21.03.2013 Views

Guideline on Earthing and Bonding at Railway Stations - RailCorp ...

Guideline on Earthing and Bonding at Railway Stations - RailCorp ...

Guideline on Earthing and Bonding at Railway Stations - RailCorp ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

GUIDELINE ON EARTHING AND<br />

BONDING AT RAILWAY STATIONS<br />

Prepared by : M. Logan<br />

Engineering St<strong>and</strong>ards & Services,<br />

Electrical<br />

11th Floor, Sydney Central Building<br />

477 Pitt St, Sydney 2000<br />

Ph<strong>on</strong>e: (02) 9782 1130<br />

Fax: (02) 9782 1116<br />

mlogan@ric.nsw gov.au<br />

<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> - St<strong>at</strong>i<strong>on</strong> <strong>Earthing</strong> & B<strong>on</strong>ding<br />

October, 2004<br />

Client : Julian Richards<br />

Manager, Buildings


Table of c<strong>on</strong>tents<br />

<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

1. Purpose _______________________________________________________________ 3<br />

2. Scope _________________________________________________________________ 3<br />

3. Introducti<strong>on</strong> ____________________________________________________________ 4<br />

4. Effects of DC Stray Current _______________________________________________ 5<br />

5. <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding Issues ______________________________________________ 6<br />

5.1 B<strong>on</strong>ding ___________________________________________________________________ 6<br />

5.2 <strong>Earthing</strong> __________________________________________________________________ 10<br />

5.3 Separ<strong>at</strong>i<strong>on</strong> issues ___________________________________________________________ 12<br />

5.4 Isol<strong>at</strong>i<strong>on</strong> issues _____________________________________________________________ 20<br />

6. C<strong>on</strong>clusi<strong>on</strong> ____________________________________________________________ 26<br />

APPENDIX 1 _____________________________________________________________ 28<br />

Page 2 of 31


1. Purpose<br />

<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

The purpose of this document is to promote an awareness of earthing <strong>and</strong><br />

b<strong>on</strong>ding issues prevalent <strong>at</strong> railway st<strong>at</strong>i<strong>on</strong>s. This document has been<br />

produced for internal <strong>RailCorp</strong> use <strong>on</strong>ly. It is particularly targeted for n<strong>on</strong>electrical<br />

pers<strong>on</strong>s such as project managers, asset engineers, external party<br />

works, etc carrying out either c<strong>on</strong>structi<strong>on</strong> or maintenance work <strong>at</strong> railway<br />

st<strong>at</strong>i<strong>on</strong>s.<br />

This document is not intended to be included in any technical brief for<br />

tendering purposes <strong>and</strong> is not a substitute for appropri<strong>at</strong>e engineering<br />

design guidelines.<br />

2. Scope<br />

The overall scope for this guideline targets railway st<strong>at</strong>i<strong>on</strong>s within the<br />

<strong>RailCorp</strong> 1500 volt direct current electrified tracti<strong>on</strong> system.<br />

Specifically, the c<strong>on</strong>tents of this document rel<strong>at</strong>e to the interface of the<br />

tracti<strong>on</strong> 1500V DC tracti<strong>on</strong> system, high voltage reticul<strong>at</strong>i<strong>on</strong> system <strong>and</strong> low<br />

voltage distributi<strong>on</strong> systems. Electrical hazardous situ<strong>at</strong>i<strong>on</strong>s may exist <strong>at</strong><br />

railway st<strong>at</strong>i<strong>on</strong>s due to these interfaces, resulting in issues rel<strong>at</strong>ing to<br />

earthing <strong>and</strong> b<strong>on</strong>ding.<br />

The implic<strong>at</strong>i<strong>on</strong>s for not addressing risk management str<strong>at</strong>egies rel<strong>at</strong>ing to<br />

earthing <strong>and</strong> b<strong>on</strong>ding issues has ramific<strong>at</strong>i<strong>on</strong>s <strong>on</strong> safety <strong>and</strong> infrastructure<br />

integrity, including ec<strong>on</strong>omic <strong>and</strong> oper<strong>at</strong>i<strong>on</strong>al impact.<br />

The outcomes of this guideline are as follows:<br />

• promote an awareness of earthing <strong>and</strong> b<strong>on</strong>ding issues prevalent <strong>at</strong><br />

railway st<strong>at</strong>i<strong>on</strong>s <strong>and</strong> to educ<strong>at</strong>e pers<strong>on</strong>s resp<strong>on</strong>sible for either<br />

c<strong>on</strong>structi<strong>on</strong> or maintenance work <strong>at</strong> railway st<strong>at</strong>i<strong>on</strong>s.<br />

• reduce to a level as low as reas<strong>on</strong>ably practicable the risk of injury<br />

from electric shock from accessible <strong>and</strong> touch voltages.<br />

• reduce to a level as low as reas<strong>on</strong>ably practicable the export of<br />

stray current from DC tracti<strong>on</strong> systems.<br />

Page 3 of 31


3. Introducti<strong>on</strong><br />

<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

<strong>RailCorp</strong> needs to safeguard itself against risk of damage, fire, electric shock<br />

or loss of life due to risks from faults etc., associ<strong>at</strong>ed with its 1500V DC<br />

tracti<strong>on</strong> system, high voltage reticul<strong>at</strong>i<strong>on</strong> system <strong>and</strong> low voltage distributi<strong>on</strong><br />

systems.<br />

At railway st<strong>at</strong>i<strong>on</strong>s, three main types of risks may exist:<br />

1. Risks associ<strong>at</strong>ed with 1500V DC stray leakage or fault current.<br />

2. Electric shock risk due to 1500V DC touch & step potential rise under<br />

fault c<strong>on</strong>diti<strong>on</strong>, in particular with regard to remote earths in accordance<br />

with EP 00000008SP.<br />

3. Electric shock risk due to high voltage/low voltage distributi<strong>on</strong> systems’<br />

touch & step potential rise under fault c<strong>on</strong>diti<strong>on</strong>, in particular with regard<br />

to different earthing systems.<br />

With the prolifer<strong>at</strong>i<strong>on</strong> of railway st<strong>at</strong>i<strong>on</strong> upgrading work <strong>and</strong> associ<strong>at</strong>ed<br />

c<strong>on</strong>structi<strong>on</strong> of st<strong>at</strong>i<strong>on</strong> canopies, the incidence of electrical hazardous<br />

situ<strong>at</strong>i<strong>on</strong>s has increased. The majority of these situ<strong>at</strong>i<strong>on</strong>s rel<strong>at</strong>e to issues of<br />

earthing <strong>and</strong> b<strong>on</strong>ding.<br />

There is a possibility th<strong>at</strong> overhead wiring structures may rise to a potential<br />

above earth. The risk of pers<strong>on</strong>s receiving an electric shock when st<strong>and</strong>ing<br />

beside an overhead wiring structure <strong>and</strong> touching the structure is present<br />

<strong>and</strong> is of c<strong>on</strong>cern. Other hazardous situ<strong>at</strong>i<strong>on</strong>s where pers<strong>on</strong>s could receive<br />

an electric shock is when physical c<strong>on</strong>tact is made by touching overhead<br />

wiring structures <strong>at</strong> the same time as they touch lighting poles, metallic parts<br />

of canopies or awnings, steel troughing, metal fences or rolling stock.<br />

In order to minimise these risks, methods have been developed <strong>and</strong><br />

deployed for the overhead wiring system which are detailed in RIC<br />

st<strong>and</strong>ards. Selected extracts from relevant RIC documents dealing with<br />

railway st<strong>at</strong>i<strong>on</strong> earthing <strong>and</strong> b<strong>on</strong>ding requirements are in Appendix 1.<br />

One of the more comm<strong>on</strong> c<strong>on</strong>trol measures used <strong>at</strong> st<strong>at</strong>i<strong>on</strong>s is to separ<strong>at</strong>e<br />

overhead wiring structures by distance from any other comp<strong>on</strong>ents <strong>on</strong> the<br />

st<strong>at</strong>i<strong>on</strong>. However, st<strong>at</strong>i<strong>on</strong> upgrading work has often compromised this<br />

c<strong>on</strong>trol, al<strong>on</strong>g with other earthing <strong>and</strong> b<strong>on</strong>ding issues.<br />

Page 4 of 31


4. Effects of DC Stray Current<br />

<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

DC tracti<strong>on</strong> systems may cause stray currents which could adversely affect<br />

both the railway <strong>and</strong> / or outside interests. The major effects of stray currents<br />

can be:<br />

• corrosi<strong>on</strong> <strong>and</strong> subsequent damage of metallic structures where DC<br />

stray currents leave the metallic structures;<br />

• the risk of overhe<strong>at</strong>ing, arcing <strong>and</strong> fire <strong>and</strong> subsequent danger to<br />

equipment <strong>and</strong> people, both inside <strong>and</strong> outside the rail corridor;<br />

• influence <strong>on</strong> services <strong>and</strong> communic<strong>at</strong>i<strong>on</strong>s systems;<br />

• influence <strong>on</strong> unrel<strong>at</strong>ed c<strong>at</strong>hodic protecti<strong>on</strong> install<strong>at</strong>i<strong>on</strong>s; <strong>and</strong><br />

• influence <strong>on</strong> unrel<strong>at</strong>ed AC <strong>and</strong> DC power supply systems <strong>and</strong> their<br />

associ<strong>at</strong>ed earthing systems.<br />

There are three principal measures available to minimise stray current<br />

emissi<strong>on</strong> from a DC tracti<strong>on</strong> electrific<strong>at</strong>i<strong>on</strong> system:<br />

1. insul<strong>at</strong>i<strong>on</strong> of the tracti<strong>on</strong> return circuit with respect to earth;<br />

2. improvement of the c<strong>on</strong>ductivity of the return circuits; <strong>and</strong><br />

