09.03.2013 Views

Principles of brazing technology - technicalmaterials.umicore.com

Principles of brazing technology - technicalmaterials.umicore.com

Principles of brazing technology - technicalmaterials.umicore.com

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Principles</strong> <strong>of</strong> <strong>brazing</strong> <strong>technology</strong><br />

Brazing is a thermal process for securely joining and<br />

coating materials, whereby a liquid phase is<br />

produced by melting a <strong>brazing</strong> alloy (fusion-<strong>brazing</strong>)<br />

or by diffusion at the interfaces (diffusion-<strong>brazing</strong>).<br />

The solidus temperature <strong>of</strong> the base material is not<br />

reached (DIN 8505, Part 1).<br />

1. Standards and regulations for <strong>brazing</strong><br />

1.1 Re<strong>com</strong>mendations for <strong>brazing</strong><br />

- Technical information sheets<br />

- Standards<br />

Technical information sheets: Re<strong>com</strong>mended<br />

These are prepared by experts in work groups and<br />

the information corresponds to the respective state <strong>of</strong><br />

<strong>technology</strong>. It is re<strong>com</strong>mended that the technical<br />

information sheets be heeded as they are also<br />

viewed as the respective state <strong>of</strong> the <strong>technology</strong> from<br />

a legal point <strong>of</strong> view.<br />

Examples:<br />

- DVS-Guideline 1183: DVS-course „Brazing<br />

copper materials“<br />

- VdTÜV – Technical Information Sheet 1160:<br />

„Evaluation <strong>of</strong> processes for manufacturing<br />

brazed joints and high temperature brazed<br />

joints“<br />

- DVGW – Work Sheet GW2<br />

Standards: Compulsory<br />

Any deviation from the standard must be specifically<br />

agreed between the client and contractor. There are<br />

currently many national (DIN), european (EN) and<br />

international (ISO) standards. The existing German<br />

standards are being superseded by European<br />

standards. Referral is made in particular here to DIN<br />

EN 1044 „Brazing – <strong>com</strong>position <strong>of</strong> <strong>brazing</strong><br />

alloys“ which replaces DIN 8513 Parts 1-5 and to<br />

DIN EN 1045 „Brazing – fluxes for <strong>brazing</strong>“ which<br />

replaces DIN 8511-1. Both these standards<br />

categorise the respective materials. There are also<br />

standards in existence which cover the terms used in<br />

<strong>brazing</strong>, constructional aspects, testing <strong>of</strong> brazed<br />

joints, inspecting brazed joints, etc. which can be<br />

obtained via Beuth-Verlag (Berlin) or DVS-Verlag<br />

(Düsseldorf).<br />

1.2 Regulations for work safety and accident<br />

prevention, e.g.:<br />

- Accident prevention regulations, section 15:<br />

„Welding and related techniques “ d.BG;<br />

- VDI 2046 „Safety guidelines for operating<br />

industrial furnaces with inert gas and reactive<br />

atmospheres“<br />

2. Wetting process and capillary forces<br />

2.1 Distinction between welding and <strong>brazing</strong><br />

In welding not only is the added alloy material melted<br />

but the base material is also partially melted.<br />

In <strong>brazing</strong> only the added <strong>brazing</strong> alloy melts. The<br />

base material is wetted in its solid state by the liquid<br />

<strong>brazing</strong> alloy.<br />

Fusion welding Brazing<br />

Usually similar materials Virtually any desired material<br />

<strong>com</strong>binations<br />

Virtually identical melting Brazing alloy melts at<br />

temperatures for the base lower temperature<br />

material and alloy than the base material<br />

2.2 Wetting<br />

A prerequisite for <strong>brazing</strong> is the wetting <strong>of</strong> the base<br />

material by the <strong>brazing</strong> alloy. Three important<br />

conditions must be fulfilled for this to happen:<br />

• the <strong>brazing</strong> surfaces and the <strong>brazing</strong> alloy must<br />

be „bare metal“,<br />

• the <strong>brazing</strong> surfaces and the <strong>brazing</strong> alloy must<br />

have at least reached the working temperature,<br />

• at least one <strong>com</strong>ponent <strong>of</strong> the <strong>brazing</strong> alloy must<br />

readily form an alloy with the base material.<br />

Umicore AG & Co. KG - BrazeTec, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang<br />

Telefon: +49 (0) 6181-59-03 Telefax: +49 (0) 6181-59-3107 Email: info@BrazeTec.de Internet: www.BrazeTec.de


<strong>Principles</strong> <strong>of</strong> <strong>brazing</strong> <strong>technology</strong><br />

