22.03.2013 Views

Orbital Mechanics

Orbital Mechanics

Orbital Mechanics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Orbital</strong> <strong>Mechanics</strong><br />

• Energy and velocity in orbit<br />

• Elliptical orbit parameters<br />

• <strong>Orbital</strong> elements<br />

• Coplanar orbital transfers<br />

• Noncoplanar transfers<br />

• Time and flight path angle as a function of<br />

orbital position<br />

• Relative orbital motion (“proximity operations”)<br />

© 2001 David L. Akin - All rights reserved<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Energy in Orbit<br />

• Kinetic Energy<br />

1 KE . . v<br />

KE . . = mν<br />

2<br />

⇒ =<br />

2 m 2<br />

• Potential Energy<br />

PE . .<br />

• Total Energy<br />

mµ<br />

PE . . µ<br />

=− ⇒ =−<br />

r m r<br />

2<br />

v µ µ<br />

Const.<br />

= − =−


Implications of Vis-Viva<br />

• Circular orbit (r=a)<br />

v<br />

circular<br />

µ<br />

=<br />

r<br />

• Parabolic escape orbit (a tends to infinity)<br />

v<br />

escape = 2µ<br />

r<br />

• Relationship between circular and parabolic<br />

orbits<br />

vescape = 2vcircular<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Some Useful Constants<br />

• Gravitation constant µ = GM<br />

– Earth: 398,604 km 3 /sec 2<br />

– Moon: 4667.9 km 3 /sec 2<br />

– Mars: 42,970 km 3 /sec 2<br />

– Sun: 1.327x10 11 km 3 /sec 2<br />

• Planetary radii<br />

–r Earth = 6378 km<br />

–r Moon = 1738 km<br />

–r Mars = 3393 km<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Classical Parameters of Elliptical Orbits<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Basic <strong>Orbital</strong> Parameters<br />

• Semi-latus rectum (or parameter)<br />

2<br />

p= a( 1−e<br />

)<br />

• Radial distance as function of orbital position<br />

• Periapse and apoapse distances<br />

• Angular momentum<br />

r<br />

p<br />

=<br />

1+ ecosθ<br />

r = a( 1−e) r = a( + e)<br />

1<br />

p<br />

r r r<br />

h = r × v h= µ<br />

p<br />

a<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


The Classical <strong>Orbital</strong> Elements<br />

Ref: J. E. Prussing and B. A. Conway, <strong>Orbital</strong> <strong>Mechanics</strong> Oxford University Press, 1993<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


The Hohmann Transfer<br />

v1 vperigee v2 vapogee <strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


First Maneuver Velocities<br />

• Initial vehicle velocity<br />

• Needed final velocity<br />

• Delta-V<br />

∆v<br />

1<br />

=<br />

v<br />

µ<br />

⎛<br />

⎜<br />

r ⎝<br />

1<br />

v<br />

1<br />

=<br />

r<br />

µ<br />

perigee =<br />

1<br />

2r2<br />

r + r<br />

1 2<br />

µ<br />

r<br />

1<br />

⎞<br />

−1⎟<br />

⎠<br />

2r2<br />

r + r<br />

1 2<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Second Maneuver Velocities<br />

• Initial vehicle velocity<br />

• Needed final velocity<br />

• Delta-V<br />

∆v<br />

2<br />

v<br />

v<br />

apogee =<br />

2<br />

µ<br />

⎛<br />

= ⎜1−<br />

r ⎝<br />

2<br />

=<br />

r<br />

µ<br />

2<br />

µ<br />

r<br />

2<br />

2r1<br />

r + r<br />

1 2<br />

⎞<br />

⎟<br />

⎠<br />

2r1<br />

r + r<br />

1 2<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Limitations on Launch Inclinations<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Differences in Inclination<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Choosing the Wrong Line of Apsides<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Simple Plane Change<br />

v perigee<br />

v 1 v apogee<br />

∆v 2<br />

v 2<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Optimal Plane Change<br />

v perigee v1 v apogee<br />

∆v 1<br />

∆v 2<br />

v 2<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


First Maneuver with Plane Change ∆i 1<br />

• Initial vehicle velocity<br />

• Needed final velocity<br />

• Delta-V<br />

v<br />

v<br />

1<br />

=<br />

r<br />

µ<br />

p =<br />

1<br />

µ<br />

r<br />

1<br />

2r2<br />

r + r<br />

1 2<br />

2 2<br />

∆v = v + v −2vv cos( ∆i<br />

)<br />

1 1<br />

p 1 p 1<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Second Maneuver with Plane Change ∆i 2<br />