3. design of the tracti<strong>on</strong> power supply system.<br />

In the past, earthing <strong>and</strong> b<strong>on</strong>ding issues have been “designed out” of the rail<br />

system, where possible. However, with the advent of major st<strong>at</strong>i<strong>on</strong><br />

upgrading programs, c<strong>on</strong>siderable problems now exist <strong>at</strong> many st<strong>at</strong>i<strong>on</strong>s<br />

where st<strong>at</strong>i<strong>on</strong> upgrading work has installed canopy awnings <strong>on</strong> pl<strong>at</strong>forms<br />

<strong>and</strong> st<strong>at</strong>i<strong>on</strong> c<strong>on</strong>courses. Typically, many of these projects were “design <strong>and</strong><br />

build” tenders, with the designer not always taking into account the issues<br />

associ<strong>at</strong>ed with earthing <strong>and</strong> b<strong>on</strong>ding.<br />

The problem of minimising stray current is closely rel<strong>at</strong>ed to the problem of<br />

earthing <strong>and</strong>/or b<strong>on</strong>ding of metallic structures to prevent electric shock to<br />

people. The soluti<strong>on</strong>s to both problems often come down to a compromise<br />

since the 'best' soluti<strong>on</strong> for <strong>on</strong>e situ<strong>at</strong>i<strong>on</strong> may result in major problems for the<br />

other issues. However, protective provisi<strong>on</strong>s against electric shock take<br />

precedence over provisi<strong>on</strong>s against the effects of stray current.<br />

Page 5 of 31


5. <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding Issues<br />

<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

<strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding Issues may be c<strong>at</strong>egorised into the following subheadings:<br />

• 1500 Volt B<strong>on</strong>ding<br />

• <strong>Earthing</strong><br />

• Separ<strong>at</strong>i<strong>on</strong> issues<br />

• Isol<strong>at</strong>i<strong>on</strong> issues<br />

More often than not, earthing <strong>and</strong>/or b<strong>on</strong>ding issues are inter-rel<strong>at</strong>ed <strong>and</strong><br />

may involve <strong>on</strong>e or more, or a combin<strong>at</strong>i<strong>on</strong> of the sub-headings.<br />

Many earthing <strong>and</strong> b<strong>on</strong>ding str<strong>at</strong>egies are c<strong>on</strong>diti<strong>on</strong>al up<strong>on</strong> the particular<br />

c<strong>on</strong>figur<strong>at</strong>i<strong>on</strong> of the st<strong>at</strong>i<strong>on</strong> <strong>and</strong> the earthing <strong>and</strong> b<strong>on</strong>ding philosophy adopted<br />

for each unique situ<strong>at</strong>i<strong>on</strong>. In some instances, especially <strong>at</strong> larger complex<br />

st<strong>at</strong>i<strong>on</strong>s, the separ<strong>at</strong>i<strong>on</strong> issues may become too complex <strong>and</strong> too difficult to<br />

adequ<strong>at</strong>ely c<strong>on</strong>trol <strong>and</strong> m<strong>on</strong>itor.<br />

In these situ<strong>at</strong>i<strong>on</strong>s, <strong>on</strong>e opti<strong>on</strong> is to interc<strong>on</strong>nect all metallic structures etc. to<br />

overcome possible touch potential problems, thus neg<strong>at</strong>ing the separ<strong>at</strong>i<strong>on</strong><br />

issues. However, there are also neg<strong>at</strong>ive trade-offs with this opti<strong>on</strong>.<br />

As previously st<strong>at</strong>ed, the resultant soluti<strong>on</strong> to many earthing <strong>and</strong> b<strong>on</strong>ding<br />

issues often come down to a compromise soluti<strong>on</strong>. This especially applies to<br />

c<strong>on</strong>figur<strong>at</strong>i<strong>on</strong>s where these issues have not been adequ<strong>at</strong>ely addressed in<br />

the design stages.<br />

The following headings give a background <strong>on</strong> the outst<strong>and</strong>ing issues rel<strong>at</strong>ing<br />

to each c<strong>at</strong>egory. Descripti<strong>on</strong>s, <strong>and</strong> in some cases photos, are given in each<br />

case to clarify “poor” design c<strong>on</strong>figur<strong>at</strong>i<strong>on</strong>s as opposed to “good” design<br />

c<strong>on</strong>figur<strong>at</strong>i<strong>on</strong>s.<br />

5.1 B<strong>on</strong>ding<br />

Examples of b<strong>on</strong>ding issues are, but are not limited to:<br />

• b<strong>on</strong>ding of steel/metal footbridges (OHW <strong>at</strong>tached)<br />

• b<strong>on</strong>ding of overline traffic bridges (OHW <strong>at</strong>tached)<br />

• b<strong>on</strong>ding of 1500 V structures in vicinity of st<strong>at</strong>i<strong>on</strong> as per st<strong>and</strong>ards<br />

• b<strong>on</strong>ding of safety screens as per st<strong>and</strong>ards<br />

Page 6 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

A number of possible b<strong>on</strong>ding arrangements exist for railway st<strong>at</strong>i<strong>on</strong>s,<br />

depending <strong>on</strong> the c<strong>on</strong>figur<strong>at</strong>i<strong>on</strong> <strong>and</strong> physical arrangement of overhead wiring<br />

supports, the st<strong>at</strong>i<strong>on</strong> premises <strong>and</strong> canopy design.<br />

The b<strong>on</strong>ding arrangements for st<strong>at</strong>i<strong>on</strong>s, st<strong>at</strong>i<strong>on</strong> bridges <strong>and</strong> overline traffic<br />

bridges are covered in documents EP 12 20 00 01 SP “B<strong>on</strong>ding of Overhead<br />

Wiring Structures to Rail” <strong>and</strong> EP 08 00 00 07 SP “Safety Screens for<br />

Bridges over 1500 V OHW Equipment”<br />

There is a possibility th<strong>at</strong> overhead wiring structures may rise to a potential<br />

above earth. The risk of pers<strong>on</strong>s receiving an electric shock when st<strong>and</strong>ing<br />

beside an overhead wiring structure <strong>and</strong> touching the structure is present<br />

<strong>and</strong> is of c<strong>on</strong>cern. Other hazardous situ<strong>at</strong>i<strong>on</strong>s where pers<strong>on</strong>s could receive<br />

an electric shock is when physical c<strong>on</strong>tact is made by touching overhead<br />

wiring structures <strong>at</strong> the same time as they touch lighting poles, metallic parts<br />

of canopies or awnings, steel troughing, metal fences or rolling stock.<br />

In order to minimise this risk, methods have been developed <strong>and</strong> deployed<br />

for the overhead wiring system.<br />

A number of selected OHW structures in the tracti<strong>on</strong> system are required to<br />

be b<strong>on</strong>ded to rail. The determin<strong>at</strong>i<strong>on</strong> of the policy <strong>on</strong> which structures are to<br />

be b<strong>on</strong>ded has involved a risk assessment to identify the most likely<br />

loc<strong>at</strong>i<strong>on</strong>s <strong>and</strong> situ<strong>at</strong>i<strong>on</strong>s giving gre<strong>at</strong>est exposure to risk. As can be seen<br />

from the dot points below, st<strong>at</strong>i<strong>on</strong> pl<strong>at</strong>forms pose the gre<strong>at</strong>est thre<strong>at</strong> of this<br />

risk exposure.<br />

Overhead wiring (OHW) structures, <strong>and</strong> other structures th<strong>at</strong> support 1500V<br />

overhead wiring, <strong>at</strong> prescribed loc<strong>at</strong>i<strong>on</strong>s, must be b<strong>on</strong>ded to a tracti<strong>on</strong> rail<br />

via a spark gap or similar device as detailed in EP 12 20 00 01 SP.<br />

The overhead wiring structures <strong>at</strong> st<strong>at</strong>i<strong>on</strong>s must be b<strong>on</strong>ded to rail as per the<br />

following:<br />

• Where passengers <strong>and</strong>/or the public are likely to c<strong>on</strong>tact the<br />

structure, including OHW structures <strong>at</strong> pl<strong>at</strong>forms <strong>and</strong> up to 10m<br />

bey<strong>on</strong>d the ends of the pl<strong>at</strong>forms.<br />

• Where important structures might otherwise be exposed<br />

excessively to corrosi<strong>on</strong> (e.g. bridges).<br />

Page 7 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

Figure 1 Overhead wiring (OHW) structures, <strong>at</strong> prescribed loc<strong>at</strong>i<strong>on</strong>s, must be b<strong>on</strong>ded<br />

to a tracti<strong>on</strong> rail via a spark gap.<br />

Generally, most smaller st<strong>at</strong>i<strong>on</strong>s in the system are appropri<strong>at</strong>ely b<strong>on</strong>ded <strong>at</strong><br />

overhead wiring structures, foot bridges <strong>and</strong> traffic bridges. Some of the<br />

larger st<strong>at</strong>i<strong>on</strong>s, particularly those th<strong>at</strong> have recently been upgraded, do not<br />

always c<strong>on</strong>form to the required st<strong>and</strong>ards. This situ<strong>at</strong>i<strong>on</strong> has generally<br />

arisen due to the piecemeal approach often adopted by the st<strong>at</strong>i<strong>on</strong><br />

upgrading work over the past decade. The scoping of this work did not<br />

always address the global implic<strong>at</strong>i<strong>on</strong>s of earthing <strong>and</strong> b<strong>on</strong>ding.<br />

