22.03.2013 Views

Fundamentals of Short-Circuit Protection for Transformers

Fundamentals of Short-Circuit Protection for Transformers

Fundamentals of Short-Circuit Protection for Transformers

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

E. Le-Blanc Trans<strong>for</strong>mers<br />

Le-Blanc trans<strong>for</strong>mers also serve the purpose <strong>of</strong> feeding<br />

two-phase loads from three-phase systems but are built using a<br />

three-legged core, as shown in Fig. 12.<br />

( 3 −1) •nX<br />

* *<br />

*<br />

( 3 −1) •nX<br />

Fig. 12. Le-Blanc trans<strong>for</strong>mer connection.<br />

The AT balance equations are:<br />

( )<br />

AT = n •i – 3 –1 •n •i + n •i<br />

1 H H1 X XQ X XD<br />

AT = n •i + n • i<br />

2 H H2 X XQ<br />

( )<br />

AT = n •i – 3 –1 •n •i –n •i<br />

3 H H3 X XQ X XD<br />

(38)<br />

Comparing the ATs in pairs <strong>of</strong> core legs per (5) allows<br />

eliminating the winding currents in the delta winding based on<br />

(8) and writing the differential protection equations. We<br />

further use nominal voltages defined <strong>for</strong> the Scott-T<br />

trans<strong>for</strong>mer above to eliminate the turn counts:<br />

2•VX<br />

iDIF() 1 = iHA + iXD<br />

(39)<br />

3•V<br />

VX<br />

( ) HB ( XQ XD )<br />

iDIF 2 = i + 3i –i<br />

(40)<br />

3•V<br />

VX<br />

( ) HC ( XQ XD )<br />

H<br />

iDIF 3 = i – 3i + i<br />

(41)<br />

3•V<br />

In order to simplify implementation in a standard<br />

trans<strong>for</strong>mer relay, we can consider combining the second and<br />

third differential terms by subtracting (40) and (41) as follows:<br />

H<br />

H<br />

2•VX<br />

iDIF( 23)<br />

= i HB –iHC + iXQ<br />

(42)<br />

V<br />

A multiwinding standard trans<strong>for</strong>mer differential relay with<br />

wye compensation matrices can be used to implement (39)<br />

through (41) or (39) and (42), as similarly explained <strong>for</strong> the<br />

Scott-T trans<strong>for</strong>mer above.<br />

H<br />

F. Extended Delta Phase-Shifting Trans<strong>for</strong>mers<br />

Consider the extended delta phase-shifting trans<strong>for</strong>mer<br />

(PST) in Fig. 13 with the series (S) and exciting (E) windings.<br />

The AT equations are:<br />

nS nS<br />

AT1 = D• •i SA –D• •iLA + nE •iE1<br />

2 2<br />

nS nS<br />

AT2 = D• •i SB –D• •iLB + nE •iE2<br />

(43)<br />

2 2<br />

nS nS<br />

AT3 = D• •i SC –D• •iLC + nE •iE3<br />

2 2<br />

In (43), the source current works with half <strong>of</strong> the series<br />

windings multiplied by the tap changer position; the load<br />

current works with half <strong>of</strong> the series windings multiplied by<br />

the tap position but in the opposite direction; and the<br />

excitation current works with the number <strong>of</strong> excitation<br />

winding turns. The source, load, and excitation currents are<br />

tied together with Kirchh<strong>of</strong>f’s current equations as follows:<br />

iSA + iLA= i E3 –iE2<br />

iSB+ iLB = i E1 –iE3<br />

(44)<br />

i + i = i –i<br />

*<br />

SC LC E2 E1<br />

Fig. 13. Extended delta phase-shifting trans<strong>for</strong>mer (where S is source side,<br />

L is load side, D = 0 is neutral control, D = +1 is full advance control, and<br />

D = –1 is full retard control).<br />

Comparing the ATs on each pair <strong>of</strong> core legs in (5) and<br />

substituting the excitation currents with the source and load<br />

currents per (44) yields:<br />

i () = DIF 1 n<br />

D<br />

2<br />

( i –i ) – ( i –i ) + n i + i<br />

iDIF( 2)<br />

= n<br />

D<br />

2<br />

( i –i ) – ( i –i ) + n i + i<br />

iDIF( 3)<br />

= n<br />

D<br />

2<br />

( i –i ) – ( i –i ) + n i + i<br />

*<br />

( ) ( )<br />

S SA LA SC LC E SB LB<br />

( ) ( )<br />

S SB LB SA LA E SC LC<br />

( ) ( )<br />

S SC LC SB LB E SA LA<br />

9<br />

(45)<br />

As expected, the trans<strong>for</strong>mer differential protection<br />

equations are dependent on the position <strong>of</strong> the tap changer, D.<br />

Note that the protection method in (45) does not require<br />

measuring the excitation currents.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!