Base material<br />

- Visible oxide layers (rust and scale), fat layers<br />

and layers <strong>of</strong> dirt must be removed before<br />

carrying out <strong>brazing</strong> work. Thin oxide layers (e.g.<br />

tarnishing) may remain on the workpieces if<br />

<strong>brazing</strong> is carried out using a flux.<br />

- The working temperature is the lowest surface<br />

temperature <strong>of</strong> a workpiece at the <strong>brazing</strong> joint at<br />

which the <strong>brazing</strong> alloy can wet, spread and bond<br />

with the base material. This temperature is always<br />

higher than the solidus temperature <strong>of</strong> the <strong>brazing</strong><br />

alloy. It can be above, below or the same as its<br />

liquidus temperature.<br />

- The wetting process involves surface alloying<br />

between the <strong>brazing</strong> alloy and the base material.<br />

Next to the wetting zone there is a diffusion zone<br />

which is very small for <strong>brazing</strong> work and cannot<br />

be detected by metallographic means. In order to<br />

attain optimum strength, the <strong>brazing</strong> alloy must be<br />

liquid for at least 8 to 10 seconds to give an<br />

adequately deep diffusion zone.<br />

There is greater interaction between the <strong>brazing</strong> alloy<br />

and base material when carrying out high<br />

temperature <strong>brazing</strong> (flux-free <strong>brazing</strong> at<br />

temperatures above 900°C in a controlled<br />

atmosphere).<br />

2.3 Joint-<strong>brazing</strong> and gap-<strong>brazing</strong><br />

Joint-<strong>brazing</strong> is a <strong>brazing</strong> technique similar to gasfusion<br />

welding from a joint preparation and working<br />

method point <strong>of</strong> view. It is virtually always carried out<br />

manually. The working temperature <strong>of</strong> the <strong>brazing</strong><br />

alloy must not be exceeded when joint-<strong>brazing</strong>.<br />

1 to 1.5 mm<br />

The most important area <strong>of</strong> application <strong>of</strong> joint<strong>brazing</strong><br />

is for <strong>brazing</strong> galvanised steel pipes.<br />

The workpieces are prepared for gap-<strong>brazing</strong> such<br />

that the <strong>brazing</strong> joints are narrow capillary gaps.<br />

They are heated up to <strong>brazing</strong> temperature uniformly<br />

over the whole length <strong>of</strong> the gap. The liquid <strong>brazing</strong><br />

alloy is forced into the gap by „capillary filling<br />

pressure“. This technique is easy to mechanise. The<br />

majority <strong>of</strong> <strong>brazing</strong> work is carried out by the gap<strong>brazing</strong><br />

technique.<br />

The surface forces are additive in the narrow<br />

capillary gaps (size <strong>of</strong> the order <strong>of</strong> 0.1 mm), so that<br />

the <strong>brazing</strong> alloy is preferentially drawn into the<br />

narrow gap. If <strong>brazing</strong> is being carried out with a flux<br />

in a gas atmosphere, the <strong>brazing</strong> alloy which<br />

penetrates into the <strong>brazing</strong> gap must be able to push<br />

the flux out <strong>of</strong> the gap.<br />

In gap-<strong>brazing</strong>, the working temperature <strong>of</strong> the<br />

<strong>brazing</strong> alloy may be exceeded – by in general 20 to<br />

50°C.<br />

Umicore AG & Co. KG - BrazeTec, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang<br />

Telefon: +49 (0) 6181-59-03 Telefax: +49 (0) 6181-59-3107 Email: info@BrazeTec.de Internet: www.BrazeTec.de


<strong>Principles</strong> <strong>of</strong> <strong>brazing</strong> <strong>technology</strong><br />

Start <strong>of</strong> the wetting Intermediate state<br />

II = Workpiece 1<br />

II = Workpiece 2<br />

Both bare metal, and<br />

heated to working<br />

temperature<br />

• Liquid <strong>brazing</strong> alloy<br />

Capillary filling pressure<br />

Final state<br />

The <strong>brazing</strong> alloy is pressed into the gap by capillary<br />

forces. The narrower the <strong>brazing</strong> gap, the higher the<br />

capillary filling pressure.<br />

For a 0.1 mm parallel gap, the capillary filling<br />

pressure reaches ca. 100 mbar, corresponding to<br />

about 0.1 Atm. This in turn corresponds to about a 1<br />

m column <strong>of</strong> water ( ρ = 1); assuming ρ = 10 g/cm 3<br />

(the density <strong>of</strong> a <strong>brazing</strong> alloy), the capillary height<br />