At these more complex st<strong>at</strong>i<strong>on</strong>s, some secti<strong>on</strong>s of awning have been built<br />

separ<strong>at</strong>ely but are electrically joined by c<strong>on</strong>ductive elements such as metal<br />

guttering, downpipes, service lines, troughing <strong>and</strong> c<strong>on</strong>duit. This poses a<br />

difficult situ<strong>at</strong>i<strong>on</strong> to segreg<strong>at</strong>e the 1500V circuits from other parts of the<br />

st<strong>at</strong>i<strong>on</strong>. Often the <strong>on</strong>ly opti<strong>on</strong> <strong>at</strong> these st<strong>at</strong>i<strong>on</strong>s is to tre<strong>at</strong> all metallic<br />

structures as <strong>on</strong>e body which would involve the install<strong>at</strong>i<strong>on</strong> of additi<strong>on</strong>al<br />

b<strong>on</strong>ding cables <strong>and</strong> a rec<strong>on</strong>figur<strong>at</strong>i<strong>on</strong> of the existing b<strong>on</strong>ding.<br />

This altern<strong>at</strong>ive, while not necessarily the best opti<strong>on</strong>, is c<strong>on</strong>sidered the most<br />

pragm<strong>at</strong>ic opti<strong>on</strong> for some situ<strong>at</strong>i<strong>on</strong>s due to the numerous pl<strong>at</strong>forms,<br />

stanchi<strong>on</strong>s, service lines, stairs, h<strong>and</strong>rails, canopy supports <strong>and</strong> lighting<br />

columns involved. However, there are neg<strong>at</strong>ive trade-offs with this opti<strong>on</strong><br />

where the sphere of influence is gre<strong>at</strong>ly increased under fault c<strong>on</strong>diti<strong>on</strong>s.<br />

Further, this opti<strong>on</strong> requires engineering analysis <strong>and</strong> b<strong>on</strong>ding design to<br />

ensure the appropri<strong>at</strong>e safety criteria is maintained.<br />

Another safety issue c<strong>on</strong>cerning the proper install<strong>at</strong>i<strong>on</strong> <strong>and</strong> b<strong>on</strong>ding of<br />

structures is the risk of causing a signalling failure due to incorrect<br />

c<strong>on</strong>figur<strong>at</strong>i<strong>on</strong> of spark gap b<strong>on</strong>ds. This safety issue highlights the need for a<br />

proper detailed design approach, especially for larger complex st<strong>at</strong>i<strong>on</strong>s.<br />

Page 8 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

EP 08 00 00 07 SP document sets out the design, c<strong>on</strong>structi<strong>on</strong> <strong>and</strong> b<strong>on</strong>ding<br />

requirements for safety screens <strong>on</strong> bridges <strong>and</strong> other structures loc<strong>at</strong>ed<br />

above or beside exposed 1500 V dc equipment.<br />

There are instances where no b<strong>on</strong>ding is present <strong>on</strong> safety screens where it<br />

is required, (as shown in figures 2 & 3) <strong>and</strong> there are instances where the<br />

methodology of the b<strong>on</strong>ding c<strong>on</strong>necti<strong>on</strong>s is inc<strong>on</strong>sistent.<br />

Figure 2 Safety screen associ<strong>at</strong>ed with a c<strong>on</strong>crete footbridge where b<strong>on</strong>ding is required<br />

Figure 3 Note the insul<strong>at</strong>i<strong>on</strong> between the metal safety screens <strong>and</strong> the c<strong>on</strong>crete bridge in<br />

accordance with <strong>RailCorp</strong> st<strong>and</strong>ards<br />

Electrical insul<strong>at</strong>i<strong>on</strong> between the metal safety screens <strong>and</strong> the c<strong>on</strong>crete<br />

reinforcement associ<strong>at</strong>ed with the c<strong>on</strong>crete bridges must be present.<br />

Further details are given in the Civil Design Drawing 160-801 “Electrical<br />

Safety Screens”.<br />

Another issue is the prolifer<strong>at</strong>i<strong>on</strong> of Anti-Throw Barriers (Anti-Projectile<br />

Screens) which are increasingly being installed <strong>on</strong> Overbridges. These<br />

metal screens can have major implic<strong>at</strong>i<strong>on</strong>s to the existing b<strong>on</strong>ding<br />

Page 9 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

arrangements <strong>at</strong> Overbridges. These install<strong>at</strong>i<strong>on</strong>s need to be assessed <strong>on</strong> a<br />

case by case basis for earthing <strong>and</strong> b<strong>on</strong>ding determin<strong>at</strong>i<strong>on</strong>.<br />

5.2 <strong>Earthing</strong><br />

Examples of earthing issues are, but are not limited to:<br />

• direct earthing system - isol<strong>at</strong>i<strong>on</strong> transformers<br />

• main earthing c<strong>on</strong>ductor (earth bar to footbridge) minimum 16mm 2<br />

• overbridge having low voltage cables in c<strong>on</strong>tact with the bridge<br />

c<strong>on</strong>nected to a 6 m electrode<br />

• main earthing c<strong>on</strong>ductor (footbridge to earth electrode) 70mm 2<br />

• interface between <strong>RailCorp</strong>’s supply earth <strong>and</strong> other Network<br />

Oper<strong>at</strong>or supply earth<br />

• issue of canopies under transmissi<strong>on</strong> lines<br />

<strong>Railway</strong> st<strong>at</strong>i<strong>on</strong>s in the electrified area employ a “direct earthing system”.<br />

This system is applicable to electrical supplies sourced from either<br />

<strong>RailCorp</strong>’s electrical system or altern<strong>at</strong>ive Supply Authorities. In more recent<br />

years, many st<strong>at</strong>i<strong>on</strong> supplies have been transferred from <strong>RailCorp</strong>’s<br />

electrical system to altern<strong>at</strong>ive supplies from either Energy Australia or<br />

Integral Energy. The situ<strong>at</strong>i<strong>on</strong> has been exacerb<strong>at</strong>ed with the requirement of<br />

three phase supplies for lifts installed <strong>at</strong> st<strong>at</strong>i<strong>on</strong>s under the Easy Access<br />

Programme. Under these circumstances, an isol<strong>at</strong>ing transformer is<br />

required to separ<strong>at</strong>e the st<strong>at</strong>i<strong>on</strong> earthing from the Supply Authority's earthing<br />

system. The isol<strong>at</strong>ing transformer is c<strong>on</strong>nected between the local Electricity<br />

Distributor's service equipment <strong>and</strong> the supply main switchboard to<br />

physically isol<strong>at</strong>e the earth <strong>and</strong> neutral of the MEN supply from any part of<br />

<strong>RailCorp</strong>’s distributi<strong>on</strong> system, including earthed metalwork (such as pipes,<br />

fences, overhead earth wires or troughing).<br />

Any maintenance work or upgrading work must be m<strong>on</strong>itored to ensure the<br />

interface c<strong>on</strong>diti<strong>on</strong>s are not compromised. Isol<strong>at</strong>ing transformers can be<br />

effectively bypassed due to interc<strong>on</strong>necti<strong>on</strong>s of the earthing systems via<br />

canopies or bus/rail interchanges. Electrical supply from different sources,<br />

for example lighting, can inadvertently bridge the earthing systems.<br />

All Isol<strong>at</strong>ing Transformers must comply with RIC specific<strong>at</strong>i<strong>on</strong> EP 17 00 00<br />

11 SP “Low Voltage Isol<strong>at</strong>ing Transformers”. In particular, <strong>at</strong>tenti<strong>on</strong> is drawn<br />

to the namepl<strong>at</strong>e requirements to readily ascertain compliance to the<br />

required specific<strong>at</strong>i<strong>on</strong>.<br />

Page 10 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

When loadings <strong>at</strong> st<strong>at</strong>i<strong>on</strong>s are substantially increased, corresp<strong>on</strong>ding higher<br />

fault levels are present. The earthing systems <strong>at</strong> st<strong>at</strong>i<strong>on</strong>s may require<br />

upgrading in line with additi<strong>on</strong>al loadings. The assessment of the suitability<br />

<strong>and</strong> integrity of the existing earthing system must form part of any upgrading<br />

work.<br />

Sometimes the main earth electrode is not visible <strong>at</strong> st<strong>at</strong>i<strong>on</strong>s, posing major<br />

problems for <strong>on</strong>going maintenance <strong>and</strong> testing. This problem has often<br />

occurred due to the covering over of the st<strong>at</strong>i<strong>on</strong> earth electrodes during<br />

st<strong>at</strong>i<strong>on</strong> upgrading work.<br />

Figure 4 St<strong>at</strong>i<strong>on</strong> main earth electrode is comm<strong>on</strong>ly housed in a c<strong>on</strong>crete<br />

housing as shown. Note also the insul<strong>at</strong>ed w<strong>at</strong>er mains.<br />

Documents EP 12 10 00 20 SP “Low Voltage Distributi<strong>on</strong> <strong>Earthing</strong>” <strong>and</strong> EP<br />

12 00 00 02 SP “Low Voltage Distributi<strong>on</strong> <strong>and</strong> Install<strong>at</strong>i<strong>on</strong>s <strong>Earthing</strong><br />

References <strong>and</strong> Definiti<strong>on</strong>s” lists the public<strong>at</strong>i<strong>on</strong>s <strong>and</strong> drawings relevant to<br />

earthing arrangements <strong>and</strong> other associ<strong>at</strong>ed inform<strong>at</strong>i<strong>on</strong>.<br />

Another pressing issue in rel<strong>at</strong>i<strong>on</strong> to earthing <strong>and</strong> st<strong>at</strong>i<strong>on</strong> upgrading is the<br />

hazard associ<strong>at</strong>ed with many of the new canopies loc<strong>at</strong>ed under high<br />

voltage transmissi<strong>on</strong> lines. There is a safety risk to oper<strong>at</strong>i<strong>on</strong>al pers<strong>on</strong>nel or<br />

members of the public which arises from the danger of direct c<strong>on</strong>tact with a<br />

fallen overhead transmissi<strong>on</strong> line or indirect c<strong>on</strong>tact with touch voltages th<strong>at</strong><br />

may arise under fault c<strong>on</strong>diti<strong>on</strong>s.<br />

It is good policy not to build new canopies, buildings or other frequented<br />

structures under high voltage transmissi<strong>on</strong> lines. Document EP 12 10 00 22<br />

