13.03.2013 Views

A. Wallraff, Control and measurement of multiple qubits - PTB

A. Wallraff, Control and measurement of multiple qubits - PTB

A. Wallraff, Control and measurement of multiple qubits - PTB

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Control</strong> <strong>and</strong> Measurement <strong>of</strong> Multiple Qubits<br />

in in Circuit Circuit Quantum Quantum Electrodynamics<br />

Electrodynamics<br />

Andreas <strong>Wallraff</strong> (ETH Zurich)<br />

www.qudev.ethz.ch<br />

M M. Baur, BBaur, D D. B BBozyigit Bozyigit, i i , R RR.<br />

. Bi Bianchetti Bianchetti, h i i, C C. Ei Eichler Eichler, hl , S SS.<br />

. Fili Filipp Filipp, , J J. Fi Fink, k<br />

T. Frey, CC.<br />

. Lang, P. Leek, G. Littich, G. Puebla-Hellmann,<br />

Puebla Hellmann,<br />

L. . Steffen, A. van Loo (ETH ETH Zurich)<br />

A A. Bl Blais i (Sh (Sherbrooke<br />

Sh Sherbrooke, b k , C Canada) d )<br />

J. Gambetta (Waterloo, Canada Canada)


<strong>Control</strong>ling the Interaction <strong>of</strong> Light <strong>and</strong> Matter ...<br />

... is challenging on the level <strong>of</strong> single (artificial) atoms <strong>and</strong> single photons<br />

• dipole moment d (usually small in atoms ~ ea 0)<br />

• single photon fields E 0 (small in 3D)<br />

• photon/atom interaction (usually small)<br />

d <strong>and</strong> E 0 can be controlled in superconducting circuits:<br />

• perform basic quantum optics experiments<br />

D. Walls, G. Milburn, Quantum Optics (Spinger-Verlag, Berlin, 1994)


Cavity Quantum Electrodynamics


Circuit Realization <strong>of</strong> Cavity QED<br />

... in superconducting circuits:<br />

with individual photons <strong>and</strong> <strong>qubits</strong> ...<br />

A. Blais, et al., PRA 69, 062320 (2004)<br />

A. <strong>Wallraff</strong> et al., Nature (London) 431, 162 (2004)


elements:<br />

• the cavity: a superconducting 1D transmission line resonator<br />

with large vacuum field E 0 <strong>and</strong> long photon life time 1/<br />

• the artificial atom: a superconducting qubit with large dipole<br />

<br />

A. Blais et al., PRA 69, 062320 (2004)


Resonant Vacuum Rabi Mode Splitting …<br />

first demonstration in a solid: A. <strong>Wallraff</strong> et al., Nature (London) 431, 162 (2004)<br />

this data: J. Fink et al., Nature (London) 454, 315 (2008)<br />

R. J. Schoelkopf, S. M. Girvin, Nature (London) 451, 664 (2008)


5 Years <strong>of</strong> Quantum Electrodynamics with Circuits<br />

Quantum AC-Stark Shift<br />

D. Schuster et al., Nature 445, 515 (2007)<br />

Lamb Shift<br />

A. Fragner et al., Science 322, 1357 (2008)<br />

Fock <strong>and</strong> Arbitrary Photon States<br />

MM. HH<strong>of</strong>heinz fh i et t al., l NNature t 454, 30(2008)<br />

310 (2008)<br />

M. H<strong>of</strong>heinz et al., Nature 459, 546 (2009)<br />

Root n Nonlinearityy<br />

J. Fink et al., Nature 454, 315 (2008)<br />

Two Photon Nonlinearities<br />

F. Deppe et al., Nat. Phys. 4, 686 (2008)<br />

Super Splitting <strong>and</strong> Root n Nonlinearity<br />

L. Bishop et al., Nat. Phys. 5, 105 (2009)<br />

Vacuum Rabi Mode Splitting<br />

A. <strong>Wallraff</strong> et al., Nature 431, 162 (2004)<br />

Coherent Flux-Qubit / SQUID Coupling<br />

I. Chiorescu et al., Nature 431, 159 (2004)<br />

Single Photon Source<br />

A. Houck et al., , Nature 449, 449,3 328 (2007) ( 7)<br />

Single Qubit MASER<br />

O. Astafiev et al., Nature 449, 588 (2007)<br />

Cooling <strong>and</strong> Amplification<br />

M. Grajcar et al., Nat. Phys. 4, 612 (2008)<br />

Quantum Bus<br />

M. Sillanpaa et al., Nature 449, 438 (2007)<br />

H. Majer et al., Nature 449, 443 (2007)<br />

L. DiCarlo et al., Nature 460, 240-244 (2009)


Cavity QED with Multiple Photons Atoms<br />

li N t t i l h t<br />

. Rev. Lett. 103, 083601 (2009)<br />

coupling nn photons to single atom


Multi-Atom Cavity QED


Multi-Qubit Circuit QED Schematic


Three Qubit Circuit QED Setup


Three Qubit Circuit QED Sample


N = 1, 2, 3 Qubit – Cavity Anti Crossing<br />

, Phys. Rev. Lett. 103, 083601 (2009)


