19.08.2013 Views

Preliminary Design Review - University of Maryland

Preliminary Design Review - University of Maryland

Preliminary Design Review - University of Maryland

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

Dylan Carter<br />

Vera Klimchenko<br />

Calvin Nwachuku<br />

Michelle Sultzman<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Mission Overview<br />

• <strong>Design</strong> a crewed spacecraft for a low-cost mission to<br />

the Moon<br />

• Support a crew <strong>of</strong> three for a 10 day mission with 3<br />

days <strong>of</strong> contingency<br />

• Maximum spacecraft diameter: 3.57 m<br />

• Half cone angle: 25° < θ < 32.5°<br />

• Wall thickness: 10 cm<br />

• Total mass allocation for crew and crew systems:<br />

1500 kg<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Choosing Optimal Half-Cone Angle<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Choosing Optimal Half-Cone Angle<br />

25 degree half-cone angle:<br />

• Provides most cabin volume (13.86 m 3 )<br />

• Provides large height (need at least 2 m clearance<br />

for cabin alone)<br />

• Cabin volume is scarce here<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Heat Shield Radius<br />

• Standard sphere-cone heat shields have halfangles<br />

around 70°<br />

• Chose radius <strong>of</strong> curvature that best approximated<br />

this shape<br />

• R = 2.777 m<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Atmosphere<br />

Constraints on Cabin Conditions:<br />

• R < 1.6 to reduce risk <strong>of</strong> DCS<br />

• Ambient O2 < 30% to reduce risk <strong>of</strong> fire<br />

• Stay within hypoxic and toxic boundaries<br />

Our <strong>Design</strong>:<br />

• Pressure = 9.5 psi<br />

• Ambient O2 = 29%<br />

• Reduces DCS risk as much as possible while<br />

avoiding flammability and hypoxia<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Atmosphere<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Denitrogenation<br />

Comparative DCS risk estimated using R value<br />

• Based on 60 minutes <strong>of</strong> prebreathe<br />

• R defined for 360-minute tissue<br />

Our <strong>Design</strong>: R = 1.20 (about 1.5% risk)<br />

• Compare to Shuttle: R = 1.10 (0.5% risk)<br />

• Large tissue choice makes this a very conservative estimate<br />

o For 200-minute model (next largest): R = 1.096<br />

o For 5-minute model (smallest): R = 0.0003<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Gasses Lost and Consumed<br />

Assume 10% <strong>of</strong> gas lost during depressurization<br />

4 days on surface: total 4 EVAs<br />

Cabin Interior: 13.86 m 3<br />

• Lost Gasses: 0.723 kg N 2, 0.338 kg O 2<br />

Oxygen Consumption: 1.11 kg O 2/day<br />

For 3 people over 13 days:<br />

• Consumed O 2: 43.29 kg O 2<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Oxygen Supply<br />

O 2 Consumed and Lost: 43.63 kg O 2<br />

Many options for oxygen production:<br />

• Open Loop (Non-regenerative)<br />

o O 2 tanks (gaseous or liquid)<br />

o Lithium Perchlorate (LiClO 4)<br />

o Lithium Superoxide (LiO 2)<br />

o Potassium Superoxide (KO 2)<br />

• Regenerative<br />

o Sabatier Reaction (requires some H 2 resupply)<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Oxygen Supply<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Oxygen Supply<br />

Gaseous and Liquid Storage are lightest<br />

• Gaseous requires no power<br />

• Liquid: 210 kJ/kg O 2 (8.16 W - very little) for<br />

vaporization<br />

Our <strong>Design</strong>: Open Loop with liquid O 2<br />

• Lowest mass and volume<br />

• Comparatively little power draw<br />

Liquid will also be used to store N 2<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Resupply Tank Properties<br />

Tank Mass: 0.7 kg/kg O 2, 0.8 kg/kg N 2<br />

• O 2 Tank Mass: 30.54 kg<br />

• N 2 Tank Mass: 0.579 kg<br />

Liquid O 2 Density: 1141 kg/m 3<br />

Liquid N 2 Density: 807 kg/m 3<br />

• O 2 Tank Volume: 0.0382 m 3<br />

• N 2 Tank Volume: 0.000896 m 3<br />

• Volume <strong>of</strong> tank material is negligible<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Depressurization Tank<br />

During cabin depressurization, ambient air is<br />

pumped into storage tank:<br />

• Stored at 3000 psi, 300 K<br />

• Masses: 10.61 kg air, 2 kg tank/kg O 2<br />

Depressurization Tank (and Pump, estimated):<br />

• Mass: 23.28 kg tank, 8.6 kg pump<br />

• Volume: 0.0439m 3 tank, 0.0093m 3 pump<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


