br />

ECM CM<br />

PYTHIA Tune Z1<br />

◮ Need many measurements at different energies<br />

◮ Rick Field, MB & UE Work<strong>in</strong>g Group, Tune Z1 (PYTHIA 6)<br />

P T0 (GeV/c)<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

RDF Very Prelim<strong>in</strong>ary<br />

<strong>MPI</strong> Cut-Off P T0(W cm)<br />

CDF 1.96 TeV<br />

CMS 900 GeV<br />

1.0<br />

0 2000 4000 6000 8000 10000 12000<br />

Center-of-Mass Energy W cm (GeV)<br />

<strong>MPI</strong> Cut-Off versus the Center-of Mass Energy W cm: PYTHIA Tune Z1 was determ<strong>in</strong>ed<br />

Tune Z1<br />

CMS 7 TeV<br />

p T0(W)=p T0(W/W0) e<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 5 / 25


<strong>MPI</strong> <strong>in</strong> PYTHIA 8<br />

Impact parameter<br />

◮ Require one <strong>in</strong>teraction for a physical event<br />

◮ Introduce impact parameter, b, with matter profile<br />

◮ S<strong>in</strong>gle Gaussian; no free parameters<br />

◮ Overlap function<br />

<br />

exp<br />

◮ Double Gaussian<br />

ρ(r) ∝<br />

1 − β<br />

a 3 1<br />

<br />

exp −<br />

−b Epow exp<br />

2<br />

r<br />

a2 1<br />

<br />

<br />

+ β<br />

a3 <br />

exp −<br />

2<br />

◮ Time-<strong>in</strong>tegrated overlap of hadrons dur<strong>in</strong>g collision<br />

2<br />

r<br />

a2 2<br />

◮ Average activity at b ∝ O(b)<br />

<br />

O(b) = dt d 3 xρ(x, y, z) ρ(x + b, y, z + t)<br />

◮ Central collisions usually more active<br />

◮ Probability distribution broader than Poissonian<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 6 / 25


<strong>MPI</strong> <strong>in</strong> PYTHIA 8<br />

PDF rescal<strong>in</strong>g and primordial k⊥<br />

◮ ISR and <strong>MPI</strong> compete for beam momentum → PDF rescal<strong>in</strong>g<br />

◮ Squeeze orig<strong>in</strong>al x range<br />

◮ Flavour effects<br />

0 < x < 1 → 0 < x <<br />

<br />

1 − <br />

xi<br />

◮ Sea quark <strong>in</strong>itiator (qs) leaves beh<strong>in</strong>d an anti-sea companion (qc)<br />

◮ qc distribution from g → qs + qc perturbative ansatz<br />

◮ Normalisation of sea + gluon distributions fluctuate<br />

for total momentum conservation<br />

◮ Primordial k⊥<br />

◮ Needed for agreement with e.g. p⊥(Z 0 ) distributions<br />

◮ Give all <strong>in</strong>itiator partons Gaussian k⊥, width<br />

σ(Q, m) = Q 1 σsoft + Q σhard<br />

2<br />

+ Q<br />

Q 1 2<br />

◮ Rotate/boost systems to new frame<br />

m 1 2<br />

m<br />

+ m<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 7 / 25


<strong>MPI</strong> I <strong>in</strong> PYTHIA <strong>in</strong> PYTHIA 8 8<br />

olour Colour Reconnection<br />

reconnection<br />

0.7<br />

◮<br />

◮ Rearrangement<br />

Rearrangement<br />

of<br />

of<br />

f<strong>in</strong>al-state<br />

f<strong>in</strong>al-state<br />

colour<br />

colour<br />

connections,<br />

connections such that overall str<strong>in</strong>g<br />

6 such that overall str<strong>in</strong>g<br />

Total uncerta<strong>in</strong>ty<br />

length<br />

length<br />

is reduced<br />

is reduced<br />

4<br />

Systematic uncerta<strong>in</strong>ty<br />

FIG. 7: The dependence of the average track pT on the event multiplicity. A comparison with the Run I<br />

shown. The error bars <strong>in</strong> the upper plot describe the uncerta<strong>in</strong>ty on the data po<strong>in</strong>ts. This uncerta<strong>in</strong>ty <strong>in</strong>clud<br />

uncerta<strong>in</strong>ty on the data and the statistical uncerta<strong>in</strong>ty on the total correction. In the lower plot the system<br />

(solid yellow band) and the total uncerta<strong>in</strong>ty are shown. The total uncerta<strong>in</strong>ty is the quadratic sum of the unc<br />

1.5<br />

on the data po<strong>in</strong>ts and the systematic uncerta<strong>in</strong>ty.<br />

<strong>Pythia</strong> hadron level : CDF RunII Prelim<strong>in</strong>ary<br />

◮ Large amount of reconnection required for agreement with data<br />

> [GeV/c]<br />

< p > [GeV/c]<br />

T<br />

◮ Large amount of reconnection<br />

◮needed Probability to match for adata system to<br />

TuneA p =0<br />

1.3<br />

T<br />

Atlas Tune<br />

1.2<br />

◮ Start reconnect with NC<br />

with → ∞a harder limit, but system<br />

real-world has NC = 3<br />

p<br />

◮ Chang<strong>in</strong>g the P = colour structure of an<br />

event can lead to (dis)agreement<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