SP “Buildings <strong>and</strong> Structures Under Overhead Lines” provides further details<br />

<strong>on</strong> this issue.<br />

Page 11 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

Figure 5 Avoid building new canopies, buildings or other frequented<br />

structures under high voltage transmissi<strong>on</strong> lines<br />

This issue of structures loc<strong>at</strong>ed under high voltage transmissi<strong>on</strong> lines is<br />

currently being reviewed by <strong>RailCorp</strong>.<br />

5.3 Separ<strong>at</strong>i<strong>on</strong> issues<br />

Examples of separ<strong>at</strong>i<strong>on</strong> issues are, but are not limited to:<br />

• metallic structures are physically separ<strong>at</strong>ed by <strong>at</strong> least 2 metres<br />

distance from OHW structures<br />

• canopy supports to be <strong>at</strong> least 2 metres from OHW structures<br />

• lighting st<strong>and</strong>ards to be <strong>at</strong> least 2 metres from OHW structures<br />

• lineside fencing to be <strong>at</strong> least 2 metres from OHW structures<br />

• vending machines to be <strong>at</strong> least 2 metres from OHW structures<br />

• ticketing machines to be <strong>at</strong> least 2 metres from OHW structures<br />

• teleph<strong>on</strong>e booths to be <strong>at</strong> least 2 metres from OHW structures<br />

There is a possibility th<strong>at</strong> overhead wiring structures may rise to a potential<br />

above earth. A pers<strong>on</strong> could receive an electric shock when physical<br />

c<strong>on</strong>tact is made by touching overhead wiring structures <strong>at</strong> the same time as<br />

they touch lighting poles, metallic parts of canopies or awnings, steel<br />

troughing, metal fences or rolling stock.<br />

The majority of the st<strong>at</strong>i<strong>on</strong>s in the Metropolitan area adopt the policy of<br />

separ<strong>at</strong>i<strong>on</strong> of the overhead wiring structures from other structures such as<br />

Page 12 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

roofs <strong>and</strong> buildings. Being in the vicinity of the general public, these OHW<br />

structures are normally spark gapped to rail in accordance with RIC policy<br />

document EP 12 20 00 01 SP “B<strong>on</strong>ding of Overhead Wiring Structures to<br />

Rail”. In doing so, any oper<strong>at</strong>i<strong>on</strong> of the spark gap results in the structure<br />

being directly c<strong>on</strong>nected to rail with the resultant structure having a voltage<br />

present corresp<strong>on</strong>ding to the rail voltage. The rail voltage level is dependent<br />

up<strong>on</strong> many factors such as loc<strong>at</strong>i<strong>on</strong>, distance from the subst<strong>at</strong>i<strong>on</strong>, train<br />

loadings <strong>and</strong> the characteristics of the rail <strong>and</strong> the overhead wiring. Under<br />

certain circumstances, this voltage can rise to potentially dangerous levels.<br />

However, the upper voltage limits are overseen by the rail earth c<strong>on</strong>tactor <strong>at</strong><br />

Subst<strong>at</strong>i<strong>on</strong> <strong>and</strong> Secti<strong>on</strong>ing Huts.<br />

Problems can exist <strong>on</strong> st<strong>at</strong>i<strong>on</strong>s due to b<strong>on</strong>ding arrangements of the<br />

overhead wiring structures. The most comm<strong>on</strong> problems are proximity of<br />

the overhead wiring structures to:<br />

1. metal fencing,<br />

2. metallic awning supports,<br />

3. earthed metallic objects such as lighting st<strong>and</strong>ards, vending<br />

machines, w<strong>at</strong>er pipes, teleph<strong>on</strong>e booths, fire hydrant appar<strong>at</strong>us <strong>and</strong><br />

CCTV's.<br />

For situ<strong>at</strong>i<strong>on</strong>s where any of the separ<strong>at</strong>i<strong>on</strong> criteria cannot be achieved,<br />

altern<strong>at</strong>ive opti<strong>on</strong>s may be implemented to neg<strong>at</strong>e the separ<strong>at</strong>i<strong>on</strong> issue.<br />

Briefly, the possible altern<strong>at</strong>ive arrangements are:<br />

1. Reloc<strong>at</strong>i<strong>on</strong><br />

The best electrical soluti<strong>on</strong>, although not the most ec<strong>on</strong>omical<br />

soluti<strong>on</strong>, is to reloc<strong>at</strong>e all offending metallic supports to comply with<br />

the 2 metre rule of separ<strong>at</strong>i<strong>on</strong> of two differing potentials.<br />

Page 13 of 31


Figure 6 Opti<strong>on</strong> 1 - Metallic supports<br />

to comply with the 2 metre rule of<br />

separ<strong>at</strong>i<strong>on</strong> from OHW structure.<br />

2. Limited Isol<strong>at</strong>i<strong>on</strong><br />

<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

Figure 7 Opti<strong>on</strong> 4 - OHW structure isol<strong>at</strong>i<strong>on</strong><br />

where the OHW stucture is enclosed by<br />

insul<strong>at</strong>i<strong>on</strong> m<strong>at</strong>erial.<br />

This opti<strong>on</strong> <strong>at</strong>tempts to limit the physical extent of c<strong>on</strong>ductive<br />

m<strong>at</strong>erial which could be exposed to 1500 V fault current by<br />

segreg<strong>at</strong>i<strong>on</strong> using appropri<strong>at</strong>e insul<strong>at</strong>ed secti<strong>on</strong>s to ensure<br />

electrical disc<strong>on</strong>tinuity.<br />

This opti<strong>on</strong> has significant maintenance issues.<br />

3. Interc<strong>on</strong>nected metal mass.<br />

This opti<strong>on</strong> <strong>at</strong>tempts to overcome possible touch potential problems<br />

by ensuring all metallic structures are electrically c<strong>on</strong>nected.<br />

However, this opti<strong>on</strong> can have neg<strong>at</strong>ive trade-offs. 1500V fault<br />

current will have a wider area of influence <strong>and</strong> the resulting fault<br />

current p<strong>at</strong>h will be difficult to predict <strong>and</strong> manage.<br />

4. OHW structure isol<strong>at</strong>i<strong>on</strong><br />

This opti<strong>on</strong> uses the c<strong>on</strong>cept of double insul<strong>at</strong>i<strong>on</strong> to effectively<br />

isol<strong>at</strong>e an OHW structure secti<strong>on</strong> from the remaining secti<strong>on</strong>s of<br />

the structure.<br />

This opti<strong>on</strong> has significant cost impacts as well as <strong>on</strong>going<br />

maintenance <strong>and</strong> surveillance issues.<br />

The best opti<strong>on</strong> which overcomes the majority of earthing <strong>and</strong> b<strong>on</strong>ding<br />

issues is opti<strong>on</strong> 1, which uses the principle of separ<strong>at</strong>i<strong>on</strong>. Obviously, in<br />

install<strong>at</strong>i<strong>on</strong>s where this separ<strong>at</strong>i<strong>on</strong> is compromised, it can be an expensive<br />

exercise to either reloc<strong>at</strong>e all offending metallic supports or revert to other<br />

altern<strong>at</strong>ives.<br />

Page 14 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

It is stressed th<strong>at</strong> the most cost effective <strong>and</strong> safest c<strong>on</strong>figur<strong>at</strong>i<strong>on</strong> for any<br />

new canopy or building work is to incorpor<strong>at</strong>e the principle of separ<strong>at</strong>i<strong>on</strong> into<br />

the design stage. If earthing <strong>and</strong> b<strong>on</strong>ding issues are integr<strong>at</strong>ed into the<br />

design stage, substantial cost savings can be achieved as well as drastically<br />

reducing the risk exposure to pers<strong>on</strong>s <strong>and</strong> property.<br />

This process of “designing out” earthing <strong>and</strong> b<strong>on</strong>ding issues must be an<br />

essential outcome for <strong>RailCorp</strong> to safeguard itself against risk of damage,<br />

fire, electric shock or loss of life.<br />

Figure 8 Example of poor design where the new canopy supports are in close proximity to<br />

the existing OHW structure.<br />

Many st<strong>at</strong>i<strong>on</strong>s suffer from the problem of close proximity of overhead wiring<br />

structures to fencing. The typical fencing encountered <strong>on</strong> many st<strong>at</strong>i<strong>on</strong>s is<br />

the powder co<strong>at</strong>ed pool style fencing which can run al<strong>on</strong>g either a secti<strong>on</strong> of<br />

the st<strong>at</strong>i<strong>on</strong> pl<strong>at</strong>form or the total length of the pl<strong>at</strong>form.<br />

Page 15 of 31


Figure 9 Close proximity of fencing <strong>and</strong><br />

lighting st<strong>and</strong>ard to the overhead wiring<br />

structure. Note the CCTV metal<br />

c<strong>on</strong>duit <strong>at</strong> bottom of fence bridging any<br />

isol<strong>at</strong>i<strong>on</strong> gaps if present.<br />

<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

Figure 10 Correctly installed fencing with two<br />

separ<strong>at</strong>e isol<strong>at</strong>i<strong>on</strong> gaps placed <strong>at</strong> least two metres <strong>on</strong><br />

either side of the OHW structure.<br />

On some st<strong>at</strong>i<strong>on</strong>s, the fencing has been properly installed by cre<strong>at</strong>ing two<br />

separ<strong>at</strong>e isol<strong>at</strong>i<strong>on</strong> gaps placed <strong>at</strong> least two metres <strong>on</strong> either side of the OHW<br />

structure as shown in Figure 10. However, there are many instances where<br />

c<strong>on</strong>tractors have bridged these gaps with metal c<strong>on</strong>duit, usually used in the<br />

install<strong>at</strong>i<strong>on</strong> of extra lighting, w<strong>at</strong>er pipes or CCTV's. The appropri<strong>at</strong>e remedy<br />

for such situ<strong>at</strong>i<strong>on</strong>s is the replacement of the metal comp<strong>on</strong>ent across the<br />

gap with a n<strong>on</strong>-c<strong>on</strong>ducting enclosure with suitable mechanical protecti<strong>on</strong>.<br />