CO 2 Scrubbing<br />

95th percentile males produce 1.306 kg CO 2<br />

• 3.918 kg CO 2/day, 50.93 kg CO 2 total<br />

Options available for CO 2 removal:<br />

• LiOH Canisters<br />

• METOX Canisters w/ Oven<br />

• 4-Bed Molecular Sieves<br />

• Solid Amine Water Desorption<br />

• Sabatier Reaction<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


CO 2 Scrubbing - Mass<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


CO 2 Scrubbing - Power<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


CO 2 Scrubbing<br />

METOX vs LiOH<br />

• METOX system lighter by about 10 kg<br />

• LiOH requires no power; METOX draws 1 kW<br />

• LiOH is smaller and more portable<br />

Our <strong>Design</strong>: Non-regenerable LiOH canisters<br />

• Difference in weight is outweighed by additional<br />

battery and portability<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


CO 2 Scrubbing<br />

LiOH Canisters for CO 2 Scrubbing<br />

• 2.1 kg material/kg CO 2<br />

• 106.9 kg material minimum<br />

• Each canister is 6.4 kg: 17 total canisters<br />

17 canisters for total mass 108.8 kg<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Atmosphere <strong>Design</strong> Summary<br />

Cabin Conditions: 9.5 psi, 30% O 2, 70% N 2<br />

• Mass (air, tank, pump): 42.49 kg<br />

Supplementary O 2: Cryogenic liquid storage<br />

• Mass (O 2 and tank): 74.17 kg<br />

Supplementary N 2: Cryogenic liquid storage<br />

• Mass (N 2 and tank): 1.31 kg<br />

CO 2 Scrubbing: Expendable LiOH canisters<br />

• Mass (canisters): 108.8 kg<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Water<br />

Possible Options:<br />

Open-Loop System<br />

• Bring all necessary water in tanks<br />

without plan <strong>of</strong> recycling<br />

• Only extra mass is from pump<br />

• 48 W <strong>of</strong> power needed<br />

Recycling System<br />

• Vapor Compression Distillation<br />

System; bring less water and<br />

recycle 95% <strong>of</strong> water used daily.<br />

• Extra mass includes pump and<br />

distillation hardware<br />

• 648 W <strong>of</strong> power needed<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Water<br />

• Open-loop system requires more water.<br />

However, the most plausible water recycling<br />

system is very massive and large. It will also<br />

requires much more power.<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Water<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Water<br />

Chosen Water System: Open Loop<br />

o Less total mass for a short-term mission<br />

o More power, mass, and volume efficient<br />

Mass Breakdown:<br />

Water Mass: Potable Water - 2L/crew-day * 3 members * 13 days<br />

Total Water Mass = 190 kg<br />

Tank Mass =53 kg<br />

Hygiene Water - 2.84L/crew-day * 3 members * 10 days (nominal)<br />

Pump Mass = 8 kg<br />

Total Water System Mass: 251 kg<br />

+ 2.84L/crew-day * 3 members * 3 days (contingency)<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Food<br />

Using values from previous space shuttle missions,<br />

baseline requirements for the food system were<br />

determined:<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Food<br />

Using these baseline requirements, food and<br />

packaging mass over the duration <strong>of</strong> the mission<br />

was calculated:<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Food<br />

Cargo Transfer Bags (CTBs) will be used to stow<br />

food<br />

• To hold 58.67 kg need equivalent <strong>of</strong> 5 half-sized<br />

CTBs (0.12 m 3 )<br />

• Using two single-size CTBs for meals and snacks<br />

and one half-sized CTB for beverages<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Food<br />

No Thermostablized Meals<br />

• Eliminates mass and volume requirements <strong>of</strong><br />

oven<br />

• Over mission duration <strong>of</strong> 13 days will not cause<br />

morale or nutritional issues<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Other Food System Related Masses<br />

Food locker mass: 13.65 kg<br />

Trays and utensils: ~ 1 kg<br />

Hydration Station: ~ 15 kg<br />

Total Food System Mass: ~ 90 kg<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Waste Management<br />

• All <strong>of</strong> the waste produced during the mission will be<br />

collected, stabilized and stored<br />

• Recycling the waste products does not prove to be<br />

optimal for this short term mission due to the mass,<br />

power and space constraint<br />

• Human solid waste will go into the fecal bags and then<br />

into the fecal bag compartment<br />

• Urine and grey water will go into the Urine Collection<br />

and Transfer Device<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Breakdown <strong>of</strong> Waste<br />