Data Run II<br />

| η|<br />

≤ 1 and p ≥ 0.4 GeV/c<br />

T<br />

with data multiplicity<br />

2 ⊥R<br />

(p2 ⊥R + p2 ,<br />

⊥ )<br />

p⊥R = R ∗ p MI<br />

1.4<br />

1.3<br />

Data Run II | η|<br />

≤1<br />

and p ≥0.4<br />

GeV/c<br />

T<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

<strong>Pythia</strong> hadron level :<br />

⊥0<br />

< p<br />

T<br />

0.7<br />

Uncerta<strong>in</strong>ty %<br />

1.4<br />

0.9<br />

0.8<br />

2<br />

TuneA no <strong>MPI</strong><br />

TuneA p =1.5<br />

T<br />

| η|<br />

≤1<br />

and p ≥0.4<br />

GeV/c<br />

T<br />

Data Run II<br />

Data Run I<br />

0<br />

0 5 10 15 20 25 30 35 40 45 50<br />

charged particle multiplicity<br />

0 5 10 15 20 25 30 35 40 45 50<br />

TuneA no <strong>MPI</strong><br />

TuneA p =1.5<br />

TuneA p =0<br />

T<br />

ATLAS tune<br />

Mean p⊥as a function of multiplicity, CDF, Run II<br />

Measurement of Inelastic P ¯ P Inclusive Cross Sections at √ T<br />

0.6<br />

0 5 10 15 20 25 30 35 40 45 50 s=1.96<br />

TeV, The CDF Collaboration, charged particle Prelim<strong>in</strong>ary multiplicity<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 8 / 25<br />

FERMILAB-PUB-09-098-E


nhanced<br />

Enhanced<br />

Screen<strong>in</strong>g<br />

screen<strong>in</strong>g<br />

troduction<br />

◮ Idea of Gösta Gustafson from work on model<strong>in</strong>g <strong>in</strong>itial states<br />

with an extended Mueller dipole formalism<br />

◮ “Elastic and quasi-elastic pp and γ ∗ ◮ Idea of Gösta Gustafson from work on modell<strong>in</strong>g <strong>in</strong>itial states<br />

with an extended Mueller dipole formalism<br />

◮ “Elastic and quasi-elastic pp and γ p scatter<strong>in</strong>g <strong>in</strong> the Dipole Model,”<br />

C. Flensburg, G. Gustafson and L. Lönnblad, Eur. Phys. J. C 60 (2009) 233<br />

⋆ p scatter<strong>in</strong>g <strong>in</strong> the Dipole Model,”<br />

C. Flensburg, G. Gustafson and L. Lonnblad, arXiv:0807.0325 [hep-ph].<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

rapidity 0<br />

-0.6 -0.4 -0.2 0 0.2 0.4 0.6<br />

◮ Even at a fixed impact parameter, <strong>in</strong>itial state will conta<strong>in</strong><br />

◮ Even at fixed impact parameter, <strong>in</strong>itial state will conta<strong>in</strong><br />

more/less fluctuations on an event-by-event basis<br />

more/less fluctuations on an event-by-event basis<br />

◮ More activity → more screen<strong>in</strong>g<br />

◮ More activity → more screen<strong>in</strong>g<br />

Richard Corke (Lund University) Multiple Interactions <strong>in</strong> PYTHIA 8 October 2008 20 / 24<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 9 / 25


nhanced<br />

Enhanced<br />

Screen<strong>in</strong>g<br />

screen<strong>in</strong>g<br />

troduction<br />

◮ Idea of Gösta Gustafson from work on model<strong>in</strong>g <strong>in</strong>itial states<br />

with an extended Mueller dipole formalism<br />

◮ “Elastic and quasi-elastic pp and γ ∗ ◮ Idea of Gösta Gustafson from work on modell<strong>in</strong>g <strong>in</strong>itial states<br />

with an extended Mueller dipole formalism<br />

◮ “Elastic and quasi-elastic pp and γ p scatter<strong>in</strong>g <strong>in</strong> the Dipole Model,”<br />

C. Flensburg, G. Gustafson and L. Lönnblad, Eur. Phys. J. C 60 (2009) 233<br />

⋆ p scatter<strong>in</strong>g <strong>in</strong> the Dipole Model,”<br />

C. Flensburg, G. Gustafson and L. Lonnblad, arXiv:0807.0325 [hep-ph].<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

rapidity 16<br />

-0.6 -0.4 -0.2 0 0.2 0.4 0.6<br />

◮ Even at a fixed impact parameter, <strong>in</strong>itial state will conta<strong>in</strong><br />

◮ Even at fixed impact parameter, <strong>in</strong>itial state will conta<strong>in</strong><br />

more/less fluctuations on an event-by-event basis<br />

more/less fluctuations on an event-by-event basis<br />

◮ More activity → more screen<strong>in</strong>g<br />

◮ More activity → more screen<strong>in</strong>g<br />

Richard Corke (Lund University) Multiple Interactions <strong>in</strong> PYTHIA 8 October 2008 20 / 24<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 9 / 25