• Initial vehicle velocity<br />

• Needed final velocity<br />

• Delta-V<br />

v<br />

v<br />

a =<br />

2<br />

µ<br />

r<br />

2<br />

=<br />

r<br />

µ<br />

2<br />

2r1<br />

r + r<br />

1 2<br />

2 2<br />

∆v = v + v −2v v cos( ∆i<br />

)<br />

2 2<br />

a 2 a 2<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Sample Plane Change Maneuver<br />

Delta V (km/sec)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 10 20 30<br />

Initial Inclination Change (deg)<br />

Optimum initial plane change = 2.20°<br />

DV1<br />

DV2<br />

DVtot<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Bielliptic Transfer<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Coplanar Transfer Velocity Requirements<br />

Ref: J. E. Prussing and B. A. Conway, <strong>Orbital</strong> <strong>Mechanics</strong> Oxford University Press, 1993<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Noncoplanar Bielliptic Transfers<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Calculating Time in Orbit<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Time in Orbit<br />

• Period of an orbit<br />

P<br />

• Mean motion (average angular velocity)<br />

• Time since pericenter passage<br />

➥M=mean anomaly<br />

3<br />

a<br />

= 2π<br />

µ<br />

n<br />

=<br />

a<br />

µ 3<br />

M = nt = E−esin E<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Dealing with the Eccentric Anomaly<br />

• Relationship to orbit<br />

r = a( 1−ecos<br />

E)<br />

• Relationship to true anomaly<br />

θ 1+<br />

e E<br />

tan = tan<br />

2 1−e2 • Calculating M from time interval: iterate<br />

E + nt e E<br />

= + 1 sin<br />

i i<br />

until it converges<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Hill’s Equations (Proximity Operations)<br />

Ref: J. E. Prussing and B. A. Conway, <strong>Orbital</strong> <strong>Mechanics</strong><br />

Oxford University Press, 1993<br />

2<br />

x˙˙ = 3n x+ 2ny˙+<br />

adx y˙˙ =− 2nx˙+<br />

ady 2<br />

˙˙z=− n z+ adz <strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


Clohessy-Wiltshire (“CW”) Equations<br />

x( t) = 4−3cos( nt) x<br />

sin( nt)<br />

2<br />

x˙<br />

[ 1 cos( nt) ] y˙<br />

n n<br />

[ ] + + −<br />

2<br />

y( t) = 6[<br />

sin( nt) −nt]<br />

x + y − 1−cos(<br />

nt) x˙<br />

n<br />

zt ( ) = zcos( nt)<br />

+<br />

o<br />

o o o<br />

[ ] +<br />

4sin( nt) − 3nt<br />

n<br />

o o o o<br />

z˙<br />

o sin( nt)<br />

n<br />

z˙( t) =− z nsin( nt) +<br />

z˙ sin( nt)<br />

o o<br />

y˙<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design


References for Lecture 3<br />

• Wernher von Braun, The Mars Project<br />

University of Illinois Press, 1962<br />

• William Tyrrell Thomson, Introduction to<br />

Space Dynamics Dover Publications, 1986<br />

• Francis J. Hale, Introduction to Space<br />

Flight Prentice-Hall, 1994<br />

• William E. Wiesel, Spaceflight Dynamics<br />

MacGraw-Hill, 1997<br />

• J. E. Prussing and B. A. Conway, <strong>Orbital</strong><br />

<strong>Mechanics</strong> Oxford University Press, 1993<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

Principles of Space Systems Design

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!