Waste [kg/CM-d] [kg/3CM-13d] Storage<br />

Urine 1.562 60.9 Liquid Waste Tank<br />

Feces 0.123 4.8 Fecal Bag Collection<br />

Hygiene Water<br />

2.84<br />

110.8 Liquid Waste Tank<br />

Urine Flush Water 0.5 19.5 Liquid Waste Tank<br />

Food Packaging 0.324 12.6 Trash Bag<br />

Wet Wipes 0.051 1.9 Trash Bag<br />

Toilet Paper 0.028 1.09 Trash Bag<br />

Total Waste Mass (kg) 5.4 211.6 ***The food package, wet wipes and toilet paper<br />

mass will not be included in the final mass estimation<br />

because mass is already allocated for them in<br />

previous sections<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Human Solid Waste<br />

• Fecal matter will be collected into special fecal bags, similar to<br />

the ones used on Apollo module.<br />

• After the fecal matter is thoroughly mashed and compressed, the<br />

fecal bag will be treated with germicide and sealed. After all the<br />

procedures, it will be placed into a designated shoot leading to<br />

the fecal bag compartment.<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Human Solid Waste<br />

The fecal bag is able to hold about 0.0408 kg/bag.<br />

# <strong>of</strong> Bags= (0.123[kg/CM-d])*(3CM)*(13d)/(0.0408kg/bag)=118<br />

bags<br />

Assuming the density <strong>of</strong> water:<br />

Total Volume <strong>of</strong> the Bags=(118*0.0408)/1000=0.0048m 3<br />

The volume <strong>of</strong> the fecal bag compartment will be<br />

larger than the total volume <strong>of</strong> the bags by<br />

0.0002m 3 for storage space.<br />

FECAL BAG<br />

COMPARTMENT<br />

Aluminum Square Tank<br />

M=67 kg<br />

Side=.168 m<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Human Urine and Grey Water Collection<br />

Flush Water<br />

0.5 [kg/CM-d]<br />

6.5 [kg/CM-13d]<br />

Total Mass: 19.5 kg<br />

Total Volume=0.0195m 3<br />

Liquid Waste Tank<br />

Material: Aluminum<br />

Capacity: 0.0956m 3<br />

Wall Thickness: 2cm<br />

Used Hygiene Water<br />

2.84 [kg/CM-d]<br />

36.92[kg/CM-13d]<br />

Total Mass:110.8 kg<br />

Total Volume=0.1108 m 3<br />

Human urine and grey water will<br />

be collected in one spherical tank.<br />

Urine<br />

1.562 [kg/CM-d]<br />

20.31 [kg/CM-13d]<br />

Total Mass:60.9kg<br />

Total Volume: 0.0609 m 3<br />

2 Spherical Tanks<br />

Wall Thickness: 2cm<br />

Rinner=0.284m<br />

Router=0.304m<br />

Mass=60.48kg<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Trash<br />

• Wet wipes, food packaging and other<br />

consumables will be stowed away in wet and dry<br />

trash bags below the the first deck or above the<br />

first deck.<br />

• The food packaging might contain food leftovers<br />

and should be stowed away in durable wet bags<br />

that will not let out moisture or smells.<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Exterior <strong>Design</strong><br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Interior Layout<br />

Upper Level<br />

Launch and Re-entry<br />

Control Console<br />

Launch Seats<br />

Crew/Space Suits<br />

Window<br />

Lunar Landing<br />

Control Console<br />

Tanks (Water,<br />

Waste, O 2, N 2,<br />

etc.)<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Interior Layout<br />

• Space suits will be worn during launch and stored in<br />

launch seats while not in use<br />

• Hammocks will be provided for crew to hang across<br />

cabin for sleeping arrangements<br />

• Upper level is provided as additional space for stowage<br />

• Bathroom area will be <strong>of</strong>f to the side opposite the airlock<br />

• Hammocks can be used as curtains during operational<br />

hours to provide privacy for bathroom area<br />

• Clothing, food, and other CTBs can be stored on shelving<br />

provided under lunar landing control console


Sight Line Analysis<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Ingress/Egress<br />

• A platform with a retractable ladder will sit just<br />

inside the airlock to be deployed when leaving the<br />

spacecraft.<br />

• There will be 4 EVAs during the missions,<br />

maximum <strong>of</strong> 8 hours each. One on each day spent<br />

on the moon. All the crew members will<br />

participate.<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Power Requirements<br />

O 2 and N 2 Vaporization: 8.3 W<br />

Vacuum Pump: 249 W<br />

Water Pump: 48 W<br />

Water Heater: 100 W<br />

Solid Waste Management Equipment: 16 W<br />

Max Power Draw: 421.3 W<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


Total Mass<br />

Mass (kg)<br />

Initial Mass Estimate 1500<br />

Atmosphere Management 226.8<br />

Water Storage and Distribution 251<br />

Food Supplies 90<br />

Waste Management 190<br />

Equipment and Misc. Supplies<br />

Space Suits 300<br />

Clothing 43<br />

Crew 240<br />

Total Mass 1340.8<br />

Mass Margin (%) 10.61<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


References<br />

• Advanced Life Support Baseline Values and Assumptions Document -<br />

NASA/CR—2004–208941 – NASA JSC, Aug. 2004<br />

• Advanced Life Support Baseline Values and Assumptions Document –<br />

JSC-47804 – JSC Crew and Thermal Systems Division, May 2002<br />

• Advanced Life Support Systems Requirements Document - JSC-38571,<br />

rev.B - JSC Crew and Thermal Systems Division, Sept. 2002<br />

• Akin, David L. "ECLIPSE: <strong>Design</strong> <strong>of</strong> a Minimum Functional Habitat for<br />