Enhanced Enhancedscreen<strong>in</strong>g Screen<strong>in</strong>g<br />

Enhanced Screen<strong>in</strong>g <strong>in</strong> PYTHIA<br />

dˆσ<br />

dp 2 ⊥<br />

∝ α2 S (p2 ⊥0 + p2 ⊥ )<br />

(p2 ⊥0 + p2 ⊥ )2 → α2 S (p2 ⊥0 + p2 ⊥ )<br />

(n p2 ⊥0 + p2 ⊥ )2<br />

[GeV/c]<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

CDF Run II<br />

<strong>Pythia</strong> 8.114 No reconnection<br />

<strong>Pythia</strong> 8.114 No reconnection + ES1<br />

<strong>Pythia</strong> 8.114 No reconnection + ES2<br />

ES1: n = no. of MI<br />

ES2: n = no. of MI + ISR<br />

0.6<br />

0 5 10 15 20 25 30 35<br />

Charged particle multiplicity<br />

Richard Corke (Lund University) Multiple Interactions <strong>in</strong> PYTHIA 8 October 2008 21 / 24<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 10 / 25


Enhanced Enhancedscreen<strong>in</strong>g Screen<strong>in</strong>g<br />

Enhanced Screen<strong>in</strong>g <strong>in</strong> PYTHIA<br />

dˆσ<br />

dp 2 ⊥<br />

∝ α2 S (p2 ⊥0 + p2 ⊥ )<br />

(p2 ⊥0 + p2 ⊥ )2 → α2 S (p2 ⊥0 + p2 ⊥ )<br />

(n p2 ⊥0 + p2 ⊥ )2<br />

[GeV/c]<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

CDF Run II<br />

<strong>Pythia</strong> 8.114 No reconnection<br />

<strong>Pythia</strong> 8.114 No reconnection + ES1<br />

<strong>Pythia</strong> 8.114 No reconnection + ES2<br />

<strong>Pythia</strong> 8.114, RR * p ⊥0 = 5.56<br />

<strong>Pythia</strong> 8.114 ES1, RR * p ⊥0 = 4.35<br />

<strong>Pythia</strong> 8.114 ES2, RR * p ⊥0 = 3.08<br />

ES1: n = no. of MI<br />

ES2: n = no. of MI + ISR<br />

0.6<br />

0 5 10 15 20 25 30 35<br />

Charged particle multiplicity<br />

Richard Corke (Lund University) Multiple Interactions <strong>in</strong> PYTHIA 8 October 2008 21 / 24<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 10 / 25


Rescatter<strong>in</strong>g<br />

lt. <strong>in</strong>t.<br />

R<br />

Rescatter<strong>in</strong>g<br />

dP<br />

= +<br />

◮ <strong>MPI</strong> Introduction traditionally disjo<strong>in</strong>t 2 → 2 <strong>in</strong>teractions<br />

<br />

dP p⊥i−1<br />

ISR<br />

exp −<br />

◮ Rescatter<strong>in</strong>g: ◮with Consider<br />

ISR sum<br />

aallow over<br />

4 →<br />

all<br />

4an previous<br />

andalready a 3 →<br />

MI<br />

3 scattered process parton to <strong>in</strong>teract aga<strong>in</strong><br />

mult. <strong>in</strong>t. p⊥max<br />

ISR<br />

p⊥1<br />

3<br />

(4) Evolution <strong>in</strong>terleaved with ISR (2004)<br />

• Transverse-momentum-ordered showers<br />

<br />

dPMI<br />

dp ⊥<br />

p ⊥<br />

dp ⊥<br />

is 3 → 3 <strong>in</strong>stead of 4 → 4:<br />

hard <strong>in</strong>t.<br />

<strong>in</strong>teraction ISR<br />

p number<br />

′ ⊥1<br />

dp ⊥<br />

p ⊥<br />

dPMI<br />

dp ′ ⊥<br />

+ dPISR dp ′ <br />

dp<br />

⊥<br />

′ <br />

⊥<br />

(5) Rescatter<strong>in</strong>g (<strong>in</strong> progress)<br />

◮ mult. <strong>in</strong>t.<br />

p⊥2Interaction<br />

cross-section<br />

is 3 → 3 <strong>in</strong>stead of 4 → 4:<br />

ISR<br />

dσ<strong>in</strong>t<br />

dp mult. <strong>in</strong>t.<br />

p⊥3<br />

ISR<br />

p⊥m<strong>in</strong><br />

<strong>in</strong>teraction<br />

1 2 3 number<br />

2 =<br />

⊥<br />

<br />

dx1 dx2 f1(x1, Q 2 ) f2(x2, Q 2 ) dˆσ<br />

dp2 ⊥<br />

◮ Paver and Treleani (1984)<br />

dσ<strong>in</strong>t<br />

dp2 ∼ N1N2 ˆσ<br />

⊥<br />

σ4→4 ∼ (N1N2 ˆσ)(N ′<br />

1N ′<br />

2 ˆσ) σ3→3 ∼ (N1N2 ˆσ)(N ′<br />

1 ˆσ)<br />

σ3→3<br />

∼<br />

σ4→4<br />

1<br />

N ′<br />

◮ Investigated by Paver and Treleani (1984), size of effect<br />

dσ<strong>in</strong>t<br />

dp<br />

→ small<br />

2<br />

2 =<br />

⊥<br />

<br />

dx1 dx2 f1(x1, Q 2 ) f2(x2, Q 2 ) dˆσ<br />

dp2 ∼ N1N2ˆσ<br />

⊥<br />

σ4→4 ∼ (N1N2ˆσ)(N ′ 1N ′ 2ˆσ) σ3→3 ∼ (N1N2ˆσ)(N ′ 1ˆσ)<br />

σ3→3<br />

∼<br />

σ4→4<br />

1<br />

N ′ → small<br />

2<br />

◮ But should be there!<br />

Richard Corke (Lund University) Multiple Interactions <strong>in</strong> PYTHIA 8 October 2008 13 / 24<br />