for low melting point <strong>brazing</strong> alloys in a 0.1 mm wide<br />

gap can be calculated to be ca. 10 cm. This agrees<br />

reasonably well with experiences in practice.<br />

Gap too narrow<br />

Correct gap width<br />

(only applies for<br />

<strong>brazing</strong> with flux)<br />

Permissible gap width for manual <strong>brazing</strong><br />

Gap too wide<br />

Different gap cross-sections give different filling<br />

pressures. An open fillet has a six times higher<br />

capillary filling pressure than a parallel flat gap.<br />

3. Brazing alloy and flux groups<br />

3.1 Brazing alloys<br />

According to DIN 8505, alloys with a liquidus<br />

temperature below 450°C are solders and those with<br />

a liquidus temperature above 450°C are <strong>brazing</strong><br />

alloys.<br />

The upper and lower <strong>brazing</strong> temperature limits are<br />

determined by the following:<br />

lower limit<br />

- the working temperature<br />

upper limit<br />

- the flux (be<strong>com</strong>es saturated with oxides at<br />

too high temperatures), or<br />

- the <strong>brazing</strong> alloy (individual <strong>com</strong>ponents <strong>of</strong><br />

the alloy can evaporate), or<br />

- the economics <strong>of</strong> the process (unnecessarily<br />

high temperatures cost unnecessary time<br />

and energy), or<br />

- the base material (structural transformation;<br />

strength loss).<br />

Umicore AG & Co. KG - BrazeTec, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang<br />

Telefon: +49 (0) 6181-59-03 Telefax: +49 (0) 6181-59-3107 Email: info@BrazeTec.de Internet: www.BrazeTec.de


<strong>Principles</strong> <strong>of</strong> <strong>brazing</strong> <strong>technology</strong><br />

3.2 Fluxes<br />

Fluxes are solvents for metal oxides. They have an<br />

effective temperature range within which they are<br />

able to dissolve metal oxides. The solvating capacity<br />

<strong>of</strong> the flux is limited. About 5% <strong>of</strong> the weight <strong>of</strong> flux in<br />

metal oxides can be dissolved. If oxides are present<br />

in greater amounts, the flux saturates and it loses its<br />

functionality.<br />

Atmospheric<br />

oxygene Flux Oxide<br />

More than 5 min.<br />

The hygroscopic flux residues must be removed by<br />

scouring in water or by pickling in pickling baths<br />

suitable for the base materials. Ultrasound aids the<br />

removal <strong>of</strong> these flux residues.<br />

The non-hygroscopic flux residues do not have to be<br />

removed for fear <strong>of</strong> corrosion. If they need to be<br />

removed for other reasons (e.g. to paint the<br />

<strong>com</strong>ponents), they are usually removed by<br />

mechanical means (e.g. sand-blasting).<br />

Too little Sufficient<br />

Oxide film remains Oxide film is<br />

dissolved<br />

The solvating capacity <strong>of</strong> modern <strong>brazing</strong> fluxes for<br />

use at low temperatures (i.e. between 600 and<br />

800°C) for <strong>com</strong>mon heavy metal oxides is between 1<br />

and 5%, meaning that it is limited. That means that<br />

relative to the oxide which is present a relatively<br />

large amount <strong>of</strong> flux must be available, and ultimately<br />

so in the molten state, otherwise sound <strong>brazing</strong> work<br />

is not achieved. Extremely narrow gaps, e.g. less<br />

than 0.02 mm, hence cause problems because there<br />

is an inadequate amount <strong>of</strong> flux in the gap. This<br />

naturally has a big effect on the soundness <strong>of</strong> the<br />

brazed joint.<br />

Wire <strong>of</strong> <strong>brazing</strong> alloy<br />

Umicore AG & Co. KG - BrazeTec, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang<br />

Telefon: +49 (0) 6181-59-03 Telefax: +49 (0) 6181-59-3107 Email: info@BrazeTec.de Internet: www.BrazeTec.de<br />

Flux<br />

For surface <strong>brazing</strong>, the high capillary filling pressure<br />

in the open fillets leads to running <strong>of</strong> the <strong>brazing</strong> alloy<br />

on the external sides. The supply <strong>of</strong> <strong>brazing</strong> alloy to<br />

the narrow surface gap is reduced; increased<br />

inclusion <strong>of</strong> flux hence occurs.<br />

Brazing alloy<br />

Flux<br />

Increased flux inclusion can be avoided by inserted<br />

<strong>brazing</strong> alloy sheet.<br />

Gaseous fluxes<br />

Joints (V-seams and fillets) can be brazed using<br />

gaseous fluxes. For <strong>brazing</strong> gaps – especially for<br />

gaps having larger depths and small widths – the use<br />

<strong>of</strong> gaseous fluxes is not re<strong>com</strong>mended because the<br />

flame does not penetrate into the capillary gap.<br />

When using flux pastes, their working life can be<br />

significantly prolonged by the additional use <strong>of</strong><br />

gaseous fluxes.<br />

The effective temperature <strong>of</strong> gaseous fluxes extends<br />

from about 750°C to 1100°C.