Initial Lunar Exploration.“ AIAA Space 2009 Conf. & Exposition (2009):<br />

n. pag. Print.<br />

• Akin, David. (2011) Habitability and Human Factors [PDF]. Retrieved<br />

from<br />

http://spacecraft.ssl.umd.edu/academics/483F12/483F12L12.hufac/483F12<br />

L12.hufacx.pdf<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


References<br />

• Akin, David. (2012) Introduction to Space Life Support [PDF]. Retrieved from<br />

http://spacecraft.ssl.umd.edu/academics/483F12/483F12L11.life_support/483F<br />

12L11.life_support.pdf<br />

• Akin, David. (2012) Aerospace Physiology [PDF]. Retrieved from<br />

http://spacecraft.ssl.umd.edu/academics/483F12/483F12L10.physiology/483F1<br />

2L10.physiology.pdf<br />

• Bienh<strong>of</strong>f, Dallas G., Russell F. Graves, and Greg J. Gentry. "Lunar Habitat:<br />

Minimum Functionality to Outpost Capable." AIAA Space 2009 Conf. &<br />

Exposition (2009): n. pag. Print.<br />

• Jorgensen, Catherine A. Baseline <strong>Design</strong>. N.p.: n.p., 2000. Print. Vol. 1 <strong>of</strong><br />

Intern<br />

• Howe, Scott A., and Robert Howard. Duel Use <strong>of</strong> Packaging on the Moon:<br />

Logistics-2-Living. Rept. no. 6049. N.p.: AIAA, 2010. Print.ational Space<br />

Station Evolution Data Book.<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


References<br />

• Human Integration <strong>Design</strong> Handbook (HIDH). WASHINGTON, DC:<br />

NASA, 2010. Print. NASA/SP-2010-3407.<br />

• Lin, John K. Lunar Surface Systems Concept Study: Minimum<br />

Functionality Habitat Element. N.p.: n.p., n.d. Print.<br />

• NASA. Advanced Life Support Research and Technology Development<br />

Metric. By Anthony J. Hanford. Technical rept. no. 213694. Houston:<br />

NASA, 2006. Print.<br />

• Rapp, Donald, “A <strong>Review</strong> <strong>of</strong>: Advanced Life Support Systems Integration,<br />

Mondeling, and Analysis Reference Missions Document.” Retrieved from<br />

http://spaceclimate.net/JSC.DRM.life.support.pdf<br />

• Rudisill, Mirianee, et al. Lunar Architecture Team-Phase 2 Habitat Volume<br />

Estimation "Caution When Using Analogs." Technical rept. N.p.: n.p., n.d.<br />

Print.<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


References<br />

• Scheuring et. al, "Risk Assessment <strong>of</strong> Physiological Effects <strong>of</strong> Atmospheric<br />

Composition and Pressure in Constellation Vehicles" 16th Annual Humans in<br />

Space, Beijing, China, May 2007<br />

• Shull, Sarah, Raul Polit-Casillas, and Scott A. Howe. "NASA Advanced<br />

Exploration Systems: Concepts for Logistics to Living." AIAA Space 2012<br />

Conf. & Exposition (2012): 1-10. Print.<br />

• Strayer, Richard F., Mary E. Hummerick, and Jeffrey T. Richards.<br />

Characterization <strong>of</strong> Volume F Trash from Four Recent STS Missions. N.p.:<br />

n.p., n.d. Print.<br />

• United Space Alliance. Final Report on the 3-Month Alternate Access to<br />

Station Performance Requirements Study. Research rept. N.p.: n.p., 2002.<br />

Print.<br />

• <strong>University</strong> <strong>of</strong> <strong>Maryland</strong>. Space Systems Laboratory. Minimum Functionality<br />

Lunar Habitat Element. By David L. Akin. N.p.: n.p., 2009. Print.<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>


References<br />

• Vacuum Pump XE-225. 2012. Retrieved from http://www.made-inchina.com/showroom/ningboaux0574/productdetailNMLxmoITquVn/China-Vacuum-Pump-XE-225-.html<br />

Crew Systems <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

ENAE 483/788D - Principles <strong>of</strong> Space Systems <strong>Design</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!