◮ Plays a role <strong>in</strong> the collective effects of <strong>MPI</strong><br />

◮ Possible colour connection effects<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 11 / 25


Rescatter<strong>in</strong>g<br />

◮ Typical case of small angle scatter<strong>in</strong>gs between partons from 2 <strong>in</strong>com<strong>in</strong>g<br />

hadrons, such that they are still associated with their orig<strong>in</strong>al hadrons<br />

f (x, Q 2 ) → frescaled(x, Q 2 ) + <br />

δ(x − xn)<br />

◮ In this limit, momentum sum rule holds<br />

1<br />

0<br />

x frescaled(x, Q 2 ) dx + <br />

xn = 1<br />

◮ Orig<strong>in</strong>al <strong>MPI</strong> <strong>in</strong>teractions supplemented by:<br />

◮ S<strong>in</strong>gle rescatter<strong>in</strong>gs: one parton from the rescaled PDF, one delta function<br />

◮ Double rescatter<strong>in</strong>gs: both partons are delta functions<br />

◮ One simplification: rescatter<strong>in</strong>gs<br />

always occur at “later times”<br />

◮ Z 0 preceeded by rescatter<strong>in</strong>g not<br />

possible<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 12 / 25<br />

n<br />

n


Rescatter<strong>in</strong>g<br />

◮ In general not possible to uniquely identify a scattered parton with an<br />

<strong>in</strong>com<strong>in</strong>g hadron, so use approximate rapidity based prescription<br />

2 2<br />

p⊥ dN / dp⊥<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Step: Step function at y = 0<br />

Simultaneous: Partons belong to both beams simultaneously<br />

Tanh/l<strong>in</strong>ear: In between<br />

(a)<br />

Step<br />

L<strong>in</strong>ear<br />

Tanh<br />

Simultaneous<br />

0<br />

0.1 1 10<br />

2 2<br />

p⊥ (GeV )<br />

100<br />

◮ Little sensitivity to choice<br />

2 2<br />

p⊥ dN / dp⊥<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

(b)<br />

Step<br />

L<strong>in</strong>ear<br />

Tanh<br />

Simultaneous<br />

0<br />

0.1 1 10<br />

2 2<br />

p⊥ (GeV )<br />

100<br />

Figure 5: p⊥ distributions of (a) s<strong>in</strong>gle rescatter<strong>in</strong>gs and (b) double rescatter<strong>in</strong>gs <strong>in</strong> LHC<br />

m<strong>in</strong>imum bias events (pp, √ ◮ Natural suppression for s<strong>in</strong>gle rescatter<strong>in</strong>g<br />

◮ No suppression for s double = 14 TeV, rescatter<strong>in</strong>g, old tune). but Parameters still smallfor effect the different options<br />

are the same as the previous figure. Note the difference <strong>in</strong> vertical scale between (a) and<br />

(b), and that the step, l<strong>in</strong>ear and tanh curves are so close that they may be difficult to<br />

dist<strong>in</strong>guish<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 13 / 25


Rescatter<strong>in</strong>g<br />

◮ In general not possible to uniquely identify a scattered parton with an<br />

<strong>in</strong>com<strong>in</strong>g hadron, so use approximate rapidity based prescription<br />

Step: Step function at y = 0<br />

Simultaneous: Partons belong to both beams simultaneously<br />

Tanh/l<strong>in</strong>ear: In between<br />

p ⊥ 2 dN / dp⊥ 2<br />

Ratio<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

(a)<br />

Old Tune - Normal<br />

New Tune - Normal<br />

Old Tune - S<strong>in</strong>gle<br />

New Tune - S<strong>in</strong>gle<br />

Old Tune - S<strong>in</strong>gle / Normal (Step)<br />

New Tune - S<strong>in</strong>gle / Normal (Step)<br />

Old Tune - Double / Normal (Sim)<br />

0.1 1 10<br />

2 2<br />

p⊥ (GeV )<br />

100 1000<br />

Probability<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

Old Tune<br />

New Tune<br />

(b)<br />

0<br />

0.1 1 10<br />

2 2<br />

p⊥ (GeV )<br />

Figure 6: Rescatter<strong>in</strong>g <strong>in</strong> LHC m<strong>in</strong>imum bias events (pp, √ ◮ Little sensitivity to choice<br />

s = 14TeV, old<br />

◮ Natural suppression (a) shows for thes<strong>in</strong>gle p⊥ distribution rescatter<strong>in</strong>g of scatter<strong>in</strong>gs and s<strong>in</strong>gle rescatter<strong>in</strong>gs per eve<br />