• th the spectrum: t<br />

• the states:<br />

states equally shared<br />

between photon <strong>and</strong> qubit


• th the spectrum: t<br />

• the states:<br />

bright states: superposition<br />

<strong>of</strong> a photon <strong>and</strong> a Bell state<br />

dark state


• th the spectrum: t<br />

• the states:<br />

one photon h t plus l th three<br />

qubit entagled W-state<br />

two dark states


• th the spectrum: t<br />

• scaling <strong>of</strong> collective coupling with<br />

J. Fink et al., Phys. Rev. Lett. 103, 083601 (2009)


This work:<br />

• excitation spectrum <strong>of</strong> 4 coupled quantum systems measured<br />

• Tavis-Cummings model tested in the discrete limit<br />

• a step towards multi-qubit QIPC in circuit QED<br />

The future:<br />

• investigate collective excitations with small but fixed number <strong>of</strong><br />

<strong>qubits</strong><br />

• Dicke states<br />

• ssuperradiance perradiance<br />

• generate complex entangled states using collective interactions


quantum bus<br />

g g g<br />

Leek et al., Phys. Rev. B 79, 180511(R) (2009)<br />

• controlling photon life times on the quantum bus<br />

P. Leek, M. Baur et al., Quantum Device Lab (2009)<br />

• measuring i entanglement t l t bby joint j i t read-out d t with itha single i l ddetector t t<br />

Filipp et al., Phys. Rev. Lett. 102, 200402 (2009)


Circuit QED for Quantum Information Processing<br />

benefits <strong>of</strong> architecture:<br />

• isolation <strong>of</strong> <strong>qubits</strong> from environment<br />

•maintains i i addressability<br />

dd bili<br />

• quantum non-demolition qubit read out<br />

• conversion <strong>of</strong> quantum information between <strong>qubits</strong> <strong>and</strong> photons<br />

• long-range photon mediated qubit/qubit interactions


Out <strong>of</strong> Single Qubit<br />

L. Steffen et al., Quantum Device Lab, ETH Zurich (2008)


Qubit Coherence: Tomography <strong>of</strong> Ramsey Experiment


qubit A<br />

qubit A<br />

qubit B<br />

• Two near identical<br />

superconducting <strong>qubits</strong><br />

~ 8 mm • Local control <strong>of</strong><br />

coupling bus<br />

~<br />

selective qubit drive line<br />

magnetic flux allows<br />

independent p selection <strong>of</strong><br />

qubit transition<br />

frequencies<br />

• Local drive lines allow<br />

selective excitation <strong>of</strong><br />

individual <strong>qubits</strong>


Resonator Sideb<strong>and</strong> Transitions<br />

simultaneous excitation <strong>of</strong> qubit <strong>and</strong> resonator: |g,0> |e,1><br />

entangle a qubit with a photon on the bus: |g,0> |g,0> + |e,1>


st<strong>and</strong>ard resonator configuration coupled at in <strong>and</strong> output:<br />