C<strong>on</strong>siderable problems exist <strong>at</strong> many st<strong>at</strong>i<strong>on</strong>s where st<strong>at</strong>i<strong>on</strong> upgrading work<br />

has installed canopy awnings <strong>on</strong> pl<strong>at</strong>forms <strong>and</strong> st<strong>at</strong>i<strong>on</strong> c<strong>on</strong>courses.<br />

Typically, many of these projects were design <strong>and</strong> build tenders, with the<br />

designer not always taking into account the separ<strong>at</strong>i<strong>on</strong> issues associ<strong>at</strong>ed<br />

with earthing <strong>and</strong> b<strong>on</strong>ding. C<strong>on</strong>sequently, large amounts of c<strong>on</strong>tingency<br />

work have been required over the last few years to correct many of the<br />

problems <strong>at</strong> st<strong>at</strong>i<strong>on</strong>s. The most comm<strong>on</strong> problem is the close proximity of<br />

metallic awning supports rel<strong>at</strong>ive to overhead wiring structures where<br />

metallic awning supports are within the two metre separ<strong>at</strong>i<strong>on</strong> distances.<br />

Page 16 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

Figure 11 Awning supports within 2 metres of OHW structures.<br />

This situ<strong>at</strong>i<strong>on</strong> poses a potential voltage difference between the two<br />

structures <strong>and</strong> is a safety risk to oper<strong>at</strong>i<strong>on</strong>al pers<strong>on</strong>nel or members of the<br />

public.<br />

Another problem <strong>at</strong> st<strong>at</strong>i<strong>on</strong>s is where an overhead wiring structure protrudes<br />

through the roof without sufficient clearance from the structure to the roofing.<br />

A gap of <strong>at</strong> least 50 millimetres is required to ensure electrical separ<strong>at</strong>i<strong>on</strong> of<br />

the two structures, otherwise arcing can occur in the event of a spark gap<br />

failure. At a number of loc<strong>at</strong>i<strong>on</strong>s, the install<strong>at</strong>i<strong>on</strong> of n<strong>on</strong>-insul<strong>at</strong>ing flashing<br />

has occurred to elimin<strong>at</strong>e the ingress of rain, thus bridging the gap <strong>and</strong><br />

cre<strong>at</strong>ing an undesirable current p<strong>at</strong>h.<br />

Figure 12 Overhead wiring structure<br />

protruding through the roof without sufficient<br />

clearance<br />

Figure 13 Example of unacceptable install<strong>at</strong>i<strong>on</strong><br />

using n<strong>on</strong>-insul<strong>at</strong>ing flashing.<br />

Page 17 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

This situ<strong>at</strong>i<strong>on</strong> is unacceptable. If the spark gap blows, the tracti<strong>on</strong> return<br />

current would flow through the metal roof <strong>and</strong> in turn flow through the low<br />

voltage lighting circuit with the possibility of an electrical fire <strong>and</strong> resultant<br />

coll<strong>at</strong>eral damage to the st<strong>at</strong>i<strong>on</strong>.<br />

This situ<strong>at</strong>i<strong>on</strong> can be corrected by ensuring a gap of <strong>at</strong> least 50mm<br />

surrounding each structure. If required, the resultant gap could be filled in<br />

by insul<strong>at</strong>ed sheet flashing such as polycarb<strong>on</strong><strong>at</strong>e to seal against the<br />

we<strong>at</strong>her.<br />

Figure 14 Example of acceptable<br />

arrangement showing insul<strong>at</strong>ed sheet<br />

flashing <strong>and</strong> surrounding gap to the OHW<br />

structure.<br />

Figure 15 Example where roofing m<strong>at</strong>erial is<br />

in direct c<strong>on</strong>tact with the overhead wiring<br />

structure<br />

Another comm<strong>on</strong> problem is where roofing renewal has occurred <strong>and</strong> either<br />

the roofing supports or the roofing m<strong>at</strong>erial are in direct c<strong>on</strong>tact with the<br />

overhead wiring structure. This situ<strong>at</strong>i<strong>on</strong> is unacceptable, as shown in Figure<br />

15.<br />

Page 18 of 31


Figure 16 OHW structure in close proximity to vending machines<br />

<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

A touch potential problem can exists where the OHW structure is in close<br />

proximity to vending machines.<br />

The arrangement <strong>at</strong> Figure 16 presents vending machines <strong>at</strong> low voltage<br />

earth potential within 2 metres of the OHW structure. Pers<strong>on</strong>s could bridge<br />

themselves between these two c<strong>on</strong>ductive comp<strong>on</strong>ents <strong>at</strong> differing potential.<br />

To remedy this situ<strong>at</strong>i<strong>on</strong>, the vending machines should be reloc<strong>at</strong>ed <strong>at</strong> least<br />

2 metres away from the structure.<br />

Touch potential problems can also exist where the stanchi<strong>on</strong> is in close<br />

proximity to a Telstra ph<strong>on</strong>e booth.<br />

Page 19 of 31


Figure 17 OHW structure in close proximity to<br />

Telstra ph<strong>on</strong>e booth<br />

<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

Figure 18 Unistrut in c<strong>on</strong>tact with the canopy<br />

support <strong>and</strong> the fire hydrant service pipe<br />

This arrangement presents the ph<strong>on</strong>e booth <strong>at</strong> low voltage earth potential<br />

th<strong>at</strong> is within 2 metres of the stanchi<strong>on</strong>. Pers<strong>on</strong>s could bridge themselves<br />

between these two c<strong>on</strong>ductive comp<strong>on</strong>ents <strong>at</strong> differing potential.<br />

5.4 Isol<strong>at</strong>i<strong>on</strong> issues<br />

Examples of isol<strong>at</strong>i<strong>on</strong> issues are, but are not limited to:<br />

• isol<strong>at</strong>i<strong>on</strong> of boundary fence to st<strong>at</strong>i<strong>on</strong> fencing<br />

• signalling troughing – appropri<strong>at</strong>e insul<strong>at</strong>ed secti<strong>on</strong>s<br />

• isol<strong>at</strong>i<strong>on</strong> of all incoming metallic service lines - w<strong>at</strong>er, gas, fire<br />

service, teleph<strong>on</strong>e, sewerage, stormw<strong>at</strong>er/downpipe etc<br />

• any introduced electrical supplies - isol<strong>at</strong>i<strong>on</strong> transformers<br />

• any interface between <strong>RailCorp</strong>’s supply <strong>and</strong> other Network<br />

Oper<strong>at</strong>or supply<br />

Page 20 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

• CCTV implic<strong>at</strong>i<strong>on</strong>s: metallic c<strong>on</strong>duit runs, video cable c<strong>on</strong>necti<strong>on</strong>s<br />

Document EP 12 10 00 21 SP “Low Voltage Install<strong>at</strong>i<strong>on</strong>s <strong>Earthing</strong>” details<br />

the earthing <strong>and</strong> b<strong>on</strong>ding requirements of various types of low voltage<br />

install<strong>at</strong>i<strong>on</strong>s loc<strong>at</strong>ed <strong>on</strong> the `railway corridor' <strong>and</strong> `near 1500 V track'.<br />

Where a railway st<strong>at</strong>i<strong>on</strong> interfaces with another building or structure, such as<br />

a bus rail interchange or a footbridge th<strong>at</strong> c<strong>on</strong>nects a railway st<strong>at</strong>i<strong>on</strong> with a<br />

shopping centre, the design shall not allow the extensi<strong>on</strong> of <strong>RailCorp</strong>’s low<br />

voltage earthing system bey<strong>on</strong>d the railway corridor. This includes all<br />

metallic structures <strong>and</strong> services, such as awnings, fences, pipes <strong>and</strong><br />

electrical wiring <strong>and</strong> c<strong>on</strong>duits. The interface should be well defined <strong>and</strong><br />

easily observable. This is usually achieved by installing two isol<strong>at</strong>i<strong>on</strong> 'gaps' in<br />

the steelwork, about 2m apart.<br />

Figure 19 Example of a footbridge th<strong>at</strong> c<strong>on</strong>nects a railway st<strong>at</strong>i<strong>on</strong>. The design shall not allow<br />

the extensi<strong>on</strong> of <strong>RailCorp</strong>’s low voltage earthing system bey<strong>on</strong>d the railway corridor<br />

Problems occur where isol<strong>at</strong>i<strong>on</strong> points have been bridged by either c<strong>on</strong>duits<br />

or other circuits. Situ<strong>at</strong>i<strong>on</strong>s have occurred where the install<strong>at</strong>i<strong>on</strong> of the CCTV<br />

has bridged out the isol<strong>at</strong>ing secti<strong>on</strong>s separ<strong>at</strong>ing the st<strong>at</strong>i<strong>on</strong> supply from<br />

another separ<strong>at</strong>e Supply Authority supply, such as a st<strong>at</strong>i<strong>on</strong> car park. These<br />

situ<strong>at</strong>i<strong>on</strong>s require c<strong>on</strong>stant surveillance to ensure the isol<strong>at</strong>i<strong>on</strong> is not<br />

compromised. Too often c<strong>on</strong>tractors <strong>and</strong> other associ<strong>at</strong>ed parties<br />

performing work <strong>on</strong> st<strong>at</strong>i<strong>on</strong>s are not aware of these issues.<br />

Page 21 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

Figure 20 Example where the isol<strong>at</strong>i<strong>on</strong> point between two secti<strong>on</strong>s of canopy has been<br />

bridged by modified guttering.<br />

Bus/rail interchange situ<strong>at</strong>i<strong>on</strong>s often require major modific<strong>at</strong>i<strong>on</strong>s to canopies<br />