◮ No suppression the ratio for double plot is double rescatter<strong>in</strong>g, rescatter<strong>in</strong>g but still withsmall the simultaneous effect beam prescriptio<br />

tune, where its effect is maximal. (b) shows the probability for a parton<br />

hard process of an event, to rescatter as a function of its <strong>in</strong>itial p⊥<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 13 / 25


0.4<br />

0.2<br />

Rescatter<strong>in</strong>g<br />

0<br />

Ratio<br />

0.6<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

◮ Use step prescription<br />

Old Tune - S<strong>in</strong>gle / Normal (Step)<br />

New Tune - S<strong>in</strong>gle / Normal (Step)<br />

Old Tune - Double / Normal (Sim)<br />

0.1 1 10<br />

2 2<br />

p⊥ (GeV )<br />

100 1000<br />

0<br />

0.1 1 10<br />

2 2<br />

p⊥ (GeV )<br />

100 1000<br />

◮ Amount of rescatter<strong>in</strong>g sensitive to amount of underly<strong>in</strong>g activity<br />

◮ Default tune change start<strong>in</strong>g with PYTHIA 8.127<br />

◮ <strong>MPI</strong>: p ref<br />

⊥0 = 2.15 → 2.25, E pow<br />

Figure 6: Rescatter<strong>in</strong>g <strong>in</strong> LHC m<strong>in</strong>imum bias events (pp,<br />

CM = 0.16 → 0.24<br />

◮ Matter profile from double to s<strong>in</strong>gle Gaussian<br />

◮ ISR activity <strong>in</strong>creased<br />

√ s = 14TeV, old and new tunes).<br />

(a) shows the p⊥ distribution of scatter<strong>in</strong>gs and s<strong>in</strong>gle rescatter<strong>in</strong>gs per event. Included <strong>in</strong><br />

the ratio plot is double rescatter<strong>in</strong>g with the simultaneous beam prescription us<strong>in</strong>g the old<br />

tune, where its effect is maximal. (b) shows the probability for a parton, created <strong>in</strong> the<br />

hard process of an event, to rescatter as a function of its <strong>in</strong>itial p⊥<br />

Old<br />

New<br />

Probabili<br />

Tevatron LHC<br />

M<strong>in</strong> Bias QCD Jets M<strong>in</strong> Bias QCD Jets<br />

Scatter<strong>in</strong>gs 2.81 5.09 5.19 12.19<br />

S<strong>in</strong>gle rescatter<strong>in</strong>gs 0.41 1.32 1.03 4.10<br />

Double rescatter<strong>in</strong>gs 0.01 0.04 0.03 0.15<br />

Scatter<strong>in</strong>gs 2.50 3.79 3.40 5.68<br />

S<strong>in</strong>gle rescatter<strong>in</strong>gs 0.24 0.60 0.25 0.66<br />

Double rescatter<strong>in</strong>gs 0.00 0.01 0.00 0.01<br />

Tevatron: p¯p, √ s = 1.96 TeV, QCD jet ˆp ⊥m<strong>in</strong> = 20 GeV LHC: pp, √ s = 14 TeV, QCD jet ˆp ⊥m<strong>in</strong> = 50 GeV<br />

Table 1: Average number of scatter<strong>in</strong>gs, s<strong>in</strong>gle rescatter<strong>in</strong>gs and double rescatter<strong>in</strong>gs <strong>in</strong><br />

m<strong>in</strong>imum bias and QCD jet events at Tevatron (pp, √ s = 1.96 TeV, QCD jet ˆp⊥m<strong>in</strong> =<br />

20 GeV) and LHC (pp, √ ◮ Double rescatter<strong>in</strong>g always small, so ignored <strong>in</strong> what follows<br />

s = 14.0 TeV, QCD jet ˆp⊥m<strong>in</strong> = 50 GeV) energies for both the old<br />

and new tunes<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 14 / 25<br />

0.1<br />

0.05


Rescatter<strong>in</strong>g<br />

Rescatter<strong>in</strong>g<br />

Status<br />

◮ So far nice and simple, but want fully hadronic events<br />

◮ Prelim<strong>in</strong>ary framework <strong>in</strong> place to get hadronic f<strong>in</strong>al states<br />

◮ Integration with showers needed<br />

◮ Keep system mass/rapidity unchanged where possible<br />

◮ Non-trivial k<strong>in</strong>ematics with rescatter<strong>in</strong>g, FSR and primordial k⊥<br />

◮ A radiat<strong>in</strong>g parton will shuffle momentum with a recoiler parton<br />

◮ Colour effects<br />

◮ FSR: usually nearest colour neighbour<br />

◮ ◮ Parton Primordial showers k⊥given use dipole by boost<strong>in</strong>g picture scatter<strong>in</strong>g for recoil sub-systems<br />

◮ With rescatter<strong>in</strong>g, colour can flow between systems<br />

◮ Rescatter<strong>in</strong>g: colour dipoles can span between scatter<strong>in</strong>g sub-systems<br />

◮ Momentum shuffled between systems is given a different primordial k⊥boost<br />

◮ Temporary solution of deferr<strong>in</strong>g FSR until after primordial k⊥is added<br />