<strong>Principles</strong> <strong>of</strong> <strong>brazing</strong> <strong>technology</strong><br />

Brazing with flux-forming <strong>brazing</strong> rods - BrazeTec<br />

Silfos <strong>brazing</strong> alloys.<br />

Oxygen<br />

Fuel gas<br />

Copper alloys, copper-tin alloys and silver can be<br />

brazed with phosphorus-containing <strong>brazing</strong> alloys<br />

without the use <strong>of</strong> flux. The „self-flowing“ properties<br />

<strong>of</strong> these <strong>brazing</strong> alloys can be explained as follows:<br />

On melting the <strong>brazing</strong> alloy, the phosphorus in the<br />

<strong>brazing</strong> alloy reacts with oxygen in the air to form<br />

phosphorus pentoxide. This reacts with the copper<br />

protoxide on the copper surface to form copper<br />

metaphosphate which acts as a flux. As copper<br />

metaphosphate is safe from a chemical- corrosion<br />

point <strong>of</strong> view, the brazed joints require no<br />

subsequent treatment.<br />

When <strong>brazing</strong> with BrazeTec Silfos <strong>brazing</strong> alloys,<br />

the <strong>brazing</strong> time should not be longer than about 3 to<br />

4 minutes.<br />

4. Brazability <strong>of</strong> <strong>com</strong>ponents<br />

According to DIN 8514, the brazability is the property<br />

<strong>of</strong> a <strong>com</strong>ponent to be manufactured in such a way<br />

via <strong>brazing</strong> that it meets the stipulated requirements.<br />

A <strong>com</strong>ponent can be brazed if the following<br />

conditions are met (see diagram):<br />

- the base material is suitable for <strong>brazing</strong>,<br />

- there is a <strong>brazing</strong> capability for the<br />

manufacture, namely one or more <strong>brazing</strong><br />

techniques can be used,<br />

- and the construction can be brazed such that<br />

a sound construction results, namely<br />

satisfactory reliability <strong>of</strong> the <strong>com</strong>ponent<br />

under the foreseen operating conditions.<br />

Comment: In electrical engineering, the expressions<br />

„solderability“ and „suitability for soldering“ are used<br />

synonymously for soldering.<br />

Soundness <strong>of</strong><br />

the brazed joint<br />

Construction<br />

Base material<br />

Suitability for<br />

<strong>brazing</strong><br />

Brazability<br />

<strong>of</strong> the<br />

<strong>com</strong>ponent<br />

Suitable base material, <strong>brazing</strong> alloy and flux<br />

<strong>com</strong>binations<br />

Each <strong>of</strong> the three properties „suitability for <strong>brazing</strong>“,<br />

„<strong>brazing</strong> capability“ and „ability to manufacture a<br />

sound brazed joint“ depend on the base material,<br />

manufacturing process and joint design. The degree<br />

<strong>of</strong> dependency on these three parameters depends<br />

on the individual <strong>brazing</strong> task.<br />

Umicore AG & Co. KG - BrazeTec, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang<br />

Telefon: +49 (0) 6181-59-03 Telefax: +49 (0) 6181-59-3107 Email: info@BrazeTec.de Internet: www.BrazeTec.de<br />

Brazing<br />

capability<br />

Manufacture


<strong>Principles</strong> <strong>of</strong> <strong>brazing</strong> <strong>technology</strong><br />

The suitability <strong>of</strong> base materials for <strong>brazing</strong> work is<br />

shown in Table 1.<br />

Tables 1 and 3 give information about how the<br />

indicated materials can be brazed. This does not<br />

mean to say that <strong>com</strong>ponents brazed in this way can<br />

withstand all operating loads. In order to guarantee<br />

this, the operating conditions for the brazed joints<br />

must be known prior to selecting the<br />

conditions/methods for carrying out the <strong>brazing</strong> work.<br />

These are workpiece-specific and differ from one<br />

<strong>com</strong>ponent to the next. More detailed information on<br />

Suitability <strong>of</strong> base materials for <strong>brazing</strong><br />

this matter can be found in the section entitled<br />

„Selection criteria for <strong>brazing</strong> alloys and fluxes“. In<br />

certain instances where there is relatively high risk <strong>of</strong><br />

damage, we re<strong>com</strong>mend that you get in touch with<br />

us to enable optimum selection <strong>of</strong> the <strong>brazing</strong><br />

parameters.<br />

Brazing has the big advantage that virtually all<br />

materials which are suitable for <strong>brazing</strong> can be<br />

<strong>com</strong>bined with each other. It goes without saying that<br />

the <strong>brazing</strong> parameters must always be selected for<br />

the most „difficult“ material from a <strong>brazing</strong> point <strong>of</strong><br />