<strong>and</strong> roofing to overcome the isol<strong>at</strong>i<strong>on</strong> problems. These post-c<strong>on</strong>structi<strong>on</strong><br />

modific<strong>at</strong>i<strong>on</strong>s <strong>and</strong> associ<strong>at</strong>ed major expenses could be minimised if the<br />

designs for st<strong>at</strong>i<strong>on</strong> upgrading were scrutinised prior to c<strong>on</strong>structi<strong>on</strong> to<br />

capture any potential problems. Many st<strong>at</strong>i<strong>on</strong>s have been compromised<br />

where the best technical soluti<strong>on</strong> has not been able to be implemented due<br />

to the major modific<strong>at</strong>i<strong>on</strong>s <strong>and</strong> costs involved. Instead a less desirable<br />

altern<strong>at</strong>ive to overcome touch potential issues has had to be implemented <strong>at</strong><br />

certain loc<strong>at</strong>i<strong>on</strong>s.<br />

In additi<strong>on</strong>, due to the interacti<strong>on</strong> of the low voltage electrical supply to<br />

st<strong>at</strong>i<strong>on</strong>s (ie light fittings associ<strong>at</strong>ed with awnings or canopies) <strong>and</strong> the<br />

proximity of 1500 V overhead wiring structures, special analysis for each<br />

st<strong>at</strong>i<strong>on</strong> is required to minimise the risk of electric shock <strong>and</strong> also comb<strong>at</strong> the<br />

effects of electrolysis associ<strong>at</strong>ed with a DC tracti<strong>on</strong> system.<br />

Another comm<strong>on</strong> problem effecting st<strong>at</strong>i<strong>on</strong>s is the inter c<strong>on</strong>necti<strong>on</strong> of the<br />

<strong>Railway</strong> boundary fence to st<strong>at</strong>i<strong>on</strong> fencing. This situ<strong>at</strong>i<strong>on</strong> can c<strong>on</strong>tribute to<br />

the electrolysis problems associ<strong>at</strong>ed with the tracti<strong>on</strong> system. On many<br />

st<strong>at</strong>i<strong>on</strong>s, additi<strong>on</strong>al metallic fencing panels <strong>and</strong> fencing wire have been<br />

added <strong>at</strong> the ends of pl<strong>at</strong>forms to prohibit illegal access.<br />

Page 22 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

Figure 21 Example showing inter-c<strong>on</strong>necti<strong>on</strong> of the <strong>Railway</strong> boundary fence to st<strong>at</strong>i<strong>on</strong> fencing<br />

Again, isol<strong>at</strong>i<strong>on</strong> secti<strong>on</strong>s should be installed <strong>at</strong> the fencing interface or <strong>at</strong> an<br />

appropri<strong>at</strong>e loc<strong>at</strong>i<strong>on</strong> in close proximity to the st<strong>at</strong>i<strong>on</strong>. These fencing issues<br />

are canvassed in document C 4501”Metallic Lineside Fencing in Electrified<br />

Areas”.<br />

Additi<strong>on</strong>ally, appropri<strong>at</strong>e insul<strong>at</strong>ed secti<strong>on</strong>s must exist for metal signalling<br />

troughing, in accordance with RIC st<strong>and</strong>ards.<br />

Another issue becoming more prevalent is the install<strong>at</strong>i<strong>on</strong> of metal coping<br />

edges al<strong>on</strong>g st<strong>at</strong>i<strong>on</strong> pl<strong>at</strong>forms. Depending <strong>on</strong> the install<strong>at</strong>i<strong>on</strong> method, this<br />

c<strong>on</strong>figur<strong>at</strong>i<strong>on</strong> can have earthing <strong>and</strong> b<strong>on</strong>ding issues, especially where<br />

appropri<strong>at</strong>e isol<strong>at</strong>i<strong>on</strong> is not present. Instances have been reported (Circular<br />

Quay) where severe arcing has taken place when wheel chair accessibility<br />

ramps have been placed <strong>on</strong> the pl<strong>at</strong>form where metal coping exists.<br />

A major c<strong>on</strong>cern is the seemingly omissi<strong>on</strong> of isol<strong>at</strong>i<strong>on</strong> joints for incoming<br />

metallic service lines <strong>on</strong>to the rail corridor. These isol<strong>at</strong>i<strong>on</strong> joints are<br />

essential to ensure the segreg<strong>at</strong>i<strong>on</strong> of the railway earthing to the service<br />

lines to minimise the affects of electrolysis. Isol<strong>at</strong>i<strong>on</strong> joints for services such<br />

as gas, w<strong>at</strong>er, fire services, etc. must be visible for inspecti<strong>on</strong> <strong>and</strong>/or have<br />

appropri<strong>at</strong>e signage in accordance with RIC st<strong>and</strong>ards, including. EP 12 30<br />

00 01 SP “Electrolysis From Stray DC Current”.<br />

Page 23 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

Figure 22 . Isol<strong>at</strong>i<strong>on</strong> joints for services such as gas, w<strong>at</strong>er, fire services, etc. must be visible<br />

for inspecti<strong>on</strong> <strong>and</strong>/or have appropri<strong>at</strong>e signage.<br />

Another major issue coming to the fore is the prolifer<strong>at</strong>i<strong>on</strong> of CCTV cameras<br />

<strong>on</strong> st<strong>at</strong>i<strong>on</strong>s which has the potential to cause fire <strong>and</strong> coll<strong>at</strong>eral damage.<br />

Figure 23 Black flexible metal c<strong>on</strong>duit bridging the two structures which<br />

are designed to be electrically separ<strong>at</strong>ed<br />

Incidences have occurred where the metal c<strong>on</strong>duit housing the coax cable<br />

for the CCTV's has breached separ<strong>at</strong>e secti<strong>on</strong>s of canopies causing the<br />

cable to melt, resulting in a roof fire eg. Epping St<strong>at</strong>i<strong>on</strong>.<br />

Page 24 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

Figure 24 Example where CCTV metallic c<strong>on</strong>duit has bridged out isol<strong>at</strong>i<strong>on</strong> secti<strong>on</strong>s.<br />

Often, the CCTV install<strong>at</strong>i<strong>on</strong> has compromised the isol<strong>at</strong>i<strong>on</strong> requirements <strong>on</strong><br />

st<strong>at</strong>i<strong>on</strong>s where metallic c<strong>on</strong>duit has bridged out isol<strong>at</strong>i<strong>on</strong> secti<strong>on</strong>s. Some<br />

initial discussi<strong>on</strong>s <strong>on</strong> these m<strong>at</strong>ters have been held with St<strong>at</strong>e Rail <strong>on</strong><br />

install<strong>at</strong>i<strong>on</strong> methods required <strong>at</strong> st<strong>at</strong>i<strong>on</strong>s.<br />

Page 25 of 31


6. C<strong>on</strong>clusi<strong>on</strong><br />

<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

<strong>Earthing</strong> <strong>and</strong> b<strong>on</strong>ding issues <strong>at</strong> railway st<strong>at</strong>i<strong>on</strong>s are predominantly <strong>at</strong>tributed<br />

to the interface issues between overhead wiring structures, awnings or<br />

canopies <strong>and</strong> services entering the rail corridor.<br />

The most comm<strong>on</strong> problems are rel<strong>at</strong>ed to the b<strong>on</strong>ding arrangements<br />

associ<strong>at</strong>ed with overhead wiring structures in close proximity to:<br />

• metallic awning supports,<br />

• metal fencing,<br />

• earthed metallic objects such as lighting st<strong>and</strong>ards, vending<br />

machines, w<strong>at</strong>er pipes, teleph<strong>on</strong>e booths, fire hydrant appar<strong>at</strong>us<br />

<strong>and</strong> CCTV's.<br />

Generally, most st<strong>at</strong>i<strong>on</strong>s in the electrified system are appropri<strong>at</strong>ely b<strong>on</strong>ded <strong>at</strong><br />

overhead wiring structures, foot bridges <strong>and</strong> traffic bridges. Spark gaps are<br />

an essential safety device <strong>and</strong> are critical to the 1500V tracti<strong>on</strong> system<br />

protecti<strong>on</strong> <strong>and</strong> b<strong>on</strong>ding scheme. As such, any maintenance or c<strong>on</strong>structi<strong>on</strong><br />

work involving these items should be carried out in accordance to <strong>RailCorp</strong>’s<br />

policy requirements.<br />

Another comm<strong>on</strong> problem effecting st<strong>at</strong>i<strong>on</strong>s is the interface of the railway<br />

boundary fence to st<strong>at</strong>i<strong>on</strong> fencing. This situ<strong>at</strong>i<strong>on</strong> can c<strong>on</strong>tribute to the<br />

effects of electrolysis. Some of these defects are <strong>at</strong>tributable to additi<strong>on</strong>al<br />

metallic fencing panels <strong>and</strong> fencing wire installed to prohibit illegal access <strong>at</strong><br />

the ends of pl<strong>at</strong>forms <strong>and</strong> the lack of an isol<strong>at</strong>ing panel or isol<strong>at</strong>i<strong>on</strong> secti<strong>on</strong>s<br />

of fencing.<br />

Many st<strong>at</strong>i<strong>on</strong>s have situ<strong>at</strong>i<strong>on</strong>s where interface issues between <strong>RailCorp</strong>’s<br />

supply earth <strong>and</strong> another Network Oper<strong>at</strong>or supply earth apply. At these<br />

loc<strong>at</strong>i<strong>on</strong>s, any maintenance work or upgrading work must be m<strong>on</strong>itored to<br />

ensure the interface c<strong>on</strong>diti<strong>on</strong>s are not compromised. It is recommended<br />

th<strong>at</strong> appropri<strong>at</strong>e signage would be beneficial to alert c<strong>on</strong>tractors <strong>and</strong> other<br />

pers<strong>on</strong>nel to this issue. Additi<strong>on</strong>allly, install<strong>at</strong>i<strong>on</strong> of radi<strong>at</strong>ing services such<br />

as CCTV must be carefully designed <strong>and</strong> c<strong>on</strong>trolled to ensure isol<strong>at</strong>i<strong>on</strong><br />

secti<strong>on</strong>s are not bridged.<br />

Issues such as high voltage transmissi<strong>on</strong> lines sited above secti<strong>on</strong>s of<br />

st<strong>at</strong>i<strong>on</strong> canopies or roof areas must also be m<strong>on</strong>itored when planning any<br />

upgrading work.<br />

Another safety issue c<strong>on</strong>cerning the proper install<strong>at</strong>i<strong>on</strong> <strong>and</strong> b<strong>on</strong>ding of<br />

structures is the risk of causing a signalling failure due to incorrect<br />

c<strong>on</strong>figur<strong>at</strong>i<strong>on</strong> of spark gap b<strong>on</strong>ds. This safety issue highlights the need for a<br />

proper detailed design approach, especially for larger complex st<strong>at</strong>i<strong>on</strong>s.<br />