◮ Full event generation, <strong>in</strong>clud<strong>in</strong>g showers, primordial k⊥ and<br />

colour reconnections<br />

Richard Corke (Lund University) Multiple Interactions <strong>in</strong> PYTHIA 8 October 2008 17 / 24<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 15 / 25


Rescatter<strong>in</strong>g<br />

10 6<br />

dσ / dp ⊥ (nb / GeV)<br />

10 5<br />

(a)<br />

2 -> 3<br />

3 -> 3<br />

◮ Compare sources of 3- and 4-jets at the parton level<br />

◮ Contributions to 3-jet rate<br />

◮ 2 → 3 from s<strong>in</strong>gle radiation<br />

◮ 3 → 3 from s<strong>in</strong>gle rescatter<strong>in</strong>g<br />

◮ 4 → 3 double parton scatter<strong>in</strong>g with one jet lost<br />

◮ Contributions to 4-jet rate<br />

◮ 2 → 4 from double radiation<br />

◮ 3 → 4 from s<strong>in</strong>gle radiation + s<strong>in</strong>gle rescatter<strong>in</strong>g<br />

◮ 4 → 4 from DPS<br />

◮ 4 → 4 ′ 10<br />

from two s<strong>in</strong>gle rescatter<strong>in</strong>gs<br />

0<br />

10 1<br />

10 2<br />

10 3<br />

10 4<br />

0<br />

10<br />

20 40 60 80 100<br />

p⊥ (GeV)<br />

0<br />

10 1<br />

10 2<br />

10 3<br />

10 4<br />

0 20 40 60 80 100<br />

p⊥ (GeV)<br />

Figure 13: Breakdown of contributions to the (a) three-jet and (b) four-jet cross sections<br />

(see text) for LHC m<strong>in</strong>imum bias events (pp, √ s = 14 TeV, new tune) when no p⊥ or<br />

rapidity cuts are applied<br />

dσ / dp ⊥ (nb / GeV)<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

(a)<br />

2 -> 3<br />

3 -> 3<br />

4 -> 3<br />

30 40 50 60 70 80 90 100<br />

p⊥ (GeV)<br />

dσ / dp ⊥ (nb / GeV)<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

pp, √ s = 14 TeV, new tune, p ⊥ > 10 GeV, |η| < 1.0<br />

dσ / dp ⊥ (nb / GeV)<br />

(b)<br />

(b)<br />

2 -> 4<br />

3 -> 4<br />

4 -> 4<br />

4 -> 4’<br />

2 -> 4<br />

3 -> 4<br />

4 -> 4<br />

30 40 50 60 70 80 90 100<br />

p⊥ (GeV)<br />

Figure 14: Breakdown of contributions to the<br />

√<br />

(a) three-jet and (b) four-jet cross sections<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 16 / 25


Rescatter<strong>in</strong>g<br />

◮ Hadron level<br />

◮ Feed results <strong>in</strong>to FastJet,<br />

anti-k⊥ algorithm, R = 0.4<br />

◮ 2-, 3- and 4-jet exclusive cross<br />

sections<br />

◮ Some <strong>in</strong>crease <strong>in</strong> jet rates, but<br />

contributions can be<br />

“compensated” by changes <strong>in</strong><br />

parameters elsewhere<br />

◮ Also studied<br />

dσ / dp ⊥ (nb / GeV)<br />

Ratio<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10<br />

2.2<br />

1.8<br />

1.4<br />

1<br />

0.6<br />

1<br />

2-jet Normal<br />

3-jet Normal<br />

4-jet Normal<br />

2-jet Rescatter<br />

3-jet Rescatter<br />

4-jet Rescatter<br />

2-jet 3-jet 4-jet<br />

20 30 40 50 60 70 80 90<br />

p⊥ (GeV)<br />

pp, √ s = 14 TeV, old tune, p ⊥ > 12.5 GeV, |η| < 1.0<br />

Figure 19: Two-, three- and four-jet exclusive cross sections for LHC m<strong>in</strong>imu<br />

(pp, √ s = 14 TeV, p⊥jet > 12.5 GeV, |η| < 1.0, old tune)<br />

◮ Colour reconnections<br />

◮ “Cron<strong>in</strong>” effect are very deeply entangled <strong>in</strong> the downward evolution of the f<strong>in</strong>al state, so it<br />

any such signatures may exist. For the three-jet sample of Fig. 19, we stud<br />

◮ ∆R & ∆φ distributions<br />

∆R value between the different pairs of jets per event. One could hope that th<br />

of ∆R values from three-jet events where rescatter<strong>in</strong>g is <strong>in</strong>volved is somehow<br />

the background events (e.g. three-jet events from radiation which may be cha<br />

peaked <strong>in</strong> the small ∆R region). For the four-jet sample, we <strong>in</strong>stead stud<br />

and largest ∆φ values between the jets per event. It is known that DPS<br />

characteristic ∆φ peak at π, but there are also radiative contributions wh<br />

rescatter<strong>in</strong>g. Unfortunately, for both samples, the results with and withou<br />

are essentially <strong>in</strong>dist<strong>in</strong>guishable.<br />

◮ No “smok<strong>in</strong>g-gun” signatures for rescatter<strong>in</strong>g<br />