view.<br />

Group 1 Group 2 Group 3<br />

Materials which can be brazed with<br />

universal <strong>brazing</strong> alloys and universal<br />

fluxes and using all standard<br />

techniques.<br />

e.g.<br />

copper and copper alloys<br />

nickel and nickel alloys<br />

iron materials<br />

<strong>com</strong>mon steels<br />

cobalt<br />

noble metals<br />

Table 1<br />

Materials which require special<br />

<strong>brazing</strong> alloys and/or special fluxes,<br />

but which do not require special<br />

<strong>brazing</strong> techniques.<br />

e.g.<br />

aluminium and aluminium alloys<br />

hard metals, stellites<br />

chromium, molybdenum, tungsten,<br />

tantalum, niobium<br />

solder-like materials<br />

Materials which can only be<br />

brazed using special <strong>brazing</strong><br />

alloys and special techniques.<br />

e.g.<br />

titanium<br />

zirconium<br />

beryllium<br />

ceramics<br />

Umicore AG & Co. KG - BrazeTec, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang<br />

Telefon: +49 (0) 6181-59-03 Telefax: +49 (0) 6181-59-3107 Email: info@BrazeTec.de Internet: www.BrazeTec.de


<strong>Principles</strong> <strong>of</strong> <strong>brazing</strong> <strong>technology</strong><br />

Solder and <strong>brazing</strong> alloy groups (I)<br />

Group description Soldering /<br />

<strong>brazing</strong><br />

temperature<br />

range<br />

°C<br />

Tin-lead solders<br />

EN 29453<br />

Special solders<br />

EN 29453<br />

Cadmium-free<br />

universal <strong>brazing</strong><br />

alloys<br />

DIN EN 1044<br />

(DIN 8513)<br />

Low melting point<br />

cadmiumcontaining<br />

universal<br />

<strong>brazing</strong> alloys<br />

DIN EN 1044<br />

(DIN 8513)<br />

Typical solders /<br />

<strong>brazing</strong> alloys in this<br />

group in accordance<br />

with EN (DIN)<br />

145 ... 325 S-Sn60Pb40<br />

S-Pb50Sn50<br />

145 ... 395 S-Sn97Cu 3<br />

650 ... 1100<br />

S-Sn96Ag4<br />

S-Sn96Ag3<br />

S-Sn95Sb5<br />

AG 104 (L-Ag45Sn)<br />

AG 106 (L-Ag34Sn)<br />

AG 203 (L-Ag44)<br />

AG 207 (L-Ag12)<br />

CU 303 (L-CuZn40)<br />

CU 102 (L-Cu)<br />

610 ... 800 AG 304 (L-Ag40Cd)<br />

AG 306 (L-Ag30Cd)<br />

Manganesecontaining<br />

special<br />

<strong>brazing</strong> alloys<br />

DIN EN 1044<br />

(DIN 8513)<br />

690 ... 1020 AG 502 (L-Ag49)<br />

1) not laid down in standards<br />

Table 2a<br />

BrazeTec name Solidus<br />

temp.<br />

Soldamoll 230<br />

(BrazeTec 3)<br />

Soldamoll 220<br />

BrazeTec 4<br />

Soldamoll 235<br />

BrazeTec 4576<br />

BrazeTec 3476<br />

BrazeTec 4404<br />

BrazeTec 1204<br />

BrazeTec 60/40<br />

BrazeTec 4003<br />

BrazeTec 3003<br />

BrazeTec 4900<br />

BrazeTec 21/68<br />

Umicore AG & Co. KG - BrazeTec, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang<br />

Telefon: +49 (0) 6181-59-03 Telefax: +49 (0) 6181-59-3107 Email: info@BrazeTec.de Internet: www.BrazeTec.de<br />

°C<br />

183<br />

183<br />

230<br />

221<br />

640<br />

630<br />

675<br />

800<br />

875<br />

1083<br />

595<br />

600<br />

680<br />

980<br />

Liquidus<br />

temp.<br />

°C<br />

190<br />

215<br />

250<br />

221<br />

240<br />

680<br />

730<br />

735<br />

830<br />

895<br />

1083<br />

630<br />

690<br />

705<br />

1030<br />

Max. permissible<br />

continuous<br />

operating<br />

temperature 1)<br />

°C<br />

80<br />

80<br />

110<br />

110<br />

110<br />

200<br />

200<br />

300<br />

300<br />

350<br />

150<br />

150<br />

400<br />

600<br />

Most important<br />

areas <strong>of</strong> application<br />

Electro-industry<br />

Copper pipe installation for<br />

hot and cold water systems<br />

Food industry<br />

Refrigeration engineering<br />

Gas and water installation<br />

Gas and water installation<br />

Electrical engineering<br />

Galvanised steel pipes, steel<br />

furniture<br />

Inert gas <strong>brazing</strong> <strong>of</strong> mass-<br />

produced <strong>com</strong>ponents<br />

Electrical engineering<br />

Refrigeration engineering<br />

Car-suppliers-industry<br />

Hard metal tools<br />

Hard metal tools


<strong>Principles</strong> <strong>of</strong> <strong>brazing</strong> <strong>technology</strong><br />