Page 26 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

The siting of services <strong>on</strong> st<strong>at</strong>i<strong>on</strong>s such as vending machines, ticketing<br />

machines, teleph<strong>on</strong>e booths, w<strong>at</strong>er taps, etc must be c<strong>on</strong>sidered in rel<strong>at</strong>i<strong>on</strong><br />

to earthing <strong>and</strong> b<strong>on</strong>ding principles.<br />

With the further roll out of st<strong>at</strong>i<strong>on</strong> upgrading projects, the issues associ<strong>at</strong>ed<br />

with railway st<strong>at</strong>i<strong>on</strong> interfaces with other buildings, structures, bus-rail<br />

interchanges etc will become more prevalent. Gre<strong>at</strong>er c<strong>on</strong>trol over this work<br />

is crucial to ensure <strong>RailCorp</strong>’s st<strong>and</strong>ards are met in future.<br />

Past deficiencies in rel<strong>at</strong>i<strong>on</strong> to earthing <strong>and</strong> b<strong>on</strong>ding are due to the<br />

piecemeal approach often adopted by the st<strong>at</strong>i<strong>on</strong> upgrading work. Projects<br />

must not limit their scope to their own upgrading work without addressing the<br />

global implic<strong>at</strong>i<strong>on</strong>s of earthing <strong>and</strong> b<strong>on</strong>ding.<br />

At more complex st<strong>at</strong>i<strong>on</strong>s, some c<strong>on</strong>figur<strong>at</strong>i<strong>on</strong>s pose a difficult situ<strong>at</strong>i<strong>on</strong> to<br />

segreg<strong>at</strong>e the 1500V circuits from other parts of the st<strong>at</strong>i<strong>on</strong>. Often the best<br />

compromise opti<strong>on</strong> <strong>at</strong> these st<strong>at</strong>i<strong>on</strong>s is to tre<strong>at</strong> all metallic structures as <strong>on</strong>e<br />

body. This altern<strong>at</strong>ive, while not necessarily the optimal opti<strong>on</strong>, is c<strong>on</strong>sidered<br />

the most pragm<strong>at</strong>ic opti<strong>on</strong> for some situ<strong>at</strong>i<strong>on</strong>s due to the numerous<br />

pl<strong>at</strong>forms, stanchi<strong>on</strong>s, service lines, stairs, h<strong>and</strong>rails, canopy supports <strong>and</strong><br />

lighting columns involved. However, there are neg<strong>at</strong>ive trade-offs with this<br />

opti<strong>on</strong> where the sphere of influence is gre<strong>at</strong>ly increased under fault<br />

c<strong>on</strong>diti<strong>on</strong>s. Further, this opti<strong>on</strong> requires engineering analysis <strong>and</strong> b<strong>on</strong>ding<br />

design to ensure the appropri<strong>at</strong>e safety criteria is maintained.<br />

It is emphasised th<strong>at</strong> appropri<strong>at</strong>e c<strong>on</strong>figur<strong>at</strong>i<strong>on</strong> document<strong>at</strong>i<strong>on</strong> for earthing,<br />

b<strong>on</strong>ding <strong>and</strong> electrolysis mitig<strong>at</strong>i<strong>on</strong> equipment is essential to minimise the<br />

risks associ<strong>at</strong>ed with these issues. This c<strong>on</strong>figur<strong>at</strong>i<strong>on</strong> document<strong>at</strong>i<strong>on</strong> must<br />

be incorpor<strong>at</strong>ed into any new project involving upgrading work to ensure<br />

integrity of the assets <strong>and</strong> allow for maintainability.<br />

It is evident th<strong>at</strong> there is no simple formula for solving existing problems,<br />

especially <strong>at</strong> more complex st<strong>at</strong>i<strong>on</strong>s. In these situ<strong>at</strong>i<strong>on</strong>s, each st<strong>at</strong>i<strong>on</strong> must<br />

be assessed <strong>on</strong> its own merit, taking into c<strong>on</strong>sider<strong>at</strong>i<strong>on</strong> the existing<br />

c<strong>on</strong>figur<strong>at</strong>i<strong>on</strong> <strong>and</strong> the proposed work to determine the best optimal soluti<strong>on</strong>,<br />

culmin<strong>at</strong>ing in the producti<strong>on</strong> of an earthing <strong>and</strong> b<strong>on</strong>ding design.<br />

The principle of separ<strong>at</strong>i<strong>on</strong> is the best opti<strong>on</strong> th<strong>at</strong> overcomes the majority of<br />

earthing <strong>and</strong> b<strong>on</strong>ding issues, especially for limited new work. Obviously, in<br />

existing install<strong>at</strong>i<strong>on</strong>s where this separ<strong>at</strong>i<strong>on</strong> is already compromised, it can be<br />

an expensive exercise to either reloc<strong>at</strong>e all offending metallic supports or<br />

revert to other altern<strong>at</strong>ives.<br />

From a risk management perspective, the process of “designing out”<br />

earthing <strong>and</strong> b<strong>on</strong>ding issues must be the first choice in the hierarchy of<br />

managing these risks. This is especially so in rel<strong>at</strong>i<strong>on</strong> to proposed new<br />

upgrading work.<br />

It is stressed th<strong>at</strong> the most cost effective <strong>and</strong> safest c<strong>on</strong>figur<strong>at</strong>i<strong>on</strong> for any<br />

new canopy or building work is to incorpor<strong>at</strong>e the principle of separ<strong>at</strong>i<strong>on</strong>, if<br />

feasible, into the design stage. If earthing <strong>and</strong> b<strong>on</strong>ding issues are integr<strong>at</strong>ed<br />

into the design stage, substantial cost savings can be achieved as well as<br />

drastically reducing the risk exposure to pers<strong>on</strong>s, property <strong>and</strong> <strong>RailCorp</strong>.<br />

Page 27 of 31


APPENDIX 1<br />

<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

The following are selected extracts from relevant RIC (<strong>RailCorp</strong>) documents dealing<br />

with railway st<strong>at</strong>i<strong>on</strong> earthing <strong>and</strong> b<strong>on</strong>ding requirements. The extracts are not a<br />

comprehensive set of document<strong>at</strong>i<strong>on</strong> but have been compiled to c<strong>on</strong>cisely highlight<br />

the major issues associ<strong>at</strong>ed with earthing <strong>and</strong> b<strong>on</strong>ding.<br />

EP 12 10 00 21 SP<br />

Low Voltage Install<strong>at</strong>i<strong>on</strong>s <strong>Earthing</strong><br />

1.1. Clearances from 1500 V Structures <strong>and</strong> Other Earthed Metalwork<br />

A 2 m distance shall be maintained between the earthing system of the low voltage<br />

install<strong>at</strong>i<strong>on</strong>, including earthed metalwork for example fences, vending machines <strong>and</strong><br />

teleph<strong>on</strong>e cabinets, <strong>and</strong> any overhead wiring structures which are not b<strong>on</strong>ded to the<br />

same earthing system or metalwork c<strong>on</strong>nected to a separ<strong>at</strong>e earthing system.<br />

1.6. Lineside Metal Fencing or Signal Troughing<br />

A 2 m clearance must be maintained between any metal c<strong>on</strong>nected to the railway<br />

st<strong>at</strong>i<strong>on</strong>s low voltage earth <strong>and</strong> any c<strong>on</strong>tinuous metal structure, such as a fence or<br />

signal troughing, th<strong>at</strong> is not intenti<strong>on</strong>ally c<strong>on</strong>nected to the earthing system. Where the<br />

2 m clearance cannot be obtained, a suitable approved method such as installing two<br />

isol<strong>at</strong>ing breaks 2 m apart in the c<strong>on</strong>tinuous metal structure shall be used.<br />

Altern<strong>at</strong>ively the situ<strong>at</strong>i<strong>on</strong> can be proved safe by calcul<strong>at</strong>i<strong>on</strong> <strong>and</strong> testing for dangerous<br />

touch voltages in accordance with the ESAA Subst<strong>at</strong>i<strong>on</strong> <strong>Earthing</strong> Guide.<br />

1.7. Metallic C<strong>on</strong>duits<br />

In general metallic c<strong>on</strong>duits are not permitted to be installed underground or in<br />

c<strong>on</strong>crete within the electrified area due to the presence of stray 1500 V dc leakage<br />

currents. However, in practice short lengths should not present a problem, therefore, if<br />

a situ<strong>at</strong>i<strong>on</strong> arises where a short length of buried metallic c<strong>on</strong>duit is the preferred<br />

method then the definiti<strong>on</strong> of appreciable dc leakage current from Specific<strong>at</strong>i<strong>on</strong><br />