◮ Would any effects be visible <strong>in</strong> a full tune?<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 17 / 25


References<br />

◮ PYTHIA references<br />

◮ “PYTHIA 6.4 Physics and Manual,”<br />

T. Sjöstrand, S. Mrenna and P. Z. Skands, JHEP 0605 (2006) 026<br />

◮ “A Brief Introduction to PYTHIA 8.1,”<br />

T. Sjöstrand, S. Mrenna and P. Z. Skands,<br />

Comput. Phys. Commun. 178 (2008) 852<br />

◮ Model references<br />

◮ “A Multiple Interaction Model for the Event Structure<br />

<strong>in</strong> Hadron Collisions,”<br />

T. Sjöstrand and M. van Zijl, Phys. Rev. D 36 (1987) 2019<br />

◮ “Multiple <strong>in</strong>teractions and the structure of beam remnants,”<br />

T. Sjöstrand and P. Z. Skands, JHEP 0403 (2004) 053<br />

◮ “Transverse-momentum-ordered showers and <strong>in</strong>terleaved<br />

multiple <strong>in</strong>teractions,”<br />

T. Sjöstrand and P. Z. Skands, Eur. Phys. J. C 39 (2005) 129<br />

◮ “Multiparton Interactions and Rescatter<strong>in</strong>g,”<br />

R. Corke and T. Sjöstrand, JHEP 1001 (2010) 035<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 18 / 25


Tun<strong>in</strong>g prospects<br />

◮ FSR and hadronisation tuned to LEP data (H. Hoeth)<br />

◮ Already default for PYTHIA 8.125 and later<br />

◮ Problems with simultaneous tun<strong>in</strong>g of MB and UE<br />

〈N ch〉/dη dφ<br />

MC/data<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

<br />

0.4<br />

0.2<br />

0<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

Transverse region charged particle density<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

CDF data<br />

PYTHIA 8.135<br />

0 50 100 150 200 250 300 350 400<br />

pT(lead<strong>in</strong>g jet) / GeV<br />

◮ MB well described, but UE rises too fast!<br />

<br />

<br />

<br />

〈∑ ptrack T 〉/dη dφ / GeV<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

1.4<br />

Transverse region charged ∑ p ⊥ density<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

CDF data<br />

PYTHIA 8.135<br />

0 50 100 150 200 250 300 350 400<br />

pT(lead<strong>in</strong>g jet) / GeV<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 19 / 25<br />

MC/data<br />

1.2<br />

1<br />

0.8<br />

0.6


Tun<strong>in</strong>g prospects<br />

◮ New <strong>in</strong> PYTHIA 8: FSR <strong>in</strong>terleav<strong>in</strong>g<br />

◮ F<strong>in</strong>al-state dipoles can stretch to the <strong>in</strong>itial state (FI dipole)<br />

◮ How to subdivide FSR and ISR <strong>in</strong> an FI dipole?<br />

◮ Large mass → large rapidity range for emission<br />

◮ In dipole rest frame<br />

m >> p⊥<br />

Double<br />

counted<br />

m/2<br />

p⊥<br />

m ∼ p⊥<br />

◮ Suppress f<strong>in</strong>al-state radiation <strong>in</strong> double-counted region<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 20 / 25


Tun<strong>in</strong>g prospects<br />

◮ Also study how well the parton shower fills the phase space<br />

◮ Compare aga<strong>in</strong>st 2 → 3 real matrix elements<br />

◮ Would chang<strong>in</strong>g the shower start<strong>in</strong>g scale give better agreement?<br />

◮ Qualitatively, PS do<strong>in</strong>g a good job<br />

dσ / dp ⊥ [nb / GeV]<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

p⊥3 PS<br />

p⊥3 ME<br />

1e-05<br />

0 10 20 30 40 50<br />

p⊥ [GeV]<br />

dσ / dp ⊥ [nb / GeV]<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

1e-05<br />

dσ / dp ⊥ [nb / GeV]<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

1e-06<br />

0 10 20 30 40 50<br />

p⊥ [GeV]<br />

p⊥4 PS<br />

p⊥4 ME<br />

1e-05<br />

0 10 20 30 40 50<br />

p⊥ [GeV]<br />

p⊥5 PS<br />

p⊥5 ME<br />

p ⊥ m<strong>in</strong><br />

3<br />

p ⊥ m<strong>in</strong><br />

5<br />

= 5.0 GeV<br />

= 5.0 GeV<br />

Rsep = 0.25<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 21 / 25


Tun<strong>in</strong>g prospects<br />

◮ Is a simultaneous MB/UE Tevatron tune now possible?<br />

◮ Tunes 2C and 2M<br />

◮ CTEQ6L1 and MRST LO** PDF tunes to Tevatron data<br />

◮ Start with by-hand tune<br />

◮ Compare aga<strong>in</strong>st Pro-Q20 and Perugia 0<br />

◮ Underly<strong>in</strong>g event description improved!<br />

〈N ch〉/dη dφ<br />

MC/data<br />

1<br />

0.8<br />

0.6<br />

<br />

0.4<br />

0.2<br />

0<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

Transverse region charged particle density<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