Solder and <strong>brazing</strong> alloy groups (II)<br />

Group description Soldering /<br />

<strong>brazing</strong><br />

temperature<br />

range<br />

Phosphoruscontaining<br />

<strong>brazing</strong><br />

alloys for copper<br />

base materials<br />

DIN EN 1044<br />

(DIN 8513)<br />

Special <strong>brazing</strong><br />

alloys for special<br />

<strong>brazing</strong> work<br />

DIN EN 1044<br />

(DIN 8513)<br />

High temperature<br />

nickel-based<br />

<strong>brazing</strong> alloys<br />

DIN EN 1044<br />

(DIN 8513)<br />

Aluminium <strong>brazing</strong><br />

alloys<br />

DIN EN 1044<br />

(DIN 8513)<br />

Table 2b<br />

Typical solders /<br />

<strong>brazing</strong> alloys in this<br />

group in accordance<br />

with EN (DIN)<br />

°C<br />

710 ... 800 CP 102 (L-Ag15P)<br />

CP 105 (L-Ag2P)<br />

CP 203 (L-CuP6)<br />

730 ... 960 AG 403 (L-Ag56InNi)<br />

900 ... 1200<br />

Ni 107 (L-Ni7)<br />

Ni 105 (L-Ni5)<br />

Ni 102 (L-Ni2)<br />

560 ... 600 AL 104 (L-AlSi12)<br />

BrazeTec name Solidus<br />

temp.<br />

BrazeTec Silfos 15<br />

BrazeTec Silfos 2<br />

BrazeTec Silfos 94<br />

BrazeTec 5603<br />

BrazeTec 6009<br />

BrazeTec 7200<br />

BrazeTec 897<br />

BrazeTec 1135<br />

BrazeTec 1002<br />

BrazeTec 88/12<br />

Umicore AG & Co. KG - BrazeTec, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang<br />

Telefon: +49 (0) 6181-59-03 Telefax: +49 (0) 6181-59-3107 Email: info@BrazeTec.de Internet: www.BrazeTec.de<br />

645<br />

°C<br />

645<br />

710<br />

600<br />

600<br />

780<br />

890<br />

1080<br />

970<br />

575<br />

Liquidus<br />

temp.<br />

800<br />

°C<br />

825<br />

890<br />

710<br />

720<br />

780<br />

890<br />

1135<br />

1000<br />

590<br />

Max. permissible<br />

continuous<br />

operating<br />

temperature 2)<br />

°C<br />

150<br />

150<br />

150<br />

200<br />

200<br />

300<br />

200<br />

Most important<br />

areas <strong>of</strong> application<br />

Electro-industry<br />

Copper pipe installation for<br />

sewer gas / natural gas<br />

High grade steel<br />

High grade steel<br />

Vacuum <strong>technology</strong><br />

Core and reactor constr.<br />

Turbine construction<br />

Turbine construction<br />

Heat exchangers


<strong>Principles</strong> <strong>of</strong> <strong>brazing</strong> <strong>technology</strong><br />

Flux groups (I) for soldering/<strong>brazing</strong> metallic materials<br />

Flux group Flux type Information about the manufacture Most important areas <strong>of</strong> application Nature <strong>of</strong> flux residues<br />

3.2.2. Zinc chloride and/or ammonium Chromium-containing steels;<br />

chloride and free acids<br />

highly oxidised workpieces<br />

3.1.1. Zinc chloride and/or ammonium Chromium-free steels and non-noble metals, if<br />

Corrosive<br />

chloride<br />

washing <strong>of</strong>f the residues is possible<br />

Fluxes for<br />

soldering heavy<br />

metals<br />

DIN EN 29454<br />

Fluxes for<br />

soldering light<br />

metals<br />

DIN EN 29454<br />

Table 3a<br />

3.1.1.<br />

2.1.3<br />

2.1.1<br />

2.1.2.<br />

1.1.2.<br />

1.1.1.<br />

1.1.3.<br />

3.1.1.<br />

2.1.3.<br />

2.1.2.<br />

Zinc chloride and ammonium<br />

chloride in organic formulation<br />

Organic acids<br />

Amines, diamines, urea<br />

Organic halogen <strong>com</strong>pounds<br />

Resins with halogen-containing<br />

activators<br />

Resins without additives<br />

Resins with<br />

halogen-free additives<br />

Solder-forming zinc chlorides<br />

and/or tin chlorides;<br />

also with additives<br />

Organic <strong>com</strong>pounds<br />

Organic halogen <strong>com</strong>pounds<br />

Chromium-free steels and non-noble metals, if<br />

washing <strong>of</strong>f the flux residues is not possible<br />

Copper<br />

For workpieces which can be washed<br />

Umicore AG & Co. KG - BrazeTec, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang<br />