EP12000002SP - "Low Voltage Distributi<strong>on</strong> <strong>and</strong> Install<strong>at</strong>i<strong>on</strong>s <strong>Earthing</strong> References <strong>and</strong><br />

Definiti<strong>on</strong>s" can be applied<br />

2. Overbridge having 1500 V Overhead Wiring <strong>and</strong> Low Voltage Wiring<br />

Attached<br />

2.1. C<strong>on</strong>necti<strong>on</strong> to Electrode<br />

An overbridge <strong>at</strong> any railway st<strong>at</strong>i<strong>on</strong> in the electrified area having low voltage cables in<br />

c<strong>on</strong>tact with the bridge will require the bridge to be c<strong>on</strong>nected to a 6 m electrode using<br />

a 70 mm² copper c<strong>on</strong>ductor, refer to secti<strong>on</strong> 2.1.1. The electrode is to be loc<strong>at</strong>ed as<br />

close as possible to the bridge <strong>and</strong> installed as detailed in secti<strong>on</strong>s 2.1.2 <strong>and</strong> 2.1.3.<br />

The 70 mm² c<strong>on</strong>ductor shall be protected against mechanical damage as detailed in<br />

Page 28 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

secti<strong>on</strong> 1.5 <strong>and</strong> be secured to the over bridge by no lesser security than a crimped<br />

closed lug, lock-nutted <strong>on</strong>to a stud of minimum size 12 mm.<br />

3. <strong>Railway</strong> St<strong>at</strong>i<strong>on</strong> Interfaces<br />

Where a railway st<strong>at</strong>i<strong>on</strong> adjoins with another building or structure, such as a bus rail<br />

interchange or a footbridge th<strong>at</strong> c<strong>on</strong>nects a railway st<strong>at</strong>i<strong>on</strong> with a shopping centre, the<br />

design shall not allow the extensi<strong>on</strong> of the RIC low voltage earthing system bey<strong>on</strong>d<br />

the railway corridor. This includes all metallic structures <strong>and</strong> services, such as<br />

awnings, fences, pipes <strong>and</strong> electrical wiring <strong>and</strong> c<strong>on</strong>duits. The interface should be well<br />

defined <strong>and</strong> easily observable <strong>and</strong> where any doubt exists the situ<strong>at</strong>i<strong>on</strong> shall be<br />

proved safe by calcul<strong>at</strong>i<strong>on</strong> <strong>and</strong> testing for dangerous touch voltages in accordance<br />

with the ESAA Subst<strong>at</strong>i<strong>on</strong> <strong>Earthing</strong> Guide.<br />

The metalwork of the structure th<strong>at</strong> has been isol<strong>at</strong>ed from the st<strong>at</strong>i<strong>on</strong> may be<br />

c<strong>on</strong>nected to an MEN earthing system.<br />

C 4501<br />

Metallic Lineside Fencing in Electrified Areas<br />

When c<strong>on</strong>structing metallic fencing al<strong>on</strong>g the 1500V DC electrified rail corridor, the<br />

following key electrical aspects must be c<strong>on</strong>sidered:<br />

• The transfer of touch <strong>and</strong> step potentials al<strong>on</strong>g the metallic fencing, <strong>and</strong><br />

• The mitig<strong>at</strong>i<strong>on</strong> of electrolysis.<br />

EP 12 30 00 01 SP<br />

Electrolysis From Stray DC Current<br />

1 Introducti<strong>on</strong><br />

….Ideally, all current should return through the rails, but since they are in close<br />

c<strong>on</strong>tact with the ground through the sleepers <strong>and</strong> ballast, some current will 'leak' from<br />

the rails <strong>and</strong> return to the subst<strong>at</strong>i<strong>on</strong> through the ground. This is called 'stray current'<br />

or 'leakage current'…..<br />

…..The problem of minimising electrolysis is closely rel<strong>at</strong>ed to the problem of earthing<br />

<strong>and</strong>/or b<strong>on</strong>ding of metallic structures to prevent electric shock to people. The soluti<strong>on</strong>s<br />

to both problems have to be a compromise since the 'best' soluti<strong>on</strong> for <strong>on</strong>e situ<strong>at</strong>i<strong>on</strong><br />

results in major problems for the other situ<strong>at</strong>i<strong>on</strong>.<br />

5 Minimis<strong>at</strong>i<strong>on</strong> Techniques<br />

The following minimis<strong>at</strong>i<strong>on</strong> techniques are recommended for any pers<strong>on</strong> engaging in<br />

work within the `railway corridor' <strong>and</strong> near `1500 V track'. All m<strong>and</strong><strong>at</strong>ory requirements<br />

are covered in relevant documents.<br />

• Overhead wiring structures which are b<strong>on</strong>ded to rail via a spark gap do not c<strong>on</strong>tact<br />

earthed services such as st<strong>at</strong>i<strong>on</strong> awnings, fences, w<strong>at</strong>er pipes etc.<br />

Page 29 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

• In tunnels, <strong>on</strong> bridges <strong>and</strong> under air-space developments, there is no c<strong>on</strong>tact<br />

between rails <strong>and</strong> reinforcing or other steelwork.<br />

• Keep metallic services 'away' from the track so there is less chance of 'picking up'<br />

appreciable dc leakage current.<br />

• All low voltage supplies use Isol<strong>at</strong>ing transformers. Local Electricity Distributor<br />

neutral <strong>and</strong> earthing systems should not enter <strong>Railway</strong> Corridor.<br />

• W<strong>at</strong>er <strong>and</strong> Gas pipes servicing buildings <strong>on</strong> the <strong>Railway</strong> Corridor <strong>and</strong> near 1500 V<br />

track to have an isol<strong>at</strong>ing joint installed <strong>at</strong> the boundary.<br />

• Fencing <strong>at</strong> st<strong>at</strong>i<strong>on</strong>s <strong>and</strong> electrical subst<strong>at</strong>i<strong>on</strong>s is not to be c<strong>on</strong>nected to the lineside<br />

fencing.<br />

• Ensure all metallic structures such as footbridges, bus shelters etc. are isol<strong>at</strong>ed <strong>at</strong><br />

boundary of <strong>Railway</strong> Corridor. This is usually achieved by installing two 'gaps' in<br />

the steelwork, about 2m apart. Special care is needed if there is lighting installed,<br />

to ensure the local Electricity Distributor's earth is not c<strong>on</strong>nected to the steelwork<br />

which forms part of any overhead wiring structure, st<strong>at</strong>i<strong>on</strong> or bridge.<br />

EP 12 10 00 22 SP<br />

Buildings <strong>and</strong> Structures Under Overhead Lines<br />

1. High Voltage Transmissi<strong>on</strong> Lines<br />

Where a building or structure is loc<strong>at</strong>ed such th<strong>at</strong> possible risks could arise due to<br />

inducti<strong>on</strong>, touch or step voltages, infringement of safety clearances to c<strong>on</strong>ductors, or<br />

the failure of line m<strong>at</strong>erials or structures, the earthing system of the building or<br />

structure shall meet the requirements of the Electricity Council of NSW document EC<br />

20 - "<str<strong>on</strong>g>Guideline</str<strong>on</strong>g>s for the Management of Electricity Easements".<br />

EP 12 00 00 02 SP<br />

Low Voltage Distributi<strong>on</strong> <strong>and</strong> Install<strong>at</strong>i<strong>on</strong>s <strong>Earthing</strong><br />

References <strong>and</strong> Definiti<strong>on</strong>s<br />

This document lists the public<strong>at</strong>i<strong>on</strong>s <strong>and</strong> drawings th<strong>at</strong> are referenced in associ<strong>at</strong>ed<br />

documents <strong>and</strong> can provide extra background inform<strong>at</strong>i<strong>on</strong>.<br />

EP 12 10 00 20 SP<br />

Low Voltage Distributi<strong>on</strong> <strong>Earthing</strong><br />

2. Supply from Local Electricity Distributor's Network<br />

2.1. General<br />

Page 30 of 31


<str<strong>on</strong>g>Guideline</str<strong>on</strong>g> <strong>on</strong> <strong>Earthing</strong> <strong>and</strong> B<strong>on</strong>ding<br />

The MEN system of a local Electricity Distributor must not be allowed to pick up<br />

appreciable dc leakage current. The recognised method of achieving this is to ensure<br />

the earth <strong>and</strong> neutral of the MEN supply is physically isol<strong>at</strong>ed from any part of the<br />

supplied install<strong>at</strong>i<strong>on</strong>, including earthed metalwork (such as pipes, fences, overhead<br />

earth wires or troughing).<br />

This document is based <strong>on</strong> the use of an isol<strong>at</strong>ing transformer to separ<strong>at</strong>e the local<br />

Electricity Distributor's MEN earth <strong>and</strong> neutral from the RIC distributi<strong>on</strong> systems direct<br />

earthing system……..<br />

2.3. Isol<strong>at</strong>ing Transformer<br />

An isol<strong>at</strong>ing transformer shall be c<strong>on</strong>nected between the local Electricity Distributor's<br />

service equipment <strong>and</strong> the supply main switchboard to physically isol<strong>at</strong>e the earth <strong>and</strong><br />

neutral of the MEN supply from any part of the RIC distributi<strong>on</strong> system, including<br />

earthed metalwork (such as pipes, fences, overhead earth wires or troughing).<br />

The isol<strong>at</strong>ing transformer shall comply with SRA Specific<strong>at</strong>i<strong>on</strong> A-844 (now RIC<br />

specific<strong>at</strong>i<strong>on</strong> EP 17 00 00 11 SP). The transformer shall be installed with a sign<br />

prominently displayed <strong>on</strong> its case st<strong>at</strong>ing th<strong>at</strong> it is double insul<strong>at</strong>ed <strong>and</strong> c<strong>on</strong>forms to<br />

AS 3108……….<br />

Page 31 of 31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!