all modes:<br />

• nominally yidentical Q<br />

• identical photon life time<br />

P. Leek et al., Quantum Device Lab (2007-2009)


Engineering Mode–Dependent Photon Life Times<br />

center coupled resonator configuration:<br />

odd modes are decoupled:<br />

•high g Q<br />

• long photon life time<br />

• coherent manipulation<br />

P. Leek et al., Quantum Device Lab (2007-2009)


Engineering Mode–Dependent Photon Life Times<br />

center coupled resonator configuration:<br />

even modes are strongly coupled:<br />

• low Q<br />

• short photon life time<br />

• dispersive qubit <strong>measurement</strong><br />

P. Leek et al., Quantum Device Lab (2007-2009)


Realization<br />

P. Leek et al., Quantum Device Lab (2007-2009)


fundamental:<br />

• odd mode<br />

• decoupled<br />

•high Q<br />

• long life time<br />

1st harmonic:<br />

•even mode<br />

•coupled<br />

• low Q<br />

• short life time<br />

2nd harmonic:<br />

•odd<br />

• decoupled<br />

•high Q<br />

• long life time<br />

storage mode <strong>measurement</strong> mode<br />

storage mode<br />

P. Leek et al., Quantum Device Lab (2007-2009)


• low Q mode (T 1 1 ~ 39 ns)<br />

• high Q mode (T 2 • high Q mode (T1 ~1600ns)<br />

~ 1600 ns)<br />

M. Baur, P. Leek et al., Quantum Device Lab (2009)


:<br />

• create Fock state with<br />

blue sideb<strong>and</strong> pulse<br />

• return qubit to |g><br />

•wait<br />

• bring qubit to |e><br />

• annihilate Fock state with<br />

blue sideb<strong>and</strong> pulse<br />

• measure qubit state<br />

:<br />

Fock-State (n=1)<br />

high Q photon<br />

T 1, ~ 1.45 s<br />

M. Baur, P. Leek et al., Quantum Device Lab (2009)


pulse sequence:<br />

high Q photon<br />

T *<br />

2, ~ 19s 1.9 s<br />

M. Baur, P. Leek et al., Quantum Device Lab (2009)


Side B<strong>and</strong> Rabi Oscillations with Fock-States n = 0, 1, 2<br />

p p<br />

states with BSB<br />

• scaling <strong>of</strong> Rabi<br />

frequency<br />

Ωn ∝ √ nΩ1<br />

• imperfections due<br />

to preparation<br />

MB M. Baur, P. PLLeekket t al., l<br />

Quantum Device Lab (2009)<br />

Ω<br />

Ω1<br />

√ 2Ω1<br />

√ 3Ω1<br />

prospects:<br />

p p<br />

towards ion-trap style 2-qubit gates (sideb<strong>and</strong> CNOT gate):<br />

Cirac/Zoller, Sorensen/Molmer, Chuang, ...


Two-Mode Bell-State Generation <strong>and</strong> Measurement


Two-Mode Bell-State Generation <strong>and</strong> Measurement<br />

storage<br />

<strong>measurement</strong><br />

P. Leek, M. Baur et al., Quantum Device Lab (2009)


Photons Photons: Weihs et et al., al PRL 81 (1998) (1998); supercond supercond. <strong>qubits</strong> <strong>qubits</strong>: Steffen et et al., al Science 313 (2006) (2006).


Correlation Measurement with Individual Readout<br />

table <strong>of</strong> single shot values (±1):<br />

k σ z k ⊗ 1<br />

1 +1<br />

2 -1<br />

… …<br />

K -1


Correlation Measurement with Individual Readout<br />

table <strong>of</strong> single shot values (±1):<br />

k σ z k ⊗ 1 1 ⊗ σz k<br />

1 +1 +1<br />

2 -1 -1<br />

… … …<br />

K -1 +1


Correlation Measurement with Individual Readout<br />

table <strong>of</strong> single shot values (±1):<br />

k σ z k ⊗ 1 1 ⊗ σz k σ z k ⊗ σz k<br />

1 +1 +1 (+1).(+1) = +1<br />

2 -1 -1 (-1).(-1) = +1<br />

… … … …<br />

K -1 +1 (-1).(+1)=-1


Correlation Measurement with Individual Readout<br />

rotation <strong>of</strong> qubit: h σ x ⊗ 1i, h 1 ⊗ σ zi <strong>and</strong> h σ x ⊗ σ zi are measured


Correlation Measurement with Individual Readout<br />

orh σ x ⊗ 1i, h 1 ⊗ σ yi <strong>and</strong> h σ x ⊗ σ yi, a.s.o.<br />

-> all combinations <strong>of</strong> {σ x, σ y, σ z} give full information about the state


Correlation Measurement with Joint Readout<br />

• only single detection device<br />

• plus single qubit operations<br />

Circuit QED-Setup:


Homodyne Measurement <strong>of</strong> Cavity Frequency Shift<br />

Amplitude difference (δQ) depends on state <strong>of</strong> both <strong>qubits</strong>:<br />

qubit-qubit correlations can be determined from<br />

transmission <strong>measurement</strong><br />

& Schoelkopf, PRA 69, 062320 (2004)


experimental<br />

state fidelity:<br />

F = 86%<br />

concurrence: Pure<br />

F 0.541 = 100%<br />

entanglement<br />

<strong>of</strong> formation :<br />

0.371<br />

overlap with<br />

calculation l l ti<br />

F = 99%


experimental<br />

state fidelity:<br />

F = 86%<br />

Pure<br />

concurrence:<br />

F = 100%<br />

0.518<br />

entanglement<br />

<strong>of</strong> formation :<br />

0.374<br />

overlap with<br />

calculation l l ti<br />

F = 99%<br />

P. Leek et al., Phys. Rev. B 79, 180511(R) (2009)<br />

S. Filipp et al., Phys. Rev. Lett. 102, 200402 (2009)


N atom t cavity it QED ...<br />

• test <strong>of</strong> Tavis-Cummings model<br />

... generation <strong>of</strong> all 4 Bell states using sideb<strong>and</strong>s ...<br />

• towards a universal gate<br />

... realization <strong>of</strong> two qubit tomography<br />

• correlations w/o single-shot g <strong>measurement</strong><br />

• using joint dispersive read-out


The ETH Zurich Quantum Device Lab<br />

PostDoc Positions Available

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!