Telefon: +49 (0) 6181-59-03 Telefax: +49 (0) 6181-59-3107 Email: info@BrazeTec.de Internet: www.BrazeTec.de<br />

Partly corrosive<br />

Non-corrosive<br />

Corrosive


<strong>Principles</strong> <strong>of</strong> <strong>brazing</strong> <strong>technology</strong><br />

Flux groups (II)<br />

Flux group Flux type Information about the<br />

manufacture<br />

Fluxes for <strong>brazing</strong> FH10 Boron <strong>com</strong>pounds and fluorides<br />

heavy metals FH11<br />

DIN EN 1045 FH12<br />

Fluxes for <strong>brazing</strong><br />

light metals<br />

DIN EN 1045<br />

Table 3b<br />

FH20<br />

FH21<br />

FH30<br />

FH 40<br />

FL10<br />

FL20<br />

Boron <strong>com</strong>pounds<br />

Boron <strong>com</strong>pounds, phosphates,<br />

silicates<br />

Chlorides and fluorides<br />

Hygroscopic chlorides and<br />

fluorides<br />

Non-hygroscopic fluorides<br />

Most important areas <strong>of</strong> application Behaviour <strong>of</strong> the flux residues<br />

Silver <strong>brazing</strong> alloys with working temperatures up to<br />

ca. 800°C<br />

Brazing alloys with working temperatures between<br />

750 and ca. 1000°C<br />

Brazing alloys with working temperatures above<br />

1000°C<br />

Brazing alloys with working temperatures between<br />

600 and 1000°C for reactor construction (boron-free)<br />

For workpieces which can be washed (also pickled,<br />

neutralised)<br />

Heat exchangers<br />

Umicore AG & Co. KG - BrazeTec, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang<br />

Telefon: +49 (0) 6181-59-03 Telefax: +49 (0) 6181-59-3107 Email: info@BrazeTec.de Internet: www.BrazeTec.de<br />

Hygroscopic<br />

Non-hygroscopic<br />

Non-hygroscopic<br />

Hygroscopic<br />

Corrosive<br />

Non-corrosive


<strong>Principles</strong> <strong>of</strong> <strong>brazing</strong> <strong>technology</strong><br />

Proposals (I) for <strong>brazing</strong> alloy (solder) / flux / <strong>brazing</strong> (soldering) technique <strong>com</strong>binations (for Group 1 base materials in accordance with Table 3)<br />

Base material Brazing alloy Flux Technique *) Solder Flux Technique *)<br />

Cu CP 105 (L-Ag2P)<br />

-<br />

FL / Ind.<br />

S-Sn97Cu3 3.1.1.<br />

FL / EL.-W.<br />

CP 203(L-CuP6)<br />

- EL.-W / SO / VO S-SnAg4<br />

1.1.1.<br />

Cu-alloys CP 105 (L-Ag2P)<br />

AG 102 (L-Ag55Sn)<br />

AG 203 (L-Ag44)<br />

FH10<br />

S-Pb50Sn50<br />

Ni + Ni-alloys AG 102 (L-Ag55Sn) FH10 FL / Ind / EL.-W. / AO S-Pb50Sn50 3.1.1. FL / EL.- W. / Ind.<br />

Iron materials AG 203 (L-Ag44)<br />

SO / VO<br />

S-Sn96Ag4<br />

Common steels AG 304 (L-Ag40Cd)<br />

S-Sn97Cu3<br />

Cobalt<br />

CU 303 (L-CuZn40)<br />

CU 305 (L-CuNi10Zn42)<br />

FH20<br />

S-Cd82Zn16Ag2 3.1.1. HL / AO / FL / Ind.<br />

CU 102 (L-Cu) -<br />

Cr- and Cr/Ni-steels AG 403 (L-Ag56InNi) FH12 FL / Ind. / EL.-W. S-Sn96Ag4 3.2.2. FL / EL.-W./ K<br />

HL / AO<br />

NI107/NI105/NI102<br />

AG 401/CU102<br />

- SO / VO<br />

Noble metals AG 102 (L-Ag55Sn) FH10 FL / Ind.<br />

S-Sn96Ag4 3.1.1.<br />

AG 202 (L-Ag60)<br />

EL.-W.<br />

AG 401 (L-Ag72)<br />

AO<br />

Gold <strong>brazing</strong> alloys<br />

SO / VO<br />

*) FL = Flame; EL.-W. = Electr. Res.; SO = Inert gas furnace; K = Copper-bit; Ind. = Induction; AO = Atmosphere furnace; VO = Vacuum furnace;<br />