CDF data<br />

PYTHIA 6.422 Pro-Q20<br />

PYTHIA 6.422 Perugia 0<br />

PYTHIA 8.142 Tune 2C<br />

PYTHIA 8.142 Tune 2M<br />

0 50 100 150 200 250 300 350 400<br />

pT(lead<strong>in</strong>g jet) / GeV<br />

<br />

<br />

<br />

〈∑ ptrack T 〉/dη dφ / GeV<br />

MC/data<br />

2<br />

1.5<br />

1<br />

<br />

0.5<br />

<br />

0<br />

1.4<br />

Transverse region charged ∑ p ⊥ density<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

CDF data<br />

PYTHIA 6.422 Pro-Q20<br />

PYTHIA 6.422 Perugia 0<br />

PYTHIA 8.142 Tune 2C<br />

PYTHIA 8.142 Tune 2M<br />

0 50 100 150 200 250 300 350 400<br />

pT(lead<strong>in</strong>g jet) / GeV<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 22 / 25<br />

1.2<br />

1<br />

0.8<br />

0.6


Tun<strong>in</strong>g prospects<br />

◮ More plots: http://www.thep.lu.se/˜richard/pythia81<br />

〈pT〉 / GeV<br />

MC/data<br />

Mean track pT vs multiplicity, |η| < 1, p⊥ > 0.4 GeV<br />

2.4<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

CDF data<br />

PYTHIA 6.422 Pro-Q20<br />

PYTHIA 6.422 Perugia 0<br />

PYTHIA 8.142 Tune 2C<br />

PYTHIA 8.142 Tune 2M<br />

<br />

<br />

5 10 15 20 25 30 35 40 45<br />

Nch <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

CDF data<br />

PYTHIA 6.422 Pro-Q20<br />

PYTHIA 6.422 Perugia 0<br />

PYTHIA 8.142 Tune 2C<br />

10<br />

PYTHIA 8.142 Tune 2M<br />

−5<br />

10−4 10−3 10−2 10−1 Charged multiplicity at<br />

1<br />

√ s = 1800 GeV, |η| < 1, pT > 0.4 GeV<br />

dσ/dn ch<br />

MC/data<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0 5 10 15 20 25 30 35 40<br />

Nch ◮ Broadly <strong>in</strong> l<strong>in</strong>e with previous tunes<br />

◮ MRST LO** has more momentum<br />

◮ Lower αs and higher p ref<br />

⊥0<br />

◮ Use overlap function for matter profile<br />

◮ Parameter gives handle on width of multiplicity distributions<br />

◮ Suggests slightly wider than s<strong>in</strong>gle Gaussian<br />

◮ Reduced colour reconnection<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 23 / 25


Tun<strong>in</strong>g prospects<br />

◮ New LHC data<br />

◮ Measurements of MB/UE at new energies!<br />

◮ Experiments appear consistent with themselves<br />

◮ But tension with older data?<br />

◮ Move from NSD/INEL to INEL>0<br />

◮ Reproducible def<strong>in</strong>itions!<br />

◮ Diffractive description more important?<br />

◮ New framework <strong>in</strong> PYTHIA 8 for high-mass diffraction<br />

◮ “Diffraction <strong>in</strong> <strong>Pythia</strong>,” S. Nav<strong>in</strong>, arXiv:1005.3894 [hep-ph]<br />

◮ Based on Ingelman–Schle<strong>in</strong> picture<br />

◮ S<strong>in</strong>gle diffraction: Pomeron emitted from one <strong>in</strong>com<strong>in</strong>g hadron<br />

<strong>in</strong>teracts with <strong>in</strong>com<strong>in</strong>g hadron on the other side<br />

◮ Total cross sections<br />

◮ Early look at MB numbers suggest dampen<strong>in</strong>g diffractive cross sections?<br />

◮ New possibility to dampen rise available<br />

◮ ATLAS-CONF-2010-048: “Both PYTHIA8 and PHOJET would do slightly<br />

better <strong>in</strong> describ<strong>in</strong>g the data if there was an <strong>in</strong>crease <strong>in</strong> the ND component”<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 24 / 25


Summary<br />

◮ PYTHIA 8 <strong>MPI</strong> model<br />

◮ Well established model that has evolved over time<br />

◮ Fully <strong>in</strong>terleaved with parton showers<br />

◮ Rich mix of possible underly<strong>in</strong>g event processes<br />

◮ Still under development<br />

◮ Enhanced screen<strong>in</strong>g<br />

◮ Perhaps part of a solution towards lower<strong>in</strong>g colour reconnections<br />

◮ More evidence to come from DIPSY?<br />

◮ Rescatter<strong>in</strong>g<br />

◮ First model to <strong>in</strong>clude such effects<br />

◮ No dist<strong>in</strong>ctive signatures; perhaps full tune would reveal more<br />

◮ Future project: x-dependent proton profile<br />

◮ Tun<strong>in</strong>g prospects<br />

◮ Simultaneous MB/UE tun<strong>in</strong>g with<strong>in</strong> reach<br />

◮ Initial tunes to Tevatron data<br />

◮ Impact of LHC data still uncerta<strong>in</strong><br />

◮ Article <strong>in</strong> preparation<br />

Richard Corke (Lund University) <strong>MPI</strong>10@DESY September 2010 25 / 25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!