HL = Hot air jet<br />

Table 4a<br />

Umicore AG & Co. KG - BrazeTec, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang<br />

Telefon: +49 (0) 6181-59-03 Telefax: +49 (0) 6181-59-3107 Email: info@BrazeTec.de Internet: www.BrazeTec.de


<strong>Principles</strong> <strong>of</strong> <strong>brazing</strong> <strong>technology</strong><br />

Proposals (II) for <strong>brazing</strong> alloy (solder) / flux / <strong>brazing</strong> (soldering) technique <strong>com</strong>binations (for Group 2 and 3 base materials in accordance with<br />

Table 3)<br />

Base material Brazing alloy Flux Technique *) Solder Flux Technique *)<br />

Al and Al-alloys AL 104 (L-AlSi12) FL10 FL<br />

S-Sn96Ag4 3.1.1. FL / (K)<br />

(with Mg and/or<br />

Si contents ≤ 2%)<br />

AO<br />

S-Cd80Zn20<br />

Hard metals AG 301 (L-Ag50CdNi) FH12<br />

FL<br />

-<br />

-<br />

-<br />

AG 502 (L-Ag49), possibly<br />

as layer <strong>brazing</strong> alloy<br />

Ind.<br />

Stellites<br />

AG 502 (L-Ag49) FH12<br />

-<br />

-<br />

-<br />

CU 305 (L-CuNi10Zn42) FH21<br />

SO / VO<br />

CU 102 (L-Cu), possibly<br />

with tri-metal<br />

-<br />

Chromium,<br />

molybdenum,<br />

AG 502 (L-Ag49) FH12<br />

Tungsten, tantalum,<br />

niobium<br />

Cu87MnCo 1 FL/Ind.<br />

- - -<br />

) FH21<br />

AO/SO<br />

Zinc<br />

- - - S-Pb60Sn40 3.1.1. FL/EL.-W.<br />

Antimony<br />

S-Sn96Ag4<br />

K/HL<br />

Lead<br />

- - -<br />

Bismuth<br />

S-Sn50Pb32Cd18 3.1.1.<br />

FL/EL..-W.<br />

Tin<br />

K/HL<br />

Titanium<br />

AG 401 (L-Ag72)<br />

- SO (Argon)<br />

- - -<br />

PD 105<br />

VO<br />

Zirconium<br />

PD 105 - SO (Argon)<br />

- - -<br />

Beryllium<br />

VO<br />

Graphite<br />

AgCuTik<br />

Metal oxideceramics<br />

1 ) - SO (Argon)<br />

- - -<br />

VO<br />

*) FL = Flame; EL.-W. = Electr. Res.; SO = Inert gas furnace; K = Copper-bit; Ind. = Induction; AO = Atmosphere furnace; VO = Vacuum furnace;<br />

HL = Hot air jet 1 ) not laid down in standards<br />

Table 4b<br />

Umicore AG & Co. KG - BrazeTec, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang<br />

Telefon: +49 (0) 6181-59-03 Telefax: +49 (0) 6181-59-3107 Email: info@BrazeTec.de Internet: www.BrazeTec.de


<strong>Principles</strong> <strong>of</strong> <strong>brazing</strong> <strong>technology</strong><br />

The information given about our products,<br />

equipment, plants and processes is based on<br />

extensive research work and our technical<br />

knowledge <strong>of</strong> applications. We provide this<br />

information verbally and in writing according to the<br />

best <strong>of</strong> our knowledge, but we do not accept any<br />

responsibility beyond that in the individual contract.<br />

We do however reserve the right to make technical<br />

changes as part <strong>of</strong> our product development<br />

activities. Our technical service personnel are<br />

available on request to provide further advice and<br />

assistance to solve manufacturing and technical<br />

problems.<br />

This does however not relinquish users <strong>of</strong> their<br />

responsibility to check our information and<br />

re<strong>com</strong>mendations prior to carrying out their own<br />

work. This is also true – especially for deliveries<br />

abroad – with regard to the observance <strong>of</strong> protection<br />

rights <strong>of</strong> third parties and with regard to applications<br />

and procedures not expressly given in writing by us.<br />

In the event <strong>of</strong> damage, our liability is limited to<br />

<strong>com</strong>pensation to the same degree as provided for in<br />

our General Terms and Conditions <strong>of</strong> Sale and<br />

Delivery for short<strong>com</strong>ings in quality.<br />

BrazeTec GmbH, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang<br />

Telefon: +49 (0) 6181-59-03 Telefax: +49 (0) 6181-59-55 50 Email: info@BrazeTec.de Internet: www.BrazeTec.de

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!